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Overview

This book provides an introduction to Scheme for programmers--it is not for first-time programmers, but 
for people who already know how to program (at least a little) and are interested in learning Scheme. 

●     Scheme: Scheme: A Small But Powerful Language 
●     Who is this Book For?: Who is this Book For? 
●     Why Scheme?: Why Scheme? 
●     What this Book Is Not: What this Book Is Not 
●     Structure of this Book: Structure of this Book 

Go to the first, previous, next, last section, table of contents. 
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Scheme: A Small But Powerful Language

[ need to improve this introductory blather...] 

Scheme is a clean and fairly small but powerful language, suitable for use as a general-purpose 
programming language, a scripting language, an extension language embedded within applications, or 
just about anything else. 

Scheme was designed to lend itself to a variety of implementation strategies, and many implementations 
exist--most of them free software. There are straightforward interpreters (like BASIC or Tcl), compilers 
to fast machine code (like C or Pascal), and compilers to portable interpretive virtual machine code (like 
Java). 

Several extended implementations of Scheme exist, including our own RScheme system, an extremely 
portable implementation of Scheme with an integrated object system and powerful extensibility features. 

This is the first of three planned documents on Scheme, Scheme implementation, and the RScheme 
language and its implementation. When they're all finished, I may combine them into a big book. All 
three will be in Texinfo format, so that they can be printed out as hardcopy manuals, browsed online as 
info documents (with the Info browser, or the Info system for the Emacs editor), or converted 
automatically to HTML format for browsing with a web browser. Whichever way you're reading this, 
welcome to Scheme. 

[ note: the current draft is only available in postScript form, because I haven't done all of the 
hyperlinking for the Info and HTML versions. ] 

Go to the first, previous, next, last section, table of contents. 
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Who Is this Book For?

This book is for people who are interested in how Scheme works, or people who are interested in 
Scheme in terms of programming language design--as well as people who are just interested in using 
Scheme. 

There's not much conflict between these goals, since one of the best ways to learn Scheme--and 
important principles of language design--is to see how to implement Scheme, in Scheme. I'll illustrate 
the power of Scheme by showing a couple of simple interpreters for subsets of Scheme, and a simple 
compiler. A compiler for Scheme can be surprisingly simple and understandable. 

This is a fairly traditional approach, pioneered by Abelson and Sussman in Structure and Interpretation 
of Computer Programs, which is a widely used and excellent introductory programming text. This 
approach has been followed, more or less, in several other introductory books on Scheme programming. 
Most of those books, though, are for beginning programmers. While I think Scheme is a great first 
language, there are many people out there who've had to suffer through C or Pascal or whatever, and 
don't want to wade through an introductory programming book just to learn Scheme. 

My approach is different from most of the current books on Scheme, in several ways. [When it's 
finished, this book will be hypertext, and can be kept online in online for handy reference in any of 
several cross-indexed formats...] 

I will breeze through basic programming ideas--for example, I assume you have some idea what a 
variable is, and what recursion is. 

I take a more concrete approach than many Scheme writers do, because I've found many students find it 
easier to understand. Every now and then I'll dip below the language level, and tell you how most actual 
implementations of the language work. I find that this concreteness helps disambiguate things in many 
students' minds--as well as in my own. 

I do not start from a functional programming perspective that pretends that Scheme executes by 
rewriting expressions. (If that doesn't mean anything to you, definitely don't worry about it!) 

I take Scheme to be a special case of a weakly object-oriented procedural language. By weakly object 
oriented, I don't mean that it's object-oriented in the sense of having inheritance and so on--though 
several extended versions of Scheme do. I just mean that the values in the language are data objects 
(records, etc.) whose identities may be significant--that is, you can compare pointers to two objects to 
see whether they are the very same object, not just and whether they have the same state--and objects 
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may have mutable (changable) state. (This view is developed further in RScheme, which is a fully object-
oriented language that happens also to be Scheme. But that's a different book, not yet written.) 

Some people may not like this approach, since I start talking about state and assignment very early. It is 
generally considered bad style in Scheme to use assignments freely, and good style to write mostly 
"functional" or "applicative" programs. While I agree that mostly-functional programming is usually the 
right thing for Scheme, my intent is to make the semantics of the language clear early on, and to make it 
clear to new Schemers that Scheme is a fairly normal programming language, even if it is unusually 
clean and expressive. My experience in teaching Scheme has convinced me that many people benefit 
from an early exposure to the use of assignment; it clarifies fundamental issues about variables and 
variable binding. Style is discussed later, when alternatives are clearer. 

If you've ever tried to learn Lisp or Scheme before, but not gotten very far, this book may be for you. 
Many people take to Lisp or Scheme like ducks to water. Some people don't, however, and I think that's 
often because of the way that the material is presented--there's nothing hard about learning Lisp or 
Scheme. In this book, I try to explain things a little differently than they're usually explained, to avoid 
the problems that some people have learning from most of the existing books. The concreteness of the 
explanations here may help overcome the unfamiliarity of these languages. Scheme is really just a 
normal programming language, but one with powerful features that can be used in special ways, too. 

If you're a programming language designer, but not fluent in Scheme or Lisp, this book may help clarify 
what these languages are all about. It's my belief that there has been a damaging split between the Lisp 
world and the "conventional" imperative programming language world, largely due to the different 
vocabularies of the different communities. Recent developments in Scheme have not been widely 
appreciated by designers of other languages. (This theme will be developed further in the other 
documents in this series.) Even old features of Lisp, such as macros, have not been properly understood 
by language designers in general, and their problems have been substantially solved in Scheme. 

If you're a programming language implementor, or teaching programming language implementation, this 
book may be of use. (I use it in a course on languages and implementation.) I'll present interpreters and a 
compiler for Scheme. Scheme an excellent vehicle for teaching principles of language implementation, 
because its syntax is simple, and there is a straightforward evolution from simple interpreters to more 
complex ones, and another straightforward move from a simple interpreter to a compiler. This supports 
teaching the principles of language implementation with a minimum of irrelevant detail. 

Go to the first, previous, next, last section, table of contents. 
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Why Scheme?

[ Warn people that this is partisan propaganda... ] 

Scheme is a very nice language for implementing languages, or for transformational programming in 
general--that is, writing programs that write programs--or for writing programs that can easily be 
extended or customized. The features that make Scheme attractive for implementing Scheme also make 
it good for all kinds of things, including scripting, the construction of new languages and application-
specific programming environments, and so on. 

[ As you learn Scheme, you'll probably realize that all interesting programs end up being, in effect, 
application-specific programming environments...] 

Most Scheme systems are interactive, allowing you to incrementally develop and test parts of your 
program. In this respect, it is much like BASIC or Tcl--but a far cleaner and more expressive language. 
Scheme can also be compiled, to make programs run fast. This makes it easy to develop in, like BASIC 
or Tcl, but still fast, like C. (Scheme isn't usually quite as fast as C, but it's usually not too much slower, 
if you get a good Scheme compiler.) So if you're a Tcl or BASIC programmer looking for a less crufty 
and/or fossilized language, Scheme may be for you. 

Unlike most interactive languages, Scheme is well-designed: it's not a kludge cobbled up by some 
people with very limited applications in mind, and later extended past its reasonable scope of 
application. It was designed from the outset as a general-purpose language, combining the best features 
of two earlier languages. It is fairly radical revision of Lisp, incorporating the best features of both Lisp 
and Algol (the ancestor of C, Pascal, et al.). 

(This is why Scheme has been adopted by several groups as an alternative to kludgey languages like Tcl 
and Perl. The Free Software Foundation's Guile extension language is based on Scheme. So is the 
Scheme Shell (scsh), which is a scripting language for UNIX. The CAD Framework Initiative has 
adopted Scheme as the glue for controlling Computer-Aided Design tools. The Dylan language is also 
based on Scheme, though with a different syntax and many extensions.) 

If you want to learn Lisp, Scheme is a good place to start. Common Lisp is a big, somewhat messy 
language, which is probably easiest to learn by starting with Scheme. Then you can understand Common 
Lisp as a series of extensions (and significant obfuscations) of Scheme. Some of the best features of 
Common Lisp were copied from Scheme. 

If you want to get something of the flavor of functional programming, you can do that in Scheme--most 
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well-written Scheme programs are largely functional, because that's simply the easiest way to do many 
interesting things. 

And if you just want to learn to program better, Scheme may open your eyes to new ways of thinking 
about programs. Many people prototype programs in Scheme, because it's so easy, even if they 
eventually have to recode them in other languages to satisfy their employers. 

Why Scheme Now?

Scheme is not a new language--it's been around and evolving slowly for 20 years. 

The evolution of Scheme has been slow, because the people who standardize Scheme have been very 
conservative--features are only standardized when there is a near-universal consensus on how they 
should work. The focus has been on quality, not industrial usability. 

This policy has had two consequences. The first is that Scheme is a beautiful, extremely well-designed 
language. The second is that Scheme has been "behind the curve," lacking several features that are 
useful in general-purpose languages. Gradually, though, Scheme has grown from a very small language, 
suitable only for teaching concepts, to a very useful language. 

The most important new feature of Scheme (in my view) is lexically-scoped ("hygeinic") macros, which 
allow the implementation of many language features in a portable and fairly efficient way. This allows 
Scheme to remain small, but also allows useful extensions to the base language to be written as libraries, 
without a significant performance penalty. 

Go to the first, previous, next, last section, table of contents. 
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What this Book Is Not

This book isn't a language definition for Scheme, or a manual for using any particular Scheme 
implementation. There is a free language definition document for Scheme, easily available via the 
internet, called the Revised Scheme Report. (There's also an IEEE standard.) I recommend getting the 
Scheme report and printing it out, or browsing the html version with a web browser. (http://www.
cs.indiana.edu/scheme-repository/doc.standards.html It's not very big, because 
Scheme is a pretty small language. I also recommend having a look at the documentation for the 
particular implementation of Scheme you're using. 

On the other hand, this book may serve as a passable approximation of a language manual most of the 
time. (It may work better for this purpose once it's fleshed out more and I've devised more online 
indexing.) It describes all of the important features of standard Scheme, clearly enough that you can use 
them for most purposes. This is possible because Scheme is very clean and "orthogonal"---most of its 
features don't interact in surprising ways, so if you understand Scheme, and do the "Scheme-ish" thing, 
Scheme will generally do what you expect. 

For more information on Scheme, particular Scheme implementations, and so on, see the FAQ 
(Frequently Asked Questions) List on the usenet newsgroup comp.lang.scheme. It's available from 
the Scheme Repository via anonymous internet ftp from ftp.cs.indiana.edu in the directory 
pub/scheme-repository. Or if you're a World Wide Web user, visit the Scheme repository at 
http://www.cs.indiana.edu/scheme-repository. The Scheme repository contains 
several free implementations of Scheme, as well as a variety of useful programs, libraries, and papers. 

Go to the first, previous, next, last section, table of contents. 
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Structure of this Book

This book's structure reflects its tutorial intent, rather than any strong grouping of concepts. In the next 
three chapters, ideas are introduced in the order that I think they're easiest to learn. Each chapter 
introduces a few more or less related ideas, with small code examples, and ends with more examples of 
Scheme programs to show why the ideas are useful. The later chapters introduce relatively independent 
topics. 

[ The following needs to be reworked a little, after the actual document structure settles down. ] 

section Introduction describes some basic features of Scheme, including a little syntax, and gives code 
examples to show that Scheme can be used like most programming languages--you don't give up much 
when using Scheme, and it's not hard to switch. 

section Using Scheme (A Tutorial) gives a tutorial on Scheme programming, intended to be used while 
sitting at a running Scheme system and trying examples interactively. 

section Writing an Interpreter presents an simple interpreter for a subset of Scheme. 

section Environments and Procedures describes Scheme's binding environments and procedures, and 
shows how procedural abstraction can be very powerful in a language with first-class procedures, block 
structure indefinite extent (garbage collection). It then shows an implementation of binding 
environements and procedures for the interpreter from the previous chapter, and shows how to use 
Scheme's binding and procedure-defining constructs in fairly sophisticated ways. 

section Recursion in Scheme discusses recursion, and especially tail recursion. 

section Quasiquotation and Macros presents quasiquotation, a means of constructing complex data 
structures and variants of stereotyped data structures, and then presents macros, a facility for defining 
your own "special forms" in Scheme. Macros let you define your own control constructs, data-
structuring systems such as object systems, etc. (If you've ever been daunted by problems with C or Lisp 
macros, don't worry--Scheme macros fix the major problems with older macro systems.) Macros are also 
interesting because they're often used in the implementation of Scheme itself. They allow the language 
implementation to be structured in a layers, with most of the language written in the language itself, by 
bootstrapping up from a very small core language understood by the compiler. 

section Other Useful Features presents a variety of miscellaneous features of Scheme that are useful in 
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writing real programs. They're not part of the conceptual core of Scheme, but any useful language 
should have them. 

section Records and Object Orientation ... 

section call-with-current-continuation discusses first-class continuations, the most 
powerful control construct in Scheme. Continuations allow you to capture the state of the activation 
stack (sort of), and return to that state to resume at a given point in a program's execution. Continuations 
are conceptually weird, and are not to be used casually, but tremendously expressive for things like 
backtracking, threads, etc. 

section A Simple Scheme Compiler presents an example Scheme program that happens to be a simple 
compiler for Scheme. It's a "toy" compiler, but a real compiler nonetheless, with all of the basic features 
of any Scheme compiler, but minimal boring "support" hacks to perform tokenization, storage 
management, etc. 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Introduction

In this chapter, I'll give a quick overview of some basic features of Scheme, enough to get started 
writing some programs. 

This chapter moves fairly quickly, briefly introducing about half of the ideas in Scheme. In later 
chapters, I'll explain and demonstrate these features more fully, and introduce other advanced features. 

This chapter is meant to be read concurrently with the first half of the next one, which includes a tutorial 
on using Scheme interactively. I've put in directives saying when you should work through parts of the 
next chapter. After becoming familiar with Scheme, it will serve as a basic reference; you can consult 
the next chapter for basic examples, and later chapters for advanced techniques. 

If you're fluent in concepts of programming languages, and especially if you've programmed in Lisp, 
you may be able to breeze through this chapter to get a sense of what Scheme is about. If you're fluent in 
programming language concepts, you may be able to read straight through this section. 

(NOTE TO MY CS345 and CS386l STUDENTS: don't try to breeze through this. Do the tutorial hunks 
after each hunk of this chapter.---PRW) 

If you intend to actually program in Scheme, you should definitely follow the directives and read parts 
of the next chapter, rather than trying to plow straight through this one. 

●     What is Scheme?: What is Scheme? 
●     Scheme Basics: Basic Features of Scheme 
●     Pairs and Lists: Pairs and Lists 
●     Recursion Over Data Structures: Recursion Over Lists and Other Data Structures 
●     Type and Equality Predicates: Type and Equality Predicates 
●     Quoting and Literals: Quoting and Literals 
●     Local Variables and Lexical Scope: Local Variables and Lexical Scope 
●     Procedures: Procedures 
●     Variable Binding Again: Variables, Bindings, and Values 
●     Tail Recursion: Tail Recursion 
●     Macros: Extending the Language 
●     Continuations: Continuations 
●     Iteration Constructs: Iteration Constructs 
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●     Introduction Discussion: Discussion 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

What is Scheme? (Hunk A)

==================================================================
     Hunk A starts here:
==================================================================

First, a bunch of jargon--ignore it if you want to: 

Scheme is a lexically-scoped, block structured, dynamically typed, mostly functional language. It is a 
variant of Lisp. It has first-class procedures with block structure and indefinite extent. Parameter passing 
is by value, but the values are references. It has first-class continuations to allow the construction of new 
control abstractions. It has lexically-scoped ("hygeinic") macros to allow definition of of new syntactic 
forms, or redefinition of old ones. 

If none of that means anything to you right now, don't worry. Keep reading. 

Scheme is designed to be an interactive and safe language. A normal Scheme system is really an 
interactive program that you can use to run parts of your Scheme program in the order you want. When 
one has run, your program doesn't just terminate, and your data don't disappear--Scheme asks you what 
to do next, and you can examine the data or tell Scheme to run another part of the program. 

Scheme is safe in that the interactive system generally won't crash. If you make a mistake that would 
crash the system, Scheme detects that, and asks you what to do about it. It lets you examine and change 
the system's state, and go on. This is a very different style of programming and debugging from the 
normal edit-compile-link-run-crash cycle of "batch" programming languages like C and C++. 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Basic Scheme Features

I'll go briefly through some of the basic features of Scheme, giving little code examples for clarity. 

●     Expressions: Code consists of expressions 
●     Booleans: The boolean values #t and #f 
●     Other Control-Flow Constructs: cond, and, and or 
●     Comments: Comments run from a semicolon to the end of a line 
●     Parentheses and Indenting: A note about parentheses and indenting 
●     All Values are Pointers: All values are conceptually pointers 
●     Automatic Memory Management: Scheme reclaims memory automatically 
●     Dynamic Typing: Objects have types, variables don't 
●     The Empty List: The empty list object (), a.k.a. the null pointer 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Code Consists of Expressions

Like Lisp, Scheme is written as prefix expressions, with parentheses for grouping. Prefix means that the 
name of an operation comes first, before its operands (the things it operates on). 

In Scheme, there's no distinction between expressions (like arithmetic operations) and statements (like 
an if or a loop or a declaration). They're all "expressions"---it's a very general term. 

●     Prefix Expressions: Parenthesized prefix expressions 
●     Values and Side Effects: Expressions return values, but may have side effects 
●     Defining Variables and Procedures: Defining variables and procedures 
●     Definitions vs. Assignments: Definitions name storage, assignment changes stored values 
●     Most Operators are Procedures: Most operators are procedures 
●     Special Forms: Special forms are not procedures 
●     Control Structures are Expressions: Control structures are expressions that return values 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Parenthesized Prefix Expressions

In C or Pascal, a call to procedure foo with arguments bar and baz is written 

foo(bar,baz);

but in Scheme it's written 

(foo bar baz)

Note that the procedure name goes inside the parentheses, along with the arguments. Get used to it. It 
may seem less odd if you think of it as being like a operating system shell command--e.g., rm foo, or 
dir bar---but delimited by parentheses. 

Just as in C, expressions can be nested. Here's a call to a procedure foo, with nested procedure call 
expressions to compute the arguments. 

(foo (bar x) (baz y))

This is pretty much equivalent to C's 

foo(bar(x),baz(y));

As in C or Pascal, the argument expressions in a procedure call are evaluated before actually calling the 
procedure; the resulting values are what's passed to the procedure. In Scheme terminology, we say that 
the procedure is applied to the actual argument values. 

You'll notice soon that Scheme has very few special characters, and that expressions are generally 
delimited by parentheses or spaces. For example, a-variable is a single identifier, not a subtraction 
expression. Identifiers in Scheme can include not only alphabetic characters and digits, but several other 
characters, such as !, ?, -, and _. Long identifiers are often constructed from phrases, to make it clear 
what they mean, using hyphens to separate words; for example, you can have a variable named list-
of-first-ten-lists. You can use characters like +, -, *, and / within an identifier, as in 
before-tax-total+tax, or estimate+epsilon. 

One consequence of Scheme's liberal rules for constructing identifiers is that spaces are important. You 
must put one or more spaces (or carriage returns) between identifiers except where special characters 
(usually parentheses) make the divisions obvious. For example, the addition expression (+ 1 a) can't 
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be written (+1 a) or (+1a) or (+ 1a). (It can be written ( + 1 a ), because extra whitespace 
between tokens is ignored.) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Expressions Return Values, But May Have Side-Effects

Scheme expressions combine the features of expressions and statements. They return values, but they 
can also have side effects---i.e., they can change the state of variables or objects by assignment. 

The variable assignment operation in Scheme is set!, pronounced "set-bang." If we want to assign the 
value 3 to the variable foo, we write 

(set! foo 3)

which is pretty much equivalent to C's 

foo = 3;

Note that (set! foo 3) looks like a function call, because everything uses prefix notation, but it's 
not really a call; it's a different kind of expression. 

You should not use assignments a lot in Scheme programs. It's usually a sign of bad style, as I'll explain 
later. I'll also show how to program in a style that doesn't need side effects much. They're there if you 
need them, though. 

When you write a procedure that modifies its arguments, rather than just just returning a value, it's good 
style to give it a name that ends with an exclamation mark. This reminds you and anybody reading your 
code that the procedure changes something that already exists, rather than just returning a value such as 
a new data structure. Most of the standard Scheme procedures that change state are named this way. 

Most Scheme procedures don't modify anything, however. For example, the standard procedure 
reverse takes a list as its argument and returns a list of the same elements in the opposite order. That 
is it returns a kind of reversed copy of the original list, without modifying the original at all. If you wrote 
a procedure that returned the same list, but modified so that its elements were in the opposite order, 
you'd probably call it reverse!. This warns people that a list that is passed to reverse! may be 
changed. 

One side-effecting procedure we'll use in examples is display. display takes a value and writes a 
printed representation to the screen or a file. If you give it one argument, it writes to the "standard 
output"; by default, that's the terminal or other display. 

For example, if you want to show the user the printed representation of the number 1022, you can use 
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the expression 

(display 1022)

The side effect of executing this expression is to write the 1022 on the user's screen. (display 
automatically converts the number to a string of characters so that you can read it.) 

Note that display doesn't have an exclamation point at the end of its name, because it doesn't side-
effect the argument you give it to print. You can give it a data structure and be sure that it won't modify 
it; display does have a side-effect, though--it changes the state of the screen (or file) that it writes to. 

display is fairly flexible, and can write the printed representations of many common Scheme objects, 
and even fairly complex data structures. 

Among many other things, display can print character strings. (Strings are another kind of Scheme 
object. You can write a literal string in double quotes, "like this", and Scheme constructs a string 
object to hold that character sequence. 

The expression (display "Hello, world!) has the side effect of writing Hello, world! to 
the standard output, which is usually the user's screen. 

This makes display very useful for debugging, and for little examples, as well as for writing 
interactive programs. A similar procedure, write is used for saving data structures to files; they can 
then be copied back into memory using read. 

In a later chapter, I'll show how to write to files by passing a second argument to display that tells it 
where to send the output. For now, you should just use display with exactly one argument. Don't try 
to pass display several things and expect it to print them all. 

Go to the first, previous, next, last section, table of contents. 
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Defining Variables and Procedures

You can define a variable in Scheme using a define: 

(define my-variable 5)

This tells Scheme to allocate space for my-variable, and initialize that storage with the value 5. 

In Scheme, you always give a variable an initial value, so there's no such thing as an uninitialized 
variable or an unininitialized variable error. 

Scheme values are always pointers to objects, so when we use the literal 5, Scheme interprets that as 
meaning a pointer to the object 5. Numbers are objects you can have pointers to, just like any other kind 
of data structure. (Actually, most Scheme implementations use a couple of tricks to avoid pointer 
overheads on numbers, but that doesn't show up at the language level. You don't have to be aware of it.) 

After the above definition, we can draw the resulting situation like this: 

       +-------+
   foo |   *---+--->5
       +-------+

The define expression does three things: 

●     It declares to Scheme that we're going to have a variable named foo in the current scope. (I'll 
talk about scoping a lot, later.) 

●     It tells Scheme to actually allocate storage for the variable. The storage is called a binding---we 
"bind" the variable foo to a particular piece of memory, so that we can refer to that storage by 
the name foo. 

●     It tells Scheme what initial value to put in the storage. 

These three things happen when you define variables in other languages, too. In Scheme we have names 
for all three. 

In the picture, the box represents the fact that Scheme has allocated storage for a variable. The name 
foo beside the box means that we've given that storage the name foo. The arrow says that the value in 
the box is a pointer to the integer object 5. (Don't worry about how the integer object is actually 
represented. It doesn't really matter.) 

http://www.federated.com/~jim/schintro-v14/schintro_14.html (1 of 3)11/3/2006 8:53:50 PM

http://www.federated.com/~jim/schintro-v14/schintro_1.html


An Introduction to Scheme and its Implementation - Defining Variables and Procedures

You can define new procedures with define, too: 

(define (two-times x)
   (+ x x))

Here we've defined a procedure named two-times, which takes one argument, x. It then calls the 
addition procedure + to add the argument value to itself, and returns the result of the addition. 

Notice the sytnactic difference between the variable definition and the procedure definition: for a 
procedure definition, there are parentheses around the name, and the argument name(s) follow that 
inside the parentheses. 

This resembles the way the procedure is called. Consider the procedure call expression (two-times 
5), which returns 10; it looks like the definition's (two-times x), except that we've put the actual 
argument 5 in place of the formal parameter x. 

Here's a bit of programming language terminology you should know: the arguments you pass to a 
procedure are sometimes called actual parameters. The argument variables inside the procedure are 
called formal parameters---they stand for whatever is actually passed to the procedure at run time. 
"Actual" means what you actually pass to the procedure, and "formal" means what you call that on the 
inside of the procedure. Usually, I'll just talk about "arguments," but that's the same thing as "actual 
parameters." Sometimes I'll talk about "argument variables," and that's the same thing as "formal 
parameters." 

You can define a procedure of zero arguments, but you still have to put parentheses around the 
procedure name, to make it clear that you're defining a procedure. You put parentheses around its name 
when you call it, too, to make it clear that it's a procedure call. 

For example, this is a definition of a variable whose initial value is 15: 

(define foo 15)

but this is a definition of a procedure foo which returns 15 when called. 

(define (foo) 15)

       +-------+
   foo |   *---+--->#<procedure>
       +-------+

This picture shows that when you define a procedure, you're really defining a variable whose value 
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happens to be a (pointer to a) procedure. For now, you don't really have to worry about that. The main 
thing to know is that now you can call the procedure by the name foo. For example, the procedure call 
expression (foo) will return 15, because all the body of the procedure does is return the value 15. 

Usually, we indent procedure definitions like this, with the body starting a new line, and indented a few 
characters: 

(define (foo)
   15)

This makes it clearer that it's a procedure definition. 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Most Operators are Procedures

In conventional programming languages like C and Pascal, there's an awkward distinction between 
procedure calls and other kinds of expressions. In C, for example, (a + b) is an expression, but foo
(a,b) is a procedure call. In C, you can't do the same things with an operator like + that you can do 
with a procedure. 

In Scheme, things are much more uniform, both semantically and syntactically. Most basic operations 
such as addition are procedures, and there is a unified syntax for writing expressions--parenthesized 
prefix notation. So rather than writing (a + b) in Scheme, you write (+ a b). And rather than 
writing foo(a,b), you write (foo a b). Either way, it's just an operation followed by its operands, 
all inside parentheses. 

For any procedure call expression (also called a combination), all of the values to be passed are 
computed before the actual call to the procedure. (This is no different from C or Pascal.) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Definitions vs. Assignments

Notice that we can give a variable a value in two ways: we can define it, specifying an initial value, or 
we can use set! to change its value. 

The difference between these two is that define allocates storage for a variable, and gives that storage 
a name. set! does not. You must always define a variable before set! will work on it. 

For example, if there's not already a definition of quux, the expression (set! quux 15) is an error, 
and Scheme will complain. You're asking Scheme to put (a pointer to) 15 in the storage named by 
quux---but quux doesn't name any storage yet, so it makes no sense. 

It's rather like I'd told you, "give this to Philboyd" and handed you some object, (say, a pencil). If you 
don't know anybody named Philboyd, you're probably going to complain. set! is like that. We have to 
agree on what the word "Philboyd" means to before it makes sense to ask you to do something to 
Philboyd. define is a way of giving meaning to an identifier--making it refer to a piece of storage--as 
well as giving a value to put there. 

Go to the first, previous, next, last section, table of contents. 
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Special Forms

While most operations in Scheme are procedure calls, there are a few other kinds of expressions you 
need to know about, which behave differently. They are called special forms. 

Procedure calls and special forms are syntactically similar--both are a sequence of syntactic units 
between parentheses, e.g., (foo bar baz). They are semantically very different, however, which is 
why you need to know the special forms, and not mistake them for procedures. 

If the first thing after the left parentheses is a keyword that names a special form, like define or set!, 
Scheme does something special for that kind of expression. If it's not, Scheme recognizes the expression 
in parentheses as a procedure call, and evaluates it in the usual way for procedure calls. 

(This is why special forms are called "special forms"---Scheme recognizes some kinds of compound 
expressions as needing special treatment, rather than just being procedure calls.) 

You've already seen two of the five or six important special forms, define and the assignment operator 
set!. 

Notice that set! isn't a procedure, because its first argument is not really an expression to be evaluated 
in the normal way, to get a value to pass as an argument. It's the name of a place to put a value. (e.g., if 
we say (set! a b), we get the value of b, and put it into the storage named by a.) 

Likewise, define treats its first argument specially--the name of a variable or procedure isn't an 
expression that is evaluated and passed to define---it's just a name, and you're telling define to 
allocate some storage and use that name for it. 

Other special forms we'll see include 

●     control constructs: if, cond, and case and the sort-circuiting logical operators and and or; 
●     forms for defining local variables: let and its variants letrec and let*; 
●     looping constructs: named let and do; 
●     quote and quasiquote, which let you write complex data structures as textual literals in your 

code, and 
●     lambda, which creates new procedures in a very useful way. 

There is also a few very special special forms, define-syntax, which let you define your own 
special forms as "macros." 
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Control Structures are Expressions

Scheme control structures are expressions, and return values. An if expression is a lot like a C if-then 
statement, but the "then" branch and the "else" branch are also expressions that return values; the if 
expression returns the value of whichever subexpression it evaluates. 

For example, 

(if (< a b)
    a
    b)

returns the value of either the variable a, or the variable b, whichever is less (or the value of b if they're 
equal). If you're familiar with ternary(1) expressions in C, this is like (a < b) ? a : b. In Scheme, 
there's no need for both an if statement and an if-like ternary expression operator, because if 
"statements" are expressions. 

Note that even though every expression returns a value, not all values are used--you can ignore the 
return value of an if expression. The if special form can therefore be used to control what gets 
executed, or to return a value, or both. It's up to you. 

The uniformity of value returning means that we never have to explicitly use a return statement, so 
Scheme doesn't have them. Suppose we wanted to write a function min to return the minimum of two 
numbers. In C, we might do it this way: 

int min(int a, int b)
{
   if (a < b)
      return a;
   else
      return b;
}

In Scheme, we can just do this: 

(define (min a b)
   (if (< a b)
       a
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       b))

Whichever branch is taken, the value of the appropriate variable (a or b) will be returned as the value of 
that branch of the if, which is returned as the value of the whole if expression, and that is returned as 
the return value of the procedure call. 

Of course, you can also write a one-branch if, with no "else" clause. 

(if (some-test)
    (some-action))

The return value of a one-branch if is unspecified in the case the condition is false, so if you're 
interested in the return value, you should use a two-branch if, and explicitly specify what should be 
returned in both cases. 

Notice that the flow of control is top-down, through the nesting of expressions---if controls which of its 
subexpressions is evaluated, which is like the nesting of control statements in most languages. Values 
flow back up from expressions to their callers, which is like the nesting of expressions in most 
languages. 

You can write an expression that is an ordered sequence of other expressions, using begin. For 
example, 

(begin (foo)
       (bar))

calls foo and then calls bar. In terms of control flow, a (begin ... ) expression is rather like a 
begin ... end block in Pascal, or a { ... } block in C. (We don't need an end keyword, because the 
closing parenthesis does the job.) 

Scheme begin expressions aren't just code blocks, though, because they are expressions that return a 
value. A begin returns the value of the last expression in the sequence. For example, the begin 
expression above returns the value returned by the call to bar. 

The bodies of procedures work like begins as well. If the body contains several expressions, they are 
evaluated in order, and the last value is returned as the value of the procedure call. 

Here's a procedure baz that calls foo and then calls bar and returns the result from the call to bar. 

(define (baz)
   (foo)
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   (bar))

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

The Boolean Values #t and #f

Scheme provides a special unique object, whose written representation is #f, called false. This object 
counts as false if it's the result of a condition expression in an if (or cond) expression. In most 
Schemes, this is the only value that counts as false, and all others count as true. 

The false object is not the same thing as the integer zero (as it is in C), and it's not the same thing as a 
null pointer (as it is in Lisp). The false object is a unique object. 

For convenience and clarity, Scheme also provides another boolean value, written #t, which can be 
used as a true value. Note that in general, any value other than false is true, but the special boolean 
object #t is a good one to use when all you want to say is that something is true--returning the true 
boolean makes it clear that all you're returning is a true value, not some other value that conveys more 
information. 

Like other objects, Booleans are conceptually objects on the heap, and when you write #t or #f, it 
means "a pointer to the canonical true object" or "a pointer to the false object." 

Scheme provides a few procedures and special forms for operation on booleans. The procedure not acts 
as a not operator, and always returns true or false (#t or #f). If applied to #f, it returns #t. Since all 
other values count as true, applying not to anything else returns #f. 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Some Other Control-Flow Constructs: cond, and, and or

We've already seen that the special form if is a kind of expression, which returns a value as well as 
affecting control flow. Scheme also has cond, a more general conditional construct, and the extended 
logical operators and and or. These are all value-returning expressions; they're also special forms, not 
procedures: they control whether expressions get evaluated, depending on the values returned by other 
expressions. 

●     cond: cond is like if...elseif...else if... else... 
●     and and or: and and or are "short-circuiting" 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

cond

In most procedural programming languages, you can write a sequence of if tests using an extended 
version of if, something like this: 

if test1 then
   action1();
else if test2 then
   action2();
else if test3 then
   action3();
else
   action4();

Scheme has a similar construct, a special form called cond. The above example might be written in 
Scheme as 

(cond (test1
       (action1))
      (test2
       (action2))
      (test3
       (action3))
      (else
       (action4)))

Notice that each test-and-action pair is enclosed in parentheses. In this example, test1 is just a 
variable reference, not a procedure call, i.e., we're testing to see if the value of the variable test1 is 
#f; if not, we'll execute (action1), i.e., call the procedure action1. If it is false, control "falls 
through" to the next test, and keeps going until one of the tests evaluates to a true value (anything but 
#f). 

Notice that we indent the actions corresponding to a test by one character. This lines the actions up 
directly under the tests, rather than under the opening parenthesis that groups them together. 

The else clause of a cond is optional; if present, that branch will be taken "by default"---if none of the 
other conditions evaluates to a true value, the else branch will be taken. 

We don't really need the else clause, because we could get the same effect by using a test expression that 

http://www.federated.com/~jim/schintro-v14/schintro_21.html (1 of 4)11/3/2006 8:54:18 PM

http://www.federated.com/~jim/schintro-v14/schintro_1.html


An Introduction to Scheme and its Implementation - cond

always evaluates to a true value. One way of doing this is to use the literal #t, the true boolean, because 
it's always true. 

(cond (test1
       (action1))
      (test2
       (action2))
      (test3
       (action3))
      (#t            ; literal #t is always true, so
       (action4)))   ; this branch is taken if we get this far

The code above is equivalent to a nested set of if expressions: 

(if test1
    (action1)
    (if test2
        (action2)
        (if test3
            (action3)
            (if #t
                (action4)))))

Like an if, a cond returns the value of whatever "branch" it executes. If test1 is true, for example, 
the above cond will return the value returned from the procedure call (action1). 

Remember that each branch of an if is a single expression; if you want to execute more than one 
expression in a branch, you have to wrap the expressions in a begin. With cond, you don't have to do 
this. You can follow a test expression with more than one action expression, and Scheme will evaluate 
all of them, in order, and return the value of the last one, just like a begin or a procedure body. 

Suppose we want to modify the above cond example so that it prints out the branch it's taking, as well 
as evaluating the action expression and returning its value. We can do this: 

(cond (test1
       (display "taking first branch")
       (action1))
      (test2
       (display "taking second branch")
       (action2))
      (test3
       (display "taking third branch")
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       (action3))
      (else
       (display "taking fourth (default) branch")
       (action4)))

This cond will return the same value as the original, because it always returns the value of the last 
expression in a branch. As it executes, however, it also displays what it's doing. We can use the cond 
both for value and for effect. 

Be particularly careful about parentheses with cond. You must enclose each branch with a pair of 
parentheses around the test expression and the corresponding sequence of action expressions. If you 
want to call a procedure in any of those expressions, you must also put parentheses around the procedure 
call. In the above example, if we wanted the first test to be a call to a procedure test1---rather than just 
fetching the value of the variable test1---we'd write 

(cond ((test1)
       (display "taking first branch")
       (action1))
      ...)

instead of 

(cond (test1
       (display "taking first branch")
       (action1))
      ...)

(Note the indenting here. We usually line up a test and the corresponding sequence of actions vertically, 
whether or not the expression starts with a parentheses. That is, we indent one space past the opening 
parenthesis of the pair of parentheses that goes around them all.) 

The "extra" parentheses are necessary so that cond can tell which action sequences are grouped with 
which tests. 

Don't be afraid to use cond for conditionals with only one or two branches. cond is often more 
convenient than if because it can execute a sequence of expressions, instead of just one. It's not 
uncommon to see things like this: 

...
(cond ((foo)
       (bar)
       (baz)))
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...

Don't be confused by this--there's only one branch to this cond, like a one-branch if. We could have 
written it 

...
(if (foo)
    (begin (bar)
           (baz)))
...

It's just more convenient to use cond so that we can call bar before calling baz and returning its 
result, without explicitly writing a begin expression to sequence them. 

We say that cond is syntactic sugar for nested ifs with begins around the branches. There's nothing 
we can do with cond that we can't do straightforwardly with if and begin---cond just gives us a 
"sweetened" syntax, i.e., one that's more convenient. 

Most of the special forms in Scheme are like this--they're just a convenient way of writing things that 
you could write using more basic special forms. (There are only five "core" special forms that are really 
necessary, and the others are equivalent to combinations of those special forms.) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

and and or

The special forms and and or can be used as logical operators, but they can also be used as control 
structures, which is why they are special forms. 

and takes any number of expressions, and evaluates them in sequence, until one of them returns #f or 
all of them have been evaluated. At the point where one returns #f, and returns that value as the value 
of the and expression. If none of them returns #f, it returns the value of the last subexpression. 

This is really a control construct, not just a logical operator, because whether subexpressions get 
evaluated depends on the reults of the previous subexpressions. 

and is often used to express both control flow and value returning, like a sequence of if tests. You can 
write something like 

(and (try-first-thing)
     (try-second-thing)
     (try-third-thing))

If the three calls all return true values, and returns the value of the last one. If any of them returns #f, 
however, none of the rest are evaluated, and #f is returned as the value of the overall expression. 

Likewise, or takes any number of arguments, and returns the value of the first one that returns a true 
value (i.e., anything but #f). It stops when it gets a true value, and returns it without evaluating the 
remaining subexpressions. 

(or (try-first-thing)
    (try-second-thing)
    (try-third-thing))

or keeps trying subexpressions until one of them does return a true value; if that happens, or stops and 
returns that value. If none of them returns anything but #f, it returns #f. 

not is just a procedure

not is a procedure that takes one argument, which may be any kind of Scheme value, and returns #t or 
#f. If the argument value is #f (the unique false object), it returns #t, and otherwise returns #f. That is, 
all values count as true except for the false object--just as in a conditional. For example, (not 0) 
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returns #f. 

Given that and and or are special forms, you might think that the logical not operator is a special form 
as well. It isn't. It's just a procedure--in particular, a predicate. 

This makes sense because not always evaluates its (one) argument, and returns a value. It doesn't treat 
any arguments specially--it's just a normal first-class procedure, whose argument is evaluated in the 
usual way before the procedure is actually called. 

In general, operations that can be procedures are procedures. Scheme only has special forms for things 
that are actually special, and need their arguments treated differently from arguments to procedure calls. 
(Even Scheme's most powerful control construct, call-with-current-continuation, is just a 
first-class procedure.) 

==================================================================
This is the end of Hunk A.

TIME TO TRY IT OUT

At this point, you should go read Hunk B of the next chapter
and work through the examples using a running Scheme system.
Then return here and resume this chapter.
==================================================================

(Go to Hunk B, which starts at section An Interactive Programming Environment (Hunk B).) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Comments (Hunk C)

==================================================================
Hunk C starts here:
==================================================================

[ Should I say this earlier, and use comments in examples earlier? ] 

You can and should put comments in your Scheme programs. Start a comment with a semicolon. 
Scheme will ignore any characters after that on a line. (This is like the // comments in C++.) 

For example, here's a variable definition with a comment after it: 

(define foo 22) ; define foo with an initial value of 22

Of course, most comments should tell you things that aren't patently obvious from looking at the code. 

Standard Scheme does not have block comments like C's /*...*/ comments. 

It is common to use two or three semicolons to start a comment, rather than just one. This makes the 
beginning of the comment stand out more than a single semicolon. The extra semicolons are ignored, 
along with all other characters up to the end of the line. 

A common style is to use two semicolons for most comments, and three for comments that take up a 
whole line, or which describe the contents of a file. 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

A Note about Parentheses and Indenting

The two biggest barriers to learning Scheme are probably parentheses and indenting. In Scheme, 
parentheses are used a little differently than in most programming languages. Indenting is also very 
important, because the surface syntax of the language is so regular. When reading Scheme code, 
experienced programmers read the indenting structure as much as the tokens. If you don't parenthesize 
correctly, your programs won't run correctly. And if you don't indent them correctly, they'll be hard to 
understand. 

The syntax of Scheme is more similar to that of C or Pascal than it may appear at first glance. After all, 
almost all programming languages are based on nested (statements or) expressions. Like C or Pascal, 
Scheme is free-form, and you can indent it any way you want. 

Some people write Scheme code indented like C, with closing parentheses lined up under opening 
parentheses to show nesting. (People who do this are usually beginners who haven't learned to use an 
editor properly, as I'll explain later.) They might write 

;; A poorly indented if expression
(if a
    (if b
        c
        d
    )
    e
)

rather than 

;; a nicely-indented if expression
(if a
    (if b
        c
        d)
    e))

The first version looks a little more like C, but it's not really easier to read. The second example shows 
its structure just as clearly if you know how to read Scheme, and is in fact easier to read because it's not 
all stretched out. The second example takes up less space on the page or a computer screen. (This is 
important when editing code in a window and doing other things in another window--you can see more 
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of your program at a time.) 

There are a couple of things to keep in mind about parentheses in Scheme. The first thing is that 
parentheses are significant. In C or Pascal, you can often leave parentheses out, because of "operator 
precedence parsing," where the compiler figures out the grouping. More importantly, you can often add 
extra parentheses around expressions without affecting their meanings. 

This is not true in Scheme! In Scheme, the parentheses are not just there to clarify the association of 
operators. In Scheme, parentheses are not optional, and putting extra parentheses around things changes 
their meaning. For example, the expression foo is a variable reference, whose effect is to fetch the 
value of the variable foo. On the other hand, the expression (foo) is a call to the procedure named 
foo with zero arguments. 

(Notice that even in C, it's not generally acceptable to write a procedure call with too few parentheses or 
too many: a call foo(a, b) can't be written just foo a, b or as foo((a, b)).) 

In general, you have to know where parentheses are needed and where they are not, which requires 
understanding Scheme's rules. Some parentheses indicate procedure calls, while others are just 
delimiters of special forms. Luckily, the rules are simple; they should become very clear in the next 
chapter or two. 

The other thing to know about parentheses is that they have to match. For every opening parenthesis 
there has to be a closing parenthesis, and of course it must be in the right place. 

●     Let Your Editor Help: Editors Make Parenthesis Matching Easy 
●     Indenting Simple Things: Procedure calls and simple control constructs 
●     Indenting cond: Cond is unreadable without proper indenting 
●     Indenting Procedure Definitions 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Let Your Editor Help You

Matching parentheses is easy if you have a decent text editor. For example, in vi, you can position the 
cursor over a parenthesis and hit %, and it will scan forward or backward (from an opening or closing 
parenthesis, respectively) to find the matching parenthesis and highlight it, skipping over any matched 
parenthesis pairs; it will warn you if no match is found. 

Most editors have a feature like this. Learn to use it. It's usually easy to get the opening parentheses 
right, and then if you're in doubt, use the editor to make sure you get the closing parentheses in the right 
place. 

Some editors, like Emacs, have special modes for editing Lisp and Scheme. This can be helpful, but just 
helping match parentheses is the crucial thing for an editor for Scheme. One of the nice things about the 
Emacs Scheme mode is that it will indent your code automatically if you like, which will show you 
whether your expressions nest the way they think you do--if you don't get the parentheses right, the text 
will look funny and tip you off to your error. 

(One Emacs mode for Scheme is cmuscheme, which is available from the usual sources of Emacs 
mode code. It's just a set of Emacs Lisp routines that customizes Emacs to "understand" Scheme syntax 
and help you format it. You use the Emacs Lisp package cmuscheme.el, and it gives you a handy 
Scheme editing mode. It's available from the Scheme Repository.) 

Even without a special package, an editor can help you a lot. For example, most modes in Emacs 
automatically match parentheses, flashing an opening parentheses when you type the corresponding 
closing parenthesis. A few minutes figuring out how your editor matches parentheses will save you a lot 
of time. 

Go to the first, previous, next, last section, table of contents. 

http://www.federated.com/~jim/schintro-v14/schintro_25.html11/3/2006 8:54:40 PM

http://www.federated.com/~jim/schintro-v14/schintro_1.html
http://www.federated.com/~jim/schintro-v14/schintro_1.html


An Introduction to Scheme and its Implementation - Indenting Simple Things

Go to the first, previous, next, last section, table of contents. 

Indenting Procedure Calls and Simple Control Constructs

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Indenting cond

Be careful about parentheses and indenting with cond. Notice that the expressions within a test-action 
clause are indented by only one character, but that's very significant. Without that indenting, a cond is very 
hard to read. 

Suppose we replace the following awkward if expression with a cond. 

;; awkward if expression requiring begins to sequence actions in branches
(if (a)
    (begin (b)
           (c))
    (begin (e)
           (f)))

We could write it like this: 

(cond ((a)
       (b)
       (c))
      (else
       (e)
       (f)))

Sometimes, when the clauses of a cond are small, a whole clause will be written out horizontally. The above 
example is likely to be written like this: 

(cond ((a) (b) (c))
      (else (d) (e)))

Also be careful about the parentheses around condition expressions. Notice that the parentheses around (a) 
are there because the condition is call to a with zero arguments, not because you always put parentheses 
around the condition expression. (Notice that there are no parentheses around #t, and there wouldn't be 
parentheses around a if we just wanted to test the value of the variable a, rather than call it and test the 
result.) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Indenting Procedure Definitions

As I hinted earlier, there's a special rule for indenting procedure definitions. You generally indent the 
body of a procedure a few characters (I use 3), but you don't line the body expressions up directly under 
the list of variable names. 

Don't do this: 

(define (double x)
        (+ x x))

If you do this, a procedure definition looks like a procedure call, or a normal variable definition. To 
make it clearer you're defining a procedure, do this: 

(define (double x)
   (+ x x))

This makes it clear that the (double x) is a different kind of thing from (+ x x). The former 
declares how the procedure can be called, and the latter says what it will do. 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

All Values are Pointers to Objects

As I said earlier, all values are conceptually pointers to objects on a heap, and you don't ever have to 
explicitly free memory. 

By "object," I don't necessarily mean object in the object-oriented sense. I just mean data objects like 
Pascal records or C structs, which can be referenced via pointers and may (or may not) hold state 
information. 

Some versions of Scheme do have object systems for object-oriented programming. (This includes our 
own RScheme system, where standard Scheme types are all classes in a unified object system.) In this 
book, however, we use the word "object" in a broader sense, meaning an entity that you can have a 
pointer to. 

●     All Values are Pointers: All Values are Pointers 
●     Objects on the Heap: Objects on the Heap 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

All Values are Pointers

[ some of this needs to be moved up: ] 

Conceptually, all Scheme objects are allocated on the heap, and referred to via pointers. This actually 
makes life simple, because you don't have to worry about whether you should dereference a pointer 
when you want to use a value--you always do. Since pointer dereferencing is uniform, procedures 
always dereference a pointer to a value when they really use the value, and you never have to explicitly 
force the dereferencing. 

For example, the predefined Scheme procedure + takes two pointers to numbers, and automatically 
dereferences both pointers before doing the addition. It returns a pointer to the number that's the result of 
the addition. 

So when we evaluate the expression (+ 2 3) to add two to three, we are taking a pointer to the integer 
2 and a pointer to integer 3, and passing those as arguments to the procedure +. + returns a pointer to the 
integer 5. We can nest expressions, e.g., (* (+ 2 3) 6), so that the pointer to five is passed, in turn, 
to the procedure *. Since these functions all accept pointers as arguments and return pointers as values, 
you can just ignore the pointers, and write arithmetic expressions the way you would in any other 
language. 

When you think about it, it doesn't make any sense to change the value of an integer, in a mathematical 
sense. For example, what would it mean to change the integer 6's value to be 7? It wouldn't mean 
anything sensible, for sure. 6 is a unique, abstract mathematical object that doesn't have any state that 
can be changed---6 is 6, and behaves like 6, forever. 

What's going on in conventional programming languages is not really changing the value of an integer--
it's replacing one (copy of an) integer value with (a copy of) another. That's because most programming 
languages have both pointer semantics (for pointer variables) and value semantics (for nonpointer 
variables, like integers). You make multiple copies of values, and then clobber the copies when you 
perform an assignment. 

In Scheme, we don't need to clobber the value of an integer, because we get the effect we want by 
replacing pointers with other pointers. An integer in Scheme is a unique entity, just as it is in 
mathematics. We don't have multiple copies of a particular number, just multiple references to it. 
(Actually, Scheme's treatment of numbers is not quite this simple and pretty, for efficiency reasons I'll 
explain later, but it's close.) 

As we'll see later, an implementation is free to optimize away these pointers if it doesn't affect the 
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programmer's view of things--but when you're trying to understand a program, you should always think 
of values as pointers to objects. 

The uniform use of pointers makes lots of things simpler. In C or Pascal, you have to be careful whether 
you're dealing with a raw value or a pointer. If you have a pointer and you need the actual value, you 
have to explictly dereference the pointer (e.g., with C's prefix operator *, or Pascal's postfix operator ^). 
If you have a value and you need a pointer to it, you have to take its address (e.g., with C's prefix & 
operator, or Pascal's prefix operator ^). 

In Scheme, none of that mess is necessary. User-defined routines pass pointers around, consistently, and 
when they bottom out into predefined routines (like the built-in + procedure or set! special form) 
those low-level built-in operations do any dereferencing that's necessary. 

(Of course, when traversing lists and the like, the programmer has to ask for pointers to be dereferenced, 
but from the programmer's point of view, that just means grabbing another pointer value out of a field of 
an object you already have a pointer to.) 

It is sometimes said that languages like Scheme (and Lisp, Smalltalk, Eiffel, and Java) "don't have 
pointers." It's at least as reasonable to say that the opposite is true--everything's a pointer. What they 
don't have is a distinction between pointers and nonpointers that you have to worry about.(2) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Most Implementations Optimize Away Many Pointers

You might think that making every value a pointer to an object would be expensive, because you'd have 
to have space for all of the pointers as well as the things they point to, and you'd have to use extra 
instructions to access things via pointers. 

Everything's a pointer at the language level--i.e., from the programmer's point of view--but a Scheme 
system doesn't actually have to represent things the way they appear at the languages level. 

Most Scheme implementations optimize away a lot of pointers. For example, it's inefficient to actually 
represent integer values as pointers to integer objects on the heap. Scheme implementations therefore 
use tricks to represent integers without really using pointers. (Again, keep in mind that this is just an 
implementation trick that's hidden from the programmer. Integer values have the semantics of pointers, 
even if they're represented differently from other things.) 

Rather than putting integer values on the heap, and then passing around pointers to them, most 
implementations put the actual integer bit pattern directly into variables--after all, a reasonable-sized 
integer will fit in a machine word. 

A short value (like a normal integer) stored directly into a variable is called an immediate value, in 
contrast to pointers which are used to refer to objects indirectly. 

The problem with putting integers or other short values into variables is that Scheme has to tell them 
apart from each other, and from pointers which might have the same bit patterns. 

The solution to this is tagging. The value in each variable actually has a few bits devoted to a type tag 
which says what kind of thing it is--e.g., whether it's a pointer or not. The use of a few bits for a tag 
slightly reduces the amount of storage available for the actual value, but as we'll see next, that usually 
isn't a problem. 

It might seem that storing integer bit patterns directly in variables would break the abstraction that 
Scheme is supposed to present--the illusion that all values are pointers to objects on the heap. That's not 
so, though, because the language enforces restrictions that keep programmers from seeing the difference. 

In the case of numbers and a few other types, you can't change the state of the object itself. There's no 
way to side-effect an integer object and make it behave differently. We say that integers are immutable, i.
e., you can't mutate (change) them. 

http://www.federated.com/~jim/schintro-v14/schintro_31.html (1 of 2)11/3/2006 8:55:27 PM

http://www.federated.com/~jim/schintro-v14/schintro_1.html


An Introduction to Scheme and its Implementation - Immediate Values

If integers were actually allocated on the heap and referred to via pointers, and if you could change the 
integer's value, then that change would be visible through other pointers to the integer. 

(That doesn't mean that a variable's value can't be one integer at one time, and another integer at 
another--the variable's value is really a pointer to an integer, not the integer itself, and you're really just 
replacing a pointer to one integer with a pointer to another integer.) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Objects on the Heap

Most Scheme objects only have fields that are general-purpose value cells---any field can hold any 
Scheme value, whether it's a tagged immediate value or a tagged pointer to another heap-allocated 
object. (Of course, conceptually they're all pointers, so the type of a field is just "pointer to anything.") 

So, for example, a pair (also known in Lisp terminology as a "cons cell") is a heap-allocated object with 
two fields. Either field can hold any kind of value, such as a number, a text character, a boolean, or a 
pointer to another heap object. 

The first field of a pair is called the car field, and the second field is called the cdr field. These are 
among the dumbest names for anything in all of computer science. (They are just a historical artifact of 
the first Lisp implementation and the machine it ran on.) 

Pairs can be created using the procedure cons. For example, to create a pair with the number 22 as the 
value of its car field, and the number 15 as the value of its cdr field, you can write the procedure call 
(cons 22 15). 

The fields of a pair are like variable bindings, in that they can hold any kind of Scheme value. Both 
bindings and fields are called value cells---i.e., they're places you can put any kind of value. 

In most implementations, each heap-allocated object has a hidden "header" field that you, as a Scheme 
programmer, are not supposed to know about. This extra field holds type information, saying exactly 
what kind of heap allocated object it is. So, laid out in memory, the pair looks something like this: 

        +-----------+
  header| <PAIR-ID> |
        +===========+
     car|     +-----+----->22
        +-----------+
     cdr|     +-----+----->15
        +-----------+

In this case, the car field of the pair (cons cell) holds the integer 22, and the cdr field holds the integer 
15. 

The values stored in the fields of the pair are drawn as arrows, because they are pointers to the numbers 
22 and 15. 
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(The actual representation of these values might be a 30-bit binary number with a two-bit tag field used 
to distinguish integers from real pointers, but you don't have to worry about that.) 

Scheme provides a built-in procedure car to get the value of the car field of a pair, and set-car! to 
set that field's value. Likewise there are functions cdr and set-cdr! to get and set the cdr field's 
values. 

Suppose we have a top-level variable binding for the variable foo, and its value is a pointer to the above 
pair. We would draw that situation something like this: 

                                       +---------+ 
              +---------+        header| <PAIR>  |
          foo |    *----+------------->+=========+
              +---------+           car|    *----+---->22
                                       +---------+
                                    cdr|    *----+---->15
                                       +---------+

Most other objects in Scheme are represented similarly. For example, a vector (one-dimensional array) 
is typically represented as a linear array of value cells, which can hold any kind of value. 

Even objects that aren't actually represented like this can be thought of this way, since conceptually, 
everything's on the heap and referred to via a pointer. 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Scheme Reclaims Memory Automatically

In languages like C or Pascal, data objects may be allocated in several ways. (Recall that by "objects" I 
just mean data objects like records.) They may be allocated statically (as in the case of global variables), 
or on an activation stack as part of a procedure activation record (as in the case of local variables), or 
dynamically allocated on the heap at run time using an alloction routine like malloc or new. 

Scheme is simpler--all objects are allocated on the heap, and referred to via pointers. The Scheme heap 
is garbage collected, meaning that the Scheme system automatically cleans up after you. Every now and 
then, the system figures out which objects aren't in use anymore, and reclaims their storage. (This 
determination is very conservative and safe--the collector will never take back any object that your 
program holds a pointer to, or might reach via any path of pointer traversals. Don't be afraid that the 
collector will eat objects you still care about while you're not looking!) 

The use of garbage collection supports the abstraction of indefinite extent. That means that all objects 
conceptually live forever, or at least as long as they might matter to the program--there's no concept (at 
the language level) of reusing memory. From the point of view of a running program, memory is 
infinite--it can keep allocating objects indefinitely, without ever reusing their space. 

Of course, this abstraction breaks down if there really isn't enough memory for what you're trying to do. 
If you really try to create data structures that are bigger than the available memory, you'll run out. 
Garbage collection can't give you memory you don't have. 

Some people think that garbage collection is expensive in time and/or space. While garbage collection is 
not free, it is much cheaper than is generally believed. Some people have also had bad experiences with 
systems that stop for significant periods to collect garbage, but modern GC's can solve this problem, too. 
(If you're interested in how efficient and nondisruptive garbage collectors are implemented, a good place 
to start is my GC survey paper, available from my research group's web site at http://www.cs.
utexas.edu/users/oops.) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Objects Have Types, Variables Don't

If I use my finger as a pointer, I can use it to point to all kinds of things--a computer, a painting, a 
motorcycle, or any number of things. Variables in Scheme are like this, too. 

Dynamic typing

In Scheme, all variables have the same type: "pointer to anything." 

Scheme is dynamically typed, meaning that variables don't have fixed types, but objects do. An object 
carries its type around with it--an integer is an integer forever, but a variable may refer to an integer at 
some times, and a string (or something else) at other times. The language provides type-checking at run 
time to ensure that you don't perform the wrong operations on objects--if you attempt to add two strings, 
for example, the system will detect the error and notify you. 

Sometimes, people refer to languages like Scheme (and Lisp and Smalltalk) as untyped. This is very 
misleading. In a truly untyped language (like FORTH and most assembly languages), you can interpret a 
value any way you want--as an integer, a pointer, or whatever. (You can also do this in C, using unsafe 
casts, which is a source of many time-consuming bugs.(3) ) 

In dynamically typed systems, types are enforced at runtime. If you try to use the numeric procedure + 
to add two lists together, for example, the system will detect the error and halt gracefully--it won't 
blithely assume you know what you're doing and corrupt your data. You also can't misinterpret a 
nonpointer value as a pointer, and generate fatal segmentation violations that kill your program. 

You might think that dynamic typing is expensive, and it can be. But good Scheme compilers can 
remove most of the overhead by inference at compile time, and most advanced implementations also let 
you declare types in performance-critical places so that the compiler can generate code similar to that for 
C or Pascal. 

[ I've left out some text from my course notes about tagging and immediate values (more detailed)... put 
back in, maybe in an appendix ] 

==================================================================
This is the end of Hunk C

TIME TO TRY IT OUT
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At this point, you should go read Hunk D of the next chapter
and work through the examples using a running Scheme system.
Then return here and resume this chapter.
==================================================================

(Go to Hunk D, which starts at section Making Some Objects (Hunk D).) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

The Empty List (Hunk E)

==================================================================
Hunk E starts here:
==================================================================

In Scheme, there is one null pointer value, called "the empty list," which prints as (). (Later, we'll see 
why it's written that way, and why it's called "the empty list.") 

Conceptually, the empty list is a special object, and a "null" pointer is a pointer to this special end-of-list 
object. You can ignore that fact and think of it as just a null pointer, because there's nothing interesting 
you can do with the object it points to. 

(In some implementations, the empty list object '() is actually an object referred to via a pointer, and 
null pointers are really pointers to it. In others, an empty list is an immediate value, a specially tagged 
null pointer. At the level of the Scheme language, it doesn't matter which way it's implemented in a 
particular Scheme system. All you can really do with the null pointer is compare it against other 
pointers, to see if they're null pointers, too.) 

The empty list object acts as a null pointer for any purpose--there's only one kind of pointer (pointer to 
anything), so there's only one kind of null pointer (pointer to nothing). 

Scheme provides a procedure, null? to check whether a value is (a pointer to) the empty list, i.e., a 
null pointer. For example, (null? foo) returns #t if the value of the variable foo is the empty list, 
and #f otherwise. 

You might be wondering why the null pointer object is called "the empty list"; I'll explain that later. 
Given the way lists are usually used in Scheme, it turns out to make perfect sense. 

You can write the empty list as a literal in your programs as '(). That is, the expression '() returns 
the empty list (null pointer), (). Later I'll explain why you have to put the single quote mark in front of 
the empty set of parentheses when writing the empty list as a literal. 

Go to the first, previous, next, last section, table of contents. 

http://www.federated.com/~jim/schintro-v14/schintro_35.html11/3/2006 8:56:57 PM

http://www.federated.com/~jim/schintro-v14/schintro_1.html
http://www.federated.com/~jim/schintro-v14/schintro_1.html


An Introduction to Scheme and its Implementation - Pairs and Lists

Go to the first, previous, next, last section, table of contents. 

Pairs and Lists

Scheme, like Lisp, has built-in procedures for dealing with a particularly flexible kind of list--a list of 
pairs, whose cdr fields hold pointers that string them together, and whose car fields hold the values. 
(That is, the cdr fields act as "next" pointers, linking the pairs into a linear list.) 

●     cdr-linked lists: Null-terminated lists of pairs linked by cdrs, whose cars hold references to items. 
●     Lists and Quoting: Literal lists 
●     Where the Empty List Got its Name: Why it's called that, and printed (), and written '() as a literal 
●     Some Handy Procedures that Operate on Lists: length, list, append, and reverse 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

cdr-linked lists

In Lisp and Scheme, you don't typically string objects together into a list by giving each one a "next" 
field that points right to the next object. Instead, you create a list of pairs whose car fields hold the 
pointers to the objects, and whose cdr fields link the pairs together into a "spine." 

There isn't really a special list data type in Scheme. A list is really just a sequence of pairs, ending 
with a null pointer. A null pointer is a list, too--it's a sequence of zero pairs ending in a null pointer. We 
sometimes talk about "the car of a list" or "the cdr of a list," but what that really means is "the car of the 
first pair in the list" and "the cdr of the first pair in the list." 

Suppose we have a variable foo holding a pointer to a list containing the integers 22, 15, and 6. Here's 
one way of drawing this situation. 

                    +---------+          +---------+        +---------+
     +---------+    | <PAIR>  |          | <PAIR>  |        | <PAIR>  |
 foo |    *----+--->+=========+      +-->+=========+    +-->+=========+
     +---------+    |       22|     /    |       15|   /    |        6|
                    +---------+    /     +---------+  /     +---------+
                    |    *----+---+      |    *----+-+      |    *    |
                    +---------+          +---------+        +---------+

This shows something pretty close to the way things are likely to actually represented in memory. But 
there's usually a better way of drawing the list, which emphasizes the fact that number values are 
conceptually pointers to numbers, and which corresponds to the way we usually think about lists: 

     +---+    +---+---+      +---+---+      +---+---+
 bar | *-+--->| * | *-+----->| * | *-+----->| * | * |
     +---+    +-+-+---+      +-+-+---+      +-+-+---+
                |              |              |
               \|/            \|/            \|/
               22             15              6       

I've left off the header fields of objects, which are not visible to a Scheme programmer. 

I've also drawn pairs in a special way, with the car and cdr fields side-by-side. Putting the fields side-
by-side lets us draw the list left-to-right, with the cdr field in a convenient place for its normal use as a 
"next" pointer. I've drawn the integers outside the pairs, with pointers to them from the car fields, 
because that's the way things look at the language level. 
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This emphasizes the fact that lists are generally separate things from the items "in" the list. 

We leave off the headers because they're a low-level detail anyway, because they're a hidden 
implementation detail that may vary from system to system, and because Scheme programmers 
immediately recognize this kind of two-box drawing of a pair. 

A major advantage of Scheme's list structure is that you don't have to modify an object to put it on a list--
an object can easily be in many lists at once, because a list is really just a spine of pairs that holds 
pointers to the items in the list. This is much cleaner than the way people are typically taught to create 
simple lists in most beginning programming classes. (It's also very natural in a language where all values 
are pointers---of course lists of objects are really just lists of pointers to objects.) 

For example, you can have two lists with the same elements, or some of the same elements, but perhaps 
in a different order. 

     +---+    +---+---+      +---+---+      +---+---+
 bar | *-+--->| * | *-+----->| * | *-+----->| * | * |
     +---+    +-+-+---+      +-+-+---+      +-+-+---+
                |              |              |
               \|/            \|/            \|/
               22             15              6       
               /|\                           /|\
                |                             |
     +---+    +-|-+---+                     +-+-+---+
 baz | *-+--->| * | *-+-------------------->| * | * |
     +---+    +---+---+                     +---+---+ 

Here I've drawn two lists, bar and baz---that is, lists that are the values of the variables bar and baz. 
bar holds the elements 22, 15, and 6, while baz just holds the elements 22 and 6. 

Since these two lists are really just made up of pairs, and they're different pairs, we can modify one list 
without modifying the other, and without modifying the objects "in" the lists. For example, we can 
reverse the order of one of the lists without affecting the other. 

(We also don't have to create a special kind of list node that has two next fields, so that something can be 
in two lists at a time. We can just have two separate lists of pairs, or three or four.) 

Scheme has a standard way of writing a textual representation of a list. Given the pictured situation, 
evaluating the expression (display bar) will print (22 15 6). Evaluating the expression 
(display baz) will print (22 6). Notice that Scheme just writes out a pair of parentheses around 
the items in the list--it doesn't represent the individual pairs, but just their car values. 
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Dynamic typing also helps make lists useful. A list of pairs can hold any type of object, or even a mixed 
bag of different types of objects. So, for example, a pair list can be a list of integers, a list of lists, a list of 
text characters, or a list of any of the kinds of objects we haven't gotten to yet. It can also be a mixed list 
of integers, other lists, and whatnot. A few list routines can therefore be useful in a variety of situations--
a single list search routine can search any kind of list for a particular target object, for example. 

This picture shows two variable bindings, for the variables bar and foo. bar's binding holds a list 
(10 15 6), while foo's holds a list (22 15 6). We say that these lists share structure, i.e., part of 
one list is also part of the other. 

                    +-------- + 
     +---------+    | <PAIR>  |
 bar |    *----+--->+=========+
     +---------+    |       10| 
                    +---------+ 
                    |    *----+-+ 
                    +---------+  \
                                  \
                    +---------+    \     +---------+        +---------+
     +---------+    | <PAIR>  |     \    | <PAIR>  |        | <PAIR>  |
 foo |    *----+--->+=========+      +-->+=========+    +-->+=========+
     +---------+    |       22|     /    |       15|   /    |        6|
                    +---------+    /     +---------+  /     +---------+
                    |    *----+---+      |    *----+-+      |    *    |
                    +---------+          +---------+        +---------+

This picture may correspond well to how things are represented in memory, but it's a little confusing. 

The more common way of drawing this data structure is 

     +---+    +---+---+ 
 bar | *-+--->| * | *-+------+
     +---+    +-+-+---+      |
                |            |
               \|/           |
               10            |
                            \|/
     +---+    +---+---+      +---+---+      +---+---+
 foo | *-+--->| * | *-+----->| * | *-+----->| * | * |
     +---+    +-+-+---+      +-+-+---+      +-+-+---+
                |              |              |
               \|/            \|/            \|/
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               22             15              6       

Again, this emphasizes the idea that everything's a pointer--conceptually, the pairs hold pointers to the 
integers. 

In the above picture, we can talk about "the car of foo", which really means the value in the car field of 
the pair pointed at by the value stored in (the binding of) foo. It's (a pointer to) 10. We would often call 
this "the car of the list foo." 

Notice that the cdr of foo is also a list, and it's the same list as the cdr of bar---the cdrs of the first pairs 
in each list point to the same list. 

We can say that the cdr of foo and the cdr of bar "are eq?," because the expression (eq? (cdr foo) 
(cdr bar)) returns true. That is, (car foo) and (cdr foo) return (pointers to) exactly the same 
object. 

Go to the first, previous, next, last section, table of contents. 
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Lists and Quoting

Scheme allows you to write lists as literals using quoting. Just as you can write a literal boolean or 
number in your program, you can write a literal list if you use the special form quote. 

Quote is a special form, not a procedure, because it doesn't evaluate its argument in the usual way. (Its 
argument is really just a literal representation of a data structure, which may look like a Scheme 
expression, but it isn't.) 

For example, the expression (quote (1 2 3)) returns a pointer to a list (1 2 3), i.e., a sequence 
of cdr linked pairs whose car values are (pointers to) to 1, 2, and 3. 

You can use quote expressions as subexpressions of other expressions, because they just return pointer 
values like anything else. 

For example, the expression (define foo (quote (1 2 3))) defines (and binds) a variable 
foo, and initializes its binding with (a pointer to) a three-element list. 

We can draw the resulting situation this way: 

     +---+    +---+---+      +---+---+      +---+---+
 foo | *-+--->| * | *-+----->| * | *-+----->| * | * |
     +---+    +-+-+---+      +-+-+---+      +-+-+---+
                |              |              |
               \|/            \|/            \|/
                1              2              3

quote takes exactly one argument, and returns a data structure whose printed representation is the same 
as what you typed in as the argument to quote. Scheme does not evaluate the argument to quote as 
an expression--it just gives you a pointer to a data structure. 

Note that quote does not generally construct a character string--it constructs a data structure that may 
be a list or tree or even an array. It's a very general quoting facility, much more powerful than the double 
quotes around character strings, which only construct string objects. 

Scheme provides a cleaner way of writing quoted expressions, using the special single-quote character 
'. Rather than writing out (quote some-expression), you can just precede the quoted expression with 
the single-quote character. For example, we can write the same definition of foo as (define foo 
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'(1 2 3)). You don't need a closing quote, because of Scheme's parenthesized prefix syntax--it can 
figure out where the quoted data structure ends. 

One subtlety about quote is that a quote expression doesn't create a data structure every time it's 
called--evaluating the same expression many times may return many pointers to the same structure. 

Consider the procedure definition 

(define (foo)
   '(1 2 3))

The list (1 2 3) may be created when we define the procedure foo, and each time we call it, it may 
return a pointer to that same list. (Exactly what happens depends on the particular implementation of 
Scheme, but most work this way, for efficiency reasons. Evaluating the quote expression just fetches a 
pointer to a data structure that was created beforehand.) 

For this reason, it's an error to modify a data structure returned from a quote form. Unfortunately, 
many Scheme systems don't detect this error, and will let you do it. If you want a new data structure 
each time, you should use a procedure like list, which always creates a new data structure. (list, 
which we'll discuss more later, is a standard Scheme procedure that takes any number of arguments, and 
creates a list of those items.) 

For example, if we want the procedure foo to return a new list (1 2 3) every time, we can write 

(define (foo)
   (list 1 2 3))

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Where the Empty List Got its Name

Now that you understand Scheme lists and simple quoting, I can explain why the null pointer is called 
"the empty list," and written '(). 

Consider a list foo of three elements: 

'(1 2 3) 

The cdr of that list is a list (2 3). We could write a literal list like that as '(2 3) 

The cdr of that list is a one-element list, (3). We could write a literal list like that as '(3). 

The cdr of that list is a zero-element list, (), that is, it's the empty list. We could write it in quoted 
form as '(). 

Given the way that Scheme lists work, a list of zero items is the same thing as a null pointer, and it's 
natural to for Scheme to print it as a list with zero elements, ()---and for you to write it as a literal with 
a single quote, '(). 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Some Handy Procedures that Operate on Lists

Scheme provides a variety of procedures for operating on lists, so that you usually don't have to think 
about pairs--you can think about whole lists. I'll discuss these procedures in more detail later [ put in 
link ], but here's a brief introduction. 

None of these procedures modifies its arguments--they may take lists as arguments, but they return new 
lists without modifying the old ones. 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

length

length takes one argument, a list, and returns an integer giving the length of the list. For example, 
(length '(0 #t #f)) returns 3. 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

list

list takes one or more arguments and constructs a list of those items. That is, a cdr-linked, null-
terminated sequence of pairs is created, where each pair's car fields holds one of the values passed to 
list. 

Notice that this is different from cons, in that the arguments are not lists in general--they're just any 
items that should be put into a list. 

Intuitively, we often use cons to push one item onto a list that already exists, but we use list to create 
a list from scratch. 

Notice that if we hand list just one argument, e.g., (list 1), that creates one pair whose cdr is null 
and whose car is the given argument. In contrast, if we use cons to create a one-element list, we must 
pass it that element and an empty list to serve as the cdr value: (cons 1 '()). 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

append

append takes two or more lists and constructs a new list with all of their elements. For example, 

(append '(1 2) '(3 4))

returns a list (1 2 3 4). 

Notice that this is different from what list does: 

(list '(1 2) '(3 4))

returns ((1 2) (3 4)), a two element list of the lists it was given. list makes its arguments 
elements of the new list, independent of whether the arguments are lists or something else. 

append requires that its arguments are lists, and makes a list whose elements are the elements of those 
lists--in this case, a four-element list. Intuitively, it concatenates the lists it is given. It only concatenates 
the top-level structure, however--it doesn't "flatten" nested structures. For example 

(append '((1 2) (3 4))
        '((5 6) (7 8)))

returns ((1 2) (3 4) (5 6) (7 8)) 

append doesn't modify any of its arguments, but the result of append generally shares structure with 
the last list it's given. (It effectively conses the elements of the other lists onto the last list to create the 
result list.) It's therefore dangerous to make a "new" list with append and then modify the "old" list. This 
is one of the reasons side effects are discouraged in Scheme. 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

reverse

reverse takes one list, and returns a new list with the same elements in the opposite order. For 
example, 

(reverse '(1 2 3 4))

returns a list (4 3 2 1). Like append only reverses the top-level structure of the list it's given. 

(reverse '((1 2) (3 4)))

returns ((3 4) (1 2)), not ((4 3) (2 1)) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

member

member takes any value and a list, and searches the list for that value. If it finds it, it returns a pointer to 
the first pair whose car holds that value, i.e., the "rest" of the list starting at the point where the searched-
for item was found. If it is not found, #f is returned. (The return value is therefore always either a pair 
or the false object.) 

(member 22 '(18 22 #f 300))

returns (22 #f 300). 

Notice that member can be used either to find a value's location in a list, or as a predicate to check 
whether the item is in the list at all. Since pairs are true values, you can use the result of member in a 
conditional expression and it will count as true if the item is found. 

[ Maybe I should introduce strings and symbols here, moving some material from the tutorial chapter 
here and possibly expanding the tutorial with more examples. ] 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Recursion Over Lists and Other Data Structures

[ This section is a little out of place--need to introduce type and equality predicates first! Those have 
been presented in class, so this should be comprehensible anyway. Need to make this a separate hunk, 
and move it after the next hunk. ] [ Also need to introduce tail recursion somewhere early, and fwd ref 
the chapter on recursion. ] In this section I'll demonstrate the most common idioms for recursion over 
simple data structures--lists and trees. 

Some of the examples will be implementations of standard Scheme procedures like length, list, 
append, and reverse. Scheme already has these procedures built in, but you should understand how 
they can be implemented using simpler procedures like cdr and cons. You'll inevitably have to write 
special-purpose procedures that are slightly different, but coded similarly. (In later chapters, I'll show 
some more advanced programming techniques that let you implement more general and/or efficient 
procedures like these.) 

I'll also show a few other handy procedures for operating on lists, e.g., a list-copying routine. 

Then I'll show recursion over simple binary trees of pairs. The normal style for recursion over trees in 
Scheme is slightly different from what you may be used to in languages like C or Pascal--and simpler. 

length

length is the standard Scheme procedure that returns the length of a list. It only counts the elements 
along the spine of the list (down the cdr's). 

It's easy to do this using recursion. The length of a list is 0 if the list is empty, and otherwise it's 1 plus 
the length of the rest of the list. Here's the easiest way to define length: 

(define (length lis)
   (cond ((null? lis)
          0)
         (else
          (+ 1 (length (cdr lis))))))

The main thing to notice about this example is the recursive structure. The procedure can accept a 
pointer to either a pair or the empty list. The structure of the procedure corresponds directly to the 
recursive definition of a (proper) list. The two-part cond corresponds to the fact that there are two rules 
that characterize lists; it figures out which case we're dealing with. 
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We explicitly checked for the end-of-list case, but we implicitly assumed that otherwise the object being 
operated on is a pair. This might seem like bad style, but actually it's good, because it ensures that an 
error will be signaled if the argument to length is not the empty list or a pair--the second branch of the 
cond will be taken (erroneously), but the attempt to evaluate (cdr lis) will signal an error. 

We could make this clearer by using a three-branch cond, with separate branches for the two valid 
cases and the error case: 

(define (length lis)
   (cond ((null? lis)
          0)
         ((pair? lis)
          (+ 1 (length (cdr lis))))
         (else
          (error "invalid argument to length")))

Here I've used the error-signaling procedure error, which stops execution and signals an error. (In 
most systems, the error message "invalid argument to length" will be printed and the user 
will be presented with a break prompt for debugging the problem.) Unfortunately, error is not 
supported by all Scheme systems. (Later I'll show an implementation that should work reasonably well 
in any Scheme system.) 

Also note that in this example, I've used lis as the name of a list argument, rather than list. That's 
because there's a standard Scheme procedure named list, which will be shadowed by any local 
variable with the same name. (This is because of Scheme's unified namespace---you can't have a 
variable and a procedure with the same name, for reasons that will be explained later; list seems to be 
the only identifier for which this is commonly a problem.) 

The above definition of length is not tail recursive--after calling itself, there must be a return so that 1 
can be added to the value and returned. Later I'll show a more efficient, tail-recursive version of 
length, and a more general procedure called reduce that can be used to construct a variety of 
procedures whose basic algorithm is similar. 

Copying Lists

There are two common senses of copying, shallow copying, and deep copying. A shallow copy makes a 
copy of one object, and the copy has pointers to the same objects that the original did. 

A deep copy copies not only the top-level objects in a data structure, but the ones below that, and so on 
recursively, so that a whole new data structure is created. 
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For lists, which are made up of more than one object, it is often useful to copy the spine of the list, i.e., 
doing a deep copy along the cdr's only. We typically think of a list as being like a special kind of 
object, even though it's really a sequence of pair objects. It's therefore natural to copy "just the list." 

If we just want to do a shallow copy, we can define pair-copy to copy a pair, without copying 
anything else. 

In these examples, I'll assume we only want to copy list structure--that is a connected set of pairs. 
Whenever we come to something that's not a pair, we stop copying and the copy shares structure with 
the original. (These aren't standard Scheme procedures.) 

Here's a truly shallow copy, just copying a single pair: 

(define (pair-copy pr)
   (cons (car pr) (cdr pr)))

If we want to do a deep copy, we can use recursion to copy car or cdr values that are also pairs. The 
following code for pair-tree-deep-copy assumes that the structure to be copied is a tree of pairs. 
(If there is any shared structure, it will be copied each time it is reached, and the copy will not have the 
same structure. It will always be a tree. Preserving shared structure while copying is harder, but can be 
done. If there's a directed cycle, pair-tree-deep-copy will loop infinitely.) 

(define (pair-tree-deep-copy thing)
   (if (not (pair? thing))
       thing
       (cons (pair-tree-deep-copy (car thing))
             (pair-tree-deep-copy (cdr thing)))))

Notice that pair-tree-deep-copy works on improper as well as proper lists, but only copies the 
pairs. Where it gets to a non-pair value, it stops and just uses the same value in the copy, and the copy 
shares structure with the original. 

The code for pair-tree-deep-copy directly reflects the kind of structure it copies. It can handle 
non-pairs, which are assumed to be leaves of the graph of pairs that it's copying, and it can handle pairs, 
which are assumed to be interior nodes of the tree. Their car and cdr values may be leaves of the tree, 
or other pairs. 

So the recursive definition of a pair-tree is: 

●     a non-pair (leaf), or 
●     a pair whose car and cdr are pair-trees 
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The first rule is the base case, i.e., is the simple one that doesn't require recursion. The second is the 
recursive rule, which expresses the fact that an interior node's car and cdr fields can point to any kind of 
pair-tree: a leaf, or another interior node whose children may likewise be leaves or other interior nodes... 

This is the easy way to write recursive routines over data structures--figure out a recursive description 
that exactly describes the expected data structures, and then use that recursive description to write a 
recursive description of the result you want. Then you can straightforwardly code routine that will 
traverse the structure and copmute that result. 

Generally, we write the base case first, to make it clear where recursion ends--and so that we don't forget 
to write it and accidentally write infinite recursions or unhandled cases. If you do this consistently, your 
code will be more readable and you'll make fewer mistakes. 

To copy the spine of a proper list, we can use this description of the answer we want: 

A copy of a list is 

●     the empty list if the original list is empty, or 
●     (if the list is nonempty) a pair whose car value is the same as the car of the original list, and 

whose cdr value is a copy of the rest of the original list. 

Here's the code: 

(define (list-copy lis)
   (cond ((null? lis)
          '())
         (else
          (cons (car lis)
                (list-copy (cdr lis))))

As usual, we only check to see if we're a the end of the list, and otherwise assume the argument is a pair. 
Since we take the car and the cdr of the pair in the latter case, we'll get an error if the argument is not 
a proper list. This is usually what we want, so that Scheme will signal an error when it gets to the part of 
the list with unexpected structure. 

The name list-copy was chosen to suggest that it operates on lists, and in Scheme terminology "list" 
means "proper list" by default. If we want a routine that copies improper lists, we should call it 
something else, and write a comment saying what kinds of things it works for. 

Actually, lists are so common in Scheme that we could have just called it copy. Most procedure names 
begin with the name of the kind of structure they operate on, but exceptions are made for lists and for 
numbers. 
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append and reverse

Two handy operations on lists are append and reverse; both are standard Scheme procedures. 

append takes any number of lists as arguments, and returns a list with all of their elements. reverse 
takes a list and returns a new list, with the same elements but in the opposite order. 

Note that like most Scheme procedures, neither of these procedures is destructive--each creates a new 
list without side-effecting (modifying) its argument(s). 

append

Append works much like list-copy except that we have multiple lists to deal with. 

The trick to getting it right is to maintain the essential structure of list-copy, with the right minor 
differences. 

For now, let's keep things simple, and just do a two-argument version of append, called append2. 

Our strategy is to recurse through the first list, like list-copy, copying one element of the list at each 
step. When we get to the end, however, the base case is different--rather than terminating the list with 
the empty list, we just use the second list as the "rest" of the copy we're making. 

Notice that the base case occurs when the first list is null--the append of an empty list and another list 
is just that other list--conceptually, we cons zero items onto the front of that list. Concretely, we can 
just return that list. 

Here's the recursive characterization of the result we want 

●     if the first list is empty, the result is just the second list 
●     if the first list is nonempty, the result is a pair whose car is the car of the first list, and whose 
cdr is the append of the rest of the first list and (all of) the second list. 

Here's a simple two-argument version of append: 

(define (append2 lis1 lis2)
  (cond ((null? lis1)
         lis2)
        (else
         (cons (car lis1)
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               (append2 (cdr lis1) lis2)))))

Note that append2 copies its first list argument, but the result simply shares a pointer to the last list 
argument--the last list is not copied, so the result shares structure with that list. This is also true of the 
standard Scheme function append, which can take any number of lists as arguments. The first n-1 lists 
are copied, but the last is shared. 

Be sure you understand the concrete operation of the above algorithm. On the way down during 
recursion, we're taking the first list apart, holding onto one list element at each step. When we hit the end 
of the first list, recursion stops and we return the second list. On the way back up, we're consing those 
items onto the new list we're creating, back-to-front. 

Suppose we have defined two lists, foo and bar, like this: 

(define foo '(x y z))
(define bar '(a b))
(define baz (append bar foo))

The result will be that baz shares structure with foo, but not with bar. Changes to the list via foo will 
also be visible via baz. 

                +----------------------------------------
+                  
                |                                        |
               \|/                                       |
     +---+    +---+---+     +---+---+      +---+---+     |
 foo | *-+--->| * | *-+---->| * | *-+----->| * | * |     |
     +---+    +-+-+---+     +-+-+---+      +-+-+---+     |
                |             |             |            |
               \|/           \|/           \|/           |
                x             y             z            |
                                                         |
                                                         |
     +---+    +---+---+     +---+---+                    |
 bar | *-+--->| * | *-+---->| * | * |                    |
     +---+    +-+-+---+     +-+-+---+                    |
                |             |                          |
               \|/           \|/                         |
                a             b                          |
               /|\           /|\                         |
                |             |                          |
     +---+    +---+---+     +---+---+                    |
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 baz | *-+--->| * | *-+---->| * | *-+--------------------+
     +---+    +---+---+     +---+---+

In general, the result of append shares structure with the last argument passed to append. If you want 
to avoid this, you can pass append an empty list as its last argument. For example (append '(1 2 
3) '()) will copy the list (1 2 3). 

If you're worried about efficiency, be aware that append takes time proportional to the length of the 
lists that must be copied, i.e., all but the last list being appended. This usually doesn't matter, but it's a 
consideration for performance-critical parts of your program, especially if you're appending long lists. 

(It's common to append short lists onto the front of long lists, and then reverse the result if 
necessary.) 

reverse

reverse returns a reversed copy of a list. 

There's an easy (but slow) way to define reverse in terms of append. We just take the first element 
off the list, reverse the rest of the list, and append the first element to the end of the list. We do this 
recursively, so that each time we reverse the rest of the list, we're doing the same thing on a shorter list. 
When we get down to the end of the list, reversing it is a no-op: the reverse of an empty list is the empty 
list. 

(define (reverse lis)
   (if (null? lis)
       '()
       (append (reverse (cdr lis))
               (list (car lis)))))

Think about how this actually works. reverse recurses down the list, calling itself on the cdr of the 
list at each recursive step, until the recursion stops at the end of the list. (This last call returns the empty 
list, which is the reverse of the empty list.) At each step, we use car to peel off one element of the list, 
and hold onto it until the recursive call returns. 

The reversed lists are handed back up through the returns, with the cars being slapped on the rear of the 
list at each return step. (To add a single item to the end of the list using append, we must first put it in 
a one-element list using list.) 

We end up constructing the new list back-to-front on the way up from the recursion. Going down 
recursively tears the list apart, one item at each recursive step, and coming back up adds an element to 
the end of the new list at each step. 
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This is a good example to understand, both abstractly and concretely. You should understand the 
concrete steps involved in taking a list apart and putting it back together backwards. On the other hand, 
you should also recognize that the algorithm works even if you don't pay attention to that. 

Once you get the hang of recursion, it's often easy to write algorithms without actually thinking about 
the little steps involved, or thinking much about the ordering of steps. In this case, it's easy to see that if 
we can reverse the rest of the list, and append the first item to the end of that, we've reversed the whole 
list. We don't need to think much about the ordering of the operations, because that falls naturally out of 
the way we pass arguments to functions. We can declare that "the reverse of a non-empty list is the 
append of the reverse of the rest of the list and (a list containing) the first item in the list", and then 
write the code accordingly, as a pure function---one that only depends on the values of its arguments, 
and has no side effects. 

By writing this recursively, we'll apply the same trick all the way down the list. Thinking a little more 
concretely--but not much--we can see that at each time we reverse the rest of the list, the list in question 
will be shorter. Somewhere we'll hit the end of the list, so we have to handle that base case. It's usually 
easy to see what the right thing to do is for the base case. In this case, we can declare that "the 
reverse of the empty list is the empty list," and add the appropriate branch to append. 

This is a good example of how you can combine functions to create new functions, implementing 
algorithms without using sequencing or side effects. (Notice that if we had side effects, we'd have to 
think very carefully about the ordering of steps, to make sure that we used a data structure after certain 
changes, and before others. Bleah.) 

(The following remarks about efficiency are fairly advanced--you shouldn't worry about these things yet 
if they get in the way of learning how to write programs simply and straightforwardly. You can skip or 
skim them and come back to them later once you've gotten the hang of Scheme, and want to tune the 
time-critical parts of your programs for maximum efficiency. On the other hand, you may find that 
thinking about the concrete details reinforces the basic ideas.) There are two problems coding reverse 
this very simple way, however---reverse turns out to be one of the hardest "simple" list routines to 
code efficiently. Later I'll sho better versions that are more clever, but only very slightly more 
complicated. (They'll still be recursive, and won't use loops or assignment.) 

[ where? (Later I need to show a linear-time version that uses list->vector and then reverses the vector 
into a list tail-recursively... ] 

The first problem is that each call to append takes time proportional to the length of the list it's given. 
(Remember that append effectively copies all of the pairs in the first list it's given, making a backward 
copy.) We have to copy the "rest" of the list using append, starting at each pair in the list. On average, 
we copy half the list at a given recursive step, so since we do this for every pair in the list, we have an 
order n-squared algorithm. 
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Another problem is that we're doing things on the way back up from recursion, which turns out to be 
more expensive than doing things on the way down. As I'll explain in a later chapter, Scheme can do 
recursion very efficiently if everything is done in a forward direction, on the way down--Scheme can 
optimize away all but one of the returns, and the state-saving before the calls. (Luckily, this is easy to 
do.) 

Since Scheme provides a built-in reverse, you don't have to think much about this. A good Scheme 
system will provide a heavily-optimized implementation of reverse that is linear in the length of the 
list being reversed. 

reverse is very handy, and the efficiency of a built-in reverse is important, because it's usually best 
to construct a list in whichever order is easy and efficient, and then reverse the whole list if necessary. 
Typically, you cons one item onto a list at a time, or maybe append a few items at a time, in whatever 
order it's easiest to create the list. This allows you to construct the list in linear time; with a linear-time 
reverse, the overall process is still linear-time. 

==================================================================

This is the end of Hunk E.

TIME TO TRY IT OUT

At this point, you should go read Hunk F of the next chapter
and work through the examples using a running Scheme system.
Then return here and resume this chapter.

==================================================================

(Go to Hunk F, which starts at section Lists (Hunk F).) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Type and Equality Predicates (Hunk G)

==================================================================
Hunk G starts here:
==================================================================

[ Some of this stuff needs to come before recursion over various data structures... we use a few 
predicates there. Fix. ] Since a pointer can point to any kind of thing, it's often good to know what kind 
of thing it does point to. For example, you might have a mixed list of different kinds of things, and want 
to go through the list, doing a different operation for each kind of object you encounter. For this, Scheme 
provides type predicates, which are procedures which test to see whether the pointed-to object is of a 
particular type. 

You also often want to know whether two values refer to the same object, or to data structures with the 
same structure. For this, Scheme provides equality predicates. 

●     Type Predicates: Discriminating between different kinds of objects 
●     Equality Predicates: Discriminating whether objects are the same 
●     Choosing Equality Predicates: Testing different kinds of sameness 

These procedures are called "predicates" because they test whether a property is true of a value, and 
return a yes-or-no answer--that is, the boolean #t or the boolean #f. (This is like a "predicate" in formal 
logic, which is a kind of statement with a "truth value" that depends on its arguments.) 

The names of predicates generally end with a question mark, to signify that they return a boolean. When 
you write your own programs, it's good style to end the names of boolean-valued (true/false) functions 
with a question mark. 

(An exception to this rule is the standard numeric comparison predicates like <, >, and =. By the rule, 
they should have question marks after their names, but they're used very frequently and people generally 
recognize that they're predicates. We don't bother with question marks in their names, because it would 
clutter up arithmetic expressions.) 

Go to the first, previous, next, last section, table of contents. 
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Type Predicates

Scheme provides built-in procedures to test whether values refer to objects of particular types. If you 
want to know whether the value of variable x is (a pointer to) pair, you can use the predicate pair?, 
like this: (pair? x). 

Likewise, if you want to know if something is a number, you can use the predicate number?. If you 
want to know whether a value is an integer, and not just some kind of number, you can use integer?. 

Several other type predicates are provided, for other data types we'll discuss later, including string?, 
character?, vector?, and port?. 

Go to the first, previous, next, last section, table of contents. 
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Equality Predicates

Equality predicates tell whether one value is "the same as" another. There are actually several important 
senses of "the same as," so Scheme provides four equality predicates. 

Sometimes you want to know whether two data structures are structurally the same, with the same 
values in the same places. For example, you may want to know whether a list has the same structure and 
elements as another list. For this, you can use equal?, which does a deep, element-by-element 
structural comparison. 

For example (equal? '(1 2 3) '(1 2 3)) returns #t, because the arguments are both lists 
containing 1, 2, 3, in that order. equal? does a deep traversal of the data structure, so you can hand it 
nested lists and other fairly complicated data structures as well. (Don't hand it structures with directed 
cycles of pointers, though, because it may loop forever without finding the end.) 

equal? works to compare simple things, too. For example, (equal? 22 22) returns #t, and 
(equal? #t 15) returns #f. (Note that equal? can be used to compare things that may or may not 
be of the same type, but if they're not, the answer will always be #f. Objects of different types are never 
equal?.) 

Often you don't want to structurally compare two whole data structures--you just want to know if they're 
the exact same object. For example, given two pointers to lists, you may want to know if they're pointers 
to the very same list, not just two lists with the same elements. 

For this, you use eq?. eq? compares two values to see if they refer to the same object. Since all values 
in Scheme are (conceptually) pointers, this is just a pointer comparison, so eq? is always fast. 

(You might think that tagged immediate representations would require eq? to be slower than a simple 
pointer comparision, because it would have to check whether things were really pointers. This isn't 
actually true---eq? just compares the bit patterns without worrying whether they represent pointers or 
immediates.) 

Equality tests for numbers are treated specially. When comparing two values that are supposed to be 
numbers, = is the appropriate predicate. Using = has the advantage that using it on non-numbers is an 
error, and Scheme will complain when it happens. If you make a mistake and have a non-number where 
you intend to have a number, this will often show you the problem. (You could also use equal?, but it 
won't signal an error when applied to non-numbers, and may be a little bit slower.) 
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There is another equality predicate, eqv?, which does numeric comparisons on numbers (like =), and 
identity comparisons (like eq?) on anything else. 

==================================================================
This is the end of Hunk G

TIME TO TRY IT OUT

At this point, you should go read Hunk H of the next chapter
and work through the examples using a running Scheme system.
Then return here and resume this chapter.
==================================================================

(Go to Hunk H, which starts at section Using Predicates (Hunk H).) 

Go to the first, previous, next, last section, table of contents. 
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Choosing Equality Predicates (Hunk I)

==================================================================
Hunk I starts here:
==================================================================

The reason that the = and eqv? predicates are needed is that the numeric system of Scheme is not quite 
as clean as it could be, for efficiency reasons. 

Ideally, there would be exactly one copy of any numeric value, and all occurrences of that value would 
really be pointers to the same unique object. Then you could use eq? to compare numbers for identity, 
just as you can for other kinds of values. (For example, there would be just one floating-point number 
with the value 2.36529, and any computation that returned that floating-point value would return a 
pointer to that unique object. ((eq? 2.36529 2.36529) would return #t.) 

Unfortunately, for numbers it would be too expensive to do this--it would require keeping a table of all 
of the numbers in the system, and probing that table to eliminate duplicate copies of the same values. As 
a concession to efficiency, Scheme allows multiple copies of the same number, and the = and eqv? 
predicates mask this wart in the language--they perform numeric comparisons when faced with numbers, 
so that you don't have to worry about whether two numbers with the same value are literally the same 
object. 

eqv? thus tests whether two values are "equivalent," when two objects with the same numeric value are 
treated as "the same," like =, but all other objects are distinguished by their object identity, like eq?. In 
general, 

●     eq? is useful for fast identity (same object) comparisons of non-numbers, 
●     = performs numeric comparisons on numbers, 
●     eqv? is like eq?, but treats copies of the same number as though they were the same object, and 
●     equal? performs a "deep" comparison of the structure of data structures. (It uses eqv? for 

components that are numbers.) 

Go to the first, previous, next, last section, table of contents. 
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Quoting and Literals

Programs often need to refer to literal data values--data that you type directly into the program. In many 
languages, the only literals are fairly simple values like integers and strings. In Scheme, you can use 
simple literals or complicated ones that represent (pointers to) data structures like nested lists. Earlier, I 
showed how to create list literals using quoting. 

You've probably noticed that the syntax of Scheme code and the textual representation of Scheme data 
are very similar. So, for example, (min 1 2) is a combination if it's viewed as code, but it's also the 
standard textual representation of a list containing the symbol min and the integers 1 and 2. 

(A symbol is a data object that's sort of like a string, but with some special properties, which will be 
explained in the next chapter.) 

The resemblance between code and data is no accident, and it can be very convenient, as later examples 
will show. It can be confusing, too, however, so it's important to know when you're looking at a piece of 
code and when you're looking at a piece of literal data. 

The first thing to understand is quoting. In Scheme, the expression (min 1 2) is a procedure call to 
min with the arguments 1 and 2. 

As I explained earlier, we can quote it by wrapping it in the special form (quote...), however, and get 
a literal list (min 1 2). 

For example, the definition 

(define foo (quote (min 1 2)))

defines and binds foo, initializing the binding with (a pointer to) the list (min 1 2). 

We can draw this situation this way: 

     +---+    +---+---+      +---+---+      +---+---+
 foo | *-+--->| * | *-+----->| * | *-+----->| * | * |
     +---+    +-+-+---+      +-+-+---+      +-+-+---+
                |              |              |
               \|/            \|/            \|/
               min             1              2
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Of course, as I explained earlier, we can use ' as a euphemism for (quote ... ) 

We can define very complicated literals this way, if we want to. Here's a procedure that returns a nested 
list of nested lists of integers and booleans and symbols: 

(define (fubar)
   '(((1 two #f) (#t 3 four))
     ((five #f 6) (seven 8 #t))
     ((#f 9 10)) ((11 12 #f))))

that's a pretty useless procedure, but it's very convenient to just be able to type in printed representations 
of nested data structures and have Scheme construct them automatically for you. In most languages 
you'd have to do some fairly tedious hacking to construct a list like that. As we'll see in a later chapter, 
Scheme also supports quasiquotation, which lets you construct mostly-literal data structures, and create 
customized variations on them easily; quasiquotation will be discussed in a later chapter. 

Go to the first, previous, next, last section, table of contents. 
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Simple Literals and Self-Evaluation

You might have noticed by now that we've already been using literals a lot in our examples--numeric 
literals and boolean literals. Why didn't we have to quote them to keep Scheme from trying to evaluate 
them like other expressions? Because Scheme has a special rule, which is that the value of a number or 
boolean is that number or boolean. For these data types, the result of attempting to evaluate it is the same 
as what you started with. So the value of 4 is 4, and the value of #f is #f. (This also works for a few 
other types, such as characters and character strings.) Scheme lets you type in the text representation of a 
value as an expression, and by convention the value of that expression is the value you typed the printed 
representation of. Such an expression is called self-evaluating, because it is evaluated to itself. 

What's the deep meaning of this rule? There isn't any. It's just to keep you from having to type a lot of 
quotes to use simple literals. Notice that that means that you can quote a number or boolean if you want, 
and it doesn't make any difference. The expression '0 means "literally the number 0," but since Scheme 
defines the value of a number to be itself, the value of plain 0 is 0, too. 

Likewise, the value of '#f or (quote #f is the same as #f---they're all pointers to the false object. 
You can write a string literal '"foo" as "foo". In either case, the value of the expression is a pointer 
to a string object with the character sequence f o o. 

Minor warning: don't add extra quotes inside expressions that are already quoted. '(foo 10 baz) is 
not the same thing as '('foo '10 'baz). One quote for a whole literal expression is enough, and 
extra quotes inside quotes do something that will seem surprising until you understand how quoting 
really works. 

Expression evaluation in Scheme is simple, for the most part, but you must remember the rules for the 
special forms (which don't always evaluate their arguments) and self-evaluation. Later, I'll show how an 
interpreter implements self-evaluation by analyzing expressions before evaluating them. Still later, I'll 
show how a compiler can do the same work at compile time, so that using literals doesn't cost any 
evaluation overhead at run time. 

Go to the first, previous, next, last section, table of contents. 
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Local Variables and Lexical Scope

Scheme is a block-structured language with nested scopes. You can declare local variables whose scope 
is a block of code, and blocks can have blocks inside them with their own local variables. 

Scheme uses a lexical scope rule. (We can also say that Scheme is statically scoped, rather than 
dynamically scoped, like some old Lisps.) When you see a variable name in the code, you can tell what 
variable it refers just to by looking at the source code for the program. A program consists of possibly 
nested blocks of code, and the meaning of the name is determined by which variable binding constructs 
it's used inside. 

●     let: let binds local variables 
●     Lexical Scope: lexical scope 
●     let*: let* binds variables sequentially, in nested scopes 

Go to the first, previous, next, last section, table of contents. 

http://www.federated.com/~jim/schintro-v14/schintro_53.html11/3/2006 9:00:51 PM

http://www.federated.com/~jim/schintro-v14/schintro_1.html
http://www.federated.com/~jim/schintro-v14/schintro_1.html


An Introduction to Scheme and its Implementation - let
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let

You can create code blocks that have local variables using the let special form. 

You've seen local binding environments in other languages before. In C or Pascal you've probably seen 
blocks with local variables of their own, e.g., in C: 

...
{  int x = 10;
   int y = 20;

   foo(x,y);
}
...

Here we've got a block (inside curly braces) where local variables named x and y are visible. (The same 
thing can be done with begin...end blocks in Pascal.) 

When we enter the block, storage is allocated for the local variables, and the storage is initialized with 
the appropriate initial values. We say that the variables are bound when we enter the block--the names x 
and y refer to something, namely the storage allocated for them. (In C, the storage for local variables 
may be allocated on an activation stack.) 

This is a simple but important idea--when you enter a scope, you "bind" a name to storage, creating an 
association (naming) between a name and a place you can put a value. (In later chapters, we'll see how 
interpreters and compilers keep track of the association between names and storage.) 

Sometimes, we refer to the storage allocated for a variable as "its binding," but really that's a shorthand 
for "the storage named by the variable," or "the storage that the variable is bound to." 

Inside the block, all references to the variables x and y refer to these new local variable bindings. When 
execution reaches the end of the block, these variable bindings cease to exist and references to x or y 
will again refer to whatever they did outside the block (perhaps global variables, or block variables of 
some intermediate-level block, or nothing at all). 

In this example, all that happens inside the block is a call to the procedure foo, using the values of the 
block variables, i.e., 10 and 20. In C or Pascal, these temporary variables might be allocated by growing 
the stack when the block is entered, and shrinking it again when the block is exited. 
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In Scheme, things are pretty similar. Blocks can be created with let expressions, like so: 

...
(let ((x 10)
      (y 20))
   (foo x y))
...

The first part of the let is the variable binding clause, which in this case two subclauses, (x 10) and 
(y 20). This says that the let will create a variable named x whose initial value is 10, and another 
variable y whose initial value is 20. A let's variable binding clause can contain any number of clauses, 
creating any number of let variables. Each subclause is very much like the name and initial value parts 
of a define form. 

The rest of the let is a sequence of expressions, called the let body. The expressions are simply 
evaluated in order, and the value of the last expression is returned as the value of the whole let 
expression. (The fact that this value is returned is very handy, and will be important in examples we use 
later.) 

A let may only bind one variable, but it still needs parentheses around the whole variable binding 
clause, as well as around the (one) subclause for a particular binding. For example: 

...
(let ((x 10))
   (foo x))
...

(Don't forget the "extra" parentheses around the one variable binding clause--they're not really extra, 
because they're what tells Scheme where the variable binding clause starts and stops. In this case, before 
and after the subclause that defines the one variable.) 

In Scheme, you can use local variables pretty much the way you do in most languages. When you enter a 
let expression, the let variables will be bound and initialized with values. When you exit the let 
expression, those bindings will disappear. 

You can also use local variables differently, however, as we'll explain in later chapters. In general, the 
bindings for Scheme variables aren't allocated on an activation stack, but on the heap. This lets you keep 
bindings around after the procedure that creates them returns, which will turn out to be useful. 

(You might think that this is inefficient, and it could be, but goodScheme compilers can almost always 
determine that it's not really necessary to put most variables on the heap, and avoid the cost of heap-
allocating them. As with good compilers for most languages, most variables are actually in registers 
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when it matters, so that the generated code is fast.) 

●     Indenting let Expressions 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Indenting let Expressions

In general, we indent let expressions in a way that shows the block structure of the program. The 
binding forms (variable names and initial values) are lined up vertically after the keyword let, and the 
body expressions are indented a few characters and lined up vertically, like so: 

(let ((x 10)    ; bindings of x
      (y 20))   ; and y
   (foo x)
   (let ((a (bar))   ; bindings of a
         (b (baz)))  ; and b
      (quux x a)
      (quux y b))
   (baz))

Notice that the binding forms of each let are lined up vertically, and the body expressions are not 
indented as far. This is important for making it obvious where the binding forms stop and the body 
expressions start. (In this example, the body of the outer let consists of a call to foo, another let, and 
a call to baz. The body of the inner let consists of two calls to quux.) 

Go to the first, previous, next, last section, table of contents. 
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Lexical Scope

If nested lets define variables by the same name, then the uses of that name in the body of the inner 
let will refer to the bindings created by the inner let. 

Consider the following code fragment: 

(let ((x 10)    ; outer binding of x
      (a 20))   ; binding of a
   (foo x)
   (let ((x (bar))       ; inner binding of x
         (b (baz x x)))  ; binding of b
      (quux x a)
      (quux y b))
   (baz x a)  ; refers to outer x (and a)
   (baz x b)) ; illegal?

When control enters the outer let, the inital values for the variables are computed. In this case, that's 
just the literal values 10 and 20. Then storage is allocated for the variables, and initialized with those 
values. Once that's done, the meaning of the names x and a changes--they now refer to the new storage 
for (bindings of) the let variables x and a---and then the body expressions are evaluated. 

Similarly, when control enters the inner let, the inital values are computed by the calls to bar and 
baz, and then storage for x and b is allocated and initialized with those values. Then the meanings of 
the names x and b change, to refer to the new storage (bindings) of those variables. (For example, the 
value of x when (baz x x) is evaluated is still 10, because x still refers to the outer x.) 

In this example, the meaning of the identifier x changes when we enter the inner let. We say that the 
inner let variable x shadows the outer one, within the body of the let. The outer x is no longer visible, 
because the inner one is. 

When we exit a let (after evaluating its body expressions), the bindings introduced by the let "go out 
of scope," i.e., aren't visible anymore. (For example, when we evaluate the expression (baz x a) in 
the body of the outer let, x refers to the binding introduced by the outer let---the x introduced by the 
inner let is no longer visible. 

Likewise, in the example code fragment, the b in the last expression, (baz x b), does not refer to the 
inner let's binding of b. Unless there is a binding of b in some outer scope we haven't shown (such as a 
top-level binding), then this will be an error. 
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●     Binding Environments and Binding Contours 
●     Block Structure Diagrams: Visualizing scope 

Go to the first, previous, next, last section, table of contents. 
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Binding Environments and Binding Contours

The set of all bindings that are visible at a given point during program execution is called a binding 
environment. That is, a binding environment maps a set of names to the pieces of storage they name. 

A top-level binding environment is the mapping that the Scheme system maintains between top-level 
variable names and the storage they're bound to. This might be implemented as a hash table. 

With local variables, a simple "flat" table isn't sufficient. Entering a let, for example, adds new 
bindings to the environment that code is executing in--it makes the new variable bindings visible, 
changing the mapping from names to storage. 

We say that each binding contruct we execute introduces a new binding contour. We call it a contour 
because it changes the "shape" of the environment. 

You can think of a binding contour as being implemented by a new table that's created when you enter a 
let, or any other construct that binds variables. When Scheme looks for a binding of an identifier, it 
looks first in this new table, then in the old table that represented the environment outside the let. Since 
Scheme looks in the "inner" environment's table first, it will always find the innermost binding of any 
identifier, such as x in the example above. 

At any given point, the environment consists of all of the variable bindings that are visible. This includes 
all of the bindings in the table for the innermost contour, and all of the bindings in the table for the 
contours it's nested inside, except those that are shadowed by inner bindings of the same names. 

Go to the first, previous, next, last section, table of contents. 
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Block Structure Diagrams for lets

We can make environments and contours clearer by drawing a block diagram showing where the 
different variables are visible: 

(let ((x 10)    ; bindings of x
      (a 20))   ; and a 
 +----------------------------------------------------------+
 | (foo x)                                 scope of outer x |
 | (let ((x (bar))                           and a          |
 |       (b (baz x x)))                                     |
 |  +------------------------------------------------+      |
 |  | (quux x a)                    scope of inner x |      |
 |  | (quux y b)                    and b            | )    |
 |  +------------------------------------------------+      |
 | (baz x a)                                                |
 | (baz x b)                                                | )
 +----------------------------------------------------------+

(This kind of block diagram is the origin of the term "block structure.") 

Each box represents a contour: it shows where in the program each variable binding will be visible. 

We can interpret a block structure diagram by looking outward from an occurrence of a variable name, 
and using the nearest enclosing box that corresponds to a binding of that name. Now we can see that the 
final call (baz x b) does not refer to the let variable b---it's not inside the box corresponding to 
that variable. We can also see that the occurrence of x in that expression refers to the outer x. The 
occurrence of x in the calls to quux refer to the inner x, because they're inside its box, and inner 
definitions shadow outer ones. 

There's something a little tricky to notice here. When we evaluate the initial value expressions for the 
inner let, the inner bindings are not visible yet. x still refers to the outer binding of x, not the inner one 
that we are about to create. Sometimes this is exactly what you want, but sometimes it's not. Because it 
isn't always what you want, Scheme provides two variants of let, called let* and letrec. 

Go to the first, previous, next, last section, table of contents. 

http://www.federated.com/~jim/schintro-v14/schintro_58.html11/3/2006 9:01:45 PM

http://www.federated.com/~jim/schintro-v14/schintro_1.html
http://www.federated.com/~jim/schintro-v14/schintro_1.html


An Introduction to Scheme and its Implementation - let*

Go to the first, previous, next, last section, table of contents. 

let*

let is useful for most local variables, but sometimes you want to create several local variables in sequence, 
with each variable's value available to compute the next variable's value. 

For example, it is common to "destructure" a data structure, extracting part of the structure, then a part of that 
part, and so on. We could do this by simply nesting expressions that extract parts, but then we don't have 
understandable names for the intermediate results of the nested expressions. 

(In other cases, we may want to do more than one thing with the results of one of the nested expressions, so 
we need to create a variable so that we can refer to it in more than one body expression.) 

Consider the code fragment: 

(let ((a-structure (some-procedure)))
   (let ((a-substructure (get-some-subpart a-structure)))
      (let ((a-subsubstructure (get-another-subpart a-substructure)))
         (foo a-substructure))))

Scheme provides a convenient syntax for this sort of nested let; can be written as a single let* 

(let* ((a-structure (some-procedure))
       (a-substructure (get-some-subpart a-structure))
       (a-subsubstructure (get-another-subpart a-substructure)))
   (foo a-substructure))))

Notice that this wouldn't work if we wrote it as a normal let that binds three variables. A block structure 
diagram shows why: 

(let ((a-structure (some-procedure))
      (a-substructure (get-some-subpart a-structure))
      (a-subsubstructure (get-another-subpart a-substructure)))
 +---------------------------------------------------------------+
 | (foo a-substructure)           ; scope of all three variables | )))
 +---------------------------------------------------------------+

Now we see that all of the initial value expressions for the let variables are outside the scope of any of the 
variables. a-substructure and a-substructure will not refer to the bindings introduced by this 
let, but to whatever bindings (if any) are visible outside the let. 
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With let*, it's different: 

(let* ((a-structure (some-procedure))
 +-------------------------------------------------------------------+
 |     (a-substructure (get-some-subpart a-structure))               |
 +----------------------------------------------------------------+  |
 |     (a-subsubstructure (get-another-subpart a-substructure)))  |  |
 +-------------------------------------------------------------+  |  |
 | (foo a-subsubtructure)                                      |  |  | )))
 +-------------------------------------------------------------+--+--+

Each initial value clause is in the scope of the previous variable in the let*. From the nesting of the boxes, 
we can see that bindings become visible one at a time, so that the value of a binding can be used in computing 
the initial value of the next binding. 

There's another local binding construct in Scheme, letrec, which is used when creating mutually recursive 
local procedures. I'll discuss that later, when I describe how local procedures work in Scheme. 

==================================================================
This is the end of Hunk I

TIME TO TRY IT OUT

At this point, you should go read Hunk J of the next chapter
and work through the examples using a running Scheme system.
Then return here and resume this chapter.
==================================================================

Go to Hunk J, which starts at section Local Variables, let, and Lexical Scope (Hunk J). 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Procedures (Hunk K)

==================================================================
Hunk K starts here:
==================================================================

Scheme procedures are "first class," meaning that they're objects in the language. They can be 
anonymous, meaning that you can have pointers to procedures that don't have printed names. They can 
be higher-order, meaning that procedures can operate on procedures. 

●     First Class Procedures: Procedures are objects in the language 
●     Higher-Order Procedures: Procedures can take procedures as arguments 
●     Anonymous Procedures and lambda: lambda creates procedure objects, which don't need names 
●     lambda and Lexical Scope 
●     Local Definitions: defines work locally, too 
●     Local Procedures and letrec: letrec is like let, but supports recursive definitions 
●     Multiple defines are Like a letrec: Understanding definitions and scope 
●     Variable Arity: Procedures can take a variable number of arguments 
●     apply 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Procedures are First Class

In Scheme, procedures are data objects--you can have a pointer to a procedure and do the same things 
you can do with any other Scheme value. Technically, we say that procedures are first class objects in 
the language--you can pass a procedure value as an argument to a procedure, return it as the value of a 
procedure call, store it in a variable or a field of another object. A procedure pointer is just a value that 
you can pass around like any other value, like a pair or a boolean. 

Procedures are special, of course, because they're the only kind of object that supports the procedure call 
operation. 

In Scheme terminology, a procedure call expression is called a combination. Evaluation of a 
combination includes evaluation of the argument expressions and application of the procedure to the 
arguments, i.e., actually calling it with ("applying it to") those values. 

An unusual feature of Scheme is that it uses a unified namespace, which means that there's only one kind 
of name for both normal variables and procedures--in fact, procedure names are really just variable 
names, and there's only one kind of variable. A named procedure is really just a first-class procedure 
object that happens to be referenced from a variable. 

Recall the definition of min: 

(define (min a b)
   (if (< a b)
       a
       b))

When you define a procedure like this, you're really doing three things: creating a procedure, creating a 
normal variable (named min), and initializing the variable with a pointer to the procedure. 

(This means that you can't have both a procedure variable and a "normal" data variable by the same 
name in the same scope--there's really only one kind of variable, so you can only have one binding in a 
given scope.) 

When you define a procedure as we did above for the min example, Don't let the special syntax for 
procedure definitions fool you--a procedure name is really just the name of a variable that happens to 
hold a procedure value. You can use any variable that way, by storing a procedure value in it. You can 
also assign a new procedure value to a variable, and then use it to name the new procedure. 
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For example, if you've defined min as above, you can change the value in the binding of min by saying 
(set! min +). That assignment expression will look up the value of the variable +, which is the 
addition procedure, and assign that into the variable min. 

Then when you call min as before, it will do addition instead, because it will call the same procedure as 
+. For example (min 5 10) will return 15, not 5. 

You could also change the meaning of +, just by assigning a new value to the (the binding of) the 
variable +. This is probably a bad idea unless you really have a good reason, because if the new 
procedure doesn't do addition, any code that calls + will return different answers! 

It is important to understand how procedure calls actually work in Scheme, which is actually very 
simple. Consider the combination (procedure call expression) (+ a b). What this really means is 

1.  look up the value of (the current binding of) the variable +, which we assume is a procedure, 
2.  look up the values of (the current bindings of) the variables a and b, and 
3.  apply the procedure to those values, i.e., call it with those values as arguments. 

The first subexpression of the combination is evaluated in just the same way as the others, although the 
result is used differently. The first subexpression is just a subexpression that should return a procedure 
value, and the others give the arguments to pass to it. 

This won't work if the first subexpression doesn't evaluate to a procedure value. For example, you can 
change the meaning of + with an assignment expression (set! + 3). Then if you attempt to call + 
with the combination (+ 2 3) you'll get an error. Scheme will say something like "ERROR: Attempt 
to apply non-procedure." 

The fact that the first (operator) subexpression is evaluated just like any other expression can be very 
useful. Rather than giving the name of a particular procedure to call, we can use any expression whose 
result is a procedure. For example, we might have a table of procedures to use in different kinds of 
situations, and search that table for the procedure to call at a particular time: 

((look-up-appropriate-procedure key) foo bar)

Here we call the procedure look-up-appropriate-procedure with the argument key to get a 
procedure, and then apply it to the values of foo and bar. 

One warning about combinations: the Scheme language doesn't specify the order in which the 
subexpressions of a combination are evaluated. Don't write code that depends on whether the operator 
expression is evaluated first, or on the order of evaluation of the argument expressions. 
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You might wonder what's so special about first-class procedures, since some other languages (like C) let 
you pass around pointers to procedures, and call them via those pointers. Scheme's procedures work like 
Pascal's if you use them for the kinds of things Pascal allows, but also lets you use them in more general 
ways that I'll explain later. 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Higher-Order Procedures

Scheme is designed to make it easy to use higher-order procedures, i.e., procedures that may take other 
procedures as arguments or return them as values. 

For example, you can easily write a sort procedure that takes a comparison procedure as an argument, 
and uses whatever procedure you hand it to determine the sorted order. 

To sort a list in ascending order, you can then call sort with (a pointer to) the procedure < ("less than") 
as its argument, like this: 

(sort < '(5 2 3))

and you'll get back a sorted list (2 3 5). 

Note that the expression < here is just a variable reference. We're fetching the value of the variable < 
and passing it to sort as an argument. 

If you'd rather sort the list in descending order, you can pass it the procedure > ("greater than") instead: 

(sort > '(5 2 3))

and get back a sorted list (5 3 2). 

The same procedure can be used with lists of different kinds of objects, as long as you supply a 
comparison operator that does what you want. 

For example, to sort a list of character strings into alphabetic order, you can pass sort a pointer to the 
standard string-comparison procedure string<?, 

(sort string<? '("foo" "bar" "baz" "quux"))

and get back a list ("bar" "baz" "foo" "quux"). 

[ give map example here? ] 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Anonymous Procedures and lambda

Scheme has a special form that is very special, called lambda. It creates a first-class procedure and 
returns a pointer to it. 

For example, you can create a procedure that doubles its argument by evaluating the expression 
(lambda (x) (+ x x)). The second subform of the expression is a list of formal arguments, and 
the third subform is the body of the procedure. 

lambda doesn't give a name to the procedure it creates--it just returns a pointer to the procedure object. 

Actually, the procedure-defining variant of define is exactly equivalent to a variable-defining 
define, with a lambda expression as its initial value form. 

For example, 

(define (double x)
   (+ x x))

is exactly equivalent to 

(define double (lambda (x)
                  (+ x x)))

In either case, we're creating a one-argument procedure, and we're also defining and binding a variable 
named double, and initializing its storage with a pointer to the procedure. 

The procedure-defining syntax for define is just syntactic sugar--there's nothing you can do with it 
that you can't do with local variables and lambda. It's just a more convenient notation for the same 
thing. 

==================================================================
This is the end of Hunk K.

TIME TO TRY IT OUT

At this point, you should go read Hunk L of the next chapter
and work through the examples using a running Scheme system.
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Then return here and resume this chapter.
==================================================================

(Go to Hunk L, which starts at section Using First-Class, Higher-Order, and Anonymous Procedures 
(Hunk L).) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

lambda and Lexical Scope (Hunk M)

==================================================================
Hunk M starts here:
==================================================================

lambda creates a procedure that will execute in the scope where the lambda expression was 
evaluated. 

Except for local variables of the procedure itself, including its arguments, names in the body of the 
procedure refer to whatever they refer to at the point where the procedure is created by lambda. 

This is necessary for preserving lexical scope--the meanings of variable names must be obvious at the 
point where the procedure is defined. 

Local variables created by the procedure have the usual scope rule within the body. (Argument variables 
are just a special kind of local variable, which get their initial values from the caller.) Other variables are 
called free variables--that is variables defined outside the procedure, but referred to from inside it. 

We say that lambda creates a closure, a procedure whose free variable references are "fixed" at the 
time the procedure is created. Whenever the procedure references a free variable, it will will refer to the 
bindings of those variables in the environment where the procedure was created. 

Consider the following small program 

(define foo 1)

(define (baz)
   foo)

(define (quux)
   (let ((foo 6))
      (baz)))

(quux)

When quux is called, it will bind its local variable foo and then call baz. When baz is called from 
quux, however, it will still see the top level binding of foo, whose value is 1. The result of the call to 
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baz will be 1, and that value will be returned as the value of the call to quux as well. 

There is a very good reason for this, and it's the rule used by most programming languages. It is 
important that the meaning of a procedure be fixed where it is defined, rather than having the meaning 
depend on where it is called from. You want to be able to look at the code, and see that the name foo 
refers to particular variable, namely the one that's visible there, at the top level. You don't want to have 
to worry about the meaning of the procedure baz changing, depending on where it's called from. 

A block structure diagram may make this clearer. I'll just show the part for the procedure baz: 

(define (quux)
   (let ((foo 6))
     +---------------------------+
     | (baz)        scope of foo | ))
     +---------------------------+

This emphasizes the fact that the local foo really is local. The definition of baz is not inside the box, so 
it can't ever see foo's local variable foo. (The fact that baz is called from inside the box doesn't 
matter.) 

Conceptually, the procedure baz returns to the environment where it was created before it executes, 
and even before it binds its arguments. 

In early Lisps, a different rule was used, called dynamic scope. In those Lisps, the call to baz would see 
the most recent binding of foo. In this case, it would see the binding created by quux just before the 
call to foo. This led to very inscrutable bugs, because a procedure would work sometimes, and not 
others, depending on the names of variables bound in other procedures. 

(Dynamic scoping is generally considered to have been a big mistake, and was fixed in recent versions 
of Lisp, such as Common Lisp, which were influenced by Scheme.) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Local Definitions

Scheme lets you define local procedures, scoped inside other procedures or blocks with local variables. 
This lets you "hide" procedures that only make sense in a certain context, so that they can only be called 
in that context. 

You can define local procedures using let and lambda, like this: 

(define (quadruple x)
   (let ((double (lambda (x)
                    (+ x x))))
      (double (double x))))

Here we've defined a procedure named quadruple, with a local variable named double; its value is 
a procedure that will double its argument value, created with lambda. 

Notice that when we call double from inside the procedure quadruple, we call it by the name 
double, which is really the name of a local variable. That's okay, because there's no difference between 
variable names and procedure names--a call to a named procedure is always a lookup of a variable value 
followed by a call to the procedure it points to. 

Also notice that the inner procedure's argument variable x shadows the outer procedure's argument 
variable x. Inside the body of double, it refers to double's argument, but outside it doesn't. (The code 
might be easier to read if we chose different names for the two procedures' arguments, but this is just for 
illustration.) 

As with a top-level definition, we can write a local definition using define instead of let. For 
example, we could have written the above procedure as: 

(define (quadruple x)
   (define (double x)      ; define a local procedure double
      (+ x x))))
   (double (double x))))   ; nested calls to the local procedure

A local define acts a lot like let with lambda. (Actually, it's exactly like a letrec with lambda, 
but we haven't discussed letrec yet; we will later.) 

There's a restriction on internal defines--they must be at the beginning of the procedure body (or the 
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beginning of another body, like a let body, before the normal executable expressions in the body. 

Local procedure definitions follow the normal lexical scope rule, like nested lets. For example, in the 
above example, the formal argument x of double is local to the body of double---it's a different 
variable x than the argument x of quadruple. 

(define (quadruple x)
   (define (double x)
 +------------------------+
 |     +--------+         |
 |     | (+ x x)|)        |
 |     +--------+         |
 |  (double (double x))   | ))
 +------------------------+

Here the inner box is the scope of double's argument x, and the outer one is the scope of the variable 
double. 

We could have used a different name for the argument to the local procedure, and it wouldn't change the 
meaning of either procedure: 

(define (quadruple x)
   (define (double (y)   ; local defn. of double
              (+ y y)))  ;    body of local procedure
   (double (double x)))  ; body of quadruple

On the other hand, since there are no local bindings of +, + refers to whatever it refers to in the context 
where quadruple is defined. Assuming that quadruple is a top-level procedure, not a local 
procedure in some other scope, + refers to the top-level binding of +. (Remember that a procedure name 
is really just a variable name, so the scope rules for variables apply to procedure names too.) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Recursive Local Procedures and letrec

Using let and lambda to define local procedures will often work, but generally we use letrec rather than 
let, because it supports recursive local procedures. (That's why it's called letrec---it means let with 
recursive definitions.) 

Suppose we tried to use let and lambda to define a recursive local procedure: 

(define (foo x)
   (let ((local-proc (lambda (y)
                        ...
                        (local-proc ...)   ; recursive call?  No.
                        ...))) 
      ...
      (local-proc x)
      ...)

The problem with this example is that what appears to be a recursive call to local-proc from inside 
local-proc actually isn't. Remember that let computes the initial values of variables, then initializes all of 
the variables' storage, and only then do any of the bindings become visible--when we enter the body of the 
let. In the example above, that means that the local variable local-proc isn't visible to the lambda 
expression. The procedure created by lambda will not see its own name--the name local-proc in the body 
of the procedure will refer to whatever binding of local-proc exists in the enclosing environment, if there 
is one. 

A block structure diagram may make this clearer: 

(define (foo x)
   (let ((local-proc (lambda (y)
                      +--------------------------+
                      | ...                scope |
                      | (local-proc ...)   of y  | 
                      | ...                      | )))
                      +--------------------------+
    +------------------------------------------+
    | ...                         scope of     |
    | (local-proc x)              local-proc   |
    | ...                                      | )
    +------------------------------------------+

Unlike let, letrec makes new bindings visible before they're initialized. Storage is allocated, and the 
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meanings of names are changed to refer to the new local variable bindings, and then the initial values of those 
variables are computed and the variables are initialized. 

For most purposes, this wouldn't make any sense at all--why would you want variable bindings to be visible 
before they have had their initial values installed? For local procedure definitions, however, it makes perfect 
sense--we want to use lambda to create a procedure that can operate on the variables later, when it's called. 

lambda creates a procedure that will start executing in the scope where the lambda expression is evaluated, 
so we need to make the bindings visible before we evaluate the lambda expression. 

If we use letrec in our example, instead of let, it works. The procedure local-proc can see the 
variable local-proc, so it can call itself by its name. 

The block structure diagram looks like this: 

(define (foo x)         +-----------------------------------+
   (letrec ((local-proc | (lambda (y)                       |
                        |  +--------------------------+     |
                        |  | ...                scope |     |
                        |  | (local-proc ...)   of y  |     |
                        |  | ...                      | ))) |
                        |  +--------------------------+     |
    +-------------------+                                   |
    | ...                                  scope of         |
    | (local-proc x)                       local-proc       |
    | ...)                                                  |
    +-------------------------------------------------------+

The recursive call to local-proc will work, because the call is inside the box that corresponds to the scope 
of the variable local-proc. 

letrec works for multiple mutually recursive local procedures, too. You can define several local procedures 
that can call each other, like this: 

(define (my-proc)
   (letrec ((local-proc-1 (lambda ()
                             ...
                             (local-proc-2)
                             ...))
            (local-proc-2 (lambda ()
                             ...
                             (local-proc-1)
                             ...)))
      (local-proc-1))) ; start off mutual recursion by calling local-proc-1
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A block structure diagram shows that each local procedure definition can see the bindings of the other's names: 

(define (my-proc)
             +--------------------------------------------------------+
   (letrec ( | (local-proc-1 (lambda ()        scope of local-proc-1  |
             |                ...                and local-proc-2     |
             |                (local-proc-2)                          |
             |                ...))                                   |
             | (local-proc-2 (lambda ()                               |
             |               ...                                      |
             |               (local-proc-1)                           |
    +--------+               ...)))                                   |
    | (local-proc-1)                                                  | ))
    +-----------------------------------------------------------------+

You can also define plain variables while you're at it, in the same letrec, but letrec is mostly interesting 
for defining local procedures. 

When the initial value of a letrec variable is not a procedure, you must be careful that the expression does 
not depend on the values of any of the other letrec variables. Like let, the order of initialization of the 
variables is undefined. 

For example, the following is illegal: 

(letrec ((x 2)
         (y (+ x x)))
   ...)

In this case, the attempt to compute (+ x x) may fail, because the value of x may not have been computed 
yet. For this example, let* would do the job--the second initialization expression needs to see the result of the 
first, but not vice versa: 

(let* ((x 2)
       (y (+ x x)))
   ...)

Be sure you understand why this is illegal, but the lambda expressions in the earlier examples are not. 

When we create recursive procedures using letrec and lambda, the lambda expressions can be evaluated 
without actually using the values stored in the bindings they reference. We are creating procedures that will use 
the values in the bindings when those procedures are called, but just creating the procedure objects themselves 
doesn't require the bindings to have values yet. It does require that the bindings exist, because each lambda 
expression creates a procedure that "captures" the currently visible bindings--the procedure remembers what 
environment it was created in. 
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Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Multiple defines are like a letrec

Now that you understand letrec, I can explain what define really does. 

Notice that when you define top-level variables and procedures, the procedures you create can refer to 
other variables in the same top-level environment. 

It is as though all of the top-level bindings were created by a single big letrec, so that the initial value 
expressions create procedures that can "see" each others' name bindings. Expressions that aren't 
definitions make up the "body" of this imaginary letrec. 

Recall that a procedure-defining define is equivalent to a variable-defining define with a lambda 
expression to compute its initial value. 

The following top-level forms 

...

(define (foo)
   (... (bar) ...))

(define (bar)
   (... (baz) ...))

(define (baz)
   (... (quux) ...))
...
(foo)
...

are therefore equivalent to 

...

(define foo
        (lambda ()
           (... (bar) ...)))

(define bar

http://www.federated.com/~jim/schintro-v14/schintro_67.html (1 of 3)11/3/2006 9:03:14 PM

http://www.federated.com/~jim/schintro-v14/schintro_1.html


An Introduction to Scheme and its Implementation - Multiple defines are Like a letrec

        (lambda ()
           (... (baz) ...)))

(define baz
        (lambda ()
           (... (foo) ...)))
...
(foo)
...

When we view top-level defines as being implicitly like parts of a letrec, the program takes the 
equivalent form 

(letrec (... 

         (foo (lambda ()
                 (... (bar) ...)))
         (bar (lambda ()
                 (... (baz) ...)))
         (baz (lambda ()
                 (... (foo) ...)))
         ...)
 ...
 (foo)
 ...)

(Actually, things are scoped like this, but the initial value expressions of defines and the non-
definition expressions are evaluated in the order they occurred in the source program. For top-level 
expressions, you can depend on Scheme executing the executable parts of definitions in the order 
written.) 

Local defines work pretty this way, too. A Scheme interpreter or compiler recognizes any defines 
that occur at the beginning of a body as being parts of an implicit letrec; the subsequent expressions 
in the same body are treated as the body of the implicit letrec. 

So the following procedure 

(define (my-proc)
   (define (local-proc-1)
      ...)
   (define (local-proc-2)
      ...)
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   (local-proc-1)
   (local-proc-1))

is equivalent to 

(define (my-proc)
   (letrec ((local-proc-1 (lambda () ...))
            (local-proc-2 (lambda () ...)))
      (local-proc-1)
      (local-proc-2)))

If we "desugar" the outer define, too, we get 

(define my-proc
        (lambda ()
           (letrec ((local-proc-1 (lambda () ...))
                    (local-proc-2 (lambda () ...)))
             (local-proc-1)
             (local-proc-2)))

Go to the first, previous, next, last section, table of contents. 
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Variable Arity: Procedures that Take a Variable Number of Arguments

In Scheme, you can easily write procedures that can take a variable number of arguments. Technically, 
the number of arguments a procedure accepts is called its arity, and we call a procedure that accepts a 
variable number a variable arity procedure.(4) 

One way to write a variable arity procedure is to use an argument declaration form that consists of a 
single argument name, rather than a parenthesized sequence of argument names. This tells Scheme that 
the procedure's actual arguments should be packaged up as a list when the procedure is entered, and the 
procedure will have a single argument that points to this list of argument values. 

For example, we could write a procedure that takes any number of arguments and displays the list of 
actual arguments passed to the procedure. 

(define (display-all . args)
   (display args)) 

Here the argument variable args receives the list of all arguments, and we use display to display this list. 
Now if we call the procedure like this 

Scheme>(display-all 'foo 3 'bar)
(foo 3 bar)

the argument variable args will be bound and initialized with a list (foo 3 bar), which will be 
passed as the sole argument to display. Once inside the procedure, there's nothing special about this 
argument variable args---it just happens to hold the list of arguments that were passed. 

This works for lambda expressions as well. We could define display-all using an equivalent plain 
variable definition whose initial value is the result of an explicit lambda expression: 

(define display-all
        (lambda args
           (display args)))

(Notice that for this (plain lambda) version, we just used args as the argument specification, not 
(args). If we just use an identifer, rather than a parenthesized sequence of identifiers, Scheme 
packages up all of the actual arguments to the procedure as a list and hands that to display-all as 
one argument variable. This looks a little different from the define version, but it's the same idea--
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we're using the variable args to "stand for" a sequence of argument values, which scheme represents as 
a list.) 

Often, you write procedures that take a certain number of normal (required) arguments, but can take 
more. When you pass a procedure more arguments than it requires, Scheme packages up the extra 
arguments in a list, called a rest list. 

Scheme allows you to express this by writing a mostly normal-looking parenthesized sequence of 
argument names, followed by a dot and the name of the argument to receive the list of the remaining 
arguments. (If no extra arguments are passed, this argument variable will receive the empty list.) 

For example, suppose we want our display-all procedure to accept at least one argument, display 
it, and then display the list of any remaining arguments. We could write it like this: 

(define (display-all first . rest) (display first) (display rest)) 

This allows us to declare that the procedure's first argument is required, and give it a name of its own. 
The dot notation is similar to the dot notation for improper lists, and is used to suggest that the that 
variable after the dot refers to the "rest" of the actual arguments.\footnote{Consider an improper list (a 
b . c). Here the first element of the list is a, the cadr of the list is b, and the rest of the list beyond 
that (the cddr) is just c. If we write the argument declarations of a procedure in this way, e.g., 
(lambda (a b . c) ...), we think of the formal parameter a as "standing for" the first actual 
argument value, the formal parameter b as standing for the second actual argument value, and the formal 
parameter c as standing for the rest of the actual argument values.} One common application of variable 
arity is to allow optional arguments with default values. For example we can define a procedure foo 
which takes two required arguments and a third, optional argument. We would like to use a default value 
for the optional argument, say #f, if the optional argument is not actually passed. (define (foo a b . rest) 
(let ((c (if (null? rest) ; if no extra argument(s) #f) ; use default value #f for c (car rest))) ; else use first 
optional arg (bar a b c))) This idiom is common in routines that perform I/O, where a given I/O 
operation typically reads from or writes to a special file--such as the standard input or output, or a log 
file--but can also be used to write to other files using explicit port objects, which are like file handles. 
(Ports will be discussed in detail later.) If no port is passed to specify where the I/O operation should be 
directed, it's directed to the usual file. Another common application of variable arity is to allow 
procedures to operate on an arbitrary number of arguments. [give example] 

Go to the first, previous, next, last section, table of contents. 
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apply

The procedure apply allows you to call any procedure, and specify a list of values to be passed as 
arguments. apply takes a procedure and a list of values, and then calls the procedure with those values 
as arguments. 

For example, (apply + '(1 2)) passes the values 1 and 2 to +, and is equivalent to (+ 1 2). 

You'll seldom need to use apply, because normal procedure calling works fine in most situations. 
Occasionally, though, it is convenient to be able to apply a procedure to a list of values that have already 
been computed. (I'll show an example in [ chapter 4? ].) 

Go to the first, previous, next, last section, table of contents. 
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Variable Binding Again

●     Identifiers and Variables 
●     Variables vs. Bindings vs. Values 

So far, I've sometimes casually talked about variables holding values, but that's not quite right. Variables 
are bound to storage, and storage holds values. 

I've also sometimes casually talked about fetching "the value of a variable," but that's really just a 
shorthand for fetching the value of the current binding of a variable, from the current environment. 

Consider what happens when we define a variable foo with the definition (define foo 10). We 
can draw the binding of the variable in this way: 

     +-----+
 foo |  *--+---> 10
     +-----+

When speaking precisely, we say that the variable foo is bound to the memory location represented by 
the box on the left. Binding just means making an association between a name and something. (There are 
several senses of "binding"---it's a very general word--but in this book, I'm generally talking about 
associating program variables with actual storage.) 

For brevity, we refer to the location as the variable's binding, but binding is really the relationship 
between the name and the storage it names. 

In Scheme terminology, we talk about "bindings" as distinct from variables, because they are two 
different things. This is true in most other languages as well (e.g., C and Pascal), but usually people 
don't make the distinction explicit. They'll refer to a program variable as a variable, but they'll also call 
the storage allocated for a particular instance of that variable a "variable." Usually, experienced 
programmers aren't confused by this. 

In this book, I try to be a little more precise, because the distinction between variables and bindings is 
especially important in discussing advanced topics that will come up later. For now, rest assured that 
there's nothing really unusual here--when I distinguish between variables and bindings, that's applicable 
to most programming languages, not just Scheme. I'm just giving a name to something you probably 
already know. 
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(So far, we haven't seen anything really special about Scheme variables and bindings, except that the 
values in bindings are always pointers.) 

Go to the first, previous, next, last section, table of contents. 
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Identifiers and Variables

In isolation, a textual identifier (name) such us as foo isn't even a variable. 

The static scoping structure of a program gives names a certain aspect of meaning, and the dynamic 
execution of the program gives them more meaning. 

In isolation, foo doesn't mean anything. Used in a program, it can be the name of a variable. At 
different places in a program, it can be the name of different variables, e.g., a toplevel variable, or a local 
variable in one or more procedures. 

In Scheme an identifier such as foo may not represent a variable at all. In the quote expressions 'foo 
and '(baz foo bar) it identifies a symbol object, but in an entirely different sense than variable 
binding. It doesn't name a variable foo, or a variable whose binding holds a pointer to foo---it is a 
literal representation of a pointer to the unique symbol object whose printed representation is foo. 

Go to the first, previous, next, last section, table of contents. 
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Variables vs. Bindings vs. Values

The distinction between variables, bindings, and values is particularly important in Scheme, and important 
for understanding interpreters and compilers, so I'll take a little time to discuss it with examples. 

What is this distinction? Why not just say that the variable holds a value, i.e., why not call the unit of 
storage a variable? Because that's not right. Consider the following short program. 

(define (double x)        ; define a procedure that doubles its argument
   (+ x x))            

(define (quadruple x)     ; define a procedure that quadruples
   (+ (double x)          ; its argument.
      (double x)))

(define (foo x)           ; define a recursive procedure that calls
   (if (> x 0)            ; itself if its argument is more than 0,
       (foo (- x 1)))     ; handing the recursive call an argument
                          ; that's one less.

Notice that we've defined three procedures, double, quadruple, and foo, each of which has a local 
(argument) variable x. (An argument variable is just a local variable that gets its initial value in a special 
way, passed from the caller of the procedure.) 

There are therefore three different variables named x in this code. In each of the procedures, it means 
something different. Each procedure defines a different meaning for the name x, and each separate meaning 
is a different variable. 

This becomes obvious when we talk about "the variable x defined in the procedure double" versus "the 
variable x in the procedure foo," and so on. 

We could change the names of variables, so that every variable has a different name, without changing the 
meaning of any of the procedure definitions. Wherever two different variables have the same name, we can 
change one of them to something else, as long as we change all references in the scope of that variable to the 
new name. 

In the example above, we might change each variable x to x1, x2, or x3, and change all uses within its scope 
to use the new name: 

(define (double x1)        ; define a procedure that doubles its argument
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   (+ x2 x3))            

(define (quadruple x2)     ; define a procedure that quadruples
   (+ (double x2)          ; its argument.
      (double x2)))

(define (foo x3)           ; define a recursive procedure that calls
   (if (> x3 0)            ; itself if its argument is more than 0,
       (foo (- x3 1)))     ; handing the recursive call an argument
                          ; that's one less.

This makes it clearer that each of the variables is a different thing, but it doesn't change what the procedures 
do, because the normal scope rules of the language have the same effect. 

Notice also that when we define the procedures, there is no storage allocated for their local variables; the 
variables named x in the procedures are just definitions--no space will be allocated for them until the 
procedures are actually called. That's when binding happens--some storage is allocated at run time to hold 
the value. 

(Bear in mind that this happens in other languages too, even if people don't discuss it clearly--for example, a 
C argument variable is bound when you enter the procedure, because suddenly space is allocated for it and 
the name refers to that space.) 

When we call something a "variable," that's not because we can assign to it and change its value. None of 
the above variables has a value that varies in that sense; none of these procedures happens to modify the 
values they're given as arguments. In some languages, such as pure functional languages, you can't do 
assignment at all, but those languages still have variables. 

In programming language terminology, the term "variable" means pretty much what it means in 
mathematics--at different times we invoke the same procedure and the variable will refer to something 
different. For example, I may call double with the argument 10, and while executing in that call to 
double, the value of x will be 10. Later, I may call double with the value 500, and while executing in 
that call the value of x will be 500. 

Consider how similar this is to variables in logic. I may have a logical statement that "for all x, if x is a 
person then x is mortal". (Forall x, person(x) -> mortal(x)). I can use the same logical rule (statement) and 
apply it to lots of things. 

If Socrates is a person then Socrates is mortal, and if Bill Clinton is a person then Bill Clinton is mortal, and 
so on. (Or even, if my car is human then my car is mortal.) 

Each time I use it, x may refer to a different thing, and that's why it's called a variable. 
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Just because it's a variable doesn't mean that when I use it I change the state of the thing I use it to refer to--
for example, Bill Clinton is probably not modified much by the fact that I'm inferring something about him, 
and I'm pretty sure Socrates isn't changed much at all by the experience. 

It also doesn't mean that the meaning of a variable changes from instant to instant. If I use the rule above, 
and apply it to Socrates, saying "if Socrates is a person then Socrates is mortal", x consistently refers to 
Socrates--that's the point. But I can also say that "if Bill Clinton is a person then Bill Clinton is mortal." In 
that case x refers consistently to Bill Clinton. In logic, we say that in one case x is bound to Socrates, but 
then used consistently within the rule; and in the other, we say it's bound to Bill Clinton, and then used 
consistently within the rule. 

The point here is that the same variable can refer to different things at different times. These different things 
are called bindings, because the variable is associated with ("bound to") something different each time. 

Consider the recursive procedure foo, above. In a recursive procedure, the same variable may be bound to 
different things at the same time. Suppose I call foo with the argument 15, and it binds its argument x and 
gives the binding the initial value 15. Then it examines that value, and calls itself with the argument 14. 
The recursive call binds its argument x with the value 14, then examines that and calls itself with the value 
13, and so on. 

At each recursive call, a new binding of x is created, even if the old bindings still exist, because the earlier 
calls haven't finished yet--they're suspended for the duration of the recursion. 

When there are multiple bindings in existence at the same time, only one one is "visible" as a procedure 
executes. For example, in a recursive set of calls to a procedure, only one binding is "in scope," that is, 
visible) to an executing procedure--the binding for that call. We call this the current binding of the variable. 
When a call returns, an older binding becomes visible again, and becomes the current binding. 

But what is a variable bound to, i.e., to what does a variable refer? In Scheme, it refers to a piece of storage. 
When you call a procedure, for example, each argument variable is bound to a piece of storage that can hold 
the argument value you pass. Inside that call to that procedure, that variable name will refer to that piece of 
memory. 

A single binding of a Scheme variable may hold different values over time, because of assignments, as in 
most procedural languages. So not only may the same variable be bound to different pieces of storage, but 
each piece of storage may hold different values over time.(5) 

Sometimes people talk about binding a variable to a value, but in Scheme (and other languages with 
assignment) this is not correct, and speaking in this sloppy way causes confusion. If you don't distinguish 
between storage and values, you can't talk clearly about assignment. 

Always remember that there are three "one-to-many mappings" here: 
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●     a single name (identifier) can be used for different variables at different places in a program, or for a 
symbol 

●     a given variable may be bound to different pieces of storage, e.g., at different calls to the same 
procedure, 

●     a given binding may hold different values if you assign to it and change what's stored there. 

To keep these terms straight, it's usually best to think about local variables; top-level or global variables are 
a special case, because they only have one binding each. 

Top-level defines can be a little confusing in terms of the variable/binding/value distinction, because they do 
three different things. They declare a variable that will be visible in a scope (the top level scope), they bind 
they variable to new storage (creating the top-level binding), and they initialize that storage with an initial 
value. 

==================================================================
This is the end of Hunk M.

TIME TO TRY IT OUT

At this point, you should go read Hunk N of the next chapter
and work through the examples using a running Scheme system.
Then return here and resume this chapter.
==================================================================

(Go to Hunk N, which starts at section Interactively Changing a Program (Hunk N).) 

Go to the first, previous, next, last section, table of contents. 
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Tail Recursion (Hunk O)

==================================================================
Hunk O starts here:
==================================================================

Many Scheme programs rely heavily on recursion, and Scheme makes it easy to use recursion in ways 
that aren't feasible in most other languages. In particular, you can write recursive procedures which call 
themselves instead of looping. 

When a procedure calls itself in a way that is equivalent to iterating a loop, Scheme automatically 
"optimizes" it so that it doesn't need extra stack space. You can use recursion anywhere you could use a 
loop in a conventional language. Technically, loop-like recursion is called tail recursion, which we'll 
explain in detail in a later chapter. 

The basic idea is that you never have to return to a procedure if all that procedure will do is return the 
same value ot its caller. For example, consider the following procedure definition: 

(define (foo)
   (bar)
   (baz))

When foo calls baz, it is a tail call, because on return from baz, foo will do nothing except return the 
returned value to its caller. That is, the return to foo from baz will be immediately followed by a return 
to whatever procedure called foo. There's really no need to do two returns, passing through foo on the 
way back. Instead, Scheme avoids saving foo's state before the call to baz, so that baz can return 
directly to foo's caller, without actually coming back to foo. 

Tail-calling allows recursion to be used for looping, because a tail call that acts to iterates a loop doesn't 
save the caller's state on a stack. 

Scheme systems can implement such tail calls as a kind of GOTO that passes arguments, without saving 
the state of the caller. This is not unsafe, like language-level GOTO's, because it's only done when the 
result would be the same as doing the extra returns. 

Some compilers for languages such as Common Lisp and C perform a limited form of "tail call 
optimization," but Scheme's treatment of tail calls, is more general, and standardized, so you can use 
recursion more freely in your programs, without fear of stack overflow if you code your routines tail-
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recursively. 

And of course, you can use recursion the way you would in most languages, as well as for loops, so 
recursion can do both jobs. While Scheme has conventional-looking looping constructs, they're defined 
in terms of recursion. 

Go to the first, previous, next, last section, table of contents. 

http://www.federated.com/~jim/schintro-v14/schintro_73.html (2 of 2)11/3/2006 9:03:43 PM

http://www.federated.com/~jim/schintro-v14/schintro_1.html


An Introduction to Scheme and its Implementation - Macros
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Macros

Scheme is very procedure-oriented, but procedures can't do everything, at least not in a way that is 
syntactically pretty and efficient. 

Sometimes you want to define your own control structures and data-defining expressions that can't be 
clearly and efficiently expressed as procedures, and for this Scheme provides a syntactic extension or 
macro facility. 

With macros, you can define stereotyped pieces of code, and how to transform them for different 
purposes. 

You might have had bad experiences with macros in other languages, like C, but Scheme's macro system 
is special. It's an extremely powerful mechanism for abstracting over programs and putting things 
together in special ways. 

As we'll see in a later chapter, with Scheme macros you can effectively reprogram the compiler to 
change the language and its implementation. This is not something you'll need to do often--most of the 
time you'll do fine with normal programming and higher-order procedures--but sometimes it's extremely 
useful for building your own extended version of Scheme to solve particular kinds of problems, or for 
automating tedious and repetitive aspects of program construction. 

Go to the first, previous, next, last section, table of contents. 
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Continuations

Scheme has the usual control constructs that most languages have--conditionals (if statements), loops, 
and recursion--but it also has a very special control structure called call-with-current-
continuation. 

(Warning: call-with-current-continuation is weird.) 

call-with-current-continuation allows you to save the state of a computation, package it 
up as a data structure, and go off and do something else. Whenever you want, you can restore the old 
saved state, abandoning the current computation and and picking up where the saved computation left 
off. 

This is far more powerful than normal procedure calling and returning, and allows you to implement 
advanced control structures such as backtracking, cooperative multitasking, and custom exception-
handling. 

You won't use call-with-current-continuation most of the time, because more 
conventional control structures are usually sufficient. But if you need to customize Scheme with a 
special control structure to solve a particular kind of problem, you can do it with call-with-
current-continuation. 

==================================================================
This is the end of Hunk O.

TIME TO TRY IT OUT

At this point, you should go read Hunk P of the next chapter
and work through the examples using a running Scheme system.
Then return here and resume this chapter.
==================================================================

(Go to Hunk P, which starts at section Basic Programming Examples (Hunk P).) 

Go to the first, previous, next, last section, table of contents. 
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Iteration Constructs

You may have noticed that we haven't discussed iteration constructs much. Scheme does include 
iteration constructs like do, which we'll describe later, but you'll use them less than in most other 
languages. It's usually easier to use recursion, once you get the hang of it. When you do use iteration 
constructs, you should also understand that they're really syntactic sugar for recursion. 

For most purposes, you can use Scheme's iteration constructs as you would in other languages, but 
they're actually interestingly different. Scheme's iteration constructs are really syntactic sugar for tail 
recursion. Anything you can do iteratively, you can do with recursion, and recursion lets you do other 
things that normal iteration doesn't. 

The main difference between Scheme's iteration constructs and the ones you may be used to is that loop 
variables aren't updated at each iteration. This doesn't mean you don't have loop variables--the difference 
is that loop variables are rebound at each iteration (tail call), rather than being bound once on entry to 
the loop, and updated (assigned to) at each iteration. 

(Don't worry if this doesn't make sense yet--it will later, in the Chapter on recursion.) 

It turns out that having a new binding of the loop variable at each iteration is very convenient when 
using first-class procedures and continuations. For example, if you create a first-class procedure in a 
loop body, it can continue to refer to the variable binding for the iteration of the loop that created it. 

Go to the first, previous, next, last section, table of contents. 
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Discussion and Review

Go to the first, previous, next, last section, table of contents. 
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Using Scheme (A Tutorial)

In this chapter, I'll describe how Scheme works from the user's point of view, and how to write simple 
programs in Scheme. You should follow along, experimenting with the actual Scheme system you use. 

This chapter is not meant to be read independently of the previous chapter. I've included notes saying 
which parts of the previous chapter you should read before working through parts of this one. If you 
haven't already, you should read the first part of that chapter. 

This chapter is also not meant to be read without a running Scheme system to try things out. 

●     Interactive Prog Envt: An Interactive Programming Environment 
●     Using Predicates 
●     Local Variables 
●     Using Procedures 
●     Interactively Changing a Program 
●     Some Other Useful Data Types: Strings and symbols 
●     Basic Programming Examples 
●     Procedural Abstraction 
●     Discussion and Review 

(If you haven't read Hunk A of the previous chapter, please go to section What is Scheme? (Hunk A) 
and read until you reach the end of Hunk A and are directed back here.) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

An Interactive Programming Environment (Hunk B)

==================================================================
This is the beginning of Hunk B.
==================================================================

Most Scheme implementations are interactive. The Scheme system is just a program with a command 
interpreter. When it starts up, it presents you with a prompt, letting you type in an expression. The 
Scheme system "interprets" that expression, and does what it says to do. Then it prints out a textual 
representation of the result of the expression. 

(Your Scheme system may have a graphical user interface, but the basic idea is the same--you tell 
Scheme what to do, and it obediently does it, tells you what happened, and asks for the next command. 
With a GUI, you may be able to tell Scheme what to do by clicking on buttons, etc.) 

This is very similar to an operating system's command interpreter or "shell." A shell is just an interpreter 
for a language--usually a really ugly language. 

The nice thing about an interactive programming environment is that your program doesn't go away after 
you run it. You're "inside" the program, and you can tell it what to do, but instead of just running to 
completion, it comes back and asks you what to do next. 

The values of variables are still around, and you can look at them if you want to. This makes it easy to 
debug a program. You can type in definitions of variables and procedures, and then run a procedure and 
see if it does what you expect. If not, you can redefine it. In effect, you're inside your program, and the 
Scheme system acts as a dispatcher, executing whatever part you want and letting you examine the 
results. This makes it easy to build and test your program in small pieces, and gradually build up larger 
and larger pieces that use those pieces. 

In this section, we'll go through a simple example session with Scheme, fairly slowly, starting with 
examples similar to the ones in the previous chapter. I'll assume Scheme is already properly installed on 
your system. If it's not, you need to get Scheme and install it, or have someone install it for you. 

(Plug: you might want to use our Scheme, RScheme, which is free. There are other implementations of 
Scheme of course, including commercial products and other free implementations. If you're using a 
different Scheme, its operation should be very similar--see the manual for your system.) 

It's a very good idea to follow along with this text in front of a running Scheme system, so that you get 
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used to using it interactively. I'll assume you are doing this, and say "do this" and "do that." You don't 
have to do it, of course, but it's the best way to learn Scheme. 

●     Starting Scheme: making Scheme go 
●     Recovering from Mistakes: making mistakes and recovering from them 
●     Returns and Parentheses: formatting interactive input 
●     Interrupting Scheme: getting a stuck Scheme system unstuck 
●     Trying More Expressions: trying out more kinds of expressions 
●     Exiting Scheme: making Scheme go away 
●     Booleans and Conditionals: trying out basic control flow 
●     Sequencing: trying out begin and procedure bodies 
●     Other Flow-of-Control Structures: cond, and, and or 
●     Making Some Objects: messing around with pairs 
●     Lists: using lists 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Starting Scheme

First we start up Scheme. If we're using RScheme under UNIX, that's probably by typing rs at the 
UNIX % prompt. (RScheme might be installed under a different name on your system, perhaps 
rscheme, if so, use that name instead. If you're not using UNIX, start up RScheme the way you start up 
any program on your system, perhaps by clicking on its icon. If you're using UNIX but your shell has a 
different prompt, like >, don't worry about it. 

[ Note to my (UT CS)students: on our machines, RScheme is installed as /p/bin/runscheme. You 
can just type that at the UNIX prompt, or if you have /p/bin in your path, plain runscheme will 
do. ] 

%rs 

Now the Scheme system starts up and prints out some information about itself, usually including 
including the name and version version number, and then gives you a Scheme prompt. We'll pretend that 
the prompt is Scheme>, but on your system it's probably something different. (For RScheme, it's 
something like top[0]=>, where the first few characters give you some information about the state of 
the system, and the => tells you it's ready for input.) 

Scheme then waits for you to type in an expression and hit <RETURN>. (By that I mean hit the 
"RETURN" or "ENTER" key on the keyboard. In some Scheme systems, these may be distinct keys, 
and you may have to hit "ENTER"; the documentation for your system will tell you which key does 
what.) 

Scheme lets you type, echoing the characters to the screen, and doesn't do anything else until you hit 
<RETURN>. Until you hit <RETURN>, you can back up to correct typing mistakes (just as you can in an 
operating system's command shell), using the delete or backspace key. 

Now type in a variable definition (define myvar 10), and hit <RETURN>. What's happening on 
the screen looks something like this. 

Generational Real-Time Garbage Collector Version 0.5
RScheme version 0.7
Scheme>(define myvar 10)
#void
Scheme>
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Here we defined a variable named myvar, giving it the initial value 10. Scheme read what we typed 
and figured out what it meant, and then allocated some storage for the variable binding, and initialized 
that storage with (a pointer to) 10. Scheme keeps track of the fact that the storage it allocated is now 
known as myvar, as well as keeping track of the value in it. 

What Scheme prints out after evaluating this expression may be different on your system (you may not 
see #void). That's because the Scheme standard doesn't specify what's returned as the value of a 
definition expression. (It's possible that your Scheme system will print out something a little more 
verbose, or different, or nothing at all as the value of a define expression. Don't worry about it.) 

You don't usually use the result value of a definition--you're just defining something to use later. 
Depending on the implementation you're using, you'll see whatever the implementors chose to have 
definitions return. In some systems, a special unusable value is returned, and Scheme will suppress the 
printing of these meaningless values to avoid clutter on the screen. 

Go to the first, previous, next, last section, table of contents. 

http://www.federated.com/~jim/schintro-v14/schintro_81.html (2 of 2)11/3/2006 9:04:14 PM

http://www.federated.com/~jim/schintro-v14/schintro_1.html


An Introduction to Scheme and its Implementation - Recovering from Mistakes

Go to the first, previous, next, last section, table of contents. 

Making mistakes and recovering from them

Sometimes you'll make mistakes when interacting with Scheme. This is quite normal, and if you've done 
it already, don't worry. When Scheme detects that something's wrong, it will complain. In most text-
based Scheme systems, it will give you a special kind of prompt, so that you can type in commands to 
fix the mistake. In other systems, it may invoke a debugger, which is a program for diagnosing and 
fixing mistakes. For now, you need to know the command for your system that tells Scheme to give up 
on trying to fix the mistake, and go back to its normal "top level" interaction mode. Later, you should 
learn how to use the debugging facilities of your system, but for now just being able to get back to the 
normal Scheme prompt will do. 

Assuming you've looked up the command for aborting an expression (by reading the manual, or asking a 
help system), you should try it out. You should make a mistake intentionally, watch what the system 
does, and make sure you can recover from your mistakes. 

Here's a good mistake, and a hypothetical response from the Scheme, and a recovery to the normal 
Scheme prompt. Try this on your system, and make sure you can do the equivalent things: 

Scheme>(2 3 4)
ERROR: attempt to apply non-procedure 2
break[1]>,toplevel
Scheme>

[ Note to RScheme users: in RScheme, the ,toplevel command above is 
abbreviated ,top. ] 

Here, we typed in the expression (2 3 4), which is illegal. The Scheme system recognized it as a 
compound expression that's not a special form, so it attempted to interpret it as a procedure call, and 
apply the result of the first subexpression to the results of the other subexpressions. In this case, the first 
subexpression is 2, which evaluates to 2, which isn't a procedure at all. At that point, Scheme 
complained, telling us we'd tried to use 2 as a procedure, and switched to a "break loop" for debugging. 

The break loop presented the special debugging prompt break[1]>, asking what to do about it. We 
typed in the special command ,toplevel to tell it to go back to normal interaction, and it did, 
presenting us with a fresh Scheme> prompt. 

In your system, the prompts and commands are likely to be different. (For example, special commands 
may start with a colon, rather than a comma, and have different names.) Whatever they are, they'll be 
simple, and you should learn to use them as soon as possible. See the documentation for your system. 
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Here's another common mistake, which you will make pretty soon, so you should try it and see what 
happens and how to get out of it: 

Scheme>a-variable
ERROR: unbound variable: a-variable
break[1]>,toplevel
Scheme>

Here what happened is that we asked Scheme to evaluate the expression a-variable. Since a-
variable is just a normal identifier, like a variable name, Scheme assumed it was supposed to be a 
variable name, and that we were asking for its value. There wasn't a variable named a-variable, 
though, so Scheme complained. In Scheme terminology for giving a piece of memory a name, we hadn't 
defined that variable and "bound" it to storage. Scheme couldn't find any storage by that name, much 
less fetch its value. 

(Your system may let you get away with using set! on an undefined variable, silently creating a 
binding automatically. This is not required by the Scheme standard, and programs generally should not 
do this.) 

As before, we used the special escape command to abort the attempt to evaluate this broken expression, 
and get back to normal interaction with Scheme. 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Returns and Parentheses

A common mistake in Scheme is to forget the closing parentheses of expressions. If you forget a closing 
parentheses--usually because you need several to close nested expressions--most systems will just hang, 
waiting you to finish typing the expression. 

This is a feature, not a bug. It lets you put <RETURN>s (line breaks) in your input, to format the code on 
the screen as you type it in. When you type in the last closing expression and hit <RETURN> again, 
Scheme recognizes that you've typed in a whole expression, and evaluates it and prints the result. 

So if you type in an expression and hit <RETURN>, and Scheme doesn't do anything, check to see if you 
closed all of the parentheses you opened. If not, just type in the missing parenthesis and hit <RETURN> 
again. 

(It's also possible that in your system, you have to do something special to get Scheme to evaluate an 
expression--like hitting a different key, or clicking on a button or a menu item. In such systems, 
<return> may be only for formatting the text you're inputting, and another key tells Scheme to go 
ahead and evaluate what you've typed.) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Interrupting Scheme

Inevitably, you'll sometimes code routines that get stuck in infinite loops (or infinite recursion). You 
need to know how to stop such loops and get back to the normal Scheme interaction prompt. Scheme 
systems generally allow you to "interrupt" what the system is doing, and get a new prompt. 

In most UNIX-based Scheme systems, you can use <ctrl>-C, i.e., hold down the CONTROL key and 
hit the c key, to send an interrupt. In other systems, there will be another keyboard command or a button 
or menu item you can click. Find out what the command is for your system. You'll need it. 

In general, if the system hangs, you should check to see if you closed all of the parentheses you opened--
it may just be waiting for you to finish your input. If that doesn't work, and you think the program is 
stuck in an infinite loop, or some other computation you don't want to wait for, interrupt it with 
<CTRL>-C or the equivalent on your system. 

It's possible that even this won't work. After all, Scheme systems can have bugs, too. In very unusual 
circumstances, you may have to kill the Scheme program more brutally. If you're using a window 
system, you may be able to just kill the window Scheme is running in. Under UNIX, you can use the ps 
command to figure out the process ID of the Scheme process, and kill it with the kill command. (This 
may require the -9 option.) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Exiting (Quitting) Scheme

When you're through using Scheme interactively, you need to be able to get out of it. You give a 
command to tell the interactive Scheme system (which is just a program) to terminate. 

Most systems have a special command (starting with comma or whatever the convention is), like ,
exit. (It might also be ,quit, ,halt, or ,bye.) There may be a Scheme procedure you can evaluate 
to kill the system, by evaluating a procedure call expression in the normal way, e.g., (exit), (halt), 
(quit), or (bye). 

In many systems (especially under UNIX), you can use an interrupt key sequence to kill the system, if 
you're at the top-level. E.g., at the top-level prompt, <ctrl>-D, may do it. 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Trying Out More Expressions

Now that you're familiar with typing in erroneous expressions, let's get back to trying legal ones. 

If you've exited your Scheme system, fire it up again. 

Type in the addition expression (+ 2 3), and hit <return>. (From now on, I'll skip saying "and hit 
<return>." I'll also stop showing the prompt Scheme gives you after printing the result of an 
expression.) 

Scheme>(+ 2 3)
5

Again, Scheme evaluated the expression, printed the result, which was (a pointer to) 5, and gave you a 
prompt to type in something else. Notice that it didn't save the value anywhere. It just printed out the 
result. 

The value we gave to myvar earlier is still there, though. We can ask Scheme what it is, just by typing 
in a variable reference expression, i.e., just the variable name. 

Scheme>myvar
10

Scheme has kept track of the storage named myvar, and it evaluates the expression myvar by looking 
up the value. Then it prints out that result, and gives you another prompt, as it always does. 

To change the value stored in the binding of myvar, and look at the new value, just type in a set! 
expression and then the name of the variable, like this: 

Scheme>(set! myvar 32)
#void
Scheme>myvar
32

You may see a different result for the set! expression. Standard Scheme doesn't specify the return 
value of set!, because you generally use it for its side-effect, not its result. As with define, your 
system may return something different. It may also suppress the printing of this useless value, so you 
may not see anything at all. 
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In some Scheme systems, the value of a set! expression is the name of the variable being set, so you 
may see somthing like this: 

Scheme>(set! myvar 32)
myvar
Scheme>myvar
32

(In other systems, it's something else, like the old value of the variable you're clobbering.) You should 
not depend on the value returned by the set! if you want your program to be portable. In the example 
above, it doesn't really matter what result the set! returns, except that that's what gets printed out 
before you get a new prompt. What matters about set! is its effect, which is to update the value of the 
variable binding. As we can see, it had its effect--when we evaluate the expression myvar, it returns the 
new value, which is printed out: 32. 

We can also use more complicated expressions--just about anything. Now we'll increment the variable 
by five, and again ask Scheme the value of the variable. 

Scheme>(set! myvar (+ myvar 5))
#void
Scheme>myvar
37

Now let's define a procedure that expects a number as its argument, and returns a number that's twice as 
big. Then we'll call it with the argument 2. 

Scheme>(define (double x) (+ x x))
#void
Scheme>(double 2)
4

After evaluating the first expression, Scheme keeps track of the definition of double. When we type in 
the second expression, Scheme calls that procedure, which returns a result, which Scheme prints out. 

Since Scheme keeps track of the variables and values we typed in earlier, we can call double to double 
the value of myvar: 

Scheme>(double myvar)
74

We can define new procedures in terms of old ones. (Actually, we did this when we defined double---
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it's defined in terms of +, which is predefined, i.e., Scheme knows that definition when it starts up.) 

Scheme>(define (quadruple x) (double (double x)))
#void
Scheme>(quadruple 15)
60

Now try using the predefined Scheme procedure display. 

Scheme>(display "Hello, world!")
Hello, world!
#void

Here display had the side-effect of printing Hello, world! to the screen, and returned the value 
void#, which was printed. 

What you see on the screen may vary in a couple of ways, neither of which is worrisome. Your system 
may have printed the return value on the same line as the (side-effect) output of display, without a 
linebreak. Since the main use of display is for its effect, its return value is undefined, so you may see 
something other than #void, or nothing at all. You might see this: 

Scheme>(display "Hello, world!")
Hello, world!
"Hello, world"

If you do, it means that in your system display returns the object you asked it to display. Then 
Scheme prints out that return value, with double quotes to tell you it's a string object. This shouldn't be 
too surprising--remember that Scheme prints out the return values of expressions after evaluating them. 

Now try displaying a number: 

Scheme>(display 322)
322
#void

Go to the first, previous, next, last section, table of contents. 
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Booleans and Conditionals

In Scheme, falsity is represented by the value false, written #f. Conceptually, #f is a pointer to a 
special object, the false object. 

Predicates are procedures that return either #t or #f, and don't have side effects. Calling a predicate is 
like asking a true/false question--all you care about is a yes or no answer. 

Try out the "greater-than" predicate >. 

Scheme>(> 1 2)
#f

Here we told Scheme to apply the predicate procedure to 1 and 2; it returned #f and Scheme printed 
that. 

The important thing about #f is its use in conditionals. If the first subexpression (the condition) of an 
if expression returns the value #f, the second subexpression is not evaluated, and the third one is; that 
value is returned as the value of the if expression. 

Try just using the literal value #f as the first subexpression of an if, i.e., the "condition" that controls 
which branch is taken. 

Scheme>(if #f 1 2)
2

Here the second subexpression was just the literal 2, so 2 was returned. 

Now try it using the predicate > 

Scheme>(if (> 1 2) 1 2)
2

This is clearer if we indent it like this, lining up the "then" part (the consequent) and the "else" part (the 
alternative) under the condition. 

Scheme>(if (> 1 2)
           1
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           2)
2

This is the right way to indent code when writing a Scheme program in an editor, and most Scheme 
systems will let you indent code this way when using the system interactively--the you can hit 
<RETURN>, and type in extra spaces. Scheme won't try to evaluate the expression until you write the 
last closing parenthesis and hit <RETURN>. This helps you format your code readably even when typing 
interactively, so that you can see what you're doing. 

The false value makes a conditional expression (like an if) go one way, and a true value will make it go 
another. In Scheme, any value except #f counts as true in conditionals. Try this: 

Scheme> (if 0 1 0)

What result value does Scheme print? 

One special value is provided, called the true object, written #t. There's nothing very special about it, 
though--it's just a handy value to use when you want to return a true value, making it clear that all you're 
doing is returning a true value. 

Scheme>(if #t 1 2)
1

Scheme>(if (> 2 1) 1 2)
1

Now let's interactively define the procedure min, and then call it: 

Scheme> (define (min a b)
           (if (< a b)
               a
               b))
#void
Scheme> (min 30 40)
30

Go to the first, previous, next, last section, table of contents. 
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Sequencing

The Scheme system lets you type one expression, then it evaluates it, prints the result, and prompts you 
for another expression. What if you want to type two or three expressions and have them executed 
sequentially, i.e., in the written order? You can use a begin expression, which just sequences its 
subexpressions, and returns the value of the last subexpression in the sequence. 

First let's define a flag variable, which we'll use to hold a boolean value. 

Scheme> (define flag #f)
#void

Now a sequence to "toggle" (reverse) the value of the flag and return the new value. If the flag holds #f, 
we set it to #t, and vice versa. 

Scheme> (begin (if flag
                   (set! flag #f)
                   (set! flag #t))
               flag)
#t

This evaluated the if expression, which toggled the flag, and then the expression flag, which fetched 
the value of the variable flag, and returned that value. 

We can also write a procedure to do this, so that we don't have to write this expression out next time we 
want to do it. We won't need a begin here, because the body of a procedure is automatically treated 
like a begin---the expressions are evaluated in order, and the value of the last one is returned as the 
return value of the procedure. 

Scheme> (define (toggle-flag)
           (if flag
               (set! flag #f)
               (set! flag #t))
           flag)
#void

Now try using it. 
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Scheme>flag
#t
Scheme>(toggle-flag)
#f
Scheme>flag
#f
Scheme>(toggle-flag)
#t

Go to the first, previous, next, last section, table of contents. 
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Other Flow-of-control Structures

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Using cond

Go to the first, previous, next, last section, table of contents. 
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Using and and or

==================================================================
This is the end of Hunk B

At this point, you should go back to the previous chapter and
read Hunk C before returning here and continuing this tutorial.
==================================================================

(Go BACK to read Hunk C, which starts at section Comments (Hunk C).) 

Go to the first, previous, next, last section, table of contents. 
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Making Some Objects (Hunk D)

==================================================================
Hunk D starts here:
==================================================================

I've been talking about "objects," but most of the objects we've seen don't have interesting structure. 

One of the most important kinds object in Scheme is the pair, which you can create with the built-in 
procedure cons. A pair is a simple kind of structured object, like a Pascal record or a C struct. It has 
two fields, called the car and the cdr, and you can extract their values with the standard procedures car 
and cdr. 

cons takes two arguments, which it uses as the initial values of the car and cdr fields of the pair it 
creates. (cons is called that because it constructs a pair; the name is short because it's a common 
operation. In Lisp, pairs are called "cons cells" because you make them with cons.) 

I'll show you some simple examples of playing with pairs, just to show you what they are. Be warned 
that these are bad examples, in that there are usually cleaner ways to do things, which we'll discuss later 
when we get to lists. (Lists are made of pairs.) 

Scheme>(cons 1 2)
(1 . 2)

What happened here was that the call to cons created a pair, and returned (a pointer to) it. Scheme 
printed out a textual representation of the pair, showing the values of its car and cdr fields, separated by 
a dot and enclosed in parentheses. 

(The printed representation looks sort of like a Scheme expression, because of the parentheses, but it's 
not--it's just the way Scheme prints this kind of data structure. We're looking at the value returned by the 
expression (cons 1 2). Don't be confused by the similarity between written Scheme expressions and 
the textual representation of data structures--they're very different things.) 

We didn't do anything with the pair except let Scheme print it, so we've lost it--we didn't save a pointer 
to it, so we can't refer to it. (The garbage collector will take back its space, so we don't have to worry 
that we've lost storage space.) 

Let's try again, defining (and binding) a variable, and initializing it with the pointer that cons returns. 
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Scheme>(define my-pair (cons 1 2))
#void

Scheme>my-pair
(1 . 2)

Now try extracting the values of the pair's fields, using car and cdr. 

(In Scheme, (car foo) is equivalent to C's foo->car, dereferencing a pointer to an object and 
extracting the value of the car field. Likewise, (cdr foo) is like foo->cdr. The operators that 
access fields of a pair are just procedures.) 

Scheme>(car my-pair)
1

Scheme>(cdr my-pair)
2

We don't need to use any special pointer syntax to dereference the pointer to the pair---car and cdr 
expect a pointer, and return the field values of the pair it points to. 

car and cdr only work on pairs. If you try to take the car or cdr of anything else, you'll get a runtime 
type error. 

Try it: 

Scheme>(car #t)
ERROR: attempt to take the car of a non-pair #t
break>,top
Scheme>

The messages you'll see vary from system to system, but the basic idea is the same. We tried to take the 
car of the boolean #f, which makes no sense because it has no car field--it doesn't have any fields. 
Scheme told us it didn't work, and gave us a break prompt for sorting it out. Then we just used the ,top 
command (or whatever works on your system) to tell Scheme to give up on evaluating that expression 
and go back to normal interaction. 

car and cdr don't work on the empty list. The empty list doesn't have car and cdr fields. (This may be 
surprising to Lisp programmers, who expect the empty list to behave like Lisp's nil. It doesn't, in this 
respect.) 
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Scheme also supplies procedures to change the values of a pair's fields, called set-car! and set-
cdr!. They take two arguments, a pair and a value for the field being set. 

Scheme>(set-car! my-pair 4)
#void

Scheme>my-pair
(4 . 2)

Scheme>(set-cdr! my-pair 5)
#void

Scheme>my-pair
(4 . 5)

The value of the variable my-pair hasn't actually changed, even though it prints differently. my-pair 
still holds a pointer to the same object, the pair we created with cons. What has changed is the contents 
of that object. Its fields are like variable bindings, in that they can hold (pointers to) any kind of object, 
and we've assigned new values to them. (They're value cells.) 

We can refer to the same object by another name if we just define another variable and initialize it with 
my-pair's value. 

Scheme> (define same-pair my-pair)
#void

Scheme>same-pair
(4 . 5)

Now suppose we assign a new value to the car of the pair, referring to it via my-pair 

Scheme>(set-car! my-pair 6)
#void

Scheme>my-pair
(6 . 5)

Scheme>same-pair
(6 . 5)

Notice that the change is visible through same-pair as well as my-pair, because we've changed the 
object that both of them point to. 
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Now let's make another pair with the same field values. 

Scheme>(define different-pair (cons 6 5))
different-pair

Scheme>different-pair
(6 . 5)

Scheme>my-pair
(6 . 5)

Scheme>same-pair
(6 . 5)

Notice that we have two different pairs, but Scheme prints them out the same way, because it just shows 
us the structure of data structures. We can't tell that they're different just by looking at the printed 
output. From the printed representation, we can't tell whether or not my-pair, same-pair, and 
different-pair hold the same values. 

Scheme provides a predicate procedure, eq?, to tell whether two objects are the exact same object. 

Scheme>(eq? my-pair same-pair)
#t
Scheme>(eq? my-pair different-pair)
#f
Scheme>(eq? same-pair different-pair)
#f

eq? tests object identity, like pointer comparisons in C (using ==) or Pascal (using =). 

It may be confusing, but in programming language terminology, two objects are called identical only if 
they are the very same object, not just two objects that look alike, like "identical" twins. When the 
government issues "identity" cards, this is the kind of "identity" we're talking about. Two so-called 
identical twins have different identities, because they're actually different people. A pointer is like a a 
social security number, because it uniquely identifies a particular individual object. 

Scheme also has a test to see whether objects "look the same," that is, have the same structure. It's called 
equal?. We call this a structural equivalence test. 

Scheme>(equal? my-pair same-pair)
#t
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Scheme>(equal? my-pair different-pair)
#t
Scheme>(equal? same-pair different-pair)
#t

different-pair is equal? to my-pair and same-pair because it refers to the same kind of 
object, and its field values are equal?. Notice that that's a recursive definition, which we'll discuss 
more when we get to lists. 

If we didn't have eq?, we could still figure out whether two objects were exactly the same object, by 
changing one and seeing if the other changed, too. 

Scheme>(set-car! my-pair 4)
#void

Scheme>my-pair
(4 . 5)

Scheme>same-pair
(4 . 5)

Scheme>different-pair
(6 . 5) 

Now I should warn you about set-car! and set-cdr!. The reason we put an exclamation point in 
the name of a procedure that side-effects data is because it's dangerous. If you have two pointers to the 
same data from different places, i.e., different variable bindings or data structures, it's hard to reason 
about how changes from one of those places affect things at the other place. 

In normal Scheme programming style, it is very common to create new data structures that have pointers 
to other data structures, or parts of data structures. If you modify a shared part of one data structure, it 
will affect the other data structure that shares that part. This can be very confusing, and leads to subtle 
bugs. 

You should only use side effects when you have a very good reason to, and make it clear that that's what 
you're doing. Later examples will show how to program in a style that uses very few side effects, and 
only where they make sense. 

Notice that cons is not considered a side-effecting operation, because it returns a new object that has 
never been seen before. Somewhere in the implementation of the language, cons side-effects memory 
to initialize it, but you don't see that--from your program's point of view, you're getting a new piece of 
memory that magically has values in place. 
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Creating a pair doesn't modify any data structure that already exists, so the installation of its initial 
values is not considered a side-effect. 

==================================================================
This is the end of Hunk D.

At this point, you should go back to the previous chapter and
read Hunk E before returning here and continuing this tutorial.
==================================================================

(Go BACK to read Hunk E, which starts at section The Empty List (Hunk E).) 

Go to the first, previous, next, last section, table of contents. 

http://www.federated.com/~jim/schintro-v14/schintro_92.html (6 of 6)11/3/2006 9:05:32 PM

http://www.federated.com/~jim/schintro-v14/schintro_1.html


An Introduction to Scheme and its Implementation - Lists

Go to the first, previous, next, last section, table of contents. 

Lists (Hunk F)

==================================================================
Hunk F starts here:
==================================================================

We usually use pairs in Scheme in a particular, stereotyped way, to build lists. 

Pairs are really like binary tree nodes--you can use the car and cdr fields in the same ways. The normal 
way of using them treats the car and the cdr differently, however. 

The cdr field of a pair is used to hold a pointer to another pair, or a pointer to the empty list, i.e., a null 
pointer. This lets you string pairs to gether to make linked lists of pairs. The car fields of the pairs hold 
pointers to any kind of object you want to put in a list. 

We can therefore define the term list recursively as 

●     an empty list, i.e., the null pointer object (), or 
●     a pair whose cdr value is a list. 

Think about this, and make sure that you understand why this covers all null-terminated lists strung 
together by the cdrs, and nothing else. Lists of this form are also called proper lists, and that's usually 
what we mean when we say "list." The important fact about a proper list is that it is a linear sequence of 
pairs ending with the empty list. 

We usually think of lists as holding a sequence of values--we ignore the actual pairs, and think about 
their cdr values. 

Because this is how lists are usually used, Scheme has a special way of printing lists. In the earlier 
examples, I showed that the result of (cons 1 2) prints as (1 . 2). 

You might think that the result of (cons 1 (cons 2 '())) would print as (1 . (2 . '())), but it 
doesn't. It prints as (1 2). 

The reason is that when Scheme encounters a pair whose cdr points to another pair or the empty list, it 
assumes you want to think of it as a list of pairs strung together by the cdrs, and it only shows you the 
car values. This is because we usually ignore the actual structure of a list--the sequence of pairs--and 
think about the values the list holds. 
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Try this in your system: 

Scheme>'()
()
Scheme>(cons 1 '())
(1)
Scheme>(cons 1 (cons 2 '()))
(1 2)
Scheme>(cons 1 (cons 2 (cons 3 '())))
(1 2 3)

Notice that the data structure that prints as (1 2 3) is really a binary tree, and we could draw it like 
this: 

      \
       \
        +---+---+
        | * | * |
        +/--+---\
        /        \
       1          +---+---+
                  | * | * |
                  +/--+---\
                  /        \
                 2          +---+---+
                            | * | * |
                            +/--+---+
                            /
                           3

We generally wouldn't, though, because we think of it as a sequence of numbers, and the pairs are just 
there to string them together in order. We'd draw it more like this, using the box-and-arrow notation 
from the previous chapter: 

       +---+---+    +---+---+   +---+---+
   --->| * | *-+--->| * | *-+-->| * | * |
       +-+-+---+    +-+-+---+   +-+-+---*
         |            |           |
         |            |           |
         1            2           3

We've really just rotated the picture 45 degrees, so that "down and to the right" in the tree goes straight 
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right, and looks more like "next" in a linear list. 

(The arrow coming in from the left represents the pointer value that was returned, which the read-eval-
print loop handed to write so that we could see the printed representation of the data structure.) 

Drawing things this way lets us show shared structure, if a list overlaps with another list, e.g, if one list 
joins with the other because some car in each list points at the same object. 

Note that a list of this form always ends with a pair whose cdr is (), (i.e., the empty list, a.k.a. the null 
pointer). 

If we had forgotten that, we might have tried to construct the list this way, with the innermost cons just 
consing two numbers together: 

Scheme>(cons 1 (cons 2 3))
(1 2 . 3)

This is a common beginning mistake. We have constructed an improper list---one which is not null-
terminated. It doesn't end with (). 

We could draw the list this way: 

      +---+---+      +---+---+  
  --->| * | *-+----->| * | *-+---->3
      +-+-+---+      +-+-+---+
        |              |    
       \|/            \|/  
        1              2 

Notice the dot in (1 2 . 3)---that's like the dot in (2 . 3), saying that the cdr of a pair points to 3, 
not another pair or '(). That is, it's an improper list, not just a list of pairs. It doesn't fit the recursive 
definition of a list, because when we get to the second pair, its cdr isn't a list--it's an integer. 

Scheme printed out the first part of the list as though it were a normal cdr-linked list, but when it got to 
the end, it couldn't do that, so it used "dot notation." 

You generally shouldn't need to worry about dot notation, because you should use normal lists, not 
improper list. But if you see an unexpected dot when Scheme prints out a data structure, it's a good 
guess that you used cons and gave it a non-list as its second argument--something besides another pair 
or (). 

Scheme provides a handy procedure that creates proper lists, called list. list can take any number 
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of arguments, and constructs a proper list with those elements in that order. You don't have to remember 
to supply the empty list---list automatically terminates the list that way. 

Scheme>(list 1 2 3 4)
(1 2 3 4)

We could draw the result like this: 

    +---+---+      +---+---+      +---+---+      +---+---+
--->| * | *-+----->| * | *-+----->| * | *-+----->| * | * |
    +-+-+---+      +-+-+---+      +-+-+---+      +-+-+---+
      |              |              |              |
     \|/            \|/            \|/            \|/
      1              2              3              4

Like any other procedure, list can be used with arguments that are procedure calls, such as calls to 
list itself. 

Scheme>(list (list 1 2) (list 3 4))
((1 2) (3 4))

We can draw the result like this: 

    +---+---+                     +---+---+
--->| * | *-+-------------------->| * | * |
    +-+-+---+                     +-+-+---+ 
      |                             | 
     \|/                           \|/ 
    +---+---+      +---+---+      +---+---+      +---+---+
    | * | *-+----->| * | * |      | * | *-+----->| * | * |
    +-+-+---+      +-+-+---+      +-+-+---+      +-+-+---+
      |              |              |              |
     \|/            \|/            \|/            \|/
      1              2              3              4

While Scheme prints lists in normal list notation when it can (and only uses dot notation when it has to), 
it can read either one. 

We can type in literal lists using the quote special form, which just returns a list of the form we typed: 

Scheme>(quote (1 2 3 4))
(1 2 3 4)
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Since Scheme can read dot notation, we can do this in an equivalent way, using parentheses around the 
contents of each pair, and a dot to separate the car and cdr values: 

Scheme> (quote (1 . (2 . (3 . ( 4 . ())))))
(1 2 3 4)

The difference between list and quote is that list is just a procedure, and each time you call it, it 
creates a new list. The arguments to list can be any expressions you like, and their results are what's 
put in the list. 

Scheme>(list (double 1) (double 2) (double 3) (double 4))
(2 4 6 8)

On the other hand, quote is a special form. It always takes exactly takes one argument, which is not 
evaluated at all---it's just a textual representation of a data structure. 

Scheme>(quote (double 1))
(double 1)

What happened here is that quote just returned a data structure, the list (double 1). It did not try to 
interpret it as an expression and give its value. 

(The first item in the list is the symbol double. A symbol is just another kind of data object, roughly 
like a string, which we'll discuss later. It's not the same thing as a variable, even though it prints like a 
variable name.) 

Quoting is so common that Scheme provides a special bit of syntactic sugar to make it easier. Instead of 
writing out (quote before an expression, and a closing parenthesis after, you can just use the special 
character '. Whatever follows should be the textual representation of a data structure, and Scheme 
constructs that literal data structure. 

Scheme>'(1 2 3 4)
(1 2 3 4)

Scheme>'((1 2) (3 4) (5 6))
((1 2) (3 4) (5 6))

Scheme>'(#f #t)
(#f #t)

Notice that you only need one quote character at the beginning of a whole literal--you don't need to 
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separately quote the subparts, and you shouldn't. 

Later, I'll talk about quoting things besides lists. Quoted lists are enough for now--we'll use them a lot in 
examples. 

[ Should demonstrate list, length, append, reverse, and member here, combining them in various ways. ] 

==================================================================
This is the end of Hunk F.

At this point, you should go back to the previous chapter and
read Hunk G before returning here and continuing this tutorial.
==================================================================

(Go BACK to read Hunk G, which starts at section Type and Equality Predicates (Hunk G).) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Using Predicates (Hunk H)

==================================================================
Hunk H starts here:
==================================================================

Suppose we want to sum a list of numbers. 

We can write a procedure list-sum to do that, like this: 

Scheme> (define (list-sum lis)
           (if (null? lis)   ; if empty list?
               0             ; then sum is zero
               (+ (car lis)  ; else sum is car plus the
                  (list-sum (cdr lis))))) ; sum of rest of list
#void

Try typing in this example, or cutting and pasting it from this file into your running Scheme system. (If 
you're reading this in a web browser, that should be easy--just cut the text from the browser window, and 
paste it into your Scheme window at the prompt.) Cutting and pasting is a lot easier than typing in the 
whole thing! 

This procedure accepts one argument, lis, which should be a list. It checks to see whether the list is 
empty, i.e., a null pointer, using the predicate null?. If so, it returns 0 as the sum of the elements in the 
list. 

If the list is not empty, the sum of the elements is the sum of the car value, plus the sum of the 
elements in the rest of the list. In that case, list-sum takes the car of the list and the list-sum of 
the rest of the list, adds them together, and returns the result. 

Try calling this procedure with some lists of numbers, e.g., 

Scheme>(list-sum '(1 2 3))
6
Scheme>(list-sum '(4 5 6))
15
Scheme>(list-sum (cons 1 (cons 2 (cons 3 '()))))
6
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The addition procedure + works with floating-point numbers, not just integers, so we can call list-sum 
with a list of floats as well as integers. (As in most languages, floating point numbers are written with a 
period to represent the decimal point. Note that there is no space between the digits and the decimal 
point, so that Scheme won't confuse this with dot notation for lists.) 

Scheme>(list-sum '(1 2.2 3.3))

We can modify list-sum to print out its argument at each call. Then we can watch the recursion: 

Scheme> (define (list-sum lis)
           (display "in list-sum, lis is: ")
           (display lis)
           (newline)      ; write a linebreak 
           (if (null? lis)   ; if empty list?
               0             ; then sum is zero
               (+ (car lis)  ; else it's car plus the
                  (list-sum (cdr lis))))) ; sum of rest of list
#void

●     Using Type Predicates: Checking an object's type 
●     Using Equality Predicates: Checking whether objects are "the same" 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Using Type Predicates

We can easily write a procedure pair-tree-sum to give us the sum of a binary tree of integers, 
whose interior nodes are pairs and whose leaves are the integers. 

[ blah blah blah... rewrite some of the following, simplifying to only handle trees, not proper lists. ] 

Our notion of a "pair tree" is a binary tree of pairs. Here we're doing something a little strange, because 
in general we're improper lists. We'll regard the car and cdr fields of a pair as the "left child" and 
"right child" fields of a tree node. A proper list wouldn't be a pair tree, because it the last pair in the list 
would point to the empty list object, not a number. 

(Later, I'll show a record facility that allows us to build "tree node" records that are not pairs. That's 
nicer, because it doesn't confuse pairs' roles in improper lists with their roles in trees. For now, we'll 
stick with pairs, because the point of this example is recursion, not the details of records.) 

Just as we did for proper lists, we start by characterizing this data structure recursively. We'll consider 
any subtree of a pair-tree to be a pair-tree. This includes the leaves, e.g., the numbers in a tree of 
numbers. (This is analogous to the way we considered the empty list to be a kind of list in the recursive 
characterization of lists.) 

A pair tree is either 

●     a leaf (not a pair), or 
●     a pair, whose car and cdr values are pair-trees. 

Our recursive summing procedure will have to deal with these two cases: 

●     a numbers, i.e., leaves of a tree of numbers, and 
●     pairs, in which case it should sum the left and right subtrees, and add those sums together. 

The first case is the base case for the recursion. The sum of a leaf is the numeric of that leaf. 

The second case is the recursive case, where we have a subtree to sum. 

Scheme>(define (pair-tree-sum pair-tree)
          (cond ((number? pair-tree)
                 pair-tree)
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                (else
                 (+ (pair-tree-sum (car pair-tree))
                    (pair-tree-sum (cdr pair-tree))))))

Try this out, and make sure you understand why it works. 

Scheme>(pair-tree-sum 1)
1
Scheme>(pair-tree-sum '(1 . 2))
3
Scheme>(pair-tree-sum '((40 . 30) . (20 . 10)))
100

Notice how simple pair-tree-sum is, and how it depends on getting the base case for the recursion 
right. If we hadn't considered the leaves to be pair-trees in their own right, it would have gotten much 
uglier. For example, if we'd "bottomed out" at pairs whose left and right children weren't both pairs, 
we'd have had more cases to deal with--cases where one child is a leaf but the other's not. 

Add display and newline expressions at the beginning of pair-tree-sum, as we did for list-
sum, and try it out again. Be sure you understand the output in terms of the recursive call pattern. 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Using Equality Predicates

Suppose that Scheme didn't provide the predicate equal? to do structural comparisons. We could write 
our own, because we have other type and equality predicates. 

Let's write a simplified version of equal that works for lists, including nested lists. We'll consider objects 
to be our-equal? if they are either 

●     exactly the same objects or equivalent numbers, i.e., they're eqv?, or 
●     if they're both pairs whose cars are our-equal? and whose cdrs are also our-equal?. 

That is, we'll test lists recursively for structural equivalence, "bottoming out" when we hit something 
that's not a pair. This is pretty much what the standard Scheme predicate equal? does, except that it 
can handle structured data types besides pairs. (For example, it considers two strings with the same 
character sequence equal?, even if they're two different objects.) 

Scheme>(define (our-equal? a b)
          (cond ((eqv? a b)
                 #t)
                ((and (pair? a)
                      (pair? b)
                      (our-equal? (car a) (car b))
                      (our-equal? (cdr a) (cdr b)))
                 #t)
                (else
                 #f)))

This procedure checks the easy case first (which is usually a good idea): if two objects are eqv?, they're 
also our-equal?. 

Otherwise, they're only our-equal? if they're both pairs and their cars are equal and their cdrs are 
equal. Notice the use of and here. We first check to see that they're pairs, and then take their cars and 
cdrs and compare those. If they're not pairs, we won't ever take their cars and cdrs. (If we did, it would 
be an error, but we rely on the fact that and tests things sequentially and stops when one test fails.) 

Try it out: 

Scheme>(our-equal? '() '())
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#t
Scheme>(our-equal? 1 1)
#t
Scheme>(our-equal? 1 2)
#f
Scheme>(our-equal? '(1) '(1))
#t
Scheme>(our-equal? '(1) '())
#f
Scheme>(our-equal? '(1 (2)) '(1 (2)))
#t
Scheme>(our-equal? '(((3) 2) 1) '(((3) 2) (1)))
#f
Scheme>(our-equal? '((#f . #t) . (#f . #t))
                   '((#f . #t) . (#f . #t)))
#t

==================================================================
This is the end of Hunk H

At this point, you should go back to the previous chapter and
read Hunk I before returning here and continuing this tutorial.
==================================================================

(Go BACK to read Hunk I, which starts at section Choosing Equality Predicates (Hunk I). 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Local Variables, let, and Lexical Scope (Hunk J)

==================================================================
Hunk J starts here:
==================================================================

[ to be written ] 

==================================================================
This is the end of Hunk J

At this point, you should go back to the previous chapter and
read Hunk K before returning here and continuing this tutorial.
==================================================================

(Go BACK to read Hunk K, which starts at section Procedures (Hunk K).) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Using First-Class, Higher-Order, and Anonymous Procedures 
(Hunk L)

==================================================================
Hunk L starts here:
==================================================================

In this section, we'll play with Scheme's procedures, to illustrate 

●     first class procedures, which are normal data objects in the language, 
●     higher order procedures, which can take procedures as arguments and return them as values, and 
●     anonymous procedures, which can be created and referred to via pointers, without giving them 

names. 

I'll just briefly demonstrate those ideas for now; later programming examples will show how they're 
really useful. 

First-Class Procedures

Scheme procedures are first-class objects in the language; you refer to a procedure in the same way you 
refer to any other object, via a pointer. A "procedure name" is really just a variable name, and you can 
do the same things with "procedure" variables as with any other variable. There's really only one kind of 
variable in Scheme, and it's type is "pointer to anything." 

When we "define a procedure" in Scheme, we're really just defining a variable and giving it an initial 
value that's (a pointer to) a procedure object. 

The procedure defining syntax with parentheses around the procedure name (and argument names) is 
really just syntactic sugar, i.e., a convenient way of writing something that you could do in another way. 

For example, 

Scheme>(define (double x)
          (+ x x))
#void

is exactly equivalent to 
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Scheme>(define double
               (lambda (x)
                  (+ x x))
#void

Try this latter version in your system. Notice that what you're doing is just defining a variable named 
double and initializing it with the result of the second expression, a lambda expression. 

lambda is the real procedure-creating operation. It's a special form, because it lets you define a new 
procedure rather than calling an existing procedure in the normal way. lambda creates a procedure 
object and returns a pointer to it. 

(The predicate procedure? can be used to tell if an object is a procedure.) 

You can call the double procedure created this way in exactly the same way as one created with the 
sugared procedure-definition syntax. 

Scheme>(double 3)
6

Recall how procedure calls really work. When you call a named procedure, e.g., (double 3), the 
procedure name is really just a reference to a variable. The first position in the procedure call form is 
just an expression that's evaluated like any other. In this case, we're using the name double as an 
expression, effectively saying "look up the value of double." 

Try this 

Scheme>double
#<procedure>

Notice that we didn't put parentheses around double, so we're not calling it--we're fetching the value of 
the variable double. What you see on your screen may vary, but it's your system's printed 
representation of a procedure object. Take a look at it, because you'll want to be able to recognize 
procedure objects in data structures. 

(The printed representation may include the name of the procedure; don't be misled by this. Procedures 
don't really have names--they're just data objects you can have pointers to, as I'll explain shortly. Your 
system your system may put a name inside the procedure when you use the procedure definition syntax, 
but it's just an annotation saying what the procedure's original name was--i.e., when it was first defined.) 

We can call a procedure in other ways, though--the first subexpression of a procedure call can be any 
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expression we want, as long as it returns a procedure. That expression is evaluated just like the argument 
expressions--after it and the argument expresssions are evalutated, the resulting procedure is called with 
those argument values. 

Scheme>(define list-holding-double (list double))
#void

Scheme>list-holding-double
(#<procedure>)

Scheme>((car list-holding-double) 5)
10

What we did here was to create a list holding the procedure formerly known as double, and looked at 
that list. Then we called that procedure by using the expression (car list-holding-double) as 
its "name." 

What this shows is that procedures are really anonymous, that is, a procedure doesn't have a name in a 
direct sense. There are just expressions we can refer to it by, if those expressions result in pointers to the 
procedure. 

We can create procedures without normal names at all, by just using lambda. Let's create another 
doubling procedure by just evaluating a lambda expression: 

Scheme>(lambda (x) (+ x x))
#<procedure>

The lambda expression just created a procedure and returned a pointer to it, and Scheme displayed it 
however your system does it. We didn't keep a pointer to the procedure, so we can't call it now. The 
procedure is gone and the garbage collector will clean it up. 

We could try again, creating a procedure and keeping a pointer to it in a named variable. More 
interestingly, we can just hand the pointer to a procedure call, and call it without ever giving it a name. 

Scheme>((lambda (x) (+ x x)) 6)
12

It may not look like it, but this is just a procedure call expression, where the "name" of the procedure is a 
lambda expression to create the procedure we need, and its argument is 6. Note the nesting of 
parentheses--this is just like (double 6), except that we give the "definition" of the procedure to call, 
instead of its name. 
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Later we'll show why using lambda directly is often much more convenient than having to name all of 
our procedures. I'll also explain why lambda is the most important special form in Scheme--it is so 
powerful that most of the special forms can easily be translated into it. 

(You might be concerned that creating a procedure and just using it once is very expensive, but it turns 
out not to be--I'll explain that later, too. For now, don't worry about it.) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Using and Writing Higher-Order Procedures

A higher-order procedure is one that can take procedures as arguments and/or return them as values. We 
can use that to write general procedures that do a basic kind of thing, and take arguments that specialize 
their behavior. The arguments are themselves procedures, which will do specialized things withing the 
general pattern that the general procedure implements. 

Here's a simple example. 

Scheme provides a procedure display, which can write textual representation of a data object on the 
screen, much like the way the read-eval-print loop displays results of expressions you type in. (This is a 
very handy procedure for debugging, as well as for programs that interact with users.) 

Suppose, though, that you want to display a list of objects, not just one. You want a routine list-
display to iterate over a list, and display each item in it. The obvious way to write it is to just call 
display from inside your list-display routine. 

(Actually, display can display a list of items, but it puts parentheses around the items in the list. Let's 
suppose we don't want those parentheses around the displayed items. Writing our own list-
display will give us the freedom to make it do whatever we want it to, rather than what display 
does automatically for lists.) 

Here's a version like that: 

Scheme>(define (list-display lis)
          (if (null? lis)
              #f
              (begin (display (car lis))
                     (list-display (cdr lis)))))

I've written this procedure recursively, because it's easy to use recursion over lists--usually it's easier 
than using an iteration construct. This procedure checks to see if the list it got was empty, and if so, it 
returns #f. (That's a reasonable value to return from a procedure that's used for effect, rather than for 
value.) Otherwise, it displays the first item, and then calls itself recursively to display the rest of the list. 
I used a begin to sequence the displaying and the recursive call. 

It would be cleaner to use cond, so here's an equivalent version using cond: 
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Scheme>(define (list-display lis)
          (cond ((null? lis)
                 #f)
                (else
                 (display (car lis))
                 (list-display (cdr lis)))))

Notice that this is a two-branch conditional, but we use cond instead of if because a cond branch can 
be a sequence. (We need a sequence because we want to use display to create a side-effect, i.e., writing 
to the user's screen, as well as calling list-display recursively to do the rest of the work.) 

Now try it out: 

Scheme>(list-display '(1 2 3))
123#f

What happened here is that it displayed each item in the list as it was evaluated, and then Scheme 
printed out the return value, #f. 

This works, but the procedure is not very general. Iterating over lists is very common, so it would be 
nice to have a more general procedure that iterates over lists, and applies whatever procedure you want. 

We can modify our procedure to do this. Instead of taking just a list argument, it can take an argument 
that's a procedure, and apply that procedure to each element of the list. 

We'll call our procedure list-each, because it iterates over a list and does whatever you want to each 
element. 

Scheme>(define (list-each proc lis)
          (cond ((null? lis)
                 #f)
                (else
                 (proc (car lis))
                 (list-each proc (cdr lis)))))

The only change we made was to add an argument proc, to accept (a pointer to) a procedure, and to 
change the call to display into a call to proc. 

Remember that procedure names are really just names of variables that hold pointers to procedures, so 
this works---(proc (car lis)) is just a combination whose first expression is proc, which looks 
up the value of the local variable proc. 
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Now we can call this general procedure with the argument display, to tell it to display each thing 
in the list. 

Scheme>(list-each display '(1 2 3))
123#f

But maybe this isn't what we want. We might want to print each item, and then a newline (go to the next 
line), to spread things out vertically. We could write a procedure display-with-newline to do 
that, but it's easier just to use a lambda expression to create the procedure we need. 

Try this: 

Scheme>(list-each (lambda (x)
                     (display x)
                     (newline))
                  '(1 2 3))
1
2
3
#void

The lambda expression creates a one-argument procedure that will display its argument and then 
call newline. We pass the procedure that results from this lambda directly to list-each, without 
ever giving it a name, or saving a pointer to it anywhere. (After list-each is through with it, the 
procedure will become garbage and its space can be reclaimed by the garbage collector.) 

(Scheme has a standard procedure similar to our list-each, but more general, called for-each.) 

==================================================================
This is the end of Hunk L

At this point, you should go back to the previous chapter and
read Hunk M before returning here and continuing this tutorial.
==================================================================

(Go BACK to read Hunk M, which starts at section lambda and Lexical Scope (Hunk M).) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Interactively Changing a Program (Hunk N)

==================================================================
Hunk N starts here:
==================================================================

Replacing Procedure Values

Earlier we showed how to replace normal data values in variable bindings, using the side-effecting 
special form set!. 

We can also change procedure values. One way of doing this is just to change the value of the procedure 
variable. (Remember that a "named" procedure is really just a first-class procedure object that happens 
to be referred to via a pointer stored in a variable binding.) 

Just as we changed the value of the variable myvar using set!, we can change the value of the 
procedure variable quadruple. Try this: 

Scheme>(quadruple 3)
12
Scheme>(set! quadruple double)
#<procedure>
Scheme>(quadruple 3)
6

What happened here is that when we evaluated the expression (set! quadruple double) it just 
did the usual thing set! does when both of its arguments are variables--it computed the value of the 
expression on the right, in this case by fetching the value from the binding of double, and stored it into 
the (binding of) the variable on the left. In this case, the value of double is (a pointer) to a procedure--
the one that we created when we define'd double. This pointer was copied into quadruple, so 
that it now contains a pointer to the very same procedure. 

Calling quadruple now has the same effect as calling double, because either way, a pointer is 
fetched from the variable, and whatever it procedure it points to is called. 

Note that while this illustrates how Scheme works, and we'll show why it's handy later, it's not usually a 
great idea to go around changing the values of procedure variables by side-effecting them with set!. 
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Usually, once a program has been developed, you don't want to clobber named procedures, because it 
makes the code hard to understand--you don't want your finished program to go around changing the 
meaning of procedure names as it runs. You normally want to be able to look at your program and see 
the definitions, and not have to worry that some other part of the program may change the procedures at 
odd moments. 

During interactive development of a program, however, it's often very convenient to be able to change a 
procedure's behavior at will. We're not really modifying a procedure, though--we're changing a variable 
binding's value to affect which procedure is called. We don't have to actually modify any procedure 
objects, because we can replace a pointer to one procedure with a pointer to another. 

Usually you'll want to do this by redefining the procedure with another define expression. 

For example, suppose we want to restore the old behavior of quadruple, which we foolishly 
clobbered above. We can simply define it again, the old way: 

Scheme>(define (quadruple x) (double (double x)))
#void

In a finished program, you generally shouldn't have multiple definitions of the same thing--a define 
form should define something that doesn't change during program execution. If you want to change the 
state of a binding, use set! to make it clear that's what's going on, and put a comment at the definition 
of the variable warning that it is likely to be changed at runtime. 

Most interactive Scheme systems let you define the same variables multiple times, though, so that you 
can change things during program development. (Note that we're talking about redefining the same 
program variable here, not defining different variables with the same name in different scopes.) 

Loading Code from a File

When you're actually developing a program, you often want to save the text in a file, rather than just 
typing it in and losing it when you exit the Scheme system. 

The simplest way of doing this is to use an editor in one window and Scheme in another. From the 
editor, save your program text into a file, and then load it into Scheme with the load procedure. load 
takes a string as an argument, which is the name of the file to load, and reads it in just as though you had 
typed it in by hand, at the prompt. (A string literal is written with double quotes around it; there'll be 
more about strings more later.) 

Type the following text into your editor and save it into a file named triple.scm. 
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(define (triple x)
   (+ x (+ x x)))

Now, at the Scheme prompt, load the file and call the procedure: 

Scheme>(load "triple.scm")
loading...triple...done
Scheme>(triple 3)
9

(Notice that in the above example, there's no connection between the string we used to name the file, 
"triple.scm", and the name of the procedure, triple. We just chose to call the file "triple.
scm" to remind us what's in it.) 

Usually, when you're developing a program, you should put only a few definitions in a file--maybe just 
one. This lets you change small parts of your program, saved the changed file, and reload the file to 
change the definitions in your running Scheme system. 

Good editors also have packages that allow you to run Scheme and use an editor command to send the 
contents of a file (or a selected region of a file) to Scheme, as though you'd typed it in. (Emacs has 
excellent facilities for this.) 

If you're using a graphical user interface, you may be able to simply cut text from your editor, and paste 
it into the window you have Scheme running in, so that it appears to Scheme as though you'd just typed 
it in. 

Be careful about reloading definitions. When you load a file, the Scheme system will reuse the same top-
level bindings, and reinitialize them. In general, new objects will be constructed, even if the textual 
definitions haven't changed. 

For example, suppose we have the following code in a file, which we've already loaded once: 

(define my-list (list 1 2))

(define my-other-list (cdr my-list))

If we reload this file, all three definitions will be processed again. A new list will be constructed and the 
existing binding of my-list will be updated to point at the new list. 

Likewise, the existing binding of my-other-list will be updated with the cdr of that new list. Each 
time we reload the file, we'll recreate the intended data structure, including the sharing relationship 
between the two lists. 
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But now consider what happens if this code is spread across two files, with the definition of my-
other-list in a different file, which we don't reload. If we just reload the first definition, then the 
binding my-other-list will still refer to the cdr of the old list, not the new one. If your code 
depends on the two lists sharing structure, it not behave as expected, because the two variables' bindings 
will refer to distinct lists. 

Procedures can cause the same sorts of problems. If you have a pointer to a procedure in a data structure, 
and then you redefine the procedure by modifying the definition and reloading it, a new procedure object 
will be created, but the old data structure will still hold a pointer to the old procedure object. 

In general, you should be careful to recreate any data structures holding procedures if you redefine those 
procedures. This is usually easy, if you reload the code that creates the data structures, after reloading 
the new definitions of the procedures. 

Notice that this is not necessary if you just call top-level procedures (or look up variable values) in the 
usual way. For example, given our earlier definitions of double and quadruple, changing double 
affects quadruple immediately. Every time we call quadruple, it fetches the current value of the 
binding of double, which ensures that it sees the most recent version. We can reload the code for 
double, without reloading the code for quadruple. 

Loading and Running Whole Programs

[ to be written ] 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Some Other Useful Data Types

[ Parts of this should probably be moved into the previous chapter, and new examples put in this 
section. ] 

Scheme has several important kinds of data objects that are useful in programming in general, and 
particularly for writing an interpreter, as we'll do in the next chapter. These include character strings, 
symbols, and lists. 

Scheme has two data types that represent sequences of characters, called strings and symbols. Strings are 
pretty much like character strings in most programming languages--they represent a sequence of text 
characters. Symbols are sort of like strings, but have a very special property--there's only one symbol 
object with any particular sequence of characters. 

Symbols have a special role in the implementation of Scheme, because they're part of the normal 
representation of source code; symbols are used to represent names of variables, procedures, special 
forms, and macros. They're really just a kind of data object, though--you can use them in your programs, 
whether or not you want to represent code. 

Lists are used in interpreters and compilers to represent compound expressions in the source code; 
nested expressions are generally represented by nested lists. 

More generally, there's a category of Scheme data structures called s-expressions, which consist of basic 
types including symbols, strings, numbers, booleans, and characters, and list of those simple types, or 
lists of such lists. 

"S-expression" is short for "symbolic expression," but it's something of a misnomer. An expression is 
really a piece of a program. An "s-expression " is just a data structure, which may or may not represent 
an expression in a programming language, although interpreters and compilers often happen to use them 
that way. 

●     Strings: Character Strings 
●     Symbols: Symbols are like Strings, but Unique 
●     Identifiers: A Note on Identifiers 
●     Lists: Lists 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Strings

Character strings in Scheme are written between double quotes. For example, suppose we want an object 
that represents the text "Hello world!" We can just write that in a program, in between double quotes: 
"Hello, world!". 

You can use a string as an expression--the value of a string is the string itself, just as the value of an 
integer is the integer itself. Like numeric literals and booleans, strings are "self-evaluating," which just 
means that if you have an expression in your program that consists of just a string, Scheme assumes you 
mean the value to be literally that string. There's nothing deep about this--it just turns out to be handy, 
because it makes it easy to use strings as literals. 

Try typing the string "Hello, world." at the Scheme prompt. 

Scheme>"Hello, world!"
"Hello, world!"

What happened here is that Scheme recognized the sequence of characters between double quotes as a 
string literal. The value of a literal string expression (in double quotes) is a (pointer to) a string object. A 
string object is a normal first-class object like a pair or a number, conceptually like an array that can 
only hold characters. 

This value is what scheme printed out. The standard printed representation of a string object is the 
sequence of characters, with double quotes around it. 

So what happened here is that Scheme read the sequence of characters in double quotes, constructed an 
array-like object of type string, then printed out the printed representation of that object. 

If you want to print out a string, but without the double quotes, you can use the standard procedure 
display. If you pass display a string, it just prints out the characters in the string, without any 
double quotes. 

display is useful in programs that print information out for normal users. Another useful procedure is 
newline, which prints a newline character, ending a line and starting a new one. 

Try typing a (display "Hello, world!") (newline) at the Scheme prompt. What you get 
may look like this: 
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Scheme>(display "Hello, world!") (newline)
Hello, world!
#void

You might see something slightly different on your screen, depending on the return value of newline, 
which is unspecified in the Scheme standard. 

If you type in an expression using a string literal like "foo" at the Scheme prompt, Scheme may 
construct a new string object with that character sequence each time. 

Try this: 

Scheme>(define foo1 "foo")
#void
Scheme>(define foo2 "foo")
#void
Scheme>foo1
"foo"
Scheme>foo2
"foo"
Scheme>(eq? foo1 foo2)
#f
Scheme>(equal? foo1 foo2)
#t

For each of the define forms, Scheme has constructed a string with the character sequence f-o-o, and 
saved it in a new variable binding. When we ask the value of each variable, Scheme prints out the usual 
text representation of the string. The printed representations are the same, since each string has the same 
structure, but they're two different objects--when we ask if they're eq?, i.e., the very same object, the 
answer is no (#f). 

It's possible that in your system the eq? comparison will return #t, because Scheme implementations 
are allowed to use pointers to the same string if you type in two strings with the same character 
sequence. For that reason, you should be careful not to depend on whether Scheme strings are eq?; you 
should only distinguish whether they're equal?. You can also use the predicate string-equal? if 
you know the arguments are supposed to be strings. This has the advantage of signaling an error if the 
arguments are of unexpected type. 

Strings can be used as one-dimensional arrays (vectors) of characters. There are procedures for 
accessing their elements by an integer index, extracting substrings given two indices, and so on. 
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Go to the first, previous, next, last section, table of contents. 
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Symbols

Symbols are like strings, in that they have a character sequence. Symbols are different, however, in that 
only one symbol object can have any given character sequence. The character sequence is called the 
symbol's print name. A print name is not the same thing as a variable name, however--it's just the 
character sequence that identifies a particular unique symbol. It's called the print name because that's 
what's printed out when you display the object (or write it). 

Unlike strings, booleans, and numbers, symbols are not self-evaluating. To refer to a literal symbol, you 
have to quote it. Since print names of symbols look just like variable names, you have to tell Scheme 
which you mean. 

If we type in the character sequence f o o without double quotes around it, Scheme assumes we mean to 
refer to a variable named foo, not the unique symbol whose print name is foo. 

In interpreters and compilers, symbol objects are often used as variable names, and Scheme treats them 
specially. If we just type in a character string that's a symbol print name, and hit return, Scheme assumes 
that we are asking for the value of the binding of the variable with that name--if there is one. 

Scheme>(define foo 10)
#void

Scheme>foo
10

If we quote the symbol name with the single quote character, Scheme interprets that as meaning we want 
the symbol object foo. 

Scheme>'foo
foo

Since we've already defined (and bound) the variables foo1 and foo2, we can ask Scheme to look up 
their values. 

Scheme>foo1
"foo"
Scheme>foo2
"foo"
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Here we've typed in the names that we gave to variables earlier, and Scheme looked up the values of the 
variables. 

As we've seen before, this doesn't work if there isn't a bound variable by that name. Symbols can be used 
as variable names, if you define the variable, but by default a symbol is just an object with a particular 
print name that identifies it. 

If we want to refer to the symbol object foo, rather than using foo as a variable name, we can quote it, 
using the special quote character '. This tells Scheme not to evaluate the following expression, but to 
treat it as literal data. 

Scheme> 'foo
foo

When you type 'foo, you're telling Scheme you want a pointer to the symbol whose print name is foo. 
It doesn't matter whether there's a variable named foo or what its current value is---'foo means a 
pointer to the unique symbol object whose print name is foo, which has nothing to do with any variable 
foo. 

The first time you type in a symbol name, Scheme constructs a symbol object with that character 
sequence, and puts it in a special table. If you later type in a symbol name with the same character 
sequence, Scheme notices that it's the same sequence. Instead of constructing a new object, as it would 
for a string, it just finds the old one in the table, and uses that--it gives you a pointer to the same object, 
instead of a pointer to a new one. 

Try this: 

Scheme>(define bar1 'bar)
#void
Scheme>(define bar2 'bar)
#void
Scheme>(eq? bar1 bar2)
#t

Here, when we typed in the first definition, Scheme created a symbol object with the character sequence 
b a r, and added it to its table of existing symbols, as well as putting a pointer to it in the new variable 
binding bar1. When we typed in the second definition, Scheme noticed that there was already a symbol 
object named bar, and put a pointer to that same object in bar2 as well. 

When we asked Scheme if the values of bar1 and bar2 referred to the same object, the answer was 
yes (#t)---they both referred to the unique symbol bar; there is only one symbol by that name. 
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The big advantage of symbols over strings is that comparing them is very fast. If you want to know if 
two strings have the same character sequence, you can use equal?, which will compare their 
characters until it either finds a mismatch or reaches the ends of both strings. 

With symbols, you can use equal?, but you can get the same results using eq?, which is faster. Recall 
that eq? just compares the pointers to two objects, to see if they're actually the same object. For 
symbols, this works to compare the print names, too, because two symbols can have the same name only 
if they're the same object. You don't have to worry about symbols being equal? but not eq?. 

This makes symbols good for use as keys in data structures. For example, you can zip through a list 
looking for a symbol, using eq?, and all it has to do is compare pointers, not character sequences. 

Another advantage of symbols is that only one copy of its character sequence is actually stored, and all 
occurrences of the same symbol are represented as pointers to the same object. Each additional 
occurrence of symbol thus only costs storage for a pointer. 

If you're doing text processing in Scheme, e.g., writing a word processor, you probably want to use 
strings, not symbols. Strings support more operations that make it convenient to concatenate them, 
modify them, etc. 

Symbols are mainly used as key values in data structures, which happen to have a convenient human-
readable printed representation. 

If you need to convert between strings and symbols, you can use string->symbol and symbol-
>string. string->symbol takes a string and returns the unique symbol with that print name, if 
there is one. (If there's not, and the string is a legal symbol print name, it creates one and returns it.) 
symbol->string takes a symbol and returns a string representing its print name. (There is no 
guarantee as to whether it always returns the same string object for a given symbol, or a copy with the 
same sequence of characters.) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

A Note on Identifiers

When you type in a string, e.g., "This here is a string, you know.", you can type in 
pretty much whatever you want, as long as it's between double quotes and doesn't have double quotes or 
nonprinting characters in the middle. (You can have strings with double quotes in them, but you have to 
use a special escape sequence trick.) 

When you type in a symbol, on the other hand, you have to be a little more careful--some character 
sequences count as symbol names, but others don't. For example, the character sequence 1 2 3 doesn't 
count as a symbol 123, because it's a number. Character sequences with spaces, parentheses, and single 
quotes in them are also a no-no, because those characters have special meaning when reading and 
writing the printed representations of Scheme data structures. 

A symbol name has to start with an "extended alphabatic" character--that a letter or any of a fairly large 
set of printing characters, followed by a string of other extended alphabetic characters or digits. (The 
extended alphabetic characters are a-z, A-Z, and these: + - . * / < = > ! ? : $ % _ & ~ 
^.) 

For example, the following are all symbols: 

●     x 
●     thursdays-total*3 
●     am_is_are_was_were_be_being_been 
●     able-was-I-ere-I-saw-elba 
●     floppy_drive-3.5 
●     fourscore-and-7-years-ago 
●     x-15+three-times-thirty-seven 
●     =1 
●     lhs=>rhs 
●     x+/-3% 

There is a slight restriction that you can't use a symbol name that starts with a character that could begin 
a literal number. This includes not only digits, but +, -, . and #. A special exception to this is that +, 
and -, by themselves, are symbols, and so is ... (the ellipsis identifier used in macros). 

Scheme identifiers (variable names and special form names and keywords) have almost the same 
restrictions as Scheme symbol object character sequences, and it's no coincidence. Most 
implementations of Scheme happen to be written in Scheme, and symbol objects are used in the 
interpreter or compiler to represent variable names. 
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Don't read too much into this, however: it's easy to write a Scheme interpreter or compiler in Scheme, 
and that is why the rules for symbol names are the same as the rules for variable names, but symbols and 
variables are very, very different things. A symbol is just a data object, like a string, that has the special 
property of being unique. You can use symbols like any other data object, as part of any data structure. 

It just happens that interpreters and compilers generally use symbol objects to represent the names of 
variables and whatnot, so it's convenient that the rules for symbol object names are the same as the rules 
for identifiers in the language--but there is no other connection. 

Symbols are not necessarily variable names, they're just a kind of data object (like strings) that happen to 
get used that way, by some programs (interpreters and compilers). Your programs can use them any way 
you choose. (Sorry to be repetitive on this point, but confusing symbols and variables is one of the most 
common and avoidable problems in learning Scheme. It's worse in Lisp, where symbols and variables do 
have a deep connection, but not an obvious one.) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Lists Again

Suppose we want to make a list of symbols whose print names are the English words for the first five 
integers. We could do it using quoting, of course, like this: 

Scheme>(define firstfive '(one two three four five))
#void
Scheme>firstfive
(one two three four five)

We don't have to quote each symbol individually. Within a quote expression, everything is assumed to 
be literal data, not expressions to evaluate. 

We could also do it by calling list to construct the list, and handing it each of the five symbols as 
literals. To do that, we have to quote them, so that Scheme won't think we're referring to variables 
named one, two, etc. 

Scheme>(define firstfive (list 'one 'two 'three 'four 'five))
#void
Scheme>firstfive
(one two three four five)

Since list is a procedure, its argument expressions are evaluated. We use a quote around each 
expression, so that it will return a pointer to the appropriate symbol, rather than the value of the variable 
by the same name. 

This works whether or not there is a variable by that name, because names of symbols and names of 
variables are completely different things. 

For example, even after evaluating the above expressions, attempting to evaluate the expression four 
will be an error, unless we've defined a variable named four. The existence of a symbol with a given 
print name doesn't say anything about the existence of a variable with that name. 

Heterogeneous Lists

Since Scheme is dynamically typed, we can put any kind of object in a list. So far, we've made a list of 
integers and a list of symbols. We can also make a list of different kinds of things, such as a list of 
integers, symbols, and lists. 
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Scheme>(define mixed5 '(one 2 (three and a) "four" 5))
#void
Scheme>mixed5
(one 2 (three and a) "four" 5) 

Here we've constructed a mixed list whose first element is a symbol, the second is an integer, the third is 
a list of symbols, the fourth is a string, and the fifth is another integer. (The technical term for a mixed 
list is a "heterogeneous list.") 

We can draw it like this: 

       +-----+
mixed5 |  +--+-->+---+---+  +---+---+  +---+---+  +---+---+  +---+---+
       +-----+   | + | +-+->| + | +-+->| + | +-+->| + | +-+->| + | * |
                 +-+-+---+  +-+-+---+  +-+-+---+  +-+-+---+  +-+-+---+
                   |          |          |          |          |
                  \|/        \|/         |         \|/        \|/
                  one         2          |        "four"       5
                                         |
                                        \|/
                                       +---+---+  +---+---+  +---+---+
                                       | + | +-+->| + | +-+->| + | * |
                                       +-+-+---+  +-+-+---+  +-+-+---+
                                         |          |          |
                                        \|/        \|/        \|/
                                       three       and         a

Notice that we draw the symbols (one, three, and, and a) as simple sequences of characters. This is 
just a drawing convention. They're really objects, like pairs are. We draw strings similarly, but with 
double quotes around them. Don't be fooled--these are objects on the heap, too. We just draw them this 
way to keep the picture from getting cluttered up. 

Operations on Lists

We've already seen two list-processing procedures that you'll use a lot, car and cdr. car takes a 
pointer to a pair, and extracts the value of its first (car) field. cdr takes a pointer to a pair and returns 
the value of its second (cdr) field. 

(It might have been better if car had been called first and cdr had been called rest, since that's 
more suggestive of how they're used: a pointer to the first item in a list, and a pointer to the pair that 
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heads the rest of the list.) 

Given our list stored in mixed5, we can extract parts of the list using car and cdr. 

Scheme>(car mixed5)
one
Scheme>(cdr mixed5)
(2 (three and a) "four" five)

By using car and cdr multiple times, we can extract things beyond the first element. For example, 
taking the cdr of the cdr of a list skips the first two elements, and returns the rest: 

Scheme>(cdr (cdr mixed5))
((three and a) "four" 5)

Taking the car of that list (that is, the car of the cdr of the cdr) returns the first item in that list: 

Scheme>(car (cdr (cdr mixed5)))
(three and a)

We can keep doing this, for example taking the second element of that sublist by taking the car of its 
cdr. 

Scheme>(car (cdr (car (cdr (cdr mixed5)))))
and

This starts to get tedious and confusing--too many nestings of procedures that do too little at each step--
so Scheme provides a handful of procedures that do two list operations at a whack. The two most 
important ones are cadr and cddr. 

cadr takes the car of the cdr, which gives you the second item in the list. cddr takes the cdr of the 
cdr, skipping the first two pairs in a list and returning the rest of the list. 

This lets us do the same thing we did above, a little more concisely and readably: 

Scheme>(cadr (car (cddr mixed5)))
and

With a little practice, it's not hard to read a few nested expressions like this. In this example, taking the 
cddr of mixed5 skips down the list two places, giving us the list that starts with the sublist we want. 
Then taking the car of that gives us the sublist itself off the front of that list, and taking the cadr of 
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that gives us the second item in the sublist. 

Of course, even if Scheme didn't provide cadr and cdr, you could write them yourself in terms of car 
and cdr: 

(define (cadr x)
   (car (cdr x)))

(define (cddr x)
   (cdr (cdr x)))

Scheme actually provides predefined list operations for all combinations of up to four car's and cdr's. 
For example, cadadr takes the cadr of the cadr. (The naming scheme is that the pattern of a's and 
d's reflects the equivalent nesting of calls to car and cdr.) 

You probably won't want to bother with most of those, because the names aren't very intuitive. Two 
procedures that are worth knowing are list-ref and list-tail. 

(list-ref list n) extracts the nth element of a list list, which is equivalent to n-1 applications of 
cdr followed by car. For example, (list-ref '(a b c d e) 3) is equivalent to (car 
(cdr (cdr '(a b c d e)))), and returns d.) 

In effect, you can index into a list as though it were an array, using list-ref. (Of course, the access 
time for an element of a list is linear in the index of the element. If you need constant-time access, you 
can use vectors, i.e., one-dimensional arrays.) Notice that the numbering is zero-based, which is why 
(list-ref lis 3) returns the fourth element of a lis. This is consistent with the indexing of 
vectors, which are also zero-based, as well as reflecting the number of cdr operations. 

(list-tail list n) skips the first n elements of a list and returns a pointer to the rest, which is 
equivalent to repeated applications of cdr. (This is standard R4RS Scheme, but not IEEE Scheme. If 
your Scheme doesn't provide list-tail, you can easily write your own.) 

These two procedures can make it much clearer what you're doing when you extract elements from 
nested lists. Suppose that we have a list foo, which is a triply-nested list--a list of lists of lists, and we 
want to extract the second element of the bottom-level list that is the third element of the middle-level 
list that is the fourth element of the outermost list. 

We could write (car (cdr (car (cdr (cdr (car (cdr (cdr (cdr foo))))))))), 
but that's pretty hard to read. If we use cadr, caddr, and cadddr, we can make it somewhat more 
readable by using one function call at each level of structure: (cadr (caddr (cadddr foo))). 
But it's still clearer to write (list-ref (list-ref (list-ref foo 4) 3) 2) 
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or (indented) 

(list-ref (list-ref (list-ref foo 4)
                    3)
          2)

list-ref and list-tail are much more convenient than things like caddr when the indexes into 
a list vary at run time. For example, we might use an index variable i (or some other expression that 
returns an integer) to pick out the ith member of a list: (list-ref foo i). Writing this with car 
and cdr would require writing a loop or recursion to perform n-1 cdr's and a car. 

==================================================================
This is the end of Hunk N

At this point, you should go back to the previous chapter and
read Hunk O before returning here and continuing this tutorial.
==================================================================

(Go BACK to read Hunk O, which starts at section Tail Recursion (Hunk O).) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Basic Programming Examples (Hunk P)

[ From here on, the text is not structured as a type-along tutorial interleaved with Chapter 2. However, it's a good 
idea to experiment with the examples interactively in a running Scheme system . ] In this section, I'll give a few 
simple examples of Scheme programming, mostly using recursion to manipulate lists without side effects. (Later, 
I'll revisit some of these examples, and show how to implement them more efficiently, using tail recursion, but still 
without side effects.) 

I'll show how to implement simple versions of some standard Scheme procedures; this may help you understand 
what those procedures do, and how to use them. (Later, I'll return to some of these examples and show how to 
implement more general versions.) I'll also give some examples that aren't standard Scheme procedures, but 
illustrate common idioms. 

Some of these examples use higher-order procedures--procedures which operate on procedures--and toward the end 
of the section, I'll discuss currying, a technique for creating specialized versions of procedures in a particular 
context. 

You should get used to thinking recursively, and avoiding side effects most of the time. It's often easier to write 
things recursively than using normal loops and side effects. 

An Error Signaling Routine

It's often useful to put error-checking code in your procedures, to make sure that their arguments satisfy whatever 
preconditions they need to operate correctly. 

In a dynamically-typed language, this is often good for making sure that you detect errors where pass values to a 
procedure that can't handle arguments of those types. Usually when you do that, you'll find out soon enough, 
because you'll perform an illegal operation (like taking the car of a number), and Scheme will detect the error and 
tell you. 

Scheme doesn't yet have a standard error signaling routine, but we will use one that many systems provide, called 
error. error takes any number of arguments, displays them to tell the user what went wrong, and signals an 
error. (In most interactive Scheme systems, you'll get a break prompt like the one you get when Scheme itself 
detects an error.) 

[ If your system doesn't have error, you'll get an error signaled anyway, in the form of an unbound variable 
exception when you try to call error! ] 

[ moved example code for length, append, reverse from here to an earlier section ] 

map and for-each
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map and for-each are used to apply a procedure to elements of lists. They're good for coding repetitive 
operations over sets of objects. 

map

map takes a procedure and applies it to the elements of a list (or corresponding elements of a set of lists), returning 
a list of results. 

For example, if we want to double the elements of a list, we can use map and the double procedure we defined 
earlier: 

Scheme>(map double '(1 2 3))
(2 4 6)

If the procedure we're calling takes more than one argument, we can pass two lists of arguments to map. For 
example, if we want to add corresponding elements of two lists, and get back a corresponding list of their sums, we 
can do this: 

Scheme>(map + '(1 2 3) '(4 5 6))
(5 7 9)

Right now, we'll just write a simplified version of map, which takes one list of values and applies a one-argument 
procedure to them. 

(define (map proc lis)
   (cond ((null? lis)
          '())
         ((pair? lis)
          (cons (proc (car lis))
                (map proc (cdr lis))))))

Notice that map may construct a list of results front-to-back, or back-to-front, depending on the order of the 
evaluation of the arguments to cons. That is, it may apply the mapped procedure on the way down during 
recursion, or on the way back up. (This is allowed by the Scheme standard--the order of the results in the resulting 
list corresponds to the ordering of the argument list(s), but the dynamic order of applications is not specified.) 

for-each

Like map, for-each applies a procedure to each element of a list, or to corresponding elements of a set of lists. 
Unlike map, for-each discards the values returned by all of the applications except the last, and returns the last 
value. (The applications are also guaranteed to occur in front-to-back list order.) This is sort of like what a begin 
expression does, except that the "subexpressions" are not textually written out--they're applications of a first-class 
procedure to list items. 

Like begin, for-each is used to execute expressions in sequence, for effect rather than value, except that the 
last value may be useful. 

http://www.federated.com/~jim/schintro-v14/schintro_106.html (2 of 5)11/3/2006 9:07:29 PM



An Introduction to Scheme and its Implementation - Basic Programming Examples

Here's a simplified version of for-each, which we'll call for-each1. It takes exactly one procedure, assumed 
to be a procedure of one argument, and one list. It applies the procedure to each of the elements of the list in turn, 
and returns the result of the last application. 

(define (for-each1 proc lis)
   (cond ((null? (cdr lis))  ; one-element list?
          (proc (car lis)))
         (else
          (proc (car lis))
          (for-each1 proc (cdr lis)))))  

Notice that this is a little different from our usual recursive list traversal, where the first thing we do is check 
whether the list is empty. for-each makes no sense for an empty list, since it must return the value of the last 
application. 

Since for-each must take a list of one or more items, the base case for the recursion is when we hit a one-
element list, rather than an empty list. The recursive case is when we have a list that's got more than one element. 
Anything else is an error due to bad input. 

We can characterize this kind of data structure recursively, almost the same way as the normal definition of a proper 
list: 

A list-of-one-or-more-elements is 

●     a list of one element, i.e., a pair whose cdr is null, or 
●     a list of more than one element, i.e., a pair whose cdr is a list-of-one-or-more-elements. 

The code for for-each1 directly reflects this characterization of the data it's expected to handle. The base case 
comes first, and then the recursive case. 

If for-each1 encounters a nonlist or an empty list, it will signal an error immediately, because both branches 
assume that they're operating on a pair, and attept to take the car of it, which is an error for anything but a pair. If 
for-each1 encounters an improper list, it will likewise signal an error at the first cdr that doesn't refer to pair. 

As usual, this is what we want--the recursive structure of the data structure we're operating on is reflected directly 
in the structure of the recursive code, and unexpected data cause errors to be signaled immediately. 

member and assoc, and friends

The standard Scheme procedures member and assoc are used for searching lists. I'll show how they can be 
implemented in Scheme, even though every Scheme system includes them. 

Each of these procedures has two alternative versions, which use different equality tests (eq? or eqv?) when 
searching for an item in list. 
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member, memq, and memv

member searches a list for an item, and returns the remainder of the list starting at the point where that item is 
found. (That is, it returns the pair whose car refers to the item.) It returns #f if the item is not in the list. 

For example, (member 3 '(1 4 3 2)) returns (3 2), and (member 'foo '(bar baz quux)) 
returns #f. 

Lists are often used as an implementation of sets, and member serves nicely as a test of set membership. If an item 
is not found, it returns #f, and if it is, it returns a pair. Since a pair is a true value, the result of member can be used 
like a boolean in a conditional. 

Since member returns the "rest" of a list, starting with the point where the item is found, it can also be particularly 
useful with ordered lists, by skipping past all of the elements up to some desired point, and returning the rest. 

(define (member thing lis)
   (if (null? lis)
       #f
       (if (equal? (car lis) thing)
           lis
           (member thing (cdr lis)))))

Note that member uses the equal? test (data structure equivalence) when searching. This makes sense in 
situations where you want same-structured data structures to count as "the same." (For example, if you're searching 
a list of lists, and you want a sublist that has the same structure as the target list to count as "the same.") Note that if 
the elements of the list are circular data structures, member may loop infinitely. 

If you want to search for a particular object, you should use memq?, which is like member except that it uses the 
eq? test, and may be much faster. 

If the list may include numbers, and you want copies of the same number to count as "the same", you should use 
memv. 

assoc, assq, and assv

assoc is used to search a special kind of nested list called an association list. Association lists are often used to 
represent small tables. 

An association list is a list of lists. Each sublist represents an association between a key and a list of values. The car 
of the list is taken as the key field, but the whole list of values is returned. 

(Typically, an association list is used as a simple table to map keys to single values. In that case, you must 
remember to take the cadr of the sublist that assoc returns.) 

Some example uses: 
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Scheme>(assoc 'julie '((paul august 22) (julie feb 9) (veronique march 28)))
(julie feb 9)

Scheme>(assoc 'key2 '((key1 val1) (key2 val2) (key0 val0)))
(key2 val2)

Scheme>(cadr (assoc 'key2 '((key1 val1) (key2 val2) (key0 val0))))
val2

Scheme>(assoc '(feb 9)
              '(((aug 1) maggie phil) ((feb 9) jim heloise) ((jan 6) declan)))
((feb 9) jim heloise)

And the code: 

(define (assoc thing alist)
   (if (null? alist)
       #f
       (if (equal? (car (car alist)) thing)
           (car alist)
           (assoc thing (cdr alist)))))

Notice that the basic pattern of recursion here is the same as for traversing other proper lists. The Like member, 
assoc uses the equal? test when searching a list. This is what you want if (and only if) you want same-
structured data structures to count as "the same." 

assq is like assoc, but uses the eq? test. This is the most commonly-used routine for searching association lists, 
because symbols are commonly used as keys for association lists. (The name assq suggests "associate using the 
eq? test.") 

If the keys may be numbers, assv? should probably be used instead. It considers = numbers the same, but 
otherwise tests object identity, like eq?. (The name assv suggests "associate using the eqv? test.") 

Go to the first, previous, next, last section, table of contents. 
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Procedural Abstraction

Scheme's main abstraction mechanism is procedural abstraction; we define procedures that represent 
common operations, and "specialize" those procedures by passing arguments: by passing different 
arguments,w we can make the same routine do somewhat different things, depending on the particular 
data it encounters at run time. 

Since Scheme procedures are first-class data objects, we can customize procedures in terms of other 
procedures. We can write a general procedure with a "hole" in it, to be specialized by another procedure. 

Go to the first, previous, next, last section, table of contents. 
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Procedure Specialization

Suppose that we are writing a program where we need to take a list of numbers and produce a 
corresponding lists with numbers ten times as big. 

Notice that we already have a procedure, map, that can iterate over a list, apply a function to each item, 
and return the list of function values. We also have a multiplication procedure, * that can multiply 
numbers by any value we want. 

We can't just write (map * some-list), though, because when map iterates over a single list, it 
expects a procedure that takes exactly one argument, and * takes two arguments. Somehow, we need to 
supply the argument 10 to each of the calls map makes to *. 

What we need is a one-argument function that multiplies its argument by ten. We could define our own 
multiplication-by-ten procedure, *10, and then use map to apply it to the elements of some-list. 

(define (*10 number)
   (* 10 number))

(map *10 some-list)

Here we've specialized * to create *10---we've taken a function with some number of arguments, and 
produced a function with fewer arguments, which is equivalent to calling the original procedure with the 
missing argument always the same. 

If *10 is only used in one place, there's really no need to create a named procedure--we can just use a 
lambda expression to create the procedure where we need it, at the call to map: 

(map (lambda (number)
        (* 10 number))
     some-list)

Here we create an anonymous procedure that multiplies its argument by 10, and pass that procedure and 
a list to map, which will map the procedure over the list and return the corresponding list of results. 

It is often a good idea to design procedures with specialization in mind. 

Consider assoc, which has variants assq and assv; the only difference between them is what 
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comparison operator they use. 

Likewise, member has variants memq and memv. 

Consider the similarities between member, memv, and memq. All of them do almost the same thing, 
with the difference being which equality test they use during a search. 

We can define a general procedure, mem, which expresses the similarities between these procedures, and 
then specialize that procedure. That is, in writing mem, we'll leave a "hole" for the comparison operator. 
That hole is just an argument. Our general procedure will look like member, except that it will take an 
argument saying which test to use. In Scheme, this is easy--we can simply hand it a first-class procedure 
like equal? or eq?, or any other test we want to use, and have it call that procedure to perform the 
test. 

(define (mem test-proc thing lis)
   (if (null? lis)
       #f
       (if (test-proc (car lis) thing)
           lis
           (mem test-proc thing (cdr lis)))))

To get the effect of (member some-key some-list), we can write (mem equal? some-
key some-list). 

Note that here we're not calling equal? directly--we're just passing the value of the variable equal? 
(i.e., the procedure first-class procedure object equal?) to mem. mem receives this value when the 
argument variable test-proc is bound, and can call it by that name. 

(In the *10 example, we specialized * with data--the number 10---but here we're specializing mem with 
a procedure. The same technique works, because procedures are data objects, and can be passed as 
arguments like any other data, then called as procedures.) 

If Scheme didn't provide member, we could easily define it by specializing mem---we simply define 
member to call mem, but always pass equal? as the first argument: 

(define (member thing lis)
   (mem equal? thing lis))

Likewise, we could define memq and memv by specializing mem with eq? and eqv?, respectively. 

This kind of function specialization is particularly useful when you have a pattern for a procedure, but 
may need arbitrary variants of it in the future. 
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For example, suppose you want to search a list of lists, and you want your search routine to return the 
first sublist whose first two elements match a particular two-element list. (This might be an ordered list 
of birthdays, and you could be searching for the part of the list that starts with a particular month of a 
particular year.) 

You might search the list for any list whose first elements are 1964 and December, by handing it a 
target list (1964 December), like this: 

(mem-first-two? '(1964 December)
                '((1961 January 15 "Susan")
                  (1964 March 28 "Edward")
                  (1964 March 29 "Selena")
                  (1964 December 31 "Anton")
                  (1965 January 8 "Booker"))))

and get back the result 

((1964 December 31 "Anton")
 (1965 January 8 "Booker"))))

member, memq, and memv are useless for this, but it's pretty easy with mem. First we define a match 
predicate for our purpose: 

(define (first-two-eqv? target thing)
   (and (eqv? (car target) (car thing))
        (eqv? (cadr target) (cadr thing))))

Then we curry mem with that predicate to create our search procedure: 

(define (mem-first-two? thing lis)
   (mem first-two-eqv? thing lis))

If first-two-eqv? is only likely to be used in mem-first-two, we can put it inside mem-
first-two, as a local procedure, instead of leaving it hanging out where it can be called from other 
procedures. This is a good idea for a procedure that is so specialized that it's unlikely to be useful in any 
other way--especially if you're sure it works for what you designed it for, but think it may be tricky to 
use for slightly different purposes. (For example, we've chosen to use the eqv? test for matching list 
elements, but for some purposes this might be the wrong choice.) 

(define (mem-first-two thing lis)
   (let ((first-two-eqv? (lambda (target thing)
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                            (and (eqv? (car target) (car thing))
                                 (eqv? (cadr target) (cadr thing))))))
      (mem first-two-eqv? thing lis)))

In this routine, first-two-eqv? is only called from one place--the call to mem. Rather than defining 
it as a named procedure, using letrec and lambda, we can simply use the lambda expression at the 
one place the procedure is needed: 

(define (mem-first-two thing lis)
   (mem (lambda (target thing)
           (and (eqv? (car target) (car thing))
                (eqv? (cadr target) (cadr thing))))
        target
        lis))

This idiom is very common in situations where you need a small procedure in exactly one place. 

Likewise, if mem-first-two itself is only useful in one place, it would be reasonable to avoid 
making it a procedure at all, and instead to simply call mem from that place: 

...
(mem (lambda (target thing)
        (and (eqv? (car target) (car thing))
             (eqv? (cadr target) (cadr thing))))
     target
     lis)
...

Go to the first, previous, next, last section, table of contents. 
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Procedure Composition

Go to the first, previous, next, last section, table of contents. 
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Currying

[ ugh... need to decide what's technically currying and what isn't... and provide a precise definition.] 

Above I showed that we can "specialize" a procedure by having it take an argument that specifies an 
action to take. It is often useful to have a procedure that can create procedures of some general type, 
producing a specialized procedure each time it's called. 

For example, rather than having to specialize mem by hand, we can provide a procedure that automates 
the process. This procedure make-mem-proc will take a comparison routine as an argument, and 
return a specialized version of mem that uses that procedure. 

(define (make-mem-proc pred?)
   (lambda (target lis)
      (mem pred? target lis)))

Each time this procedure is called, it will bind its argument variable pred?, and create a new procedure 
that will call mem. Each new procedure will "remember" the binding of pred? that was created for it, so 
each one can do something different. 

Now we can define member, memv, and memq, by using this procedure to create three new procedures, 
each with its own captured binding of pred?. 

(define member (make-mem-proc equal?))
(define memq   (make-mem-proc eq?))
(define memv   (make-mem-proc eqv?))

(Notice that we're using plain variable definition syntax here. We're just defining variables member, 
memq, and memv, and initializing them with procedures (closures) returned by make-mem-proc.) 

Of course, if we only use mem in this way, then we don't actually need separate mem and and make-
mem-proc procedures. We can just write make-mem-proc using a lambda expression that's 
equivalent to mem: 

(define (make-mem-proc pred?)
   (letrec ((mem-proc (lambda (thing lis)
                         (if (null? lis)
                             #f
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                             (if (pred? (car lis) thing)
                                 lis
                                 (mem-proc pred? thing (cdr lis)))))))
      mem-proc))

Here I've used a letrec so that the procedure will be able to call itself recursively. Each time we call 
make-mem-proc, it will bind its argument pred?, initializing it with the procedure argument we 
pass. Then it will bind mem-proc and create the specialized procedure using lambda. Note that the 
bindings of both pred? and mem-proc will be remembered by the closure created by lambda. This 
allows the new closure to see both the predicate it should use, and itself, so that it can call itself 
recursively. 

[ A picture would be nice here, showing what we get when we define mem, memq, and memv using 
make-mem-proc... three variable bindings, holding three closures, each of which is closed in an 
environment with its own binding of mem-proc scoped inside its own binding of pred?. ] There are 
two advantages to coding make-mem-proc this way. One is that it avoids cluttering up our code with 
a definition of mem that's external to make-mem-proc. [ another advantage is that a good compiler 
will be able to optimize the code better, because it can tell that the value of a bindings of pred? or 
mem-proc will never change once the binding is created. It may use that information to generate better 
code... ] 

Discussion and Review

Go to the first, previous, next, last section, table of contents. 
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Writing an Interpreter

In this chapter, I'll show a simple interpreter for a subset of Scheme, written in Scheme. 

I'll start out with a very simple interpreter for a tiny subset of Scheme, which only understands simple 
arithmetic expressions. 

Then I'll improve the interpreter in variety of ways. 

In a later chapter, we'll return to this interpreter and add macros, [ blah blah blah... ]. 

Go to the first, previous, next, last section, table of contents. 
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Interpretation and Compilation

Programming languages are usually implemented by interpreters or compilers, or some mix of both. In 
reality, almost all language implementations are a mix of both, to at least a small degree, and the line 
between them is surprisingly fuzzy. 

A pure interpreter reads the source text of a program, analyzes it, and executes it as it goes. This is 
usually very slow--the interpreter spends a lot of time analyzing strings of characters to figure out what 
they mean. A pure interpreter must recognize and analyze each expression in the source text each time it 
is encountered, so that it knows what to do next. This is pretty much how most command shell 
languages work, including UNIX shells and Tcl. 

A pure compiler reads the source text of a program, and translates it into machine code that will have the 
effect of executing the program when it is run. A big advantage of compilers is that they can read 
through and analyze the source program once, and generate code that you can run to give the same effect 
as interpreting the program. Rather than analyzing each expression each time they encounter it, 
compilers do the analysis once, but record the actions an interpreter would take at that point in the 
program. 

In effect, a compiler is a weird kind of interpreter, which "pretends" to interpret the program, and 
records what an interpreter would do. It then goes through its record of actions the interpreter would 
take, and spits out instructions whose effect is the same as what the interpreter would have done. Most 
of the decision-making that the interpreter does--like figuring out that an expression is an assignment 
expression, or a procedure call--can be done at compile time, because the expression is the same each 
time it's encountered in running the program. 

The compiler's job is to do the work that's always the same, and spit out instructions that will do the 
"real work" that can only be done at runtime, because it depends on the actual data that the program is 
manipulating. For example, an if statement is always an if statement each time it's encountered, so 
that analysis can be done once. But which branch will be taken depends on the runtime value of an 
expression, so the compiler must emit code to test the value of the expression, and take the appropriate 
branch. 

Most real interpreters are somewhere in between pure interpreters and compilers. They read through the 
source code for a program once, and translate it into an "intermediate representation" that's easier to 
work with--a data structure of some kind--and then interpret that. Rather than stepping through strings of 
source text, they step through a data structure that represents that source text in a more convenient form, 
which is much faster to operate on. That is, they do some analysis once, while converting the source text 
into a data structure, and the rest as they execute the program by stepping through the data structure. 
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There are four good reasons for using a Scheme interpreter as an example Scheme program: 

1.  A simple interpreter really is simple, but it can show off some of the handy features of Scheme. 
It's a good example of Scheme programming. 

2.  Most serious programs include some kind of command interpreter, so every programmer should 
know how to write a decent one. Often, the command interpreter has a tremendous impact on the 
usability and power of a system, and too many programs have bad ones. 

3.  Understanding how a Scheme interpreter works may clarify language issues. It gives you a nice, 
concrete understanding of what Scheme does when it encounters an expression, so you know 
what your programs will do--for example, it'll be obvious when you need a quote, or parentheses, 
and when you don't. 

4.  Every programmer should understand the basics of how a compiler works. Understanding a 
Scheme interpreter gets you half-way to understanding a Scheme compiler. A Scheme compiler 
is really very much like a Scheme interpreter--it analyzes Scheme expressions and figures out 
what to do. The main difference between an interpreter and a compiler is just that when an 
interpreter figures out what to do, it does it immediately, while a compiler records what to do 
when you run the program later. 

Go to the first, previous, next, last section, table of contents. 
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Implementing a Simple Interpreter

In this section, we'll use Scheme to implement an interpreter for a tiny subset of Scheme--just simple 
arithemetic expressions. The interpreter we'll show is simple, but it's a real interpreter--it works on the 
same principles as many real Scheme systems. In the next chapter, we'll show how a slightly more 
complicated interpreter which implements most of Scheme's important features, and the skeleton of a 
compiler for Scheme. 

The interpreter is a good example for learning Scheme programming, because it makes heavy use of 
recursion--the processes of reading and evaluation are naturally recursive. As you'll see, the code is also 
an example of mostly-functional programming (with very few side effects); using recursion in the 
natural way avoids the need for side effects, because data structures are generally created at the right 
times, rather than being created too early and having to be updated later. 

Our interpreter will use Scheme's built-in read procedure to accept input in the form of s-expressions, i.
e., expressions represented as standard Scheme data structures such as symbols, numbers, and possibly 
nested lists of those constituents. [Recall that...] S-expressions can be simple, as in the case of symbols, 
or complex, as in the case of nested lists. 

Go to the first, previous, next, last section, table of contents. 
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The Read-Eval-Print Loop

(This section could be skimmed if you're not interested in the read-eval-print-loop, which is just a simple 
command interpreter that acts as a "front end" to the evaluator.) 

When you're interacting with Scheme by typing text, you're interacting with a Scheme procedure called the 
read-eval-print loop. This procedure just loops, accepting one command at a time, executing it, and printing 
the result. 

The three steps at each iteration of the loop are: 

1.  calling read to read the characters that make up a textual expression expression from the keyboard 
input buffer, and construct a data structure to represent it, 

2.  calling eval to evaluate the expression--intuitively, eval "figures out what the expression means," 
and "does what it says to do," returning the value of the expression--and 

3.  calling write to print a textual representation of the resulting from eval, so that the user can see it. 

(More generally, we might read expressions from a file rather than the keyboard buffer. We'll ignore that for 
now.) 

You can write your own read-eval-print loop for your own programs, so that users can type in expressions, 
and you can interpret them any way you want. Later, I'll show how to write an evaluator, and this will come 
in handy. You can start up your read-eval-print loop (by typing in (rep-loop)), and it will take over from 
the normal Scheme read-eval-print loop, interpreting expressions your way. 

Here's a very simple read-eval-print loop: 

(define (rep-loop)
   (display "repl>")      ; print a prompt
   (write (eval (read)))  ; read expr., pass to eval, write result
   (rep-loop))            ; loop (tail-recursive call) to do it again

(Notice that the expression (write (eval (read))) does things in the proper read-eval-print order, 
because the argument to each procedure call is computed before the actual call. In Scheme, as in most 
languages, nested procedure calls expressions are done "from the inside out.") 

I've coded the iteration recursively, rather than using a looping construct. The procedure is tail-recursive, 
since all it does at the end is call itself. Remember that Scheme is smart about this kind of recursion, and 
won't build up procedure activation information on the stack and cause a stack overflow. You can do tail 
recursion all day. Since nothing happens in a given call to the procedure after the tail-call, Scheme can avoid 
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returning to it at all, and avoid saving any state to return to. 

The above read-eval-print loop isn't very friendly, because it loops infinitely without giving you any chance to 
break out of it. Let's modify it to allow you to stop the tail recursion by typing in the symbol halt. 

(define (rep-loop)
   (display "repl>")              ; print a prompt
   (let ((expr (read)))           ; read an expression, save it in expr
      (cond ((eq? expr 'halt)     ; user asked to stop?
             (display "exiting read-eval-print loop")
             (newline))
            (#t                   ; otherwise,
             (write (eval expr))  ;  evaluate and print
             (newline)
             (rep-loop)))))       ;  and loop to do it again

Notice that this is still tail recursive, because the branch that does the recursive call doesn't do anything else 
after that. 

This read-eval-print loop could be improved a little. By using the symbol halt as the command to tell the 
loop to stop, we prevent people from being able to evaluate halt as an expression. We could get around this 
by ensuring that the halt command doesn't have the syntax of any expression in the language, but we won't 
bother right now. 

Another improvement would be to make it possible to use different interpreters with the same read-eval-print 
loop. The rep-loop procedure above assumes that it should call a procedure named eval to evaluate an 
expression. We'd like to write a rep-loop that works with different evaluators, so instead of having it call 
eval by name, we'll hand it an argument saying which evaluator to use. Since procedures are first class, we 
can just hand it a pointer to the evaluation procedure. 

(define (rep-loop evaluator)
   (display "repl>")                 ; print a prompt
   (let ((expr (read)))              ; read an expression, save it in expr
      (cond ((eq? expr 'exit)        ; user asked to stop?
             (display "exiting read-eval-print loop")
             (newline))
            (#t                      ; otherwise,
             (write (evaluator expr)) ;  evaluate and print
             (rep-loop evaluator))))) ;  and loop to do it again

Here I just made three changes. I added an argument our-eval, which is expected to be a procedure. Then 
we changed the call to eval to call our-eval, i.e., whatever evaluator was given. Then we changed the 
recursive call to rep-loop to pass that argument on to the next recursive call. 
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The Reader

We won't write a whole reader for our interpreter, but I'll sketch how the reader works, and show a simplified reader. 

(Our interpreter will just "cheat" the reader from the underlying Scheme system we're implementing it in, but it's good 
to know how we could write a reader, and it's a nice example of recursive programming.) 

The reader is just the procedure read, which is written in terms of a few lower-level procedures that read individual 
characters and construct tokens, which read puts together into nested data structures. A token is just a fairly simple 
item that doesn't have a nested structure. For example, lists nest, but symbol names don't, strings don't, and numbers 
don't. 

The low-level routines that read uses just read individual tokens from the input (a stream of characters). These tokens 
include symbols, strings, numbers, and parentheses. Parentheses are special, because they tell the reader when recursion 
is needed to read nested data structures. 

(I haven't explained about character I/O, but don't worry--there are Scheme procedures for reading a character of input 
at a time, testing characters for equality, etc. For now, we'll ignore those details and I'll just sketch the overall structure 
of the reader.) 

Lets assume we have a simple reader that only reads symbols, integers, and strings, and (possibly nested) lists made up 
of those things. It'll be pretty clear how to extend it to read other kinds of things. 

Implementing read

read uses recursion to construct nested data structures while reading through the character input from left to right. 

For example, the input character sequence 

(foo 20 (baz))

will be read as a three-element list, whose first two elements are symbols foo and the number 20; its third element is 
another list, whose single element is the symbol bar. 

read can also read simple things, like symbols and numbers, by themselves. 

The data structures that read constructs are called s-expressions. An s-expression may be something simple like a 
string or a number, or a list of s-expressions. (Notice that this recursive definition covers arbitrarily deeply nested lists.) 

(Generally, s-expressions are tree-structured (acyclic) data structures consisting of things that Scheme knows how to 
read and write--symbols, numbers, string and character literals, booleans, and lists or vectors of s-expressions. 
Sometimes the term is used even more broadly, to include almost any kind of Scheme data structure, but usually we use 
the term s-expression to refer to something that has a standard textual representation, which can be read to create a 
standard data structure.) 
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The traditional term s-expression is very unfortunate. Technically an expression is a piece of a program, which can be 
evaluated to yield a Scheme value. 

An s-expression isn't really an expression at all--it's just a data structure, which we can choose to use as a 
representation of an expression in a program, or not.(6) Remember that the reader's job is only to convert textual 
expressions into handy data structures, not to interpret those data structures as programs. It's the evaluator that actually 
interprets data structures as programs, not the reader. That's why the read-eval-print loop hands the s-expressions 
returned from read to eval for evaluation. 

I'll show a slightly oversimplified version of read, which we'll call micro-read. The main simplifications are that 
micro-read only handles a few basic types--symbols, nonnegative integers, and lists--and we've left out most error-
checking code. We assume that what we're reading is a legal textual representation of a Scheme data structure. We also 
haven't dealt with reading from files, instead of the standard input, or what to do when reaching the end of a file. 

To make it easier to implement read, we'll use a helper procedure that reads a single token at a time, called read-
token. Intuitively, calling read-token repeatedly will chop the input into "words." Then read can group these 
"words" together to form "phrases," which may describe complex data structures. 

For example, the following input character sequence 

  (foo 1 (a "bar"))

will be chopped into the following tokens, one at a time, in a left-to-right scan of the input by repeated calls to read-
token 

  (
  foo
  1
  (
  a
  "bar"
  )
  )

Notice that left and right parentheses are tokens, even though they're written as single characters. You can think of 
them as special words that tell read where a new list starts and where it ends. 

Given read-token, read must recognize nested structures---intuitively, where read-token recognizes 
individual words, read must recognize phrases, which may be nested. Each phrase corresponds to an s-expression that 
read must construct, and nested phrases correspond to nested s-expressions. 

Most of the work of reading is actually done by read-token, which reads a single input token--e.g., a symbol, a 
literal string, a number, or a left or right parenthesis. That is, read-token performs lexical analysis (also known as 
scanning). That is, read-token reads a sequence of characters from the input until it recognizes a "word." 

(Our little scanner will use the standard Scheme procedure read-char to read one character of input at a time, and 
also the predicate procedures char-alphabetic? and char-numeric?; these tell whether a character represents 
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a letter or a number. We'll also use the Scheme character literal objects #\", #\(, and #\), which represent the double 
quote character, left parenthesis character, and right parenthesis character, respectively.) 

;;; a scanner for a simple subset of the lexical syntax of Scheme
(define (read-token)
   (let ((first-char (read-char)))
      (cond ;; if first-char is a space or line break, just skip it
            ;; and loop to try again by calling self recursively
            ((char-whitespace? first-char)
             (read-token))
            ;; else if it's a left paren char, return the special
            ;; object that we use to represent left parenthesis tokens.
            ((eq? first-char #\( )
             left-paren-token)
            ;; likewise for right parens
            ((eq? first-char #\) )
             right-paren-token)
            ;; else if it's a letter, we assume it's the first char
            ;; of a symbol and call read-identifier to read the rest of
            ;; of the chars in the identifier and return a symbol object
            ((char-alphabetic? first-char)
             (read-identifier first-char))
            ;; else if it's a digit, we assume it's the first digit
            ;; of a number and call read-number to read the rest of
            ;; the number and return a number object
            ((char-numeric? first-char)
             (read-number first-char))
            ;; else it's something this little reader can't handle,
            ;; so signal an error
            (else
             (error "illegal lexical syntax")))))

[ see handout with discussion of lexical analysis, state machines, etc. ] 

The basic operation of read-token is to read a character from the input, and use that to determine what kind of 
token is being read. Then a specialized routine for that kind of token is called to read the rest of the characters that 
make up the token, and return a Scheme object to represent it. We represent identifiers tokens like foo as Scheme 
symbols, and digit sequences like 122 as the obvious Scheme number objects. 

read-token also uses some helper predicates that we define ourselves. char-whitespace? checks whether a 
character is a whitespace character--either a space or a newline. For this, we use the literal representation of the space 
character object and the newline character object, which are written #\space and #\newline. Here's the code: 

;;; whitespace? checks whether char is either space or newline
(define (char-whitespace? char)
  (or (eq? char #\space)
      (eq? char #\newline)))
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read-token uses several helper procedures, some of which are standard Scheme procedures. char-numeric? is a 
predicate that tests a character object to see whether the character it represents is a digit. char-alphabetic? 
likewise tests a character to see whether it represents a letter a through z or A through Z. We represent left and right 
parenthesis tokens specially, because there's not an obvious Scheme object to represent them. (We could use the 
Scheme left and right parenthesis character objects, but that could cause trouble if we add the ability to read character 
literals--we'd like to have unique objects that can't be confused with anything else that read-token might return. 

To create unique objects to represent these tokens, we'll use a special trick--we'll call list to create lists, which 
ensure's they'll be distinct from any other objects that might be returned by read-token. 

(define left-paren-token (list '*left-parenthesis-token*)) (define right-paren-token (list '*right-parenthesis-token*)) 

Now we can use these particular list objects as the special objects to represent left and right parentheses. We can refer 
to them by the names left-parenthesis-token and right-parenthesis-token, because they're the 
values of those variables. 

We can check to see if an object is one of these tokens by comparing it against that object using eq?. Notice that these 
values can't be confused with anything else that read-token might return, for two reasons. The first is that read-
token never returns a list. Even if it could, though, they'd still be distinct values, because it'd never return these same 
lists. 

(define (left-parenthesis-token? thing)
   (eq? thing left-parenthesis-token))
(define (right-parenthesis-token thing)
   (eq? thing right-parenthesis-token))

[ see handout with complete code for the little lexer and reader ] So that you can use any number of whitespace 
characters between tokens, read-token skips any whitespace that occurs at the beginning of the input. 

●     read-identifier. If the character we read is a letter, we're reading a symbol, so we call read-
identifier to finish reading it. (We pass it the character we read, since it's the first character of the symbol's 
print name.) read-identifier just reads through more characters, saving them until it hits a character that 
can't be part of an identifier, e.g., whitespace or a parenthesis. Once it has read the characters that make up the 
symbol printname, read-identifier must obtain a pointer to the unique symbol object with that name; if 
there isn't one, it must be created. Here's the code: 

;;; read-identifier reads an identifier and returns a symbol
;;; to represent it
(define (read-identifier chr)

  ;; read-identifier-helper reads in one character a time and puts it into
  ;; a list. If it finds the character is a finishing character, then
  ;; it reverses the list and returns.
  
  (define (read-identifier-helper list-so-far)
    (let ((next-char (peek-char)))
      ;; if next-char is a letter or a digit then call self recursively
      (if (or (char-alphabetic? next-char)
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              (char-numeric? next-char))
          (read-identifier-helper (cons (read-char) list-so-far))
          ;; else return list we've read, reversing it into proper order
          (reverse list-so-far))))
          
  ;; call read-identifier-helper to accumulate the characters in the
  ;; identifier, then convert that to a string object and convert *that*
  ;; to a symbol object.
  ;; Note that string->symbol ensures that only one symbol with a given
  ;; printname string is ever constructed, so there are no duplicates.
  
  (string->symbol (list->string (read-identifier-helper (list chr)))))

When it finishes reading the whole print name of the symbol, read-identifier passes the list of characters 
to the built-in Scheme procedure list->string to create a Scheme string object with that sequence of 
characters. Then it passes that string object to the built-in Scheme procedure string->symbol. string-
>symbol checks the table of existing symbols to see if there's already a symbol with that printname. If so, it 
just returns a pointer to it. (This ensures that it never creates two symbol objects with the same name, and 
always returns the same symbol for a string with the same sequence of characters.) If a symbol with that 
printname doesn't exist, it constructs a symbol by that name, adds it to the table, and returns a pointer to that. 
(string->symbol ensures that there is only ever one symbol with a given printname.) Either way, the 
pointer to the unique symbol with that name is returned as the value from read-identifier. 

●     read-number. If the character we read is a digit, we're reading a number, so we call read-number. (We 
pass it the first character we read, since that's the first digit of the number.) read-number just reads through 
successive characters, accumulating a list of character objects that represent digits. It stops when it encounters a 
character that can't be part of a number. (For our simple little subset, that's anything that's not a digit.) Then it 
passes this list to the standard Scheme procedure list->string, which returns a Scheme string object with 
that sequence of characters. That's passed in turn to string->number, which returns a Scheme number 
object that represents the corresponding number. 

;;; read-number reads a sequence of digits and constructs a Scheme number
;;; object to represent it.  Given the first character, it reads one
;;; char at a t time and checks to see if it's a digit.  If so, it
;;; conses it onto a list of numbers read so far.  Otherwise, it
;;; reverses the list of digits, converts it to a string, and converts
;;; that to a Scheme number object.                           
(define (read-number chr)
  (define (read-number-helper list-so-far)
    (let ((next-char (peek-char)))
      ;; if next-char is a digit then call self resursively
      (if (char-numeric? next-char)
          (read-number-helper (cons (read-char) list-so-far))
          ;; else return the list we've read, reversing into proper order
          (reverse list-so-far))))
  ;; read the string of digits, convert to string, convert to number
  (string->number (list->string (read-number-helper (list chr)))))

Implementing the read procedure
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Given read-token, it's easy to implement read. read uses recursion to recognize nested data structures. It calls 
read-token to read the next token of input. If this is a normal token, e.g., a symbol or string, read just returns that. 
If it's a left parenthesis token, however, read constructs a list, reading all of the elements of the list up to the matching 
right parenthesis. This is done by another helper procedure, read-list. 

To avoid confusion with the standard Scheme read procedure, we'll call our simplified version micro-read. 

;;; Simplified version of read for subset of Scheme s-expression syntax
(define (micro-read)
   (let ((next-token (read-token))
      (cond ((token-leftpar? next-token)
             (read-list '()))
            (else
             next-token))))

(define (read-list list-so-far)
   (let ((token (micro-read-token)))        
      (cond ((token-rightpar? token)
             (reverse list-so-far))
            ((token-leftpar? token)
             (read-list (cons (read-list '()) list-so-far)))
            (else
             (read-list (cons token list-so-far))))))

Here I've coded read-list recursively in two ways. 

The iteration that reads successive items in the list is implemented as tail recursion, passing the list so far as an 
argument to the recursive call. Intuitively, this iterates "rightward" in the list structure we're creating. Each list element 
is consed onto the list so far, and the new list is passed to a the tail-recursive call that performs iteration. (At the first 
call to read-list, we pass the empty list, because we've read zero elements so far.) 

This constructs a list that's backwards, because we push later elements onto the front of the list. When we hit a right 
parenthesis and end a recursive call, we reverse the backwards list we've accumulated, to put it in the proper order, and 
return that. 

Each list element is read by simply calling micro-read, which is what allows a list to contain arbitrary s-
expressions, including other lists. Intuitively, this recurses downward through the nested data structures we're creating. 
The mutual recursion between micro-read and read-list is the key to the structure of the reader. 

This recursion is the interesting recursion--the mutual recursion between micro-read and read-list is what 
makes it possible for micro-read to read arbitrary data structures. 

Comments on the Reader

The reader is a simple kind of recursive descent parser for normal Scheme data structures. (A parser converts a 
sequence of tokens into a syntax tree that describes the nesting of expressions or statements.) It is a "top-down" parser, 
because it recognizes high-level structures before lower-level ones--e.g., it recognizes the beginning of a list before 
reading and recognizing the items in the list. (That is, on seeing a left parenthesis, it "predicts" that it will see sequence 
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of list elements followed by a matching right parenthesis.)(7) (8) 

The reader converts a linear sequence of characters into a simple parse tree. A parse tree represents the syntactic 
structure (phrase groupings) of a sequence of characters. 

(If you're familiar with standard compiler terminology, you should recognize that read-token performs lexical 
analysis (a.k.a. scanning or tokenization) using read-string, read-identifier, and read-number. read 
performs simple predictive recursive-descent ("top down") parsing via the mutual recursion of read and read-
list.) 

Unlike most parsers, the data structure read generates is a data structure in the Scheme language--an s-expression--
rather than a data structure internal to a compiler or interpreter. This is one of the nice things about Scheme; there's a 
simple but flexible parser you can use in your own programs. You can use it for parsing normal data as well as to help 
parse programs. 

When implementing the Scheme language, that's not all there is to doing parsing of Scheme programs. The reader does 
the first part of parsing, translating input into s-expressions. The rest of parsing is done during interpretation or 
compilation, in a very straightforward way. The reader only recognizes nesting of expressions, and basic syntactic 
distinctions between tokens, e.g., whether they are parentheses, identifiers, or numeric literals. Later parsing must 
detect what kind of Scheme expressions the s-expressions represent, e.g., whether a particular list represents a 
procedure call or a special form, or just a literal list. 

The rest of the parsing isn't much more complicated than reading, and is also done recursively.(9) 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Recursive Evaluation

The evaluator is the core of the interpreter--it's what does all of the interesting work to evaluate complicated 
expressions. The reader translates textual expressions into a convenient data structure, and the evaluator 
actually interprets it, i.e., figures out the "meaning" of the expression. 

Evaluation is done recursively. We write code to evaluate simple expressions, and use recursion to break 
down complicated expressions into simple parts. 

I'll show a simple evaluator for simple arithmetic expressions, like a four-function calculator, which you can 
use like this, given the read-eval-print-loop above: 

Scheme>(repl math-eval)  ; start up read-eval-print loop w/arithmetic eval
repl>1
1
repl>(plus 1 2)
3
repl>(times (plus 1 3) (minus 4 2))
8

As before, the read-eval-print-loop reads what you type at the repl> prompt as an s-expression, and calls 
math-eval. 

Here's the main dispatch routine of the interpreter, which figures out what kind of expression it's given, and 
either evaluates it trivially or calls math-eval-combo to help: 

(define (math-eval expr)
  (cond ;; self-evaluating object?  (we only handle numbers)
        ((number? expr)
         expr)
        ;; compound expression? (we only handle two-arg combinations)
        (else
         (math-eval-combo expr))))

First math-eval checks the expression to see if it's something simple that it can evaluate straightforwardly, 
without recursion. 

The only simple expressions in our language are numeric literals, so math-eval just uses the predicate 
number? to test whether the expression is a number. If so, it just returns that value. (Voila! We've 
implemented self-evaluating literals.) 
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If the expression is not simple, it's supposed to be an arithmetic expression with an operator and two 
operands, represented as a three element list. (This is the subset of Scheme's combinations that this interpreter 
can handle.) In this case, math-eval calls math-eval-combo. 

(define (math-eval-combo expr)
  (let ((operator-name (car expr))
        (arg1 (math-eval (cadr expr)))
        (arg2 (math-eval (caddr expr))))
     (cond ((eq? operator-name 'plus)
            (+ arg1 arg2))
           ((eq? operator-name 'minus)
            (- arg1 arg2))
           ((eq? operator-name 'times)
            (* arg1 arg2))
           ((eq? operator-name 'quotient)
            (/ arg1 arg2))
           (else
            (error "Invalid operation in expr:" expr)))))

math-eval-combo handles a combination (math operation) by calling math-eval recursively to 
evaluate the arguments, checking which operator is used in the expression, and calling the appropriate 
Scheme procedure to perform the actual operation. 

Comments on the Arithmetic Evaluator

The 4-function arithmetic evaluator is very simple, but it demonstrates several important principles of Scheme 
programming and programming language implementation. 

●     Recursive style and Nested Lists. Notice that an arithemetic expression is represented as an s-
expression that may be a 3-element list. If it's a three-element list, that list is made up of three objects 
(pairs), but we essentially treat it as a single conceptual object--a node in a parse tree of arithemetic 
expressions. The overall recursive structure of the evaluator is based on this conceptual tree, not on the 
details of the lists' internal structure. We don't need recursion to traverse the lists, because the lists are 
of fixed length and we can extract the relevant fields using car, cadr, and caddr. We are 
essentially treating the lists as three-element structures. This kind of recursion is extremely common in 
Scheme--nested lists are far more common than "pair trees." As in the earlier examples of recursion 
over lists and pair trees, the main recursive procedure can accept pointers to either interior nodes (lists 
representing compound expressions), or leaves of the tree. Either counts as an expression. Dynamic 
typing lets us implement this straightforwardly, so that our recursion doesn't have to "bottom out" until 
we actually hit a leaf. Things would be more complicated in C or Pascal, which don't allow a 
procedure to accept an argument that may be either a list or a number.\footnote{In C or Pascal, we 
could represent all of the nodes in the expression tree as variant records (in C, "unions") containing an 
integer or a list. We don't need to do that in Scheme, because in Scheme every variable's type is really 
a kind of variant record--it can hold a (pointer to a) number or a (pointer to a) pair or a (pointer to) 
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anything else. C is particularly problematic for this style of programming, because even if we bite the 
bullet and always define a variant record type, the variant records are untagged. C doesn't 
automatically keep track of which variant a particular record represents--e.g., a leaf or nonleaf--and 
you must code this yourself by adding a tag field, and setting and checking it appropriately. In effect, 
you must implement dynamic typing yourself, every time.} It is possible to do Scheme-style recursion 
straightforwardly in some statically-typed languages, notably ML and Haskell. These polymorphic 
languages allow you to declare disjoint union types. A disjoint union is an "any of these" type--you 
can say that an argument will be of some type or some other type. In Scheme, the language only 
supports one very general kind of disjoint union type: pointer to anything. However, we usually think 
of data structure definitions as disjoint unions. As usual, we can characterize what an arithmetic 
expression recursively. It is either a numeric literal (the base case) or a three-element "node" whose 
first "field" is an operator symbol and whose second and third "fields" are arithmetic expressions. Also 
as usual, this recursive characterization is what dictates the recursive structure of the solution---not the 
details of how nodes are implemented. (The overall structure of recursion over trees would be the 
same if the interior nodes were arrays or records, rather than linear lists.) The conceptual "disjoint 
union" of leaves and interior nodes is what tells us we need a two-branch conditional in math-eval. 
It is important to realize that in Scheme, we usually discriminate between cases at edges in the graph, i.
e., the pointers, rather than focusing on the nodes. Conceptually, the type of the expr argument is an 
edge in the expression graph, which may point to either a leaf node or an interior node. We apply 
math-eval to each edge, uniformly, and it discriminates between the cases. We don't examine the 
object it points to and decide whether to make the recursive call--we always do the recursive call, and 
sort out the cases in the callee. 

●     Primitive expressions and operations. In looking at any interpreter, it's important to notice which 
operations are primitive, and which are compound. Primitive operations are "built into" the interpreter, 
but the interpreter allows you to construct more complicated operations in terms of those. In math-
eval, the primitive operations are addition, subtraction, multiplication, and division. We "snarf" these 
operations from the underlying Scheme system, in which we're implementing our little four-function 
calculator. We don't implement addition, but we do dispatch to this built-in addition operation. On the 
other hand, compound expressions are not built-in. The interpreter doesn't have a special case for each 
particular kind of expression--e.g., there's no code to add 4 to 5. We allow users to combine 
expressions by arbitrarily nesting them, and support an effectively infinite number of possible 
expressions. Later, I'll show more advanced interpreters that support more kinds of primitive 
expressions--not just numeric literals and more kinds of primitive operations--not just four arithmetic 
functions. I'll also show how a more advanced interpreter can support more different ways of 
combining the primitive expressions. 

●     Flexibility You may be wondering why we'd bother to write math-eval, since it essentially 
implements a small subset of Scheme, and we've already got Scheme. One reason for implementing 
your own interpreter is flexibility. You can change the features of the language by making minor 
changes to the interpreter. For example, it is trivial to modify math-eval to evaluate infix 
expressions rather than postfix expressions. (That is, with the operator in the middle, e.g., (10 plus 
(3 times 2)). All we have to do is change the two lines where the operator and the first operand 
are extracted from a compound expression. We just swap the car and cadr, so that we treat the 
second element of the list as the operand and the first element as the operator. 

●     
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A Note on Snarfing and Bootstrapping

Two concepts worth knowing about language implementation are snarfing and bootstrapping. Snarfing is 
"stealing" features from an underlying language when implementing a new language. Bootstrapping is the 
process of building a language implementation (or other system) by using the system to extend itself. 

Snarfing

Our example interpreter implements Scheme in Scheme, but we could have written it in C or assembly 
language. If we had done that, we'd have to have written our own read-eval-print loop, and a bunch of not-
very interesting code to read from the keyboard input and create data structures, display data structures on the 
screen, and so on. Instead, we "cheated" by snarfing those features from the underlying Scheme system--we 
simply took features from the underlying Scheme system and used them in the language we interpret. Our 
tiny language requires you to type in Scheme lists, because it uses the Scheme read-eval-print to get its input 
and call the interpreter. If we wanted to, we could provide our own reading routine that reads things in a 
different syntax. For example, we might read input that uses square brackets instead of parentheses for 
nesting, or which uses infix operators instead of prefix operators. 

There are some features we didn't just snarf, though--we wrote our own evaluation procedure which controls 
recursive evaluation. For example, we use basic Scheme arithemetic procedures to implement individual 
arithmetic operations, but we don't simply snarf them: the interpreter recognizes arithmetic operations in its 
input language, and maps them onto procedure calls in the underlying language. We can change our language 
by changing those mappings: for example, we could use the symbols +, -, *, and / to represent those 
operations, as Scheme does, or whatever we choose for the language we're interpreting. Or we could use the 
same names, but implement the operations differently. (For example, we might have our own arithmetic 
routines that allow a representation of infinity, and do something reasonable for division by zero.) 

We also use recursion to implement recursion, when we recursively call eval). But since we coded that 
recursion explicitly, we can easily change it, and do something different. Our arithmetic expressions don't 
have to have the same recursive structure as Scheme expressions. 

We could also implement recursion ourselves. As written, our tiny interpreter uses Scheme's activation 
"stack" to implement it's own stack--each recursive call to eval implements a recursive call in our input 
language. We didn't have to do this. We could have implemented our own stack as a data structure, and 
written our interpreter as a simple non-recursive loop. That would be a little tedious, however, so we don't 
bother. 

What counts as "snarfing"? The term is a good one, but not clearly defined. If we call Scheme's read rather 
than using our own reader, we clearly just snarf the Scheme reader, but we've done something a little different 
with recursion. We've done something very different with the interpretation of operator names. 

Bootstrapping and Cross-compiling

Implementing a programming language well requires attention to the fine art of bootstrapping--how much of 
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the system do you have to build "by hand" in some lower-level system, and how much can you build within 
the system itself, once you've got a little bit of it working. 

Most Scheme systems are written mostly in Scheme, and in fact it's possible (but not particularly fun) to 
implement a whole Scheme system in Scheme, even on a machine that doesn't have a Scheme system yet. 

How are these things possible? 

First, let's take the simple case, where you're willing to write a little code in another language. You can write 
an interpreter for a small subset of Scheme in, say, C or assembler. Then you can extend that little language 
by writing the rest of Scheme in Scheme--you just need a simple little subset to get started, and then things 
you need can be defined in terms of things you already have. Writing an interpreter for a subset of Scheme in 
C is not hard--just a little tedious. Then you can use lambda to create most of the rest of the procedures in 
terms of simpler procedures. Interestingly, you can also implement most of the defining constructs and 
control constructs of Scheme in Scheme, by writing macros, which we'll discuss later. 

You can start out this way even if you want your Scheme system to use a compiler. You can write the 
compiler in Scheme, and use the interpreter to run the compiler and generate machine code. Now you have a 
compiler for Scheme code, and can compile procedures so that they run faster than if you interpreted them. 
You can take most of the Scheme code that you'd been interpreting, and use the compiler to create faster 
versions of them. You then replace the old (interpreted) versions with the new (compiled) versions, and the 
system is suddenly faster. 

Once the compiler works, you can compile the compiler, so that it runs faster. After all, a compiler is just a 
program that takes source code as input and generates executable code--it's just a program that happens to 
operate on programs. Now you're set--you have a compiler that can compile Scheme code that you need to 
run, including itself, and you don't need the interpreter anymore. 

To get Scheme to work on a new system, without even needing an interpreter, you can cross-compile. If you 
have Scheme working on one kind of machine, but want to run it on another, you can write your Scheme 
compiler in Scheme, and have it run on one machine but generate code for the new machine. Then you can 
take the executable code it generates, copy it onto the new machine, and run it. 

Most Scheme systems are built using tricks like this. For example, the RScheme system never had an 
interpreter at all. Its compiler was initially run in a different Scheme system (Scheme-48) and used to compile 
most of RScheme itself. This code was then used to run RScheme with no further assistance from another 
implementation. 

The first Scheme system was built by writing a Scheme interpreter in Lisp, [ or was it a compiler first? ... 
blah blah ... ] 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Improving the Simple Interpreter

We can easily improve the little interpreter in lots of ways. [ We should put the code in a file minieval.scm so 
people can experiment with it. Need to debug it first, of course. It's changed since the one I've used in class. ] 

First, we can add a toplevel binding environment, so we can have some variables. (Local variables will be 
discussed in the next chapter.) To make them useful, we need some special forms, like define and (while 
we're at it) set!. 

We can also add a few more data types; for now, we'll just add booleans. 

Here's what our new main dispatch routine looks like: 

(define (eval expr)
   (cond ;; variable reference
         ((symbol? expr)
          (eval-variable expr))
         ;; combination OR special form (any parenthesized expr)
         ((pair? expr)
          (eval-list expr))
         ;; any kind of self-evaluating object
         ((self-evaluating? expr)
          expr)
         (else
          (error "Illegal expression: " expr))))

Since we're adding variables to our interpreter, symbols can be expressions by themselves now--references to 
top-level variable bindings. We've added a branch to our cond to handle that, and a helper procedure eval-
variable. (We'll discuss how the variable lookup is done shortly.) 

We need to recognize two kinds of self-evaluating types now (and may add more later), so we come up with a 
procedure self-evaluating? that covers both cases and can easily be extended. 

(define (self-evaluating? expr)
   (or (number? expr) (boolean? expr)))

[hmm... haven't extended the reader to handle booleans yet... need to use the standard Scheme reader, or 
extend micro-read] 

Be sure you understand the significance of this. We chose to read numeric literals as Scheme numbers, and 
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boolean literals as Scheme objects. This representation makes them easy to evaluate--we just return the same 
object that the reader created. 

We also need to recognize two basic types of compound expressions: combinations and special forms. These 
(and only these) are represented as lists, so we can use pair? as a test, and dispatch to eval-list. 

What we're really doing here is checking to see whether we're evaluating a parenthesized expression of either 
kind. Since parenthesized expressions are read in as lists, we can just check to see whether the s-expression is 
a list. That is, we chose to parse (read) parenthesized expressions as lists, and by checking to see if 
something's a list, we're implicitly checking whether it was a parenthesized expression in the original code. 
(We could have chosen to represent parse trees as some other kind of tree, rather than s-expressions, but s-
expressions are handy because Scheme provides procedures for manipulating and displaying them.) 

Here's the code for eval-list, which just checks to see whether a compound expression is a special form. 
It dispatches to eval-special-form if it is, or to eval-combo if it's not. 

(define (eval-list expr)
   (if (and (symbol? (car expr))
            (special-form-name? (car expr)))
       (eval-special-form expr)
       (eval-combo)))

We could use a cond to check whether symbols are special form names, but using member on a literal list is 
clearer and easily extensible--you can just add names to the list. 

(define (special-form-name? expr)
   (member '(if define set!)))

eval-special-form just dispatches again, calling a routine that handles whatever kind of special form 
it's faced with. (Later, we'll see prettier ways of doing this kind of dispatching, using first-class procedures.) 
From here, we've done most of the analysis, and are dispatching to little procedures that actually do the work. 

[ need to come back to this after discussing backquote--this would make a good example ] 

(define (eval-special-form expr)
  (let ((name (car expr)))
     (cond ((eq? name 'define)
            (eval-define expr))
           ((eq? name 'set!)
            (eval-set! expr))
           ((eq? name 'if)
            (eval-if expr)))))

Notice that each special form has its own special routine to interpret it. This is what makes special forms 
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"special," in contrast to combinations, which can be handled by one procedure, eval-combo. 

Once the evaluator has recognized an if expression, it calls eval-if to do the work. eval-if calls eval 
recursively, to evaluate the condition expression, and depending on the result, calls it again to evaluate the 
"then" branch or the "else" branch. (One slight complication is that we may have a one-branch else, so eval-
if has to check to see if the else branch is there. If not, it just returns #f.) 

(define (eval-if expr)
   (let ((expr-length (length expr)))
      (if (eval (cadr expr))
          (eval (caddr expr))
          (if (= expr-length 4))
              (eval (cadddr expr))
              #f)))

[ note that what we're doing includes parsing... one-branch vs. two branch if. Should actually be doing more 
parsing, checking syntax and signaling errors gracefully. E.g., should check to see that expr-length is a 
legal length. ] 

[ Also note that we're snarfing booleans, and our if behaves like a Scheme if... but we don't have to. We 
could put a different interpretation on if, e.g., only interpreting #t as a true value. ] 

Implementing top-level variable bindings

For a toplevel binding environment, we'll use an association list. (A more serious interpreter would probably 
use a hash table, but a association list will suffice to demonstrate the principles.) 

We start by declaring a variable to hold our interpreter's environment, and initializing it with an empty list. 

(define t-l-envt '())

To add bindings, we can define a routine to add an association to the association list. 

(define (toplevel-bind! name value)
   (let ((bdg (assoc name t-l-envt))) ;; search for association of name
      ;; if binding already exists, put new value (in cadr) of association
      ;; else create a new association with given value
      (if bdg
          (set-car! (cdr bdg) value)
          (set! t-l-envt
                (cons (list name value) t-l-envt)))))

Recall that the elements of an association list are "associations," which are just lists whose first value is used 
as a key. We'll use the second element of the list as the actual storage for a variable. 
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For example, an environment containing just bindings of foo and bar with values 2 and 3 (respectively) 
would look like ((foo 2) (bar 3)). 

At the level of the little Scheme subset we're implementing, we'd draw this environment this way: 

         +-------+        [envt]
t-l-envt |   *---+------>+-------+
         +-------+   foo |   *---+---> 2
                         +-------+
                     bar |   *---+---> 3
                         +-------+

This emphasizes the fact that these are variable bindings with values, i.e., named storage locations. Notice 
that t-l-envt is a variable in the language we're using to implement our interpreter, but foo and bar are 
variables in the language the interpreter implements. 

If we want to show how it's implemented at the level of the Scheme we're writing our interpreter in, we can 
draw it more like this: 

         +-------+
t-l-envt |   *---+---->+---+---+                   +---+---+
         +-------+     | * | *-+------------------>| * | * +
                       +-|-+---+                   +-+-+---+
                         |                           |
                       +---+---+   +---+---+       +---+---+   +---+---+
                       | * | +-+-->| * | * |       | * | *-+-->| * | * |
                       +-|-+---+   +-|-+---+       +-|-+---+   +-+-+---+
                         |           |               |           |
                        foo          2              bar          3

Now we can add the four procedures we had in the math evaluator: 

(toplevel-bind! '+ +)
(toplevel-bind! '- -)
(toplevel-bind! '* *)
(toplevel-bind! '/ /)

Again, we're just snarfing procedures straight from the Scheme we're implementing our interpreter in. We put 
them in our binding environment under the same names. 

Now we need accessor routines to get and set values of bindings for variable lookups and set! 

(define (toplevel-get name)
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   (cadr (assoc name t-l-envt)))

(define (toplevel-set! name value)
   (set-car! (cdr (assoc name t-l-envt))
             value))

[ of course, these really should have some error checking--give examples that signal unbound variable 
errors? ] 

Given this machinery, we can now write eval-variable. (Recall that when eval encounters an 
expression that's just a symbol, it interprets it as a reference to a variable by calling eval-variable.) 

(define (eval-variable symbol)
   (toplevel-get symbol))

We can also define eval-define and eval-set!. All they do is extract a variable name from the 
define or set! expression, and create binding for that name or update its value. (Recall that eval-
define! and eval-set! are called from eval-special-form to interpret expressions of the forms 
(define ...) or (set! ...), respectively.) 

(define (eval-define! expr)
   (toplevel-bind! (cadr expr)
                   (eval (caddr expr))))

(define (eval-set! expr)
   (toplevel-set! (cadr expr)
                  (eval (caddr expr))))

Running the improved interpreter

[ need some example uses ] 

Go to the first, previous, next, last section, table of contents. 
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let

One difference between a C or Pascal block and a Scheme let is that let variable bindings don't 
necessarily cease to exist when the let is exited, and the bindings therefore can't be allocated on a stack 
in the general case. (The reason for this will become clear when we talk about lambda and closures.) 

One way to visualize the creation of block variables is to see it as the creation of a new table mapping 
names to storage, like the toplevel environment in our interpreter. 

Except for the new variables, the new environment (table) is the same as the one that was in use when 
the block was entered. We say that the let expression "extends" the "outer" environment with bindings 
for the let variables. 

Suppose we type a let expression at the Scheme prompt, (Assume we we're just doing the usual 
expression evaluation in the usual top-level environment.) 

Scheme>(let ((x 10) (y 20))
          (+ x y))
30

The interpreter maintains a pointer to the "current environment" when evaluating an expression. This 
pointer always points to the environment the currently-executing code must execute in, i.e., the variable 
bindings it must see for the variables it uses. When we evaluate a variable, we look for a binding of its 
name in the current environment, by searching up the environment chain starting from the "current 
environment" pointer. 

Before evaluating the let expression, Scheme's environment pointer points to the top-level 
environment, which contains the usual bindings holding the built-in Scheme procedures, plus any top-
level variables we've defined. Supposing we've defined a variable foo, we can draw the top-level 
environement like this: 

     +-----+        +------+-----+
envt |  * -+------->|  car |  *--+----> #<proc ...>#
     +-----+        +------+-----+
                    | cons |  *--+----> #<proc ...>#
                    +------+-----+
                    |   +  |  *--+----> #<proc ...>#
                    +------+-----+
                    |      *     |
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                           * 
                    |      *     |
                    +------+-----+
                    |  foo |  +--+----> #<proc ...>#
                    +------+-----+

(Here I've drawn the environment as a simple table of names and bindings. It might actually be 
implemented as an association list, as in our simple example interpreter, or more likely as a hash table.) 

After entering the let and creating the bindings for x and y, the interpreter changes the environment 
pointer to point to the resulting new environment. This is typically implemented by representing the 
environment as a chain of tables called frames, rather than a simple flat table. The newest frame is 
searched first, and so on down the chain, to find the appropriate bindings. This environment chain is 
used as a pointer-linked stack, for the most part, with new frames being pushed onto the stack when a 
let is entered, and popped off the stack when a let is exited. 

Each frame holds bindings created by a particular binding construct in the program, e.g., on entering a 
let. A whole environment is not represented by just one frame, but by the chain of frames starting at a 
particular frame. In the figure below, for example, the smaller binding frame only holds bindings of x 
and y, but it represents an environment that includes bindings of car, etc. The environment inherits 
bindings from the environment it's scoped inside, and this is what the scope link is for. 

                    +-------+-----+
                    |  car  |  +--+----> #<proc ...>#
                    +-------+-----+
                    | cons  |  +--+----> #<proc ...>#
                    +-------+-----+
                    |   +   |  +--+----> #<proc ...>#
                    +-------+-----+
                    |       *     |
                            *
                    |       *     |
                    +-------+-----+
                    |  foo  |  +--+----> #<proc ...>#
                    +-------+-----+
                              /|\
                               |
                               |
                               |
     +-----+        +-------+--+--+
envt |  +--+------->|[scope]|  *  |
     +-----+        +-------+-----+
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                    |   x   |  10 |
                    +-------+-----+    
                    |   y   |  20 |    
                    +-------+-----+    

The link that connects the two frames (tables) is called a scope link. It reflects the nesting of naming 
scopes in the program. In this case, when a variable is referenced inside the let, the search for a 
binding begins at the new frame (table). If it is not found, the search follows the scope link to the next 
frame and looks there. This can continue for as many levels as there are nested scopes in the program. 

While we're executing in the new environment, bindings in the new frame shadow (hide) any bindings of 
variables with the same name in the outer environment. For example, if there's a top-level variable 
named x bound in the top-level environment, they won't be seen by code executing in the let 
environment. 

When we exit the let, the current environment pointer is set back to point to the same environment 
frame as before entering the let. In the usual case, that environment becomes garbage because there are 
no pointers to it, and the garbage collector will eventually reclaim its space. 

Keep in mind that an environment is a language-level entity, and just consists of a set of bindings; it is 
just a mapping from names to storage that can hold values. Our chain of frames is a convenient and 
efficient data structure we've chosen to implement this abstraction, so that environments nest properly. 

The difference between frames and environments is similar to the difference between pairs and lists. A 
pointer to a pair that begins a list may be thought of as pointer to the pair itself, or as a pointer to the 
whole list of pairs connected by their cdr's. Likewise, a pointer to an environment frame points to that 
frame, but also points to the sequence of environment frames connected by their scope links. This 
corresponds to the scope rule that an expression can see bindings created by enclosing expressions, as 
long as they're not shadowed by another binding in between. 

As with pairs and lists, environment frames can share structure, and the same frame may be part of 
several (nested) environments. (As we'll see later, this is important for implementing lexical scope 
correctly in the presence of first-class procedures.) 

Unlike pairs and lists, however, a particular environment doesn't necessarily include all of the parts of 
all of the frames in the sequence. The scope rules of the language allow shadowing of bindings in outer 
environments by bindings in inner environments; our lookup routine implements this by searching an 
environment chain in inner-to-outer order, and taking the first binding of the name. 

If we think of environments as sets of bindings, the act of pushing an environment frame on the front of 
an environment creates a new environment with new bindings added--and with any shadowed bindings 
removed. We don't actually modify the old environments, however--they're not changed by the creation 
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of new environments with scope links to them. What effectively "removes" a binding to create a new 
envioronment is our search procedures--it searches an environment front-to back, to find the binding of a 
name, and ignores any bindings after the first one it finds. 

As we will see later, it's significant that we never actually modify the structure of an environment chain 
once it's created--we never clobber the scope links. This allows us to save a pointer to an environment by 
saving a pointer to the first frame in the chain, and restore that environment later by simply setting our 
environment pointer to point to that frame. In effect, we can switch from one whole environment (set of 
bindings) to another just by changing a pointer. It also lets us have environments that share structure--
nested environments simply have more frames in their chains, and the chains share structure with they're 
nested in. These properties of environment chains turn out to be very convenient when implementing 
procedure calling. 

Go to the first, previous, next, last section, table of contents. 
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lambda

Recall that in Scheme, we can create anonymous (unnamed) procedures any time we want, using the 
lambda special form. 

For example, suppose you want a procedure that doubles the values of the items in a list. You could do 
what we did before, and define a named double procedure, but if you only need to use the procedue in 
one place, it's easier to use an anonymous procedure created with lambda. 

Instead of writing 

(define (double x)
   (+ x x))

and then using it like this 

   ...
   (map double mylist)
   ...

You can simply define it where it's used, using lambda. 

   ...
   (map (lambda (x) (+ x x))
        mylist)
   ...

This can help avoid cluttering your code with lots of auxiliary procedures. (Don't overdo it, though--if a 
procedure is nontrivial, it's good to give it a name that reflects what it does.) This is very convenient 
when using higher-order procedures like map, or higher-order procedures you come up with for your 
own programs. 

[ As we'll see in a little while, lambda has some very interesting properties that make it more useful 
than it might seem right now. ] 

[ point out that variable arity works with lambda arg lists just like with define arg lists ] 

Procedures are Closures
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Scheme procedure's aren't really just pieces of code you can execute; they're closures. 

A closure records not only what code a procedure must run, but also what environment it was created in. 
When you call it, that environment is restored before the actual code is executed. That is, the "current 
environment pointer" is set to point to that environment, and whenever the procedure references a 
variable, it will be looked up there. 

This ensures that when a procedure executes, it sees the exact same variable bindings that were visible 
when it was created--it doesn't just remember variable names in its code, it remembers what storage 
each name referred to when it was created. 

Since variable bindings are allocated on the heap, not on a stack, this allows procedures to remember 
binding environments even after the expressions that created those environments have been evaluated. 
For example, a closure created by a lambda inside a let will remember the let's variable bindings 
even after we've exited the let. As long as we have a pointer to the procedure (closure), the bindings it 
refers to are guaranteed to exist. (The garbage collector will not reclaim the procedure's storage, or the 
storage for the let bindings.) 

We say that a procedure is closed in the environment where it is created. Technically, this is because a 
closure records the transitive closure of the "scoped in" relation; that is, it can see bindings created by 
the enclosing binding construct, bindings created by the one enclosing that, and so on until reaching the 
top level. Intuitively, you can also think of the set of bindings as closed when a procedure is created: 
bindings that are not lexically visible when the procedure is created are not visible when it runs. 
(Except for bindings created by the procedure itself when as it runs, that is--it can bind arguments, 
evaluate let expressions, etc.) 

Here's an example that may clarify this, and show one way of taking advantage of it. 

Suppose we type the following expression at the Scheme prompt, to be interpreted in a top-level 
environment: 

Scheme> (let ((count 0))
           (lambda ()
              (set! count (+ count 1))
              count)))
#<proc ....># 

Notice that the let is not inside a procedure; Scheme variables don't have to be local to a procedure. In 
this case, count is just local to the let expression that binds it. 

[ need picture here ] 
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Evaluating this let expression first creates a binding environment with a binding for count. The initial 
value of this binding is 0. In this environment, the lambda expression creates a closure. When executed, 
this procedure will increment the count, and then return its value. (Note that the procedure is not 
executed yet, however--it's just created so that it can be called to operate on the binding of count 
later.) This procedure, returned by the lambda expression, is also returned as the value of the let 
expression, because a let returns the value of its last body expression. The read-eval-print loop 
therefore prints a representation of the (anonymous) procedure. 

Unfortunately, we didn't do anything with the value, like give it a name, so we can't refer to it anymore, 
and the garbage collector will just reclaim it. (OOPS!) Now suppose we want to do the same thing, but 
hold onto the closure so that we can do something with it, like calling it. 

We'll bind a new variable my-counter, and use the above let expression to create a new 
environment and procedure, just like before. 

Scheme> (define my-counter
                (let ((count 0))
                   (lambda ()
                      (set! count (+ count 1))
                      count))))
#void

(Notice that we're using plain variable definition syntax here--the only procedure we're creating is the 
value of the lambda expression, which we're storing in the binding of my-counter. 

Now we have a top-level binding of my-counter, whose value is the procedure we created. It will 
remember the binding of count created by the let before evaluating the lambda expression. 

(The crucial trick here relies on the fact that the let expression not only creates the local variable binding 
for count, but returns the value of the last expression in its body--i.e., the closure returned by the 
lambda expression. The pointer to the closure is passed along by the let to become the initial value for 
the binding of my-counter.) 

The procedure keeps a pointer to the environment created by the let, which in turn has a pointer to the 
top-level environment, thus: 

[ should simplify this picture and use it earlier, for the simpler example where we don't keep a pointer to 
the closure. Should show the envt register pointing to the let envt at the moment the closure is 
created. ] 

                    [envt]
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         +-->+------------+-----+             
         |   |      car   |  *--+--> ...    
         |   +------------+-----+            
         |   |      cons  |  *--+--> ...   
         |   +------------+-----+        
         |   |        *         |  
         |            *         
         |   |        *         |   
         |   +------------+-----+
         |   | my-counter |  *--+------------+
         |   +------------+-----+            |
         |                  /|\              |
         |                   |               |
         |     [envt]        |               |
         |   +------------+--+--+            |
         |   |   [scope]  |  *  |            |
         |   +------------+-----+            |
         |   |      count |  *--+-->0        |
         |   +------------+-----+           \|/
         |            /|\                [closure]
         |             |                +---------+
         |             +----------------+----*    |
         |                              +---------+ 
         |                              |    *    |
         |                              +----+----+ 
         |                                   |
         |                                  \|/
         |                                 [code]
         |                          +--------------------+
     +---+---+                      | (set! count        |
envt |   *   |                      |       (+ count 1)) |
     +-------+                      | count              |
                                    +--------------------+

Now if we call the procedure my-counter, it will execute in its own "captured" environment (created 
by the let). It will increment the binding of count in that environment, and return the result. The 
environment will continue to exist as long as the procedure does, and will store the latest value until next 
time my-counter is called: 

Scheme>(my-counter)
1
Scheme>(my-counter)
2
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Scheme>(my-counter)
3

Notice that if we evaluate the whole let form again, we will get a new let environment, with a new 
binding of count, and a new procedure that will increment and return its count value--in effect, each 
procedure has its own little piece of state which only it can see (because only it was created in that 
particular environment). Each one remembers which piece of storage count referred to when it was 
created, and operates on that particular piece of storage. 

If we want, we can define a procedure that will create new environments, and new procedures that 
capture those environments--we can generate new counter procedures just by calling that "higher-order" 
procedure. (Recall that a higher-order procedure is just a procedure that manipulates other procedures. In 
this case, we're making a procedure that generates procedures.) 

Each time make-counter is called, it will execute a let, creating an environment, and inside that it 
will use lambda to create a counter procedure. 

Scheme> (define (make-counter)
           ;; bind count and create a new procedure that will (when
           ;; called) increment that binding and return its value
           (let ((count 0))
              (lambda ()
                 (set! count (+ count 1))
                 count)))
make-counter

(Note that here we're using procedure-definition syntax.) 

Each of the resulting procedures will have its own captured count variable, and keep it independently of 
the other procedures. 

Make sure you understand that the above procedure definition could have used an explicit lambda to 
create the procedure make-counter, rather than the special procedure definition syntax: 

Scheme> (define make-counter
                ;; create a procedure that will bind count and
                ;; return a new procedure that will increment that
                ;; binding and return its value
                (lambda ()
                   (let ((count 0))
                      (lambda ()
                         (set! count (+ count 1))
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                         count)))

You may actually find this easier to understand, because it shows you exactly what's going on: binding 
make-counter and creating a procedure (with the outer lambda) that when called, will evaluate a 
let to create an environment, and a lambda (the inner one) to create a new procedure that captures 
that particular environment.) 

Now we'll call the procedure created by the above definition, three times, and each time it will create a 
new procedure: 

Scheme> (define c1 (make-counter))
C1
Scheme> (define c2 (make-counter))
C2
Scheme> (define c3 (make-counter))
C3

Now we'll call those procedures and look at their return values, to illustrate that they're independent 
counters: 

Scheme> (c1)
1
Scheme> (c1)
2
Scheme> (c2)
1
Scheme> (c2)
2
Scheme> (c1)
3
Scheme> (c1)
4
Scheme> (c3)
1

Neat, huh? The combination of block structure (local environments) with first-class procedures 
(closures), allows us to associate state with procedures. Garbage collection makes this very convenient, 
because we know that the environments will hang around as long as the procedures do. 

This example shows that we can use closures to create private variable bindings. Notice that once we've 
exited a let, the variables aren't visible anymore. But if we call a closure that was created there, they 
become visible again---to that closure only. The only way to operate on a variable binding after it has 
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gone out of scope is to call a procedure that was created while it was in scope. This means that once a 
binding construct has been exited, the set of procedures that can operate on the bindings it creates is 
fixed. As I'll show later in this chapter, we can use this to structure programs and make sure that things 
don't interact when they're not supposed to. 

If you're familiar with object-oriented programming, you may notice a resemblance between closures 
and "objects" in the object-oriented sense. A closure associates data with a procedure, where an object 
associates data with multiple procedures. After we get to object-oriented programming, we'll explain 
how object-oriented programming facilities can be implemented in Scheme using closures. 

If you're familiar with graphical user interface systems, you may notice that GUI's often use "callbacks," 
which are procedures that are executed in response to user input events like button clicks and menu 
selections, and do something application-specific. (The application "registers" callback procedures with 
the GUI system, which then calls them when the user clicks on the specified buttons.) Closures make 
excellent GUI callback procedures, because the application can create a closure for a specific context by 
capturing variable bindings, to customize the behavior of the procedure. 

Since argument variables are just local variables that get their initial values in a special way, we can use 
argument variables in much the same way as let variables. 

Here's a new version of make-counter, which takes an argument that gives the initial value for a 
counter--it doesn't have to start at zero. 

(define (make-counter count)
   ;; return a new procedure to increment argument variable
   ;; count and return its value
   (lambda ()
      (set! count (+ count 1))
      count))

Here we're using procedure-definition syntax, so we're creating a procedure of one argument count. 

Whenever the procedure is called, count will be bound (once) and initialized to whatever value we 
give as an argument to make-counter. Then the lambda expression will be evaluted to create a new 
procedure that captures that binding of count. 

(The argument variable count is bound to a fresh piece of storage when the procedure is entered, and 
we can "capture" that binding by creating a closure in its scope. As with a let variable, we get a different 
piece of storage each time we call make-counter.) 

For this kind of counter, we'd probably rather return the old value of the counter, rather than the new 
one, each time we increment it. To do that, we can put a let inside the lambda expression, to hold 
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onto the old value 

(define (make-counter count)
   ;; create a procedure that 
   (lambda ()
      (let ((value count))         ;; hang onto value of count
         (set! count (+ count 1))  ;; increment count
         value)))                  ;; return previous value

Lambda is cheap, and Closures are Fast

It may seem that lambda is an expensive operation--after all, it creates procedure objects on the fly. At 
first glance, you might think that executing lambda would require a call to the compiler each time. This 
is not the case, though, and lambda is actually a fairly cheap constant-time operation. 

Notice that the procedure part of a lambda expression is known at compile time--each time the 
lambda is executed at run time, it will create a new closure, and may capture a new environment, but 
the expression closed in that environment is determined solely by the body of the lambda expression. A 
compiler for Scheme will therefore compile the code for all of the closures created by a particular 
lambda expression, when it compiles the enclosing procedure. So, for example, when our example 
procedure make-counter is compiled, the compiler will also compile the code for the lambda body. 
This code will be kept around for use by make-counter. 

The actual run-time code for lambda just fetches the address of the code, and the current environment 
pointer, and puts them in a creates a new closure object on the heap. lambda is therefore about as fast 
as cons---all that's really happening is the creation of the closure object itself, not anything expensive 
like calling the compiler at run-time. 

(At this point, some people who are really concerned with efficiency may be wondering if Scheme is 
slow because variable bindings are allocated on the heap rather than on a stack, or in registers. Don't 
worry much about this--a good Scheme compiler can actually avoid heap-allocating environments when 
no closures are created in their scope, and can register-allocate most variables, as other compilers do.
(10)) 

Go to the first, previous, next, last section, table of contents. 
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An Interpreter with let and lambda

In this section, I'll present a new interpreter for a bigger subset of Scheme; it handles all of the essential 
special forms of Scheme, except for macro definitions. (A macro facility would be easy to add, as well, and 
would make it easy to implement the remaining special forms by automatic transformation, in terms of the 
special forms the interpreter "understands" directly. A later chapter will show how to do this.) 

The new interpreter is very much like the one from the last chapter, with three important differences: 

●     It implements local binding environments as well as a top-level environment. Evaluating an expression 
(such as a let) may create a new environment, and subexpressions (such as the let body) can 
simply be evaluated in the new environment by recursive calls to eval 

●     It allows new procedures to be defined, creating closures. Closures pair environments with code bodies 
that are interpreted by the interpreter. Calling a closure is much like evaluating a let. The arguments 
are bound in a local environment (like let variables), and the body is interpreted in that environment. 

●     We will treat special forms differently, binding special form names in much the same way as normal 
variable names. This will make the interpreter cleaner and more extensible. 

Here is our new eval: 

(define (eval expr envt)
   (cond ((symbol? expr)
          (eval-symbol expr envt))
         ((pair? expr)
          (eval-list expr envt))
         ((self-evaluating? expr)
          expr)
         (#t
          (error "Illegal expression form" expr))))

Notice that not much has changed---eval still just analyzes expressions and dispatches to more specialized 
helper procedures that handle particular kinds of expressions. 

The important difference is that eval expects an environment argument envt, which represents the binding 
environment in which to evaluate an expression. That is, the environment argument is used to keep track of 
the meaning of variable names--what storage they refer to--as teh interpretation process moves in and out of 
scopes. 

Nested Environments and Recursive Evaluation
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Instead of using the old "flat" representation of an environment, which was just a table of name-value pairs, 
we'll represent nested environments as a list of tables, or environment chain. 

When we begin interpreting, the environment chain will consist of one table, the top-level environment. 
When we evaluate a binding construct such as a let, we will create a new table, or environment frame, 
which binds the local variables. This frame will contain the name-value pairs bound locally, plus a pointer to 
the next enclosing environment. The environment chain is thus a linked list that acts like a stack, for the most 
part--new enviornment frames are pushed on the front of the list when entering a binding construct, and 
popped off the front of the list when exiting it. 

We could implement this stack-like behavior with an explicit stack data structure in the interpreter, but it's 
easier to use the activation "stack" of the language we're using to implement the interpreter. (In this case, that 
happens to be Scheme, but if we were implementing the interpreter in C, we could use C's activation stack.) 
We'll just use recursion to evaluate subexpressions, and rely on the language we're implementing the 
interpreter in to remember where we were in interpreting the enclosing expressions. 

At any given point during evaluation, the current environment is the environment referred to by the 
interpreter's internal variable envt, an in particular the most recent binding of envt. 

When we evaluate an expression that doesn't change the interpretive environment, and call eval recursively 
to evaluate subexpressions, we simply pass the envt variable's value to the recursive calls. This will ensure 
that the subexpressions execute in the same environment as the enclosing expression expression. 

When we evaluate a binding construct, and evaluate subexpressions in that environment, we create a new 
environment and pass that to the recursive calls to eval, so the subexpressions will execute in the new 
enviornment instead. 

Notice that we don't actually modify the environment chain when creating a new environment--we simply 
create a new frame which holds a pointer to the old environment, and pass it to the recursive eval. The fact 
that we don't actually modify the structure of the environment is important--it's will let us implement closure 
correctly. 

When the interpreter returns from evaluating a subexpression, it returns to an enclosing invocation of eval; 
the old environment will become visible again because we return to an eval where that environment is the 
value of the envt argument. 

For example, consider what happens when we interpret the following expression, starting at the top level: 

(let ((foo 1))
   (if (a)
       (let ((bar 2))
          (if (b)
              (c)
              (d))
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          (e))
       (f)
   (g))

[ We'll focus on the nested calls to eval corresponding to the nesting of let, if, let, if ] 

If we look at the nested calls to eval, we first see a call that evaluates the whole expression in the top-level 
environment: 

                            +-----+
eval  expr: (let...)  envt: |  *--+--> [toplevel envt]
                            +-----+

(I've given a textual representation of the expr argument, but a pictorial representation of the envt 
argument to eval.) 

eval will dispatch to eval-let, passing it the same environment. eval-let will evaluate the initial 
value expression 1 in that environment, and create a new environment binding foo. (I'll ignore the recursive 
call to eval to evaluate the argument.) It will then call eval recursively to evaluate the let body in that 
environment. 

I'll depict the nested invocations of eval and eval-let top-to-bottom, showing the stack growing toward 
the bottom of the picture. (This just turns out to be simpler than drawing the stack growing up.) 

                                +-----+
eval     expr: (let...)   envt: |  *--+--> [toplevel envt]
                                +-----+      /|\     /|\
                                              |       |
                                +-----+       |       |
eval-let expr: (let...)   envt: |  *--+-------+       |
                                +-----+               |
                                                      |
                                +-----+               |
eval     expr: (if...)    envt: |  *--+-->  [ [foo 1] * ]
                                +-----+  

eval-if will evaluate the condition expression (a) in the given environment. We'll ignore that recursive 
call to eval, but assume it returns a true value. In that case, eval-if will evaluate its consequent, the inner 
let expression, by another recursive call to eval. 

At this point, the "stack" of invocations of eval, eval-let, and eval-if looks like this: 

                                +-----+
eval     expr: (let...)   envt: |  *--+--> [toplevel envt]
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                                +-----+      /|\     /|\
                                              |       |
                                +-----+       |       |
eval-let expr: (let...)   envt: |  *--+-------+       |
                                +-----+               |
                                                      |
                                +-----+               |
eval     expr: (if...)    envt: |  *--+---> [ [foo 1] * ]
                                +-----+      /|\  
                                              | 
                                              | 
                                +-----+       |   
eval-if  expr: (if...)    envt: |  *--+-------+       
                                +-----+       |       
                                              |      
                                +-----+       |        
eval     expr: (let...)   envt: |  *--+-------+
                                +-----+

Again, the let will evaluate the intial value expression, 2, by a recursive call to eval, which we will ignore 
here. Then it will bind bar in a new environment frame, and call eval recursively to evaluate the body in 
that environment. The body consists of another if, so eval-if will be called, and it will evaluate its 
argument expression and either the consequent or the alternative in that environment. 

Assuming the condition returns true and it evaluates the consequent, (c), here's the "stack" of invocations of 
eval, eval-let, and eval-if at the point where (c) is evaluated: 

                                +-----+
eval     expr: (let...)   envt: |  *--+--> [toplevel envt]
                                +-----+      /|\     /|\
                                              |       |
                                +-----+       |       |
eval-let expr: (let...)   envt: |  *--+-------+       |
                                +-----+               |
                                                      |
                                +-----+               |
eval     expr: (if...)    envt: |  *--+---> [ [foo 1] * ]
                                +-----+      /|\     /|\
                                              |       |
                                              |       |
                                +-----+       |       |
eval-if  expr: (if...)    envt: |  *--+-------+       |
                                +-----+       |       |
                                              |       |
                                +-----+       |       | 
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eval     expr: (let...)   envt: |  *--+-------+       |
                                +-----+               |
                                                      |
                                +-----+               |
eval     expr: (if...)    envt: |  *--+---> [ [bar 2] * ]
                                +-----+      /|\  
                                              | 
                                +-----+       | 
eval     expr: (c)        envt: |  *--+-------+    
                                +-----+    

[ Note that the pictures above all depict evaluation of nested non-tail expressions. In the case of tail 
expressions, the "stack" will not include as much information, because the state of the calls to eval, etc., will 
not be saved before the calls that evaluate subexpressions. 

Our interpreter is written in good tail-recursive style, with tail calls to evaluate expressions that are tails of 
expressions in the language we're interpreting. This means that the intepreter is tail-recursive wherever the 
program it's implementing is tail-recursive, and since it's implemented in a tail-recursive language (Scheme), 
we preserve the tail-recurson of the program we're interpreting. In effect, we snarf tail-call optimization from 
the underlying Scheme system. If we were implementing our interpreter in C, we'd have to use special tricks 
to preserve tail recursion. We'll show how this can be done later, when we discuss our compiler. ] 

Integrated, Extensible Treatment of Special Forms

In the interpreter in the last chapter, we implemented special forms directly in the interpreter---eval-list 
checked compound expressions to see if they began with a special form name. In effect, we hardcoded the 
meanings of special form names in the procedure eval-special-form. 

In our new interpreter, we'll use a cleaner approach, which treats special form definitions pretty much like 
variable definitions. This will let us put special forms in particular environments, and use the normal scoping 
mechanisms to look up the routines that compile them. 

This has several advantages. The first is that it makes our interpreter more modular. We can create different 
environments with different special forms, and use the same interpreter to interpret different languages. That 
is, we separate out the basic operation of the interpreter from the particular special forms we decide on. 

The second advantage is that it will allow us to build an elegant macro facility, so that new special forms can 
be defined in terms of old ones. (This will be described in detail in [ a later chapter ].) 

[ this is out of place, but fwd ref idea anyway? Shorten? Or just move?] 

A Scheme interpreter or compiler only needs to "understand" procedure calling and a few basic special 
forms---lambda, if, set!, quote, and one very special special form for defining new special forms 
(macros). (We can write cond as a macro using if, let as a macro using lambda, letrec as a macro 
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using let, lambda, and set!, and so on.) 

The third advantage is that we can use the same scoping rules for special forms that we use for variables. This 
will be very convenient later, because we will be able to define local macros, in much the same way we 
define local procedures. 

To support this, we need to represent bindings slightly differently. In the simple interpreter from the last 
chapter, each binding was just a name-value pair. Now we'll have a third part to each binding, telling what 
kind of binding it is--a variable binding, a special form binding, or a macro binding. 

We can still use associations to represent the bindings. Where the simpler interpreter representing each 
binding as an association of the form (name value), the new one will use bindings of the form (name 
type whatever). In the case of a normal variable binding, the "whatever" is the actual value of the variable. 
In the case of a special form, the "whatever" is the information the interpreter needs to interpret that particular 
special form, including the procedure to evaluate it. For example, when binding the name let, we can store a 
pointer to the procedure eval-let right there in the binding information. 

Since the exact representation of bindings is irrelevant, and we may want to change it, we'll call the whole 
thing a binding-info data structure. This reflects that fact that it may not hold just a binding, but also any 
auxiliary information we want to store. 

To abstract away from exactly how bindings are implemented, we'll define several procedures that operate on 
binding-info's. These include: 

●     bdg-type, which returns a symbol saying what kind of binding it is: <variable> for a normal 
variable, <special-form> for a built-in special form binding, and <syntax> for a syntax 
(macro) binding. 

●     bdg-variable-ref, which returns the value of a normal variable binding. 
●     bdg-special-form-evaluator, which returns an evaluation procedure for a special form 

binding. 

For now we'll ignore <syntax> bindings, which will be discussed in a later chapter. 

[ give actual code for accessors, etc? ] 

Here's our new eval-list for handling compound expressions: 

(define (eval-list list-expr envt)
   ;; only try to consider it specially if the head is a symbol
   (if (symbol? (car list-expr))

       ;; look it up in the current lexical environment
       (let ((binding-info (envt-lexical-lookup envt (car list-expr))))
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          ;; switch on the type of thing that it is
          (cond ((not binding-info)
                 (error "Unbound symbol" (car list-expr)))
                (else
                 (cond
                    ;; special forms just call the special-form
                    ;; evaluator, which is stored in the binding-info
                    ;; object itself
                   ((eq? (binding-type binding-info) '<special-form>)
                    ((bdg-special-form-evaluator binding-info) list-expr
                                                               envt))

                   ((eq? (binding-type binding-info) '<variable>)
                    (eval-combo (bdg-variable-ref binding-info)
                                (cdr list-expr)
                                envt))
                   ((eq? (binding-type binding-info) '<syntax>)
                    (eval-macro-call (bdg-syntax-transformer binding-info)
                                     list-expr
                                     envt))
                   (else
                    (error "Unrecognized binding type"))))))

         ;; the head of the list is not a symbol, so evaluate it
         ;; and then do an eval-combo to evaluate the args and
         ;; call the procedure
         (eval-combo (eval (car list-expr) envt)
                     (cdr list-expr)
                     envt)))

eval-list first checks to see whether the head of the list is a symbol; if not, it's just a combination 
(procedure call expression), and is handled by eval-combo. (Remember that a combination can have an 
arbitrary expression as its operator, and that expression is assumed to return a procedure to call.) 

If it is a symbol, the binding of the variable is looked up. If it's a special form binding, the evaluation 
procedure is extracted from the binding info, and called to evaluate the expression. 

If the head of the list is just the name of a normal variable, that's also just a combination, and eval-combo 
is called in that case, too. 

If the head of the list is the name of a syntax binding (macro), we call eval-macro-call to deal with it; 
don't worry about this for now--it will be discussed in detail in Chapter [ whatever ]. 

Notice that in all cases, the environment is passed along unchanged to whatever procedure handles the 
expression. 
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Go to the first, previous, next, last section, table of contents. 
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Interpreting let

The procedure eval-let will be stored in the binding for the special form let. In the case of a let 
expression, eval-let (above) will extract this procedure from the binding and call it to evaluate the 
expression. 

(define (eval-let let-form envt)

   ;; extract the relevant portions of the let form
   (let ((binding-forms (cadr let-form))
         (body-forms (cddr let-form)))
         
      ;; break up the bindings part of the form
      (let ((var-list (map car binding-forms))
            (init-expr-list (map cadr binding-forms)))

         ;; evaluate initial value expressions in old envt, create a
         ;; new envt to bind values,
         (let ((new-envt (make-envt var-list
                                    (eval-multi init-expr-list envt)
                                    envt)))
            ;; evaluate the body in new envt
            (eval-sequence body-forms new-envt)))))

The first thing let does is to extract the list of variable binding clauses and the list of body expressions 
from the overall let expression. Then it further decomposes the variable binding clauses, extracting a list 
of names and a corresponding list of initial value expressions. (Notice how easy this is using map to create 
lists of car's and cadr's of the original clause list.) 

eval-let then calls a helper procedure, eval-multi, to recursively evaluate the list of initial value 
expressions and return a list of the actual values. 

Then it calls make-envt to make the new environment. This creates a new environment frame, scoped 
inside the old environment--i.e., with a scope link to it--with variable bindings for each of the variables, 
initialized with the corresponding values. 

Then eval-let calls eval-sequence to recursively evaluate the body expressions in the new 
environment, in sequential order, and return the value of the last expression. This value is returned from 
eval-let as the value of the let expression. 
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Here's the code for eval-multi, which just uses map to evaluate each expression and accumulate a list 
of results. 

(define (eval-multi arg-forms envt)
   (map (lambda (x)
           (eval x envt))
        arg-forms))

eval-multi calls eval recursively to evaluate each subexpression in the given environment. To do 
this, it must pass two arguments to eval. It uses map to iterate over the list of expressions, but instead of 
calling eval directly, map calls a helper procedure that takes an expression as its argument, and then 
passes the expression and the environment to eval. 

Recall from section [ whatever ] that technique is known as currying. We use lambda to create a 
specialized version of a procedure (in this case eval), which automatically supplies one of the arguments. 
In effect, we create a specialized, one-argument version of eval that evaluates expressions in a particular 
environment, and then map that procedure over the list of expressions. 

Here's the code for eval-sequence, which is very much like eval-multi---it just evaluates a list of 
expressions in a given environment. It's different from eval-multi in that it returns only the value of 
the last expression in the list, rather than a list of all of the values. 

(define (eval-sequence arg-forms envt)
   (if (pair? arg-forms)
       (cond ((pair? (cdr arg-forms))
              (eval (car arg-forms) envt)
              (eval-sequence (cdr arg-forms) envt))
             (else
              (eval (car arg-forms) envt)))
       '*undefined-value*)) ; the value of an empty sequence

(Notice that we've written eval-sequence tail-recursively, and we've been careful to evaluate the last 
expression using a tail-call to eval. This ensures that we won't have to return to eval-sequence, so if 
the expression we're interpreting is a tail-call, we won't lose tail-recursiveness in the interpreter.) 

Variable References and set!

eval-symbol handles variable references. It looks up the binding of the symbol, if there is one--if not, it 
signals an unbound variable error--and checks to see that it's a variable reference and not a special form or 
macro. If it is a normal variable, it fetches the value from the binding and returns it. 

(define (eval-symbol name-symbol envt)
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   (let ((binding-info (envt-lexical-lookup envt name-symbol)))
      (cond ((not binding-info)
             (error "Unbound variable" name-symbol))
            ((eq? (binding-type binding-info) '<variable>)
             (bdg-variable-ref binding info))
            (else
             (error "non-variable name referenced as variable"
                    name-symbol)))))

eval-set! handles the set! special form. It will be stored in a special form binding of the name 
set!, and extracted and called (by eval-list) to evaluate set! expressions. 

(define (eval-set! set-form envt)
   (let ((name (cadr set-form))
         (value-expr (caddr set-form)))
      (let ((binding-info (envt-lexical-lookup envt name)))
         (cond ((not binding-info)
                (error "Attempt to set! unbound variable" name))
               ((eq? (binding-type binding-info) '<variable>)
                (bdg-variable-set! binding-info (eval value-expr envt)))
               (else
                (error "Attempt to set! a non-variable" name))))))

Go to the first, previous, next, last section, table of contents. 
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Interpreting lambda and Procedure Calling

Our new interpreter will handle defining and calling new procedures. This is not difficult, because all of 
the major mechanisms are already in place. We need the ability to define local variables (e.g., arguments), 
which we already implemented for let. We also need the ability to interpret the procedure bodies, but the 
interpreter we've got is just fine for that. We'll simply store the procedure bodies as s-expressions, and 
interpret them like any other expressions when the procedure is called. 

Our representation of closures will be very simple. A closure mainly pairs an environment with a 
procedure body, but we also need to specify a list of argument the procedure will accept. 

We'll define a procedure make-closure to construct a closure, given a pointer to an environment, a 
pointer to a list of argument names (symbols), and pointer to a procedure body (a list of expressions). 

We'll also define the procedures closure-envt, closure-args, and closure-body to extract 
those parts when we call the procedure. 

As a slight complication, we'd like to start out with some predefined procedures, and the easiest way to do 
that is simply to snarf the corresponding procedures from the underlying Scheme system, i.e., the language 
we're using to implement our interpreter. (If we were writing our interpreter in C or assembly language, we 
might write the code bodies of built-in procedures in that language.) 

These snarfed procedures will be the built-in "primitive" operations in our language, which can be "glued 
together" by the interpreter to build new procedures, which may be arbitrarily complicated. 

In the simple interpreter in the last chapter, we snarfed procedures directly--we just used closures in the 
underlying Scheme as procedures in our language. In the new interpreter, we need to distinguish between 
snarfed procedures (which we can simply call from inside the interpreter) and user-defined procedures, 
which we must interpret via recursive calls to eval. 

Our representation of closures will therefore support two predicates. closure? will test an object to see 
if it is a closure of either sort. primitive-closure? will test whether a closure represents a snarfed 
procedure from the underlying Scheme system. 

In the case of a primitive closure, calling the closure just consists of extracting the underlying Scheme 
closure, and calling it with the given argument values. (We don't snarf any procedures that depend on what 
environment they execute in. We only snarf functions like + and cons, which depend only on their 
arguments.) 
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A closure therefore has three important fields: a pointer to an environment, a pointer to a list of argument 
names, and a pointer to a code body. It also has a "hidden" type field, saying that what kind of object it is. 

[ I'm glossing over the actual representation in the underlying Scheme system, because it really doesn't 
matter. It could be an association list, a vector, or whatever. ] 

eval-lambda is the procedure called from eval-list to handle lambda expressions. It will be 
stored in binding of lambda of the name lambda (with binding type <special-form>), and 
extracted and called to actually interpret lambda's. 

(define (eval-lambda lambda-form envt)
   (let ((formals (cadr lambda-form))
         (body (cddr lambda-form)))
      (make-closure envt formals body)))

eval-lambda simply extracts the argument list and body expression list from the lambda expression, 
and calls make-closure with them (and the current environment) to create the closure object. Storing 
the current environment in the closure ensures that when the closure is interpreted later, it will still be able 
to refer to the same bindings that were visible when it was created. 

eval-combo is called from eval-list to evaluation combinations (procedure call expressions). 

(Note that eval-list evaluates the operator expression before calling eval-combo, and hands it the 
closure plus a list of unevaluated argument expressions. This is not particularly significant--we could have 
passed the operator expression to eval-combo unevaluated, like the argument expressions, and have 
eval-combo evaluate it instead. As we've written it, we ensure that the operator expression is evaluated 
before the arguments. We could change it to get the opposite effect. This would still be legal--the Scheme 
standard does not specify the order of evaluation, and an implementation may even use different orders at 
different call sites.) 

[ DONOVAN--maybe we should change it. RScheme evaluates the operator expression last, so maybe the 
interpreter should, too. ] 

eval-combo evaluates the argument expressions in the given environment to get the argument values, 
using eval-multi, and calls eval-apply to call the given closure with those values. 

(define (eval-combo proc arg-expr-list envt)
   ;; use our own kind of apply to run our own kind of closures
   (eval-apply proc
               ;; evaluate the arguments, collecting results into a list
               (eval-multi arg-expr-list
                          envt)))
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eval-apply does the actual procedure call, after the arguments have been evaluated. That is, it applies 
the given procedure (closure) to the given arguments. 

If the closure we're calling is a primitive closure, we simply extract the underlying Scheme procedure and 
call that, using the standard Scheme procedure apply. Scheme's apply takes a list of any number of 
values, and calls the procedure as though the arguments had been passed to it in the normal way. 

(To make sure that you understand that, here's a simple usage of Scheme's apply: (apply + '(1 
2)). This call to apply will take the procedure + and call it with the values 1 and 2, just as if we had 
written (+ 1 2). Likewise, (apply list '(1 2 3 4)) returns the same thing as (list 1 2 
3 4).) 

(define (eval-apply proc arg-list)
   (if (primitive-closure? proc)
    
       ;; it's a primitive, so extract the underlying language's
       ;; closure for the primitive, and do a real (underlying Scheme)
       ;; apply to call it
       (apply (closure-primitive proc) arg-list)
       
       ;; it's not a primitive closure, so it must be something
       ;; we created with make-closure
       ;;
       ;; first, bind the actuals into a new environment, which
       ;; is scoped inside the environment in which the closure
       ;; was closed
       (let ((new-envt (make-envt (closure-args proc) 
                                  arg-list
                                  (closure-envt proc))))
          ;; then, evaluate the body forms, returning the 
          ;; value of the last of them.
          (eval-sequence (closure-body proc)
                         new-envt))))

In the case of a user-defined (interpreted) closure, eval-combo creates a new environment to bind the 
arguments values, much as it does to bind the local variables of a let; it calls make-envt with the name 
list, the corresponding value list, and the old environment, and gets back a pointer to the new environment 
frame, scoped inside the old one. 

There's a big difference here, though. The "old" environment that's used in creating the new one is not the 
environment that was passed to eval-combo. (Notice that eval-combo did not even pass that 
environment to eval-apply.) 
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When we call the closure, we extract the environment stored in the closure, and use that as the "old" 
environment. This ensures that the closure body will evaluate in the environment where it was defined, 
augmented with the bindings of its arguments. This is the crucial step in preserving lexical scope--the 
meanings of identifiers in the procedure body are fixed at the moment the closure is created, because it 
captures the current environment at that point. 

Once the new environment is created, eval-combo simply calls eval-sequence to evaluate the 
sequence of body expressions and return the value of the last one. eval-combo simply returns this value 
as the return value of the procedure call. (Notice that the call to eval-sequence is a tail call, preserving 
the tail recursion of the program we're interpreting.) 

Mutual Recursion Between Eval and Eval-apply

It is important to understand the relationship between eval and eval-apply in the interpreter. This 
will help you understand how scoping is implemented, and will also help you understand the relationship 
between an interpreter and a compiler. 

eval calls itself to evaluate normal nested expressions. It may do this indirectly, by using helper 
procedures that handle different kinds of expressions, but in general recursive calls to eval correspond to 
the nested structure of a procedure. 

eval-apply is very different. When the interpreter gets to a procedure call, it calls eval-apply to 
jump to a different procedure, not a nested expression of the same procedure. (Note that the arguments to a 
procedure call are evaluated like any other nested expressions, by calling eval, but the call itself is done 
by eval-apply.) 

Normal recursive calls to eval therefore correspond to the local nesting structure of the code, but calls to 
apply correspond to transfers of control to different procedures. 

[ Any other miscellaneous stuff I should explain? Should have a pointer to the source file for the whole 
interpreter... ] 

[ Say that's it for the interpreter for now... we'll come back to it when we talk about macros, and we'll talk 
about a compiler with very similar structure later... ] 

Go to the first, previous, next, last section, table of contents. 
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Variants of let: letrec and let*

Scheme provides two useful variants of let. letrec supports the creation of recursive local procedures, 
including mutually recursive sets of procedures. let* supports the sequenced binding of variables, where each 
initial value expression can use the previous bindings. 

Understanding letrec

When a normal let is evaluated, the initial value expressions are evaluated before binding is done. The initial 
value expressions execute in the environment outside the let, and then the bindings are created and initialized 
with those values. 

Often, we want the initial value expression for a binding to be able to create a procedure that will see the new 
bindings. For example, suppose we want to create a local procedure which is recursive. We might try this: 

;; buggy example with (non-)tail-recursive local procedure
(define (some-procedure...)
   (let ((helper (lambda (x) 
                    ...
                    (if some-test?
                        (helper ...))))) ;; broken recursive call
     ...
     (helper ...)  ;; call to (non-)recursive local procedure
     ...))

The problem with this example is that when the let is evaluated, the lambda expression will create the 
helper procedure in the wrong environment--before the variable helper is bound. The resulting procedure 
will be scoped in the environment outside the let, not the new environment where helper is visible. When 
the procedure calls helper---which we had intended to be a recursive call--it will not use new binding of 
helper that we created. Inside the lambda body, helper will still refer to whatever binding of helper 
was visible before intering the let. (Very likely, that's no variable at all, and this will cause an unbound variable 
error.) 

letrec lets us create an environment before evaluating the initial value expressions, so that the initial value 
computions execute inside the new environment. We can fix the problem by using a letrec instead of a let: 

(define (some-procedure...)
   (letrec ((helper (lambda (x) 
                       ...
                       (if some-test?
                           (helper ...))))) ;; recursive call
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     ...
     (helper ...)  ;; call to recursive local procedure
     ...))

Now the procedure helper can "see its own name," since the lambda expression is evaluated in the 
environment where helper is bound. 

More concretely, notice that when this procedure is run, it creates an environment and closure that are linked 
circularly. The environment contains a binding of helper that holds a pointer to the closure created by 
lambda. The closure, in turn, contains a pointer back to that same environment, which is where it was created. 
It is this circularity that makes the procedure recursive; when it refers to helper, it fetches the value of this 
binding, which points to itself. 

We can get the same effect using let and set!. 

A letrec expression is equivalent to a let where the bindings are initialized with dummy values, and then 
the initial values are computed and assigned into the bindings. The above example is equivalent to: 

(define (some-procedure ...)
   (let ((helper '*dummy-value*))
      (set! helper (lambda (x)
                      ...
                      (if some-test?
                          (helper ...))))) ; recursive call
     ...
     (helper ...)  ; call to recursive local procedure
     ...))

Here the let creates a binding, initializing it with an arbitary value that isn't actually used--it's just a 
placeholder. Then, once the let is entered and the binding is visible, a closure is created (in that environment) 
and a pointer to it is installed in that binding. letrec can be used when defining mutually recursive 
procedures, each of which can see the others' names and call them. 

(define (some procedure ...)
   (letrec ((helper1 (lambda ()
                        ... (helper2) ...))
            (helper2 (lambda ()
                        ... (helper1) ...)))
     ...
     (helper1)  ; start up mutual recursion
     ...))

Notice that all letrec does is bind variables and (re-)initialize them. You can use it to define plain variables 
as well as procedure variables. For example, if the recursive procedures above need to reference a shared 
variable, you can do this: 
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(define (some procedure ...)
   (letrec ((helper1 (lambda ()
                        ... var1 ... (helper2) ...))
            (helper2 (lambda ()
                        ... (helper1) ... var1 ...))
            (var1 #f))
     ...
     (helper1)  ;; start up mutual recursion
     ...))

[ should come up with some simple concrete examples...] 

As with let, the order of evaluation of a letrec's initial value expressions is undefined. For example, the 
above letrec might be compiled as though it were a let like this: 

(define (some procedure ...)
   (let ((helper1 '*dummy-value*)
         (helper2 '*dummy-value*)
         (var1 '*dummy-value*))
      (set! helper2 (lambda ()
                        ... (helper1) ... var1 ...))
   
      (set! var1 #f)
      (set! helper1 (lambda ()
                       ... var1 ... (helper2) ...))
     ...
     (helper1)  ;; start up mutual recursion
     ...))

When using letrec and lambda to define local procedures, in the usual way, the order of evaluation is 
irrelevant--the lambda expressions can be executed in any order, because they only refer to the bindings of 
the letrec variables, not their values. The values are only used when the resulting procedures are called. 
The following would be an error, however: 

(define (some procedure ...)
   (letrec ((helper1 ...)
            (helper2 ...)
            (var1 (list helper1 helper2)))
      ...
      ((car (var1 helper1)))  ; start up mutual recursion
      ...))

Here the initialization of var1 depends on the values of helper1 and helper2, which may not have been 
computed yet. 
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Using letrec and lambda to Implement Modules

Standard Scheme does not have a module system, but letrec and lambda are powerful enough to 
implement modules in portable Scheme. 

Suppose we would like to define a module that encapsulates a set of procedures and variables, but only exports 
a subset of those procedures. 

We can represent the module as a letrec environment which exports an association list of of procedures. 

Here we'll create a module called foo, which defines four procedures and two variables, and exports two of the 
procedures, foo and bar. 

(define foo-module
   ;; create a letrec environment with internal definitions
   ;; of some variables and procedures
   (letrec ((private-proc1 (lambda (...) ...))
            (private-proc2 (lambda (...) ...))
            (private-var1 ...)
            (private-var2 ...)
            (foo (lambda (...) ...))
            (bar (lambda (...) ...)))
      ;; return an association list of "exported" closures
      (list (list 'foo foo)
            (list 'bar bar))))

The letrec expression will create an environment, and within that environment it will evaluate the initial 
value expressions to initialize the bindings. All of the procedures in the letrec can see each other's names, 
and call each other freely. Procedures outside the letrec cannot. 

The only procedures that can be called from outside the letrec are foo and bar, which are returned from 
the letrec in an association list. We've saved this list in the binding of foo-module, so that we can look 
those procedures up and call them. 

We can clean this up a little by providing an accessor function that will extract a single procedure from a 
module, by using assq to find the appropriate closure: 

(define (module-get mod name)
   (cadr (assq mod name)))

To import a procedure and give it a name in another environment, we can do this: 

(define foo (module-get foo-module 'foo))
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If we want to, we can give it a different name in the environment we're "importing" it into. 

(define quux (module-get foo-module 'foo))

This lets us rename a procedure imported from a module, to avoid naming conflicts. quux is exactly the same 
procedure as foo, but by a different name in a different scope. When we call it, it will execute in the 
environment where it was defined, namely the "private" environment of the module we created with letrec. 

let*

For situations where the order of initialization is important, Scheme provides a variant of let called let*. 

Suppose we tried the following using let: 

(define (foo epsilon)
   (let ((a 0)
         (upper (+ a epsilon))
         (lower (- a epsilon)))
     ...))

This will not do what we probably meant, because the initial values of upper and lower will be computed 
before a is bound. We could fix this by using nested let's, to force evaluation and binding to happen in the 
desired order: 

(define (foo epsilon)
   (let ((a 0))
      (let ((lower (- a epsilon))
            (upper (+ a epsilon)))
     ...))

This ensures that a is bound before we evaluate the initial value expressions for upper and lower. 

Scheme provides let* to avoid needing lots of nested lets when initilizing a series of bindings, each of which 
may depend ont the previous ones, e.g., 

(define (bar x y)
   (let* ((diff (- x y))
          (diff-squared (* diff diff))
          (diff-cubed (* diff-squared diff)))
     ...)

is exactly equivalent to 

(define (bar x y)
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   (let ((diff (- x y)))
      (let ((diff-squared (* diff diff)))
         (let ((diff-cubed (* diff-squared diff)))
            ...))))

Iteration Constructs

Named let

Named let is a general and flexible iteration construct that is really just syntactic sugar for a letrec and one 
or more lambda's. It looks like a let, but it's usually used as a loop. 

Named let implements iteration as recursion. If you use it in normal ways, you write loops that act as tail-
recursive procedures. You can also use it to write "loops" that aren't tail recursive, but that's uncommon. 

Named let binds loop variables, and executes the loop body. Anywhere in the loop body, you can call a 
procedure to iterate the loop. 

Here's an example loop, which prints out the integers from 0 to 9: 

(let loop ((i 0))
   (display i)
   (if (< i 10)
       (loop (+ i 1))))

Here we've written a loop and given it an identifier, loop; that's just a name we chose for this particular loop--
we could have used any identifier. 

This loop binds the loop variable i, giving it the intial value 0. Then it enters the body of the loop, which prints 
out i using display, and evaluates the if expression. If the if condition returns a true value, it evaluates the 
expression (loop (+ i 1)), which iterates the loop. This looks like a call to a procedure named loop, 
which iterates the loop. The argument passed is the new value of the loop variable for the next iteration. 

The reason that the expression that iterates a loop looks like a procedure call is that it is a procedure call. A 
named let is exactly equivalent to a letrec that defines a named procedure, whose body is the body of the 
named let, and then calls that procedure to start the recursion. When you write a "loop" with named let, 
you're really writing a recursive procedure and a call to that procedure. The loop variable(s) are really 
arguments to the procedure, and the initial values of the loop variables are just the first argument passed to the 
procedure to start the recursion. 

The above example is exactly equivalent to: 

(letrec ((loop (lambda (i)      ; define a recursive
                  (display i)   ; procedure whose body
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                  (if (< i 10)  ; is the loop body
                      (loop (+ i 1))))))
   (loop 0)) ;; start the recursion with 0 as arg i

When you supply the name of a named let, you're really supplying the name of a letrec variable that will 
name a procedure. When you supply the body of the named let, you're really supplying the body of the 
named procedure. When it iterates the loop, it is calling itself recursively, passing the new invocation the new 
value of the loop variable as an argument. 

To start off the loop, named let passes this procedure the initial value expression for the loop variable. 

We can provide any expression we want to compute the new value of the loop variable--we don't have to 
increment it by one. We can also provide any test we want to decide whether to iterate the loop. 

For example, here's procedure which uses a loop to search a list of alternating key/value pairs. (This is not an 
association list, but a linear list of alternating keys and values, called a property list.) It iterates through the list 
two elements at a time. If it finds an odd-numbered element that's eq? to what it's looking for, it returns the 
next (even-numbered) element; otherwise, it continues through the loop. 

(define (property-list-search lis target)
   (let loop ((l lis))
      (cond ((null? l)
             #f)
            ((eq? (car l) target)
             (cadr l))
            (#t
             (loop (cddr l))))))

[ same as: ] 

(define (property-list-search lis target)
   (letrec ((loop (lambda (l)
                     (cond ((null? l)
                            #f
                           ((eq? (car l) target)
                            (cadr l))
                           (#t
                            (loop (cddr l))))))))
      (loop lis)))   ;; start the recursion

The reason we supply a name for a loop in a named let is so that we can have nested loops with different 
names, and we can iterate any of the loops by calling it by name. 

For example, suppose we want to have a nested pair of loops, but want to be able to bail out of the iteration of 
the inner loop, and go directly to the next iteration of the outer loop. We can do this: 
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[ need example here ] 

(let outer-loop ((i ...))
   (let inner-loop ((j ...))
      (if (should-abort-inner-loop)
          (outer-loop ...))  ;; go directly to next iteration of outer loop
      ...  ; do normal inner loop action
      ...(inner-loop ...)  ;; iterate inner loop normally
   ...
   ... (outer-loop ...))   ; iterate outer loop normally

Some things to notice about Scheme loops: 

●     Loops can have any number of loop variables, each updated in any way you like. This corresponds to 
having a recursive procedure with any number of arguments, and passing it any values you like at each 
recursion. 

●     Unlike most languages' loops, each time we iterate a loop, we rebind the loop variable. There's a new 
binding at each iteration, because each iteration is really a call to a procedure that binds arguments. We 
don't bind the loop variable once and side-effect it at each iteration. 

●     Since loop bodies are really just procedure bodies, and loop iterations are really just procedure calls, we 
can put calls that iterate a loop anywhere in the body; we can have multiple points in the body that call 
the procedure to iterate the loop. 

●     The variable bindings created at each iteration of a loop are independent, and can be captured by lambda 
expressions in the loop body. Each closure created by lambda will capture the bindings for that iteration 
of the loop. 

Programming with Procedures and Environments

Exercises

Go to the first, previous, next, last section, table of contents. 
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Recursion in Scheme

In this chapter, I'll discuss procedure calling and recursion in more depth. [ blah blah blah ] Scheme's 
procedure-calling mechanism supports efficient tail-recursive programming, where recursion is used 
instead of iteration. In conventional programming languages, you can't generally use recursion to get the 
effect of iteration, because you may get activation stack overflows if the recursion is too deep. 

After clarifying how recursion works, I'll give examples of how to program recursively in Scheme. 

(In a later chapter, I'll show how the mechanisms that support tail recursion also support a powerful 
control feature called call-with-current-continuation that lets you implement novel control 
structures like backtracking and coroutines.) 

Subproblems and Reductions (non-tail and tail calls)

In most implementations of most programming languages, an activation stack is used to implement 
procedure calling. At a call, the state of the "caller" (calling procedure) is saved on the stack, and then 
control is transferred to the callee. 

Because each procedure call requires saving state on the stack, recursion is limited by the stack depth. In 
many systems, deep recursions cause stack overflow and program crashes, or use up unnecessary virtual 
memory swap space. In most systems, recursion is unnecessarily expensive in space and/or time. This 
limits the usefulness of recursion. 

In Scheme, things are somewhat different. As I noted earlier, recursive calls may be tail recursive, in 
which case the state of the caller needn't be saved before calling the callee. 

More generally, whether a procedure is recursive or not, the calls it makes can be classified as 
subproblems or reductions If the last thing a procedure does is to call another procedure, that's known as 
a reduction--the work being done by the caller is complete, because it "reduces to" the work being done 
by the callee. 

For example, consider the following procedures: 

(define (foo)
   (bar)
   (baz))
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(define (baz)
   (bar)
   (foo))

Notice that when foo is called, it does two things: it calls bar and then calls baz. After the call to 
bar, control must return to foo, so that it can continue and call baz. The call to bar is therefore a 
subproblem--a step in the overall plan of executing foo. When foo calls baz, however, that's all it 
needs to do--all of its other work is done. The result of the call to foo is just the result of foo's call to 
baz. 

In a conventional programming language implementation, foo's state would be saved before the call to 
baz, as well as before the call to bar. Each call would return control to foo. In the case of the call to 
baz, all foo will do is return the result of the call to its caller. That is, all foo does after the return 
from baz is to leave the result wherever its caller expects it, and return again to pop a stack frame off 
the activation stack. 

In Scheme, things are actually simpler. If the last thing a procedure does is to call another procedure, the 
caller doesn't save its own state on the stack. When the callee returns, it will return to its caller's caller 
directly, rather than to its caller. After all, there's no reason to return to the caller if all the caller is going 
to do is pass the return value along to its caller. 

This optimizes away the unnecessary state saving and returning at tail calls. You don't have to do 
anything special to get this optimization--Scheme implementations always do it for tail calls. 

Consider both foo and baz above. Neither ever returns--each just calls the other. In Scheme, these two 
procedures will repeatedly call each other, without saving their state on the stack, producing an infinite 
mutual recursion. Will the stack overflow? No. Each will save its state before calling bar, but the return 
from bar will pop that information off of the stack. The infinite tail-calling between foo and baz will 
not increase the stack height at all. 

Above I said that a callee may return to its caller's caller, but that doesn't really capture the extent of 
what's going on. In general a procedure may return to its caller (if it was non-tail called), or it's caller's 
caller (if it was tail-called but its caller wasn't) or it's caller's caller's caller (if it and it's caller were both 
tail-called), and so on. A procedure returns to the last caller that did a non-tail call. 

Because of this "tail call optimization," you can use recursion very freely in Scheme, which is a good 
thing--many problems have a natural recursive structure, and recursion is the easiest way to solve them. 

Notice that this tail call optimization is a feature of the language, not just some implementations. Any 
implementation of standard Scheme is required to support it, so that you can count on it and write 
portable programs that rely on it. (In fact, the definition of the Scheme language itself depends on this, 
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because the special forms for iteration are defined in terms of equivalent tail-calling--a loop is really a 
kind of procedure, that procedure tail-calls itself ot iterate the loop.) 

Also notice that the interpreter we presented earlier is tail-recursive. The recursive calls to eval are tail 
calls, and since it's implemented in Scheme, the interpreter relies on the underlying Scheme's tail-call 
optimization. The evaluator thus snarfs the tail-call optimization from the underlying Scheme system. If 
you implement a Scheme interpreter in another language, you have to be more careful, and implement 
the tail call optimization yourself. 

It's something of a misnomer to call Scheme's procedure calling mechanism an "optimization." What's 
really going on is that Scheme simply distinguishes between two things that most languages lump 
together--saving the caller's state, and actually transferring control to the callee. Scheme notices that 
these things are distinct, and doesn't bother to do the former when only the latter is necessary. 

A procedure call is really rather like a (safe) goto that can pass arguments: control is transferred directly 
to the callee, and the caller has the option of saving its state beforehand. (This is safer than unrestricted 
goto's, because when a procedure does return, it returns to the right ancestor in the dynamic calling 
pattern, just as though it had done a whole bunch of returns to get there.) 

The Continuation Chain

In this section, I'll describe a straightforward implementation of Scheme's state-saving for procedure 
calling. It may clarify things that are discussed later, however, such as call-with-current-
continuation and our example compiler's code generation strategy. 

In most conventional language implementations, as noted above, calling a procedure allocates an 
activation record (or "stack frame") that holds the return address for the call and the variable bindings 
for the procedure being called. The stack is a contiguous area of memory, and pushing an activation 
record onto the stack is done by incrementing a pointer into this contiguous area by the size of the stack 
frame. Removing a stack frame is done by decrementing the pointer by the size of the stack frame. 

Scheme implementations are quite different. As we've explained previously, variable bindings are not 
allocated in a stack, but instead in environment frames on the garbage-collected heap. This is necessary 
so that closures can have indefinite extent, and can count on the environments they use living as long as 
is necessary. The garbage collector will eventually reclaim the space for variable bindings in frames that 
aren't captured by closures. 

(Actually, I'm oversimplifying a bit here. Some implementations of Scheme do use a relatively 
conventional stack, often so that they can compile Scheme straightforwardly to C. They must provide 
tail-call optimization somehow, though. I won't go into alternative implementation strategies here.) 
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Most Scheme implementations also differ from conventional language implementations in how they 
represent the saved state of callers. (In a conventional language implementation, the callers' state is in 
two places: the variable bindings are in the callers' own stack frames, and the return address is stored in 
the callee's stack frame.) 

In most Scheme implementations, the caller's state is saved in a record on the garbage-collected heap, 
called a partial continuation. It's called a continuation because it says how to resume the caller when we 
return into it--i.e., how to continue the computation when control returns. It's called a partial 
continuation because that record, by itself, it only tells us how to resume the caller, not the caller's caller 
or the caller's caller's caller. On the other hand, each partial continuation holds a pointer to the partial 
continuation for its caller, so a chain of continuations represents how to continue the whole computation: 
how to resume the caller, and when it returns, how to resume its caller, and so on until the computation 
is complete. This chain is therefore called a full continuation. 

(Notice that the relationship between the partial continuations in a full continuation chain is similar to 
the relationship between an environment frame and an environment chain. The former represents control 
information while the latter represents scope information.) 

In most Scheme implementations, a special register called the continuation register is used to hold the 
pointer to the partial continuation for the caller of the currently-executing procedure. When we call a 
procedure, we can package up the state of the caller as a record on the heap (a partial continuation), and 
push that partial continuation onto the chain of continuations hanging off the continuation register. 

                        part. cont.  (saved state of caller's
                            /|\       caller's caller)
                             |
                             |
                        part. cont.  (saved state of caller's caller)
                            /|\
                             |
        +-------+            |
   CONT |   +---+-----> part. cont.  (saved state of caller)
        +-------+

(It is often convenient to draw stacks and continuations as growing downward, which is our convention 
here--the newer elements are on the bottom.) Note that the continuation register may be a register in the 
CPU, or it may just be a particular memory location that our implementation uses for this purpose. The 
point is just that when we're executing a procedure, we always know where to find a pointer to the 
partial continuation that lets us resume its caller (or whichever procedure last did a non-tail call). We 
will sometimes abbreviate this register's name as CONT. A typical implementation of Scheme using a 
compiler has several important registers that encode the state of the currently-executing procedure: 
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●     The environment register (ENVT) holds the pointer to the chain of environment frames that make 
up the environment that the procedure is executing in. 

●     The program counter register (PC) holds the pointer to the next instruction to execute. In a 
normal system that compiles to normal machine code, this is the actual program counter of the 
underlying hardware. 

●     The continuation register (CONT), as we've said, holds the pointer to the chain of partial 
continuations that lets us resume callers. This is very roughly the equivalent of an activation stack 
pointer. 

Before we call a procedure, we must save a continuation if we want to resume the current procedure 
after the callee returns. 

Since the important state of the currently-executing procedure is in the registers listed above, we will 
create a record that has fields to hold them, and push that on the continuation chain. We will save the 
value of the CONT, ENVT, and PC registers in the partial continuation, then put a pointer to this new 
partial continuation in the continuation registers. We also need to save any other state that the caller will 
need when it resumes, as suggested by the ellipsis below. (We'll discuss what else goes in a partial 
continuation when we talk about compilers in detail.) 

                                      old cont.
                                        /|\
                                         |
                         +-------+       |
        +-------+        |p.cont.|       |
   CONT |   +---+------->+=======+       |
        +-------+   cont |   +---+-------+
                         +-------+
                    envt |   +---+-------->old envt
                         +-------+
                      pc |   +---+-------->return address
                         +-------+
                                 |
                         +  ...
                         |       |
                         +-------+

Notice that since we saved the old value of the continuation register in the partial continuation, that 
serves as the "next" pointer in the linked list that makes up the full continuation. This is exactly as it 
should be. The value of the continuation register is part of the caller's state, and saving it naturally 
constructs a linked list, because each procedure's state is fundamentally linked to the state of its caller. 
Saving the return address is a little bit special--rather than just copying the program counter and saving 
it, we must save the address we want to resume at when we resume this procedure. 
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Once a procedure has pushed a continuation, it has saved its state and can call another procedure. The 
other procedure can use the ENVT, CONT, and PC registers without destroying the values of those 
registers needed by the caller. This is called a caller saves register usage convention; the assumption is 
that the callee is allowed to freely clobber the values in the registers, so it's the caller's responsibility to 
save any values it will need when it resumes. 

To do a procedure return, it is only necessary to copy the register values out of the continuation that's 
pointed to by the CONT register. This will restore the caller's environment and its pointer to its caller's 
continuation, and setting the PC register will branch to the code in the caller where execution should 
resume. We often call this "popping" a continuation, because it's a stacklike operation--saving a (partial) 
continuation pushes the values in registers onto the front of the "stack," and restoring one pops the 
values back into the registers. (As we will explain later, however, Scheme continuation chains don't 
always observe this simple stack discipline, which is why they can't be implemented efficiently as 
contiguous arrays.) 

If we save state and do a procedure call, and before returning our caller saves its state and does a 
procedure call, the chain of continuations gets longer. For the most part, this is like pushing activation 
information on a stack. 

                                       /|\
                                        |
                      +---------+       |
                      | p.cont. |       |
                      +=========+       |
                 cont |    +----+-------+
                      +---------+
                 envt |    +----+-------->old envt
                      +---------+
                   pc |    +----+-------->return address
                      +---------+
                                |
                      +   ...
                      |         |
                      +---------+
                                 _
                                |\
                                  \
                                   \
                                    \   
                                     \
                                      .
                      +---------+     |
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     +-------+        | p.cont. |     |
cont |   +---+------->+=========+    /
     +-------+   cont |    +----+---'
                      +---------+
                 envt |    +----+-------->old envt
                      +---------+
                   pc |    +----+-------->return address
                      +---------+
                                |
                      +   ...
                      |         |
                      +---------+

Notice that when we say we save the "state" of the caller, we mean the values in our important registers, 
but we don't directly save particular variable values--when we save the environment pointer, we don't 
make copies of the values in the bindings in the environment. In effect, saving the environment pointer 
records which names refer to which pieces of storage. If other code then executes in that same 
environment and changes those values, the new values will be seen by this procedure when it returns and 
restores the environment pointer. This policy has two important consequences: 

1.  we can save an environment pointer into a continuation very quickly, and restore it quickly, 
because we're just saving and restoring one pointer, and 

2.  it ensures that environments have the right semantics: closures that live in the same environment 
should see each others' changes to variables. This is one of the ways that procedures are supposed 
to be able to communicate--by operating on variables that they can see. 

Executing a return ("popping a continuation") does not modify the partial continuation being popped--it 
just involves getting values out of the continuation and putting them into registers. Continuations are 
thus created and used nondestructively, and the continuations on the heap form a graph that reflects the 
pattern of non-tail procedure calls. Usually, that graph is just a tree, because of the tree-like pattern of 
call graphs, and the current "stack" of partial continuations is just the rightmost path through that graph, 
i.e., the path from the newest record all the way back to the root. 

Consider the following procedures, where a calls b twice, and each time b is called, it calls c twice: 

(define (a)
   (b)
   (b)
   #t)

(define (b)
   (c)

http://www.federated.com/~jim/schintro-v14/schintro_127.html (7 of 18)11/3/2006 9:11:15 PM



An Introduction to Scheme and its Implementation - Recursion in Scheme

   (c)
   #t)

(define (c)
   #f)

All of these calls are non-tail calls, because none of the procedures ever ends in a (tail) call. 

Suppose we call a after pushing a continuation for a's caller, then a calls b the first time. a will push a 
continuation to save its state, then call b. While executing b, b's state will be in the registers, including a 
pointer to the continuation for a in the CONT register. 

               cont. for a's caller
                    /
                  /
          cont. for a
              /|\
      +---+    |
 CONT | +-+----+
      +---+ 

b will then push a continuation and call c. 

               cont. for a's caller
                    /
                  /
          cont. for a
              /
            /
    cont. for b
       /|\
        |
      +-|-+ 
 CONT | + |
      +---+ 

When c returns, it will restore b's state by popping the partial continuation's values into registers. At this 
point, the CONT register will point past the continuation for b to the continuation for a. 

               cont for a's caller
                    /
                  /
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           cont. for a
              /  /|\
            /     |
    cont. for b   |
                  |
      +---+       |
 CONT | +-+-------+
      +---+

Then b will push another continuation and call c again. 

               cont for a's caller
                    /
                  /
          cont. for a
              /  \
            /     \
    cont. for b  cont for b
                    /|\
                     |
      +---+          |
 CONT | +-+----------+
      +---+

Again, c will return, restoring b's state, and the CONT register will point past the continuation for b to 
the continuation for a. 

               cont for a's caller
                    /
                  /
          cont. for a <-------+
              /  \            |
            /     \           |
    cont. for b  cont for b   |
                              |
      +---+                   |
 CONT | +-+-------------------+
      +---+      

After returning to a, the CONT register will point past the continuation for a to the continuation for a's 
caller. Then before a calls b again, it will push another continuation to save its state. 
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               cont for a's caller
                    /        \
                  /            \
          cont. for a        cont for a
              /  \              /|\
            /     \              |
    cont. for b  cont for b      |
                                 |
      +---+                      |
 CONT | +-+----------------------+
      +---+      

Then a will return and the CONT register will point past the continuation for a to the continuation for a's 
caller. 

                cont for a's caller <--+
                    /                  |
                  /                    |
          cont. for a                  |
              /  \                     |
            /     \                    |
    cont. for b  cont for a            |
                                       |
      +---+                            |
 CONT | +-+----------------------------+
      +---+    

This continues in the obvious way, so that at the time of the fourth and last call to C, the continuations 
on the heap look like this: 

                cont for a's caller
                    /           \    
                  /               \  
          cont. for a          cont. for a
              /  \                 /  \      
            /     \              /      \ 
    cont for b  cont for b  cont for b  cont for b
                                          /|\
                                           |
      +---+                                |
 CONT | +-+--------------------------------+
      +---+    

http://www.federated.com/~jim/schintro-v14/schintro_127.html (10 of 18)11/3/2006 9:11:15 PM



An Introduction to Scheme and its Implementation - Recursion in Scheme

Most of the time, the rest of this graph becomes garbage quickly--each continuation holds pointers back 
up the tree, but nothing holds pointers down the tree. Partial continuations therefore usually become 
garbage the first time they're returned through. 

The fact that this graph is created on the heap will allow us to implement call-with-current-
continuation, a.k.a. call/cc, a very powerful control construct. call/cc can capture the 
control state of a program at a particular point in its execution by pushing a partial continuation and 
saving a pointer to it. Later, it can magically return control to that point by restoring that continuation, 
instead of the one in the continuation register. (We will discuss call/cc in detail in Chapter XX.) 

Exploiting Tail Recursion

In an earlier section, we presented example recursive implementations of several Scheme functions; 
some of them were tail recursive, and some not. 

At first glance, many routines seem as though they can't conveniently be coded tail recursively. On 
closer inspection, many of them can in fact be coded this way. 

Passing Intermediate Values as Arguments

Summing a List

Suppose we want to sum a list of numbers. The most obvious way of doing it is the way we did it earlier, 
like this: 

(define (list-sum lis)
   (if (null? lis)
       0
       (+ (car lis)
          (list-sum (cdr lis)))))

The problem with this code is that it's not particularly efficient, because it's not tail recursive. After each 
recursive call to list-sum, we must return to do the addition that adds one element to the sum of the 
rest of the list. We're adding the elements of the list back-to-front, on the way back up from nested 
recursion. (This means that Scheme must push a partial continuation before every recursive call, and 
each one must be popped when we're finished, to return the sum back from each call to its caller.) 

The problem here is that evaluation of the arguments to a combination isn't a tail call, even if the 
combination as a whole is. Control must always return so that the actual call can be done. 

We can write a tail-recursive version of list-sum that adds things in front-to-back order instead. The 
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trick is to do the addition before the tail call, and to pass the sum so far to the recursive call, i.e., to pass 
it forward as an argument until a non-tail call returns it. 

To do this, we have to keep a running sum, and each recursive call must pass it as an argument to the 
next. To start it off, we have to have a "running sum" of 0. 

We can do this by defining two procedures. The one that does the real work takes a list and a running 
sum, adds one element to the running sum, and tail-calls itself to add the rest of the elements to the 
running sum. When it reaches the end of the list, it just returns the value. (Scheme doesn't need to save a 
partial continuation before each call, since only the last call ever returns.) We'll call this procedure 
loop, because we're using tail recursion to implement looping. For convenience, we also wrap this 
procedure up in a friendlier procedure that will start off the recursion, by supplying an initial "running 
sum" of 0. 

;; a tail-recursive list summing procedure
(define (loop lis sum-so-far)
   (cond ((null? lis)
          sum-so-far)
         (else
          (loop (cdr lis)
                (+ sum-so-far (car lis))))))

;; a friendly wrapper that supplies an initial running sum of 0
(define (list-sum lis)
   (loop lis 0))

We can make this cleaner by encapsulating loop, since it's only used by list-sum. We make loop a 
local procedure using letrec and lambda. 

(define (list-sum lis)
   ;; define a local, tail-recursive list summing procedure 
   (letrec ((loop (lambda (lis sum-so-far)
                     (cond ((null? lis)
                            sum-so-far)
                           (else
                            (loop (cdr lis)
                                  (+ sum-so-far (car lis))))))))
      (loop lis 0))) ;; start off recursive summing with a sum of 0

We can write this more clearly using named let. Named let is one of Scheme's two special forms for 
looping (the other is do). A named let looks like a let, but it's really a shorthand for the kind of thing 
we did above--defining a local procedure that can tail-call itself to give the effect of iteration, and 
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starting it off with the appropriate initial value. 

(define (list-sum lis)
   (let loop ((lis lis)
              (sum-so-far 0))
      (cond ((null? lis)
             sum-so-far)
            (else
             (loop (cdr lis)
                   (+ sum-so-far (car lis)))))))

Notice that here we're using two loop variables, lis and sum-so-far, rebound at each iteration. One 
keeps track of the remaining part of the original list, and the other the sum of the list items we've seen so 
far. 

Be sure you understand that this version using named let is exactly equivalent to the version using 
letrec and lambda. The named let binds the variable loop, and initializes it with a first-class 
procedure that takes two arguments, list and sum-so-far. When we used the name loop for the 
named let, we're really giving the name of the procedure that implements the loop body. Each time we 
iterate the loop, we're really calling this procedure--the call to loop looks like a procedure call because 
it is a procedure call. 

The argument expressions provide the new values for the next iteration of the loop, and the loop 
variables are rebound and initialized to those values at the next iteration of the loop. As in the version 
with an explicit letrec and lambda, the loop is started off by evaluating the initial value expressions for 
the loop variables (which look like let variables) and calling the loop procedure. 

Since we re-bind the loop variables at each iteration of the loop, it generally doesn't make sense to side-
effect loop variables. The old binding goes out of scope, and new bindings are created at each iteration, 
initialized with whatever values are passed to the looping procedure. 

Implementing length tail-recursively

Recall that in [ Chapter whatever ] we implemented length this way: 

(define (length lis)
   (if (null? lis)
       0
       (+ 1 (length (cdr lis)))))

This definition looks a lot like the definition of list-sum, and has the same basic problem. By using 
straightforward recursion (adding one to the length of the rest of the list), we're ensuring the addition 
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happens back-to-front. We can compute the list length front to back by passing the running sum forward 
through tail recursions, as an argument. Each tail call will add to the running sum, and pass it forward. 
When the last tail call returns to its caller, it just returns the sum. 

To do this, it's convenient to write the length procedure as a wrapper around a two-argument 
procedure that passes the running sum (as well as the remainder of list) to recursive calls to itself. 

(define (length lis)
   (letrec ((len (lambda (lis length-so-far)
                    (if (null? lis)
                        length-so-far
                        (len (cdr lis)
                             (+ 1 length-so-far)))))))
     (len lis 0))

Or equivalently, using named let: 

(define (length lis)
   (let loop ((lis lis)
              (length-so-far 0))
      (if (null? lis)
          len-so-far
          (loop (cdr lis)
                (+ (car lis) length-so-far)))))

reduce

In this section, I'll give an extended example of the use of higher-order functions to express patterns 
common to many functions, and customizing general procedures with procedural arguments and closure 
creation. 

Consider the following function to sum the elements of a list 

(define (list-sum lis)
   (if (null? lis)
       0
       (+ (car lis)
          (list-sum (cdr lis)))))

Given this definition, 

(list-sum '(10 15 20 25))
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is equivalent to 

(+ 10 (+ 15 (+ 20 (+ 25 0)))).

[ the following couple of examples are now redundant with earlier material... trim and refer back. ] 

Now consider a very similar function to multiply the elements of a list, where we've adopted the 
convention that the product of a null list is 1. (1 is probably the right value to use, because if you 
multiply something by 1 you get back the same thing--just as if you add something to 0 you get back the 
same thing.) 

(define (list-prod lis)
   (if (null? lis)
       1
       (+ (car lis)
          (list-prod (cdr lis)))))

Given this definition, 

(list-prod '(2 3 4 5))

is equivalent to 

(* 2 (* 3 (* 4 (* 5 1))))

Given these definitions, you can probably imagine a very similar function to subtract the elements of a 
list, or to divide the elements of a list. For subtraction, the base value for an empty list should probably 
be zero, because subtracting zero doesn't change anything. For division it should probably be one. 

At any rate, what we want is a single function that captures the pattern 

(op thing1(op thing2 ...(op thingn base-thing)...)) 

We can write a higher-order procedure reduce that implements this pattern in a general way, taking 
three arguments: any procedure you want successively applied to the elements of a list, an appropriate 
base value to use on reaching the end of the list, and the list to do it to. 

(define (reduce fn base-value lis)
   (if (null? lis)
       base-value
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       (fn (car lis)
           (reduce fn base-value (cdr lis)))))

This is a very general procedure, that can be used for lots of things besides numerical operations on lists 
of numbers: it can be used for any computation over successive items in a list. 

[ need to check the following couple of examples--they're off the top of my head ] 

What does (reduce cons '() '(a b c d)) do? It's equivalent to (cons 'a (cons 'b 
(cons 'c (cons 'd '()))). That is, (reduce cons '() list) copies a list. We could 
define list-copy that way: 

(define (list-copy lis)
   (reduce cons '() lis))

We could also define append that way, because reduce allows you to specify what goes at the end of 
a list--we don't have to end our list with '(). Here's a two-argument version of append: 

(define (append list1 list2)
   (reduce cons list2 list1))

The reduction of a list using (lambda (x rest) (cons (* x 2) rest)) constructs a new list 
whose elements are twice the values of the corresponding elements in the original list. 

Scheme>(reduce (lambda (x rest)
                  (cons (* x 2) rest))
               '()
               '(1 2 3 4))
(2 4 6 8)

[ show tail-recursive version... that'd make a good exercise ] 

The reduce procedure above is handy, because you can use it for many different kinds of 
computations over different kinds of lists values, as long as you can process the elements (and construct 
the result) front-to-back. It's a little awkward, though, in that each time you use it, you have to remember 
the appropriate base value for the operation you're applying to a list. Sometimes it would be preferable 
to come up with a single specialized procedure like list-sum, which implicitly remembers which 
function it should apply to the list elements (e.g., +) and what base value to return for an empty list (e.g., 
0). We can write a procedure make-reducer that will automatically construct a reducer procedure, 
given a function and a base value. Here's an example usage: 

Scheme> (define list-sum (make-reducer + 0))
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list-sum
  
Scheme> (define list-product (make-reducer * 1))
list-copy
   
Scheme> (list-sum '(1 2 3 4))
10
   
Scheme> (list-product '(1 2 3 4))
24

Make sure you understand the expressions above. The define forms are not using procedure definition 
syntax--they're using plain variable definition syntax, but the initial value expressions return procedures 
constructed by make-reducer. If we hadn't wanted to define procedures named list-sum and list-product, 
and hang on to them, we could have just taken the procedures returned by make-reducer and called them 
immediately: 

Scheme> ((make-reducer + 0) '(1 2 3 4))
10
 
Scheme> ((make-reducer * 1) '(1 2 3 4))
24

This is very much like calling our original reduce procedure, except that each time we're constructing 
a specialized procedure (closure) that's like reduce customized for particular values of its first two 
arguments; then we call that new, specialized procedure to do the work on a particular list. 

Here's a simple definition of make-reducer in terms of reduce: 

(define (make-reducer fn base-value)
   (lambda (lis)
      (reduce fn base-value lis)))

Notice that we are using procedure definition syntax here, so the lambda in the body will create and 
return a closure. 

[ can also do this with curry. ] But suppose we don't already have a reduce procedure, and we don't 
want to leave one lying around. A cleaner solution is to define the general reduce procedure as a local 
procedure, and create closures of it in different environments to customize it for different functions and 
base values. 

(define (make-reducer fn base-value)
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   (letrec ((reduce (lambda (lis)
                       (if (null? lis)
                           base-value
                           (fn (car lis)
                               (reduce (cdr lis)))))))
       reduce)) ;; return new closure of local procedure

This procedure uses closure creation to create a customized version of reduce When make-reducer 
is entered, its arguments are bound and initialized to the argument values--i.e., the function and base 
value we want the custom reducer to use. In this environment, we create a closure of the reducer 
procedure using lambda. We wrap the lambda in a letrec so that the reducer can refer to (and call) 
itself. Notice that since reduce is a local procedure, it can see the arguments to make-reducer, and 
we don't have to pass it those arguments explicitly. By using local procedure definition syntax--which 
not all Schemes support--we can write this as: 

(define (make-reducer fn base-value)
   (define (reduce lis)
      (if (null? lis)
          base-value
          (fn (car lis)
              (reduce (cdr lis)))))
   reduce))  ;; return new closure of local procedure

Make sure that you understand that these are equivalent--the local procedure define is equivalent to a 
letrec and a lambda, and in either case the closure created (by the lambda or the define) will 
capture the environment where the arguments to make-reducer are bound. 

Iteration as Recursion

named let

[ move earlier discussion here? ] 

do

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Quasiquotation and Macros

Scheme provides facilities for transforming expressions automatically to create new expressions. These 
facilities are called quasiquotation and syntax extension (or "macros"). Transformational programming 
is one of the most powerful features of Scheme. 

Quasiquotation allows you to specify patterns that can be used to construct data structures, and also 
specify how to fill in "holes" in the patterns. In effect, you can define a template for a data structure, 
much like a quoted data structure, but also specify how to fill in holes to create variations on the data 
structure. 

Syntax extension allows you to do something very similar for code. You can write "macros" that specify 
most of an expression, and you can fill in the holes in these templates to create particular expressions. 
With macros, you can write "templates" for programs, which you can customize by filling in the holes. 
This lets you create both code-structuring and data-structuring facilities that express stereotyped patterns 
with variations. 

[ Scheme macros are actually more powerful than this, however, because you can use them to analyze 
code before transforming it... sort of... ] 

With Scheme macros, you can define new control constructs, data structuring facilities, full-blown 
object systems with inheritance, parameterized coding facilities (like C++ templates), and other more 
application-specific facilities to make your life easier. 

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

quasiquote

The special form quasiquote behaves a lot like quote, allowing you to write out literal expressions 
in your program, using the standard textual representation of s-expressions. Scheme automatically 
constructs the data structures. quasiquote is much more powerful than quote, however, because you 
can write expressions that are mostly literal, but leave holes to be filled in with values computed at 
runtime. 

For example, the value of the expression (quote (foo bar baz)) is a list (foo bar baz). 
Likewise, the value of the expression (quasiquote (foo bar baz)) is a list (foo bar baz). 

There's a big difference, though. quote constructs an s-expression at compile time, when the procedure 
containing the quote expression is compiled.(11) quasiquote constructs an s-expression at run time, 
when the quasiquote form is executed. This allows Scheme to "customize" a data structure, so that 
you actually get a different data structure each time you execute the same quasiquote form. You can 
use the unquote operator to specify which parts should be customized. 

For example, suppose you want to write a procedure that creates a three-element list whose first and last 
elements are the literal symbols foo and baz, but whose middle element is the value of the variable 
bar. 

Try this in your scheme system: 

Scheme>(define bar 2)
baz
Scheme>(quasiquote (foo (unquote bar) baz))
(foo 2 baz)

Without quasiquote and unquote, you could get the same effect by replacing (quasiquote 
(foo (unquote bar) baz)) with (list (quote foo) bar (quote baz)), or the 
equivalent sugared form (list 'quote foo 'baz). For this simple example, that's probably at 
least as clear, because the use of (quasiquote ...) and (unquote ...) is rather clunky. 

To make it easier to write quasiquoted expressions, Scheme provides a little syntactic sugar. Just as you 
can use a single quote character and write '(foo bar baz) instead of (quote (foo bar baz), 
you can use a backquote character (`) to replace (quote ...) and a comma character (,) to replace 
(unquote ...). 
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Now we can do this: 

Scheme>`(foo ,bar baz)
(foo 2 baz)

This is much clearer. Intuitively, the backquote character means "construct an s-expresson of the 
following (literal) form, except where commas appear," and the comma character means "use the value of 
the following expression here, instead of using it literally." 

Now you can see why it's called quasiquote---it's a way of writing "mostly quoted" expressions, 
instead of pure literals. You can turn quoting off where you want to. This is particularly useful in 
constructing s-expressions that are in fact mostly literal, especially if they're complicated. 

For a simple example, suppose you want to write a procedure that constructs a greeting to print to a user. 
The greeting is always mostly the same, but includes the current day of the week: 

Scheme> (define day-of-week 'Sunday)
day-of-week

Scheme> (define (make-greeting)
           `(Welcome to the FooBar system!  We hope you
             enjoy your visit on this fine ,day-of-week)))
greet

Scheme>(make-greeting)
(Welcome to the FooBar system! We hope you enjoy your visit on this
fine Sunday)

Scheme>(set! day-of-week 'Monday)
day-of-week

Scheme>(make-greeting)
(Welcome to the FooBar system! We hope you enjoy your visit on this
fine Monday)

You may have notice that this is somewhat similar to formatted output in other languages you've used, 
like C. (C's printf procedure takes a string that is (mostly) quoted, but has special escape characters in 
it to tell where to substitute the printed representation of runtime values. For example, if day_of_week 
holds a pointer to the string "Sunday", printf("Welcome. It's %s.", day_of_week) 
prints "Welcome. It's Sunday.") 

The nice thing about Scheme quasiquotation is that it works on normal data structures. For example, 
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suppose you want to write a routine that creates an association list with several literal elements, and a 
several customized ones. 

(define (create-shipping-employee-association name)
  `((name ,name)
    (employee-id-no ,(get-next-employee-id!))
    (department shipping)
    (hire-date ,(get-day) ,(get-month) ,(get-year))))

(Notice that here that most of the unquoted expressions are calls to procedures, whose return values will 
be used. We can fill the holes in our templates with anything we want, not just variable values.) 

Depending on the value of the variable the values returned by the procedure calls, (new-shipping-
employee-alist "Philboyd Studge") will return something like 

((name "Philboyd Studge")
 (employee-id-no 6357)
 (department shipping)
 (hire-date 18 August 1997))

Here it should be clear that quasiquote has let us write out a stereotyped data structure, and 
unquote lets us fill in the varying parts. More complicated examples would be make this benefit 
clearer, but I'll leave them to your imagination. 

unquote-splicing

Scheme provides a variant of unquote for use when you want to merge an unquoted list into a literal 
list, rather than nesting it. 

For example, suppose you want to embed a phrase in a sentence, where the phrase is a list of symbols, 
and the sentence is a list of symbols. 

If you tried this with unquote, you'd get a nested list, rather than just a list of symbols: 

Scheme> (define phrase-of-the-day '(the Lord helps those who take a big
                            helping for themselves))
phrase-of-the-day

Scheme> `(Remember that ,phrase-of-the-day)
(Remember that (the Lord helps those who take a big helping for
themselves))
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Rather than using ,expr), we can use use (unquote-splicing expr), or the syntactically sugared 
form, ,@expr. 

Scheme> `(And remember that ,@phrase of the day)
(And remember that the Lord helps those who take a big helping for
themselves)

Go to the first, previous, next, last section, table of contents. 
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Go to the first, previous, next, last section, table of contents. 

Defining New Special Forms

Sometimes we want to write stereotyped code, not just stereotyped data structures. As with data, we sometimes 
want part of our stereotyped piece of code to vary. We can do this with syntax extensions, also known as 
macros. 

(If you're familiar with macros from C, don't scoff. Macros in C are stunningly lame and hard to use compared 
to Lisp or Scheme macros. Read on to find out what you've been missing. If you're familiar with Lisp macros, 
but have never done advanced programming with them, you probably don't realize how powerful they are--Lisp 
macros are so error-prone that people often avoid them. Scheme macros are very powerful, but automate away 
some of the tricky parts.) 

Macros are syntax extensions to a programming language, expressed as a translation of expressions. By writing 
a macro, what you're really doing is extending the functionality of the compiler or interpreter--you're telling it 
how to compile (or interpret) a new construct, by telling it how to rewrite that construct into something it 
already knows how to compile or interpret. 

(Conceptually, defining a macro is extending the compiler--you're telling the parser how to recognize a new 
construct, to change the grammar of the language, and also specifying how to generate code for the new 
construct. This is something you can't do in most languages, but it's easy in Scheme.) 

Scheme recognizes macro definitions, and then uses them to recognize and translate the new constructs into 
other constructs. The interpreter or compiler's process of translating a level constructs is often called "macro 
expansion," despite the fact that the resulting expression may not be bigger than the original expression. 
Macroexpansion can be recursive, because macros can use macros, and a macro can even use itself, like a 
recursive procedure. 

Syntax extension is powerful, and hence somewhat dangerous when used too casually. Be aware that when you 
write a macro, you can change the syntax of your programming language, and that can be a bad thing--you and 
others may no longer be able to easily understand what the program does. Used judiciously, however, such 
syntactic extensions are often just what you need to simplify your programs. They are especially useful for 
writing programs that write programs, so that you can avoid a lot of tedious repetitive coding. 

Macros are so useful that they're usually used in the implementation of Scheme itself. Most Scheme compilers 
actually understand only a few special forms, and the rest are written as macros. 

In a later chapter, I'll describe some advanced uses of macros, which let your "roll your own" language with 
powerful new features. 

Macros vs. Procedures
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Why do we want macros? In Scheme, the main code abstraction mechanism is procedural abstraction, e.g. 
using define or lambda to write procedures that do stereotyped things. In a sense, we "specialize" 
procedures by passing them argument values--a procedure can do different things depending on the values it's 
given to work with. We can also "specialize" procedures by creating closures in different environments. Isn't 
this enough? 

Not in general. While procedural abstraction is very powerful, there are times when we may want to write 
stereotyped routines that can't be written as procedures. 

Suppose, for example, you have a Scheme system which gives you things like let and if, but not or. (Real 
Schemes all provide or, but pretend they don't. It makes a nice, simple example.) 

You want an or construct (rather like the one actually built into Scheme). This or can take two arguments; it 
evaluates the first one and returns the result if it's a true value, otherwise it evaluates the second one and returns 
that result. 

Notice that you can't write or as a procedure. If or were a procedure, both of its arguments would always be 
evaluated before the actual procedure call. Since or is only supposed to evaluate its second argument if the 
first one returns #f, it just wouldn't work. 

If Scheme didn't have or, you could fake it at any given point in your program, by writing an equivalent let 
expression with an if statement in it. 

For example, suppose you wanted to write the equivalent of (or (foo?) (bar?)). 

As a first try, you might do this: 

(if (foo?)
    (foo?)
    (bar?))

That is, test (foo?), and return its value if it's a true value. That's not really quite right though, because this if 
statement evaluates foo? twice: once to test it, and once to return it. 

We really only want to evaluate it once--if (foo?) is an expression with side effects, evaluating it twice could 
make the program incorrect as well as inefficient. 

To avoid this, we can always evaluate the first expression just once to get the value, and store that value in a 
temporary variable so that we can return it without evaluating it again: 

You could instead write 

(let ((temp (foo?)))
   (if temp
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       temp
       (bar?)))

This let expression gives the same effect as (or (foo?) (bar?)), because it evaluates foo exactly 
once, and then tests the value; if the value is true, it returns that value. (The use of a let variable to stash the 
value allows us to test it without evaluating (foo?) again.) If the value is #f, it evaluates (bar?) and 
returns the result. 

This is the transformation we'd like to be able to automate by defining or as a macro. 

Here's a simple version of or written as a macro. I've called it or2 to distinguish it from Scheme's normal or. 

(define-syntax or2
   (syntax-rules ()
      ((or2 a b)        ; pattern
       (let ((temp a)) ; template
          (if temp
              temp
              b)))))

What we're saying to Scheme is that we want to define the syntax of or by giving syntax rules for recognizing 
it and translating it. For this simple version of or, we only need one rule, which says to translate (or a b) 
into the desired let expression. 

(or a b) is called the rule's pattern, which specifies what counts as a call to the or macro, and the let 
expression is the rule's template, which specifies the equivalent code that Scheme should translate calls into. 
The variables a and b are called pattern variables. They stand for the actual expressions passed as arguments 
to the macro. They are "matched" to the actual expressions when the pattern is recognized, and when the 
template is interpreted or compiled, the actual expressions are used where the pattern variables occur. 

You can think of this in two steps. When a macro is used, 

1.  the template is copied, except that the pattern variables are replaced with the macro's argument 
expressions, 

2.  the result is interpreted (or compiled) in place of the call expression. 

(It's really not quite this simple, but that's the basic idea.) 

In some ways, macro arguments are a lot like procedure arguments, but in other ways they're very different. 
The pattern variables are not bound at run time, and don't refer to storage locations. They're only used in 
translating a macro call into the equivalent expression. 

Always remember that arguments to a macro are expressions used in transforming the code, and then the code 
is executed. (For example, the output of the or macro doesn't contain a variable named a; a is just a shorthand 
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for whatever expression is passed as an argument to the macro. In the example use (or (foo?) (bar?)), 
the expression (foo?) is what gets evaluated at the point where a is used in the macro body.) 

This is why our macro has to use a temporary variable, like the hand-written equivalent of or. If we tried to 
write the macro like a procedure, without using a temporary variable, like this 

(define-syntax or
   (syntax-rules ()
      ((or a b)
       (if a
           a
           b))))

then (or (foo?) (bar?)) would be translated into 

(if (foo?)
    (foo?)
    (bar?))

As with the buggy handwritten version, (foo?) would be evaluated twice when this expression was 
evaluated. 

(This is the most common mistake in writing macros--forgetting that while macros give you the ability to 
control when argument expressions are evaluated, they also require you to control it. It's safe to use a 
procedure argument multiple times, because that's just referring to a value in a run-time binding. Using a macro 
argument causes evaluation of the entire argument expression at that point.) 

We can make a better or by using more rules. We might want or to work with any number of arguments, so 
that 

1.  or of zero arguments returns #f, because it has zero true arguments, 
2.  or of one argument is equivalent to that argument--it's true if and only if that argument is true. 
3.  or of two or more arguments evaluates its first argument, and returns its value if it's true. Otherwise, it 

computes the or of the rest of its arguments, and returns its result. 

Here's the Scheme definition with these three rules: 

(define-syntax or
   (syntax-rules ()
      ((or)             ; OR of zero arguments
       #f)              ;   is always false
      ((or a)           ; OR of one argument
       a)               ;   is equivalent to the argument expression
      ((or a b c ...)   ; OR of two or more arguments 
       (let ((temp a))  ;   is the first or the OR of the rest
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          (if temp           
              temp             
              (or b c ...)))))) 

Notice that this definition is recursive. (The third rule's template uses the or macro recursively.) If we hand or 
four arguments, like this: (or foo bar baz quux), it should be equivalent to (or foo (or bar 
(or baz (or quux)))). 

Scheme will use recursion to translate the expression, one step at a time. When Scheme encounters a macro 
call, it transforms the call into the equivalent code, using the appropriate rule. It then interprets (or compiles) 
the resulting expression. If the result itself includes a macro call, then the interpreter (or compiler) calls itself 
recursively to translate that before evaluating it. For a correctly written macro, the recursive translation will 
eventually "bottom out" when no more macro calls result, and the code will be evaluated in the usual way. 

(As I'll show later, this fits in very neatly with the interpreter's or compiler's recursive evaluation of 
expressions.) 

This recursion is recursion in Scheme's transformation of the call expression into equivalent code--it doesn't 
mean that the resulting code is recursive. A Scheme compiler will do all of the recursive transformation at 
compile time, so there's no runtime overhead. Of course, the recursion has to terminate, or the compiler will not 
be able to finish the translation. 

In this definition of or, the third rule contains the symbols c .... The Scheme identifier ... is treated 
specially, to help you write recursive rules. (In previous examples, I used ... as an ellipsis to stand for code I 
didn't want to write out, but here we're usuing the actual Scheme identifier ...; it's actually used in the 
Scheme code for macros.) 

Scheme treats a pattern variable followed by ... as matching zero or more subexpressions. In this or 
macro, c ... matches all of the arguments after the first two. 

Scheme matches (or foo bar baz quux) by the third rule, whose pattern (or a b c ...), because 
it has at least two arguments. In applying the rule, Scheme matches a to foo, b to bar, and c ... to the 
sequence of expressions baz bleen. 

[ This is similar to how you use unquote-splicing inside backquote--you can splice a list into a list at the 
same level, rather than nesting it. ] 

The result of processing this or is 

(let ((temp foo))
      (if temp
          temp
          (or bar baz quux)))
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Now Scheme evaluates this expression. 

But there's another or in there--when Scheme gets to (or bar baz quux) it will match the third rule 
again, with a matched to bar, b matched to baz, and c ... being matched to just quux. The result of this 
macro-processing step is 

(let ((temp foo))
   (if temp
       temp
       (let ((temp bar))
          (if temp
              temp
              (or baz quux)))))

And the new let expression is evaluated. 

There or is again, so Scheme will treat (or baz quux) the same way, again using the third rule--this time 
matching a to baz, b to quux, and c ... to nothing at all, producing 

(let ((temp foo))
   (if temp
       temp
       (let ((temp bar))
          (if temp
              temp
              (let ((temp baz)
                 (if temp
                     temp
                     (or quux))))))))

And this will be evaluated. 

Now the resulting or matches the second rule in the or macro, because it has only one argument quux, which 
is matched to a. The whole translation is therefore: 

(let ((temp foo))
   (if temp
       temp
       (let ((temp bar))
          (if temp
              temp
              (let ((temp baz)
                 (if temp
                     temp
                     quux)))))))
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There are no more macro calls here, so the recursion terminates. 

You might have noticed that the example translation of (or foo bar baz quux) has several different 
variables named temp in it. You might have wondered if this could cause problems--is there a potential for 
accidentally referring to the wrong variable in the wrong place in the code generated by a macro? 

The answer no. Scheme's macro system actually does some magic to avoid this, which I'll discuss later in a 
later section. Scheme actually keeps track of which variables are introduced by different applications of 
macros, and keeps them distinct--the different variables named temp are treated as though they had different 
names, so that macros follow the same scope rules as procedures. (Scheme macros are said to be hygienic; what 
that really means is that they respect lexical scope.) 

You can think of this as a renaming, as though Scheme had sneakily changed the names each time the macro 
was applied to transform the expression, and the result were 

(let ((temp_1 foo))
   (if temp_1
       temp_1
       (let ((temp_2 bar))
          (if temp_2
              temp_2
              (let ((temp_3 baz)
                 (if temp_3
                     temp_3
                     quux)))))))

Scheme implements the same scoping rule for macros and their arguments as for procedures and their 
arguments. When you call a procedure, the argument expressions are evaluated at the call site, i.e., in the call 
site environment, and the values are passed to the procedure--the environment inside the called procedure 
doesn't affect the meaning of the argument expressions. Likewise 

In writing macros like or, we want to control when and whether the arguments are evaluated, but otherwise we 
want them to mean the same thing they would if they were arguments to a procedure. 

For example, suppose we call or with an argument expression that happens to use a name that's used inside 
or. or uses a local variable named temp, and we might just happen to pass it an expression using the name 
temp. 

Consider the following procedure, which uses local variables perm and temp, and calls or in their scope. 

(define (employee? person)
  (let ((perm (member person permanent-employees))
        (temp (member person temporary-employees)))
     (or perm temp))
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If we translated the or macro naively, without worrying about accidental naming conflicts, we'd get this: 

(define (employee? person)
  (let ((perm (member person permanent-employees))
        (temp (member person temporary-employees)))
     (let ((temp perm)
        (if temp
            temp
            temp)))

(This is not what R5RS Scheme macros do!) 

Note what's wrong here. The name temp was passed into the macro from the call site, but it appeared in the 
body of the macro inside the let binding of temp. At the call site, it referred to the "outer" temp, but inside 
the macro, it turne out to refer to something else--in the process of moving the expression around, we 
accidentally changed its meaning. 

Implementing More Scheme Special Forms

As examples of Scheme macros, I'll show how to implement several special forms in terms of lambda. This is 
how most real Scheme compilers work--the compiler itself only "understands" how to compile a few special 
forms directly, but the others can be defined as macros. 

Traditionally, the compiler understands lambda, and all other binding forms are implemented in terms of 
lambda and procedure calling. The compiler must also understand a few other special forms, if, set!, 
quote, a simple version of define [ did I leave one out? ].) 

let

Recall that in chapter [ whatever ], I explained how the semantics of let can be explained in terms of 
lambda. For any let expression, which binds variables and evaluates body expressions in that scope, there is 
an exactly equivalent expression using lambda and procedure calling. The lambda creates a procedure 
which will bind the variables as its argument variables, and execute the body of the let. This lambda is then 
used in a combination--calling the procedure makes it bind variables when it accepts arguments. 

(define-syntax let ()
   (syntax-rules
     ((_ ((var value-expr) ...) body-expr ...)  ; pattern
      ((lambda (var ...)
          body-expr ...)
       (value-expr ...)))))

Here I've used an underscore to stand for the keyword let in the macro call pattern. This is allowable, and 
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recommended, because it avoids having to write the keyword in several places. (If you had to write out the 
keyword in each pattern, it would make it more difficult and error-prone to change the name of a macro.) 

I've also taken advantage of the fact that Scheme is pretty smart about patterns using the ... (ellipsis) symbol. 
The pattern has two ellipses. One matches any number of binding forms (variable names and initial value 
expressions); the other matches any number of body expressions. 

The body expressions matched by body-expr ... are simply used in the body of the lambda expression. 

The expressions matched by (var value-expr) ... are used differently, however--they are not simply 
substituted into the macro template. Instead, (var ...) is used to generate the argument list for the 
lambda, and value-expr ... is used to generate the list of initial expressions. 

Scheme's macro system is smart enough to figure out what's going on. If the pattern contains an ellipsis 
following a compound form (like (var init-expr) ..., and the template uses one of the pattern 
variables from that compound form (followed by an ellipsis), then Scheme assumes you want the 
corresponding part of each form matched by the pattern form. 

If we think of the expressions as s-expressions, we've matched a pattern that is one list of two-element lists, and 
restructured it into two separate lists of elements. (That is, we're going from a list of cars and cadrs to a list 
of cars and a list of cadrs.) 

As an example of use, consider 

(let ((var-a (some-procedure foo))
      (var-b (some-procedure bar)))
   (quux var-a)
   (quux var-b))

which translates to 

((lambda (var-a var-b)
    (quux var-a)
    (quux var-b))
 (some-procedure foo)
 (some-procedure bar))

[ The following is out of place--here I should just be showing some uses of macros. The problem is that I don't 
want to lie and pretend that it's all very simple--Scheme does something sophisticated when you write binding 
contstructs as macros... This stuff will all be clearer after I've talked about hygiene problems with Lisp macros, 
and laziness and call-by-name... how to fwd ref gracefully? ] An extraordinarily astute and thoughtful reader 
might wonder if there's something wrong here. (Luckily, there's actually nothing to worry about.) Recall that 
when discussing or, I said that Scheme is careful to treat names introduced by a macro as though they were 
distinct, effectively renaming variables introduced in a macro. What about the argument variables to lambda 
in this example? One might think var-a and var-b would just be renamed and we'd get: 
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((lambda (var-a-1 var-b-1)
    (quux var-a)
    (quux var-b))
 (some-procedure foo)
 (some-procedure bar))

Clearly, this isn't what we want--we want var-a and var-b in the lambda body to refer to the variables 
introduced in by lambda---that's what it's for. 

Scheme's macro processor is smart enough to infer that this is what you want. When you write a macro that 
accepts a name as an argument and binds it, Scheme assumes you're doing that for a good reason. If you then 
take another argument to the same macro and use it in the scope of that new variable, Scheme assumes you 
want occurrences of the name to refer to the new variable. 

That is, Scheme uses an algorithm that checks what you do with names in forms that get passed as arguments 
into a macro. If you just use them in the normal ways, evaluating or assigning to them as variable names, 
Scheme assumes you mean to refer to whatever those names refer to at the call site of the macro. (That's 
normal lexical scope.) But if you take the name and use it as the name of a new variable, Scheme 
assumes you're defining a binding construct, and that any other arguments you put in that scope should see the 
new binding, instead of being scoped at the call site.) 

Scheme can generally assume this, because if you're not implementing a scoping binding form (like let or 
do), there's no reason for a macro to accept a name as an argument and then turn around and bind it. 

let*

Once we have let, we can implement let* in terms of that. We simply write a recursive macro that peels off 
one binding form at a time and generates a let, so that we get a nested set of lets that each bind one 
variable. 

(define-syntax let* ()
   (syntax_rules
      ((_ () body-expr ...)
       (begin body-expr ...))
      ((_ ((var1 value-expr1)(var value-expr) ...)
       (let ((var1 value-expr))
          (_ ((var value-expr) ...)
             body-expr ...)))))

This macro uses two syntax rules. The first is the termination case for recursive macroexpansion. A let* that 
has an empty binding form (i.e., binds zero variables) should be translated into a begin; it will just sequence 
the body expressions. 
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The recursive rule says that a let* with one or more binding subforms should translate into a let that 
performs the first binding and another let* to bind the rest and evaluate the body. (Note that I've used the _ 
shorthand for let* in the recursive call, as well as in the pattern.) 

As with let, Scheme recognizes this as a binding construct, and does the right thing--it notices that the var 
argument passed into the macro is used as a name of a new binding in the macro, so it assumes that the new 
binding should be visible to the body expressions. 

cond

Discussion

Scheme macros also have several features I haven't demonstrated, to make it easier to write more sophisticated 
macros than or, and I'll demonstrate those later, too. 

In the next section, though, I will discuss a different and simpler kind of macro system, which is not standard 
Scheme, and does have problems with variable names. 

Lisp-style Macros

In this section, I'll discuss a simple kind of macro system that isn't standard in Scheme (and you might be able 
to skim this section without too much loss) but is interesting for several reasons. 

●     It is very easy to explain how it works--it is a real macro system, but one which is very easy to 
implement. We can add it to our interpreter with a few function definitions. This should clear up any 
confusion about what macros basically are, and how to think about them. (It's also another nice example 
of Scheme programming--we'll get to cheat and use quasiquote to do most of our work for us. Then 
I'll show how to implement quasiquote, too.) 

●     The simple Lisp-style macro system also demonstrates two important issues in macros: the power of 
procedural transformation, and problems with scoping when code is transformed. An understanding of 
Lisp macros can only help later when we return to Scheme macros for an in-depth discussion of how to 
work and how to use them. 

●     The new standard Scheme macro system is safer than Lisp macros, and very useful, but not quite as 
powerful. Sometimes it's they're still useful, if you use them for simple things they're appropriate for. 
Some of our later examples will use this kind of macro. 

●     [ R5RS will have macros, but IEEE/ANSI Scheme does not, and may not for some time. Most Schemes 
do support Lisp-style macros, even though they're not part of the standard... and you can use them to 
bootstrap a portable implementation of R5RS macros. [Guile uses Lisp-style macros fairly heavily, so 
Guile programmers should definitely pay attention.] ] 

●     [ You might need to program in Lisp some day, or talk intelligently about Lisp. ] 
●     [ People keep reinventing them, and not noticing that they were invented decades ago, for Lisp--I've 

seen at least three languages with reinventions of Lisp macros, usually in an inferior form. I want to 
make it clear what Lisp macros do, and what's good and bad about them, to avoid further awkward 
reinventions of the wheel. ] 
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Ultra-simple Lispish Macros

The classic macro system is the Lisp macro system, which allows the user to define an arbitrary Lisp procedure 
to rewrite a new construct. (Most dialects of Lisp, e.g., Common Lisp, have a macro facility of the same 
general kind, called defmacro.) We'll talk for a moment about a simplified version of Lisp-style macros. 
Later we'll explain why and how Scheme macros are better, at least for most purposes. 

Suppose we have a macro system that we can use to tell the interpreter or compiler that when it sees an 
expression that's a list starting with a particular symbol, it should call a particular routine to rewrite that 
expression, and use the rewritten version in its place. 

For the or example, we want to tell the compiler that if it sees an expression of the form (or a b) it should 
rewrite that into an expression of the form 

(let ((temp a)
   (if temp
       temp
       b))

So now we want to tell the compiler how to rewrite expressions like that. Since Lisp expressions are 
represented as lists, we can use normal list operations to examine the expression and generate the new 
expression. Let's assume our system has a special form called define-rewriter that lets us specify a 
procedure of one argument to write a particular kind of expression. 

Here's a rather ugly rewriter macro for or: 

; OR with subtle scope bug
(define-rewriter 'or          ; tell compiler how to rewrite (or ...)
   (lambda (expr)
      (let ((a (cadr expr))              
            (b (caddr expr)))
         (cons 'let                                 ; make LET form
               (cons (list (list 'temp a)))         ; make let binding form
                     (append '(if temp temp)        ; make IF form
                             (list b))

There's actually a scoping problem with this macro, which I'll ignore for now--it's the problem that define-
syntax fixes. Later, I'll show what's wrong and fix it, but for a while I just want to talk about basic syntax of 
Lisp-style macros. 

Now when the interpreter or compiler is about to evaluate an expression represented as a list, it will check to 
see if it starts with or. If so, it will pass the expression to the above rewriter procedure, and interpret or 
compile the resulting list instead. 
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(Actually, macroexpansion doesn't have to happen just before interpreting or compiling a particular expression. 
The system might rewrite all of the macro calls in a whole procedure, or a whole program, before feeding the 
procedure or program to the normal part of the compiler. It's easier to understand macros if they're interleaved 
with expression evaluation or compilation, though--it's just an extra case in the main dispatch of your 
interpreter or compiler.) 

Implementing define-rewriter is easy. (We'll show an implementation for our example interpreter in a 
later section.) We only need to do two simple things: 

●     Provide a procedure that can add rewriter procedures to a table, keyed by the name of the forms they 
rewrite. 

●     Modify the interpreter (or compiler) to check whether expressions of the form (symbol ...) begin with 
the name of a rewriter macro, and if so, to call the rewriter to transform the expression before 
interpreting (or compiling) it. 

That's all. 

The above system works, but it has several awkwardnesses. One is that it is tedious to write routines that 
construct s-expressions directly. We can use quasiquote to make this easier. It will allow us to simply write 
the s-expression we want the macro to produce, and use unquote to fill in the parts we get from the arguments 
to the macro. 

; OR with subtle scope bug
(define-rewriter 'or       ; tell compiler how to rewrite (or ...)
   (lambda (expr)
      (let ((a (cadr expr))              
            (b (caddr expr)))
         `(let ((temp ,a)) ; return an s-expression of this form
             (if temp
                 temp
                 ,b))

This is much easier to read. The backquoted expression is now readable as code--it tells us the general structure 
of the code produced by the macro, and the commas indicate the parts that vary depending on the arguments 
passed to the macro. 

Note that there is no magic here: define-rewriter and quasiquotation can be used independently, and are 
very different things. It just happens that quasiquotation is often very useful for the things you want to do in 
macros--returning an s-expression of a particular form. 

This simple rewriting system is still rather tedious to use, for several of reasons. First, we always have to quote 
the name of the special form we're defining. Second, it's tedious to write a lambda every time. Third, it's 
tedious to always have to destructure the expression we're rewriting to get the parts we want to put into the 
expression we generate. ("Destructure" means take apart to get at the components--in this case, 
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subexpressions.) 

Better Lisp-style Macros

It would be nice if the macro facility allowed you to declare the argument pattern to the macro, and 
automatically destructured it for you. Most Lisp systems have a special form called defmacro that does this 
for you, and avoids the need to write a lambda expression every time. For consistency with Scheme naming 
conventions, we'll call our equivalent define-macro. 

define-macro implicitly creates a transformation procedure whose body is the body of the define-macro 
form. It also implicitly destructures the expression to be transformed, and passes the subexpressions to the 
transformation procedure. 

Using define-macro, we can write or this way, specifying that or takes two arguments: 

; OR with subtle scope bug
(define-macro (or a b)
   `(let ((temp ,a))
       (if temp
           temp
           ,b))

We didn't have to write the code that destructures the form into a and b---define-macro did that for us. We 
also didn't have to explicitly write a lambda to generate the transformation procedure; define-macro did 
that too. 

This makes the syntax of define-macro similar to a procedure-defining define form. Still, you should 
always remember that you're not writing a normal procedure: you're writing a procedure to transform code 
before it is interpreted or compiled. The combination of automatic argument destructuring and template-filling 
(using backwuote and comma) makes it easier to do this in many cases. 

Like a procedure, a macro can take a variable number of arguments, with the non-required ones automatically 
packaged up into a rest list. We can define a variable-arity or with define-macro: 

[ need to check this example--it's off the top of my head ] 

; variable arity OR with subtle scope bug
(define-macro (or . args)
   (if (null? args)  ; zero arg or?
       #f
       (if (null? (cdr? arg-exprs)) ; one arg or?
           (car arg-exprs)          
           `(let ((temp ,(car arg-exprs)))
               (if temp
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                   temp
                   (or ,@(cdr arg-exprs)))))))

Here we're just accepting the list of argument expressions to the or expression as the rest list args. 

If it's an empty list, we return #f. Keep in mind that we're returning the #f object, which will be used in place 
of the or expression, i.e. as the literal #f to use in the resulting code. (Conceptually, it's a fragment of a 
program code, even though that program fragment will in fact return the value #f when it executes, because #f 
is self-evaluating. We could have quoted it to make that clearer.) 

If it's a one-element list, we just return the code (s-expression) for the first argument. 

If it's a list of more than one argument expression, we return an s-expression for the let with a nested if. 
(Note the use of unquote-splicing (,@) to splice the cdr of the expression list into the or form as its 
whole list of arguments.) 

You should be aware, though, that what you're really doing is specifying a procedure for transforming 
expressions before they're compiled or interpreted, and that quasiquote is just syntactic sugar for procedural 
code that constructs an s-expression. 

define-macro is easy to write, once we've got define-rewriter; we don't have to modify the 
interpreter or compiler at all. We just use define-rewriter to write define-macro as a simple macro. 
We'll make define-macro a macro that generates transformation procedures, and uses define-
rewriter to register them with the interpreter. 

Problems With Lisp-Style Macros

Earlier we alluded to a lurking bug in our define-rewriter and define-macro definitions for or. 

Suppose we use the or macro this way--we check to see if someone is employed as either a permanent or 
temporary employee, and generate a w2 tax form if either of those is true. 

  (let ((temp (member x temporary-employees))
        (perm (member x permanent-employees)))
     (if (or temp perm)
         (generate-w2 x)))

The expansion of this is: 

(let ((temp (member x temporary-employees))
      (perm (member x permanent-employees)))
   (if (let ((temp temp))
          (if temp
              temp
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              temp)))    ;BUG! (should refer to outer temp, not inner)
       (generate-w2 x)))

The problem here is that we happened to use the same name, temp, at both the call site and inside the macro 
definition. The reference to temp in (or temp perm) gets "captured" by the binding of temp introduced in 
the macro. 

This occurs because a normal macro facility does not understand issues of name binding--the name temp 
refers to one program variable at the call site, and another at the site of its use inside the macro--and the 
macroexpander doesn't know the difference. To the macroexpansion mechanism, the symbol temp is just a 
symbol object, not a name of anything in particular, i.e., a particular program variable. 

There are two ways to get around this problem. One is for the macro-writer to be very careful to use names that 
are very unlikely to conflict with other names. This makes code very ugly, because of the unnatural names 
given to variables, but more importantly, it's harder to get right than it may seem. The other way around the 
problem is to get a much smarter macro facility, like the new Scheme define-syntax macro system. 

Ugly Hacks Around Name Conflicts

One way to avoid name conflicts is to pick names for variables used inside macros in such a way that they're 
unlikely to conflict with names that users of the macros might pick, e.g., 

(define-macro (or first-arg second-arg)
   `(let ((temp!in!or!macro ,first-arg)
       (if temp!in!or!macro
           temp!in!or!macro
           ,second-arg)))

It's unlikely that anyone will name a different variable temp!in!or!macro someplace else, so the problem 
is solved, right? Not necessarily. 

Besides the fact that this is incredibly tacky, there's still a situation where this kind of solution is likely to fail--
when people nest calls to the same macro. Each nested call will use the same name for different variables, and 
things can go nuts. (Food for thought: is this true of the or macro above? Does it nest properly?) 

The standard hack around that problem is to have each use of the macro use a different name for each local 
variable that might get captured. This requires some extra machinery from the underlying system--there has to 
be a procedure that generates new, unique symbols, and which can be called by the macro code each time the 
macro is expanded. The traditional Lisp name for this procedure is gensym, but we'll call it generate-
symbol for clarity. 

Now we can write a fixed version of the two-argument OR macro. 

; Version of 2-arg OR with scope bug fixed
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(define-macro (or first-arg second-arg)
   (let ((temp-name (generate-symbol))) 
      `(let ((,temp-name ,first-arg)
          (if ,temp-name
              ,temp-name
              ,second-arg)))

Notice that the outer let is outside the backquote--it will be executed when the macro is used (i.e., once each 
time an or expression is rewritten; the quasiquoted part is the code to be interpreted or compiled (after the 
comma'd holes are filled in). 

Each time a call to or is processed by the compiler (or interpreter), this let will generate a new symbol before 
translating it; quasiquote will fill in the holes for the new symbol. (Be sure to get your metalevels right here: 
temp-name is the name of a variable in the macro transformation procedure, whose binding will hold a 
pointer to the the actual name symbol that will be used for the variable.) 

Isn't this ugly? To some degree, Lisp macros are nice because you can use the same language (Lisp) in macros 
as you can in normal code. But due to these funky scoping issues, you effectively end up having to learn a new 
language--one with lots of generate-symbol calls and commas. 

On the other hand, maybe it builds character and abstract reasoning abilities, because you have to think a lot 
about names of names and things like that. Fun, maybe, but not for the faint of heart. 

Implementing Simple Macros and Quasiquote

Implementing Simple Macros

Implementing quasiquote and unquote

[ This section is particularly rough and needs to be reworked. Sorry. ] 

quasiquote is a special form that (like quote) has a very special sugared syntax. Part of this syntax is 
recognized by the reader, rather than the compiler or interpreter proper; the rest of the work is done by the 
compiler or interpreter. 

Translating backquotes to quasiquote

A backquote character is interpreted very specially by the Scheme (or Lisp) reader, and backquoted expressions 
are converted into quasiquote expressions with a normal-looking nested-prefix-expression syntax. The 
expression `(a b c) is actually just shorthand for (quasiquote (a b c)) Similarly, comma'd 
expressions are converted, e.g. `(a ,b ,c) is read in as (quasiquote (a (unquote b) (unquote 
c))). Notice that as far as the reader is concerned, these are just lists--it is up to the compiler or interpreter to 
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process them further, and the reader just preprocesses them into lists that the compiler or interpreter can deal 
with. 

quasiquote

The quasiquote special form may be built into the compiler or interpreter, but it can be implemented as a 
macro, in Scheme. That's the easy way to do it, and it's what we'll do. 

I'll show a simplified version of quasiquote that only deals with commas at the top level of a list, e.g., 

(quasiquote (foo ,bar (baz x y)))

but not 

(quasiquote (foo ,bar (baz ,x y)))

Notice that (quasiquote (foo ,bar (baz x y))) should expand to something like 

(list 'foo bar '(baz x y))

We'll actually generate an expression that uses cons instead of list, because we want to write 
quasiquote recursively; if its argument is a list, it will peel one element at a time of off the list of 
arguments, and either quote it or not before using it in the resulting expression that is the rewritten version of 
the macro call. 

Given this strategy, (quasiquote (foo ,bar (baz x y))) should expand to 

(cons 'foo
      (cons bar
            (cons '(baz x y))
                  '()))

Notice that what we've done is generate an expression to generate a list whose components are explicitly 
quoted where necessary, as opposed to the original backquoted list where things are quoted by default and 
explicitly unquoted. And since 'thing is just a shorthand for (quote thing), we'll really generate an ugly 
expression like 

(cons (quote foo)
      (cons bar
            (cons (quote baz x y)
                  '())))

written as a straighforward low-level macro. We'll define it as a trivial macro that just calls a procedure 
quasiquote1 to do the actual transformation. 
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[ NEED TO DEBUG THIS... PRW ] 

(define-macro (quasiquote expr)
   (quasiquote1 expr))

(define (quasiquote1 expr)
   (if (not (pair? expr)) ; if quoted expr is not a list, it's just
       expr               ; a literal
       ; else we'll grab a subexpression and cons it (appropriately
       ; quoted or not) onto the result of recursively quasiquoting
       ; the remaining arguments
       (let ((first-subexpr (car expr))
             (rest-subexprs (cdr expr)))
          (if (and (pair? next-subexpr)
                   (eq? (car first-subexpr) 'unquote)))
              (list 'cons
                    first-subexpr       ; gen expr to eval this subexpr
                    (quasiquote1 rest-subexprs))                     
              (list 'cons
                    (list 'quote first-subexpr)    ; quote this subexpr
                    (quasiquote1 rest-subexprs)))))

A full implementation of quasiquote is a little trickier, because it must deal with nested uses of quasiquote 
and unquote; each subexpression that is not unquoted must be traversed and treated similarly to the top-level 
list--i.e., rather than just using the subexpressions as literals and quoting them, an equivalent expression should 
be constructed to create a similarly-structured list with the unquoted holes filled in. Also, a full implementation 
should handle unquote-splicing as well as unquote. 

define-rewriter

In Chapter [ whatever ], I showed the code for an interpretive evaluator that was designed to support macros. In 
this section, I'll explain how to implement the macro processor and install it in the interpreter. 

Recall that when eval encounters an expression that's represented as a list, it must determine whether the list 
represents a combination (procedure call), a built-in special form, or a macro call. It calls eval-list to do 
this dispatching. 

Also recall that we implemented environments that can hold different kinds of bindings--of normal variables or 
macros. A macro binding holds a transformation procedure that can be used to rewrite an expression before it is 
interpreted. 

eval-list checks to see if the list begins with a symbol, which might be the name of a macro, or the name 
of a procedure. It looks in the environment to find the current binding of the symbol. 
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If it's a syntax (macro) binding, eval-list it extracts the transfromer procedure from the binding 
information, and calls eval-macro-call to evaluate the list expression. 

Here's eval-macro-call: 

(define (eval-macro-call transformer expr envt)
   (eval (transformer expr) envt))

All it does is apply the transformation procedure to the expression, and call eval recursively to evaluate the 
result. 

This is sufficient to be able to use macros, once they're defined. We also need to be able to define macros, so 
that we can use them. 

For that, we'll add one special form to our interpreter, define-rewriter, which takes a name symbol and a 
transformation procedure as its arguments. 

[ Show define-rewriter ... has to accept a closure in our language, not the underlying Scheme ] 

define-macro

Once we've added define-rewriter to our interpreter, we don't have to modify the interpreter at all to add 
define-macro. We can simply define it as a macro in the languauge we interpret, using define-
rewriter "from the inside." We had to add define-rewriter to the language implementation itself, but 
once that's done, we can bootstrap a better macro system with no extra help from the interpreter. 

define-macro does three things: 

●     It analyzes the calling form of a macro (the argument pattern) and generates code to destructure 
expressions of that form. 

●     it creates a procedure that will do the destructuring and the transformation expressed in the macro body. 
●     it installs a new syntax binding in the current binding environment, holding that transformation 

procedure. 

Bear in mind that the following code is not code in the interpreter, but code to be interpreted, to create a 
define-macro macro, from inside our language. 

[ show define-macro ... pattern matching on arg form and creating a routine to destructure and bind... ] 

Go to the first, previous, next, last section, table of contents. 
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Records and Object Orientation

Most programming languages have a standard facility for defining new types of records or structures. A record is 
an object with named fields. For example, we might define a point record type, to represent geometric points in a 
plane. Each point object might have a x field and a y field, giving the horizontal and vertical coordinates of a 
point relative to the origin. Once this point class is defined, we can create instances of it, i.e., actual objects of 
type point, to represent particular points in space. 

Scheme is an unusual language in that there is not a standard facility for defining new types. We can build a type-
definition facility, however, using macros. 

In this chapter, I'll show a simple record definition facility written in Scheme. Then I'll describe a simple object-
oriented programming system for Scheme, and show how it can be implemented in Scheme, too. (Both of these 
systems rely on Lisp-style macros, which are not standard Scheme, but are available in almost every Scheme 
implementation.) 

Records (Structures)

Using Procedural Abstraction to Implement Data Abstraction

Scheme's main abstraction mechanism is procedural abstraction. We can define procedures that represent higher-
level operations, i.e., operations not built into the language, but which are useful for our purposes. We can construct 
abstract data types, which are data types that represent higher-level concepts (such as points in a coordinate space), 
and use procedures to implement the operations. 

For example, we can fake a point data type by hand, by writing a set of procedures that will construct point 
objects and access their fields. We can choose a representation of points in terms of preexisting Scheme types, and 
write our procedures accordingly. 

For example, we can use Scheme vectors to represent points, with each point represented as a small vector, with a 
slot for the x field and a slot for the y field. We can write a handful of procedures to create and operate on instances 
of our point data type, which will really allocate Scheme vectors and operate on them in ways that are consistent 
with our higher-level point abstraction. 

We start with a constructor procedure make-point, which will create ("construct") a point object and initialize 
its x and y fields. It really allocates a Scheme vector. The zeroth slot of the vector holds the symbol point, so that 
we can tell it represents a point object. 

; a point is represented as a three-element vector, with the 0th
; slot holding the symbol point, the 1st slot representing
; the x field,, and the 2nd slot representing the y field.
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(define (make-point x y)
   (vector 'point x y))

We also define a predicate for testing whether an object is a point record. It checks to see if the object is actuall a 
Scheme vector and its zeroth slot holds the symbol point. This isn't perfect--we might mistake another vector that 
happens to hold that symbol in its zeroth slot for a point, but we'll ignore that for now. (It's easy to fix, and we'll fix 
it later when we build a more sophisticated object system.) 

; check to see if something is a point by checking to see if it's
; a vector whose 0th slot holds the symbol point.
(define (point? obj)
   (and (vector? obj)
        (eq? (vector-ref obj 0) 'point)))

Now we define accessor procedures to get and set the x and y fields of our points--the 1st and 2nd slots of the 
vector we use to represent a point. 

; accessors to get and set the value of a point's x field.
(define (point-x obj)
   (vector-ref obj 1))
   
(define (point-x-set! obj value)
   (vector-set obj 1 value))

; accessors to get and set the value of a point's y field.
(define (point-y obj)
   (vector-ref obj 2))
   
(define (point-y-set! obj)
   (vector-set! obj 2 value))

This isn't perfect, either--we should probably test to make sure an object is a point before operating on it as a 
point. For example, point-x should be more like this: 

(define (point-x obj)
   (if (point? obj)
       (vector-ref obj 1)
       (error "attempt to apply point-x to a non-point)))

Once we've defined the procedures that represent operations on an abstract data type, we can ignore how it's 
implemented--we no longer have to worry about how points are represented. 

We can also change the implementation of an abstract data type by redefining the procedures that create and operate 
on instances of that type. 

For example, we could decide to represent points as lists, rather than vectors, and redefine the constructor, 
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predicate, and accessors to use that representation. 

We could also change the representation to polar form, rather than Cartesian, storing a direction and distance from 
the origin rather than x and y distances. With a polar representation, we could still support the operations that return 
or set x coordinates, using trigonometric functions to compute them from the direction and distance. 

Automating the Construction of Abstract Data Types with Macros

As I just showed, it's easy to define an abstract data type in Scheme, by hand, using procedural abstraction. Doing 
this for every abstract data type is very tedious, however, so it would be good to automate the process and provide a 
declarative interface to it. 

We'd like to be able to write something like this: 

(define-structure point
   x
   y)

and have Scheme automatically construct the constructor, type predicate, and accessor procedures for us. In most 
languages, this is done by the compiler, but we can tell Scheme how to do it by defining define-structure as 
a macro. Whenever the interpreter or compiler encounters a define-structure form, our macro 
transformation procedure will be called and will generate the relevant procedures, which will then be interpreted or 
compiled in place of the define-structure form. 

We'll use a define-macro (Lisp-style) macro for this. this macro will intercept each define-structure 
form, analyze it, and produce an s-expression that is a sequence of procedure definitions to be interpreted or 
compiled. Each define-structure form will be translated into a begin form containing a series of procedure 
definitions. 

; define-struct is a macro that takes a struct name and any number of field
; names, all of which should be symbols.  Then it generates a begin expression
; to be compiled, where the begin expression contains the constructor for this
; structure type, a predicate to identify instances of this structure type,
; and all of the accessor definitions for its fields.

(define-macro (define-struct struct-name . field-names)

   ; analyze the macro call expression and construct some handy symbols
   ; and an s-expression that will define and record the accessor methods.

   (let* ((maker-name (string->symbol
                       (string-append "make-"
                                      (symbol->string struct-name))))
          (pred-name (string->symbol
                      (string-append (symbol->string struct-name) "?")))
          (accessor-defns (generate-accessor-defns struct-name field-names)))
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      ; return an s-expression that's a series of definitions to be
      ; interpreted or compiled.
      `(begin (define (,maker-name ,@field-names)
                 (vector ',struct-name ,@field-names))
              (define (,pred-name obj)        
                 (and (vector? obj)
                      (eq? (vector-ref obj 0) ,struct-name)))
              ,@accessor-defns)))

To generate all of the accessor definitions, we call a special helper routine, generate-accessor-defns, and 
splice the result into the sequence of definitions using unquote-splicing (,@). generate-accessor-
definitions simply iterates over the list of slot names tail-recursively (using named let), consing two 
definitions onto the definitions for the rest of the slots: 

; generate-accessor-defns generates a list of s-expressions that
; define the accessors (getters and setters) for a structure.

(define (generate-accessor-defns structname fnames)

   (let ((structname-string (symbol->string structname)))

      ; loop over the fieldnames, and for each fieldname, generate two
      ; s-expressions:  one that is a definition of a getter, and one that's
      ; a definition of a setter.
      ; As we loop, increment a counter i so that we can use it as the index
      ; for each slot we're generating accessors for

      (let loop ((fieldnames fnames)
                 (i 1))
         (if (null? fieldnames)
             '()
             ; take a fieldname symbol, convert to string, append it to the
             ; struct name string with a hyphen in the middle, and convert
             ; that to a symbol...
             (let* ((fieldname-string (symbol->string (car fieldnames)))
                    (getter-name (string->symbol
                                  (string-append structname-string
                                                 "-"
                                                 fieldname-string)))
                    (setter-name (string->symbol
                                  (string-append structname-string
                                                 "-"
                                                 fieldname-string
                                                 "-set!"))))

                 ; now construct the define forms and cons them onto the
                 ; front of the list of the remaining define forms, generated
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                 ; iteratively (tail-recursively)

                 (cons `(define (,getter-name obj)
                           (vector-ref obj ,i))
                       (cons `(define (,setter-name obj value)
                                 (vector-set! obj ,i value))
                             (loop (cdr fieldnames)
                                   (+ i 1))))))))) 

Simple Uses of OOP Objects

In this section, I'll discuss a simple object system and how it it used. This object system is not part of Standard 
Scheme, but can be [almost entirely ?] implemented in portable Scheme, and used in any Scheme system with a 
reasonably powerful macro system. 

The object system is based on classes and generic procedures. It is a subset of the RScheme object system, and its 
basic functionality is similar to a subset of CLOS object system for Common Lisp, the Dylan object system, 
Meroon, TinyCLOS, and STkLOS. 

Late Binding

One of the major features of object-based and object-oriented programming is late binding of methods, which 
means that we can write code in terms of abstract operations without knowing exactly which concrete operations 
will be executed at run time. 

For example, consider a graphical program that maintains a list of objects whose graphical reprsentations are 
visiblle on the user's screen, and periodically redraws those objects. It might iterate over this "display list" of 
objects, applying a drawing routine to each object to display it on the screen. In most interesting applications, there 
would be a variety of graphical object types, each of which is drawn in a different ways. 

If our graphical objects are represented as traditional records, such as C structs or Pascal records, the drawing 
routine must be modified each time a new graphical type is added to the program. For example, suppose we have a 
routine draw which can draw any kind of object on the screen. draw might be written with a case expression, like 
this: 

 (define (draw obj)
    (cond ((triangle? obj)
           (draw-triangle obj))
          ((square? obj)
           (draw-square obj))
          ((circle? obj)
           (draw-circle obj))
          ; more branches...
          ;    .
          ;    .
          ;    .
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          ((regular-pentagon? obj)
           (draw-regular-pentagon obj))

Each time we define a new kind of record that represents a graphical object, we must add a branch to this cond to 
check for that kind of object, and call the appropriate drawing routine. 

In large, sophisticated programs that deal with many kinds of objects, the code may be littered with cond or case 
statements like this, which represent abstract operations, and map them onto concrete operations for specific types. 
(This example maps the abstract operation "draw an object" onto concrete operations like draw-triangle, 
draw-square, and so on.) 

Such code is very difficult to maintain and extend. Whenever a new type is added to the system, all of the cond or 
case expressions that could be affected must be located and modified. 

What we would like is a way of specifying how an abstract operation is implemented for a particular kind of object, 
and having the system keep track of the details. For example, we'd like to say at one point in the program, "here's 
how you draw a regular pentagon," and then be able to use regular pentagons freely. We can then use the abstract 
operation draw, and rely on the system to automatically check what kind of object is being drawn, find the 
appropriate drawing routine for that type, and call it to draw that particular object. 

For example, the routine that draws all of the visible objects might just look like this: 

(map draw display-list) 

When we later add a new type, such as irregular-hexagon, we can just define a method for drawing irregular 
hexagons, and the system will automatically make the draw operation work for irregular hexagons. We don't have 
to go find all of the code that might encounter irregular hexagons and modify it. 

This feature is called late binding of methods. When we write code that uses an abstract operation, we don't have to 
specify exactly what concrete operation should be performed. 

(Note: here we're using a fairly general sense of the word "binding," which is more general than the notion of 
variable binding. We're making an association between a piece of code and the operation it represents, rather than 
between a name and a piece of storage. In this general sense, "binding" means to associate something with 
something else, and in this example, we associating the abstract operation draw with the particular procedure 
needed to draw a particular object at run time.) 

As we'll see a little later, we can define a generic procedure that reprsents the abstract draw operation, and rely on 
an object system to bind that abstract operation to the appropriate drawing procedure for a particular type at run 
time. When we later define new types and methods for drawing them, the generic procedure will be automatically 
updated to handle them. This lets us write most of our code at a higher level of abstraction, in terms of operations 
that "just work" for all of the relevant types. (E.g., we might have abstract operations that can draw, move, and hide 
any kind of graphical object, so that we don't need to worry about the differences between the different kinds of 
graphical objects if those differences don't matter for what we're trying to do.) 

Class Definitions and Slot Specifications
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A class is an object that describes a particular kind of object. A class definition is an expression like a record or 
structure definition, which defines the structure of that kind of object. Classes can also have associated behavior or 
methods, which are routines for performing particular operations on instances of a class. 

For example, suppose we would like to have a class of objects that can be used to represent points in two-
dimensional space. Each point object will have an x slot and a y slot, which hold the object's position in the x and y 
dimensions. 

(A slot is a field of an object, which in other languages may be known as an instance variable, a data member, an 
attribute, or a feature.) 

We can define our point class like this: 

(define-class <point> (<object>)
   (x init-value: 0)
   (y init-value: 0))

Here we have chosen to name the class <point>. By convention, we use angle brackets to begin and end the 
names of classes, so that it's clear that they are class names, not names of normal objects. 

The parenthesized expression after the class name <point> is a sequence of superclass names, which will be 
explained later.(12) (When in doubt, it is a good idea to use <object> as the sole superclass, so use 
(<object>) after the class name in the class definition.) 

The two remaining fields after the superclasses are the slot specifications, which say what kinds of fields an 
instance of <point> will have. A slot specification is written in parentheses, and the first thing is the name of the 
slot. After that come keyword/value pairs. Here we use the keyword init-value: followed by the value 0. 

The specification (x init-value: 0) says that each instance of <point> will have a slot (field) named x, and 
that the initial value of the field is 0. That is, when we create a <point> instance to represent a 2-d point, the 
initial x value will be zero. Likewise, the slot specification (y init-value 0 says that each point will also 
have a y slot whose initial value is 0. 

We can create an instance of an object by using the special form make, which is actually implemented as a macro. 
The make operation takes a class as its first argument, and returns a new object that is an instance of that class. 

To make a <point>, we might use the make expression 

(make <point>)

This expression returns a new point whose x and y slots are initialized to zero. 

If we want the slots of an object to be initialized to a requested value at the time the object is initialized--rather than 
always being initialized the to the same value for every object, we can omit the initial value specification in the 
class definition, and provide it to the make call that creates an object. 
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(define-class <point> (<object>)
   (x)
   (y))

Given this class definition, we can use make to create a <point> instance with particular x and y values: 

(define my-point
        (make <point> x: 10 y: 20)) 

Here we've created a point object with an x value of 10 and a y value of 20. Note that the x value is labeled by a 
keyword x:. As in a class definition, a keyword argument to make looks sort of like an argument, but it really isn't: 
it's the name of the following argument. 

Keyword arguments to define-class and make let you write the arguments in any order, by giving the name 
before the value. We could have written the above call to make with the values in the opposite order: 

(define my-point (make <point> y: 20 x: 10))

The result of this definition is exactly the same as the earlier one. The make macro will sort out the arguments, 
looking at the keyword to figure out what the following arguments are for. 

By default, when we define a class with slots x and y, we implicitly define operations on those fields of those 
objects. 

For each field, two routines are defined, a getter, which fetches the value of the field, and a setter, which sets the 
value of the field. The name of the getter is just the name of the field. The name of the setter starts with set-, 
followed by the name of the field, followed by an exclamation point to indicate that the operation is destructive (i.
e., modifies the state of the object by replacing an old value with a new one.) 

Given the point we created, we can ask the value of its x field by evaluating the expression (x my-point), 
which will return 10. We can change teh value to 50 by evaluating the expression (set-x! my-point 50). 
We can increment it by 1 with the expression 

(set-x! my-point
        (+ 1 (x my-point)))

Different kinds of objects can have fields with the same name, and the getters and setters will operate on the 
appropriate field of whatever kind of object they are applied to. (Accessors are actually generic procedures, which 
will be explained later.) 

Generic Procedures and Methods

A generic procedure is a procedure that does a certain operation, but may do it in different ways depending on what 
kind of argument it is given. A generic procedure can be specialized, telling it how to perform a particular kind of 
operation for a particular kind of argument. 
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A method definition specifies how a generic operation should be done for an object of a particular type. 
Conceptually, a generic function keeps track of all of the methods which perform a particular operation on different 
kinds of objects. A generic procedure is called just like any other function, but the first thing it does is to look up 
the appropriate method for the kind of object being operated on. Then it applies that method. A generic procedure is 
therefore a kind of dispatcher, which maps abstract operations onto the actual procedures for performing them. 

For example, suppose we would like to define several classes, @code<stack>, @code<queue>, and @code<d-e-
queue>, to represent stacks, queues, and double-ended queues, respectively. 

We could define stack this way: 

(define-class <stack> (<object>)
   (items init-value: '())   ; list of items in the stack

An instance of <stack> has one field, items, which points to a list of items in the stack. We can push items onto 
the stack by consing them onto the front of its list of items, or pop items off of the stack by cdring the list. 

To define the behavior of <stack>---and things like stacks--we need some generic procedures, insert-
first! and remove-first!. These will add an item to the front (top) of a stack, or remove and return the item 
from the front (top) of a stack, respectively. 

(define-generic (insert-first! obj item))

(define-generic (remove-first! obj))

These two generic procedures define "generic operations" which may be supported by different classes, but do 
semantically "the same thing." That is, the generic procedures don't represent how to do a particular kind of 
operation on a particular kind of object, but instead represent a general kind of operation that we can define for 
different kinds of objects. 

This pair of generic procedures therefore acts as an abstract data type, which represents object that can behave as 
stacks. The don't say how any particular implementation of stacks works. 

To make the generic operations work for the particular class <stack>, we need to define methods that say how to 
perform the insert-first! and remove-first! operations on objects that are instances of class <stack>. 

For this, we use the macro define-method. Here's the definition of the insert-first! operation for the 
class <stack>: 

(define-method (insert-first! (self <stack>) item)
   (set-items! self
               (cons item (items self))))    

This method definition is very much like a procedure definition. Here we're defining a method that takes two 
arguments, named self and item. The calling form (insert-first! (<stack> self) item) says that 
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this is the particular procedure to use for the generic procedure insert-first! operation when it's given two 
arguments, and the first argument is an instance of class <stack>. 

That is, we're defining a procedure of two arguments, self and item, but we're also saying that this procedure is 
to be used by the generic procedure insert-first! only when its first argument is a stack. (The names self 
and item were chosen for convenience--as with a normal procedure, we can name arguments anything we want.) 

Given this definition, when insert-first! is called with two arguments, and the first is a stack, this procedure 
will be executed to perform the operation in the appropriate way for stacks. We say that we are specializing the 
generic procedure insert-first! for instances of the class <stack>. 

The body of this method definition refers to the stack being operated on as self, the name given as the first 
argument name; it refers to the second argument, which is being pushed on the stack, as item. The body of the 
method is 

(set-items! self
            (cons item (items self)))

which relies on the getter and setter implicitly defined for the items slot by the class definition. It fetches the 
value of the head slot of self using head, conses the argument item onto that list, and assigns the result to the 
head slot using set-head!. 

The method for the generic procedure remove-first! when applied to stacks could be defined like this: 

(define-method (remove-first! (self <stack>))
   (let ((first-item (car (items self))))
      (set-items! (cdr (items self))))) 

Now let's implement a queue data type. Like a stack, a queue data type allows you to push an item on the front of an 
ordered sequence of items--it supports the insert-first! operation. 

However, a queue doesn't let you add items to the front--it only lets you add items to the rear. So our <queue> 
class should support remove-first!, like <stack>, but insert-last! instead of insert-first!. 

This means that we can define a method for <queue> on the remove-first! generic procedures, but we need 
a new generic procedure insert-last!, which represents the abstract operation of removing the last item from 
an ordered sequence. 

(define-generic insert-last!)

The pair of generic operations insert-last! and remove-first! represent the abstract datatype of queues 
and things that can behave like queues. 

To actually implement queues, we need a class definition and some method definitions, to say how a queue should 
be represented, and how the queue operations should be done on it. 
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For a queue, it's good for accesses to be fast at either end, so we'll want a doubly-linked list, rather than a simple list 
of pairs. Here's a class definition for <queue>: 

(define-class <queue> (<object>)
   (front '())
   (rear '()))

Each <queue>s keep a pointer to the beginning of the linked list and a pointer to the end of the linked list. The 
queue itself is structured as a doubly-linked list of queue nodes, each of which has a pointer to an item that's 
conceptually in the queue, plus a next pointer to the next doubly-linked list node, and a prev pointer to the 
previous one. 

To implement the doubly-linked list, we'll use a helper class to implement the list nodes, called <d-l-list-
node>. 

(define-class <d-l-list-node> (<object>)
   (item)
   (next)
   (prev))

This definition will implicitly define setters and getters for the fields, e.g., set-next! and set-next! for the 
next field of a <d-l-list-node>. 

Now we can define the methods for the remove-first! and insert-last! operations on instances of 
<queue>. 

(define (insert-last! (self <queue>) item)
   (let ((new-node (make <d-l-list-node> item: item
                                         prev: (rear self))
                                         next: '())))
      (cond ((null? (front self))          ; nothing in queue yet?
             (set-front! self new-node)              ; this will be first
            (else                              ; otherwise
             (set-next! (rear self) new-node))) ; append to rear of list
      (set-rear! self new-node))))   ; update rear pointer

(define (remove-first! (self <queue>))
   (let ((first-node (front self)))
      (if (null? first-node)
          (error "attempt to remove-first! from an empty queue:" self)
          (let* ((first-item (item first-node))
                 (rest (next first-node)))
             (cond((null? rest)    ; no nodes left in queue?
                   (set-front! self '()) 
                   (set-rear! self '()))
                  (else
                   (set-prev! rest '())
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                   (set-front! self rest)))))))

Note that what stacks and queues both support the abstract operation of removing the first item, but each does it in a 
different way--the same operation (generic procedure) is implemented by different code (methods). 

Generic Procedures and Classes are First-Class

A generic procedure is a procedure, like any other--it is a first-class object that happens to be callable as a 
procedure. You can therefore use store generic procedures in data structures, pass them as arguments to other 
procedures, and so on. 

For example, in a graphical program, we may have a generic draw procedure to display any kind of graphical 
object, and each class of graphical object may have its own draw method. By mapping the generic procedure 
draw over a list of graphical objects, like this, 

(map draw list-of-objects-to-be-drawn)

we can invoke the appropriate draw method for each kind of object. 

In our system, classes are also first class. When we use define-class to define a class named <point>, we 
are actually doing two things: we are creating a special kind of object to represent the class, and we are defining a 
variable named <point> initialized with a pointer to the class object. 

Implementing the Simple Object System

In this section, I'll present a simple implementation of the simple object system described so far. Our object system 
is based on metaobjects, i.e., objects which represent or manipulate other objects such as class instances and 
methods. (The meta- is Greek for "about," "beyond," or "after". 

In programming language terminology, metaobjects are objects that are "about" other objects or procedures. The 
two most important kinds of metaobjects are class objects and generic procedure objects. A class object represents 
instances of a particular class, and a generic procedure object represents a generic operation. 

Metaobjects control how other objects behave. For example, a class object controls how instances of the class are 
constructed, and a generic procedure object controls when and how the particular methods on that generic 
procedure are invoked to do the right thing for particular kinds of objects. 

A big advantage of the metaobject approach is that since metaobjects are just objects in the language, we can 
implement most or all of the object system in the language--in this section, we'll show how to implement a simple 
object system for Scheme, in portable Scheme. (We will rely on macros, which some versions of Scheme don't 
support yet, however.) An advantage of writing a Scheme object system in Scheme is that we can modify and 
extend the object system without having to change the compiler. 

We will use macros to translate class, generic procedure, and method definitions into standard Scheme data 
structures and procedures. A class object in our system is just a data structure, for which we'll use a vector (one-
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dimensional array) as the main representation. A class object will record all of the information necessary to create 
instances of that class. 

Instances of a class will also be represented as Scheme vectors. Each slot of an object will be represented as a field 
of a vector, and we'll translate slot names into vector indexes. 

Generic procedures will be represented as Scheme procedures, constructed in a way that lets us define methods--
each generic procedure will maintain a table of methods indexed by which classes they work for. When a generic 
procedure is called in the normal way, it check the class of the object it's being applied to, and will search its table 
of methods for the appropriate method, and call that method, passing along the same arguments. Methods will also 
be represented as Scheme procedures. 

Implementing define-class

define-class is a macro which accepts the users's description of a class, massages it a little, and passes it on to 
the procedure create-class to construct a class object. 

The reason that define-class is written as a macro and not a procedure is so that the arguments to the macro 
won't be evaluated immediately. For example, the class name (e.g., <point> or <queue passed to define-
class isn't a variable to be evaluated--it's a symbol to be used as the name of the class. 

When a call to define-macro is compiled (or interpreted), the transformation procedure for the macro does two 
things. First, it constructs the class object and adds it to a special data structure by calling register-class. 
Then it generates code to define a variable whose name is the name of the class, and initialize that with a pointer to 
the class. The generated code (the variable definition) is returned by the transformer, and that's what's interpreted or 
compiled at the point where the macro was called. 

For example, consider a call to create a <point> class: 

(define-class <point> (<object>)
   (x)
   (y))

This should be translated by macro processing into a variable definition for <point>, which will hold a pointer to 
the class object, like this: 

(define <point> complicated_expression) 

where complicated_expression has the side-effect of constructing the class object, registering its existence with 
related objects (virtual procedures for the accessors), and so on. complicated_expression should look 
something like this, for our <point> definition: 

; construct an association list describing the slots of this kind of object,
; indexed by slot name and holding the routines to get and set the slot
; values.
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(let ((slots-alist (generate-slots-alist '((x) (y)))))

   ; create the class object, implemented as a Scheme vector
   (let ((class-object (vector <<class>>       ; pointer to class of class
                               '<point>        ; name symbol for this class
                               (list <object>) ; list of superclass objects
                               slots-alist     ; slot names/getters/setters
                               '*dummy*)))     ; placeholder
                               
      ; create and install the instance allocation routine, which will create
      ; and initialize an instance of this class, implemented as a vector
      (vector-set! class-object 4 (lambda (x y)
                                     (vector class-object x y)))
                                     
      
      ; register accessor methods with appropriate generic procedures
      (register-accessor-methods class-object slots-alist)
      
      ; and return the class object we constructed
      class-object))

In more detail, what this generated code does is: 

●     builds an association list, indexed by slot name, holding getter and setter procedures for each slot of a 
<point> object. It creates procedures that will get and set the values of the slots x and y, which have been 
mapped to indexed fields 1 and 2 of the vector used to represent an instance. (These are the methods for the 
generic procedures x, set-x!, y, and set-y!, which will be registered with those generic procedures.) 

●     creates a vector that will be the class object. Its 0th slot is initialized with a pointer to the special object 
<class>, which identifies this object as a class object.(13) The 1st slot holds a pointer to the name symbol 
that is this class's class name. (This is just for documentation purposes.) The 2nd slot holds a list of pointers 
to this object's immediate superclasses. (Note that this is a list of pointers to actual class objects, not name 
symbols.(14) 

●     creates a procedure that will allocate and initialize an instance, given the initial values of the slots. A pointer 
to this object is stored in the class object. (This side-effect is needed because the class object must be created 
before this procedure, so that the class pointer is available to it.) This procedure takes the slot values in the 
same order the slots are laid out. (The make macro will ensure that arguments are passed in the right order 
from calls to make using keywords.) 

●     registers the accessor methods for the slots with the appropriate generic procedures. For now, we'll assume 
that the generic procedure objects already exist--they must be defined explicitly, like any other generic 
procedures. Later we'll show how the necessary generic procedure definitions can be automatically 
generated as needed. 

●     returns the class object. 

Since this is all done in the initial value expression of the definition of the variable <point>, the returned class 
object becomes the initial value of that variable binding. 

Once all this is done, we could create an instance of class point by extracting the allocator procedure from the class 
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object and calling it with the initial values in the proper order. For example, 

((vector-ref <point> 4) 20 30)

would extract the point-allocator procedure from the <point> class object, and call it to create a <point> instance 
with an x value of 20 and a y value of 30. (The make macro will provide a friendlier interface.) 

Now we'll show a simplified version of the procedure generate-class-code, which generates the kind of 
class-creating s-expression shown above. 

Now let's look at the macro to produce code like this from a simple class definition. 

For now, we'll assume that the body of the class definition consists of nothing but slot declarations with no keword 
options--initial value specifiers or other options--i.e., they're one-element lists holding just a symbol that names a 
slot. Ignoring inheritance and assuming that a class includes only the slots declared in this class definition, we'll 
simply assign slots index numbers in the order they're declared. 

We'll also continue to ignore issues of inheritance and automatic generation of generic procedures for slot accessor 
methods. When we implement inheritance, described later, we'll need to do something with the list of superclasses.) 

(define-macro (define-class class-name superclass-list . slot-decls)
   `(define ,class-name
            (let ((slots-slist (generate-slots-alist ',slot-decls 1)))

               ; create the class object, implemented as a Scheme vector
               (let ((class-object (vector <<class>>            ; metaclass
                                           ',class-name         ; name
                                           (list ,@superclass-list) ; supers
                                           slots-alist          ; slots
                                           '*dummy*)))          ; creator
 
                   ; install a routine to create 
instances                             
                   (vector-set! class-object
                                4
                                ; creation routine takes slot values
                                ; as args, creates a vector w/class
                                ; pointer for this class followed by
                                ; slot values in place.
                                (lambda ,(map car slot-decls)
                                   (vector class-object
                                           ,@(map car slot-decls))))
                                     
      
                   ; register accessor methods with appropriate generic procs 
                   (register-accessor-methods class-object slots-alist)
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                   class-object))

Two important helper routines are used by this macro: generate-slots-alist and register-accessor-
methods. 

The initial value expression for slots-alist is a call to generate-slots-alist, with an argument that is 
a quoted version of the argument declarations passed to the macro. Notice that we're using unquote inside a quoted 
expression, and this works. The value of slot-decls will be substituted inside the quote expression during macro 
processing. 

For the <point> definition, the expression (generate-slots-alist ',slot-decls 1) will translate 
to (generate-slots-alist '((x) (y)) 1).(15) Several other expressions in the macro work this way, 
as well: For the <point> example, ',class-name will translate into '<point>, a literal referring to the name 
symbol for the particular class we're defining. 

Likewise, (list ,@superclass-list), which uses unquote-splicing, will be translated to (list 
<object>); when that expression is evaluated, the value of the variable <object> will be fetched and put in a 
list. (Notice that this makes a list with the actual class object in it, not the symbol <object>.) The lambda 
expression that generates an instance creating procedure uses both unquote and unquote-splicing: 

(lambda ,(map car slot-decls)
   (vector class-name ,@(map car slot-decls))

It will translate to 

(lambda (x y)
   (vector class-name x y))

generate-slots-alist just traverses the list of slot declarations recursively, inrementing an index of which 
slot number is next, and constructs list of associations, one per slot. Each association is a list hose car (i.e., the key) 
is the name of the slot, and its second and third elements are procedures to access the slot. The actual accessor 
procedures are generated by calls to slot-n-getter and slot-n-setter, which return procedures to get or 
set the nth slot of a vector. 

(define (generate-slots-alist slot-decls slot-num)
   (if (null? slot-decls)
       '()
       (cons `(,(caar slot-decls)
               ,(slot-n-getter slot-num)
               ,(slot-n-setter slot-num))
             (generate-slots-alist (cdr slot-decls)
                                   (+ 1 slot-num))))) 

(This procedure is initially called with a slot-num of 1, reserving the zeroth slot for the class pointer.) 

Here are simple versions of slot-n-getter and slot-n-setter. Each one simply makes a closure of an 

http://www.federated.com/~jim/schintro-v14/schintro_133.html (16 of 25)11/3/2006 9:14:02 PM

http://www.federated.com/~jim/schintro-v14/schintro_foot.html#FOOT15


An Introduction to Scheme and its Implementation - Records and Object Orientation

accessor procedure, capturing the environment where n is bound, to specialize the accessor to access a particular 
slot. (If we handle keyword options, we'll have to make the code a little more complicated.) 

(define (slot-n-getter offset)
   (lambda (obj)                        ; return a procedure to read
      (vector-ref obj offset)))         ; slot n of an object
(define (slot-n-setter offset)
   (lambda (obj value)                  ; return a procedure to update
      (vector-set! obj offset value)))  ; slot n of an object

We construct a new closure for each slot accessor, but that really isn't necessary. We could cache the closures, and 
always return the same closure when we need an accessor for a particular slot offset. 

class <<class>>

Our simple object system implementation assumes that every instance is represented as a Scheme vector whose 0th 
slot holds a pointer to a class object, which is also an object in the system. This implies that a class object must also 
have a class pointer in its zeroth slot. A question naturally arises as to what the class of a class object is, and what 
its class pointer points to. 

This is actually a deep philosophical question, and for advanced and powerful object system, it has practical 
consequences. For our little object system, we'll settle the question in a simple way. All class objects have a class 
pointer that points to a special object, the class of all classes. We call this object <<class>>, where the doubled 
angle brackets suggest that it is not only a class, but the class of other class objects. This is known as a 
metaclass, because it's a class that's about classes. 

It doesn't do very much--it just gives a special object we can use as the class value for other class objects, so that we 
can tell that they're classes. 

In our simple system, the unique object <<class>> has a class pointer that points to itself---that is, it describes 
itself in the same sense that it describes other classes. This circularity isn't harmful, and allows us to terminate the 
possibly infinite regression of classes, metaclasses, meta-metaclasses, and so on. 

We construct this one special object "by hand." Like other class objects in our system, it is represented as a Scheme 
vector whose first element points to itself, and which has a few other standard fields. Most of the standard fields 
will be empty, because class <<class>> has no superclasses, no slots, and no allocator--because we create the one 
instance specially. 

The following definition suffices to create the class <<class>>: 

(define <<class>>
        (let ((the-object (vector '*dummy*   ; placeholder for class ptr
                                  '<<class>> ; name of this class
                                  '()        ; superclasses (none)
                                  '()        ; slots (none)
                                  #f         ; allocator (none)
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                                  '())))     ; prop. list (initially empty)
           ; set class pointer to refer to itself
           (vector-set! the-object 0 the-object)
           ; and return the class object as initial value for define
           the-object))

Once this is done, we can define a few other routines that will come in handy in implementing the rest of the object 
system: 

instance? is a predicate that checks whether an object is an instance of a class in our class system, as opposed to 
a plain old Scheme object like a pair or a number. (In a better object system, like RScheme's, all Scheme objects 
would also be instances of classes, but we'll ignore that for now.) 

; An object is an instance of a class if it's represented as a
; Scheme vector whose 0th slot holds a class object.
; Note: we assume that we never shove class objects into other
;       vectors.  We could relax this assumption, but our code
;       would be slower.
(define (instance? obj)
   (and (vector? obj)
        (class? (vector-ref 0 obj)))

; An object is a class (meta)object if it's represented as a Scheme
; vector whose 0th slot holds a pointer to the class <<class>>.
; Note: we assume that we never shove the <<class>> object into
;       other vectors.  We could relax this, at a speed cost.
(define (class? obj)
   (and (vector? obj)
        (eq? (vector-ref 0 obj) <<class>>)))

; We can fetch the class of an instance by extracting the value
; in its zeroth slot.  Note that we don't check that the argument
; obj *is* an instance, so applying this to a non-instance is an error.
(define (class-of-instance obj)
   (vector-ref obj 0))

Implementing define-generic

Each generic procedure maintains a table of methods that are defined on it, indexed by the classes they are 
applicable to. In our simple object system implementation, this table will be implemented as an association list, 
keyed by class pointer. That is, the association list is a list of lists, and each of those lists holds a class object and a 
procedure. The class object represents the class on which the method is defined, and the procedure is the method 
itself. 

When the generic procedure is called on a particular instance, it will extract the class pointer from the zeroth slot of 
the instance, and use it as a key to probe its own association list. It will then extract the procedure that's the second 
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element of the resulting list, and call it. When calling the method, it will pass along the same arguments it received. 

This scheme can be rather slow--a linear search of all methods may be slow if there are many methods defined on a 
generic procedure, and especially if the frequently-called ones are not near the front of the list. We could speed this 
up considerably by using caching tricks, e.g., reorganizing the list to put recently-used elements at the front. A more 
aggressive system could figure out how to avoid looking up methods at runtime in most cases, but that's 
considerably more complicated. We won't bother with any of that for now, to keep our example system simple. 

(Understanding this simple system will be a good start toward understanding more sophisticated systems that 
perform much better, and even this simple system is fast enough for many real-world uses, such as most scripting 
and GUI programming, or coarse-grained object-oriented programming where most of the real work is done in non-
object-oriented code.) 

When we evaluate an expression such as 

(define-generic (insert-first! obj item)) 

we would like the macro to be translated into code that will do several things: 

●     create an association list to store methods later defined on this generic procedure 
●     create the generic procedure itself 
●     provide a means for adding methods to the association list. 
●     bind the name (e.g., insert-first! and initialize the binding with a pointer to the generic procedure. 

The first two and the last are easy, and we'll ignore the third for now. define-generic can generate code like 
this: 

(define insert-first!
        ;  create an environment that only the generic procedure will
        ;  be able to see.
        (let ((method-alist '()))
           ;  create and return the generic procedure that can see that
           ;  method a-list.
           (lambda (obj item)
              (let* ((class (class-of-instance obj))
                     (method (cadr (assq class method-alist))))
                 (if method
                     (method obj item)
                     (error "method not found"))))))

Here we use let to create a local variable binding to hold the association list, and capture it by using lambda to 
create the generic procedure in its scope. Once the procedure is returned from the let, only that procedure will ever 
be able to operate on that association list. 

The procedure returned by lambda will take the two arguments specified by the generic procedure declaration, 
extract the class pointer from the first argument object, probe the association list to get the appropriate method for 
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that class, and (tail-)call that method, passing along the original arguments. If it fails to find a method for the class 
of the instance it's being applied to, it signals an error. 

Keeping in mind that this code doesn't quite work because we can't actually add methods to the method association 
list, we could define define-generic as a macro this way: 

(define-macro (define-generic name . args)
   `(define ,name
            (let ((method-alist '()))
               (lambda (,@args)
                 (let* ((class (class-of-instance ,(car args))))
                        (method (cadr (assq class method-alist))))
                    (if method
                        (method obj item)
                        (error "method not found"))))))

To allow methods to be added to the method-alist, we'll change the macro to create another procedure, along with 
the generic procedure, in the environment where method-list is visible. This procedure can be used to add a 
new method to the method association lists. This table will be an association list stored in the global variable 
*generic-procedures*. 

We'll also maintain a table of generic procedures and the corresponding procedures that add methods to their 
association lists. While we're at it, we'll modify define-generic record the name of a generic procedure when 
it's defined, so that it can print out a more helpful error message when a lookup fails. The inital value expression 
will be a letrec which lets us define four variables, two of which are procedure-valued, and then returns one of those 
procedures, the actual generic procedure 

         
(define *generic-procedures* '())

(define-macro (define-generic name . args)
   `(define ,name
            (letrec ((gp-name ,name)
                     (method-alist '())
                     (method-adder
                      (lambda (generic-proc method)
                            (set! method-alist
                                  (cons (list generic-proc method)
                                        method-alist)))) 
                     (generic-proc
                      (lambda (,@args)
                         (let* ((class (class-of-instance ,(car args))))
                                (method (cadr (assq class
                                                    method-alist))))
                            (if method
                                (method obj item)
                                (error "method not found for "

http://www.federated.com/~jim/schintro-v14/schintro_133.html (20 of 25)11/3/2006 9:14:02 PM



An Introduction to Scheme and its Implementation - Records and Object Orientation

                                       gp-name))))))
                                       
               ; add the generic procedure and its method-adding
               ; routine to the association list of generic procedures
                      
               (set! *generic-procedures*
                     (cons (list generic-proc method-adder)
                           *generic-procedures*))
                           
               generic-procedure)))

Implementing define-method

Now that each generic procedure is associated with a method-adding procedure that can add to its list of methods, 
we can define the define-method macro. define-method will create a method using lambda, and add it to 
the generic procedure's method association list, indexed by the class that it is to be used for. 

In this simple system, where only the first argument is dispatched on (used in selecting the appropriate method), we 
only need to treat the first argument declaration specially. 

Consider an example the example of defining an insert-first! method for class stack. 

(define-method (insert-first! (self <stack>) item)
   (set-items! self
               (cons item (items self))))    

We'd like this to be translated by macro processing into the equivalent 

(add-method-to-generic-proc insert-first!
                            <stack>
                            (lambda (self item)
                               (set-items! self
                                           (cons item (items self)))))   

The real work is done by the procedure add-method-to-generic-procedure, which we can write as 

(define (add-method-to-generic-procedure generic-proc class method)
   (let ((method-adder! (cadr (assq *generic-procedures* generic-proc))))
      (method-adder! class method)))

This procedure expects three arguments--a generic procedure object, a class object, and a closure that implments the 
corresponding method. It searces the association list The calling pattern for the define-method macro will 
ensure that the actual calling expression is destructured into three parts, giving us the first argument's name and the 
name and its class. 

(define-macro (define-method (gp (arg1 class) . args) . body)
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   `(add-method-to-generic-proc ,gp
                                ,class
                                (lambda (arg1 ,@args)
                                   ,@body)))

Installing Accessor Methods

Given the code we've seen so far, we've almost got a working object system, but we left out a detail when we 
defined define-class. Recall that the accessor routines for a class's slots are supposed to be used as methods on 
generic procedures such as x. define-class generates code that calls register-accessor-methods, to 
install the accessor routines for the slots of a class as methods on generic procedures. 

register-accessor-methods iterates over the slots association list of the class, looking at each slot name 
and its corresponding accessors, and adding the accessor procedures to the appropriate generic procedure. For a 
given slot name, the appropriate generic procedure name is automatically constructed using the accessor naming 
conventions. 

[ OOPS--theres a hitch here. We didn't index the generic procedures by name... it's also awkward that Scheme 
doesn't provide a standard bound? procedure so that we can tell if the generic procedure already exists. Is it even 
possible to automatically define the generic procedures in absolutely portable Scheme, without doing something 
painful? I suppose that if we can search the list of generic procedures by name, the macro transformer for define-
class can look to see which accessor names don't have corresponding generic functions, BEFORE actually 
generating the transformed code. It could then add a (define-generic ...) to its output for each accessor that doesn't 
already have an existing generic procedure to add it to. Tedious, and annoying to have to explain. ] 

Keyword options

Inheritance

So far we've described a simple object-based programming system and shown how it can be implemented. A fully 
object-oriented system requires another feature---inheritance. 

Inheritance allows you to define a new class in terms of another class. For example, we might have a class 
<point>, and want to define a similar class, <colored-point>, which records the color to be used to display 
a point when it is drawn on the user's screen. 

Given our simple object-based system so far, we would have to define colored-point from scratch, defining its 
x and y fields as well as its color field. This definition would be mostly redundant with the definition of <point>, 
making the code harder to understand and maintain. 

Inheritance lets us define new classes by describing its differences from another class. For example, we could 
define colored-point like this: 

(define-class <colored-point> (<point>)
   (color)) 
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This definition says that instances of <colored-point> have all of the slots of <points> (i.e., x and y), as 
well as another slot, color. We say that <colored-point> inherits the slotss defined for <point>. 

Inheritance applies to methods as well as slots. The definition above tells our object system that the methods 
defined for the superclass <point> should also be used for <colored-point>s, unless we specifically define 
new methods just for <colored-point>s on the same generic procedures. 

This gives us a concise declarative way of defining classes--we can declare that a <colored-point> is like a 
<point>, except for the particular differences we specify. The object system then infers what slots a <colored-
point> must have from this declaration (and methods we define for this class) plus the declarations for <point> 
and its methods. 

Note that inheritance is transitive. If we define a subclass of <colored-point>, say <flashing-colored-
point>, it will inherit the slots and methods of <colored-point>, and also the slots and methods of 
<point>. 

Overriding and Refining Inherited Methods

By default, a class inherits all of the methods defined for its superclasses. We can override an inherited definition, 
though, by defining a method definition explicitly. For example, we might have a draw method for class <point> 
which simply draws a black pixel on the screen at the point's coordinates. (This might be through a call to an 
underlying graphics library provided by the operating system.) For <colored-point>, we would probably want 
to define a new draw method so that the point would be drawn in color. 

Sometimes, we don't want to completely redefine an inherited method for a new class, but we would like to refine 
it--we may want to define the new method in terms of the inherited method. 

For example, suppose we have a class <queue>, which maintains a queue as we saw earlier, and we woulto refine 
it to create a new kind of queue that keeps track of the size of the queue--i.e., the number of items in the queue. 

We might define <counted-queue> as a subclass of <queue>, but with a size slot, like this: 

(define <counted-queue> (<queue>)
   (size initial-value: 0))

Then we can define the get-first and put-last methods for counted-queue in terms of the 
corresponding methods for <queue>. We do this by using a special pseudo-procedure called next-method. 
Inside a method definition, the name next-method refers to an inherited procedure by the same name. This 
allows us to call the inherited version of a method even though we're overriding that definition. 

(define-method (get-first! (self <counted-queue>))
   (count-set! self (- (count self) 1))  ; update count of items, and
   (next-method self))                       ; call inherited get-first

(define-method (put-last! (self <counted-queue>) item)
   (next-method self item)
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   (count-set! self (+ (count self) 1))

next-method's name comes from the fact that it represents the next most specific method for this operation 
applied to this class, according to the inheritance graph. The method we're defining is the most specific method, 
because it's defined for this class exactly, and the inherited one is the next most specific. (The inherited one may in 
turn call a method that was inherited earlier, which will in turn be the next most specific method, and so on.) 

Late Binding and Inheritance

Implementing an Object System with Inheritance

Interfaces and Inheritance

A More Advanced Object System and Implementation

The simple object system 

Language Features

Purity

Encapsulation

Multiple Dispatching

Multiple Inheritance

Explictit Subtyping

Control Over Compilation

A Metaobject Protocol

Implementation Improvements

Factoring out Work at Compile Time

Supporting Runtime Changes

Faster Dynamic Dispatching

Compiling Slot Accessors And Methdos Inline
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call-with-current-continuation

call-with-current-continuation is a very powerful control construct, which can be used to 
create more conventional control constructs, like catch and throw in Lisp (or setjmp and 
longjmp in C), or coroutines, and many more. It is extremely powerful because it allows a program to 
manipulate its own control "stack" so that procedure calls and returns needn't follow the normal depth-
first textual call ordering. 

Recall that we said [ WHERE? ] that Scheme's equivalent of an activation stack is really a chain of 
partial continuations (suspension records), and this chain is known as a full continuation. And since 
continuations are immutable, they usually form a tree reflecting the call graph (actually, only the non-tail 
calls). Normally, the parts of this tree that are not in the current continuation chain are garbage, and can 
be garbage collected. 

If you take a pointer to the current continuation, and put it in a live variable or data structure, however, 
then that continuation chain will remain live and not be garbage collected. That is, you can "capture" the 
current state of the stack. 

If you keep a captured state of the stack around, and later install the pointer to it in the system's 
continuation register, then you can return through that continuation chain, just as though it were a 
normal continuation. That is, rather than returning to your caller in the normal way, you can take some 
old saved continuation and return into that instead! 

You might wonder why anybody would want to do such a weird thing to their "stack," but there are 
some useful applications. One is coroutines. It is often convenient to structure a computation as an 
alternation between two different processes, perhaps one that produces items and another that consumes 
them. It may not be convenient to either of those processes into a subroutine that can be called once to 
get an item, because each process may have complex state encoded into its control structure. 

(You probably wouldn't want to have to structure your program as a bunch of incremental operations 
that were called by successive calls to a do-next-increment routine. It may be that the program it gets its 
data from can't easily be structured that way, either. Each program should probably be written with its 
own natural control structure, each suspending its operation when it needs the other to do its thing.) 

Coroutines allow you to structure cooperating subprograms this way, without making one subservient to 
(and callable piecemeal from) another. 

Coroutines can be implmemented as operations on continuations. When a coroutine wants to suspend 
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itself and activate another (co-)routine, it simply pushes a partial continuation to save its state, then 
captures the value of the continuation register in some way, so that it can be restored later. To resume a 
suspended routine, the continuation chain is restored and the top partial continuation is popped into the 
system state registers. Alternation between coroutines is thus accomplished by saving and restoring the 
routines' continuations. 

Note that in this case, we can have two (or more) trees of continuations that represent the course of the 
computation, and that control flow can alternate back and forth between trees. Usually, computations are 
structured so that most of the work is done in the usual depth-first procedure calling and returning, with 
occasional jumps from one routine's depth-first activity to another's. 

Another use of continuations is to implement catch and throw, which are roughly like setjmp and 
longjmp in C. The idea is that you may want to abort a computation without going through the normal 
nested procedure returns. In a normal stack-based lagnuage (without continuations), this is usually 
accomplished by storing a pointer into the stack before starting the abortable computation. If it is 
necessary to abort the computation, all of the activation records above the point of call can be ignored, 
and the stack pointer can be restored to that point, just as though all of the invocations above it had 
returned normally. 

This can be implemented with call-with-current-continuation by saving the continuation 
at the point where an abortable computation is begun. Anywhere within that computation, that 
continuation may be restored (clobbering the "normal" value of the continuation register, etc.) to resume 
from that point. 

But call-with-current-continuation is more powerful than coroutines or catch and throw. 
Not only can we escape "downward" from a computation (by popping multiple partial continuatons at 
once without actually returning through them), we can also escape "upwards" back into a computation 
that we bailed out of before. This can be useful in implementing exception handling, where we may 
want to transfer control to a special coroutine that may "fix up" an error that was detected, but then 
resume the procedure that encountered the error, after the problem is fixed. 

call-with-current-continuation can also be used to implement backtracking, where the 
control flow backs up and re-executes from some saved continuation. In this case, we may save the 
continuation for some computation, but go ahead and return through it normally. Later, we may restore 
the saved continuation and return through it again. 

Note that in general, continuations in Scheme can be used multiple times. The essential idea is that rather 
than using a stack, which dictates a depth-first call graph, Scheme allows you to view the call graph AS 
A GRAPH, which may contain cycles, even directed cycles (which represent bactracking). 

The syntax of call-with-current-continuation is fairly ugly, but for some good reasons; in 
its raw form, it is very powerful, but correspondingly hard to use. Typically, it is encapsulated in macros 
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or other procedures to implement other, higher-level control constructs. 

call-with-current-continuation is itself a normal first-class procedure, which encapsulates 
the very low-level continuation munging abilities in something like a civilized package. Since it's a first-
class procedure, you can write higher-order procedures that treat it like data, or call it, or both. 

call-with-current-continuation is a procedure of exactly one argument, which is another 
procedure to execute after the current continuation has been captured. The current continuation will be 
passed to that procedure, which can use it (or not) as it pleases. 

The captured continuation is itself packaged up as a procedure, also of one argument. That's so that you 
can't muck around with the continuation itself in any data-structure-like way. There are only two things 
you can do with captured continuations--capture them and resume them. Continuations are captured by 
executing call-with-current-continuation, which creates an escape procedure. They are 
resumed by calling the escape procedure. When called, the escape procedure abandons whatever 
computation is going on, restores the saved continuation, and resumes executing the saved computation 
at the point where call-with-current-continuation occurred. 

Note that call-with-current-continuation is a procedure of one argument. We'll call that 
procedure the abortable procedure. The abortable procedure must also be a procedure of exactly one 
argument. (If you want to call a procedure that takes a bunch of arguments, and still make it abortable 
using call-with-current-continuation, you have to use a trick I'll describe below.) 

The abortable procedure's argument is the escape procedure that encapsulates the captured continuation. 

call-with-current-continuation does the following: 

●     Creates an escape procedure that captures the current continuation. If called, this procedure will 
restore the continuation at the point of call to call-with-current-continuation. 

●     Calls the procedure passed as its (call-with-current-continuation's) argument, handing it the 
escape procedure as its argument. 

If and when the escape procedure is called, it restores the continuation captured at the point of call to 
call-with-current-continuation. We refer to this as a nonlocal return---from the point of 
view of the caller of call-with-current-continuation, it looks as though call-with-
current-continuation had returned normally. 

The (abortable) procedure we want to call must take one argument, which is the escape procedure that 
can resume the computation just beyond the call to call-with-current-continuation. 

As if this weren't cryptic enough, the escape procedure is also a procedure of exactly one argument. 
When the escape procedure is used to perform a nonlocal return, it returns a value as the result of the call 
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to call-with-current-continuation. 

The argument to the escape procedure is the value that will be returned as the value of the call. Note that 
if the escape procedure is not called, and the abortable procedure returns normally, the value it returns is 
returned as the value of the call to call-with-current-continuation. 

A call to call-with-current-continuation therefore can return in two ways. Either the 
abortable procedure returns normally, and call-with-current-continuation simply returns 
that value, or the escape procedure can be called, and its argument is returned as the value of the call to 
call-with-current-continuation. 

Consider the following example, where I've given line numbers to refer to later: 

 0: (define some-flag #f)

 1: (define (my-abortable-proc escape-proc)
 2:   (display "in my-abortable-proc")
 3:   (if some-flag
 4:       (escape-proc "ABORTED"))
 5:   (display "still in my-abortable-proc")
 6:   "NOT ABORTED")

 7: (define (my-resumable-proc)
 8:   (do-something)
 9:   (display (call-with-current-continuation my-abortable-proc))
10:   (do-some-more))

11: (my-resumable-procedure)

At line 11, we call my-resumable-procedure. It calls do-something, and then calls display. 
But before it calls display it has to evaluate its argument, which is the call to call-with-current-
continuation. 

call-with-current-continuation saves the continuation at that point, and packages it up as 
an escape procedure. (Line 9) The escape procedure, if called, will return its argument as the value of the 
call-with-current-continuation form. 

That is, if the escape procedure is called, it will resume execution of the display procedure, which prints 
that value, and then execution will continue, calling do-some-more. 

Once call-with-current-continuation has created the escape procedure, it calls its 
argument, my-abortable-proc, with the escape procedure as its argument. 
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my-abortable-proc then displays (prints) "in my-abortable-proc." Then it checks some-
flag, which is false, and does not execute the consequent of the if---that is, it doesn't execute the 
escape procedure. It continues executing, displaying "still inmy-abortable-proc." It then 
evaluates its last body form, the string "NOT ABORTED", which evaluates to itself, and returns that as 
the normal return value of the procedure call. 

At this point, the value returned from my-abortable-proc is printed by the call to display in line 9. 

But suppose we set some-flag to #t, instead of #f. 

Then when control reaches line 3, the if does evaluate its consequent. This calls the escape procedure, 
handing it the string "ABORTED" as its argument. The escape procedure resumes the captured 
continuation, returning control to the caller of call-with-current-continuation, without 
executing lines 5 and 6. 

The escape procedure returns its argument, the string "ABORTED" as the value of the call-with-
current-continuation form. It restores the execution of my-resumable-proc at line 9, handing 
display the string "ABORTED" (as the value of its argument form). At this point "ABORTED" is 
displayed, and execution continues at line 10. 

Often we want to use call-with-current-continuation to call some procedure that takes arguments other 
than an escape procedure. For example, we might have a procedure that takes two arguments besides the 
escape procedure, thus: 

(define (foo x y escape)
   ...
   (if (= x 0)
       (escape 'ERROR))
   ...))

We can fix this by currying the procedure, making it a procedure of one argument. 

[ An earlier chapter should have a discussion of currying! ] 

Suppose we want to pass 0 and 1 as the values of x and y, as well as handing foo the escape procedure. 
Rather than saying 

   (call-with-current-continuation foo)

which doesn't pass enough arguments to the call to foo, we say 
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   (call-with-current-continuation (lambda (escape) (foo 0 1 escape)))

The lambda expression creates a closure that does exactly what we want. It will call foo with arguments 
0, 1, and the escape procedure created by call-with-current-continuation. 

Implementing a Better Read-Eval-Print Loop

Implementing Catch and Throw

Implementing Backtracking

Implementing Coroutines

Implementing Cooperative Multitasking

Caveats about call-with-current-continuation

Go to the first, previous, next, last section, table of contents. 
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A Simple Scheme Compiler

[ The example compiler in compiler.scm is the skeleton of a simple compiler for a subset of Scheme, whose 
structure corresponds fairly closely to the example interpreter in eval.scm. ] 

[ this is out of place, or needs more introductory intro first: ] 

Where the interpreter has a basic dispatch routine called eval, which can evaluate any kind of expression, 
the compiler has a basic dispatch routine called compile, which can compile any kind of expression. Like 
eval, compile examines the expression to be compiled, and dispatches to an appropriate routine for that 
kind of expression. The routine that compiles an expression may recursively call compile to compile 
subexpressions, just as the interpretive evaluator may call eval recursively to evaluate subexpressions. 

What is a Compiler?

[ This is somewhat redundant with earlier stuff, but more concrete. Should I cut it down?] 

Before answering what a compiler is, let's backtrack and talk about interpreters. 

What is an Interpreter?

An interpreter really does two things: 

1.  it examines expressions and dispatches to the appropriate code for that kind of expression 
2.  it performs the actual operations specified by the program 

Typically, most of the work done by an interpreter is in the first category--our example interpreter, for 
example, spends a lot of time examining expressions to see if they're self-evaluating or symbols or lists, and 
dispatching to the appropriate procedure to evaluate that kind of expression. This dispatching is interleaved 
with the actual work that evaluates the expressions. 

One of the problems with an interpreter is that every time an expression is encountered, it is analyzed again. 
Consider an expression like (+ foo bar) embedded in a loop that iterates many times. Our interpreter will 
encounter this expression at each iteration of the loop, and at each iteration of the loop it will do mostly the 
same things: it will examine the expression and find out it's a list, then call eval-list, which will further 
examine it to find out it's a combination (not a special form or macro), and call eval-combo. Then eval-
combo will call eval recursively to evaluate the subexpressions, and each call to eval will examine the 
subexpressions and dispatch to the appropriate specialized evaluation routine. Only then do we start actually 
computing the value of the expression, by computing the values of the subexpressions +, foo, and bar, i.e., 
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looking up the values of those variables. 

OK, so what's a compiler?

We would rather factor out most of this redundant work, and examine the expression just once to see what to 
do. Then each time we "evaluate" the expressions, we can just do those things. For the expression (+ foo 
bar), the set of actions an interpreter will execute (leaving out all of the analysis and dispatching is): 

     look up variable bar
     look up variable foo
     look up variable +
     apply

(Here we've assumed that we evaluate subexpressions of a combination from right-to-left, rather than the 
more intuitive left-to-right order; that's a legal way to do it in Scheme an it turns out to be handy in a very 
simple compiler, as we'll explain in a minute.) 

[ maybe I should change this to do args left-to-right, but the operator last, like RScheme. ] 

For code like this, which doesn't have any conditionals in it, we can convert an interpreter into a compiler 
very easily. We just modify the interpreter so that instead of actually evaluating the expressions, it just 
records what operations it would execute if it were interpreting the expression. I'm intentionally being vague 
as to how exactly these simple operations (like look-up-variable) work, but you should be able to see 
that each of them should be translatable into a handful of machine instructions. That's how most compilers 
work: they first translate a program into an intermediate code representation, like our look-up-variable 
operations, and then translate that representation into machine instructions. (In between there may be one or 
more steps that "optimize" the intermediate code, and each step may represent the code in a different way.) 

So this simple compiler just "pretends" to evaluate the expression, but whenever it gets to an actual action 
(like looking up a variable, or calling a procedure), it simply records what action it would take if it were just 
an interpreter. The result is a list of actions which, if taken, will have the same effect as interpreting the 
expression. 

Here's another example: 

(let ((x 22)
      (y 15))
   (+ x (* x y)))

Supposing that our intermediate code representation is a sequence of lists that represent operations and their 
operands, the code that our simple compiler will generate is: 

  (fetch-literal 22)
  (fetch-literal 15)
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  (bind x y)
  (look-up-variable y)
  (look-up-variable x)
  (look-up-variable *)
  (call-procedure)
  (look-up-variable x)
  (call-procedure)
  (unbind)

Later on, we'll talk in more concrete detail about where values are temporarily stored when they're looked up, 
and various tweaks to make it possible to translate intermediate code into smaller and faster sequences of 
machine instructions. For now just notice that we can string together sequences of these intermediate code 
operations, and if we just translate each of them into some machine instructions, we can string those 
sequences of machine instructions together and get a larger sequence that we can execute to evaluate the 
whole expression. We can execute it as many times as we want, and all of the expression analysis and 
dispatching will already have been done--the only work done each time it's executed is the work that actually 
binds variables, looks up values, calls procedures, and so on. 

It's not much harder to compile conditional expressions like if. When we compile an if, we need to 
generate code for the condition expression, the consequent expression, and the alternative expression. (The 
"consequent" is the code executed if the condition is true, and the "alternative" is the code executed if it's 
false.) Then we need to string the code for those expressions together appropriately with some conditional 
branches: 

   <code for condition>
   (branch-if-false "else-action-label")
   <code for consequent>
   (branch-unconditionally "end-label")
"else-action-label"
   <code for alternative>
"end-label"

The labels here will actually be translated into the addresses of the code they label, and the branches will be 
filled in with those addresses. (We have to be careful to use a unique pair of new labels for each if we 
compile, so or some other trick like that, so that we can nest if expressions and keep their labels straight.) 

(One way of generating machine code from this representation is to translate each of the statements into a 
short sequence of assembly instructions and each label into an assembly label, stringing them together as 
shown. Then the assembly code can be assembled into machine code.) 

Note that for an if, the control structure of the compiler is actually simpler than the control structure of an 
interpreter. The interpreter will evaluate the condition expression, and then decide at run time whether to 
evaluate the consequent ("then") expression or the alternative ("else") expression. The compiler will always 
compile all three subexpressions, and string them together with conditional branches that will do the deciding 
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at run time, based on the runtime value computed by the code for the condition expression. 

Here's a slightly more complicated example: 

(let ((x 15))
   (if x
       (let ((y (* 2 x)))
          (+ x y))
       #t))

translates to intermediate code roughly like: 

   (fetch-literal 15)
   (bind x)
   (lookup-variable x)
   (branch-if-false "else22")
   (lookup-variable x)
   (fetch-literal 2)
   (lookup-variable *)
   (call-procedure)
   (bind y)               ; create and enter envt that binds y
   (lookup-variable y)
   (lookup-variable x)
   (lookup-variable +)
   (call-procedure)
   (unbind)               ; exit envt that binds y
   (branch "end22")
 "else22"
   (fetch-literal #t)
 "end22"          

There are actually a couple of minor things wrong with the code we've generated, but this is pretty close to a 
workable intermediate representation. 

What Does a Compiler Generate?

[ Talk about machine code, interpretive virtual machines, etc. ] 

Basic Structure of the Compiler

The main function of the compiler is compile, which generates intermediate code for an expression, and 
which may call itself recursively to generate code for subexpressions. 
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Calls to compile hand it an expression and some bookkeeping information we'll discuss later. Compile 
returns intermediate code, plus updated versions of some of the bookkeeping information. 

To start this process off, top-level forms (like the ones you type into the read-compile-run-print 
loop, or definitions of top-level procedures) are massaged a little, then intermediate code for them is 
generated. Then the intermediate code is converted into real executable code and packaged up as a closure 
that can be called. 

We will discuss these issues of massaging top-level forms and generating executable closures later; for now, 
the main thing to understand is the recursive generation of intermediate code for nested expressions. 

Here's the main dispatch routine of the compiler, which is analagous to the interpreter's eval: 

(define (compile expr c-t-envt literal-state c-t-cont)
   (cond ((symbol? expr)
          (compile-symbol expr c-t-envt literal-state c-t-cont))
         ((pair? expr)
          (compile-list expr c-t-envt literal-state c-t-cont))
         ((self-evaluating? expr)
          (compile-self-eval expr c-t-envt literal-state c-t-cont))
         (#t
          (syntax-error "Illegal expression form" expr))))

For now, ignore most of the arguments to compile, we'll explain them later. The main thing to notice is that 
it looks a lot like eval. 

[ blah blah blah...] 

[ Somewhere, it's important to bring out the difference between the mutual recursion of eval and apply in the 
interpreter and the way the compiler works. Eval recurs locally, but just generates code for apply... The 
control structure of the compiler is actually simpler than for the interpreter, because the hairy stuff just 
happens at run time... ] 

Data Representations, Calling Convention, etc.

Before trying to understand the compiler itself in more detail, it is probably best to have a concrete idea of 
what the representations of data are, how procedure calls work, and how registers are used. That is, you have 
to understand the "abstract machine" that the compiler compiles for. 

An abstract machine is an abstraction of low-level operations and objects. The compiler first compiles code 
from the source language into this lower-level representation, and then translates the "abstract machine 
language" into actual executable code. (The executable code may be machine code that runs directly on the 
hardware, or an interpretive executable code such as bytecodes, which are interpreted by a fast interpreter.) 
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You can think of an abstract machine as being more like an assembler than an interpreter, but maybe a little 
smarter than most assemblers. 

I will describe one particular set of features to make things concrete; this is not quite how RScheme works, or 
Scheme-48, or any particular other system that I know of, but there's nothing unusual about it except maybe 
its simplicity. 

In fleshing out our example compiler, let's suppose our system works this way: 

1.  We have several important registers used in stereotyped ways, e.g., to hold a pointer to the current 
binding environment. 

2.  We have an evaluation stack that's used to store intermediate values while evaluating nested 
expressions. 

3.  We use a continuation chain to represent the saved state of callers, their callers, and so on, so that they 
can be resumed after a procedure returns. 

The registers of the abstract machine may represent hardware registers, or just storage locations that are used 
in these stereotyped ways. (For example, if compiling to C, the registers might be C global variables, and the 
C compiler might or might not let you specify that the variables should be put in hardware registers.) 

The Registers

We'll assume that there are several important registers that can be used by the code our compiler generates: 

1.  The VALUE register, where an expression leaves a value so that it can be used by an enclosing 
expression. In The case of a procedure, this is where the value is left for the caller when the procedure 
returns. The value register is also used when calling a procedure. 

2.  The ENVT register, which holds a pointer to the environment that code is currently executing in. 
3.  The CONT register, which holds a pointer to the chain of saved continuations of callers. 
4.  The TEMPLATE register, which holds a pointer to a special data structure associated with the 

procedure that is currently executing, and 
5.  The PC (program counter) register, which says which instruction we are currently executing. (If we're 

compiling to normal machine code, this is a special register built into the CPU for this purpose, and we 
use it pretty much like any other code would. If we're compiling to an interpretive executable code, 
this is probably variable in the interpreter.) 

The Evaluation Stack (or Eval Stack, for short)

The eval stack is used for holding values that have been computed by evaluating subexpressions, but not yet 
used or bound. 

In evaluating the expression (+ foo 22), the three values will be computed. When each value is 
computed, it will be left in the VALUE register. We evaluate right to left, and after evaluating each argument, 
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we perform a PUSH operation on the eval stack, which copies the value in the value register onto the eval 
stack. When we get to the first subexpression (the one that's supposed to return a function to call), we leave 
the value in the value register, because that's where we put the closure pointer for a procedure call. 

The eval stack is used for two main purposes: 

1.  storing intermediate values for nested expressions, and 
2.  passing arguments to procedures. 

The eval stack is not used to hold intermediate values or local variables for suspended procedures--it isn't like 
the activation stack in a conventional implementation of C or Pascal. The values in the eval stack at any given 
time are only the intermediate values stored for the currently executing procedure. Intermediate values for 
suspended procedures are saved in the continuation chain as necessary. 

When we call a procedure, the only values on the eval stack are the arguments to the procedure. Any other 
values used by the caller are moved from the eval stack into a continuation before calling. 

The Continuation Chain

The continuation chain is a data structure that fills roughly the role of an activation stack in the 
implementation of a conventional programming language. The continuation chain is a linked list of partial 
continuations, each of which is a record that stores the saved state of a procedure. 

When a procedure performs a non-tail procedure call, it packages its important state information up into a 
partial continuation; this record saves the values of the environment, template, PC, and continuation registers, 
and any temporary values on the eval stack. 

Once a caller has saved its state in a partial continuation, then the callee can do whatever it wants with the 
important registers and the evaluation stack. (This is called a caller-saves register usage convention, because 
the caller of a procedure is obliged to save any values that it will need when it resumes.) 

Remember that continuations are allocated on the garbage collected heap and are immutable--we never 
modify a continuation once it's created. When we resume from a saved partial continuation, we copy the 
values from the partail continuation into the registers and eval stack, but that doesn't modify the partial 
continuation itself--it's still sitting out there on the heap. This is important for being able to implement call-
with-current-continuation: it's what allows us to resume from the same continuation any number of times. 

Environments

The compiler assumes that a binding environment is a chain of frames, each of which is a vector of slots 
which are the variable bindings. Each frame also has a static link or scope link field, which points to the frame 
representing the next lexically enclosing environment. 
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Top-level environments are represented specially, as hash tables that map names to bindings. We'll use a hash 
table instead of the association lists we used in our simple interpreter, because they're faster if you have a lot 
of bindings. A binding object for a top-level environment is pretty much the same as in the interpreter: a little 
vector with two important slots: a slot for its name and another slot that is the actual value field. 

Local environments are represented very differently from toplevel environments: each frame is a vector of 
slots, and does not store the names of the bindings. It turns out that the names are only needed at compile 
time, so they don't actually have to be stored in the runtime environment. (The compiler also turns out to be 
able to do most of the work for looking up a toplevel variable at compile time, so the speed of our hash tables 
is not going to be critical to our runtime speed.) 

Closure Representation and Calling

Closures in our system are represented as objects with two fields: a pointer to the environment captured by 
the closure, and a pointer to an object called a template, which in turn contains a pointer to the code for the 
procedure. 

When we evaluate the following expression 

(let ((foo 22)
      (bar 15))
   (lambda (...)
       ...))

we'll create an environment frame to hold the bindings of foo and bar, and initialize them to 22 and 15, 
respectively. This environment frame will have a scope link pointing to the environment we were executing in 
when we entered the let. Inside this environment, we'll create a closure. The closure will hold a pointer to 
the new environment, and a pointer to a template object representing the anonymous procedure being closed. 
The template will have a pointer to the actual executable code. All of these things will be heap-allocated 
objects, and in our implementation we'll give each one header field showing what kind of object it is: 

                                          <to envt. frame
                                           for enclosing
                                              scope>
                                               
                                                ^
                                                |
                                +----------+    |
                                | envt. fr.|    |
                        ,------>+==========+    |
                       /  scope |     +----+----+       
     +----------+     /         +----------+
     | closure  |    /      foo |       22 |
     +==========+   /           +----------+
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envt |     +----+--'        bar |       15 |
     +----------+               +----------+     
proc |     +----+--.    
     +----------+   \      +----------+   
                     \     | template |       +----------+
                      `--->+==========+       |   code   |
                      code |     +----+-----> +==========+
                           +----------+       |executable|
                           |          |       + code for +
                           +----------+       |procedure |
                           |          |       +          +
                           +----------+       |   ...    |
                           |   ...    |       +----------+
                           +----------+

The template object holds not only the pointer to the actual code, but any other handy values that the compiler 
can compute or look up at compile time, and which should be available to the procedure at run time. We'll 
discuss that more later. 

When we want to apply a procedure to some argument values, we put the argument values on the eval stack, 
and a pointer to the closure we want to call in the VALUE register. Then we execute a short sequence of 
instructions that does the call: 

●     Extract the environment pointer from the closure and put it in the environment register. (This is 
basically just an indexed load using the value register as a base.) 

●     Extract the template pointer from the closure and put it in the template register. (This is basically just 
another indexed load using the value register as a base.) 

●     Extract the code pointer from the template and put it in the program counter register, i.e., jump to that 
code. (This is basically just another indexed load using the template register as a base, and a jump to 
that address.) 

Thus actual machine code for our "apply" operation in our intermediate representation is just a handful of 
instructions that do this stuff--a stereotyped little instruction sequence that destructures a closure and puts the 
appropriate values in registers before beginning execution of the procedure. 

Because this is the way the procedure calling convention works, we know that when we begin executing the 
code for a procedure, the environment register will point to the right environment (where the procedure was 
defined) and the template register will point to the template for that procedure. Any values stored in the 
template by the compiler can be fetched at compile time by doing an indexed load with the template register 
as a base. 

Consider this procedure: 

(define (foo x y)
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   (list 'bar x y))

Here, the literal bar is needed by the procedure--there must be some code in foo that will somehow fetch a 
pointer to the symbol bar. That's what the template object is for. When this procedure is compiled, the 
compiler accumulates a list of such literals, and when the template object for the procedure is created, all of 
those values will be stored into it. When the compiler generates code to fetch the symbol bar, it just looks at 
the symbol's position in the literal list (and thus its offset in the template object), and generates code to do an 
indexed load to fetch that value from the template at run time. 

Continuations

Applying a Procedure Doesn't Save the Caller's State

Remember that when we do a procedure call, we do not necessarily save the state of the caller. For a non-tail 
call, the compiler must generate code to save the caller's state plus code for the actual call. For a tail call, 
there is no need to save the state. Because of this, there isn't really a single "procedure call" operation that 
saves the caller's state and invokes the callee. There are two separate operations, save-continuation 
and apply. 

As mentioned above, the code sequence that performs a procedure applicatin assumes that the pointer to the 
closure to be called is in the VALUE register. The procedure will leave its value in that register when it 
returns. 

Continuation Saving

save-continuation is the operation that saves the state of the currently executing procedure in a partial 
continuation, and pushes it onto the continuation chain. 

When pushing a continuations, it is important to save all of the values on the eval stack, except for the 
arguments to the procedure being called. Therefore, when generating code for a combination (procedure call) 
expression, the code to save the caller's state does not come just before the actual code to call the procedure. 
This would remove the arguments to the procedure from the eval stack. Instead, the continuation save comes 
just before the code that generates the argument values that will be passed to the procedure: 

  (save-continuation <label>) ; save everything else before computing args
  <compute argn>
    ...
  <compute arg1>
  <compute callee>
  (apply)
<label>

that way, the arguments to the call (and nothing else) will be on the eval stack when the procedure is called, 
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and when the procedure returns, it will restore the other values from the partial continuation onto the eval 
stack. 

This separation of the saving and calling code looks especially funny for nested expressions that call 
procedures, but it makes perfect sense. 

save-continuation takes an argument which is the address of the code to execute when the 
continuation is resumed. This address is saved in the partial continuation, and when the continuation is 
resumed, it will be branched to (put in the PC register). 

An Example

Now that we have a more detailed idea how the registers, eval stack, and continuations work, here's an 
example: 

   (+ (- a b) (/ c d))

compiles to intermediate code something like: 

  (push-continuation "resume23") ; save cont for call to +
  (push-continuation "resume24") ; save cont for call to -
  (lookup-variable d)   ; get value of d into value reg
  (push)                ; push value of d on eval stack
  (lookup-variable c)   ; get value of c into value reg
  (push)                ; push value of c on eval stack
  (lookup-variable /)   ; look up /
  (apply)               ; call /, which is in value reg after lookup
  (push)                 
"resume24" 
  (push-continuation "resume25") ;save cont for -, incl. value of (/ c d)
  (lookup-variable b)   ; get value of b
  (push) 
  (lookup-variable a)   ; get value of a
  (push)
  (lookup-variable -)   ; get value of -
  (apply)               ; call -
  (push)                ; push returned value on top of restored e 
stack     
"resume25"
  (lookup-variable +)   ; look up + 
  (apply)               ; tail call +
"resume23"  

Things to notice: 
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1.  after the first apply, the called routine (or something it directly or indirectly tail calls) will eventually 
do a procedure return, and pop the latest continuation we pushed, restoring anything that was on the 
eval stack at that point, and resuming execution at label1. [ OOPS... fix this ] 

2.  after the second apply, the called routine will eventually (directly or indirectly) do a procedure return, 
which will pop the second continuation we pushed, restoring the already-computed value of the 
subexpression (/ c d) to the eval stack. 

3.  we generated code for the expression (+ (- a b) (/ c d)) to be used in tail position. This code 
doesn't save a continuation before the final call to +. If the expression is to be used in non-tail position, 
we must generate slightly different code, which will save a continuation that will resume after this 
expression. 

Generating Unique Labels

[ where does this go? ] 

Like compile-if, compile-combo generates labels as necessary to be able to name the code where 
execution should be resumed after a call--in the code it generates, it puts the label just before the intermediate 
code instruction to resume, and the same label in the call to save-continuation that should resume 
there. 

It is easy to generate unique labels for every resumable point in a program. We just keep a counter of labels 
we've used so far, and to create a new one we append the digits representing this number to the string 
"resume", so that we get "resume1", "resume2", and so on. 

We can write a Scheme procedure, generate-label, which keeps a counter, and when given a string as 
an argument, returns the a new string with the same characters plus the digits representing the number in the 
counter. That way, we can use labels that start with "else" and "end" to label the branch targets of an if 
expression, and labels that start with "resume" to represent the resumption points for continuation saving. 
This makes the intermediate code we generate fairly understandable, while ensuring that labels are still 
unique, and easy to use as assembler labels when translating intermediate code to machine language. 

More on Representations of Environments

To get reasonable performance for our system, we'll want to treat the top-level environment differently from 
local variable binding environments. We'll use a trick involving lexical scope to precompute most of the work 
done in looking up a local variable binding, and a different trick to make it fast to look up top-level variables. 

As we said before, each local variable binding contour (e.g., the bindings introduced by a let, or by binding 
the args to a procedure) is represented at run time as a frame with slots for each variable, plus a scope link 
that points to the frame representing the enclosing contour. 

A top-level environment is likely to be large, and we will want to be able to access it in special ways. We will 
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represent it as a hash table that maps symbols (variable names) to their toplevel bindings. The bindings 
themselves will be represented as objects, whose main function is to have one field that holds the current 
value of the variable. For simplicity, we'll make them self-identifying as well: not only will the names be used 
as keys in the hash table, but the binding objects will hold pointers to their names as well as values. 

Keep in mind that this representation is just one that's convenient. A toplevel environment could be 
represented as any kind of table (e.g., an association list), but we want it to be reasonably fast to access even 
if there are thousands of top-level variables. (We'll use a special trick to make normal accesses to top-level 
variable bindings very fast at run time, but we want to make them reasonably fast at compile time as well, and 
hash tables are good for that.) 

Suppose we evaluate the following expressions at the top level, to define and initialize a couple of variables: 

(define quux "fubar")

(define (double x) (+ x x))

This will modify the toplevel environment by adding bindings for quux and double, in addition to what's 
already there: 

   +-------------------------------------------------------------------+
   |                                                                   |
   |                                                                   |
  \|/                                                                  |
   +------------------+                                                |
   |   toplevel env.  |                                                |
   +==================+         +----------+                           |
   |   cons |    *----+-------->| binding  |                           |
   +--------+---------+         +==========+                           |
   |        |         |   value |     *----+------><closure for cons>  |
        .        .              +----------+                           |
        .        .         name |     cons |                           |
        .        .              +----------+                           |
                                                                       |
   |        |         |         +----------+                           |
   +--------+---------+         | binding  |                           |
   |   quux |    *----+-------->+==========+                           |
   +--------+---------+   value |     *----+------>"fubar"             |
   |        |         |         +----------+                           |
        .        .         name |     quux |                           |
        .        .              +----------+                           |
        .        .                                                     |
                                                                       |
   |        |         |         +----------+                           |
   +--------+---------+         | binding  |          +----------+     |
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   | double |    *----+-------->+==========+          | closure  |     |
   +--------+---------+   value |     *----+--------->+==========+     
|   
   |        |         |         +----------+     envt |     *----+-----+
        .        .         name |  double  |          +----------+
        .        .              +----------+     proc |     *----+---> ...
        .        .                                    +----------+

Several things to note: 

●     The representation of the hash table itself may not really be a simple array of name-value pairs, but I 
didn't want to clutter up the picture with overflow buckets and whatnot. 

●     In principle, we don't need to have pointers to separate binding objects. We could just store the values 
of bindings right in the table, using the value fields of the name-value pair to hold the actual variable 
values. (After all, a binding is really just a location with a name, used to hold a value.) It will turn out 
to be convenient for our implementation to have separate objects that hold the values. 

●     The occurrences of symbol names in the picture would really be pointers to symbol objects, and the 
string "fubar" would really be an object itself as well. As usual, we selectively abbreviate our 
pictorial representation to avoid cluttering things up. 

●     We refer to the toplevel binding objects as objects, but they're not Scheme objects--standard Scheme 
doesn't give you any way to get a pointer to one of these and play with it from inside the language. 
These "objects" are objects in the sense that they're allocated on the heap and referred to via pointers 
by the compiler and by compiled code, but they're not "first class." (An extended version of the 
Scheme language may let you get at them from inside the language, but that's not standard.) 

Compiling Code for Literals

When the compiler compiles code for a literal, like 'foo or "foo" or 22 in the following expression, 

(list 'foo "foo" 22)

it notices which literals the expression will need at run time, and ensures that those literals will appear in the 
template of the procedure. It keeps a list of literals needed by the procedure it's compiling, and after 
compiling the code for the procedure, it uses that list to construct the template that goes with the code. 

If foo is the first literal encountered, it might be put into the list first, and assigned the first free slot in the 
template (after the code pointer). "foo" might be assigned the second slot, and so on. In the terminology of 
language implementation, the template acts as a literal frame, as well as holding the pointer to the procedure's 
code. 

After assigning a literal a position in the template, the compiler can generate one or two instructions that can 
fetch the value out of the template, by using the address of the template, adding the offset of that slot, and 
loading from the resulting address. Since the template address is guaranteed to be in the TEMPLATE register, 
this is probably just a single indexed load instruction. In pseudo-C, it might look like: 
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  value_register = *(template_register + offset)

where offset is computed by the compiler and therefore is probably an immediate operand to the load 
instruction that loads the value into the value register. 

Notice that here we're taking advantage of the fact that the compiler runs in our system, and generates code 
that's just data in our system. The code will run in the same heap, and the compiler can therefore just compute 
values and put them in the template, and they'll stay around until that code is executed. (Life gets a little more 
complicated if you want to generate code that will be loaded into a different system and executed there.) 

[ Now we should explain that the literal-state argument to compile is the list of literals seen so far 
in compiling a procedure. The return value of compile is intermediate code that includes an updated 
literal-state. ] 

Compiling Code for Top-Level Variable References

Because of lexical scoping, it is easy for the compiler to tell the difference between a reference to a top-level 
variable binding and a reference to a local variable. We'll talk about that in detail later, but for now just 
assume that the compiler knows the difference at the point where it generates code for a variable reference. 

When the compiler generates code for a top-level variable, it can usually look up the binding of that variable 
in the environment that the code is being generated for--the expression that defines the variable has already 
been executed, so the binding already exists. 

The compiler can therefore do the actual lookup at compile time, e.g., hashing into the hash-table that 
implements a toplevel environment and getting a pointer to the actual binding object that will be referenced at 
run time. 

To make references to this object fast, the compiler can simply put this pointer in the template for the 
procedure being compiled, as though it were a literal value. 

Be clear on what's going on here: the compiler can't look up the value of the variable, because that's not 
known until the moment the variable is referenced at run time. (Before the code is executed, some other piece 
of code might run and change the value stored in the binding.) But the identity of the binding itself is known, 
and can be stashed in the literal frame. 

Actually, it's just slightly more complicated than this. A variable can be used in a procedure definition before 
the variable itself is defined. (This is called a "forward reference.") To get around this, the compiler "cheats," 
and goes ahead and creates the binding object and its entry in the toplevel environment before the definition 
of the variable is actually encountered. At the language level, the variable hasn't been bound or given a value, 
but we go ahead and create the unique binding object and use it in compiling other expressions. For error 
checking, we put a special value in the binding to indicate that the binding isn't "real" yet--we put a reference 
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to some object we consider "not a real value," so that we can detect uses of a variable that isn't really bound. 

(In a system designed for maximum safety and early error checking, we could ensure that each reference to a 
toplevel variable would check for this value, and signal an error if it's found. If we're not quite so concerned 
with early error checking, we can wait until somebody attempts to use such a value, e.g., by adding it to 
something, or taking the car of it, and we rely on the normal type checking of the language to tell us 
something's wrong at the point that operation occurs.) 

Now consider compiling a procedure like 

(define (make-foo-list)
   (list 'foo "foo"))

The compiler will accumulate a list of toplevel bindings and literals needed for the procedure, namely a string 
"foo", the symbol foo, and toplevel binding of the symbol list. These will be put in the template for the 
procedure, in the first, second, and third slots after the code pointer. The code generated for this procedure 
(assuming right-to-left evaluation) will be something like: 

  (fetch-literal 1) ; get string "foo" from template slot 1
  (push)            ; push it on eval stack
  (fetch-literal 2) ; get symbol foo from template slot 2
  (push)            ; push it on eval stack
  (fetch-literal 3) ; get toplevel binding of list from template slot 3
  (t-l-bdg-get)     ; extract value from binding
  (apply)           ; (tail-)call list

Notice, of course, that we've made our intermediate code representation more concrete now--we use slot 
numbers as the arguments to fetch-literal, and we explicitly get the value of the toplevel variable from the 
toplevel binding object in the value register. For setting the value in a binding, we'll use a different 
intermediate code instruction, t-l-bdg-set! (t-l-binding-set! expects the value register to hold a 
pointer to a toplevel binding object; it extracts the value of the binding, and leaves that value in the value 
register.) 

[ Now we can explain more about literal states--we accumulate a list of literal values and top-level variable 
bindings that must be accessible when the procedure runs. ] 

By now it should be very clear how you would translate each of these little operations in our intermediate 
representation into a few assembly-language instructions. 

[ need picture? ] 

Precomputing Local Variable Lookups using Lexical Scope
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We can't really look up local variable bindings at compile time the way we can toplevel bindings--local 
variable bindings don't exist yet when we're compiling the expressions that create and use them. (Consider the 
fact that every time you enter a let, or call a procedure that binds arguments, a new binding environment 
frame is created. Code that executes in such environments will see a different binding environment frame in 
the environment register each time it runs.) 

What we can do is take advantage of lexical scope to precompute most of the search for a variable in an 
environment. 

Consider the execution of this procedure: 

  (lambda (x y)
     (let ((a <some-expression>
           (b <some-expression>))
        (list a b x y)))

When we compute the arguments to the call to list, it's obvious that the first and second variables (a and b) 
will be in the first and second slots of the first binding environment frame, pointed directly to by the ENVT 
register. This is the environment created by the let. The third and fourth variables (x and y) will be in the 
next environment frame, pointed to by the scope link of the first. 

The compiler can compute the lexical address of each variable binding at the point where a reference to it is's 
compiled--that's the relative location of the variable starting from the environment register. A lexical address 
has two parts: the number of environment frames to skip to find the right frame, and the offset of the binding 
in that frame. In the above example, the lexical addresses are: 

   a:  0,1
   b:  0,2
   x:  1,1
   y:  1,2

(We use the convention that frame numbers start at zero, but slot numbers appear to start at 1 because the 
scope link is in slot 0.) 

The code generated for the reference to a can simply be an indexed load instruction, using the environment 
register plus an offset to grab the value in the first variable binding slot. In pseudo-C, that's something like 

  value_register = *(envt_register + offset)

where offset is probably 4 (bytes) to index past the scope link slot. Slightly more abstractly, its lexical address 
is [ WHAT? ] 

The code for the reference to the variable y would involve one level of indirection--first the scope link pointer 
must be extracted from the first environment frame, and then that can be used for an indexed load to get the 
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value of the second slot of the second frame: 

  value_register = *(envt_register)  ; get ptr to 2nd envt frame
  value_register = *(envt_register + offset)

where offset is probably 8 (bytes) to index past the scope link and the binding of x. 

Given this scheme, accessing a local variable takes time proportional to the number of environment frames 
intervening between between the expression being compiled and the environment where the referenced 
variable is defined. That's usually fairly fast, for two reasons: 

1.  The depth of lexical nesting is usually small--it corresponds to the nesting of binding expressions in 
the program, and is usually between one and three, an only rarely greater than five or so. 

2.  Most references that are executed at run time are to variables in the current scope, or maybe a level or 
two back from that. (Consider references to variables in inner loops, which constitute the most 
frequently-executed code in most programs.) 

For these reasons, most references to local variables will take between one and five instructions. To a first 
approximation, the time to reference local variables can be regarded as a small constant. (A slightly snazzier 
compiler can reduce this by using more registers, and leaving many values in registers instead of pushing and 
popping them from the eval stack, but that's a more advanced technique than we want to address here.) 

Lexical Addressing and Compile-Time Environments

Computing lexical addresses is very easy for the compiler. All it needs to do is maintain a data structure 
called a compile-time environment, which records the structure of the runtime environment. 

Each time the compiler compiles an expression that creates new bindings, it extends the compile-time 
environment to reflect the change to the environment structure, and when compiling expressions that will 
execute in that environment, it hands the new compile-time environment to the recursive call to compile 
which will compile that expression. 

For example, when compiling a let, the compiler dispatches to compile-let, the analogue of eval-
let, which does four things: 

1.  Compiles code for the initial value expressions. This code executes in the environment outside the 
let, so the compile-let uses the environment is was given when making recursive calls to 
compile to generate the initial value code. 

2.  Generates code to create a binding environment and intialize it with those values. 
3.  Extends the compile-time environment with a new frame, reflecting the fact that the body of the let 

will execute in a new scope including the new bindings. 
4.  Calls compile-sequence to compile the body of the let, passing it the new compile-time 

environment. 
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Just as the overall recursive structure of the compiler closely resembles the recursive structure of the 
interpreter, the role of the compile-time environment is very much like the role of the environment in the 
interpreter. 

When the interpreter (compiler) evaluates (compiles) subexpressions that execute in the same environment as 
their parent expressions, it hands the recursive invocation the same environment it was given. When the 
interpreter (compiler) evaluates (compiles) an expression in a new environment, it hands the recursive call the 
new (compile-time) environment. 

The structure of the compile time environment at any point in the compilation process mirrors the structure of 
the runtime environment where the code will execute. Unlike the interpreter's representation of the 
environment, however, the compile-time environment doesn't contain actual bindings--it can't, and it doesn't 
need to. 

In effect, we split the interpreter's environment into two parts with parallel structure. Where the interpreter's 
environements are chains of frames holding name-binding pairs, the compiler splits those into two chains of 
frames: the runtime environment, whose frames hold the actual bindings, and the compile-time environment, 
whose frames hold the corresponding names. 

Consider the expression 

(let ((x 1)
      (y 2))
   (let ((foo 3)
         (bar 4))
      (list foo bar x y)))

At the point where (list a b x y) is compiled or executed, the environment for an interpreted system 
appears as shown on the left, below, while the environments for a compiled system appear as shown on the 
right: 

     INTERPRETED                   COMPILED              COMPILED
                                (compile time)          (run time)
                    /\                         /\                   /\
                     |                          |                    |
 +---------------+   |           +----------+   |     +----------+   |
 |   envt. frame |   |           | c.t.e.fr.|   |     | envt. fr.|   |
 +===============+  /            +==========+  /      +==========+  /
 |          +----+-'             |     +----+-'       |     +----+-'
 +-------+-------+               +----------+         +----------+
 |     x |     1 |               |        x |         |        1 |
 +-------+-------+               +----------+         +----------+
 |     y |     2 |               |        y |         |        2 |
 +-------+-------+               +----------+         +----------+
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                  _                         _                    _
                 |\                        |\                   |\
                   \                         \                    \
                    \                         \                    \
 +---------------+   |           +----------+  |      +----------+  | 
 |   envt. frame |   |           | c.t.e.fr.|  |      | envt. fr.|  |
 +===============+  /            +==========+  /      +==========+  /
 |          +----+-'             |     +----+-'       |     +----+-'
 +-------+-------+               +----------+         +----------+
 |   foo |     3 |               |      foo |         |        3 |
 +---------------+               +----------+         +----------+
 |   bar |     4 |               |      bar |         |        4 |
 +-------+-------+               +----------+         +----------+

Note that there is a many-to-one relationship between the compile-time environments and the run-time 
environments: a let or lambda expression is compiled once, and the corresponding environment frame is 
created and passed to the recursive calls that compile subexpressions. The code may be executed many times, 
however, and each time a run-time environment frame will be created so that the code for subexpressions can 
be executed in that environment. 

A Detailed Example

Taking it step by step, let's look at the compilation of the expression 

(let ((x 1234)
      (y 3456))
   (let ((foo z))
      (+ (- foo x)
         (+ bar y))))

goes as follows. (We'll assume that this expression occurs at the top level.) 

Since we're compiling a top-level expression, we compile it in a compile-time environment that corresponds 
to the top-level environment. Toplevel environments are treated specially, because they're not created 
dynamically the way local binding environments. There's a one-to-one relationship bewteen top-level compile-
time environments and the corresponding run-time environments. We'll represent the top-level compile-time 
environment as a special kind of environment frame, which really just holds a pointer to the top-level runtime 
environment so that top-level variables can be looked up. 

So we start in a top-level environment, which we'll depict as [top-level]; we hand this to compile 
along with the expression to compile. compile is the main dispatch that analyzes the expression; in this 
case, it analyzes it and dispatches (via compile-list and compile-special-form) to compile-
let, the specialized procedure for compiling let expressions. 
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compile-let compiles the initial value expressions for x and y using compile-multi, which in turn 
calls compile recursively; they are compiled in the (top-level) environment, which is just passed along 
because no new environments have been created yet. In this case it doesn't matter, though, because they're just 
literals. (The values 1234 and 3456 get added to the literal list at this point.) Then compile-let 
generates the code to bind x and y. 

So far, the code generated looks like: 

  (fetch-literal #1)    ; fetch 1234
  (push)                ; push it on eval stack
  (fetch-literal #2)    ; fetch 3456
  (push)                ; push it on eval stack
  (bind 2)              ; bind 2 vars (x and y), w/values form eval stack

and the literals list holds 1234 and 3456. 

compile-let then calls compile-sequence to compile the body of the let, but first it creates a new 
compile-time environment, to represent the fact that the body sequence will execute in the new runtime 
environment after x and y have been bound. The structure of this environment is 

   [ x y ] -> [toplevel]

(This is our new, terse way of drawing the box-and-arrow data structure for compile time environments. I got 
tired of drawing ascii art.) 

compile-sequence calls compile recursively to evaluate a sequence of expressions; in this case, there's 
only one expression in the body. 

The recursive call to compile dispatches (again via compile-list and compile-special-form to 
compile-let, to compile the inner let. 

compile-let compiles the initial value expressions using compile-multi. compile-multi calls 
compile recursively to compile the one expression in the list, the symbol z. (Again, the same environment 
is just passed along, because we haven't created a new environment.) 

The recursive call to compile now dispatches to compile-symbol, which looks up the binding information 
for the symbol z in the compile-time environment. There's no binding in the first frame (containing x and y), 
so the search goes to the second frame, which is the top-level environment, and the top-level binding is 
returned. This causes a dispatch to compile-toplevel-var-ref, which adds the toplevel binding of z 
to the literals list and generates code to get it from the template and extract its value at run time. 

Then compile-let generates code to bind the fetched value as the local variable foo. 

The code generated so far is: 
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  (fetch-literal 1)    ; fetch 1234
  (push)
  (fetch-literal 2)    ; fetch 3456
  (push)
  (bind 2)             ; bind 2 values (x and y)
  (fetch-literal 3)       ; get toplevel binding (of z)
  (t-l-bdg-get)           ; get value from (z's) binding
  (push)
  (bind 1)                ; bind one variable (foo)

and the literals list contains 1234, 3456, and the binding of z. Now compile-let creates a new compile-
time environment to represent the environment created by the inner let; its structure is 

 [ foo ] -> [ x y ] -> [toplevel]

and it passes this to compile-sequence to compile the body of the let. compile-sequence calls 
compile recursively once, handing it the new environment, to compile the one body expression, (+ (- 
foo x) (+ bar y)). 

The recursive call to compile dispatches (through compile-list) to compile-combo, which 
recursively calls compile three times, to generate code for the subexpressions (+ bar y), (- foo x), 
and +. Since no new bindings are being created, the recursive calls are given the same environment. 

The recursive call to call (+ bar y) similarly dispatches to compile-combo and compiles y, bar, and 
+. Each of these calls dispatches to compile-symbol and the variables are looked up in the compile-time 
environment. The lookup for y returns a lexical address of 1,2, so the intermediate code generated is 

  (local-var-ref 1 2)

The lookup for bar doesn't find any local bindings and returns the toplevel binding so the binding is added to 
the literal list and the intermediate code is 

  (literal-lookup 4)
  (t-l-bdg-get)

Similarly, the lookup for + doesn't find any local bindings and returns the toplevel binding, so the binding is 
added to the literal list and the intermediate code is 

  (literal-lookup 4)
  (t-l-bdg-get)

now the call to compile-combo that compiles (+ bar y) can string these three fragments together to 
get 
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  (save-continuation "resume26") ; save state for call to +
  (local-var-ref 1 2)            ; look up y
  (push)
  (literal-lookup 4)             ; get toplevel binding (of bar)
  (t-l-bdg-get)                  ; get value from bdg (of bar)
  (push)
  (literal-lookup 5)             ; get toplevel binding (of +)
  (t-l-bdg-get)                  ; get value from binding (of +)
  (apply)                        ; call +
"resume26"                    

and return that. Notice that for the argument subexpressions, compile-combo inserts (push)es to save 
the values on the eval stack. For the first (function position) subexpression, it leaves the value in the value 
register, which is where it's expected (by apply). 

The recursive call to compile-combo to compile (- foo x) goes pretty similarly to the one for (+ 
bar y), the main difference being that both foo and x are found to be local variables and compiled 
appropriately, with the result being the sequence 

  (save-continuation "resume27") ; save state for call to -
  (local-var-ref 1 2)            ; look up x
  (push)
  (local-var-ref 0 1)            ; look up foo
  (push)
  (literal-lookup 4)             ; get toplevel binding (of -)
  (t-l-bdg-get)                  ; get value from binding (of -)
  (apply)                     ; call -
"resume27"

The recursive call to compile the symbol + goes striaghtforwardly to compile-symbol, which looks up + 
and finds that it's a toplevel variable; the binding is already on the literals list, so the code generated is: 

  (literal-lookup 5)   ; get toplevel binding (of +)
  (t-l-bdg-get)        ; get value from binding (of +)

and this is returned to the outer invocation of compile combo. It can then string together the code for the 
outer + expression, putting a save-continuation at the front and adding an apply at the end. This 
code is returned to the inner invocation of compile-let, which appends it to its code and returns it to the 
outer invocation of compile-let, which returns the entire code sequence 

  (fetch-literal 1)    ; fetch 1234
  (push)
  (fetch-literal 2)    ; fetch 3456
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  (push)
  (bind 2)             ; bind 2 values (x and y)
  (fetch-literal 3)       ; get toplevel binding (of z)
  (t-l-bdg-get)           ; get value from (z's) binding
  (push)
  (bind 1)                ; bind one variable (foo)
  (save-continuation "resume26") ; save state for call to +
  (local-var-ref 1 2)            ; look up y
  (push)
  (literal-lookup 4)             ; get toplevel binding (of bar)
  (t-l-bdg-get)                  ; get value from bdg (of bar)
  (push)
  (literal-lookup 5)             ; get toplevel binding (of +)
  (t-l-bdg-get)                  ; get value from binding (of +)
  (apply)                     ; call +
"resume26"
  (save-continuation "resume27") ; save state for call to -
  (local-var-ref 1 2)            ; look up x
  (push)
  (local-var-ref 0 1)            ; look up foo
  (push)
  (literal-lookup 4)             ; get toplevel binding (of -)
  (t-l-bdg-get)                  ; get value from binding (of -)
  (apply)                     ; call -
"resume27"
  (literal-lookup 5)          ; get toplevel binding (of +)
  (t-l-bdg-get)               ; get value from binding (of +)
  (apply)                  ; (tail-)call + 

Preserving Tail-Recursiveness using Compile-Time Continuations

One very important thing we glossed over just now when describing the workings of the compiler was when 
exactly to save continuations, and when not to. It is important to save continuations before calling procedures, 
if the callee must return and resume the execution of the caller. This is not necessary for tail calls, and in fact 
Scheme requires that continuations not be saved for tail calls--if we save continuations before tail-calls that 
happen to implement loops, we may end up with an unbounded accumulation of unnecessary continuations. 

Another important question is when returns should be executed. If a procedure ends in a tail-call, it is 
assumed that the callee will do a return. But eventually something actually has to do a return, and pass control 
back to its caller (or the caller of its caller... whatever). This situation occurs when the tail expression of a 
procedure is not another procedure call, e.g., returning the value of a variable or a literal. 

When Should We Save Continuations?
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The general rule is that if a procedure call is the last thing a procedure does, no continuation should be saved--
we can just jump into the callee, and since our state was not saved, the callee's return will resume our caller. 
To get this right, we just have to keep track of which expressions are being compiled in "tail position." 

In the procedure 

(lambda (x)
   (if (foo x)
       (bar (quux x))
       (baz)))

the if expression is in tail position, because the value of the if will be returned as the value of the procedure. 
The condition expression (foo x) is not in tail position, because after it is executed, control must return to 
this procedure so that either the consequent expression (bar (quux x)) or the alternative expression 
(baz) can be executed. 

Note that both the consequent and the alternative expressions are in tail-position; whichever is executed, that 
will be the last thing this procedure does, and the value computed will be the result of this procedure. 

On the other hand, if we modify the procedure to always return #f, none of these expressions is in tail 
position. 

(lambda (x)
   (if (foo x)
       (bar (quux x))
       (baz))
   #f)                                                  

That's because now the expression #f is in tail position, not the if expression; whatever the if does, control 
must come back to this procedure so that the value #f can be returned. 

Notice that the values to compute the arguments of a combination (procedure call) are never in tail position--
after computing them, control must always come back so that the procedure can be applied. The combination 
itself may be a tail call, of course, in which case once the arguments are computed, the apply may happen and 
control may never return. 

To get this kind of right, all that is necessary is that each recursive call to compile should know whether the 
code being compiled is going to be used in tail position or not; for this we use a compile-time continuation. 
(Fear not--it's simpler than compile time environments. It's really just a flag that gets passed along to 
recursive calls to compile, sometimes getting turned off along the way.) Keep in mind that tails of tails are 
in tail positions, but non-tail subexpressions are not. So in the case of nested if's where the outer if is in tail 
position, only the consequent and the alternative of the consequent and the alternative are in tail position, e.g., 
in 
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(lambda ()
   (if (if (a)
           (b)
           (c))
       (if (d)
           (e)
           (f))
       (if (g)
           (h)
           (i)))

the tail calls are (e), (f), (h), and (i). All of the calls in the first inner if must return, because the value 
returned must be used by the outer if. The calls to the condition expressions in the other two inner ifs must 
also return, because the values must be used to tell which of their alternative and consequent to use. 

For each basic kind of expression, we can tell which subexpressions should be considered tails if the overall 
expression is: 

●     For a sequence, only the last subexpression can be a tail--the rest are non-tails. 
●     For let, the initial value expressions for bindings are never tails, and the body is just a sequence, 

whose last subexpression can be a tail. 
●     For an if, the consequent and alternative can be tails, but the condition never can. 
●     For a procedure, the body is a sequence that's always in tail position. 

When we compile something in tail position, we pass compile a flag saying so. The flag will be examined, 
and passed along to subexpressions if appropriate for compiling the kind of subexpression in question. 

For example, if compile-sequence is handed a flag saying it should compile for tail position, it will pass 
the tail flag along when calling compile recursively on its last subexpression. For its other subexpressions, 
however, it will always pass the non-tail flag, because they must always return to execute the next expression 
in the sequence. 

Similarly, compile-if will pass whatever flag it is given along to when calling compile for its 
consequent and alternative subexpressions, but never when compiling its condition expression. 

compile-combo will always pass along a non-tail flag when calling compile on its subexpressions, but will 
examine the flag it's given to tell whether it should save a continuation before evaluating all of them. 

compile-lambda will always compile body expressions in non-tail position, except for the last one, which 
is always compiled in tail position. (For simplicitly, compile-lambda just hands the whole body to 
compile-sequence, with a tail flag.) 

compile-let, always compiles its initial value expressions in non-tail position, and its body expressions 
like a sequence. (For simplicity, it just hands the whole body to compile-sequence, with whatever flag 
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it's given.) 

Compiling Returns

As mentioned above, when an expression other than a procedure call is a tail of a procedure, it must be 
accompanied by a return. That is, every tail of a procedure must be either an apply (which will call 
something which will return, perhaps indirectly because of tail calling) or a return. 

The compiler can handle this by putting ensuring that wherever we generate intermediate code that is a leaf of 
the expression graph (e.g., in compile-variable-ref and compile-literal), we check the 
compile-time continuation flag to see if the expression occurs in tail position. If so, rather than simply leaving 
the value in the value register, we also execute a return sequence--a series of instructions that will grab the 
values out of the first partial continuation on the chain, and restore them into the registers and evaluation 
stack to resume the suspended procedure. We have a special intermediate code instruction that stands for this 
sequence, called return. 

Consider the following procedure: 

(lambda (a b c)
   (if (if a
           (b)
           c)
       d
       (e)))

When compiling its body, we dispatch through compile-sequence and recursively call compile to 
compile the if in tail position. It recursively calls compile to compile the nested if in non-tail position, 
which in turn recursively calls compile to compile a, (b) and c in non-tail position. 

Note that a is a leaf expression, and since it's in non-tail position, it can just leave its value in the value 
register. The subsequent code (the test for false and conditional branch that's part of the code for the inner if) 
will expect that value there, so that's fine. 

The expression (b) is not in tail position, because it inherits non-tail position from the inner if, so a 
continuation must be saved before the call to b. When b returns, its value will be in the value register and 
execution will resume at the branch that is part of the if. 

Similarly, the expression c is in non-tail position (which it also inherited from the inner if); it can just leave 
its value in the value register where subsequent code can find it. (In this case, it's the value returned by the 
inner if, and tested by the outer if's test for false and conditional branch.) 

The expression d is different. It's in tail position, and it's a leaf (not a call). It can't just leave it's value in the 
register, because it's the end of the procedure; it must therefore have a return sequence tagged onto it. 
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The expression (e) is just a tail call, which can just call e without saving a continuation. Whatever e calls 
can do whatever it wants, and probably something will eventually leave something in the value register and 
pop the caller's continuation. 

The code generated for the above procedure is: 

  (bind 3)                     ; bind args (a, b, and c)
  (local-var-ref 0 1)             ; get value of a
  (push)
  (branch-on-false "else32")      ; compare and maybe br to inner else
  (save-continuation "resume33")
  (local-var-ref 0 2)             ; get value of b
  (apply)                         ; call b
"resume33"
  (branch end)
"else32"
  (local-var-ref 0 3)                ; get value of c
"end32"
  (branch-on-false else1)      ; compare and may br to outer else
  (fetch-literal 1)               ; get toplevel binding of d
  (t-l-var-get)                   ; get value of d from binding
  (return)                        ; and return it
  (branch end1)
"else31"
  (fetch-literal 2)               ; get toplevel binding of e
  (t-l-var-get)                   ; get value of e from binding
  (apply)                         ; and tail-call it
"end31"

(Notice that when we generated the code for the outer else, we generated a branch that can never be taken. 
compile-if generates a label for the end of the code, so that after executing the consequent, control will 
resume at whatever code follows the if. In the case of this if, the consequent will always execute a return 
before encountering the branch. A slightly smarter compiler would probably recognize this situation, and 
eliminate the branch.) 

Compiling Top-Level Expressions

We said earlier that the compiler mainly uses recursion to generate intermediate code for nested expressions. 
To make this useful, though, at some point the intermediate code for a top-level expression must be converted 
into actual executable code and packaged up so that it can be called. 

Suppose we interact with our system via a read-eval-print loop where eval is really implemented by 
compiling the expression and executing the resulting compiled code. 
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To make it easy to implement this, it's nice if there aren't very many kinds of top-level expressions that the 
compiler has to generate code for and be able to actually call. In particular, it's convenient if different kinds of 
expression can be transformed into the same kind of expression. The easy way to do this is to make all 
different kinds of executable expressions into expressions that generate procedures, and then call those 
procedures. 

If we type 

(let ((x 2))
  (+ x x))

to the r.e.p. loop, the r.e.p. loop can simply wrap this up in a procedure expression compile that and package it 
up as something executable, and call it. In effect the read-eval-print loop will convert it to 

(lambda ()
   (let ((x 2))
      (+ x x))

before compiling it, and call the resulting closure to execute it. 

Likewise, expressions like 

(set! foo quux)

and 

(if bar baz)

can be wrapped up as 

(lambda () (set! foo quux))

and 

(lambda () (if bar baz))

Now when we start compiling, we only have to deal with one kind of thing--a whole procedure, and when we 
get the resulting code back and package it up to run it, we'll always be dealing with the code for a whole 
procedure. That makes it easy to create an actual closure to call. 

The main routine we use to start off compilation is compile-procedure, which takes an expression, a 
compile-time environment, a compile-time continuation, and a literal list as arguments. It returns intermediate 
code and an updated literal list for the procedure. 
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We take the intermediate code and hand it to the procedure intermediate-code->executable-
code which generates the executable code object. (This may be by translating the sequence of intermediate 
code instructions into the equivalent sequences of assembly language instructions, and running that through 
an assembler. Before doing the assembly, it may run the intermediate code through one or more optimization 
phases. 

We take the resulting executable code and the literals list, and hand them to make-template to create the 
template object. 

Now we can hand the appropriate runtime environment and the template to make-closure and get back a 
callable closure for the procedure. 

Compiling lambda Expressions Inside Procedures

When we compile a lambda expression, we must generate code that will create a closure at run time. A very 
naive way to do this would be to generate code that would call the compiler at runtime to compile the 
lambda expression into a procedure, plus a little code to create a closure of that object in the runtime 
environment. 

Luckily, this is not necessary, and the compiler can do all of the real compilation at compile time--since the 
code for the lambda expression will be the same every time it's executed, and since lexical scope guarantees 
that it will always execute in an environment with the same structure, only one version of the code is needed, 
and it can be shared among all closures of that procedure. The template can be shared as well. 

The compiler therefore generates code and a template for the lambda procedure; at run time, the actual code 
for the lambda expression just makes a closure on the heap and initializes its environment pointer and 
template pointer. This code will get the environment pointer from the environment register (and put it in the 
environment field of the new closure); the template pointer will be the ponter to the template for the lambda 
procedure. 

To allow this little code sequence to quickly grab the template for the procedure being closed, the compiler 
stores a pointer to that template in the template of the procedure which executes the lambda expression. For 
example, if a lambda expression is encountered while compiling procedure foo, the compiler will compile 
the lambda procedure and store its template in the template of foo. (While compiling foo, it simply 
records the pointer to the new lambda procedure's template as another literal. Then it will end up in foo's 
template like other literals.) 

So the code generated for 

   ...
   (lambda (x)
      (...))
   ...
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looks like 

   ...
   (envt-reg-get)     ; primitive to copy envt. reg. onto eval stack
   (push)
   (fetch-literal 15) ; grab template pointer for lambda proc
   (push)
   (make-closure)     ; code that will create closure w/those values
   ...

The real trick is in compiling the lambda procedure and stuffing its template into the template of the 
procedure that contains the lambda expression. The compiler just calls itself to generate the code and 
template then saves the template in the literal list and generates code like the above to reference the right 
literal. 

Compiling Top-level Definitions

We said above that we can deal with top-level expressions by turning them all into lambda expressions, 
which will have the effect of evaluating those expressions when called. 

This is a little bit tricky when dealing with top-level definitions, because top-level definitions can't be nested 
inside lambda expressions in the obvious way--they'd just become local definitions. 

We therefore have to treat them specially. We use a special procedure, environment-define!, which 
operates on top-level environments and allows us to create top-level bindings. This is not a standard Scheme 
procedure--it's a special procedure that the compiler can generate calls to, but normal portable Scheme code 
cannot use directly. 

The read-eval-print-loop will therefore recognize top-level definitions and treat them specially. When it 
encounters one, the initial-value expression will be wrapped up as a lambda and compiled, and the results 
turned into code, a template, and a closure. (The closure is given the runtime toplevel environment pointer.) 

The closure will be called to get a result for the initial value expression, and environment-define! will 
be used to create and initialize the toplevel variable. 

(This might appear at first to cause a scoping problem: if the binding isn't created until after the initial value 
expression is compiled, the compiler won't see the binding. But recall that if we compile an expression that 
uses an undefined variable, we assume it's a toplevel variable and create a binding object for it, and mark that 
object invalid. If the binding has already been created by a forward reference in this way, environment-
define! will just overwrite the marker with a real value.) 

Of course, if the top-level definition uses procedure definition syntax, it is necessary to massage that into a 
lambda expression before doing the above massaging and compiling. 
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Interfacing to the Runtime System

In order to support garbage collection (as is required for Scheme), there must be some agreement between the 
compiler and the garbage collector, so that the collector can find the pointers that the running program might 
find, and ensure that all objects the program could reach from them are preserved. 

A common way of doing this (used in RScheme and Scheme-48) is to have a fixed set of registers (plus 
maybe an eval stack) that hold all of the root values that the collector needs to know about, and guarantee that 
whenever garbage collection occurs, all pointers will be identifiable as such. Any given register must be 
known to never contain pointers, to always contain a pointer, or to contain self-identifying (tagged) values 
that are decodable to see if they're pointers. 

For example, in the straightforward compiled system we've described in detail, the VALUE register and the 
EVAL stack only contain normal Scheme values: tagged values that can be checked to see if they're pointers. 
On the other hand, the template and procedure, pointers would probably always contain raw pointers, since 
they can only point at one kind of thing, and the tags would slow some things down. 

There might also be some other registers, which always contain nonpointers. 

Garbage Collection

Safe Points

Many systems (like RScheme and Scheme-48) ensure that garbage collection can only happen when a 
program is at a well-defined "safe point", not at an arbitrary point in the code. At a safe point, all pointer 
values are known to be recognizable. In between safe points, it's okay for the code to use values that aren't 
properly decipherable by the GC. (For example, a register that normally contains only tagged values might 
briefly hold a raw pointer.) 

This is easy in a single-threaded system; the GC just keeps some space in reserve, so that it never runs out of 
memory between safe points. If an allocation requires dipping into this reserve, a flag is set so that a GC will 
occur at the next safe point. 

The usual trick is to ensure that each procedure call and backward branch is a safe point. This ensures that the 
a program (or thread) reaches safe points periodically, 

It's a little bit trickier in a multithreaded system--you have to make sure that you suspend threads at safe 
points, so that if another thread forces a GC while another thread is suspended. 

GC at Any Time

Some systems do not use safe points, and in effect make every point in the code a safe point for collection. 
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They ensure that no matter where a GC occurs (or where a thread was suspended before the GC occurred), 
there will be enough information lying around so that the collector can find all of the pointers it needs to find. 

Some compilers do this by restricting the way registers are used and code is generated. (For example, the 
Orbit compiler only uses certain registers to hold pointers, and only uses certain others to hold nonpointers. In 
addition, all pointers in registers must point directly to the beginning of an object; array indexing cannot be 
converted into arbitrary ponter arithmetic by the optimizing compiler.) 

Other compilers allow more use of odd representations and more flexible use of registers, so that values can 
be figured out at run time. For example, a register might be assumed to hold nonpointers, except at points in 
the code flagged by the compiler, based on its having register allocated a variable there. 

Interrupts

Advanced Compiler and Runtime System Techniques

Inlining Small Procedures

The system we've described so far generates fairly slow code, and a major culprit is the frequency of 
continuation saving and procedure calls. Even very small, frequently-executed procedures like eq?, car, cdr, 
and + require a handful if instructions to call and another handful to return, plus another handful to save a 
continuation if it's a non-tail call. This is much slower that the cost of similar operations in conventional 
languages like C or Pascal; in those languages, these simple little "operations" don't have the semantics of 
calls to first-class procedures. 

Sometimes it is desirable to trade away some of the purity and elegance of a language like Scheme, and trade 
reduced flexibility for better performance. One way of doing this is by declaring frequently-used small 
procedures not to be redefinable, and allowing the compiler to compile those operations inline rather than as 
procedure calls. In some systems this only works for built-in procedures that the compiler understands, but in 
others the compiler is smart enough to inline user-defined procedures if so directed. 

In some Scheme systems, you can declare procedures to be inlinable, or use a compiler flag that says you 
promise not to redefine the common little procedures that are most valuable to inline. This means that you 
can't change the definition of something like + on the fly, but you seldom want to. A common tradeoff is to 
avoid inlining any but the most frequently-called procedures during program development, and once the 
program is finished, recompile with lots of inlining. This gives you the flexibility to modify procedure 
definitions on the fly during debugging, while getting maximum speed once it's clear which procedures won't 
ever be redefined in normal operation. 

Some high-tech compilers use advanced techniques to do lots of inlining when it's safe, without reducing 
flexibility much or requiring the user to supply a lot of declarations. 

The Self compiler aggressively inlines code, and automatically recompiles the code that is invalidated by 
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changes to procedure definitions. (This compiler is for the language Self, not Scheme, but similar techniques 
could be applied to Scheme.) 

Some compilers currently in development have a special mode for compiling finished programs which will 
not be used with a read-eval-print loop. Such a compiler takes advantage of the fact that if it can look at the 
whole program (rather than having parts typed in by the user interactively), it can tell which variables could 
ever be modified at run time. (As long as there are no calls to eval at run time, the compiler can tell that all of 
the code for the program exists at compile-time; new closures may be created at run time, but not totally new 
procedures.) After globally determining that there is no code in the program that could change the definition 
of a procedure, it is free to inline the code for that procedure into its callers. 

Type Declarations and Type Analysis

Another key performance problem with naive implementations of Scheme (or other dynamically typed 
languages) is that basic operations are generally slow relative to their execution in conventional statically-
typed languages. For example, the Scheme procedure + must check the types of its arguments and (depending 
on those types) execute any of several possible code sequences to add two numbers. Usually, the checking 
overhead alone is several times greater than the cost of the actual addition. 

One way of reducing this cost is by extending Scheme to allow the user to declare the types of some 
variables. The compiler may be able to use this information to compile fast versions of operations for values 
of known types. (This is especially true if common operations are inlined--the compiler can choose to inline 
the appropriate version rather than the more general code.) 

Another way of reducing type checking cost is for the system to automatically infer the types of some 
expressions. For example, consider the expression (+ a 22). Since 22 is a literal, its type is known at 
compile time. If the compiler can inline the + procedure, it may at least omit the type check of that argument. 

A combination of declarations and inferencing can work well. For example, if the user has declared variable a 
to be of type <integer>, then the compiler can tell that (+ a 22) is an expression whose arguments are 
integers (so no run time type test are necessary there) and whose result is an integer, which may eliminate the 
need for type checks by the expression that uses the value. 

More aggressive schemes are possible for reducing the frequency of dynamic type checks. For example, the 
Self compiler aggressively inlines and transforms code so that multiple dynamic type checks can be collapsed 
into a single one. 

Using More Hardware Registers

[ blah blah ] 

For example, it's very likely a good idea to use more registers, and either not have an eval stack or not use it 
as often. Our simple abstract machine requires arguments to be passed on the eval stack, which means storing 

http://www.federated.com/~jim/schintro-v14/schintro_142.html (34 of 40)11/3/2006 9:17:07 PM



An Introduction to Scheme and its Implementation - Compiling Scheme

into memory at least once for each argument, and loading back from memory when arguments are used. Most 
modern machines have several hardware registers available for argument passing, and more for holding 
intermediate values of computations. 

If we have a few more registers that can be used for argument passing, we could just leave the argument 
values in those known registers, and procedures could expect them there. In many cases, argument values 
could be computed in a way that the result is left in the appropriate argument-passing register, without having 
to copy it there from somwhere else. Similarly, in many cases, procedures could leave their arguments in the 
argument passing registers and use them there, without actually copying them into a binding environment on 
the heap. (Even if only a few registers can be devoted to this, it will account for the large majority of 
arguments passed, since most procedure calls are to procedures that take between one and three arguments.) 

Similarly, in many cases a temporary value generated by evaluating a subexpression could be left in a 
register, and then used by another expression, without pushing and popping the eval stack. 

This can be a big performance win--it is much faster to operate on arguments and temporary values that are 
already in registers, rather than copying them to and from memory all of the time. 

Using more registers can make the compiler and runtime system more complicated. If variables are in 
registers when continuations are saved, their values must be saved in the continuations and restored at 
procedure returns. This requires the compiler to keep track of which registers are in use at which points, and 
generate appropriate code. It also complicates the interface between the compiled code and the garbage 
collector; the garbage collector must be able to find all of the pointer values that are stored in registers, so that 
it can find all of the reachable objects. The compiler must therefore record sufficient information that all 
pointer values can be found at garbage collection time. (Alternatively, the compiler may record a safe 
approximation of the information, and require the collector to make conservative guesses about what's what.) 

Closure Analysis

One of the performance problems with a naive implementation of Scheme is that in the general case, variable 
bindings must be allocated on the garbage-collected heap, and procedure calls must be via pointers to 
closures. This is often much slower than the usual implementation of conventional programming languages, 
which don't have to support lambda. Allocating closures and environments on the heap is mainly slow 
because creating and accessing variable bindings is slower than if the variables were allocated on a stack or in 
registers. 

A smart Scheme compiler can get rid of most of this overhead by analyzing programs and noticing that many 
closures are used in stereotyped ways, and calls to them can be implemented more cheaply than the naive 
implementation. Similarly, analysis of expressions may reveal that most binding environments can't possibly 
be captured by closures, and therefore don't need to be allocated on the garbage-collected heap. The bindings 
can be saved in continuations along with temporary values, or a more conventional stack may be used, or 
(best of all), the bindings can be register-allocated. 

A simple example of a language-level closure that doesn't need the fully general naive implementation is a 
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closure created by a lambda expression that appears in the function position of a combination: 

((lambda (x)
    (+ x x))  
 2))

(Recall that constructs like this are often generated by macros that implement binding constructs like let---
this one is equivalent to 

(let ((x 2)
   (+ x x))

In this case, we can tell from the fact that the lambda expression appears in the function position that the 
closure can't "escape" and have anything weird done with it. That is, no pointer to the closure is assigned into 
a variable binding, or passed to a procedure call, or inserted into a data structure. It's clear that the only thing 
that can happen to this closure is that it will be called, and then the pointer to it will be "dropped," i.e., not 
passed anywhere else. The closure will therefore become garbage immediately after it's executed. 

A smart compiler will therefore recognize that all the closure really does is bind its variable and execute it's 
body; it will leave out the code to create the closure and just compile in the equivalent code--in this case, it 
will generate the obvious code for a let expression. 

(Some compilers always transform let's and letrec's into lambda combinations, and rely on their 
optimizers to recognize the unnecessary lambda's and remove them. This may seem backwards, but it's nice 
because the same optimizations work whether the lambda combinations were the result of transforming a 
let, or macroexpanding a user-defined macro, or written directly by the user, or whatever. The more 
sophisticated the optimizer, the more simply the user can write macros and procedures, and expect the 
compiler to sort it all out and generate efficient code.) 

Another simple case for closure and environment analyis is binding environments that don't have any closures 
created in their scopes. Suppose that our compiler inlines calls to car, eq?, and cdr, and consider the 
expression 

(let ((x (car a))
   (if (eq? (car x) target)
       (car (cdr x))
       #f))

in this case, the body of the let can be compiled into entirely inline code, and it is clear that there is no 
possible path of execution that can create a closure that captures x. x can therefore be allocated in a register 
for its whole lifetime, making this code much faster. 

[ separate section? Figure out structure here... ] 
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Actually, some of these analyses are trickier than they appear, due to the presence of side effects and call/
cc. 

[ Haven't talked about call/cc yet! ] 

Consider the expression, where we don't assume any inlining 

(let ((x (car a)))
   (if (eq? (car x) target)
       (car (cdr x))
       (set! x (foo))))

At first it appears that since there are no lambda's in the expression, x can be allocated in a register, and 
saved in continuations across calls. (E.g., when calling car, we could just save the value of x in the 
continuation and have it restored when car returns, right?) Unfortunately, if we don't have any guarantees 
that car won't be redefined in weird ways, then it's possible that the call will be to procedure that will 
(directly or indirectly) call call/cc, and capture a continuation that could be used to return into this 
procedure any number of times. In that case, we can't be sure that we won't return into this code and modify 
x. If we did, then each time we returned into this environment, we should see the latest value of x. This will 
happen if the value of x is in a normal binding environment on the heap, but not if it's in a register that gets 
saved in a continuation. Recall that when we restore a continuation, we just copy the values out into the 
registers. If we restore the same continuation multiple times, we'll just keep copying the same value of x back 
out. 

To get this right, we have to ensure that if there are any assignments to x, then all references to x go through 
a pointer to a heap-allocated binding. Then when we save a continuation, we save this pointer to the binding 
of x, not the state (value) of the binding of x. Every time set or read the value of x, we go through this 
indirection to the same binding, and see the latest value. 

Because of this, high-tech scheme compilers keep track of which variables are ever set! anywhere in their 
scopes, and make sure to allocate those variables' bindings on the heap. 

In Scheme, it is a common idiom to code iteration as recursion; macros for different looping constructs often 
compile into letrec's with tail-calling lambda expressions. 

While this is a very powerful framework for expression various patterns of iteration, a naive implementation 
is slow. In most cases, loops created in this way are actually just used as loops, and it is desirable to compile 
away the overhead of closure creation and calling. For example, consider a named let like 

(let loop ((x 0))
   <body>
   (if (< x 10)
       (loop (+ x 1))))
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that has been transformed to 

(let ((loop (lambda x)
               <body>
               (if (< x 10)
                   (loop (+ x 1))))))
   (loop 0)

We can look at this expression, and if no reference to the variable loop occurs in the <body> expression, we 
can tell that we can compile it as a loop. 

The analysis here is just slightly more complicated than the one that allows us to optimize closures that are 
produced by lambda expressions in function position of a combination. 

When compiling the let, we can keep track of each let variable and see whether it is ever used for as 
anything but the name of a procedure to tail-call--if the value of loop is never assigned, and never read except 
to call it, then we know that the "calls" to loop don't really need to be full-blown closure calls at all. We can 
inline the code for the body of the loop and compile these calls as jumps directly to that code. 

FOOD FOR THOUGHT--does it matter whether the calls are tail-calls or not, if we just treat them as 
procedure calls to a known address, and go ahead and save a continuation with the right label? 

Register Allocating Loop Variables for Loops

Notice that register closure analysis is particularly important for loop control variables and variables for little 
let's inside loops. Because Scheme requires that a loop variable be bound again (to fresh memory) at each 
iteration of a loop, actually allocating them on the heap is expensive. If it can be determined that the variable 
is dead at the end of the loop, however, then the variable can be re-bound at each iteration by simply re-using 
the same register. (We're binding the name to a particular piece of memory--the register--over and over again, 
and it just happens that these conceptual rebindings incur no runtime cost.) 

With good closure analysis, loop conversion, and register allocation, a Scheme compiler can compile 
"normal" loops into code that's just as efficient as any compiler's. 

Conventional Optimizations

Besides the optimizations described above, conventional compiler optimizations are applicable to optimizing 
languages like Scheme. 

Just as in a FORTRAN or C compiler, data flow analysis and control flow analysis can let the compiler 
simplify intermediate code and produce better machine code. 

Stack Caches
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Inlining and closure analyisis can greatly reduce the amount of heap allocation in a Scheme implementation. 
Allocating all binding environments and continuations on the heap may inflate allocation rates by an order of 
magnitude over the rate of allocation of normal data structures like pairs and vectors. With a simple compiler 
and garbage collector, this can greatly inflate garbage collection costs. Despite the high rate at which 
continuations and environments are allocated, there are typically relatively few of them live at any given 
time--the vast majority of them are used very, very briefly and then become garbage. 

Inlining procedure calls may greatly reduce the allocation of continuations, and closure analysis may allow 
most bindings to be allocated in registers instead of on the heap. 

Still, it may be desirable to keep most of the continuations and environments from making it to the normal 
garbage-collected heap. 

A stack cache is an area of memory (or pool of discontiguous chunks of memory) that's used to for initial 
allocation of continuations and/or binding environments, in the expectation that most of them will die quickly. 
A stack cache caches part of the continuation chain; it's called a stack cache because it behaves mostly like a 
stack. Stack caches may be used for continuatons, with environments still being allocated on the heap, or a 
more complex design may be used to keep most environments from making it to the heap as well. 

For the most part, a stack cache is treated like a stack, in that continuations are pushed and popped as though 
it were a stack. When a continuation is captured by call/cc, however, the continuation chain is first moved 
to the heap so that it can be preserved in the usual way. This is generally a good tradeoff, because call/cc 
is not typically executed very often, and the stack cache can behave like a stack most of the time. The large 
majority of continuations will be reclaimed very quickly, by popping the stack cache, while a small minority 
will be moved out to the normal heap. 

Caching binding environments is a little trickier, but the basic principle is the same; most environments are 
created in the stack cache, and only moved to the garbage-collected heap when necessary, i.e., when a closure 
is created on the heap. At that moment, the environment is moved to the heap, one frame at a time, until a 
frame is reached that is already on the heap. (The code that does this must ensure that an environment is never 
copied to the heap twice, destroying the sharing of outer environements by inner environments created in their 
scope.) 

It is not clear how desirable a stack cache for environments is, given a compiler that does a reasonably good 
job of closure analysis. Using a stack cache for environments makes closure creation slower, and if most of 
the short-lived environments have been eliminated by closure analysis and register allocation, it may not be 
worth it. 

There is also some controversy about whether stack caches are worthwhile in general, or whether a 
generational garbage collector will take care of the large volume of short-lived data efficiently. 

One interesting point is that a stack cache really is a kind of generational garbage collection scheme, which 
exploits the typically short lifetimes of particular kinds of data. (When environments and continuations are 
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moved to the normal heap, that can be viewed as moving objects from one generation to the next. This special 
generation is cheaper than a normal generational scheme, however, because of the stereotyped structures of 
continuation chains and binding environments.) 

A stack cache, because it's small, can reduce the amount of memory that is used very frequently, compared to 
a generational GC without a stack cache. (A stack cache may only be a few kilobytes, but the youngest 
generation of a generational GC may be hundreds of kilobytes, or megabytes.) For some cache architectures, 
frequent reuse of this large an area causes significant cache miss penalties. (For some other architectures, the 
misses still occur but the cost is surprisingly low. I believe that stack caches are nonetheless a good idea, 
because they never hurt much and may sometimes help a lot.) 

Scheme-48 has a stack cache that caches both continuations and binding environments. RScheme has a stack 
cache for continuations only, and relies on the compiler to compile away most heap allocation of binding 
environments. (This may not currently be as effective as it should be--the compiler needs more testing and 
improvement before it will generate really good code.) 

Go to the first, previous, next, last section, table of contents. 
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●     interrupting Scheme 

l
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●     let 
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●     list, heterogeneous 
●     list-ref 
●     list-tail 
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●     lists, quoting 
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●     local procedures 
●     local variables 
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●     macro 
●     map (standard Scheme procedure) 
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●     pair (standard Scheme data type) 
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●     procedure composition 
●     procedure specialization 
●     procedure, anonymous 
●     procedure, first class 
●     procedure, higher-order 
●     procedures, local 
●     proper list 
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●     quitting Scheme 
●     quoting and literals 
●     quoting lists 

r

●     read, example implementation 
●     read-eval-print loop 
●     read-token (simple example lexical analyzer) 
●     reader 
●     recovering from mistakes 
●     recursion over nested lists 
●     recursion over nested structures 
●     rest lists 
●     RETURN and ENTER keys 
●     return values 
●     reverse (standard Scheme procedure) 
●     reverse (std. Scheme procedure), brief introduction 

s

●     s-expression (data structure) 
●     s-expression, defined 
●     scanning (lexical analysis) 
●     self-evaluation 
●     self-evaluation, implementation in interpreter 
●     shallow copy 
●     side effects 
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●     side effects, cons doesn't have any 
●     snarfing 
●     special forms 
●     string (data type) 
●     structural equivalence 
●     symbol (data type) 
●     syntactic sugar 
●     system hangs 

t

●     tail call 
●     tail recursion 
●     truth 
●     type predicates 

v

●     value cells 
●     values 
●     variable arity 
●     variables vs. bindings 
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