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Overview

This book provides an introduction to Scheme for programmers--it is not for first-time programmers, but
for people who aready know how to program (at least alittle) and are interested in learning Scheme.

. Scheme: Scheme: A Small But Powerful Language
. Who isthis Book For?. Who isthis Book For?

. Why Scheme?. Why Scheme?

. What this Book Is Not: What this Book Is Not

. Structure of this Book: Structure of this Book

Go to thefirst, previous, next, last section, table of contents.
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Scheme: A Small But Powerful Language

[ need to improve this introductory blather...]

Scheme isaclean and fairly small but powerful language, suitable for use as a general-purpose
programming language, a scripting language, an extension language embedded within applications, or
just about anything else.

Scheme was designed to lend itself to a variety of implementation strategies, and many implementations
exist--most of them free software. There are straightforward interpreters (like BASIC or Tcl), compilers
to fast machine code (like C or Pascal), and compilers to portable interpretive virtual machine code (like
Java).

Several extended implementations of Scheme exist, including our own RScheme system, an extremely
portable implementation of Scheme with an integrated object system and powerful extensibility features.

Thisisthefirst of three planned documents on Scheme, Scheme implementation, and the RScheme
language and its implementation. When they're al finished, | may combine them into a big book. All
three will be in Texinfo format, so that they can be printed out as hardcopy manuals, browsed online as
info documents (with the Info browser, or the Info system for the Emacs editor), or converted
automatically to HTML format for browsing with aweb browser. Whichever way you're reading this,
welcome to Scheme.

[ note: the current draft is only available in postScript form, because | haven't done all of the
hyperlinking for the Info and HTML versions. ]

Go to thefirst, previous, next, last section, table of contents.
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Who Is this Book For?

This book is for people who are interested in how Scheme works, or people who are interested in
Scheme in terms of programming language design--as well as people who are just interested in using
Scheme.

There's not much conflict between these goals, since one of the best ways to learn Scheme--and
important principles of language design--is to see how to implement Scheme, in Scheme. I'll illustrate
the power of Scheme by showing a couple of simple interpreters for subsets of Scheme, and asimple
compiler. A compiler for Scheme can be surprisingly simple and understandable.

Thisisafairly traditional approach, pioneered by Abelson and Sussman in Structure and I nterpretation
of Computer Programs, which isawidely used and excellent introductory programming text. This
approach has been followed, more or less, in severa other introductory books on Scheme programming.
Most of those books, though, are for beginning programmers. While | think Scheme is agreat first
language, there are many people out there who've had to suffer through C or Pascal or whatever, and
don't want to wade through an introductory programming book just to learn Scheme.

My approach is different from most of the current books on Scheme, in severa ways. [When it's
finished, this book will be hypertext, and can be kept online in online for handy reference in any of
several cross-indexed formats...]

| will breeze through basic programming ideas--for example, | assume you have some idea what a
variable is, and what recursion is.

| take a more concrete approach than many Scheme writers do, because I've found many students find it
easier to understand. Every now and then I'll dip below the language level, and tell you how most actual
implementations of the language work. | find that this concreteness hel ps disambiguate things in many
students minds--as well asin my own.

| do not start from afunctional programming perspective that pretends that Scheme executes by
rewriting expressions. (If that doesn't mean anything to you, definitely don't worry about it!)

| take Scheme to be a special case of aweakly object-oriented procedural language. By weakly object
oriented, | don't mean that it's object-oriented in the sense of having inheritance and so on--though
several extended versions of Scheme do. | just mean that the values in the language are data objects
(records, etc.) whose identities may be significant--that is, you can compare pointers to two objects to
see whether they are the very same object, not just and whether they have the same state--and objects
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may have mutable (changable) state. (Thisview is developed further in RScheme, which isafully object-
oriented language that happens aso to be Scheme. But that's a different book, not yet written.)

Some people may not like this approach, since | start talking about state and assignment very early. It is
generaly considered bad style in Scheme to use assignments freely, and good style to write mostly
“functional” or "applicative" programs. While | agree that mostly-functional programming is usually the
right thing for Scheme, my intent is to make the semantics of the language clear early on, and to make it
clear to new Schemersthat Scheme isafairly normal programming language, even if it is unusually
clean and expressive. My experience in teaching Scheme has convinced me that many people benefit
from an early exposure to the use of assignment; it clarifies fundamental issues about variables and
variable binding. Styleis discussed later, when alternatives are clearer.

If you've ever tried to learn Lisp or Scheme before, but not gotten very far, this book may be for you.
Many people taketo Lisp or Scheme like ducks to water. Some people don't, however, and | think that's
often because of the way that the material is presented--there's nothing hard about learning Lisp or
Scheme. In thisbook, | try to explain things alittle differently than they're usually explained, to avoid
the problems that some people have learning from most of the existing books. The concreteness of the
explanations here may help overcome the unfamiliarity of these languages. Schemeisreally just a
normal programming language, but one with powerful features that can be used in special ways, too.

If you're a programming language designer, but not fluent in Scheme or Lisp, this book may help clarify
what these languages are all about. It's my belief that there has been a damaging split between the Lisp
world and the "conventional" imperative programming language world, largely due to the different
vocabularies of the different communities. Recent developments in Scheme have not been widely
appreciated by designers of other languages. (This theme will be developed further in the other
documentsin this series.) Even old features of Lisp, such as macros, have not been properly understood
by language designersin general, and their problems have been substantially solved in Scheme.

If you're a programming language implementor, or teaching programming language implementation, this
book may be of use. (I useit in a course on languages and implementation.) I'll present interpreters and a
compiler for Scheme. Scheme an excellent vehicle for teaching principles of language implementation,
because its syntax is simple, and there is a straightforward evolution from simple interpreters to more
complex ones, and another straightforward move from a simple interpreter to a compiler. This supports
teaching the principles of language implementation with a minimum of irrelevant detail.

Go to thefirst, previous, next, last section, table of contents.
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Why Scheme?

[ Warn people that thisis partisan propaganda... |

Scheme is avery nice language for implementing languages, or for transformational programming in
general--that is, writing programs that write programs--or for writing programs that can easily be
extended or customized. The features that make Scheme attractive for implementing Scheme aso make
it good for all kinds of things, including scripting, the construction of new languages and application-
specific programming environments, and so on.

[ Asyou learn Scheme, you'll probably realize that all interesting programs end up being, in effect,
application-specific programming environments...]

Most Scheme systems are interactive, allowing you to incrementally develop and test parts of your
program. In this respect, it is much like BASIC or Tcl--but afar cleaner and more expressive language.
Scheme can also be compiled, to make programs run fast. This makes it easy to develop in, like BASIC
or Tcl, but still fast, like C. (Scheme isn't usually quite asfast as C, but it's usually not too much slower,
if you get agood Scheme compiler.) So if you'reaTcl or BASIC programmer looking for aless crufty
and/or fossilized language, Scheme may be for you.

Unlike most interactive languages, Scheme is well-designed: it's not a kludge cobbled up by some
people with very limited applications in mind, and later extended past its reasonabl e scope of
application. It was designed from the outset as a general-purpose language, combining the best features
of two earlier languages. It isfairly radical revision of Lisp, incorporating the best features of both Lisp
and Algol (the ancestor of C, Pascdl, et al.).

(Thisiswhy Scheme has been adopted by several groups as an alternative to kludgey languages like Tcl
and Perl. The Free Software Foundation's Guile extension language is based on Scheme. So isthe
Scheme Shell (scsh), which is a scripting language for UNIX. The CAD Framework Initiative has
adopted Scheme as the glue for controlling Computer-Aided Design tools. The Dylan language is also
based on Scheme, though with a different syntax and many extensions.)

If you want to learn Lisp, Schemeis agood place to start. Common Lisp is abig, somewhat messy
language, which is probably easiest to learn by starting with Scheme. Then you can understand Common
Lisp asaseries of extensions (and significant obfuscations) of Scheme. Some of the best features of
Common Lisp were copied from Scheme.

If you want to get something of the flavor of functional programming, you can do that in Scheme--most
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well-written Scheme programs are largely functional, because that's ssmply the easiest way to do many
interesting things.

And if you just want to learn to program better, Scheme may open your eyes to new ways of thinking
about programs. Many people prototype programs in Scheme, because it's so easy, even if they
eventually have to recode them in other languages to satisfy their employers.

Why Scheme Now?

Scheme is not a new language--it's been around and evolving slowly for 20 years.

The evolution of Scheme has been slow, because the people who standardize Scheme have been very
conservative--features are only standardized when there is a near-universal consensus on how they
should work. The focus has been on quality, not industrial usability.

This policy has had two consequences. The first isthat Scheme is a beautiful, extremely well-designed
language. The second is that Scheme has been "behind the curve," lacking several features that are
useful in general-purpose languages. Gradually, though, Scheme has grown from a very small language,
suitable only for teaching concepts, to a very useful language.

The most important new feature of Scheme (in my view) is lexically-scoped ("hygeinic") macros, which
allow the implementation of many language featuresin a portable and fairly efficient way. This allows
Scheme to remain small, but also allows useful extensions to the base language to be written aslibraries,
without a significant performance penalty.

Go to thefirst, previous, next, last section, table of contents.
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What this Book Is Not

Thisbook isn't alanguage definition for Scheme, or a manual for using any particular Scheme
implementation. There is afree language definition document for Scheme, easily available viathe
internet, called the Revised Scheme Report. (There's aso an |EEE standard.) | recommend getting the
Scheme report and printing it out, or browsing the html version with aweb browser. (ht t p: / / wwww.
cs. i ndi ana. edu/ schene-reposi tory/doc. standards. ht nl It'snot very big, because
Scheme s a pretty small language. | aso recommend having alook at the documentation for the
particular implementation of Scheme you're using.

On the other hand, this book may serve as a passable approximation of alanguage manua most of the
time. (It may work better for this purpose onceit's fleshed out more and I've devised more online
indexing.) It describes all of the important features of standard Scheme, clearly enough that you can use
them for most purposes. Thisis possible because Schemeis very clean and "orthogonal"---most of its
features don't interact in surprising ways, so if you understand Scheme, and do the " Scheme-ish" thing,
Scheme will generally do what you expect.

For more information on Scheme, particular Scheme implementations, and so on, see the FAQ
(Frequently Asked Questions) List on the usenet newsgroup conp. | ang. schene. It'savailable from
the Scheme Repository viaanonymous internet ftp fromf t p. ¢s. i ndi ana. edu inthe directory
pub/ scheme- r eposi t ory. Orif you're aWorld Wide Web user, visit the Scheme repository at
http://ww. cs. i ndi ana. edu/ schene- r eposi t ory. The Scheme repository contains
severa free implementations of Scheme, aswell as a variety of useful programs, libraries, and papers.

Go to thefirst, previous, next, last section, table of contents.
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Structure of this Book

Thisbook's structure reflects its tutorial intent, rather than any strong grouping of concepts. In the next
three chapters, ideas are introduced in the order that | think they're easiest to learn. Each chapter
introduces afew more or less related ideas, with small code examples, and ends with more examples of
Scheme programs to show why the ideas are useful. The later chapters introduce relatively independent
topics.

[ The following needs to be reworked a little, after the actual document structure settles down. |
section Introduction describes some basic features of Scheme, including alittle syntax, and gives code
examples to show that Scheme can be used like most programming languages--you don't give up much

when using Scheme, and it's not hard to switch.

section Using Scheme (A Tutorial) gives atutorial on Scheme programming, intended to be used while
sitting at a running Scheme system and trying examples interactively.

section Writing an Interpreter presents an simple interpreter for a subset of Scheme.

section Environments and Procedures describes Scheme's binding environments and procedures, and

shows how procedural abstraction can be very powerful in alanguage with first-class procedures, block
structure indefinite extent (garbage collection). It then shows an implementation of binding
environements and procedures for the interpreter from the previous chapter, and shows how to use
Scheme's binding and procedure-defining constructs in fairly sophisticated ways.

section Recursion in Scheme discusses recursion, and especially tail recursion.

section Quasi quotation and Macros presents quasi quotation, a means of constructing complex data

structures and variants of stereotyped data structures, and then presents macros, afacility for defining
your own "special forms' in Scheme. Macros let you define your own control constructs, data-
structuring systems such as object systems, etc. (If you've ever been daunted by problems with C or Lisp
macros, don't worry--Scheme macros fix the major problems with older macro systems.) Macros are al'so
interesting because they're often used in the implementation of Scheme itself. They allow the language
implementation to be structured in alayers, with most of the language written in the language itself, by
bootstrapping up from avery small core language understood by the compiler.

section Other Useful Features presents a variety of miscellaneous features of Scheme that are useful in
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writing real programs. They're not part of the conceptual core of Scheme, but any useful language
should have them.

section Records and Object Orientation ...

sectioncal | -wi t h- current - cont i nuat i on discusses first-class continuations, the most
powerful control construct in Scheme. Continuations allow you to capture the state of the activation
stack (sort of), and return to that state to resume at a given point in a program's execution. Continuations
are conceptually weird, and are not to be used casually, but tremendously expressive for things like
backtracking, threads, etc.

section A Simple Scheme Compiler presents an example Scheme program that happens to be asimple
compiler for Scheme. It'sa"toy" compiler, but areal compiler nonetheless, with al of the basic features
of any Scheme compiler, but minimal boring "support" hacks to perform tokenization, storage
management, etc.

Go to thefirst, previous, next, last section, table of contents.
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Introduction

In this chapter, I'll give aquick overview of some basic features of Scheme, enough to get started
writing some programs.

This chapter moves fairly quickly, briefly introducing about half of the ideasin Scheme. In later
chapters, I'll explain and demonstrate these features more fully, and introduce other advanced features.

This chapter is meant to be read concurrently with the first half of the next one, which includes atutorial
on using Scheme interactively. I've put in directives saying when you should work through parts of the
next chapter. After becoming familiar with Scheme, it will serve as a basic reference; you can consult
the next chapter for basic examples, and later chapters for advanced techniques.

If you're fluent in concepts of programming languages, and especially if you've programmed in Lisp,
you may be able to breeze through this chapter to get a sense of what Scheme is about. If you're fluent in
programming language concepts, you may be able to read straight through this section.

(NOTE TO MY CS345 and CS386] STUDENTS:. don't try to breeze through this. Do the tutorial hunks
after each hunk of this chapter.---PRW)

If you intend to actually program in Scheme, you should definitely follow the directives and read parts
of the next chapter, rather than trying to plow straight through this one.
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What is Scheme? (Hunk A)

First, a bunch of jargon--ignoreit if you want to:

Schemeis alexically-scoped, block structured, dynamically typed, mostly functional language. Itisa
variant of Lisp. It hasfirst-class procedures with block structure and indefinite extent. Parameter passing
Is by value, but the values are references. It has first-class continuations to allow the construction of new
control abstractions. It has lexically-scoped ("hygeinic") macros to allow definition of of new syntactic
forms, or redefinition of old ones.

If none of that means anything to you right now, don't worry. Keep reading.

Scheme is designed to be an interactive and safe language. A normal Scheme systemisreally an
interactive program that you can use to run parts of your Scheme program in the order you want. When
one has run, your program doesn't just terminate, and your data don't disappear--Scheme asks you what
to do next, and you can examine the data or tell Scheme to run another part of the program.

Scheme is safe in that the interactive system generally won't crash. If you make a mistake that would
crash the system, Scheme detects that, and asks you what to do about it. It lets you examine and change
the system's state, and go on. Thisisavery different style of programming and debugging from the
normal edit-compile-link-run-crash cycle of "batch" programming languages like C and C++.

Go to thefirst, previous, next, last section, table of contents.
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Basic Scheme Features

I'll go briefly through some of the basic features of Scheme, giving little code examples for clarity.

. Expressions: Code consists of expressions

. Booleans: The boolean values #t and #f

« Other Control-Flow Constructs: cond, and, and or

. Comments: Comments run from a semicolon to the end of aline

. Parentheses and Indenting: A note about parentheses and indenting

. All Vaues are Pointers: All values are conceptually pointers

. Automatic Memory Management: Scheme reclaims memory automatically
. Dynamic Typing: Objects have types, variables don't

. The Empty List: The empty list object (), ak.a. the null pointer

Go to thefirst, previous, next, last section, table of contents.
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Code Consists of Expressions

Like Lisp, Scheme is written as prefix expressions, with parentheses for grouping. Prefix means that the
name of an operation comes first, before its operands (the things it operates on).

In Scheme, there's no distinction between expressions (like arithmetic operations) and statements (like
ani f or aloop or adeclaration). They're all "expressions’---it'savery general term.

. Prefix Expressions. Parenthesized prefix expressions

. Values and Side Effects. Expressions return values, but may have side effects

. Defining Variables and Procedures. Defining variables and procedures

. Definitions vs. Assignments. Definitions name storage, assignment changes stored values
. Most Operators are Procedures. Most operators are procedures

. Special Forms: Special forms are not procedures

. Control Structures are Expressions. Control structures are expressions that return values

Go to thefirst, previous, next, last section, table of contents.
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Parenthesized Prefix Expressions

In C or Pascal, acall to procedure f oo with arguments bar and baz iswritten
foo(bar, baz);

but in Scheme it's written

(f oo bar baz)

Note that the procedure name goes inside the parentheses, along with the arguments. Get used to it. It
may seem less odd if you think of it as being like a operating system shell command--e.g., r m f 0o, or
di r bar ---but delimited by parentheses.

Just asin C, expressions can be nested. Here'sa call to aprocedure f 0o, with nested procedure call
expressions to compute the arguments.

(foo (bar x) (baz y))
Thisis pretty much equivalent to C's
foo(bar(x), baz(y));

Asin C or Pascal, the argument expressions in a procedure call are evaluated before actually calling the
procedure; the resulting values are what's passed to the procedure. In Scheme terminology, we say that
the procedure is applied to the actual argument values.

Y ou'll notice soon that Scheme has very few special characters, and that expressions are generally
delimited by parentheses or spaces. For example, a- var i abl e isasingleidentifier, not a subtraction
expression. ldentifiersin Scheme can include not only al phabetic characters and digits, but several other
characters, suchas! , ?, -, and _. Long identifiers are often constructed from phrases, to make it clear
what they mean, using hyphens to separate words; for example, you can have avariable named | i st -
of-first-ten-1ists.Youcanusecharacterslike +, -, *, and/ within an identifier, asin

bef ore-tax-total +t ax, oresti mat e+epsi |l on.

One consequence of Scheme'sliberal rules for constructing identifiersis that spaces are important. Y ou
must put one or more spaces (or carriage returns) between identifiers except where special characters
(usually parentheses) make the divisions obvious. For example, the addition expression (+ 1 a) can't
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bewritten (+1 a) or (+1a) or(+ 1a).(Itcanbewritten( + 1 a ), because extrawhitespace
between tokensisignored.)

Go to thefirst, previous, next, last section, table of contents.
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Expressions Return Values, But May Have Side-Effects

Scheme expressions combine the features of expressions and statements. They return values, but they
can also have side effects---i.e., they can change the state of variables or objects by assignment.

The variable assignment operation in Schemeisset ! , pronounced "set-bang." If we want to assign the
value 3 to the variable f oo, we write

(set! foo 3)
which is pretty much equivalent to C's
foo = 3;

Notethat (set! foo 3) lookslike afunction call, because everything uses prefix notation, but it's
not really acall; it's adifferent kind of expression.

Y ou should not use assignments a lot in Scheme programs. It's usually asign of bad style, asI'll explain
later. I'll also show how to program in a style that doesn't need side effects much. They're there if you
need them, though.

When you write a procedure that modifies its arguments, rather than just just returning a value, it's good
styleto give it a name that ends with an exclamation mark. This reminds you and anybody reading your
code that the procedure changes something that already exists, rather than just returning a value such as
anew data structure. Most of the standard Scheme procedures that change state are named this way.

Most Scheme procedures don't modify anything, however. For example, the standard procedure

rever se takesalist asits argument and returns alist of the same elementsin the opposite order. That
isit returns akind of reversed copy of the original list, without modifying the original at all. If you wrote
a procedure that returned the same list, but modified so that its el ements were in the opposite order,
you'd probably call itr ever se! . Thiswarns people that alist that ispassedtor ever se! may be
changed.

One side-effecting procedure we'll usein examplesisdi spl ay. di spl ay takes avalue and writesa
printed representation to the screen or afile. If you give it one argument, it writes to the "standard
output”; by default, that's the terminal or other display.

For example, if you want to show the user the printed representation of the number 1022, you can use
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the expression
(di splay 1022)

The side effect of executing this expression isto write the 1022 on the user's screen. (di spl ay
automatically converts the number to a string of characters so that you can read it.)

Notethat di spl ay doesn't have an exclamation point at the end of its name, because it doesn't side-
effect the argument you giveit to print. Y ou can give it adata structure and be sure that it won't modify
it; display does have a side-effect, though--it changes the state of the screen (or file) that it writesto.

di spl ay isfairly flexible, and can write the printed representations of many common Scheme objects,
and even fairly complex data structures.

Among many other things, display can print character strings. (Strings are another kind of Scheme
object. You can write aliteral string in double quotes, " | i ke t hi s", and Scheme constructs a string
object to hold that character sequence.

Theexpression (di spl ay "Hel | o, worl d!) hasthe side effect of writingHel | o, worl d! to
the standard output, which is usually the user's screen.

Thismakesdi spl ay very useful for debugging, and for little examples, as well as for writing
interactive programs. A similar procedure, wr i t e is used for saving data structures to files; they can
then be copied back into memory using r ead.

In alater chapter, I'll show how to write to files by passing a second argument to di spl ay that tellsit
where to send the output. For now, you should just use di spl ay with exactly one argument. Don't try
to passdi spl ay severa things and expect it to print them all.

Go to thefirst, previous, next, last section, table of contents.
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Defining Variables and Procedures

Y ou can define avariable in Scheme using adef i ne:
(define ny-variabl e 5)
Thistells Scheme to allocate space for my- var i abl e, and initialize that storage with the value 5.

In Scheme, you always give avariable an initial value, so there's no such thing as an uninitialized
variable or an unininitialized variable error.

Scheme values are always pointers to objects, so when we use the literal 5, Scheme interprets that as
meaning a pointer to the object 5. Numbers are objects you can have pointers to, just like any other kind
of data structure. (Actually, most Scheme implementations use a couple of tricks to avoid pointer
overheads on numbers, but that doesn't show up at the language level. Y ou don't have to be aware of it.)

After the above definition, we can draw the resulting situation like this:

R +
foo | ¥oo-4--->5
R +

Thedef i ne expression does three things:

. It declaresto Scheme that we're going to have a variable named f oo in the current scope. (I'll
talk about scoping alot, later.)

. It tells Scheme to actually allocate storage for the variable. The storage is called a binding---we
"bind" the variable f 00 to a particular piece of memory, so that we can refer to that storage by
the namef oo.

. Ittells Scheme what initial value to put in the storage.

These three things happen when you define variables in other languages, too. In Scheme we have names
for all three.

In the picture, the box represents the fact that Scheme has allocated storage for a variable. The name

f 0o beside the box means that we've given that storage the namef 0o. The arrow says that the value in
the box is a pointer to the integer object 5. (Don't worry about how the integer object is actually
represented. It doesn't really matter.)
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Y ou can define new procedures with def i ne, too:

(define (two-tines x)

(+ x x))

Here we've defined a procedure named t wo- t i mes, which takes one argument, X. It then callsthe
addition procedure + to add the argument value to itself, and returns the result of the addition.

Notice the sytnactic difference between the variable definition and the procedure definition: for a
procedure definition, there are parentheses around the name, and the argument name(s) follow that
inside the parentheses.

This resembles the way the procedure is called. Consider the procedure call expression (t wo-ti nes
5) , which returns 10; it looks like the definition's (t wo-t i mes x) , except that we've put the actual
argument 5 in place of the formal parameter x.

Here's abit of programming language terminology you should know: the arguments you passto a
procedure are sometimes called actual parameters. The argument variables inside the procedure are
called formal parameters---they stand for whatever is actually passed to the procedure at run time.
"Actua" means what you actually pass to the procedure, and "formal” means what you call that on the
inside of the procedure. Usually, I'll just talk about "arguments,” but that's the same thing as "actual
parameters.” Sometimes I'll talk about "argument variables,” and that's the same thing as "formal
parameters.”

Y ou can define a procedure of zero arguments, but you still have to put parentheses around the
procedure name, to make it clear that you're defining a procedure. Y ou put parentheses around its name
when you call it, too, to make it clear that it's a procedure call.

For example, thisis adefinition of avariable whose initial valueis 15:
(define foo 15)
but thisis a definition of a procedure f oo which returns 15 when called.

(define (foo) 15)

+------- +
foo | *- - - +--->#<procedur e>
+------- +

This picture shows that when you define a procedure, you're really defining a variable whose value
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happens to be a (pointer to a) procedure. For now, you don't really have to worry about that. The main
thing to know is that now you can call the procedure by the name f 00. For example, the procedure call
expression ( f 0o) will return 15, because al the body of the procedure doesis return the value 15.

Usually, we indent procedure definitions like this, with the body starting a new line, and indented afew
characters:

(define (foo)
15)

This makes it clearer that it's a procedure definition.

Go to thefirst, previous, next, last section, table of contents.
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Most Operators are Procedures

In conventional programming languages like C and Pascal, there's an awkward distinction between
procedure calls and other kinds of expressions. In C, for example, (a + b) isanexpression, but f oo
(a, b) isaprocedurecall. In C, you can't do the same things with an operator like + that you can do
with a procedure.

In Scheme, things are much more uniform, both semantically and syntactically. Most basic operations
such as addition are procedures, and there is a unified syntax for writing expressions--parenthesi zed
prefix notation. So rather than writing (a + b) in Scheme, you write (+ a b) . And rather than
writing f oo( a, b) , youwrite(f oo a b) . Either way, it'sjust an operation followed by its operands,
al inside parentheses.

For any procedure call expression (also called a combination), all of the values to be passed are
computed before the actual call to the procedure. (Thisis no different from C or Pascal.)

Go to thefirst, previous, next, last section, table of contents.
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Definitions vs. Assignments

Notice that we can give avariable avaue in two ways. we can define it, specifying an initial value, or
wecanuseset ! tochangeitsvaue.

The difference between these two isthat def i ne allocates storage for avariable, and gives that storage
aname. set ! doesnot. You must awaysdef i ne avariable beforeset ! will work onit.

For example, if there's not already a definition of quux, the expression (set! quux 15) isanerror,
and Scheme will complain. Y ou're asking Scheme to put (a pointer to) 15 in the storage named by
guux---but quux doesn't name any storage yet, so it makes no sense.

It's rather like I'd told you, "give thisto Philboyd" and handed you some object, (say, a pencil). If you
don't know anybody named Philboyd, you're probably going to complain. set ! islikethat. We have to
agree on what the word "Philboyd" means to before it makes sense to ask you to do something to
Philboyd. def i ne isaway of giving meaning to an identifier--making it refer to a piece of storage--as
well as giving avalue to put there.

Go to thefirst, previous, next, last section, table of contents.
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Special Forms

While most operations in Scheme are procedure calls, there are afew other kinds of expressions you
need to know about, which behave differently. They are called special forms.

Procedure calls and special forms are syntactically similar--both are a sequence of syntactic units
between parentheses, e.g., (f o0 bar baz) . They are semantically very different, however, whichis
why you need to know the specia forms, and not mistake them for procedures.

If the first thing after the left parentheses is a keyword that names a special form, likedef i ne or set !,
Scheme does something special for that kind of expression. If it's not, Scheme recognizes the expression
In parentheses as a procedure call, and evaluatesit in the usual way for procedure calls.

(Thisiswhy special forms are called "special forms'---Scheme recognizes some kinds of compound
expressions as needing specia treatment, rather than just being procedure calls.)

You've already seen two of the five or six important special forms, def i ne and the assignment operator
set!.

Noticethat set ! isn't aprocedure, because its first argument is not really an expression to be evaluated
in the normal way, to get avalue to pass as an argument. It's the name of a place to put avalue. (e.g., if
wesay (set! a b),wegetthevaueof b, and put it into the storage named by a.)

Likewise, def i ne treatsitsfirst argument specially--the name of a variable or procedure isn't an
expression that is evaluated and passed to def i ne---it'sjust aname, and you're telling def i ne to
allocate some storage and use that name for it.

Other specia formswe'll see include

. control constructs: i f, cond, and case and the sort-circuiting logical operatorsand and or ;

. formsfor defining local variables: | et anditsvariants| etrec and| et *;

. looping constructs: named | et and do;

. quot e and quasi quot e, which let you write complex data structures as textual literalsin your
code, and

. | anbda, which creates new proceduresin avery useful way.

Thereisaso afew very special special forms, def i ne- synt ax, which let you define your own
special forms as "macros.”
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Control Structures are Expressions

Scheme control structures are expressions, and return values. Ani f expressionisalot like a C if-then
statement, but the "then" branch and the "else" branch are also expressions that return values; thei f
expression returns the value of whichever subexpression it evaluates.

For example,

(if (< ab)
a
b)

returns the value of either the variable a, or the variable b, whichever isless (or the value of b if they're
equal). If you're familiar with ternary(1) expressionsin C, thisislike(a < b) ? a : b.In Scheme,
there'sno need for both ani f statement and an if-like ternary expression operator, becausei f
"statements' are expressions.

Note that even though every expression returns avalue, not all values are used--you can ignore the
return value of an if expression. Thei f specia form can therefore be used to control what gets
executed, or to return avalue, or both. It's up to you.

The uniformity of value returning means that we never have to explicitly use areturn statement, so
Scheme doesn't have them. Suppose we wanted to write a function m n to return the minimum of two
numbers. In C, we might do it this way:

int mn(int a, int b)

{
if (a < b)
return a;
el se
return b;
}

In Scheme, we can just do this.
(define (mn a b)

(if (< ab)
a
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b))

Whichever branch is taken, the value of the appropriate variable (a or b) will be returned as the value of
that branch of thei f , which is returned as the value of the wholei f expression, and that is returned as
the return value of the procedure call.

Of course, you can also write a one-branch if, with no "else" clause.

(if (sone-test)
(sone-action))

The return value of aone-branchi f isunspecified in the case the condition isfalse, so if you're
interested in the return value, you should use atwo-branchi f , and explicitly specify what should be
returned in both cases.

Notice that the flow of control istop-down, through the nesting of expressions---i f controls which of its
subexpressionsis evaluated, which is like the nesting of control statementsin most languages. Values
flow back up from expressionsto their calers, which is like the nesting of expressionsin most
languages.

Y ou can write an expression that is an ordered sequence of other expressions, using begi n. For
example,

(begin (foo)
(bar))

callsf oo and then calsbar . In terms of control flow, a( begi n ...) expressionisrather likea
begi n ... end block in Pascal, or a{ ...} block in C. (We don't need an end keyword, because the
closing parenthesis does the job.)

Scheme begi n expressions aren't just code blocks, though, because they are expressions that return a
value. A begi n returns the value of the last expression in the sequence. For example, the begi n
expression above returns the value returned by the call to bar .

The bodies of procedures work like begi nsaswell. If the body contains several expressions, they are
evaluated in order, and the last value is returned as the value of the procedure call.

Here's aprocedure baz that callsf 0o and then callsbar and returns the result from the call to bar .

(define (baz)
(foo)
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(bar))

Go to thefirst, previous, next, last section, table of contents.
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The Boolean Values #t and #f

Scheme provides a special unique object, whose written representation is #f , called false. This object
counts asfalseif it's the result of a condition expressioninani f (or cond) expression. In most
Schemes, thisisthe only value that counts as false, and all others count as true.

The false object is not the same thing as the integer zero (asit isin C), and it's not the same thing as a
null pointer (asitisin Lisp). The false object is a unique object.

For convenience and clarity, Scheme also provides another boolean value, written #t , which can be
used as atrue value. Note that in general, any value other than false is true, but the special boolean
object #t isagood one to use when all you want to say is that something is true--returning the true
boolean makesit clear that al you're returning is a true value, not some other value that conveys more
information.

Like other objects, Booleans are conceptually objects on the heap, and when you write #t or #f , it
means "a pointer to the canonical true object” or "a pointer to the false object.”

Scheme provides a few procedures and special forms for operation on booleans. The procedure not acts
asanot operator, and always returns true or false (#t or #f ). If applied to #f , it returns#t . Since all
other values count as true, applying not to anything else returns #f .

Go to thefirst, previous, next, last section, table of contents.
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Some Other Control-Flow Constructs: cond, and, and or

We've already seen that the specia formi f isakind of expression, which returnsavalue aswell as
affecting control flow. Scheme also has cond, amore general conditional construct, and the extended
logical operatorsand and or . These are al value-returning expressions; they're also special forms, not
procedures: they control whether expressions get evaluated, depending on the values returned by other
expressions.

. cond: condislikeif...elsaif...elseif... else...
. and and or: and and or are "short-circuiting"

Go to thefirst, previous, next, last section, table of contents.
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cond

In most procedural programming languages, you can write asequence of i f tests using an extended
version of i f, something like this:

If testl then
actionl();

else if test2 then
action2();

else if test3 then
action3();

el se
action4();

Scheme has a similar construct, a special form called cond. The above example might be written in
Scheme as

(cond (testl
(actionl))
(test?2
(action2))
(test3
(action3d))
(el se
(actiond)))

Notice that each test-and-action pair is enclosed in parentheses. In thisexample, t est 1 isjust a
variable reference, not a procedure call, i.e., we'retesting to seeif the value of thevariablet est 1 is
#f ; if not, welll execute (acti onl),i.e, cal the procedureact i onl. If itisfalse, control "falls
through" to the next test, and keeps going until one of the tests evaluates to a true value (anything but
#f).

Notice that we indent the actions corresponding to atest by one character. Thislines the actions up
directly under the tests, rather than under the opening parenthesis that groups them together.

Theel se clause of acond isoptiond; if present, that branch will be taken "by default”---if none of the
other conditions evaluates to atrue value, the el se branch will be taken.

We don't really need the else clause, because we could get the same effect by using atest expression that
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always evaluates to atrue value. One way of doing thisisto use the literal #t , the true boolean, because
it's always true.

(cond (testl
(actionl))
(test2
(action2))
(test3
(action3d))
(#t ; literal #t is always true, so
(actiond))) ; this branch is taken if we get this far

The code above is equivalent to anested set of | f expressions:

(i1f testl
(actionl)
(i1f test2
(action2)
(if test3
(action3)
(i f #t
(actiond)))))

Likeani f , acond returnsthe value of whatever "branch” it executes. If t est 1 istrue, for example,
the above cond will return the value returned from the procedure call (acti onl).

Remember that each branch of ani f isasingle expression; if you want to execute more than one
expression in abranch, you have to wrap the expressionsin abegi n. With cond, you don't have to do
this. You can follow atest expression with more than one action expression, and Scheme will evaluate
al of them, in order, and return the value of the last one, just like abegi n or a procedure body.

Suppose we want to modify the above cond example so that it prints out the branch it's taking, as well
as evaluating the action expression and returning its value. We can do this:

(cond (test1l
(display "taking first branch")
(actionl))
(test2
(di splay "taking second branch")
(action2))
(test3
(display "taking third branch")
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(action3d))

(el se
(display "taking fourth (default) branch")
(actiond)))

Thiscond will return the same value as the original, because it always returns the value of the last
expression in abranch. Asit executes, however, it also displays what it's doing. We can use the cond
both for value and for effect.

Be particularly careful about parentheses with cond. Y ou must enclose each branch with a pair of
parentheses around the test expression and the corresponding sequence of action expressions. If you
want to call a procedure in any of those expressions, you must also put parentheses around the procedure
call. In the above example, if we wanted the first test to be acall to aproceduret est 1---rather than just
fetching the value of the variablet est 1---we'd write

(cond ((test1l)
(display "taking first branch")
(actionl))
)

instead of

(cond (testl
(display "taking first branch")
(actionl))
)

(Note the indenting here. We usually line up atest and the corresponding sequence of actions vertically,
whether or not the expression starts with a parentheses. That is, we indent one space past the opening
parenthesis of the pair of parentheses that goes around them all.)

The "extra" parentheses are necessary so that cond can tell which action sequences are grouped with
which tests.

Don't be afraid to use cond for conditionals with only one or two branches. cond is often more
convenient thani f because it can execute a sequence of expressions, instead of just one. It's not
uncommon to see thingslike this:

(cond ((fo00)
(bar)
(baz)))
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Don't be confused by this--there's only one branch to thiscond, likeaone-branchi f . We could have
written it

(|f (foo0)
(begin (bar)
(baz)))

It's just more convenient to use cond so that we can call bar before calling baz and returning its
result, without explicitly writing abegi n expression to sequence them.

We say that cond is syntactic sugar for nested i f swith begi nsaround the branches. There's nothing
we can do with cond that we can't do straightforwardly withi f and begi n---cond just givesusa
"sweetened" syntax, i.e., one that's more convenient.

Most of the special formsin Scheme are like this--they're just a convenient way of writing things that
you could write using more basic special forms. (There are only five "core" special formsthat are really
necessary, and the others are equivalent to combinations of those special forms.)

Go to thefirst, previous, next, last section, table of contents.
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and and or

The special formsand and or can be used as logical operators, but they can also be used as control
structures, which iswhy they are special forms.

and takes any number of expressions, and evaluates them in sequence, until one of them returns #f or
al of them have been evaluated. At the point where one returns #f , and returns that value as the value
of the and expression. If none of them returns #f , it returns the value of the last subexpression.

Thisisreally acontrol construct, not just alogical operator, because whether subexpressions get
evaluated depends on the reults of the previous subexpressions.

and isoften used to express both control flow and value returning, like asequence of i f tests. You can
write something like

(and (try-first-thing)
(try-second-thing)
(try-third-thing))

If the three calls all return true values, and returns the value of the last one. If any of them returns #f ,
however, none of the rest are evaluated, and #f isreturned as the value of the overall expression.

Likewise, or takesany number of arguments, and returns the value of the first one that returns atrue
value (i.e., anything but #f ). It stops when it gets a true value, and returns it without evaluating the
remaining subexpressions,

(or (try-first-thing)
(try-second-thing)
(try-third-thing))

or keepstrying subexpressions until one of them does return atrue value; if that happens, or stops and
returns that value. If none of them returns anything but #f , it returns #f .

not is just a procedure

not isaprocedure that takes one argument, which may be any kind of Scheme value, and returns #t or
#f . If the argument value is #f (the unique false object), it returns #t , and otherwise returns #f . That is,
all values count as true except for the false object--just asin a conditional. For example, ( not 0)

http://www.federated.com/~jim/schintro-v14/schintro_22.html (1 of 2)11/3/2006 8:54:21 PM


http://www.federated.com/~jim/schintro-v14/schintro_1.html

An Introduction to Scheme and its Implementation - and and or

returns #f .

Given that and and or are special forms, you might think that the logical not operator isaspecial form
aswell. It isn't. It'sjust a procedure--in particular, a predicate.

This makes sense because not always evaluates its (one) argument, and returns avalue. It doesn't treat
any arguments specially--it's just a normal first-class procedure, whose argument is evaluated in the
usual way before the procedure is actually called.

In general, operations that can be procedures are procedures. Scheme only has special forms for things
that are actually special, and need their arguments treated differently from arguments to procedure calls.
(Even Scheme's most powerful control construct, cal | -wi t h-current -conti nuati on,isjusta
first-class procedure.)

This is the end of Hunk A
TIME TO TRY I T OQUT

At this point, you should go read Hunk B of the next chapter
and work through the exanples using a running Schene system
Then return here and resune this chapter.

(Go to Hunk B, which starts at section An Interactive Programming Environment (Hunk B).)

Go to thefirst, previous, next, last section, table of contents.
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Comments (Hunk C)

[ Should | say this earlier, and use comments in examples earlier?]

Y ou can and should put commentsin your Scheme programs. Start a comment with a semicolon.
Scheme will ignore any characters after that on aline. (Thisislikethe// commentsin C++.)

For example, here's a variable definition with a comment after it:

(define foo 22) ; define foo with an initial value of 22

Of course, most comments should tell you things that aren't patently obvious from looking at the code.
Standard Scheme does not have block commentslike C's/ *..*/ comments.

It is common to use two or three semicolons to start a comment, rather than just one. This makes the
beginning of the comment stand out more than a single semicolon. The extra semicolons are ignored,
along with all other characters up to the end of theline.

A common style isto use two semicolons for most comments, and three for comments that take up a
whole line, or which describe the contents of afile.

Go to thefirst, previous, next, last section, table of contents.
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A Note about Parentheses and Indenting

The two biggest barriers to learning Scheme are probably parentheses and indenting. In Scheme,
parentheses are used a little differently than in most programming languages. Indenting is also very
important, because the surface syntax of the language is so regular. When reading Scheme code,
experienced programmers read the indenting structure as much as the tokens. If you don't parenthesize
correctly, your programs won't run correctly. And if you don't indent them correctly, they'll be hard to
understand.

The syntax of Scheme is more similar to that of C or Pascal than it may appear at first glance. After al,
amost all programming languages are based on nested (statements or) expressions. Like C or Pascal,
Scheme is free-form, and you can indent it any way you want.

Some people write Scheme code indented like C, with closing parentheses lined up under opening
parentheses to show nesting. (People who do this are usually beginners who haven't learned to use an
editor properly, asI'll explain later.) They might write

;; A poorly indented if expression
(if a
(if b
Cc
d

A —

)

rather than

;; a nicely-indented if expression
(if a
(if b
C
d)
e))

Thefirst version looks alittle more like C, but it's not really easier to read. The second example shows
its structure just as clearly if you know how to read Scheme, and isin fact easier to read because it's not
all stretched out. The second example takes up less space on the page or a computer screen. (Thisis
important when editing code in a window and doing other things in another window--you can see more
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of your program at atime.)

There are a couple of things to keep in mind about parentheses in Scheme. The first thing is that
parentheses are significant. In C or Pascal, you can often leave parentheses out, because of "operator
precedence parsing,” where the compiler figures out the grouping. More importantly, you can often add
extra parentheses around expressions without affecting their meanings.

Thisis not true in Scheme! In Scheme, the parentheses are not just there to clarify the association of
operators. In Scheme, parentheses are not optional, and putting extra parentheses around things changes
their meaning. For example, the expression f 00 is avariable reference, whose effect is to fetch the
value of the variable f 00. On the other hand, the expression ( f 00) isacall to the procedure named

f 00 with zero arguments.

(Noticethat evenin C, it's not generally acceptable to write a procedure call with too few parentheses or
too many: acall f oo(a, b) can'tbewrittenjustfoo a, borasfoo((a, b)).

In general, you have to know where parentheses are needed and where they are not, which requires
understanding Scheme's rules. Some parentheses indicate procedure calls, while others are just
delimiters of special forms. Luckily, the rules are simple; they should become very clear in the next
chapter or two.

The other thing to know about parentheses is that they have to match. For every opening parenthesis
there has to be a closing parenthesis, and of course it must be in the right place.

. Let Your Editor Help: Editors Make Parenthesis Matching Easy

« Indenting Simple Things. Procedure calls and simple control constructs
« Indenting cond: Cond is unreadable without proper indenting

. Indenting Procedure Definitions

Go to thefirst, previous, next, last section, table of contents.
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Let Your Editor Help You

Matching parenthesesis easy if you have a decent text editor. For example, invi , you can position the
cursor over a parenthesis and hit % and it will scan forward or backward (from an opening or closing
parenthesis, respectively) to find the matching parenthesis and highlight it, skipping over any matched
parenthesis pairs; it will warn you if no match is found.

Most editors have afeature like this. Learn to use it. It's usually easy to get the opening parentheses
right, and then if you're in doubt, use the editor to make sure you get the closing parentheses in the right
place.

Some editors, like Emacs, have special modes for editing Lisp and Scheme. This can be helpful, but just
hel ping match parentheses is the crucial thing for an editor for Scheme. One of the nice things about the
Emacs Scheme mode isthat it will indent your code automatically if you like, which will show you
whether your expressions nest the way they think you do--if you don't get the parentheses right, the text
will look funny and tip you off to your error.

(One Emacs mode for Scheme iscnuschene, which is available from the usual sources of Emacs
mode code. It'sjust a set of Emacs Lisp routines that customizes Emacs to "understand” Scheme syntax
and help you format it. Y ou use the Emacs Lisp package cnuschene. el , and it gives you a handy
Scheme editing mode. It's available from the Scheme Repository.)

Even without a special package, an editor can help you alot. For example, most modesin Emacs
automatically match parentheses, flashing an opening parentheses when you type the corresponding
closing parenthesis. A few minutes figuring out how your editor matches parentheses will save you alot
of time,

Go to thefirst, previous, next, last section, table of contents.
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Go to thefirst, previous, next, last section, table of contents.

Indenting Procedure Calls and Simple Control Constructs

Go to thefirst, previous, next, last section, table of contents.
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Indenting cond

Be careful about parentheses and indenting with cond. Notice that the expressions within atest-action
clause are indented by only one character, but that's very significant. Without that indenting, acond isvery
hard to read.

Suppose we replace the following awkward if expression with a cond.

;; awkward if expression requiring begins to sequence actions in branches
(if (a)
(begin (b)
(c))
(begin (e)
()))

We could write it like this;

(cond ((a)
(b)
(c))
(el se
(e)
(f)))

Sometimes, when the clauses of a cond are small, awhole clause will be written out horizontally. The above
exampleislikely to be written like this:

(cond ((a) (b) (c))
(el se (d) (e)))

Also be careful about the parentheses around condition expressions. Notice that the parentheses around ( a)
are there because the condition is call to a with zero arguments, not because you always put parentheses
around the condition expression. (Notice that there are no parentheses around #t , and there wouldn't be
parentheses around a if we just wanted to test the value of the variable a, rather than call it and test the
result.)

Go to the first, previous, next, last section, table of contents.
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Indenting Procedure Definitions

As| hinted earlier, there's a special rule for indenting procedure definitions. Y ou generally indent the
body of a procedure afew characters (I use 3), but you don't line the body expressions up directly under
the list of variable names.

Don't do this:

(define (double x)
(+ x x))

If you do this, a procedure definition looks like a procedure call, or anormal variable definition. To
make it clearer you're defining a procedure, do this:

(define (double x)
(+ x x))

This makesit clear that the (doubl e x) isadifferent kind of thing from (+ x x) . Theformer
declares how the procedure can be called, and the latter says what it will do.

Go to thefirst, previous, next, last section, table of contents.
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All Values are Pointers to Objects

As| said earlier, all values are conceptually pointers to objects on a heap, and you don't ever have to
explicitly free memory.

By "object," | don't necessarily mean object in the object-oriented sense. | just mean data objects like
Pascal records or C structs, which can be referenced via pointers and may (or may not) hold state
information.

Some versions of Scheme do have object systems for object-oriented programming. (This includes our
own RScheme system, where standard Scheme types are all classesin aunified object system.) In this
book, however, we use the word "object” in a broader sense, meaning an entity that you can have a
pointer to.

. All Vaues are Pointers: All Values are Pointers
« Objects on the Heap: Objects on the Heap

Go to thefirst, previous, next, last section, table of contents.
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All Values are Pointers

[ some of this needs to be moved up: |

Conceptually, all Scheme objects are allocated on the heap, and referred to via pointers. This actually
makes life simple, because you don't have to worry about whether you should dereference a pointer
when you want to use a value--you always do. Since pointer dereferencing is uniform, procedures
always dereference a pointer to a value when they really use the value, and you never have to explicitly
force the dereferencing.

For example, the predefined Scheme procedure + takes two pointers to numbers, and automatically
dereferences both pointers before doing the addition. It returns a pointer to the number that's the result of
the addition.

So when we evaluate the expression (+ 2 3) to add two to three, we are taking a pointer to the integer
2 and a pointer to integer 3, and passing those as arguments to the procedure +. + returns a pointer to the
integer 5. We can nest expressions, e.g., (* (+ 2 3) 6), sothat the pointer to fiveis passed, in turn,
to the procedure * . Since these functions all accept pointers as arguments and return pointers as values,
you can just ignore the pointers, and write arithmetic expressions the way you would in any other
language.

When you think about it, it doesn't make any sense to change the value of an integer, in a mathematical
sense. For example, what would it mean to change the integer 6's value to be 77? It wouldn't mean
anything sensible, for sure. 6 is aunique, abstract mathematical object that doesn't have any state that
can be changed---6 is 6, and behaves like 6, forever.

What's going on in conventional programming languages is not really changing the value of an integer--
it's replacing one (copy of an) integer value with (a copy of) another. That's because most programming
languages have both pointer semantics (for pointer variables) and value semantics (for nonpointer
variables, like integers). Y ou make multiple copies of values, and then clobber the copies when you
perform an assignment.

In Scheme, we don't need to clobber the value of an integer, because we get the effect we want by
replacing pointers with other pointers. An integer in Scheme is a unique entity, just asitisin
mathematics. We don't have multiple copies of a particular number, just multiple referencesto it.
(Actually, Scheme's treatment of numbers is not quite this ssmple and pretty, for efficiency reasons I'll
explain later, but it's close.)

Aswelll see later, an implementation is free to optimize away these pointersif it doesn't affect the
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programmer's view of things--but when you're trying to understand a program, you should always think
of values as pointers to objects.

The uniform use of pointers makes lots of things simpler. In C or Pascal, you have to be careful whether
you're dealing with araw value or a pointer. If you have a pointer and you need the actual value, you
have to explictly dereference the pointer (e.g., with C's prefix operator * , or Pascal's postfix operator ).
If you have avalue and you need a pointer to it, you have to take its address (e.g., with C's prefix &
operator, or Pascal's prefix operator ).

In Scheme, none of that messis necessary. User-defined routines pass pointers around, consistently, and
when they bottom out into predefined routines (like the built-in + procedure or set ! special form)
those low-level built-in operations do any dereferencing that's necessary.

(Of course, when traversing lists and the like, the programmer has to ask for pointers to be dereferenced,
but from the programmer's point of view, that just means grabbing another pointer value out of afield of
an object you aready have a pointer to.)

It is sometimes said that languages like Scheme (and Lisp, Smalltalk, Eiffel, and Java) "don't have
pointers.” It's at least as reasonable to say that the opposite is true--everything's a pointer. What they
don't have is a distinction between pointers and nonpointers that you have to worry about.(2)

Go to thefirst, previous, next, last section, table of contents.
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Most Implementations Optimize Away Many Pointers

Y ou might think that making every value a pointer to an object would be expensive, because you'd have
to have space for all of the pointers as well as the things they point to, and you'd have to use extra
Instructions to access things via pointers.

Everything's a pointer at the language level--i.e., from the programmer's point of view--but a Scheme
system doesn't actually have to represent things the way they appear at the languages level.

Most Scheme implementations optimize away alot of pointers. For example, it'sinefficient to actualy
represent integer values as pointers to integer objects on the heap. Scheme implementations therefore
use tricks to represent integers without really using pointers. (Again, keep in mind that thisisjust an
implementation trick that's hidden from the programmer. Integer values have the semantics of pointers,
even if they're represented differently from other things.)

Rather than putting integer values on the heap, and then passing around pointers to them, most
implementations put the actual integer bit pattern directly into variables--after all, a reasonable-sized
integer will fit in amachine word.

A short value (like a normal integer) stored directly into avariableis caled an immediate value, in
contrast to pointers which are used to refer to objects indirectly.

The problem with putting integers or other short valuesinto variablesis that Scheme hasto tell them
apart from each other, and from pointers which might have the same bit patterns.

The solution to thisistagging. The value in each variable actually has afew bits devoted to atypetag
which says what kind of thing it is--e.g., whether it's a pointer or not. The use of afew bitsfor atag
slightly reduces the amount of storage available for the actual value, but as we'll see next, that usually
isn't a problem.

It might seem that storing integer bit patterns directly in variables would break the abstraction that
Scheme is supposed to present--the illusion that all values are pointers to objects on the heap. That's not
s0, though, because the language enforces restrictions that keep programmers from seeing the difference.

In the case of numbers and afew other types, you can't change the state of the object itself. There'sno
way to side-effect an integer object and make it behave differently. We say that integers are immutable, i.
e., you can't mutate (change) them.

http://www.federated.com/~jim/schintro-v14/schintro_31.html (1 of 2)11/3/2006 8:55:27 PM


http://www.federated.com/~jim/schintro-v14/schintro_1.html

An Introduction to Scheme and its Implementation - Immediate Values

If integers were actually allocated on the heap and referred to via pointers, and if you could change the
integer's value, then that change would be visible through other pointers to the integer.

(That doesn't mean that a variable's value can't be one integer at one time, and another integer at
another--the variable's value isreally a pointer to an integer, not the integer itself, and you're really just
replacing a pointer to one integer with a pointer to another integer.)

Go to thefirst, previous, next, last section, table of contents.

http://www.federated.com/~jim/schintro-v14/schintro_31.html (2 of 2)11/3/2006 8:55:27 PM


http://www.federated.com/~jim/schintro-v14/schintro_1.html

An Introduction to Scheme and its Implementation - Objects on the Heap

Go to thefirst, previous, next, last section, table of contents.

Objects on the Heap

Most Scheme objects only have fields that are general-purpose value cells---any field can hold any
Scheme value, whether it's atagged immediate value or atagged pointer to another heap-all ocated
object. (Of course, conceptually they're al pointers, so the type of afield isjust "pointer to anything.")

So, for example, apair (also known in Lisp terminology as a"cons cell") is a heap-allocated object with
two fields. Either field can hold any kind of value, such as a number, atext character, aboolean, or a
pointer to another heap object.

Thefirst field of apair iscalled the car field, and the second field is called the cdr field. These are
among the dumbest names for anything in all of computer science. (They are just a historical artifact of
the first Lisp implementation and the machine it ran on.)

Pairs can be created using the procedure cons. For example, to create a pair with the number 22 asthe
value of itscar field, and the number 15 as the value of itscdr field, you can write the procedure call
(cons 22 15).

Thefields of apair are like variable bindings, in that they can hold any kind of Scheme value. Both
bindings and fields are called value cells---i.e., they're places you can put any kind of value.

In most implementations, each heap-all ocated object has a hidden "header" field that you, as a Scheme
programmer, are not supposed to know about. This extrafield holds type information, saying exactly
what kind of heap allocated object it is. So, laid out in memory, the pair looks something like this:

+--- - - - - +
header| <PAIR-1D> |
[ gy o

car | +----- +----- >22
+--- - - - - +

cdr | +----- +----- >15
+--- - - - - +

In this case, the car field of the pair (cons cell) holds the integer 22, and the cdr field holds the integer
15.

The values stored in the fields of the pair are drawn as arrows, because they are pointers to the numbers
22 and 15.
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(The actual representation of these values might be a 30-bit binary number with a two-bit tag field used
to distinguish integers from real pointers, but you don't have to worry about that.)

Scheme provides a built-in procedure car to get the value of the car field of apair, andset - car! to
set that field's value. Likewise there are functionscdr and set - cdr! to get and set thecdr field's
values.

Suppose we have atop-level variable binding for the variable f 0o, and its value is a pointer to the above
pair. We would draw that situation something like this:

o e e - - +

S + header| <PAIR> |

f oo I * o e e e e e e - - - St+=—=—=—=—=—=—=—==+
Fommee - - + car | oo e e - =222

o e e - - +
cdr | oo ---->15

o e e - - +

Most other objects in Scheme are represented similarly. For example, a vector (one-dimensional array)
istypically represented as alinear array of value cells, which can hold any kind of value.

Even objects that aren't actually represented like this can be thought of this way, since conceptually,
everything's on the heap and referred to via a pointer.

Go to thefirst, previous, next, last section, table of contents.
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Scheme Reclaims Memory Automatically

In languages like C or Pascal, data objects may be allocated in several ways. (Recall that by "objects’ |
just mean data objects like records.) They may be allocated statically (as in the case of global variables),
or on an activation stack as part of a procedure activation record (as in the case of local variables), or
dynamically allocated on the heap at run time using an aloction routine like mal | oc or new.

Scheme is simpler--all objects are allocated on the heap, and referred to via pointers. The Scheme heap
Is garbage collected, meaning that the Scheme system automatically cleans up after you. Every now and
then, the system figures out which objects aren't in use anymore, and reclaimstheir storage. (This
determination is very conservative and safe--the collector will never take back any object that your
program holds a pointer to, or might reach via any path of pointer traversals. Don't be afraid that the
collector will eat objects you still care about while you're not looking!)

The use of garbage collection supports the abstraction of indefinite extent. That means that all objects
conceptually live forever, or at least aslong as they might matter to the program--there’'s no concept (at
the language level) of reusing memory. From the point of view of arunning program, memory is
infinite--it can keep allocating objects indefinitely, without ever reusing their space.

Of course, this abstraction breaks down if there really isn't enough memory for what you're trying to do.
If you redlly try to create data structures that are bigger than the available memory, you'll run out.
Garbage collection can't give you memory you don't have.

Some people think that garbage collection is expensive in time and/or space. While garbage collection is
not free, it is much cheaper than is generally believed. Some people have also had bad experiences with
systems that stop for significant periods to collect garbage, but modern GC's can solve this problem, too.
(If you're interested in how efficient and nondisruptive garbage collectors are implemented, a good place
to start is my GC survey paper, available from my research group'sweb siteat ht t p: / / www. cs.

ut exas. edu/ user s/ oops.)

Go to thefirst, previous, next, last section, table of contents.
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Objects Have Types, Variables Don't

If | use my finger as a pointer, | can useit to point to all kinds of things--a computer, a painting, a
motorcycle, or any number of things. Variables in Scheme are like this, too.

Dynamic typing

In Scheme, al variables have the same type: "pointer to anything."

Scheme is dynamically typed, meaning that variables don't have fixed types, but objects do. An object
carries its type around with it--an integer is an integer forever, but a variable may refer to an integer at
some times, and a string (or something else) at other times. The language provides type-checking at run
time to ensure that you don't perform the wrong operations on objects--if you attempt to add two strings,
for example, the system will detect the error and notify you.

Sometimes, people refer to languages like Scheme (and Lisp and Smalltalk) as untyped. Thisisvery
misleading. In atruly untyped language (like FORTH and most assembly languages), you can interpret a
value any way you want--as an integer, a pointer, or whatever. (You can aso do thisin C, using unsafe
casts, which is a source of many time-consuming bugs.(3) )

In dynamically typed systems, types are enforced at runtime. If you try to use the numeric procedure +
to add two lists together, for example, the system will detect the error and halt gracefully--it won't
blithely assume you know what you're doing and corrupt your data. Y ou also can't misinterpret a
nonpointer value as a pointer, and generate fatal segmentation violations that kill your program.

Y ou might think that dynamic typing is expensive, and it can be. But good Scheme compilers can
remove most of the overhead by inference at compile time, and most advanced implementations also let
you declare types in performance-critical places so that the compiler can generate code similar to that for
C or Pascal.

[ I've left out some text from my cour se notes about tagging and immediate values (more detailed)... put
back in, maybe in an appendix |

This is the end of Hunk C

TIME TO TRY I T OQUT
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At this point, you should go read Hunk D of the next chapter
and work through the exanples using a running Schene system
Then return here and resune this chapter.

(Go to Hunk D, which starts at section Making Some Objects (Hunk D).)

Go to thefirst, previous, next, last section, table of contents.
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The Empty List (Hunk E)

In Scheme, there is one null pointer value, called "the empty list,” which printsas () . (Later, we'll see
why it's written that way, and why it's called "the empty list.")

Conceptually, the empty list isa specia object, and a"null” pointer is a pointer to this special end-of-list
object. You can ignore that fact and think of it asjust anull pointer, because there's nothing interesting
you can do with the object it points to.

(In some implementations, the empty list object ' () isactually an object referred to via a pointer, and
null pointers are really pointersto it. In others, an empty list is an immediate value, a specially tagged
null pointer. At the level of the Scheme language, it doesn't matter which way it'simplemented in a
particular Scheme system. All you can really do with the null pointer is compare it against other
pointers, to seeif they're null pointers, too.)

The empty list object acts as anull pointer for any purpose--there's only one kind of pointer (pointer to
anything), so there's only one kind of null pointer (pointer to nothing).

Scheme provides a procedure, nul | ? to check whether avalue is (a pointer to) the empty list, i.e., a
null pointer. For example, (nul | ? f 0o) returns#t if the value of the variable f oo isthe empty list,
and #f otherwise.

Y ou might be wondering why the null pointer object is called "the empty list"; I'll explain that later.
Given the way lists are usually used in Scheme, it turns out to make perfect sense.

Y ou can write the empty list asaliteral in your programsas' () . That is, theexpression' () returns
the empty list (null pointer), () . Later I'll explain why you have to put the single quote mark in front of
the empty set of parentheses when writing the empty list asaliteral.

Go to thefirst, previous, next, last section, table of contents.
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Pairs and Lists

Scheme, like Lisp, has built-in procedures for dealing with a particularly flexible kind of list--alist of
pairs, whose cdr fields hold pointers that string them together, and whose car fields hold the values.
(That is, thecdr fieldsact as"next" pointers, linking the pairsinto alinear list.)

. cdr-linked lists: Null-terminated lists of pairs linked by cdrs, whose cars hold references to items.
. Listsand Quoting: Literal lists

. Wherethe Empty List Got its Name: Why it's called that, and printed (), and written '() as aliteral
. Some Handy Procedures that Operate on Lists: length, list, append, and reverse

Go to thefirst, previous, next, last section, table of contents.
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cdr - linked lists

In Lisp and Scheme, you don't typically string objects together into alist by giving each one a"next"
field that points right to the next object. Instead, you create alist of pairswhose car fields hold the
pointers to the objects, and whose cdr fieldslink the pairs together into a"spine.”

Thereisn't really aspecial | i st datatypein Scheme. A listisreally just a sequence of pairs, ending
with anull pointer. A null pointer isalist, too--it's a sequence of zero pairs ending in anull pointer. We
sometimes talk about "the car of alist" or “the cdr of alist,” but what that really meansis "the car of the
first pair inthelist" and "the cdr of thefirst pair in thelist."

Suppose we have avariable f 00 holding a pointer to alist containing the integers 22, 15, and 6. Here's
one way of drawing this situation.

R + R + +- - - -
bom e + | <PAIR> | | <PAIR> | | <PAIR>
f 00 | X e et e - D>t ========+ F- - > ===+ +- - D>
U + | 22| / | 15| |/ | 6|
S TS + / S a TS + |/ S TS
| CTCITIE | R | *
R + R + +- - - -

This shows something pretty close to the way things are likely to actually represented in memory. But
there's usually a better way of drawing the list, which emphasizes the fact that number values are
conceptually pointers to numbers, and which corresponds to the way we usually think about lists:

+---+ e oo - -+ T
bar | *edeas>| % | Hedeseoo>] K| edeai>] x| x|
+---+ - - - -+ - - - - -+ - - - - -+

| I I

\ |/ \ |/ \ |/

22 15 6

I've left off the header fields of objects, which are not visible to a Scheme programmer.

I've also drawn pairs in aspecial way, withthecar and cdr fields side-by-side. Putting the fields side-
by-side lets us draw the list left-to-right, with the cdr field in a convenient place for its normal use asa
"next" pointer. I've drawn the integers outside the pairs, with pointers to them from the car fields,
because that's the way things ook at the language level.
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This emphasizes the fact that lists are generally separate things from the items"in" the list.

We |eave off the headers because they're alow-level detail anyway, because they're a hidden
implementation detail that may vary from system to system, and because Scheme programmers
immediately recognize this kind of two-box drawing of apair.

A major advantage of Scheme's list structure is that you don't have to modify an object to put it on alist--
an object can easily be in many lists at once, because alist isrealy just a spine of pairs that holds
pointersto the itemsin the list. Thisis much cleaner than the way people are typically taught to create
simple listsin most beginning programming classes. (It's aso very natural in alanguage where all values
are pointers---of course lists of objects are really just lists of pointers to objects.)

For example, you can have two lists with the same elements, or some of the same elements, but perhaps
in adifferent order.

+---+ +- - +-- -+ +-- - - - -+ +- - - - - -+
bar | *-de-o> K| Fedoooo>| | Fedeeaee>] 5 ||
+---+ +- +-+-- -+ +-+- - - -+ +-+- - - -+

| | |

\ |/ \ |/ \ |/

22 15 6

/]\ [\

| |
+-- -+ +-|-+---+ +- - +---+
baz | *-+--->] * | *-ot-------iiiaaa oo > I I
+---+ +- - +-- -+ +- - - - - -+

Here I'vedrawn two lists, bar and baz---that is, lists that are the values of the variablesbar and baz.
bar holdsthe elements22, 15, and 6, while baz just holds the elements 22 and 6.

Since these two lists are really just made up of pairs, and they're different pairs, we can modify one list
without modifying the other, and without modifying the objects “in" the lists. For example, we can
reverse the order of one of the lists without affecting the other.

(We also don't haveto create a specia kind of list node that has two next fields, so that something can be
intwo lists at atime. We can just have two separate lists of pairs, or three or four.)

Scheme has a standard way of writing atextual representation of alist. Given the pictured situation,
evaluating the expression ( di spl ay bar) will print (22 15 6) . Evauating the expression

(di splay baz) will print (22 6) . Notice that Scheme just writes out a pair of parentheses around
theitemsin the list--it doesn't represent the individual pairs, but just their car values.
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Dynamic typing aso helps make lists useful. A list of pairs can hold any type of object, or even amixed
bag of different types of objects. So, for example, apair list can be alist of integers, alist of lists, alist of
text characters, or alist of any of the kinds of objects we haven't gotten to yet. It can also be amixed list
of integers, other lists, and whatnot. A few list routines can therefore be useful in a variety of situations--
asingle list search routine can search any kind of list for a particular target object, for example.

This picture shows two variable bindings, for the variablesbar and f 0o. bar 'sbinding holds alist
(10 15 6),whilef oo'sholdsalist (22 15 6).We say that theselists share structure, i.e., part of
one list isalso part of the other.

+-------- +
. | <PAIR> |
bar | * e e - - D> ===+
S | 10|
+--------- +
| Fom oo -+
L + \
\
Fom e oo - + \
S + | <PAIR> | \
f oo | * e e - - D> ===+ +
o + | 22| /
Fom e oo - + /
| Fmme e -+
+--------- +

+----- - - - +
| <PAIR> |

- - D>t =m=mmm==== 4
| 15]
+----- - - - +
| oo+ +
+----- - - - +

This picture may correspond well to how things are represented in memory, but it's alittle confusing.

The more common way of drawing this data structureis

bar

f oo

+-- -+ S
| *_+___>| * I *_+
+---+ S ST

|

\ |/

10
- - -+ Hom oo -+
| *_+___>| * | *_ 4+
-+ S

|
\ |/

\ |/
S B

T
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22 15 6

Again, this emphasizes the idea that everything's a pointer--conceptually, the pairs hold pointers to the
integers.

In the above picture, we can talk about "the car of f 00", which really meansthe valueinthe car field of
the pair pointed at by the value stored in (the binding of) f 0o. It's (a pointer to) 10. We would often call
this"the car of thelist f 00."

Notice that the cdr of f oo isalso alist, and it's the same list as the cdr of bar ---the cdrs of the first pairs
in each list point to the same list.

We can say that the cdr of foo and the cdr of bar "are eq?," because the expression (eq? (cdr fo00)

(cdr bar)) returnstrue. Thatis, (car foo) and(cdr foo) return (pointersto) exactly the same
object.

Go to thefirst, previous, next, last section, table of contents.
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Lists and Quoting

Scheme alows you to write lists as literal s using quoting. Just as you can write a literal boolean or
number in your program, you can write aliteral list if you use the special form quot e.

Quote isaspecial form, not a procedure, because it doesn't evaluate its argument in the usual way. (Its
argument isreally just aliteral representation of a data structure, which may look like a Scheme
expression, but it isn't.)

For example, the expression (quote (1 2 3)) returnsapointertoalist(1 2 3),i.e., asequence
of cdr linked pairs whose car values are (pointersto) to 1, 2, and 3.

Y ou can use quot e expressions as subexpressions of other expressions, because they just return pointer
values like anything else.

For example, the expression (defi ne foo (quote (1 2 3))) defines(and binds) avariable
f 00, and initializes its binding with (a pointer to) a three-element list.

We can draw the resulting situation this way:

+-- -+ e e e
f00 | *odeae>] % | Fedeooea>] | Hedeeaoi>] |
+-- -+ oo oo+ O S O S

| | |

\ |/ \ |/ \ |/

1 2 3

guot e takes exactly one argument, and returns a data structure whose printed representation is the same
as what you typed in as the argument to quot e. Scheme does not evaluate the argument to quot e as
an expression--it just gives you a pointer to a data structure.

Note that quot e does not generally construct a character string--it constructs a data structure that may
be alist or tree or even an array. It'savery general quoting facility, much more powerful than the double
guotes around character strings, which only construct string objects.

Scheme provides a cleaner way of writing quot ed expressions, using the special single-quote character
' . Rather than writing out ( quot e some-expression) , you can just precede the quoted expression with
the single-quote character. For example, we can write the same definition of f oo as(defi ne foo
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'(1 2 3)).Youdont need aclosing quote, because of Scheme's parenthesized prefix syntax--it can
figure out where the quoted data structure ends.

One subtlety about quot e isthat aquot e expression doesn't create a data structure every timeit's
called--evaluating the same expression many times may return many pointers to the same structure.

Consider the procedure definition

(define (foo)
'(1 2 3))

Thelist (1 2 3) may be created when we define the procedure f 00, and each time we call it, it may
return a pointer to that same list. (Exactly what happens depends on the particular implementation of
Scheme, but most work thisway, for efficiency reasons. Evaluating the quot e expression just fetches a
pointer to a data structure that was created beforehand.)

For thisreason, it's an error to modify a data structure returned from aquot e form. Unfortunately,
many Scheme systems don't detect this error, and will let you do it. If you want a new data structure
each time, you should use aprocedure like |l i st , which always creates a new data structure. (I i st ,
which welll discuss more later, is a standard Scheme procedure that takes any number of arguments, and
creates alist of those items.)

For example, if we want the proceduref oo toreturnanew list (1 2 3) every time, we can write

(define (foo)
(list 1 2 3))

Go to thefirst, previous, next, last section, table of contents.
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Where the Empty List Got its Name

Now that you understand Scheme lists and simple quoting, | can explain why the null pointer is called
"the empty list," and written' () .

Consider alist f oo of three elements:

(1 2 3)

Thecdr of that listisalist (2 3).Wecouldwritealiterd listlikethatas' (2 3)
Thecdr of that listisaone-element list, ( 3) . We could write alitera list likethat as' ( 3) .

Thecdr of that listisazero-element list, () , that is, it's the empty list. We could writeit in quoted
formas' ().

Given the way that Scheme lists work, alist of zero itemsis the same thing as anull pointer, and it's
natural to for Schemeto print it asalist with zero elements, () ---and for you to write it asaliteral with
asinglequote, ' () .

Go to thefirst, previous, next, last section, table of contents.
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Some Handy Procedures that Operate on Lists

Scheme provides a variety of procedures for operating on lists, so that you usually don't have to think
about pairs--you can think about wholelists. I'll discuss these proceduresin more detail later [ putin
link ], but here's a brief introduction.

None of these procedures modifies its arguments--they may take lists as arguments, but they return new
lists without modifying the old ones.

Go to thefirst, previous, next, last section, table of contents.
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| engt h

| engt h takes one argument, alist, and returns an integer giving the length of the list. For example,
(length ' (0 #t #f)) returns3.

Go to thefirst, previous, next, last section, table of contents.
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| i st

| i st takesone or more arguments and constructs alist of those items. That is, a cdr-linked, null-
terminated sequence of pairsis created, where each pair'scar fields holds one of the values passed to
| ist.

Notice that thisis different from cons, in that the arguments are not lists in general--they're just any
items that should be put into alist.

Intuitively, we often use cons to push one item onto alist that already exists, but we usel i st to create
alist from scratch.

Notice that if we hand list just one argument, e.g., (| i st 1), that creates one pair whose cdr is null
and whose car is the given argument. In contrast, if we use cons to create a one-element list, we must
passit that element and an empty list to serve asthecdr value: (cons 1 ' ()).

Go to thefirst, previous, next, last section, table of contents.
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append

append takes two or more lists and constructs a new list with all of their elements. For example,
(append '(1 2) '(3 4))

returnsalist (1 2 3 4).

Notice that thisis different fromwhat | i st does:

(list "(12) '"(3 4))

reiurns((1 2) (3 4)),atwoeementlist of thelistsit wasgiven. | i st makesits arguments
elements of the new list, independent of whether the arguments are lists or something else.

append requiresthat its arguments are lists, and makes a list whose elements are the elements of those
lists--in this case, afour-element list. Intuitively, it concatenatesthe listsit is given. It only concatenates
the top-level structure, however--it doesn't "flatten” nested structures. For example

(append " ((1 2) (3 4))
"((56) (7 8)))

reeurns((1 2) (3 4) (5 6) (7 8))

append doesn't modify any of its arguments, but the result of append generally shares structure with
thelast list it's given. (It effectively conses the elements of the other lists onto the last list to create the
result list.) It's therefore dangerous to make a"new" list with append and then modify the "old" list. This
Is one of the reasons side effects are discouraged in Scheme.

Go to thefirst, previous, next, last section, table of contents.
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An Introduction to Scheme and its Implementation - reverse

Go to thefirst, previous, next, last section, table of contents.

reverse

rever se takesonelist, and returns a new list with the same elements in the opposite order. For
example,

(reverse '(1 2 3 4))
returnsalist (4 3 2 1).Likeappend only reversesthe top-level structure of thelist it's given.
(reverse '((1 2) (3 4)))

returns((3 4) (1 2)),not((4 3) (2 1))

Go to thefirst, previous, next, last section, table of contents.
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An Introduction to Scheme and its |mplementation - member

Go to thefirst, previous, next, last section, table of contents.

menber

menber takesany value and alist, and searches the list for that value. If it findsit, it returns a pointer to
the first pair whose car holds that value, i.e., the "rest" of thelist starting at the point where the searched-
for item was found. If it isnot found, #f isreturned. (The return value is therefore always either a pair
or the false object.)

(menmber 22 ' (18 22 #f 300))
returns (22 #f 300).

Notice that member can be used either to find avalue'slocation in alist, or as a predicate to check
whether theitemisin thelist at all. Since pairs are true values, you can use the result of nenber ina
conditional expression and it will count as trueif the item isfound.

[ Maybe | should introduce strings and symbols here, moving some material from the tutorial chapter
here and possibly expanding the tutorial with more examples. |

Go to thefirst, previous, next, last section, table of contents.
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An Introduction to Scheme and its Implementation - Recursion Over Data Structures

Go to thefirst, previous, next, last section, table of contents.

Recursion Over Lists and Other Data Structures

[ Thissectionis a little out of place--need to introduce type and equality predicates first! Those have
been presented in class, so this should be comprehensible anyway. Need to make this a separate hunk,
and move it after the next hunk. ] [ Also need to introduce tail recursion somewhere early, and fwd ref
the chapter on recursion. | In this section I'll demonstrate the most common idioms for recursion over
simple data structures--lists and trees.

Some of the examples will be implementations of standard Scheme procedureslikel engt h, | i st
append, andr ever se. Scheme aready has these procedures built in, but you should understand how
they can be implemented using simpler procedureslike cdr and cons. You'll inevitably have to write
special-purpose procedures that are dightly different, but coded similarly. (In later chapters, I'll show
some more advanced programming techniques that let you implement more general and/or efficient
procedures like these.)

I'll also show afew other handy procedures for operating on lists, e.g., alist-copying routine.

Then I'll show recursion over simple binary trees of pairs. The normal style for recursion over treesin
Schemeis dightly different from what you may be used to in languages like C or Pascal--and simpler.

| engt h

| engt h isthe standard Scheme procedure that returns the length of alist. It only counts the e ements
along the spine of thelist (down thecdr's).

It's easy to do thisusing recursion. The length of alistis O if thelist is empty, and otherwiseit's 1 plus
the length of the rest of the list. Here's the easiest way to definel engt h:

(define (length lis)
(cond ((null? 1is)
0)
(el se
(+ 1 (length (cdr lis))))))

The main thing to notice about this example is the recursive structure. The procedure can accept a
pointer to either apair or the empty list. The structure of the procedure corresponds directly to the
recursive definition of a (proper) list. The two-part cond corresponds to the fact that there are two rules
that characterize lists; it figures out which case we're dealing with.
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We explicitly checked for the end-of-list case, but we implicitly assumed that otherwise the object being
operated on isapair. This might seem like bad style, but actually it's good, because it ensures that an
error will be signaled if the argument to length is not the empty list or a pair--the second branch of the
cond will be taken (erroneously), but the attempt to evaluate (cdr 11 s) will signal an error.

We could make this clearer by using athree-branch cond, with separate branches for the two valid
cases and the error case:

(define (length lis)
(cond ((null? lis)

0)

((pair? lis)

(+ 1 (length (cdr lis))))
(el se

(error "invalid argunent to |length")))

Here I've used the error-signaling procedure er r or , which stops execution and signals an error. (In
most systems, the error message " i nval i d argunent to | engt h" will be printed and the user
will be presented with a break prompt for debugging the problem.) Unfortunately, er r or isnot
supported by all Scheme systems. (Later I'll show an implementation that should work reasonably well
in any Scheme system.)

Also note that in thisexample, I'veused | i s asthe name of alist argument, rather than| i st . That's
because there's a standard Scheme procedure named | i st , which will be shadowed by any local
variable with the same name. (Thisis because of Scheme's unified namespace---you can't have a
variable and a procedure with the same name, for reasons that will be explained later; | i st seemsto be
the only identifier for which thisis commonly a problem.)

The above definition of | engt h isnot tail recursive--after calling itself, there must be areturn so that 1
can be added to the value and returned. Later I'll show a more efficient, tail-recursive version of

| engt h, and amore general procedure called r educe that can be used to construct a variety of
procedures whose basic algorithm is similar.

Copying Lists

There are two common senses of copying, shallow copying, and deep copying. A shallow copy makes a
copy of one object, and the copy has pointers to the same objects that the original did.

A deep copy copies not only the top-level objectsin a data structure, but the ones below that, and so on
recursively, so that awhole new data structure is created.

http://www.federated.com/~jim/schintro-v14/schintro_46.html (2 of 9)11/3/2006 8:58:58 PM



An Introduction to Scheme and its Implementation - Recursion Over Data Structures

For lists, which are made up of more than one object, it is often useful to copy the spine of thelit, i.e.,
doing a deep copy along the cdr 'sonly. We typically think of alist as being like a specia kind of
object, even though it's really a sequence of pair objects. It's therefore natural to copy "just the list."

If we just want to do a shallow copy, we can define pai r - copy to copy apair, without copying
anything else.

In these examples, I'll assume we only want to copy list structure--that is a connected set of pairs.
Whenever we come to something that's not a pair, we stop copying and the copy shares structure with
the original. (These aren't standard Scheme procedures.)

Here'satruly shalow copy, just copying asingle pair:

(define (pair-copy pr)
(cons (car pr) (cdr pr)))

If we want to do a deep copy, we can use recursion to copy car or cdr vauesthat are also pairs. The
following codefor pai r - t r ee- deep- copy assumes that the structure to be copied is atree of pairs.
(If thereis any shared structure, it will be copied each timeit is reached, and the copy will not have the
same structure. It will always be atree. Preserving shared structure while copying is harder, but can be
done. If there'sadirected cycle, pai r -t r ee- deep- copy will loop infinitely.)

(define (pair-tree-deep-copy thing)
(if (not (pair? thing))
t hi ng
(cons (pair-tree-deep-copy (car thing))
(pair-tree-deep-copy (cdr thing)))))

Noticethat pai r - t r ee- deep- copy works on improper as well as proper lists, but only copies the
pairs. Where it getsto anon-pair value, it stops and just uses the same value in the copy, and the copy
shares structure with the original.

The codefor pai r -t r ee- deep- copy directly reflects the kind of structure it copies. It can handle
non-pairs, which are assumed to be leaves of the graph of pairsthat it's copying, and it can handle pairs,
which are assumed to be interior nodes of the tree. Their car and cdr values may be leaves of the tree,
or other pairs.

So the recursive definition of apair-treeis:
. anon-pair (leaf), or

. apair whose car and cdr are pair-trees
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Thefirst ruleisthe base case, i.e., isthe ssmple one that doesn't require recursion. The second isthe
recursive rule, which expresses the fact that an interior node's car and cdr fields can point to any kind of
pair-tree: aleaf, or another interior node whose children may likewise be leaves or other interior nodes...

Thisisthe easy way to write recursive routines over data structures--figure out a recursive description
that exactly describes the expected data structures, and then use that recursive description to write a
recursive description of the result you want. Then you can straightforwardly code routine that will
traverse the structure and copmute that result.

Generally, we write the base case first, to make it clear where recursion ends--and so that we don't forget
to write it and accidentally write infinite recursions or unhandled cases. If you do this consistently, your
code will be more readable and you'll make fewer mistakes.

To copy the spine of a proper list, we can use this description of the answer we want:
A copy of alistis

. theempty list if the original list is empty, or
. (if thelist isnonempty) a pair whose car valueisthe sameasthecar of theoriginal list, and
whose cdr valueisacopy of the rest of the original list.

Here's the code:

(define (list-copy lis)
(cond ((null? lis)
()

(el se
(cons (car lis)

(list-copy (cdr 1is))))

Asusual, we only check to seeif we're athe end of the list, and otherwise assume the argument is a pair.
Since wetakethecar andthecdr of the pair inthe latter case, we'll get an error if the argument is not

aproper list. Thisis usually what we want, so that Scheme will signal an error when it gets to the part of
the list with unexpected structure.

Thenamel i st - copy was chosen to suggest that it operates on lists, and in Scheme terminology "list"
means "proper list" by default. If we want aroutine that copies improper lists, we should call it
something else, and write a comment saying what kinds of things it works for.

Actually, lists are so common in Scheme that we could have just called it copy. Most procedure names
begin with the name of the kind of structure they operate on, but exceptions are made for lists and for
numbers.
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append and r ever se

Two handy operations on listsare append and r ever se; both are standard Scheme procedures.

append takes any number of lists as arguments, and returns alist with all of their elements. r ever se
takes alist and returns a new list, with the same elements but in the opposite order.

Note that like most Scheme procedures, neither of these procedures is destructive--each creates a new
list without side-effecting (modifying) its argument(s).

append
Append works much likel i st - copy except that we have multiple lists to deal with.

The trick to getting it right is to maintain the essential structure of | i st - copy, with the right minor
differences.

For now, let's keep things ssimple, and just do atwo-argument version of append, called append?2.

Our strategy isto recurse through thefirst list, likel i st - copy, copying one element of thelist at each
step. When we get to the end, however, the base case is different--rather than terminating the list with
the empty list, we just use the second list asthe "rest" of the copy we're making.

Notice that the base case occurs when the first list is null--the append of an empty list and another list
Isjust that other list--conceptually, we cons zero items onto the front of that list. Concretely, we can
just return that list.

Here's the recursive characterization of the result we want

. if thefirst list is empty, the result is just the second list
. if thefirst list is nonempty, theresult isa pair whose car isthecar of thefirst list, and whose
cdr istheappend of therest of thefirst list and (all of) the second list.

Here's a simple two-argument version of append:

(define (append2 lisl lis2)
(cond ((null? 1is1)
lis2)
(el se
(cons (car lisl)
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(append2 (cdr lisl) 1is2)))))

Note that append2 copiesitsfirst list argument, but the result ssmply shares a pointer to the last list
argument--the last list is not copied, so the result shares structure with that list. Thisis also true of the
standard Scheme function append, which can take any number of lists as arguments. The first n-1 lists
are copied, but the last is shared.

Be sure you understand the concrete operation of the above agorithm. On the way down during
recursion, we're taking the first list apart, holding onto one list element at each step. When we hit the end
of thefirst list, recursion stops and we return the second list. On the way back up, we're consing those
items onto the new list we're creating, back-to-front.

Suppose we have defined two lists, f oo and bar , like this:
(define foo '(x y z))

(define bar '(a b))

(define baz (append bar foo0))

The result will bethat baz shares structure with f 0o, but not with bar . Changesto the list viaf oo will
also bevisibleviabaz.

o o o o e e o o e e o o e e o m e e e e e e e e e e e e e e e e e e m -
+

| |

\|/ |

+---+4 F+- - t---+ F- - t-- -+ F- - t-- -+ |

foo | *-4---> * | o> F | Koo < R |

+---+4 +-4-4--- 4+ +-4-4--- 4+ +-4-4--- 4+ |

| | | |

\ |/ \ |/ \ |/ |

X y z |

|

|

+---+4 F+- - t---+ F- - t-- -+ |

bar | *-+--->] * [ *-+----3>] * | * | |

+---+4 +-4-4--- 4+ +-4-4--- 4+ |

| | |

\ |/ \ |/ |

a b |

[\ [\ |

| | |

+---+4 F+- - t---+ F- - t-- -+ |
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baz | *-+---> * | *-4----3>] F | Fodo-imee e +
+-- -+ Fo- o - - -+ F-- o - - -+

In general, the result of append shares structure with the last argument passed to append. If you want
to avoid this, you can passappend an empty list asits last argument. For example (append ' (1 2
3) "()) will copythelist(1 2 3).

If you're worried about efficiency, be aware that append takes time proportional to the length of the
lists that must be copied, i.e., al but the last list being appended. This usually doesn't matter, but it'sa
consideration for performance-critical parts of your program, especialy if you're appending long lists.

(It'scommon to append short lists onto the front of long lists, and thenr ever se theresult if
necessary.)

reverse

rever se returnsareversed copy of alist.

There's an easy (but slow) way to definer ever se intermsof append. We just take the first element
off thelist, reverse the rest of the list, and append the first element to the end of the list. We do this
recursively, so that each time we reverse the rest of the list, we're doing the same thing on a shorter list.
When we get down to the end of the list, reversing it is ano-op: the reverse of an empty list is the empty
list.

(define (reverse lis)
(if (null? lis)
()
(append (reverse (cdr lis))

(list (car 1is)))))

Think about how this actually works. r ever se recurses down thelist, calling itself on the cdr of the

list at each recursive step, until the recursion stops at the end of the list. (Thislast call returns the empty
list, which isthe reverse of the empty list.) At each step, we use car to peel off one element of thelist,

and hold onto it until the recursive call returns.

The reversed lists are handed back up through the returns, with the cars being slapped on the rear of the
list at each return step. (To add asingle item to the end of thelist using append, we must first put it in
aone-element list using |l i st .)

We end up constructing the new list back-to-front on the way up from the recursion. Going down
recursively tearsthe list apart, one item at each recursive step, and coming back up adds an element to
the end of the new list at each step.
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Thisis agood example to understand, both abstractly and concretely. Y ou should understand the
concrete steps involved in taking alist apart and putting it back together backwards. On the other hand,
you should also recognize that the algorithm works even if you don't pay attention to that.

Once you get the hang of recursion, it's often easy to write algorithms without actually thinking about
the little steps involved, or thinking much about the ordering of steps. In this case, it's easy to see that if
we can reverse the rest of the list, and append the first item to the end of that, we've reversed the whole
list. We don't need to think much about the ordering of the operations, because that falls naturally out of
the way we pass arguments to functions. We can declare that "ther ever se of anon-empty list isthe
append of ther ever se of therest of the list and (alist containing) the first item in the list", and then
write the code accordingly, as a pure function---one that only depends on the values of its arguments,
and has no side effects.

By writing thisrecursively, we'll apply the same trick all the way down the list. Thinking alittle more
concretely--but not much--we can see that at each time we reverse the rest of thelist, the list in question
will be shorter. Somewhere we'll hit the end of the list, so we have to handle that base case. It's usually
easy to see what the right thing to do is for the base case. In this case, we can declare that "the

rever se of the empty list isthe empty list,” and add the appropriate branch to append.

Thisis agood example of how you can combine functions to create new functions, implementing
algorithms without using sequencing or side effects. (Notice that if we had side effects, we'd have to
think very carefully about the ordering of steps, to make sure that we used a data structure after certain
changes, and before others. Bleah.)

(The following remarks about efficiency are fairly advanced--you shouldn't worry about these things yet
if they get in the way of learning how to write programs simply and straightforwardly. Y ou can skip or
skim them and come back to them later once you've gotten the hang of Scheme, and want to tune the
time-critical parts of your programs for maximum efficiency. On the other hand, you may find that
thinking about the concrete details reinforces the basic ideas.) There are two problems codingr ever se
this very smple way, however---r ever se turns out to be one of the hardest "simple" list routinesto
code efficiently. Later I'll sho better versions that are more clever, but only very slightly more
complicated. (They'll still be recursive, and won't use loops or assignment.)

[ where? (Later | need to show a linear-time version that uses list->vector and then rever ses the vector
into a list tail-recursively... ]

Thefirst problem isthat each call to append takes time proportional to the length of thelist it's given.
(Remember that append effectively copiesall of the pairsin thefirst list it's given, making a backward
copy.) We have to copy the "rest” of the list using append, starting at each pair in the list. On average,
we copy half thelist at a given recursive step, so since we do this for every pair in the list, we have an
order n-squared algorithm.
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Another problem is that we're doing things on the way back up from recursion, which turns out to be

more expensive than doing things on the way down. As|'ll explain in alater chapter, Scheme can do

recursion very efficiently if everything is donein aforward direction, on the way down--Scheme can
optimize away all but one of the returns, and the state-saving before the calls. (Luckily, thisis easy to
do.)

Since Scheme provides abuilt-inr ever se, you don't have to think much about this. A good Scheme
system will provide a heavily-optimized implementation of r ever se that islinear in the length of the
list being reversed.

r ever se isvery handy, and the efficiency of abuilt-inr ever se isimportant, because it's usually best
to construct alist in whichever order is easy and efficient, and then reverse the whole list if necessary.
Typically, you cons oneitem onto alist at atime, or maybe append afew items at atime, in whatever
order it's easiest to create the list. Thisalows you to construct the list in linear time; with alinear-time
rever se, the overall processis still linear-time.

This is the end of Hunk E.
TIME TO TRY I T QUT

At this point, you should go read Hunk F of the next chapter
and work through the exanples using a running Schene system
Then return here and resune this chapter.

(Go to Hunk F, which starts at section Lists (Hunk F).)

Go to thefirst, previous, next, last section, table of contents.
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Go to thefirst, previous, next, last section, table of contents.

Type and Equality Predicates (Hunk G)

[ Some of this stuff needs to come before recursion over various data structures... we use a few
predicates there. Fix. ] Since a pointer can point to any kind of thing, it's often good to know what kind
of thing it does point to. For example, you might have amixed list of different kinds of things, and want
to go through the list, doing a different operation for each kind of object you encounter. For this, Scheme
provides type predicates, which are procedures which test to see whether the pointed-to object is of a
particular type.

Y ou aso often want to know whether two values refer to the same object, or to data structures with the
same structure. For this, Scheme provides equality predicates.

. Type Predicates: Discriminating between different kinds of objects
. Equality Predicates. Discriminating whether objects are the same
. Choosing Equality Predicates: Testing different kinds of sameness

These procedures are called "predicates’ because they test whether a property is true of avalue, and
return ayes-or-no answer--that is, the boolean #t or the boolean #f . (Thisislike a"predicate" in formal
logic, which isakind of statement with a"truth value" that depends on its arguments.)

The names of predicates generally end with a question mark, to signify that they return a boolean. When
you write your own programs, it's good style to end the names of boolean-valued (true/false) functions
with a question mark.

(An exception to thisrule is the standard numeric comparison predicates like <, >, and =. By therule,
they should have question marks after their names, but they're used very frequently and people generally
recognize that they're predicates. We don't bother with question marks in their names, because it would
clutter up arithmetic expressions.)

Go to thefirst, previous, next, last section, table of contents.
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Go to thefirst, previous, next, last section, table of contents.

Type Predicates

Scheme provides built-in procedures to test whether values refer to objects of particular types. If you
want to know whether the value of variable x is (a pointer to) pair, you can use the predicate pai r ?,
likethis: (pair? Xx).

Likewise, if you want to know if something is a number, you can use the predicate nunber ?. If you
want to know whether avalue is an integer, and not just some kind of number, you can usei nt eger ?.

Several other type predicates are provided, for other datatypes we'll discuss later, including st ri ng?,
character?,vector?,andport?.

Go to thefirst, previous, next, last section, table of contents.
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Go to thefirst, previous, next, last section, table of contents.

Equality Predicates

Equality predicates tell whether one value is "the same as' another. There are actually several important
senses of "the same as," so Scheme provides four equality predicates.

Sometimes you want to know whether two data structures are structurally the same, with the same
valuesin the same places. For example, you may want to know whether alist has the same structure and
elements as another list. For this, you can use equal ?, which does a deep, element-by-element
structural comparison.

Forexample(equal ? ' (1 2 3) '(1 2 3)) returns#t , because the arguments are both lists
containing 1, 2, 3, in that order. equal ? does adeep traversal of the data structure, so you can hand it
nested lists and other fairly complicated data structures as well. (Don't hand it structures with directed
cycles of pointers, though, because it may loop forever without finding the end.)

equal ? worksto compare simple things, too. For example, (equal ? 22 22) returns#t , and
(equal ? #t 15) returns#f . (Notethat equal ? can be used to compare things that may or may not
be of the same type, but if they're not, the answer will always be #f . Objects of different types are never
equal ?.)

Often you don't want to structurally compare two whole data structures--you just want to know if they're
the exact same object. For example, given two pointersto lists, you may want to know if they're pointers
to the very same list, not just two lists with the same elements.

For this, you use eq?. eq? compares two valuesto seeif they refer to the same object. Since all values
in Scheme are (conceptually) pointers, thisis just a pointer comparison, so eq? is awaysfast.

(Y ou might think that tagged immediate representations would require eq? to be slower than asimple
pointer comparision, because it would have to check whether things were really pointers. Thisisn't
actually true---eq? just compares the bit patterns without worrying whether they represent pointers or
Immediates.)

Equality tests for numbers are treated specially. When comparing two values that are supposed to be
numbers, = isthe appropriate predicate. Using = has the advantage that using it on non-numbersis an
error, and Scheme will complain when it happens. If you make a mistake and have a non-number where
you intend to have a number, thiswill often show you the problem. (Y ou could also use equal ?, but it
won't signal an error when applied to non-numbers, and may be alittle bit slower.)
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There is another equality predicate, eqv?, which does numeric comparisons on numbers (like =), and
identity comparisons (like eq?) on anything else.

This is the end of Hunk G
TIME TO TRY I T OQUT

At this point, you should go read Hunk H of the next chapter
and work through the exanples using a running Schene system
Then return here and resune this chapter.

(Go to Hunk H, which starts at section Using Predicates (Hunk H).)

Go to thefirst, previous, next, last section, table of contents.
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Choosing Equality Predicates (Hunk 1)

Hunk | starts here:

The reason that the = and eqv ? predicates are needed is that the numeric system of Scheme is not quite
asclean asit could be, for efficiency reasons.

|dedlly, there would be exactly one copy of any numeric value, and all occurrences of that value would
really be pointers to the same unique object. Then you could use eq? to compare numbers for identity,
just as you can for other kinds of values. (For example, there would be just one floating-point number
with the value 2.36529, and any computation that returned that floating-point value would return a
pointer to that unique object. (( eq? 2. 36529 2. 36529) would return #t .)

Unfortunately, for numbers it would be too expensive to do this--it would require keeping atable of all
of the numbersin the system, and probing that table to eliminate duplicate copies of the same values. As
aconcession to efficiency, Scheme allows multiple copies of the same number, and the=and eqv?
predicates mask this wart in the language--they perform numeric comparisons when faced with numbers,
so that you don't have to worry about whether two numbers with the same value are literally the same
object.

eqVv? thustests whether two values are "equivalent," when two objects with the same numeric value are
treated as "the same," like =, but all other objects are distinguished by their object identity, likeeq?. In
general,

. eg? isuseful for fast identity (same object) comparisons of non-numbers,

. = performs numeric comparisons on numbers,

. eqv?islikeeq?, but treats copies of the same number as though they were the same object, and

. equal ? performsa"deep" comparison of the structure of data structures. (It useseqv? for
components that are numbers.)

Go to thefirst, previous, next, last section, table of contents.
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Quoting and Literals

Programs often need to refer to literal data values--data that you type directly into the program. In many
languages, the only literals are fairly ssmple values like integers and strings. In Scheme, you can use
simple literals or complicated ones that represent (pointers to) data structures like nested lists. Earlier, |
showed how to create list literals using quoting.

Y ou've probably noticed that the syntax of Scheme code and the textual representation of Scheme data
arevery similar. So, for example, (m n 1 2) isacombination if it's viewed as code, but it's also the
standard textual representation of alist containing the symbol m n and theintegers 1 and 2.

(A symbol is adata object that's sort of like a string, but with some special properties, which will be
explained in the next chapter.)

The resemblance between code and data is no accident, and it can be very convenient, as later examples
will show. It can be confusing, too, however, so it'simportant to know when you're looking at a piece of
code and when you're looking at a piece of literal data.

Thefirst thing to understand is quoting. In Scheme, the expression(m n 1 2) isaprocedure cal to
m n with the arguments 1 and 2.

As | explained earlier, we can quote it by wrapping it in the special form ( quot e...) , however, and get
aliterd liss(mn 1 2).

For example, the definition
(define foo (quote (mMn 1 2)))
defines and binds f 00, initializing the binding with (apointer to) thelist(mn 1 2).

We can draw this situation this way:

+---+ N S N S N S
FOO | *-t--o>] | Fobeooo>] | Kedeoooo>] ]
+---+ +-4-F--- +-4-F--- +-4-F---

I I I

\ |/ \ |/ \ |/

m n 1 2
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Of course, as | explained earlier, wecan use' asaeuphemismfor (quote ...)

We can define very complicated literals this way, if we want to. Here's a procedure that returns a nested
list of nested lists of integers and booleans and symbols:

(define (fubar)
"(((1 two #f) (#t 3 four))
((five #f 6) (seven 8 #t))
((#f 9 10)) ((11 12 #f))))

that's a pretty useless procedure, but it's very convenient to just be able to type in printed representations
of nested data structures and have Scheme construct them automatically for you. In most languages
you'd have to do some fairly tedious hacking to construct alist like that. Aswe'll seein alater chapter,
Scheme also supports quasi quotation, which lets you construct mostly-literal data structures, and create
customized variations on them easily; quasiquotation will be discussed in alater chapter.

Go to thefirst, previous, next, last section, table of contents.
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Simple Literals and Self-Evaluation

Y ou might have noticed by now that we've already been using literalsalot in our examples--numeric
literals and boolean literals. Why didn't we have to quote them to keep Scheme from trying to evaluate
them like other expressions? Because Scheme has a special rule, which is that the value of a number or
boolean is that number or boolean. For these data types, the result of attempting to evaluate it is the same
as what you started with. So the value of 4 is4, and the value of #f is#f . (Thisaso worksfor afew
other types, such as characters and character strings.) Scheme lets you type in the text representation of a
value as an expression, and by convention the value of that expression is the value you typed the printed
representation of. Such an expression is called self-evaluating, because it is evaluated to itself.

What's the degp meaning of thisrule? Thereisn't any. It'sjust to keep you from having to type alot of
guotes to use simple literals. Notice that that means that you can quote a number or boolean if you want,
and it doesn't make any difference. The expression' 0 means "literally the number 0," but since Scheme
defines the value of a number to be itself, the value of plain 0 is0, too.

Likewise, thevalueof ' #f or (quot e #f isthe same as#f ---they're al pointers to the false object.
You can writeastring literal ' " f 00" as" f 00" . In either case, the value of the expression is a pointer
to a string object with the character sequencef o o.

Minor warning: don't add extra quotes inside expressions that are already quoted. ' (f oo 10 baz) is
not the samethingas' (' foo ' 10 ' baz) . Onequote for awhole literal expression is enough, and
extra quotes inside quotes do something that will seem surprising until you understand how quoting
really works.

Expression evaluation in Scheme is simple, for the most part, but you must remember the rules for the
specia forms (which don't always evaluate their arguments) and self-evaluation. Later, I'll show how an
interpreter implements self-evaluation by analyzing expressions before evaluating them. Still later, I'l1
show how a compiler can do the same work at compile time, so that using literals doesn't cost any
evaluation overhead at run time.

Go to thefirst, previous, next, last section, table of contents.
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Local Variables and Lexical Scope

Scheme is a block-structured language with nested scopes. Y ou can declare local variables whose scope
isablock of code, and blocks can have blocks inside them with their own local variables.

Scheme uses alexical scoperule. (We can also say that Scheme is statically scoped, rather than
dynamically scoped, like some old Lisps.) When you see a variable name in the code, you can tell what
variableit refersjust to by looking at the source code for the program. A program consists of possibly
nested blocks of code, and the meaning of the name is determined by which variable binding constructs
it'sused inside.

. let: let bindslocal variables
. Lexica Scope: lexical scope
. let*: let* binds variables sequentially, in nested scopes

Go to thefirst, previous, next, last section, table of contents.
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| et

Y ou can create code blocks that have local variables using thel et special form.

Y ou've seen local binding environments in other languages before. In C or Pascal you've probably seen
blocks with local variables of their own, e.g., in C:

{ int x

= 10;
int y = 20;
foo(x,Yy);

Here we've got a block (inside curly braces) where local variables named x and y are visible. (The same
thing can be done with begi n...end blocksin Pascal.)

When we enter the block, storage is allocated for the local variables, and the storage isinitialized with
the appropriate initial values. We say that the variables are bound when we enter the block--the names x
and y refer to something, namely the storage allocated for them. (In C, the storage for local variables
may be allocated on an activation stack.)

Thisis asimple but important idea--when you enter a scope, you "bind" a name to storage, creating an
association (naming) between a name and a place you can put avalue. (In later chapters, we'll see how
interpreters and compilers keep track of the association between names and storage.)

Sometimes, we refer to the storage allocated for a variable as "its binding," but really that's a shorthand
for "the storage named by the variable," or "the storage that the variable is bound to."

Inside the block, all references to the variables x and y refer to these new local variable bindings. When
execution reaches the end of the block, these variable bindings cease to exist and referencesto x or y
will again refer to whatever they did outside the block (perhaps global variables, or block variables of
some intermediate-level block, or nothing at all).

In this example, al that happens inside the block is acall to the procedure f 00, using the values of the
block variables, i.e., 10 and 20. In C or Pascal, these temporary variables might be allocated by growing
the stack when the block is entered, and shrinking it again when the block is exited.
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In Scheme, things are pretty similar. Blocks can be created with | et expressions, like so:

(let ((x 10)
(y 20))
(foo x y))

Thefirst part of thel et isthe variable binding clause, which in this case two subclauses, (x 10) and
(y 20).Thissaysthat thel et will create avariable named x whose initial valueis 10, and another
variabley whoseinitial valueis20. A | et 'svariable binding clause can contain any number of clauses,
creating any number of | et variables. Each subclause is very much like the name and initial value parts
of adef i ne form.

Therest of the |l et isasequence of expressions, called the let body. The expressions are ssmply
evaluated in order, and the value of the last expression is returned as the value of the wholel et
expression. (The fact that this value is returned is very handy, and will be important in examples we use
later.)

A | et may only bind one variable, but it still needs parentheses around the whole variable binding
clause, aswell as around the (one) subclause for a particular binding. For example:

.(I”et ((x 10))
(foo x))

(Don't forget the "extra" parentheses around the one variable binding clause--they're not really extra,
because they're what tells Scheme where the variable binding clause starts and stops. In this case, before
and after the subclause that defines the one variable.)

In Scheme, you can use local variables pretty much the way you do in most languages. WWhen you enter a
| et expression, thel et variableswill be bound and initialized with values. When you exit the | et
expression, those bindings will disappear.

You can aso use local variables differently, however, aswe'll explainin later chapters. In general, the
bindings for Scheme variables aren't allocated on an activation stack, but on the heap. This lets you keep
bindings around after the procedure that creates them returns, which will turn out to be useful.

(You might think that thisisinefficient, and it could be, but goodScheme compilers can amost always
determine that it's not really necessary to put most variables on the heap, and avoid the cost of heap-
allocating them. As with good compilers for most languages, most variables are actually in registers
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when it matters, so that the generated codeisfast.)

. Indenting let Expressions

Go to thefirst, previous, next, last section, table of contents.
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Indenting | et Expressions

In general, weindent | et expressionsin away that shows the block structure of the program. The
binding forms (variable names and initial values) are lined up vertically after the keyword | et , and the
body expressions are indented afew characters and lined up vertically, like so:

(let ((x 10) ; bindings of x
(y 20)) ; andy
(foo x)
(let ((a (bar)) ; bindings of a
(b (baz))) ; and b
(quux x a)

(quux y b))
(baz))

Notice that the binding forms of each | et arelined up vertically, and the body expressions are not
indented as far. Thisisimportant for making it obvious where the binding forms stop and the body
expressions start. (In this example, the body of the outer | et consistsof acall tof oo, another | et , and
acal tobaz. The body of the inner let consists of two callsto quux.)

Go to thefirst, previous, next, last section, table of contents.
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Lexical Scope

If nested | et s define variables by the same name, then the uses of that name in the body of the inner
| et will refer to the bindings created by theinner | et .

Consider the following code fragment:

(let ((x 10) ; outer binding of Xx
(a 20)) ; binding of a
(foo x)
(let ((x (bar)) ; i nner binding of X
(b (baz x x))) ; binding of b
(quux x a)
(quux y b))
(baz x a) ; refers to outer x (and a)
(baz x b)) ; illegal?

When control entersthe outer | et , theinital values for the variables are computed. In this case, that's
just the literal values 10 and 20. Then storage is allocated for the variables, and initialized with those
values. Once that's done, the meaning of the names x and a changes--they now refer to the new storage
for (bindings of) thel et variables x and a---and then the body expressions are eval uated.

Similarly, when control enterstheinner | et , the inital values are computed by the callsto bar and
baz, and then storage for x and b is alocated and initialized with those values. Then the meanings of
the names x and b change, to refer to the new storage (bindings) of those variables. (For example, the
valueof x when (baz x x) isevaluatedisstill 10, because x still refersto the outer x.)

In this example, the meaning of the identifier x changes when we enter theinner | et . We say that the
inner let variable x shadows the outer one, within the body of the |l et . The outer x isno longer visible,
because the inner oneis.

When we exit al et (after evaluating its body expressions), the bindings introduced by thel et "go out
of scope,” i.e., aren't visible anymore. (For example, when we evaluate the expression (baz x a) in
the body of the outer | et , x refersto the binding introduced by the outer | et ---the x introduced by the
inner let isno longer visible.

Likewise, in the example code fragment, the b in the last expression, (baz x b), doesnot refer to the
inner | et 'sbinding of b. Unless there is abinding of b in some outer scope we haven't shown (such as a
top-level binding), then thiswill be an error.
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. Binding Environments and Binding Contours
« Block Structure Diagrams: Visualizing scope

Go to thefirst, previous, next, last section, table of contents.
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Binding Environments and Binding Contours

The set of all bindings that are visible at a given point during program execution is called abinding
environment. That is, abinding environment maps a set of names to the pieces of storage they name.

A top-level binding environment is the mapping that the Scheme system maintains between top-level
variable names and the storage they're bound to. This might be implemented as a hash table.

With local variables, asimple "flat" table isn't sufficient. Entering al et , for example, adds new
bindings to the environment that code is executing in--it makes the new variable bindings visible,
changing the mapping from names to storage.

We say that each binding contruct we execute introduces a new binding contour. We call it a contour
because it changes the "shape" of the environment.

Y ou can think of abinding contour as being implemented by a new table that's created when you enter a
| et , or any other construct that binds variables. When Scheme looks for a binding of an identifier, it
looks first in this new table, then in the old table that represented the environment outside the let. Since
Scheme looksin the "inner" environment's table first, it will always find the innermost binding of any
identifier, such as x in the example above.

At any given point, the environment consists of all of the variable bindings that are visible. Thisincludes
all of the bindings in the table for the innermost contour, and all of the bindings in the table for the
contours it's nested inside, except those that are shadowed by inner bindings of the same names.

Go to thefirst, previous, next, last section, table of contents.
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Block Structure Diagrams for | et s

We can make environments and contours clearer by drawing a block diagram showing where the
different variables are visible:

(let ((x 10) ; bindings of x
(a 20)) ; and a

(foo x) scope of outer x

(let ((x (bar)) and a
(b (baz x x)))

| (quux y Db) and b | )

|
|
|
|
(quux x a) scope of inner x | |
|
|
|
|

(Thiskind of block diagram is the origin of the term "block structure.")
Each box represents a contour: it shows where in the program each variable binding will be visible.

We can interpret a block structure diagram by looking outward from an occurrence of a variable name,
and using the nearest enclosing box that corresponds to a binding of that name. Now we can see that the
fina call (baz x b) doesnot refer tothel et variable b---it's not inside the box corresponding to
that variable. We can also see that the occurrence of x in that expression refers to the outer x. The
occurrence of x in the callsto quux refer to the inner x, because they're inside its box, and inner
definitions shadow outer ones.

There's something alittle tricky to notice here. When we evaluate the initial value expressions for the
inner | et , theinner bindings are not visible yet. x still refers to the outer binding of x, not the inner one
that we are about to create. Sometimes thisis exactly what you want, but sometimes it's not. Because it
isn't always what you want, Scheme providestwo variantsof | et , called | et * and| et r ec.

Go to thefirst, previous, next, last section, table of contents.
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| et *

| et isuseful for most local variables, but sometimes you want to create severa local variables in sequence,
with each variable's value available to compute the next variable's value.

For example, it is common to "destructure” a data structure, extracting part of the structure, then a part of that
part, and so on. We could do this by simply nesting expressions that extract parts, but then we don't have
understandable names for the intermediate results of the nested expressions.

(In other cases, we may want to do more than one thing with the results of one of the nested expressions, so
we need to create a variable so that we can refer to it in more than one body expression.)

Consider the code fragment:

(let ((a-structure (sone-procedure)))
(let ((a-substructure (get-sone-subpart a-structure)))
(let ((a-subsubstructure (get-another-subpart a-substructure)))
(foo a-substructure))))

Scheme provides a convenient syntax for this sort of nested let; can be written asasinglel et *

(let* ((a-structure (sone-procedure))
(a-substructure (get-sone-subpart a-structure))
(a- subsubstructure (get-another-subpart a-substructure)))
(foo a-substructure))))

Notice that this wouldn't work if wewrote it asanormal | et that binds three variables. A block structure
diagram shows why:

(let ((a-structure (sone-procedure))
(a-substructure (get-sone-subpart a-structure))
(a-subsubstructure (get-another-subpart a-substructure)))

| (foo a-substructure) ; scope of all three variables | )))

Now we see that all of theinitial value expressionsfor thel et variables are outside the scope of any of the
variables. a- subst ruct ur e and a- subst r uct ur e will not refer to the bindings introduced by this
| et , but to whatever bindings (if any) are visible outside the| et .
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With | et *, it'sdifferent:

(let* ((a-structure (sone-procedure))

o o m e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e o +
| (a-substructure (get-sone-subpart a-structure)) |
e + |
| (a- subsubstructure (get-another-subpart a-substructure))) | |
o m m o o m o o o o e o o o m o e o e o e e e e e e e e e e e e e e e e e e e e e e e aeeaaaao + |
| (foo a-subsubtructure) L | | )))
e o U U OO U +- - +- -+

Each initial value clause isin the scope of the previous variablein thel et * . From the nesting of the boxes,
we can see that bindings become visible one at atime, so that the value of a binding can be used in computing
theinitial value of the next binding.

There's another local binding construct in Scheme, | et r ec, which is used when creating mutually recursive
local procedures. I'll discuss that later, when | describe how local procedures work in Scheme.

This is the end of Hunk |
TIME TO TRY | T QUT

At this point, you should go read Hunk J of the next chapter
and work through the exanples using a running Schene system
Then return here and resune this chapter.

Go to Hunk J, which starts at section Local Variables, | et , and Lexical Scope (Hunk J).

Go to thefirst, previous, next, last section, table of contents.
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Procedures (Hunk K)

Scheme procedures are "first class," meaning that they're objects in the language. They can be
anonymous, meaning that you can have pointers to procedures that don't have printed names. They can
be higher-order, meaning that procedures can operate on procedures.

. First Class Procedures: Procedures are objects in the language

« Higher-Order Procedures. Procedures can take procedures as arguments

. Anonymous Procedures and lambda: lambda creates procedure objects, which don't need names
. lambda and Lexical Scope

. Loca Definitions: defines work locally, too

. Loca Procedures and letrec: letrec islike let, but supports recursive definitions

. Multiple defines are Like aletrec: Understanding definitions and scope

. Variable Arity: Procedures can take a variable number of arguments

- apply

Go to thefirst, previous, next, last section, table of contents.
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Procedures are First Class

In Scheme, procedures are data objects--you can have a pointer to a procedure and do the same things
you can do with any other Scheme value. Technically, we say that procedures are first class objectsin
the language--you can pass a procedure value as an argument to a procedure, return it as the value of a
procedure call, storeit in avariable or afield of another object. A procedure pointer isjust avalue that
you can pass around like any other value, like a pair or a boolean.

Procedures are special, of course, because they're the only kind of object that supports the procedure call
operation.

In Scheme terminology, a procedure call expression is called a combination. Evaluation of a
combination includes evaluation of the argument expressions and application of the procedure to the
arguments, i.e., actually calling it with ("applying it to") those values.

An unusual feature of Schemeisthat it uses a unified namespace, which means that there's only one kind
of name for both normal variables and procedures--in fact, procedure names are really just variable
names, and there's only one kind of variable. A named procedure isreally just afirst-class procedure
object that happens to be referenced from avariable.

Recall the definition of m n:

(define (mn a b)
(if (< ab)

a
b))

When you define a procedure like this, you're really doing three things: creating a procedure, creating a
normal variable (named m n), and initializing the variable with a pointer to the procedure.

(This means that you can't have both a procedure variable and a"normal” data variable by the same
name in the same scope--there's really only one kind of variable, so you can only have one binding in a
given scope.)

When you define a procedure as we did above for the m n example, Don't |et the special syntax for
procedure definitions fool you--a procedure name isreally just the name of avariable that happens to
hold a procedure value. Y ou can use any variable that way, by storing a procedure value in it. You can
also assign a new procedure value to avariable, and then use it to name the new procedure.
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For example, if you've defined mi n as above, you can change the value in the binding of m n by saying
(set! mn +).That assgnment expression will look up the value of the variable +, which isthe
addition procedure, and assign that into the variable m n.

Then when you call m n as before, it will do addition instead, because it will call the same procedure as
+. For example(m n 5 10) will return 15, not 5.

Y ou could also change the meaning of +, just by assigning a new value to the (the binding of) the
variable +. Thisis probably a bad idea unless you really have a good reason, because if the new
procedure doesn't do addition, any code that calls + will return different answers!

It isimportant to understand how procedure calls actually work in Scheme, which is actually very
simple. Consider the combination (procedure call expression) (+ a b) . What thisreally meansis

1. look up the value of (the current binding of) the variable +, which we assume is a procedure,
2. look up the values of (the current bindings of) the variablesa and b, and
3. apply the procedure to those values, i.e., cal it with those values as arguments.

Thefirst subexpression of the combination is evaluated in just the same way as the others, athough the
result is used differently. The first subexpression isjust a subexpression that should return a procedure
value, and the others give the arguments to passto it.

Thiswon't work if the first subexpression doesn't evaluate to a procedure value. For example, you can
change the meaning of + with an assignment expression (set! + 3).Thenif you attempt to call +
with the combination (+ 2 3) you'll get an error. Scheme will say something like "ERROR: Attempt
to apply non-procedure.”

The fact that the first (operator) subexpression is evaluated just like any other expression can be very
useful. Rather than giving the name of a particular procedure to call, we can use any expression whose
result is a procedure. For example, we might have a table of procedures to use in different kinds of
situations, and search that table for the procedure to call at a particular time:

((1 ook-up-appropri ate-procedure key) foo bar)

Here we call the procedure | ook- up- appr opri at e- pr ocedur e with the argument key to get a
procedure, and then apply it to the values of f oo and bar .

One warning about combinations. the Scheme language doesn't specify the order in which the
subexpressions of a combination are evaluated. Don't write code that depends on whether the operator
expression is evaluated first, or on the order of evaluation of the argument expressions.
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Y ou might wonder what's so special about first-class procedures, since some other languages (like C) et
you pass around pointers to procedures, and call them viathose pointers. Scheme's procedures work like
Pascal'sif you use them for the kinds of things Pascal allows, but also lets you use them in more general
ways that I'll explain |ater.

Go to thefirst, previous, next, last section, table of contents.
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Go to thefirst, previous, next, last section, table of contents.

Higher-Order Procedures

Scheme is designed to make it easy to use higher-order procedures, i.e., procedures that may take other
procedures as arguments or return them as values.

For example, you can easily writeasor t procedure that takes a comparison procedure as an argument,
and uses whatever procedure you hand it to determine the sorted order.

To sort alist in ascending order, you can then call sor t with (a pointer to) the procedure < ("less than")
asits argument, like this:

(sort < '(5 2 3))
and you'll get back asorted list (2 3 5).

Note that the expression < here isjust a variable reference. We're fetching the value of the variable <
and passing it to sor t as an argument.

If you'd rather sort the list in descending order, you can passit the procedure > ("greater than") instead:
(sort > '"(5 2 3))
and get back asorted list (5 3 2).

The same procedure can be used with lists of different kinds of objects, aslong as you supply a
comparison operator that does what you want.

For example, to sort alist of character strings into alphabetic order, you can passsort apointer to the
standard string-comparison procedure st r i ng<?,

(sort string<? '("foo" "bar" "baz" "quux"))

and get back alist (" bar" "baz" "foo" "quux").

[ give map example here?]

Go to thefirst, previous, next, last section, table of contents.
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Anonymous Procedures and | anbda

Scheme has a special form that is very special, caled | anbda. It creates afirst-class procedure and
returns a pointer to it.

For example, you can create a procedure that doubles its argument by evaluating the expression
(lanmbda (x) (+ x Xx)).Thesecond subform of the expressionisalist of forma arguments, and
the third subform is the body of the procedure.

| anmbda doesn't give a name to the procedure it creates--it just returns a pointer to the procedure object.

Actually, the procedure-defining variant of def i ne isexactly equivalent to a variable-defining
def i ne,withal anbda expression asitsinitial value form.

For example,

(define (double x)
(+ x x))

IS exactly equivalent to

(define double (lanbda (x)
(+ x x)))

In either case, we're creating a one-argument procedure, and we're also defining and binding avariable
named doubl e, and initializing its storage with a pointer to the procedure.

The procedure-defining syntax for def i ne isjust syntactic sugar--there's nothing you can do with it
that you can't do with local variablesand | anbda. It's just a more convenient notation for the same
thing.

This is the end of Hunk K.
TIME TO TRY I T QUT

At this point, you should go read Hunk L of the next chapter
and work through the exanples using a running Schene system
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Then return here and resune this chapter.

(Go to Hunk L, which starts at section Using First-Class, Higher-Order, and Anonymous Procedures

(Hunk L).)

Go to thefirst, previous, next, last section, table of contents.
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Go to thefirst, previous, next, last section, table of contents.

| anbda and Lexical Scope (Hunk M)

| ambda creates a procedure that will execute in the scope where the | anbda expression was
evaluated.

Except for local variables of the procedure itself, including its arguments, names in the body of the
procedure refer to whatever they refer to at the point where the procedure is created by | anbda.

Thisis necessary for preserving lexical scope--the meanings of variable names must be obvious at the
point where the procedure is defined.

Local variables created by the procedure have the usual scope rule within the body. (Argument variables
are just aspecial kind of local variable, which get their initial values from the caller.) Other variables are
called free variables--that is variables defined outside the procedure, but referred to from inside it.

We say that | anbda creates a closure, a procedure whose free variable references are "fixed" at the
time the procedure is created. Whenever the procedure references afree variable, it will will refer to the
bindings of those variablesin the environment where the procedure was created.

Consider the following small program

(define foo 1)

(define (baz)
f 00)

(define (quux)
(let ((foo 6))

(baz)))
(quux)

When quux iscalled, it will bind itslocal variable f 0o and then call baz. When baz is called from
qguux, however, it will still see thetop level binding of f 0o, whose valueis 1. Theresult of the call to
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baz will be 1, and that value will be returned as the value of the call to quux aswell.

Thereisavery good reason for this, and it's the rule used by most programming languages. It is
important that the meaning of a procedure be fixed where it is defined, rather than having the meaning
depend on whereit is called from. Y ou want to be able to look at the code, and see that the namef oo
refersto particular variable, namely the one that's visible there, at the top level. Y ou don't want to have
to worry about the meaning of the procedure baz changing, depending on whereit's called from.

A block structure diagram may make this clearer. I'll just show the part for the procedure baz:

(define (quux)
(let ((foo 6))

| (baz) scope of foo | ))

This emphasizes the fact that the local f oo really islocal. The definition of baz is not inside the box, so
it can't ever seef oo'slocal variablef 0o. (The fact that baz is called from inside the box doesn't
matter.)

Conceptually, the procedure baz returnsto the environment where it was created before it executes,
and even before it binds its arguments.

In early Lisps, adifferent rule was used, called dynamic scope. In those Lisps, the call to baz would see
the most recent binding of f 0o. In this case, it would see the binding created by quux just before the
call tof oo. Thisled to very inscrutable bugs, because a procedure would work sometimes, and not
others, depending on the names of variables bound in other procedures.

(Dynamic scoping is generally considered to have been a big mistake, and was fixed in recent versions
of Lisp, such as Common Lisp, which were influenced by Scheme.)

Go to thefirst, previous, next, last section, table of contents.
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Local Definitions

Scheme lets you define local procedures, scoped inside other procedures or blocks with local variables.
Thisletsyou "hide" procedures that only make sense in a certain context, so that they can only be called
in that context.

Y ou can define local proceduresusing | et and | anbda, like this:

(define (quadruple x)
(let ((double (lanbda (x)

(+xx))))
(doubl e (double x))))

Here we've defined a procedure named quadr upl e, with alocal variable named doubl e; itsvaueis
a procedure that will double its argument value, created with | anbda.

Notice that when we call doubl e from inside the procedure quadr upl e, we cal it by the name
doubl e, whichisreally the name of alocal variable. That's okay, because there's no difference between
variable names and procedure names--a call to a named procedure is always alookup of avariable value
followed by acall to the procedure it points to.

Also notice that the inner procedure's argument variable x shadows the outer procedure's argument
variable x. Inside the body of doubl e, it refersto doubl e's argument, but outside it doesn't. (The code
might be easier to read if we chose different names for the two procedures arguments, but thisisjust for
illustration.)

Aswith atop-level definition, we can write alocal definition using def i ne instead of | et . For
example, we could have written the above procedure as:

(define (quadruple x)

(define (double x) ; define a | ocal procedure double
(+ xx))))
(doubl e (double x)))) ; nested calls to the | ocal procedure

A local def i ne actsalot likel et with| anbda. (Actualy, it'sexactly likeal et r ec with| anbda,
but we haven't discussed | et r ec yet; wewill later.)

There'sarestriction on internal def i nes--they must be at the beginning of the procedure body (or the
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beginning of another body, like al et body, before the normal executable expressions in the body.
Local procedure definitions follow the normal lexical scope rule, like nested | et s. For example, in the

above example, the formal argument x of doubl e islocal to the body of doubl e---it'sadifferent
variable x than the argument x of quadr upl e.

(define (quadruple x)
(define (double x)

T +
| R + |
| | (+ x x)[) |
| SRR + |
| (double (double x)) | ))
T +

Here the inner box is the scope of doubl e'sargument x, and the outer one is the scope of the variable
doubl e.

We could have used a different name for the argument to the local procedure, and it wouldn't change the
meaning of either procedure:

(define (quadruple x)
(define (double (y) ; local defn. of double
(+vyvy))) ; body of | ocal procedure
(doubl e (double x))) ; body of quadruple

On the other hand, since there are no local bindings of +, + refers to whatever it refers to in the context
where quadr upl e isdefined. Assuming that quadr upl e isatop-level procedure, not alocal
procedure in some other scope, + refers to the top-level binding of +. (Remember that a procedure name
isreally just avariable name, so the scope rules for variables apply to procedure names too.)

Go to thefirst, previous, next, last section, table of contents.
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Recursive Local Procedures and | etr ec

Using | et and | anbda to define local procedures will often work, but generally we usel et r ec rather than
| et , because it supports recursive local procedures. (That'swhy it'scalled | et r ec---it means| et with
recursive definitions.)

Suppose wetriedtousel et and| anbda to define arecursive local procedure:

(define (foo x)
(let ((local-proc (lanbda (y)

(local -proc ...) ; recursive call? No.

..2)))

(l ocal -proc x)

-)

The problem with this example is that what appearsto be arecursive call tol ocal - pr oc frominside

| ocal - pr oc actually isn't. Remember that | et computestheinitial values of variables, then initializes all of
the variables storage, and only then do any of the bindings become visible--when we enter the body of the

| et . Inthe example above, that means that the local variablel ocal - pr oc isn't visibleto thel anbda
expression. The procedure created by | anmbda will not see its own name--the name| ocal - pr oc in the body

of the procedure will refer to whatever binding of | ocal - pr oc existsin the enclosing environment, if there
Isone.

A block structure diagram may make this clearer:

(define (foo x)
(let ((local-proc (lanbda (y)

o m e e e e e e ia o oo +
| ... scope |
| (local-proc ...) of y |
| 1))
s U U +
g +
| ... scope of |
| (local-proc x) | ocal - proc |
| | )
T +

Unlikel et , | et r ec makes new bindingsvisible bef or e they'reinitialized. Storage is allocated, and the
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meanings of names are changed to refer to the new local variable bindings, and then the initial values of those
variables are computed and the variables are initialized.

For most purposes, this wouldn't make any sense at all--why would you want variable bindings to be visible
before they have had their initial values installed? For local procedure definitions, however, it makes perfect
sense--we want to use | anbda to create a procedure that can operate on the variables later, when it's called.

| anbda creates a procedure that will start executing in the scope wherethe | anbda expression is evaluated,
so we need to make the bindings visible before we evaluate the | anbda expression.

If weusel et rec inour example, instead of | et , it works. The procedurel| ocal - pr oc can seethe
variable! ocal - pr oc, soit can call itself by its name.

The block structure diagram looks like this:

(define (foo x) R +
(letrec ((local-proc | (lanmbda (y) |
| e + |

| ... scope | |

| | (local-proc ) of y | |

| 1)) |

| . + |
R L L + |
| ... scope of |
| (local-proc x) | ocal - proc |
| ) |
o m o e e o e e e e e e e e e e e e e e e e e e e e e e e m oo +

Therecursivecall tol ocal - pr oc will work, because the call isinside the box that corresponds to the scope
of thevariablel ocal - pr oc.

| et r ec works for multiple mutually recursive local procedures, too. Y ou can define several local procedures
that can call each other, like this:

(define (my-proc)
(letrec ((local-proc-1 (lanbda ()

(l ocal - proc- 2)

c))
(local -proc-2 (lanbda ()

(local -proc-1)

2)))

(local -proc-1))) ; start off nutual recursion by calling local-proc-1

http://www.federated.com/~jim/schintro-v14/schintro_66.html (2 of 4)11/3/2006 9:03:10 PM



An Introduction to Scheme and its Implementation - Local Procedures and letrec

A block structure diagram shows that each local procedure definition can see the bindings of the other's names:

(define (my-proc)

o +
(letrec (| (local-proc-1 (lanmbda () scope of local-proc-1 |
| C. and | ocal - proc-2 |
| (l ocal - proc- 2) |
| ) |
| (local-proc-2 (lanbda () |
| C |
| (l ocal -proc-1) |
to------- + -))) |
| (local-proc-1) | ))
L +

Y ou can also define plain variables while you're at it, inthe samel et r ec, but | et r ec ismostly interesting
for defining local procedures.

When theinitial value of al et r ec variable is not a procedure, you must be careful that the expression does
not depend on the values of any of the other | et r ec variables. Likel et , the order of initialization of the
variables is undefined.

For example, the following isillegal:

(letrec ((x 2)

) (y (+ x x)))

In this case, the attempt to compute ( + X x) may fail, because the value of x may not have been computed
yet. For thisexample, | et * would do the job--the second initialization expression needs to see the result of the
first, but not vice versa:

(let* ((x 2)
)(y (+ x x)))

Be sure you understand why thisisillegal, but the | anbda expressionsin the earlier examples are not.

When we create recursive procedures using | et r ec and | anbda, thel anbda expressions can be evaluated
without actually using the values stored in the bindings they reference. We are creating procedures that will use
the values in the bindings when those procedures are called, but just creating the procedure objects themselves
doesn't require the bindings to have values yet. It does require that the bindings exist, because each | anbda
expression creates a procedure that "captures” the currently visible bindings--the procedure remembers what
environment it was created in.
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Go to thefirst, previous, next, last section, table of contents.
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Go to thefirst, previous, next, last section, table of contents.

Multiple defi nes arelikeal etrec

Now that you understand | et r ec, | can explain what def i ne really does.

Notice that when you def i ne top-level variables and procedures, the procedures you create can refer to
other variables in the same top-level environment.

It is as though all of the top-level bindings were created by asingle big | et r ec, so that theinitial value
expressions create procedures that can "see" each others name bindings. Expressions that aren't
definitions make up the "body" of thisimaginary | et r ec.

Recall that a procedure-defining def i ne isequivaent to avariable-defining def i ne withal anbda
expression to compute itsinitial value.

The following top-level forms

(define (foo)

(... (bar) ...))
(define (bar)
(... (baz) ...))

(define (baz)
(... (quux) ...))

(f o0)
are therefore equivalent to

(define foo
(1 ambda ()

(... (bar) ...)))
(define bar
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(I ambda ()

(... (baz) ...)))

(define baz
(I anmbda ()

(... (foo) ...)))

.(1.‘.00)

When we view top-level def i nesasbeing implicitly like partsof al et r ec, the program takes the

equivalent form

(letrec (...

(foo (lanmbda ()

(... (bar)
(bar (lanmbda ()
(... (baz)
(baz (lanmbda ()
(... (foo)
-)
(foo0)
-)

)))
)))
)))

(Actually, things are scoped like this, but the initial value expressions of def i nesand the non-
definition expressions are evaluated in the order they occurred in the source program. For top-level
expressions, you can depend on Scheme executing the executable parts of definitionsin the order

written.)

Local def i neswork pretty thisway, too. A Scheme interpreter or compiler recognizes any def i nes
that occur at the beginning of abody as being parts of an implicit | et r ec; the subsequent expressions
in the same body are treated as the body of theimplicit| et r ec.

So the following procedure

(define (my-proc)
(define (local-proc-1)
—
(define (local-proc-2)

)
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(l ocal -proc-1)
(local -proc-1))

Isequivalent to

(define (ny-proc)
(letrec ((local-proc-1 (lanbda () )
(local -proc-2 (lanmbda () ...)))
(l ocal - proc-1)
(l ocal -proc-2)))

If we "desugar” the outer def i ne, too, we get

(define ny-proc
(1 ambda ()
(letrec ((local-proc-1 (lanbda ()
(local -proc-2 (lanbda ()
(l ocal -proc-1)
(local -proc-2)))

)
.)))

Go to thefirst, previous, next, last section, table of contents.

http://www.federated.com/~jim/schintro-v14/schintro_67.html (3 of 3)11/3/2006 9:03:14 PM


http://www.federated.com/~jim/schintro-v14/schintro_1.html

An Introduction to Scheme and its Implementation - Variable Arity

Go to thefirst, previous, next, last section, table of contents.

Variable Arity: Procedures that Take a Variable Number of Arguments

In Scheme, you can easily write procedures that can take a variable number of arguments. Technically,
the number of arguments a procedure acceptsis called its arity, and we call a procedure that accepts a
variable number avariable arity procedure.(4)

One way to write avariable arity procedure is to use an argument declaration form that consists of a
single argument name, rather than a parenthesized sequence of argument names. This tells Scheme that
the procedure's actual arguments should be packaged up as alist when the procedure is entered, and the
procedure will have a single argument that pointsto this list of argument values.

For example, we could write a procedure that takes any number of arguments and displays the list of
actual arguments passed to the procedure.

(define (display-all . args)
(di splay args))

Here the argument variable args receives the list of al arguments, and we use display to display thislist.
Now if we call the procedure like this

Schenme>(di splay-all 'foo 3 'bar)
(foo 3 bar)

the argument variable ar gs will be bound and initialized with alist (f oo 3 bar ), which will be
passed as the sole argument to di spl ay. Once inside the procedure, there's nothing special about this
argument variable ar gs---it just happens to hold the list of arguments that were passed.

Thisworksfor | anbda expressions as well. We could definedi spl ay- al | using an equivalent plain
variable definition whose initial value isthe result of an explicit |lambda expression:

(define display-all
(1 anbda args
(display args)))

(Notice that for this (plain | anbda) version, we just used ar gs as the argument specification, not
(args) . If wejust use an identifer, rather than a parenthesized sequence of identifiers, Scheme
packages up all of the actual argumentsto the procedure as alist and handsthat to di spl ay-al | as
one argument variable. Thislooks alittle different from the def i ne version, but it's the same idea--
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we're using the variable ar gs to "stand for" a sequence of argument values, which scheme represents as
alist.)

Often, you write procedures that take a certain number of normal (required) arguments, but can take
more. When you pass a procedure more arguments than it requires, Scheme packages up the extra
argumentsin alist, called arest list.

Scheme allows you to express this by writing a mostly normal-looking parenthesi zed sequence of
argument names, followed by a dot and the name of the argument to receive the list of the remaining
arguments. (If no extra arguments are passed, this argument variable will receive the empty list.)

For example, suppose we want our di spl ay- al | procedure to accept at least one argument, display
it, and then display the list of any remaining arguments. We could write it like this:

(define (display-all first . rest) (display first) (display rest))

This alows usto declare that the procedure's first argument is required, and give it a name of its own.
The dot notation is similar to the dot notation for improper lists, and is used to suggest that the that
variable after the dot refers to the "rest”" of the actual arguments.\footnote{ Consider an improper list ( a
b . c).Herethefirst element of thelistisa, thecadr of thelistisb, and therest of the list beyond
that (thecddr ) isjust c. If we write the argument declarations of a procedure in thisway, e.g.,
(lanmbda (a b . c¢) ...),wethink of theformal parameter a as"standing for" the first actual
argument value, the formal parameter b as standing for the second actual argument value, and the formal
parameter ¢ as standing for the rest of the actual argument values.} One common application of variable
arity isto alow optional arguments with default values. For example we can define a procedure f oo
which takes two required arguments and a third, optional argument. We would like to use a default value
for the optional argument, say #f , if the optional argument is not actually passed. (define (foo ab . rest)
(let ((c (if (null?rest) ; if no extraargument(s) #f) ; use default value #f for ¢ (car rest))) ; else usefirst
optional arg (bar ab c¢))) Thisidiom iscommon in routines that perform 1/O, where agiven 1/0O
operation typically reads from or writesto a specia file--such as the standard input or output, or alog
file--but can also be used to write to other files using explicit port objects, which are like file handles.
(Ports will be discussed in detail later.) If no port is passed to specify where the I/O operation should be
directed, it's directed to the usual file. Another common application of variable arity isto allow
procedures to operate on an arbitrary number of arguments. [give example]

Go to thefirst, previous, next, last section, table of contents.
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apply

The procedure appl y allowsyou to call any procedure, and specify alist of valuesto be passed as
arguments. appl y takes a procedure and alist of values, and then calls the procedure with those values
as arguments.

For example, (apply + '(1 2)) passesthevalues1 and 2 to+, andisequivaentto(+ 1 2).

You'll seldom need to use appl y, because normal procedure calling works fine in most situations.
Occasionally, though, it is convenient to be able to apply a procedure to alist of values that have already
been computed. (I'll show an examplein [ chapter 4?].)

Go to thefirst, previous, next, last section, table of contents.
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Variable Binding Again

. ldentifiersand Variables
. Variablesvs. Bindingsvs. Vaues

So far, I've sometimes casually talked about variables holding values, but that's not quite right. Variables
are bound to storage, and storage holds values.

I've also sometimes casually talked about fetching "the value of avariable," but that's really just a
shorthand for fetching the value of the current binding of avariable, from the current environment.

Consider what happens when we define avariable f oo with the definition (defi ne f oo 10).We
can draw the binding of the variable in thisway:

+----- +
foo| *--+4--->10
+----- +

When speaking precisely, we say that the variable f 00 is bound to the memory location represented by
the box on the left. Binding just means making an association between a name and something. (There are
several senses of "binding"---it's a very general word--but in this book, I'm generally talking about
associating program variables with actual storage.)

For brevity, we refer to the location as the variable's binding, but binding is really the relationship
between the name and the storage it names.

In Scheme terminology, we talk about "bindings' as distinct from variables, because they are two
different things. Thisistruein most other languages as well (e.g., C and Pascal), but usually people
don't make the distinction explicit. They'll refer to a program variable as a variable, but they'll also call
the storage allocated for a particular instance of that variable a"variable." Usually, experienced
programmers aren't confused by this.

In this book, | try to be alittle more precise, because the distinction between variables and bindingsis
especially important in discussing advanced topics that will come up later. For now, rest assured that
there's nothing really unusual here--when | distinguish between variables and bindings, that's applicable
to most programming languages, not just Scheme. I'm just giving a name to something you probably
aready know.
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(So far, we haven't seen anything really specia about Scheme variables and bindings, except that the
valuesin bindings are always pointers.)

Go to thefirst, previous, next, last section, table of contents.
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Identifiers and Variables

Inisolation, atextual identifier (name) such usasf 0o isn't even avariable.

The static scoping structure of a program gives names a certain aspect of meaning, and the dynamic
execution of the program gives them more meaning.

Inisolation, f 00 doesn't mean anything. Used in a program, it can be the name of avariable. At
different placesin a program, it can be the name of different variables, e.g., atoplevel variable, or alocal
variable in one or more procedures.

In Scheme an identifier such asf oo may not represent avariable at al. Inthe quot e expressions' f 00
and' (baz foo bar) itidentifiesasymbol object, but in an entirely different sense than variable
binding. It doesn't name avariable f 00, or avariable whose binding holds a pointer to f oo---itisa
literal representation of a pointer to the unique symbol object whose printed representation isf o0o.

Go to thefirst, previous, next, last section, table of contents.
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Variables vs. Bindings vs. Values

The distinction between variables, bindings, and valuesiis particularly important in Scheme, and important
for understanding interpreters and compilers, so I'll take alittle time to discuss it with examples.

What is this distinction? Why not just say that the variable holds avalue, i.e., why not call the unit of
storage a variable? Because that's not right. Consider the following short program.

(define (double x) ; define a procedure that doubles its argunent
(+ x x))

(define (quadruple x) ; define a procedure that quadruples
(+ (doubl e x) ; Its argunent.

(doubl e x)))

(define (foo x) ; define a recursive procedure that calls
(if (> x 0) ; itself if its argunent is nore than O,
(foo (- x 1))) ; handing the recursive call an argunent

 that's one | ess.

Notice that we've defined three procedures, doubl e, quadr upl e, and f 00, each of which has alocal
(argument) variable x. (An argument variableisjust alocal variable that getsitsinitial value in a special
way, passed from the caller of the procedure.)

There are therefore three different variables named x in this code. In each of the procedures, it means
something different. Each procedure defines a different meaning for the name x, and each separate meaning
isadifferent variable.

This becomes obvious when we talk about "the variable x defined in the procedure doubl e" versus "the
variable x in the proceduref 00," and so on.

We could change the names of variables, so that every variable has a different name, without changing the
meaning of any of the procedure definitions. Wherever two different variables have the same name, we can
change one of them to something else, aslong as we change all referencesin the scope of that variable to the
new name.

In the example above, we might change each variable x to x1, x2, or x3, and change all uses within its scope
to use the new name:

(define (double x1) ; define a procedure that doubles its argunent
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(+ x2 x3))
(define (quadruple x2) ; define a procedure that quadruples
(+ (doubl e x2) ; its argunent.

(doubl e x2)))

(define (foo x3) ; define a recursive procedure that calls
(if (> x3 0) ; itself if its argunent is nore than O,
(foo (- x3 1))) ; handi ng the recursive call an argunent

 that's one | ess.

Thismakesit clearer that each of the variablesis a different thing, but it doesn't change what the procedures
do, because the normal scope rules of the language have the same effect.

Notice also that when we define the procedures, there is no storage allocated for their local variables; the
variables named x in the procedures are just definitions--no space will be allocated for them until the
procedures are actually called. That's when binding happens--some storage is allocated at run time to hold
the value.

(Bear in mind that this happens in other languages too, even if people don't discussit clearly--for example, a
C argument variable is bound when you enter the procedure, because suddenly space is allocated for it and
the name refers to that space.)

When we call something a"variable," that's not because we can assign to it and change its value. None of
the above variables has a value that varies in that sense; none of these procedures happens to modify the
values they're given as arguments. In some languages, such as pure functional languages, you can't do
assignment at all, but those languages still have variables.

In programming language terminology, the term "variable" means pretty much what it meansin
mathematics--at different times we invoke the same procedure and the variable will refer to something
different. For example, | may call doubl e with the argument 10, and while executing in that call to
doubl e, thevalue of x will be 10. Later, | may call doubl e with the value 500, and while executing in
that call the value of x will be 500.

Consider how similar thisisto variablesin logic. | may have alogical statement that "for all x, if xisa
person then x ismortal". (Forall x, person(x) -> mortal(x)). | can use the same logical rule (statement) and
apply it to lots of things.

If Socratesis a person then Socrates is mortal, and if Bill Clinton is a person then Bill Clinton is mortal, and
so on. (Or even, if my car is human then my car is mortal.)

Eachtimel useit, x may refer to adifferent thing, and that's why it's called a variable.
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Just because it's a variable doesn't mean that when | useit | change the state of the thing | use it to refer to--
for example, Bill Clinton is probably not modified much by the fact that I'm inferring something about him,
and I'm pretty sure Socrates isn't changed much at al by the experience.

It also doesn't mean that the meaning of a variable changes from instant to instant. If | use the rule above,
and apply it to Socrates, saying "if Socratesis a person then Socratesis mortal”, x consistently refersto
Socrates--that's the point. But | can also say that "if Bill Clinton is a person then Bill Clinton is mortal." In
that case x refers consistently to Bill Clinton. In logic, we say that in one case x is bound to Socrates, but
then used consistently within the rule; and in the other, we say it's bound to Bill Clinton, and then used
consistently within the rule.

The point here is that the same variable can refer to different things at different times. These different things
are called bindings, because the variable is associated with ("bound to") something different each time.

Consider the recursive procedure f 00, above. In arecursive procedure, the same variable may be bound to
different things at the same time. Suppose | call f oo with the argument 15, and it binds its argument x and
givesthe binding theinitial value 15. Then it examines that value, and calls itself with the argument 14.
Therecursive call bindsits argument x with the value 14, then examines that and calls itself with the value
13, and so on.

At each recursive call, anew binding of x is created, even if the old bindings still exist, because the earlier
calls haven't finished yet--they're suspended for the duration of the recursion.

When there are multiple bindings in existence at the same time, only one oneis"visible" as a procedure
executes. For example, in arecursive set of callsto a procedure, only one binding is"in scope,” that is,
visible) to an executing procedure--the binding for that call. We call this the current binding of the variable.
When a call returns, an older binding becomes visible again, and becomes the current binding.

But what isavariable bound to, i.e., to what does avariable refer? In Scheme, it refersto a piece of storage.
When you call a procedure, for example, each argument variable is bound to a piece of storage that can hold
the argument value you pass. Inside that call to that procedure, that variable name will refer to that piece of
memory.

A single binding of a Scheme variable may hold different values over time, because of assignments, asin
most procedural languages. So not only may the same variable be bound to different pieces of storage, but
each piece of storage may hold different values over time.(5)

Sometimes people talk about binding avariable to avalue, but in Scheme (and other languages with
assignment) thisis not correct, and speaking in this sloppy way causes confusion. If you don't distinguish
between storage and values, you can't talk clearly about assignment.

Always remember that there are three "one-to-many mappings' here:
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. asingle name (identifier) can be used for different variables at different placesin aprogram, or for a
symbol

. agiven variable may be bound to different pieces of storage, e.g., at different calls to the same
procedure,

. agiven binding may hold different valuesif you assign to it and change what's stored there.

To keep these terms straight, it's usually best to think about local variables; top-level or global variables are
aspecial case, because they only have one binding each.

Top-level defines can be alittle confusing in terms of the variable/binding/value distinction, because they do
three different things. They declare a variable that will be visible in a scope (the top level scope), they bind
they variable to new storage (creating the top-level binding), and they initialize that storage with an initial
value.

This is the end of Hunk M
TIME TO TRY I T QUT

At this point, you should go read Hunk N of the next chapter
and work through the exanples using a running Schene system
Then return here and resune this chapter.

(Go to Hunk N, which starts at section I nteractively Changing a Program (Hunk N).)

Go to the first, previous, next, last section, table of contents.
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Tail Recursion (Hunk O)

Many Scheme programs rely heavily on recursion, and Scheme makes it easy to use recursion in ways
that aren't feasible in most other languages. In particular, you can write recursive procedures which call
themselves instead of looping.

When a procedure callsitself in away that is equivalent to iterating aloop, Scheme automatically
"optimizes" it so that it doesn't need extra stack space. Y ou can use recursion anywhere you could use a
loop in a conventional language. Technically, loop-like recursion is called tail recursion, which wel'll
explainin detail in alater chapter.

The basic ideais that you never have to return to a procedure if all that procedure will do is return the
same value ot its caller. For example, consider the following procedure definition:

(define (foo)
(bar)
(baz))

Whenf oo callsbaz, itisatail call, because on return from baz, foo will do nothing except return the
returned value to its caller. That is, thereturnto f oo from baz will be immediately followed by areturn
to whatever procedure called f 0o. There's really no need to do two returns, passing through f oo on the
way back. Instead, Scheme avoids saving f 00's state before the call to baz, so that baz can return
directly to f oo'scaller, without actually coming back to f 0o0.

Tail-calling allows recursion to be used for looping, because atail call that actsto iterates aloop doesn't
save the caller's state on a stack.

Scheme systems can implement such tail calls asakind of GOTO that passes arguments, without saving
the state of the caller. Thisisnot unsafe, like language-level GOTO's, because it's only done when the
result would be the same as doing the extrareturns.

Some compilers for languages such as Common Lisp and C perform alimited form of "tail call
optimization," but Scheme's treatment of tail calls, is more general, and standardized, so you can use
recursion more freely in your programs, without fear of stack overflow if you code your routines tail-
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recursively.
And of course, you can use recursion the way you would in most languages, as well as for loops, so

recursion can do both jobs. While Scheme has conventional-looking |ooping constructs, they're defined
in terms of recursion.

Go to thefirst, previous, next, last section, table of contents.
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Macros

Scheme is very procedure-oriented, but procedures can't do everything, at least not in away that is
syntactically pretty and efficient.

Sometimes you want to define your own control structures and data-defining expressions that can't be
clearly and efficiently expressed as procedures, and for this Scheme provides a syntactic extension or
macro facility.

With macros, you can define stereotyped pieces of code, and how to transform them for different
purposes.

Y ou might have had bad experiences with macros in other languages, like C, but Scheme's macro system
Is specia. It's an extremely powerful mechanism for abstracting over programs and putting things
together in special ways.

Aswell seein alater chapter, with Scheme macros you can effectively reprogram the compiler to
change the language and its implementation. This is not something you'll need to do often--most of the
time you'll do fine with normal programming and higher-order procedures--but sometimes it's extremely
useful for building your own extended version of Scheme to solve particular kinds of problems, or for
automating tedious and repetitive aspects of program construction.

Go to thefirst, previous, next, last section, table of contents.
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Continuations

Scheme has the usual control constructs that most languages have--conditionals (if statements), loops,
and recursion--but it also has a very special control structurecalledcal | -w t h- current -
conti nuati on.

(Warning: cal | -wi t h-current-conti nuati oniswerd.)

call -wi th-current-continuati on alowsyou to save the state of a computation, package it
up as adata structure, and go off and do something else. Whenever you want, you can restore the old
saved state, abandoning the current computation and and picking up where the saved computation |eft
off.

Thisisfar more powerful than normal procedure calling and returning, and allows you to implement
advanced control structures such as backtracking, cooperative multitasking, and custom exception-
handling.

Youwontusecal | -wi t h-current-conti nuati on most of the time, because more
conventional control structures are usually sufficient. But if you need to customize Scheme with a
special control structure to solve a particular kind of problem, you cando it withcal | - wi t h-
current-continuation.

This is the end of Hunk O
TIME TO TRY I T QUT

At this point, you should go read Hunk P of the next chapter
and work through the exanples using a running Schene system
Then return here and resune this chapter.

(Go to Hunk P, which starts at section Basic Programming Examples (Hunk P).)

Go to thefirst, previous, next, last section, table of contents.
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Ilteration Constructs

Y ou may have noticed that we haven't discussed iteration constructs much. Scheme does include
iteration constructs like do, which we'll describe later, but you'll use them less than in most other
languages. It's usually easier to use recursion, once you get the hang of it. When you do use iteration
constructs, you should also understand that they're really syntactic sugar for recursion.

For most purposes, you can use Scheme's iteration constructs as you would in other languages, but
they're actually interestingly different. Scheme's iteration constructs are really syntactic sugar for tail
recursion. Anything you can do iteratively, you can do with recursion, and recursion lets you do other
things that normal iteration doesn't.

The main difference between Scheme's iteration constructs and the ones you may be used to is that loop
variables aren't updated at each iteration. This doesn't mean you don't have loop variables--the difference
is that loop variables are rebound at each iteration (tail call), rather than being bound once on entry to
the loop, and updated (assigned to) at each iteration.

(Don't worry if this doesn't make sense yet--it will later, in the Chapter on recursion.)

It turns out that having anew binding of the loop variable at each iteration is very convenient when
using first-class procedures and continuations. For example, if you create afirst-class procedurein a
loop body, it can continue to refer to the variable binding for the iteration of the loop that created it.

Go to thefirst, previous, next, last section, table of contents.
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Discussion and Review

Go to thefirst, previous, next, last section, table of contents.
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Using Scheme (A Tutorial)

In this chapter, I'll describe how Scheme works from the user's point of view, and how to write smple
programsin Scheme. Y ou should follow along, experimenting with the actual Scheme system you use.

This chapter is not meant to be read independently of the previous chapter. I've included notes saying
which parts of the previous chapter you should read before working through parts of thisone. If you
haven't aready, you should read the first part of that chapter.

This chapter is a'so not meant to be read without a running Scheme system to try things out.

. Interactive Prog Envt: An Interactive Programming Environment
. Using Predicates

. Loca Variables

. Using Procedures

. Interactively Changing a Program

. Some Other Useful Data Types: Strings and symbols

. Basic Programming Examples

. Procedural Abstraction

. Discussion and Review

(If you haven't read Hunk A of the previous chapter, please go to section What is Scheme? (Hunk A)
and read until you reach the end of Hunk A and are directed back here.)

Go to thefirst, previous, next, last section, table of contents.
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An Interactive Programming Environment (Hunk B)

Most Scheme implementations are interactive. The Scheme system isjust a program with acommand
interpreter. When it starts up, it presents you with a prompt, letting you type in an expression. The
Scheme system "interprets” that expression, and does what it saysto do. Then it prints out a textual
representation of the result of the expression.

(Y our Scheme system may have a graphical user interface, but the basic ideais the same--you tell
Scheme what to do, and it obediently doesiit, tells you what happened, and asks for the next command.
With a GUI, you may be able to tell Scheme what to do by clicking on buttons, etc.)

Thisisvery similar to an operating system's command interpreter or "shell.” A shell isjust an interpreter
for alanguage--usually areally ugly language.

The nice thing about an interactive programming environment is that your program doesn't go away after
you run it. You're "inside" the program, and you can tell it what to do, but instead of just running to
completion, it comes back and asks you what to do next.

The values of variables are still around, and you can look at them if you want to. This makes it easy to
debug a program. Y ou can type in definitions of variables and procedures, and then run a procedure and
seeif it does what you expect. If not, you can redefineit. In effect, you're inside your program, and the
Scheme system acts as a dispatcher, executing whatever part you want and letting you examine the
results. This makes it easy to build and test your program in small pieces, and gradually build up larger
and larger pieces that use those pieces.

In this section, we'll go through a simple example session with Scheme, fairly slowly, starting with
examples similar to the ones in the previous chapter. I'll assume Scheme is aready properly installed on
your system. If it's not, you need to get Scheme and install it, or have someone install it for you.

(Plug: you might want to use our Scheme, RScheme, which is free. There are other implementations of
Scheme of course, including commercial products and other free implementations. If you're using a
different Scheme, its operation should be very similar--see the manual for your system.)

It'savery good ideato follow along with this text in front of a running Scheme system, so that you get
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used to using it interactively. I'll assume you are doing this, and say "do this* and "do that." Y ou don't
have to do it, of course, but it's the best way to learn Scheme.

. Starting Scheme: making Scheme go

. Recovering from Mistakes: making mistakes and recovering from them
. Returns and Parentheses. formatting interactive input

. Interrupting Scheme: getting a stuck Scheme system unstuck

. Trying More Expressions: trying out more kinds of expressions
. Exiting Scheme: making Scheme go away

. Booleans and Conditionals: trying out basic control flow

. Sequencing: trying out begin and procedure bodies

. Other Flow-of-Control Structures: cond, and, and or

. Making Some Objects: messing around with pairs

. Lists: using lists

Go to thefirst, previous, next, last section, table of contents.
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Starting Scheme

First we start up Scheme. If we're using RScheme under UNIX, that's probably by typing r s at the
UNIX %prompt. (RScheme might be installed under a different name on your system, perhaps

r schene, if so, use that name instead. If you're not using UNIX, start up RScheme the way you start up
any program on your system, perhaps by clicking on itsicon. If you're using UNIX but your shell has a
different prompt, like >, don't worry about it.

[ Note to my (UT CSstudents: on our machines, RSchemeisinstalled as/ p/ bi n/ runschene. You
can just type that at the UNIX prompt, or if you have/ p/ bi n inyour path, plainr unschene will
do. ]

% S

Now the Scheme system starts up and prints out some information about itself, usually including
including the name and version version number, and then gives you a Scheme prompt. We'll pretend that
the prompt is Schene>, but on your system it's probably something different. (For RScheme, it's
something liket op[ O] =>, where the first few characters give you some information about the state of
the system, and the => tells you it's ready for input.)

Scheme then waits for you to typein an expression and hit <RETURN>. (By that | mean hit the
"RETURN" or "ENTER" key on the keyboard. In some Scheme systems, these may be distinct keys,
and you may haveto hit "ENTER"; the documentation for your system will tell you which key does
what.)

Scheme lets you type, echoing the characters to the screen, and doesn't do anything else until you hit
<RETURN>. Until you hit <RETURN>, you can back up to correct typing mistakes (just as you canin an
operating system's command shell), using the delete or backspace key.

Now typein avariable definition ( def i ne myvar 10), and hit <RETURN>. What's happening on
the screen looks something like this.

Generational Real -Tine Garbage Collector Version 0.5
RSchene version 0.7

Schene>(define nyvar 10)

#voi d

Schene>
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Here we defined avariable named nyvar , giving it theinitial value 10. Scheme read what we typed
and figured out what it meant, and then allocated some storage for the variable binding, and initialized
that storage with (a pointer to) 10. Scheme keeps track of the fact that the storage it allocated is now
known as nyvar , aswell as keeping track of the valuein it.

What Scheme prints out after evaluating this expression may be different on your system (you may not
see#voi d). That's because the Scheme standard doesn't specify what's returned as the value of a
definition expression. (It's possible that your Scheme system will print out something a little more
verbose, or different, or nothing at all asthe value of adef i ne expression. Don't worry about it.)

Y ou don't usually use the result value of a definition--you're just defining something to use later.
Depending on the implementation you're using, you'll see whatever the implementors chose to have
definitions return. In some systems, a special unusable value is returned, and Scheme will suppress the
printing of these meaningless values to avoid clutter on the screen.

Go to thefirst, previous, next, last section, table of contents.
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Making mistakes and recovering from them

Sometimes you'll make mistakes when interacting with Scheme. Thisis quite normal, and if you've done
it already, don't worry. When Scheme detects that something's wrong, it will complain. In most text-
based Scheme systems, it will give you a special kind of prompt, so that you can type in commands to
fix the mistake. In other systems, it may invoke a debugger, which is a program for diagnosing and
fixing mistakes. For now, you need to know the command for your system that tells Schemeto give up
on trying to fix the mistake, and go back to its normal "top level" interaction mode. Later, you should
learn how to use the debugging facilities of your system, but for now just being able to get back to the
normal Scheme prompt will do.

Assuming you've looked up the command for aborting an expression (by reading the manual, or asking a
help system), you should try it out. Y ou should make a mistake intentionally, watch what the system
does, and make sure you can recover from your mistakes.

Here's a good mistake, and a hypothetical response from the Scheme, and arecovery to the normal
Scheme prompt. Try this on your system, and make sure you can do the equivalent things:

Schene>(2 3 4)

ERROR: attenpt to apply non-procedure 2
br eak[ 1] >, t opl evel

Schene>

[ Note to RSchene users: in RSchene, the ,toplevel command above is
abbreviated ,top. ]

Here, we typed in the expression (2 3 4), whichisillegal. The Scheme system recognized it asa
compound expression that's not a special form, so it attempted to interpret it as a procedure call, and
apply the result of the first subexpression to the results of the other subexpressions. In this case, the first
subexpression is 2, which evaluates to 2, which isn't a procedure at al. At that point, Scheme
complained, telling us we'd tried to use 2 as a procedure, and switched to a "break loop™" for debugging.

The break loop presented the special debugging prompt br eak|[ 1] >, asking what to do about it. We
typed in the special command , t opl evel totell it to go back to normal interaction, and it did,
presenting us with afresh Schene> prompt.

In your system, the prompts and commands are likely to be different. (For example, special commands
may start with a colon, rather than a comma, and have different names.) Whatever they are, they'll be
simple, and you should learn to use them as soon as possible. See the documentation for your system.
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Here's another common mistake, which you will make pretty soon, so you should try it and see what
happens and how to get out of it:

Schene>a-vari abl e

ERROR: unbound vari abl e: a-vari abl e
br eak[ 1] >, t opl evel

Scheme>

Here what happened is that we asked Scheme to evaluate the expression a- var i abl e. Since a-

var i abl e isjust anormal identifier, like a variable name, Scheme assumed it was supposed to be a
variable name, and that we were asking for its value. There wasn't avariable named a- var i abl e,
though, so Scheme complained. In Scheme terminology for giving a piece of memory a name, we hadn't
defined that variable and "bound" it to storage. Scheme couldn't find any storage by that name, much
less fetch its value.

(Your system may let you get away with using set ! on an undefined variable, silently creating a
binding automatically. Thisis not required by the Scheme standard, and programs generally should not
do this.)

As before, we used the specia escape command to abort the attempt to eval uate this broken expression,
and get back to normal interaction with Scheme.

Go to thefirst, previous, next, last section, table of contents.
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Returns and Parentheses

A common mistake in Scheme is to forget the closing parentheses of expressions. If you forget a closing
parentheses--usually because you need several to close nested expressions--most systems will just hang,
waiting you to finish typing the expression.

Thisisafeature, not abug. It lets you put <RETURN>s (line breaks) in your input, to format the code on
the screen as you typeit in. When you type in the last closing expression and hit <RETURN> again,
Scheme recognizes that you've typed in awhole expression, and evaluates it and prints the result.

So if you type in an expression and hit <RETURN>, and Scheme doesn't do anything, check to seeif you
closed all of the parentheses you opened. If not, just type in the missing parenthesis and hit <RETURN>

again.

(It'salso possible that in your system, you have to do something special to get Scheme to evaluate an
expression--like hitting a different key, or clicking on a button or a menu item. In such systems,

<r et ur n> may be only for formatting the text you're inputting, and another key tells Schemeto go
ahead and evaluate what you've typed.)

Go to thefirst, previous, next, last section, table of contents.
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Interrupting Scheme

Inevitably, you'll sometimes code routines that get stuck in infinite loops (or infinite recursion). Y ou
need to know how to stop such loops and get back to the normal Scheme interaction prompt. Scheme
systems generally alow you to "interrupt" what the system is doing, and get a new prompt.

In most UNIX-based Scheme systems, you can use<ct r | >- C, i.e., hold down the CONTROL key and
hit the ¢ key, to send an interrupt. In other systems, there will be another keyboard command or a button
or menu item you can click. Find out what the command is for your system. You'll need it.

In generd, if the system hangs, you should check to seeif you closed all of the parentheses you opened--
it may just be waiting for you to finish your input. If that doesn't work, and you think the program is
stuck in an infinite loop, or some other computation you don't want to wait for, interrupt it with
<CTRL>- Cor the equivalent on your system.

It's possible that even this won't work. After all, Scheme systems can have bugs, too. In very unusual
circumstances, you may have to kill the Scheme program more brutally. If you're using a window
system, you may be able to just kill the window Scheme is running in. Under UNIX, you can use the ps
command to figure out the process ID of the Scheme process, and kill it with theki | | command. (This
may require the - 9 option.)

Go to thefirst, previous, next, last section, table of contents.
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Exiting (Quitting) Scheme

When you're through using Scheme interactively, you need to be able to get out of it. You give a
command to tell the interactive Scheme system (which isjust a program) to terminate.

Most systems have a special command (starting with comma or whatever the convention is), like ,
exit.(Iltmightasobe, quit,, halt,or, bye.) There may be a Scheme procedure you can evaluate
to kill the system, by evaluating a procedure call expression in the normal way, e.g., (exit),(hal t),

(quit),or(bye).

In many systems (especially under UNIX), you can use an interrupt key sequence to kill the system, if
you're at the top-level. E.g., at the top-level prompt, <ct r | >- D, may do it.

Go to thefirst, previous, next, last section, table of contents.
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Trying Out More Expressions

Now that you're familiar with typing in erroneous expressions, let's get back to trying legal ones.
If you've exited your Scheme system, fireit up again.

Typein the addition expression (+ 2 3), and hit <r et ur n>. (From now on, I'll skip saying "and hit
<r et ur n>." I'll also stop showing the prompt Scheme gives you after printing the result of an
expression.)

Schenme>(+ 2 3)
5

Again, Scheme evaluated the expression, printed the result, which was (a pointer to) 5, and gave you a
prompt to type in something else. Notice that it didn't save the value anywhere. It just printed out the
result.

Thevaluewe gaveto nmyvar earlier is still there, though. We can ask Scheme what it is, just by typing
in avariable reference expression, i.e., just the variable name.

Schene>nyvar
10

Scheme has kept track of the storage named myvar , and it evaluates the expression nyvar by looking
up the value. Then it prints out that result, and gives you another prompt, as it always does.

To change the value stored in the binding of myvar , and look at the new value, just typeinaset !
expression and then the name of the variable, like this:

Schene>(set! nyvar 32)
#voi d

Schenme>nyvar

32

Y ou may see adifferent result for theset ! expression. Standard Scheme doesn't specify the return
value of set ! , because you generally useit for its side-effect, not its result. Aswith def i ne, your
system may return something different. It may also suppress the printing of this useless value, so you
may not see anything at all.
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In some Scheme systems, the value of aset ! expression is the name of the variable being set, so you
may see somthing like this:

Schenme>(set! nyvar 32)
nyvar

Scheme>nyvar

32

(In other systems, it's something else, like the old value of the variable you're clobbering.) Y ou should
not depend on the value returned by theset ! if you want your program to be portable. In the example
above, it doesn't really matter what result theset ! returns, except that that's what gets printed out
before you get a new prompt. What matters about set ! isits effect, which isto update the value of the
variable binding. Aswe can seg, it had its effect--when we evaluate the expression nyvar , it returns the
new value, which is printed out: 32.

We can aso use more complicated expressions--just about anything. Now we'll increment the variable
by five, and again ask Scheme the value of the variable.

Schene>(set! nyvar (+ nyvar 5))
#voi d

Scheme>nyvar

37

Now let's define a procedure that expects a number as its argument, and returns a number that's twice as
big. Then wel'll call it with the argument 2.

Schene>(define (double x) (+ x X))
#voi d

Schene>(doubl e 2)

4

After evaluating the first expression, Scheme keeps track of the definition of doubl e. When wetypein
the second expression, Scheme calls that procedure, which returns a result, which Scheme prints out.

Since Scheme keeps track of the variables and values we typed in earlier, we can call doubl e to double
the value of myvar:

Schene>(doubl e nyvar)
74

We can define new procedures in terms of old ones. (Actually, we did this when we defined doubl e---
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it'sdefined in terms of +, which is predefined, i.e., Scheme knows that definition when it starts up.)

Schenme>(define (quadruple x) (double (double x)))
#voi d

Schene>( quadr upl e 15)

60

Now try using the predefined Scheme procedure di spl ay.

Schene>(di splay "Hello, world!")
Hel | o, worl d!
#voi d

Heredi spl ay had the side-effect of printing Hel | o, wor | d! to the screen, and returned the value
voi d#, which was printed.

What you see on the screen may vary in a couple of ways, neither of which isworrisome. Y our system
may have printed the return value on the same line as the (side-effect) output of di spl ay, without a
linebreak. Since the main use of di spl ay isfor its effect, its return value is undefined, so you may see
something other than #voi d, or nothing at all. Y ou might see this:

Schene>(di splay "Hello, world!")
Hel | o, worl d!
"Hell o, world"

If you do, it means that in your system di spl ay returns the object you asked it to display. Then
Scheme prints out that return value, with double quotesto tell you it's a string object. This shouldn't be
too surprising--remember that Scheme prints out the return values of expressions after evaluating them.

Now try di spl aying a number:
Schene>(di spl ay 322)

322
#voi d

Go to thefirst, previous, next, last section, table of contents.
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Booleans and Conditionals

In Scheme, falsity is represented by the value false, written #f . Conceptually, #f isapointer to a
special object, the false object.

Predicates are procedures that return either #t or #f , and don't have side effects. Calling a predicate is
like asking a true/false question--all you care about is ayes or no answer.

Try out the "greater-than" predicate >.

Schenme>(> 1 2)
#f

Here we told Scheme to apply the predicate procedureto 1 and 2; it returned #f and Scheme printed
that.

The important thing about #f isits use in conditionals. If the first subexpression (the condition) of an
| f expression returns the value #f , the second subexpression is not evaluated, and the third one is; that

valueisreturned as the value of the if expression.

Try just using the literal value #f asthe first subexpression of ani f , i.e., the "condition" that controls
which branch is taken.

Scheme>(if #f 1 2)
2

Here the second subexpression was just the literal 2, so 2 was returned.
Now try it using the predicate >

Scheme>(if (> 1 2) 1 2)
2

Thisisclearer if weindent it like this, lining up the "then" part (the consequent) and the "else" part (the
alternative) under the condition.

Scheme>(if (> 1 2)
1
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2)

Thisisthe right way to indent code when writing a Scheme program in an editor, and most Scheme
systems will let you indent code this way when using the system interactively--the you can hit
<RETURN>, and type in extra spaces. Scheme won't try to evaluate the expression until you write the
last closing parenthesis and hit <RETURN>. This helps you format your code readably even when typing
interactively, so that you can see what you're doing.

The false value makes a conditional expression (likeani f ) go one way, and atrue value will makeit go
another. In Scheme, any value except #f counts astrue in conditionals. Try this:

Schene> (if 0 1 0)
What result value does Scheme print?

One specia valueis provided, called the true object, written #t . There's nothing very special about it,
though--it's just a handy value to use when you want to return a true value, making it clear that all you're
doing is returning atrue value.

Scheme>(if #t 1 2)
1

Scheme>(if (> 2 1) 1 2)
1

Now let'sinteractively define the procedure mi n, and then call it:

Scheme> (define (mn a b)

(if (< ab)
a
b))
#voi d
Scheme> (m n 30 40)
30

Go to thefirst, previous, next, last section, table of contents.
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Sequencing

The Scheme system lets you type one expression, then it evaluates it, prints the result, and prompts you
for another expression. What if you want to type two or three expressions and have them executed
sequentially, i.e., in the written order? Y ou can use abegi n expression, which just sequencesits
subexpressions, and returns the value of the last subexpression in the sequence.

First let's define aflag variable, which we'll use to hold a boolean value.

Schene> (define flag #f)
#voi d

Now a sequence to "toggle" (reverse) the value of the flag and return the new value. If the flag holds #f ,
we set it to #t , and vice versa.

Schene> (begin (if flag
(set! flag #f)
(set! flag #t))

flag)
#t

Thisevaluated thei f expression, which toggled the flag, and then the expression f | ag, which fetched
the value of the variable f | ag, and returned that value.

We can also write a procedure to do this, so that we don't have to write this expression out next time we
want to do it. We won't need abegi n here, because the body of a procedure is automatically treated
likeabegi n---the expressions are evaluated in order, and the value of the last oneisreturned as the
return value of the procedure.

Schenme> (define (toggle-flag)
(if flag

(set! flag #f)

(set! flag #t))

flag)
#voi d

Now try using it.
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Schene>f | ag

#t

Schene>(toggl e-fl ag)
#f

Schene>f | ag

#f

Schene>(toggl e-fl ag)
#t

Go to thefirst, previous, next, last section, table of contents.
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Other Flow-of-control Structures

Go to thefirst, previous, next, last section, table of contents.
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Using cond

Go to the first, previous, next, last section, table of contents.
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Using and and or_

This is the end of Hunk B

At this point, you should go back to the previous chapter and
read Hunk C before returning here and continuing this tutorial.

(Go BACK toread Hunk C, which starts at section Comments (Hunk C).)

Go to thefirst, previous, next, last section, table of contents.
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Making Some Objects (Hunk D)

I've been talking about "objects," but most of the objects we've seen don't have interesting structure.

One of the most important kinds object in Scheme is the pair, which you can create with the built-in
procedurecons. A pair isasimple kind of structured object, like a Pascal record or a C struct. It has
two fields, called the car and the cdr, and you can extract their values with the standard procedures car
and cdr .

cons takestwo arguments, which it uses astheinitial values of the car and cdr fields of the pair it
creates. (cons iscaled that because it constructs a pair; the nameis short because it's a common
operation. In Lisp, pairsare called "cons cells' because you make them with cons.)

I'll show you some simple examples of playing with pairs, just to show you what they are. Be warned
that these are bad examples, in that there are usually cleaner ways to do things, which we'll discuss later
when we get to lists. (Lists are made of pairs.)

Schene>(cons 1 2)
(1. 2)

What happened here was that the call to cons created a pair, and returned (a pointer to) it. Scheme
printed out atextual representation of the pair, showing the values of its car and cdr fields, separated by
adot and enclosed in parentheses.

(The printed representation looks sort of like a Scheme expression, because of the parentheses, but it's
not--it's just the way Scheme prints this kind of data structure. We're looking at the value returned by the
expression (cons 1 2).Don't be confused by the similarity between written Scheme expressions and
the textual representation of data structures--they're very different things.)

We didn't do anything with the pair except let Scheme print it, so we've lost it--we didn't save a pointer
toit, so we can't refer to it. (The garbage collector will take back its space, so we don't have to worry
that we've lost storage space.)

Let'stry again, defining (and binding) a variable, and initializing it with the pointer that cons returns.
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Schene>(define ny-pair (cons 1 2))
#voi d

Schene>ny- pai r
(1. 2)

Now try extracting the values of the pair'sfields, using car and cdr .

(InScheme, (car f o00) isequivaent to C'sf oo- >car , dereferencing a pointer to an object and
extracting the value of thecar field. Likewise, (cdr f o00) islikef oo->cdr . The operators that
accessfields of a pair are just procedures.)

Schenme>(car ny-pair)
1

Scheme>(cdr ny-pair)
2

We don't need to use any special pointer syntax to dereference the pointer to the pair---car and cdr
expect a pointer, and return the field values of the pair it points to.

car and cdr only work on pairs. If you try to take the car or cdr of anything else, you'll get aruntime
type error.

Try it:

Schenme>(car #t)

ERROR: attenpt to take the car of a non-pair #t
break>, t op

Scheme>

The messages you'll see vary from system to system, but the basic ideais the same. We tried to take the
car of the boolean #f , which makes no sense because it has no car field--it doesn't have any fields.
Schemetold usit didn't work, and gave us a break prompt for sorting it out. Then we just used the, t op
command (or whatever works on your system) to tell Scheme to give up on evaluating that expression
and go back to normal interaction.

car and cdr don't work on the empty list. The empty list doesn't have car and cdr fields. (This may be

surprising to Lisp programmers, who expect the empty list to behave like Lisp'sni | . It doesn't, in this
respect.)
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Scheme also supplies procedures to change the values of apair'sfields, called set - car! and set -
cdr ! . They take two arguments, apair and avalue for the field being set.

Schene>(set-car! ny-pair 4)
#voi d

Schene>ny- pai r
(4 . 2)

Schene>(set-cdr! ny-pair 5)
#voi d

Schene>ny- pai r
(4 . 5)

The value of the variable my- pai r hasn't actually changed, even though it prints differently. my- pai r
still holds a pointer to the same object, the pair we created with cons. What has changed is the contents

of that object. Itsfields are like variable bindings, in that they can hold (pointers to) any kind of object,
and we've assigned new values to them. (They're value cells))

We can refer to the same object by another name if we just define another variable and initialize it with
ny- pai r'svalue.

Schene> (define sanme-pair ny-pair)
#voi d

Schene>sane- pai r
(4 . 5)

Now suppose we assign a new value to the car of the pair, referring to it viany- pai r

Schene>(set-car! ny-pair 6)
#voi d

Schene>ny- pair
(6 . 5)

Schene>sane- pai r
(6 . 5)

Notice that the change is visible through sane- pai r aswell asny- pai r, because we've changed the
object that both of them point to.
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Now let's make another pair with the same field values.

Schene>(define different-pair (cons 6 5))
different-pair

Schene>di fferent-pair
(6 . 5)

Schene>ny- pai r
(6 . 5)

Schene>sane- pai r
(6 . 5)

Notice that we have two different pairs, but Scheme prints them out the same way, because it just shows
us the structure of data structures. We can't tell that they're different just by looking at the printed
output. From the printed representation, we can't tell whether or not ny- pai r, sanme- pai r, and

di f f erent - pai r hold the same values.

Scheme provides a predicate procedure, eq?, to tell whether two objects are the exact same object.

Schene>(eq? ny-pair sanme-pair)

#t

Schene>(eq? ny-pair different-pair)
#f

Schene>(eq? sane-pair different-pair)
#f

eq? tests object identity, like pointer comparisonsin C (using ==) or Pascal (using =).

It may be confusing, but in programming language terminology, two objects are called identical only if
they are the very same object, not just two objects that ook alike, like "identical" twins. When the
government issues "identity" cards, thisisthe kind of "identity" we're talking about. Two so-called
identical twins have different identities, because they're actually different people. A pointer islikeaa
social security number, because it uniquely identifies a particular individual object.

Scheme also has atest to see whether objects "look the same,” that is, have the same structure. It's called
equal ?. Wecdl thisastructural equivalence test.

Schenme>(equal ? ny-pair sane-pair)
#t
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Schene>(equal ? ny-pair different-pair)
#t

Schene>(equal ? sanme-pair different-pair)
#t

di fferent-pair isequal ? tony- pai r and sane- pai r becauseit refers to the same kind of
object, and itsfield values are equal ?. Notice that that's a recursive definition, which wel'll discuss
more when we get to lists.

If we didn't have eq?, we could still figure out whether two objects were exactly the same object, by
changing one and seeing if the other changed, too.

Schenme>(set-car! ny-pair 4)
#voi d

Schenme>ny- pair
(4 . 5

Schenme>sane- pai r
(4 . 5

Schenme>di fferent-pair
(6 . 5)

Now | should warn you about set - car! andset - cdr! . The reason we put an exclamation point in
the name of a procedure that side-effects data is because it's dangerous. If you have two pointersto the
same data from different places, i.e., different variable bindings or data structures, it's hard to reason
about how changes from one of those places affect things at the other place.

In normal Scheme programming style, it is very common to create new data structures that have pointers
to other data structures, or parts of data structures. If you modify a shared part of one data structure, it
will affect the other data structure that shares that part. This can be very confusing, and leads to subtle
bugs.

Y ou should only use side effects when you have avery good reason to, and make it clear that that's what
you're doing. Later examples will show how to program in a style that uses very few side effects, and
only where they make sense.

Notice that cons is not considered a side-effecting operation, because it returns a new object that has
never been seen before. Somewhere in the implementation of the language, cons side-effects memory
toinitialize it, but you don't see that--from your program's point of view, you're getting a new piece of
memory that magically has valuesin place.
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Creating a pair doesn't modify any data structure that already exists, so the installation of itsinitial
valuesis not considered a side-effect.

This is the end of Hunk D.

At this point, you should go back to the previous chapter and
read Hunk E before returning here and continuing this tutorial.

(Go BACK to read Hunk E, which starts at section The Empty List (Hunk E).)

Go to thefirst, previous, next, last section, table of contents.
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Go to thefirst, previous, next, last section, table of contents.

Lists (Hunk F)

We usually use pairsin Scheme in a particular, stereotyped way, to build lists.

Pairs are really like binary tree nodes--you can use the car and cdr fields in the same ways. The normal
way of using them treats the car and the cdr differently, however.

The cdr field of apair is used to hold a pointer to another pair, or a pointer to the empty list, i.e., anull
pointer. This lets you string pairs to gether to make linked lists of pairs. The car fields of the pairs hold
pointers to any kind of object you want to put in alist.

We can therefore define the term list recursively as

. anempty lig, i.e, the null pointer object () , or
. aparwhosecdr valueisalist.

Think about this, and make sure that you understand why this covers all null-terminated lists strung
together by the cdr s, and nothing else. Lists of thisform are also called proper lists, and that's usually
what we mean when we say "list." The important fact about a proper list isthat it isalinear sequence of
pairs ending with the empty list.

We usualy think of lists as holding a sequence of values--we ignore the actual pairs, and think about
their cdr values.

Because thisis how lists are usually used, Scheme has a special way of printing lists. In the earlier
examples, | showed that theresult of (cons 1 2) printsas(1 . 2).

Y ou might think that theresult of (cons 1 (cons 2 '())) wouldprintas(1.(2.'()), but it
doesn't. It printsas (1 2).

The reason is that when Scheme encounters a pair whose cdr points to another pair or the empty list, it
assumes you want to think of it asalist of pairs strung together by the cdr s, and it only shows you the
car values. Thisis because we usually ignore the actual structure of alist--the sequence of pairs--and
think about the values the list holds.
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Try thisin your system:

Schene>' ()

()

Schenme>(cons 1 '())

(1)

Scheme>(cons 1 (cons 2 '()))

(12)

Schenme>(cons 1 (cons 2 (cons 3 '())))
(1 2 3)

Notice that the data structure that printsas (1 2 3) isredly abinary tree, and we could draw it like
this:

\
\
F-- -+
I
+--+---\
/ \

1 t-- -+
I
+/--+---\
/ \

2 t-- -+

| = * |
+/--4+---+
/

3

We generally wouldn't, though, because we think of it as a sequence of numbers, and the pairs are just
there to string them together in order. We'd draw it more like this, using the box-and-arrow notation
from the previous chapter:

N S S N S S N S S
Rt M BREE R I B EE ST B N
+-4- -+ +-4- -+ T

| | |

| | |

1 2 3

We've really just rotated the picture 45 degrees, so that "down and to the right" in the tree goes straight
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right, and looks more like "next" in alinear list.

(The arrow coming in from the left represents the pointer value that was returned, which the read-eval-
print loop handed towr i t e so that we could see the printed representation of the data structure.)

Drawing things this way lets us show shared structure, if alist overlaps with another list, e.g, if onelist
joins with the other because some car in each list points at the same object.

Note that alist of thisform aways ends with apair whosecdr is(), (i.e., the empty list, ak.a. the null
pointer).

If we had forgotten that, we might have tried to construct the list this way, with the innermost cons just
consing two numbers together:

Schenme>(cons 1 (cons 2 3))
(1 2. 3

Thisisacommon beginning mistake. We have constructed an improper list---one which is not null-
terminated. It doesn't end with () .

We could draw the list this way:

+- - - - -+ +- - - - -+
] I B S > * | *-+---->3
+-+- - - -+ +- - - - -+
| |
\ [/ \|/
1 2

Noticethedotin(1 2 . 3)---that'slikethedotin(2 . 3), saying that the cdr of apair pointsto 3,
not another pair or* () . Thatis, it'san improper list, not just alist of pairs. It doesn't fit the recursive
definition of alist, because when we get to the second pair, its cdr isn't alist--it's an integer.

Scheme printed out the first part of the list asthough it were anormal cdr-linked list, but when it got to
the end, it couldn't do that, so it used "dot notation."

Y ou generally shouldn't need to worry about dot notation, because you should use normal lists, not
improper list. But if you see an unexpected dot when Scheme prints out a data structure, it's a good
guess that you used cons and gave it anon-list asits second argument--something besides another pair

or().
Scheme provides a handy procedure that creates proper lists, called | i st .| i st can take any number
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of arguments, and constructs a proper list with those elementsin that order. Y ou don't have to remember
to supply the empty list---1 i st automatically terminates the list that way.

Scheme>(list 1 2 3 4)
(12 3 4)

We could draw the result like this:

S S S S S S S S
Rt R e et I B PR P N BRE P RPN B
R S S

| | | |

\ |/ \ |/ \ |/ \ |/

1 2 3 4

Like any other procedure, | i st can be used with arguments that are procedure calls, such as callsto
|i st itself.

Scheme>(list (list 1 2) (list 3 4))
((12) (34)

We can draw the result like this:
I e - I e -

'-->|*|*—+ ____________________ >|*|*|
+-+4+-4+---+ +-+4+-4+---+

|
\|/
S
| * | *_ 4
S
|
\|/
1

|
\|/
S
| * | *_ 4
S
|
\|/
3

e

While Scheme prints listsin normal list notation when it can (and only uses dot notation when it has to),
it can read either one.

We can typein literal lists using the quot e specia form, which just returns alist of the form we typed:

Scheme>(quote (1 2 3 4))
(12 3 4)
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Since Scheme can read dot notation, we can do thisin an equivalent way, using parentheses around the
contents of each pair, and a dot to separate the car and cdr values:

Scheme> (quote (1 . (2. (3. (4. (O))))))
(123 4)

The difference between | i st and quot e isthat | i st isjust a procedure, and each time you call it, it
createsanew list. Theargumentsto | i st can be any expressions you like, and their results are what's
put in thelist.

Schenme>(list (double 1) (double 2) (double 3) (double 4))
(2 4 6 8)

On the other hand, quot e isaspecia form. It always takes exactly takes one argument, which is not
evaluated at all---it's just a textual representation of a data structure.

Schene>(quote (double 1))
(doubl e 1)

What happened here is that quote just returned a data structure, thelist (doubl e 1) . It did not try to
interpret it as an expression and give its value.

(Thefirst itemin thelist isthe symbol doubl e. A symbol isjust another kind of data object, roughly
like a string, which we'll discuss later. It's not the same thing as a variable, even though it printslike a
variable name.)

Quoting is so common that Scheme provides a specia bit of syntactic sugar to make it easier. Instead of
writing out ( quot e before an expression, and a closing parenthesis after, you can just use the special
character ' . Whatever follows should be the textual representation of a data structure, and Scheme
constructs that literal data structure.

Schene>' (1 2 3 4)
(12 3 4

Schenme>' ((1 2) (3 4) (5 6))
((12) (34) (56))

Schenme>' (#f #t)
(#f #t)

Notice that you only need one quote character at the beginning of awhole literal--you don't need to
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separately quote the subparts, and you shouldn't.

Later, I'll talk about quoting things besides lists. Quoted lists are enough for now--well usethem alotin
examples.

[ Should demonstrate list, length, append, reverse, and member here, combining themin various ways. |

This is the end of Hunk F.

At this point, you should go back to the previous chapter and
read Hunk G before returning here and continuing this tutorial.

(Go BACK to read Hunk G, which starts at section Type and Equality Predicates (Hunk G).)

Go to thefirst, previous, next, last section, table of contents.
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Using Predicates (Hunk H)

Suppose we want to sum alist of numbers.
We can write aprocedurel i st - sumto do that, like this:

Schene> (define (list-sumlis)

(if (null? 1is) ; I f enmpty list?
0 , then sumis zero
(+ (car lis) ; else sumis car plus the

(list-sum (cdr lis))))) ; sumof rest of |ist
#voi d

Try typing in this example, or cutting and pasting it from this file into your running Scheme system. (If
you're reading this in aweb browser, that should be easy--just cut the text from the browser window, and
paste it into your Scheme window at the prompt.) Cutting and pasting is alot easier than typing in the
whole thing!

This procedure accepts one argument, | i s, which should be alist. It checksto see whether thelist is
empty, i.e., anull pointer, using the predicate nul | ?. If so, it returns O as the sum of the elementsin the
list.

If the list is not empty, the sum of the elementsisthe sum of thecar value, plus the sum of the
elementsin therest of thelist. Inthat case, | 1 st - sumtakesthe car of thelist and thel i st - sumof
the rest of the list, adds them together, and returns the result.

Try calling this procedure with some lists of numbers, e.g.,

Schenme>(list-sum' (1 2 3))

6

Schenme>(list-sum' (4 5 6))

15

Schenme>(list-sum (cons 1 (cons 2 (cons 3 '()))))
6
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The addition procedure + works with floating-point numbers, not just integers, so we can call list-sum
with alist of floats as well asintegers. (Asin most languages, floating point numbers are written with a
period to represent the decimal point. Note that there is no space between the digits and the decimal
point, so that Scheme won't confuse this with dot notation for lists.)

Scheme>(list-sum' (1 2.2 3.3))
We can modify | i st - sumto print out its argument at each call. Then we can watch the recursion:

Schene> (define (list-sumlis)
(display "in list-sum lis is: ")

(display lis)
(new i ne) ;. wite a |linebreak
(if (null? 1lis) ;i f enpty list?
0 ; then sumis zero
(+ (car lis) ; elseit's car plus the

(list-sum (cdr lis))))) ; sumof rest of I|ist
#voi d

. Using Type Predicates. Checking an object's type
. Using Equality Predicates. Checking whether objects are "the same"

Go to the first, previous, next, last section, table of contents.
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Using Type Predicates

We can easily write aprocedure pai r - t r ee- sumto give us the sum of abinary tree of integers,
whose interior nodes are pairs and whose |leaves are the integers.

[ blah blah blah... rewrite some of the following, simplifying to only handle trees, not proper lists. ]

Our notion of a"pair tree" isabinary tree of pairs. Here we're doing something a little strange, because
in general we're improper lists. We'll regard thecar and cdr fields of a pair asthe "left child" and
"right child" fields of atree node. A proper list wouldn't be a pair tree, because it the last pair in the list
would point to the empty list object, not a number.

(Later, I'll show arecord facility that allows us to build "tree node" records that are not pairs. That's
nicer, because it doesn't confuse pairs' rolesin improper lists with their rolesin trees. For now, welll
stick with pairs, because the point of this example is recursion, not the details of records.)

Just as we did for proper lists, we start by characterizing this data structure recursively. We'll consider
any subtree of a pair-tree to be a pair-tree. Thisincludes the leaves, e.g., the numbersin atree of
numbers. (Thisis analogous to the way we considered the empty list to be akind of list in the recursive
characterization of lists.)

A pair treeis either

. aleaf (not apair), or
. apair, whose car and cdr values are pair-trees.

Our recursive summing procedure will have to deal with these two cases:

. anumbers, i.e., leaves of atree of numbers, and
. pairs, in which case it should sum the left and right subtrees, and add those sums together.

Thefirst case is the base case for the recursion. The sum of aleaf isthe numeric of that leaf.
The second case is the recursive case, where we have a subtree to sum.
Schene>(define (pair-tree-sumpair-tree)

(cond ((nunber? pair-tree)

pair-tree)
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(el se
(+ (pair-tree-sum (car pair-tree))
(pair-tree-sum (cdr pair-tree))))))
Try this out, and make sure you understand why it works.

Schenme>(pair-tree-sum 1)

1

Scheme>(pair-tree-sum' (1 . 2))

3

Scheme>(pair-tree-sum' ((40 . 30) . (20 . 10)))
100

Notice how simple pai r - t r ee- sumis, and how it depends on getting the base case for the recursion
right. If we hadn't considered the leaves to be pair-treesin their own right, it would have gotten much
uglier. For example, if we'd "bottomed out" at pairs whose left and right children weren't both pairs,
we'd have had more cases to deal with--cases where one child isaleaf but the other's not.

Add di spl ay andnew i ne expressions at the beginning of pai r -t r ee- sum aswedidfor | i st -
sum and try it out again. Be sure you understand the output in terms of the recursive call pattern.

Go to thefirst, previous, next, last section, table of contents.
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Using Equality Predicates

Suppose that Scheme didn't provide the predicate equal ? to do structural comparisons. We could write
our own, because we have other type and equality predicates.

Let'swrite asimplified version of equal that works for lists, including nested lists. We'll consider objects
to beour - equal ? if they are either

. exactly the same objects or equivalent numbers, i.e., they'reeqv?, or
. if they're both pairs whose cars are our - equal ? and whose cdrs are also our - equal ?.

That is, we'll test lists recursively for structural equivalence, "bottoming out” when we hit something
that's not apair. Thisis pretty much what the standard Scheme predicate equal ? does, except that it
can handle structured data types besides pairs. (For example, it considers two strings with the same
character sequence equal ?, even if they're two different objects.)

Schene>(define (our-equal? a b)
(cond ((eqv? a b)

#t)

((and (pair? a)
(pair? b)
(our-equal ? (car a) (car b))
(our-equal ? (cdr a) (cdr b)))

#t)

(el se

#t)))

This procedure checks the easy case first (which isusually agood idea): if two objects are eqv ?, they're
asoour - equal ?.

Otherwise, they're only our - equal ? if they're both pairs and their cars are equal and their cdrs are
equal. Notice the use of and here. We first check to see that they're pairs, and then take their cars and
cdrs and compare those. If they're not pairs, we won't ever take their cars and cdrs. (If we did, it would
be an error, but we rely on the fact that and tests things sequentially and stops when one test fails.)

Try it out:

Scheme>(our-equal ? ' () '())
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#t

Schene>(our-equal ? 1 1)

#t

Schene>(our-equal ? 1 2)

#f

Schene>(our-equal ? ' (1) '(1))

#t

Schenme>(our-equal ? ' (1) '())

#f

Schenme>(our-equal? ' (1 (2)) '(1 (2)))
#t

Schenme>(our-equal ? ' (((3) 2) 1) "(((3) 2) (1))
#f

Schene>(our-equal ? ' ((#f . #t) . (#f . #t))
C((HE L #) L (#F . #t)))
#t

This is the end of Hunk H

At this point, you should go back to the previous chapter and
read Hunk | before returning here and continuing this tutorial.

(Go BACK toread Hunk I, which starts at section Choosing Equality Predicates (Hunk 1).

Go to thefirst, previous, next, last section, table of contents.
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Go to thefirst, previous, next, last section, table of contents.

Local Variables, | et , and Lexical Scope (Hunk J)

This is the end of Hunk J

At this point, you should go back to the previous chapter and
read Hunk K before returning here and continuing this tutorial.

(Go BACK to read Hunk K, which starts at section Procedures (Hunk K).)

Go to thefirst, previous, next, last section, table of contents.
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Go to thefirst, previous, next, last section, table of contents.

Using First-Class, Higher-Order, and Anonymous Procedures
(Hunk L)

In this section, we'll play with Scheme's procedures, to illustrate

. first class procedures, which are normal data objectsin the language,

. higher order procedures, which can take procedures as arguments and return them as values, and

« anonymous procedures, which can be created and referred to via pointers, without giving them
names.

I'll just briefly demonstrate those ideas for now; later programming examples will show how they're
really useful.

First-Class Procedures

Scheme procedures are first-class objects in the language; you refer to a procedure in the same way you
refer to any other object, viaa pointer. A "procedure name" isreally just a variable name, and you can
do the same things with "procedure" variables as with any other variable. There'sreally only one kind of
variable in Scheme, and it'stype is " pointer to anything."

When we "define a procedure” in Scheme, we're really just defining a variable and giving it an initia
value that's (a pointer to) a procedure object.

The procedure defining syntax with parentheses around the procedure name (and argument names) is
really just syntactic sugar, i.e., aconvenient way of writing something that you could do in another way.

For example,

Schenme>(defi ne (double x)
(+ x x))

#voi d

IS exactly equivalent to
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Schene>(defi ne doubl e
(1 ambda (x)
(+ x X))
#voi d

Try thislatter version in your system. Notice that what you're doing is just defining a variable named
doubl e andinitializing it with the result of the second expression, alambda expression.

| anbda istherea procedure-creating operation. It's a special form, because it lets you define a new
procedure rather than calling an existing procedure in the normal way. | anbda creates a procedure
object and returns a pointer to it.

(The predicate pr ocedur e? can be used to tell if an object is a procedure.)

You can call thedoubl e procedure created this way in exactly the same way as one created with the
sugared procedure-definition syntax.

Schene>(doubl e 3)
6

Recall how procedure calls really work. When you call a named procedure, e.g., (doubl e 3), the
procedure nameisreally just areference to avariable. The first position in the procedure call formis
just an expression that's evaluated like any other. In this case, we're using the name doubl e asan
expression, effectively saying "look up the value of doubl e."

Try this

Schenme>doubl e
#<pr ocedur e>

Notice that we didn't put parentheses around doubl e, so we're not calling it--we're fetching the value of
the variable doubl e. What you see on your screen may vary, but it's your system's printed
representation of a procedure object. Take alook at it, because you'll want to be able to recognize
procedure objects in data structures.

(The printed representation may include the name of the procedure; don't be misled by this. Procedures
don't really have names--they're just data objects you can have pointersto, as I'll explain shortly. Y our
system your system may put a name inside the procedure when you use the procedure definition syntax,
but it's just an annotation saying what the procedure's original name was--i.e., when it was first defined.)

We can call aprocedure in other ways, though--the first subexpression of a procedure call can be any
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expression we want, aslong as it returns a procedure. That expression is evaluated just like the argument
expressions--after it and the argument expresssions are eval utated, the resulting procedure is called with
those argument val ues.

Schenme>(define |ist-hol di ng-double (list double))
#voi d

Schenme>| i st - hol di ng- doubl e
(#<procedure>)

Scheme>((car |ist-hol ding-double) 5)
10

What we did here was to create a list holding the procedure formerly known as doubl e, and looked at
that list. Then we called that procedure by using the expression (car | i st - hol di ng- doubl e) as
its "name."

What this shows is that procedures are really anonymous, that is, a procedure doesn't have anamein a
direct sense. There are just expressions we can refer to it by, if those expressions result in pointersto the
procedure.

We can create procedures without normal names at all, by just using | anbda. Let's create another
doubling procedure by just evaluating al anbda expression:

Schene>(l anbda (x) (+ X X))
#<pr ocedur e>

Thel anbda expression just created a procedure and returned a pointer to it, and Scheme displayed it
however your system doesit. We didn't keep a pointer to the procedure, so we can't call it now. The
procedure is gone and the garbage collector will clean it up.

We could try again, creating a procedure and keeping a pointer to it in anamed variable. More
interestingly, we can just hand the pointer to a procedure call, and call it without ever giving it a name.

Scheme>((lanbda (x) (+ x x)) 6)
12

It may not look likeit, but thisisjust a procedure call expression, where the "name" of the procedureisa
| anbda expression to create the procedure we need, and its argument is 6. Note the nesting of
parentheses--thisisjust like ( doubl e 6) , except that we give the "definition" of the procedure to call,
instead of its name.
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Later we'll show why using | anmbda directly is often much more convenient than having to name all of
our procedures. I'll also explain why | anbda isthe most important special form in Scheme--it is so
powerful that most of the special forms can easily be trandated into it.

(Y ou might be concerned that creating a procedure and just using it once is very expensive, but it turns
out not to be--I'll explain that later, too. For now, don't worry about it.)

Go to thefirst, previous, next, last section, table of contents.
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Using and Writing Higher-Order Procedures

A higher-order procedure is one that can take procedures as arguments and/or return them as values. We
can use that to write general procedures that do a basic kind of thing, and take arguments that specialize
their behavior. The arguments are themselves procedures, which will do specialized things withing the
general pattern that the general procedure implements.

Here's asimple example.

Scheme provides a procedure di spl ay, which can write textual representation of a data object on the
screen, much like the way the read-eval-print loop displays results of expressionsyou typein. (Thisisa
very handy procedure for debugging, as well asfor programs that interact with users.)

Suppose, though, that you want to display alist of objects, not just one. You want aroutinel i st -
di spl ay toiterate over alist, and display each itemin it. The obvious way to write it isto just call
di spl ay frominsideyour | i st - di spl ay routine.

(Actually, di spl ay candisplay alist of items, but it puts parentheses around the itemsin thelist. Let's
suppose we don't want those parentheses around the di spl ayed items. Writing our own | i st -

di spl ay will give usthe freedom to make it do whatever we want it to, rather than what di spl ay
does automatically for lists.)

Here'saversion like that:

Schenme>(define (list-display |is)
(if (null? 1is)
#f
(begin (display (car lis))
(list-display (cdr lis)))))

I've written this procedure recursively, because it's easy to use recursion over lists--usually it's easier
than using an iteration construct. This procedure checksto seeif the list it got was empty, and if so, it
returns #f. (That's a reasonable value to return from a procedure that's used for effect, rather than for
value.) Otherwise, it displaysthe first item, and then calls itself recursively to display the rest of the list.
| used abegi n to sequence the displaying and the recursive call.

It would be cleaner to use cond, so here's an equivalent version using cond:
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Schene>(define (list-display lis)
(cond ((null? lis)
#f)
(el se
(display (car lis))
(list-display (cdr lis)))))

Notice that thisis atwo-branch conditional, but we use cond instead of i f because acond branch can
be a sequence. (We need a sequence because we want to use display to create a side-effect, i.e., writing
to the user's screen, aswell as calling list-display recursively to do the rest of the work.)

Now try it out:

Scheme>(list-display '(1 2 3))
123#f

What happened hereisthat it displayed each item in thelist as it was evaluated, and then Scheme
printed out the return value, #f .

Thisworks, but the procedure is not very general. Iterating over listsis very common, so it would be
nice to have amore general procedure that iterates over lists, and applies whatever procedure you want.

We can modify our procedure to do this. Instead of taking just alist argument, it can take an argument
that's a procedure, and apply that procedure to each element of the list.

WEe'I call our procedurel i st - each, because it iterates over alist and does whatever you want to each
element.

Schene>(define (list-each proc lis)
(cond ((null? lis)
#f)
(el se
(proc (car lis))
(l'ist-each proc (cdr 1is)))))

The only change we made was to add an argument pr oc, to accept (a pointer to) a procedure, and to
changethecall todi spl ay intoacall to pr oc.

Remember that procedure names are really just names of variables that hold pointers to procedures, so
thisworks--(proc (car |is)) isjustacombination whosefirst expressionispr oc, which looks
up the value of the local variable pr oc.
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Now we can call this general procedure with the argument di spl ay, totell ittodi spl ay each thing
inthelist.

Schenme>(list-each display '(1 2 3))
123#f

But maybe thisisn't what we want. We might want to print each item, and then a newline (go to the next
line), to spread things out vertically. We could write aproceduredi spl ay-w t h- newl i ne todo
that, but it's easier just to use al anmbda expression to create the procedure we need.

Try this:

Schenme>(list-each (| anbda (x)
(di splay x)
(new ine))

(12 3))

1

2

3

#voi d

Thel anbda expression creates a one-argument procedure that will di spl ay itsargument and then
call new i ne. We pass the procedure that results from this| anbda directly tol i st - each, without
ever giving it aname, or saving a pointer to it anywhere. (After list-each is through with it, the
procedure will become garbage and its space can be reclaimed by the garbage collector.)

(Scheme has a standard procedure similar toour | i st - each, but more general, called f or - each.)

This is the end of Hunk L

At this point, you should go back to the previous chapter and
read Hunk M before returning here and continuing this tutorial.

(Go BACK toread Hunk M, which starts at section | anbda and Lexical Scope (Hunk M).)

Go to thefirst, previous, next, last section, table of contents.
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Interactively Changing a Program (Hunk N)

Replacing Procedure Values

Earlier we showed how to replace normal data values in variable bindings, using the side-effecting
specia formset ! .

We can also change procedure values. One way of doing thisisjust to change the value of the procedure
variable. (Remember that a"named" procedureisreally just afirst-class procedure object that happens
to be referred to via a pointer stored in a variable binding.)

Just as we changed the value of the variable myvar using set ! , we can change the value of the
procedure variable quadr upl e. Try this:

Schene>( quadr upl e 3)

12

Schene>(set! quadrupl e doubl e)
#<procedur e>

Schene>( quadr upl e 3)

6

What happened here is that when we evaluated the expression (set ! quadr upl e doubl e) itjust
did the usual thing set ! doeswhen both of its arguments are variables--it computed the value of the
expression on the right, in this case by fetching the value from the binding of doubl e, and stored it into
the (binding of) the variable on the left. In this case, the value of doubl e is (apointer) to a procedure--
the one that we created when we def i ne'd doubl e. This pointer was copied into quadr upl e, so
that it now contains a pointer to the very same procedure.

Calling quadr upl e now has the same effect as calling doubl e, because either way, apointer is
fetched from the variable, and whatever it procedure it pointsto is called.

Note that while thisillustrates how Scheme works, and we'll show why it's handy later, it's not usually a
great idea to go around changing the values of procedure variables by side-effecting them with set ! .
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Usually, once a program has been developed, you don't want to clobber named procedures, because it
makes the code hard to understand--you don't want your finished program to go around changing the
meaning of procedure names asit runs. Y ou normally want to be ableto look at your program and see
the definitions, and not have to worry that some other part of the program may change the procedures at
odd moments.

During interactive development of a program, however, it's often very convenient to be able to change a
procedure's behavior at will. We're not really modifying a procedure, though--we're changing a variable
binding's value to affect which procedure is called. We don't have to actually modify any procedure
objects, because we can replace a pointer to one procedure with a pointer to another.

Usually you'll want to do this by redefining the procedure with another def i ne expression.

For example, suppose we want to restore the old behavior of quadr upl e, which we foolishly
clobbered above. We can simply def i ne it again, the old way:

Schenme>(define (quadruple x) (double (double x)))
#voi d

In afinished program, you generally shouldn't have multiple definitions of the same thing--adef i ne
form should define something that doesn't change during program execution. If you want to change the
state of abinding, useset ! to makeit clear that's what's going on, and put a comment at the definition
of the variable warning that it is likely to be changed at runtime.

Most interactive Scheme systems let you def i ne the same variables multiple times, though, so that you
can change things during program development. (Note that we're talking about redefining the same
program variable here, not defining different variables with the same name in different scopes.)

Loading Code from a File

When you're actually developing a program, you often want to save the text in afile, rather than just
typing it in and losing it when you exit the Scheme system.

The simplest way of doing thisisto use an editor in one window and Scheme in another. From the
editor, save your program text into afile, and then load it into Scheme with the | oad procedure. | oad
takes a string as an argument, which is the name of the file to load, and reads it in just as though you had
typed it in by hand, at the prompt. (A string literal iswritten with double quotes around it; there'll be
more about strings more later.)

Type the following text into your editor and saveit into afilenamedtri pl e. scm
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(define (triple x)
(+ x (+ x x)))

Now, at the Scheme prompt, load the file and call the procedure:

Schenme>(1oad "triple.scnt)
| oading...triple...done
Schenme>(triple 3)

9

(Notice that in the above example, there's no connection between the string we used to name thefile,
“triple.scnt, andthe name of the procedure, t ri pl e. Wejust choseto call thefile"tri pl e.
scni' toremind uswhat'sinit.)

Usually, when you're devel oping a program, you should put only afew definitionsin afile--maybe just
one. Thislets you change small parts of your program, saved the changed file, and reload the file to
change the definitions in your running Scheme system.

Good editors also have packages that allow you to run Scheme and use an editor command to send the
contents of afile (or a selected region of afile) to Scheme, as though you'd typed it in. (Emacs has
excellent facilities for this.)

If you're using agraphical user interface, you may be able to simply cut text from your editor, and paste
it into the window you have Scheme running in, so that it appears to Scheme as though you'd just typed
itin.

Be careful about reloading definitions. When you load afile, the Scheme system will reuse the same top-

level bindings, and reinitialize them. In general, new objects will be constructed, even if the textual
definitions haven't changed.

For example, suppose we have the following code in afile, which we've already loaded once:
(define ny-list (list 1 2))
(define ny-other-list (cdr ny-list))

If we reload thisfile, all three definitions will be processed again. A new list will be constructed and the
existing binding of my- | i st will be updated to point at the new list.

Likewise, the existing binding of my- ot her - I i st will be updated with the cdr of that new list. Each
time we reload the file, we'll recreate the intended data structure, including the sharing relationship
between the two lists.

http://www.federated.com/~jim/schintro-v14/schintro_100.html (3 of 4)11/3/2006 9:06:30 PM



An Introduction to Scheme and its Implementation - Interactively Changing a Program

But now consider what happens if this code is spread across two files, with the definition of nmy-

ot her-1i st inadifferent file, which we don't reload. If we just reload the first definition, then the
binding ny- ot her - | i st will still refer to thecdr of the old list, not the new one. If your code
depends on the two lists sharing structure, it not behave as expected, because the two variables bindings
will refer to distinct lists.

Procedures can cause the same sorts of problems. If you have a pointer to a procedure in a data structure,
and then you redefine the procedure by modifying the definition and reloading it, a new procedure object
will be created, but the old data structure will still hold a pointer to the old procedure object.

In general, you should be careful to recreate any data structures holding procedures if you redefine those
procedures. Thisisusually easy, if you reload the code that creates the data structures, after reloading
the new definitions of the procedures.

Notice that thisis not necessary if you just call top-level procedures (or look up variable values) in the
usual way. For example, given our earlier definitions of double and quadr upl e, changing doubl e
affectsquadr upl e immediately. Every time we call quadr upl e, it fetches the current value of the
binding of doubl e, which ensures that it sees the most recent version. We can reload the code for
doubl e, without reloading the code for quadr upl e.

Loading and Running Whole Programs

[ to bewritten ]

Go to thefirst, previous, next, last section, table of contents.
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Some Other Useful Data Types

[ Parts of this should probably be moved into the previous chapter, and new examples put in this
section. ]

Scheme has several important kinds of data objects that are useful in programming in general, and
particularly for writing an interpreter, as we'll do in the next chapter. These include character strings,
symbols, and lists.

Scheme has two data types that represent sequences of characters, called strings and symbols. Strings are
pretty much like character strings in most programming languages--they represent a sequence of text
characters. Symbols are sort of like strings, but have a very specia property--there's only one symbol
object with any particular sequence of characters.

Symbols have a special role in the implementation of Scheme, because they're part of the normal
representation of source code; symbols are used to represent names of variables, procedures, special
forms, and macros. They're really just akind of data object, though--you can use them in your programs,
whether or not you want to represent code.

Listsare used in interpreters and compilers to represent compound expressions in the source code;
nested expressions are generally represented by nested lists.

More generally, there's a category of Scheme data structures called s-expressions, which consist of basic
types including symbols, strings, numbers, booleans, and characters, and list of those simple types, or
lists of such lists.

"S-expression” is short for "symbolic expression,” but it's something of a misnomer. An expression is
really apiece of aprogram. An"s-expression " is just a data structure, which may or may not represent
an expression in a programming language, although interpreters and compilers often happen to use them
that way.

. Strings. Character Strings

. Symbols: Symbols are like Strings, but Unique
. ldentifiers: A Note on Identifiers

. Lists: Lists

Go to thefirst, previous, next, last section, table of contents.
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Strings

Character strings in Scheme are written between double quotes. For example, suppose we want an object
that represents the text "Hello world!" We can just write that in a program, in between double quotes:
"Hell o, world!".

Y ou can use a string as an expression--the value of a string is the string itself, just as the value of an
integer isthe integer itself. Like numeric literals and booleans, strings are "self-evaluating,” which just
means that if you have an expression in your program that consists of just a string, Scheme assumes you
mean the value to be literally that string. There's nothing deep about this--it just turns out to be handy,
because it makes it easy to use strings as literals.

Try typing thestring " Hel | o, wor | d. " at the Scheme prompt.

Scheme>"Hel | o, world!"
"Hell o, world!"

What happened here is that Scheme recognized the sequence of characters between double quotes as a
string literal. The value of aliteral string expression (in double quotes) is a (pointer to) a string object. A
string object is anormal first-class object like a pair or a number, conceptually like an array that can
only hold characters.

Thisvalue is what scheme printed out. The standard printed representation of a string object isthe
sequence of characters, with double quotes around it.

So what happened here is that Scheme read the sequence of characters in double quotes, constructed an
array-like object of type string, then printed out the printed representation of that object.

If you want to print out a string, but without the double quotes, you can use the standard procedure
di spl ay. If you passdi spl ay astring, it just prints out the characters in the string, without any
double quotes.

di spl ay isuseful in programs that print information out for normal users. Another useful procedureis
new i ne, which prints a newline character, ending aline and starting a new one.

Try typinga(di splay "Hello, world!") (newine) atthe Scheme prompt. What you get
may look like this:
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Schene>(display "Hello, world!") (newine)
Hel | o, worl d!
#voi d

Y ou might see something slightly different on your screen, depending on the return value of newl i ne,
which is unspecified in the Scheme standard.

If you typein an expression using a string literal like" f 00" at the Scheme prompt, Scheme may
construct a new string object with that character sequence each time.

Try this:

Schenme>(define fool "foo")
#voi d

Schenme>(define foo2 "foo")
#voi d

Schenme>f o0l

"foo"

Schenme>f 002

"f oo"

Schene>(eq? fool foo02)

#f

Schene>(equal ? fool fo002)
#t

For each of the def i ne forms, Scheme has constructed a string with the character sequencef -0-0, and
saved it in anew variable binding. When we ask the value of each variable, Scheme prints out the usual
text representation of the string. The printed representations are the same, since each string has the same
structure, but they're two different objects-when we ask if they'reeq?, i.e., the very same object, the
answer isno (#f ).

It's possible that in your system the eq? comparison will return #t , because Scheme implementations
are allowed to use pointersto the same string if you type in two strings with the same character
sequence. For that reason, you should be careful not to depend on whether Scheme strings are eq?; you
should only distinguish whether they're equal ?. You can also use the predicate st r i ng- equal ? if
you know the arguments are supposed to be strings. This has the advantage of signaling an error if the
arguments are of unexpected type.

Strings can be used as one-dimensional arrays (vectors) of characters. There are procedures for
accessing their elements by an integer index, extracting substrings given two indices, and so on.
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Symbols

Symbols are like strings, in that they have a character sequence. Symbols are different, however, in that
only one symbol object can have any given character sequence. The character sequenceis called the
symbol's print name. A print name is not the same thing as a variable name, however--it's just the
character sequence that identifies a particular unique symbol. It's called the print name because that's
what's printed out when you di spl ay the object (or wr i t e it).

Unlike strings, booleans, and numbers, symbols are not self-evaluating. To refer to aliteral symbol, you
have to quote it. Since print names of symbols look just like variable names, you have to tell Scheme
which you mean.

If we type in the character sequencef o o without double quotes around it, Scheme assumes we mean to
refer to avariable named f 00, not the unique symbol whose print nameisf oo.

In interpreters and compilers, symbol objects are often used as variable names, and Scheme treats them
specialy. If we just type in acharacter string that's a symbol print name, and hit return, Scheme assumes
that we are asking for the value of the binding of the variable with that name--if there is one.

Schene>(define foo 10)
#voi d

Scheme>f oo
10

If we quote the symbol name with the single quote character, Scheme interprets that as meaning we want
the symbol object f 0o.

Scheme>' f 00
f oo

Since we've aready defined (and bound) the variablesf 001 and f 002, we can ask Scheme to look up
their values.

Schene>f ool
mn f 00|l
Schene>f 002
mn f 00|l
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Here we've typed in the names that we gave to variables earlier, and Scheme looked up the values of the
variables.

Aswe've seen before, this doesn't work if there isn't abound variable by that name. Symbols can be used
as variable names, if you define the variable, but by default a symbol is just an object with a particular
print name that identifiesiit.

If we want to refer to the symbol object f 00, rather than using foo as a variable name, we can quoteit,
using the special quote character * . Thistells Scheme not to evaluate the following expression, but to
treat it asliteral data.

Scheme> ' f oo

f oo

When you type' f 00, you're telling Scheme you want a pointer to the symbol whose print nameisf oo.
It doesn't matter whether there's avariable named f 00 or what its current value is---' f 00 meansa
pointer to the unique symbol object whose print nameisf 0o, which has nothing to do with any variable
f 0o.

Thefirst time you type in a symbol name, Scheme constructs a symbol object with that character
sequence, and puts it in aspecial table. If you later type in a symbol name with the same character
sequence, Scheme notices that it's the same sequence. Instead of constructing a new object, asit would
for astring, it just finds the old one in the table, and uses that--it gives you a pointer to the same object,
instead of a pointer to a new one.

Try this:

Schene>(define barl 'bar)

#voi d

Schene>(define bar2 'bar)
#voi d

Schene>(eq? bar1l bar?2)

#t

Here, when we typed in the first definition, Scheme created a symbol object with the character sequence
b ar, and added it to its table of existing symbols, aswell as putting a pointer to it in the new variable
binding bar 1. When we typed in the second definition, Scheme noticed that there was already a symbol
object named bar , and put a pointer to that same object in bar 2 aswell.

When we asked Scheme if the values of bar 1 and bar 2 referred to the same object, the answer was
yes (#t )---they both referred to the unique symbol bar ; there is only one symbol by that name.
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The big advantage of symbols over stringsis that comparing them is very fast. If you want to know if
two strings have the same character sequence, you can use equal ?, which will compare their
characters until it either finds a mismatch or reaches the ends of both strings.

With symbols, you can use equal ?, but you can get the same results using eq?, which is faster. Recall
that eq? just compares the pointers to two objects, to seeif they're actually the same object. For
symbols, this works to compare the print names, too, because two symbols can have the same name only
if they're the same object. Y ou don't have to worry about symbols being equal ? but not eq?.

This makes symbols good for use as keysin data structures. For example, you can zip through alist
looking for asymbol, using eq?, and al it hasto do is compare pointers, not character sequences.

Another advantage of symbolsisthat only one copy of its character sequence is actually stored, and all
occurrences of the same symbol are represented as pointers to the same object. Each additional
occurrence of symbol thus only costs storage for a pointer.

If you're doing text processing in Scheme, e.g., writing aword processor, you probably want to use
strings, not symbols. Strings support more operations that make it convenient to concatenate them,
modify them, etc.

Symbols are mainly used as key values in data structures, which happen to have a convenient human-
readable printed representation.

If you need to convert between strings and symbols, you canuse st ri ng- >synbol and synbol -
>string.string->synbol takesastring and returns the unique symbol with that print name, if
thereisone. (If there's not, and the string is alegal symbol print name, it creates one and returnsit.)
synbol - >st ri ng takesasymbol and returns a string representing its print name. (Thereisno
guarantee as to whether it always returns the same string object for a given symbol, or a copy with the
same sequence of characters.)

Go to thefirst, previous, next, last section, table of contents.
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A Note on Identifiers

When you typeinastring,e.g.," This here is a string, you know. ",youcantypein
pretty much whatever you want, as long as it's between double quotes and doesn't have double quotes or
nonprinting charactersin the middle. (Y ou can have strings with double quotes in them, but you have to
use a special escape sequence trick.)

When you type in a symbol, on the other hand, you have to be alittle more careful--some character
sequences count as symbol names, but others don't. For example, the character sequence 1 2 3 doesn't
count as asymbol 123, becauseit's a number. Character sequences with spaces, parentheses, and single
guotes in them are also a no-no, because those characters have special meaning when reading and
writing the printed representations of Scheme data structures.

A symbol name has to start with an "extended al phabatic" character--that aletter or any of afairly large
set of printing characters, followed by a string of other extended al phabetic characters or digits. (The
extended alphabetic charactersarea-z, A-Z, andthesee+ - . * /| <=>1 2?2 : $ % _ & ~

N )
For example, the following are all symbols:

. X
. thursdays-total *3

. amis_are was_were be being been
. abl e-was-1-ere-1-saw el ba

. floppy drive-3.5

. fourscore-and-7-years-ago

. X-15+three-tines-thirty-seven

. =1
. | hs=>rhs
« X+ -3%

Thereisadlight restriction that you can't use a symbol name that starts with a character that could begin
alitera number. Thisincludes not only digits, but +, - , . and #. A special exception to thisisthat +,
and - , by themselves, are symbols, and sois. . . (theellipsisidentifier used in macros).

Scheme identifiers (variable names and special form names and keywords) have almost the same
restrictions as Scheme symbol object character sequences, and it's no coincidence. Most
implementations of Scheme happen to be written in Scheme, and symbol objects are used in the
interpreter or compiler to represent variable names.
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Don't read too much into this, however: it's easy to write a Scheme interpreter or compiler in Scheme,
and that iswhy the rules for symbol names are the same as the rules for variable names, but symbols and
variables are very, very different things. A symbol isjust a data object, like a string, that has the specia
property of being unique. Y ou can use symbols like any other data object, as part of any data structure.

It just happens that interpreters and compilers generally use symbol objects to represent the names of
variables and whatnot, so it's convenient that the rules for symbol object names are the same as the rules
for identifiersin the language--but there is no other connection.

Symbols are not necessarily variable names, they're just akind of data object (like strings) that happen to
get used that way, by some programs (interpreters and compilers). Your programs can use them any way
you choose. (Sorry to be repetitive on this point, but confusing symbols and variables is one of the most
common and avoidable problemsin learning Scheme. It'sworse in Lisp, where symbols and variables do
have a deep connection, but not an obvious one.)

Go to thefirst, previous, next, last section, table of contents.
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Lists Again

Suppose we want to make alist of symbols whose print names are the English words for the first five
integers. We could do it using quoting, of course, like this:

Schene>(define firstfive '(one two three four five))
#voi d

Schenme>firstfive

(one two three four five)

We don't have to quote each symbol individually. Within aquot e expression, everything is assumed to
be literal data, not expressions to evaluate.

We could alsodoit by calling | i st to construct the list, and handing it each of the five symbols as
literals. To do that, we have to quote them, so that Scheme won't think we're referring to variables
named one, t wo, etc.

Schene>(define firstfive (list
#voi d

Schenme>firstfive

(one two three four five)

one 'two 'three 'four 'five))

Sincel i st isaprocedure, its argument expressions are evaluated. We use aquot e around each
expression, so that it will return a pointer to the appropriate symbol, rather than the value of the variable
by the same name.

Thisworks whether or not there is a variable by that name, because names of symbols and names of
variables are completely different things.

For example, even after evaluating the above expressions, attempting to evaluate the expression f our
will be an error, unless we've defined a variable named f our . The existence of a symbol with agiven
print name doesn't say anything about the existence of a variable with that name.

Heterogeneous Lists

Since Scheme is dynamically typed, we can put any kind of object in alist. So far, we've made alist of
integers and alist of symbols. We can a'so make alist of different kinds of things, such asalist of
integers, symbols, and lists.
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Schenme>(define m xed5 '(one 2 (three and a) "four" 5))

#voi d
Schene>m xed5
(one 2 (three and a) "four" 5)

Here we've constructed a mixed list whose first element is a symbol, the second is an integer, the third is
alist of symbols, the fourth is a string, and the fifth is another integer. (The technical term for a mixed

list isa"heterogeneouslist.")

We can draw it like this:

+o---- +
mxed5 | H+--4-->+---H---+ Aot -t oo oot oot
+----- + | + | +-+-> + | +-+-> + | +-+-> + | +-+-> + | * |

e i T e S e e =
| | |
\ |/ \ |/ |
one 2 |
|
\ |/

e

+-4- 4o - -+

|
\ |/
"four"

e

+-4- 4o - -+

I
\ |/
5

e

| +| +-+->| +| +-+->| +| *|

+-4- 4o - -+

|
\ |/
t hr ee

+-4- 4o - -+

|
\ |/
and

+-4- 4o - -+

I
\ |/
a

Notice that we draw the symbols (one, t hr ee, and, and a) as simple sequences of characters. Thisis
just adrawing convention. They're really objects, like pairs are. We draw strings similarly, but with
double gquotes around them. Don't be fool ed--these are objects on the heap, too. We just draw them this

way to keep the picture from getting cluttered up.

Operations on Lists

We've already seen two list-processing procedures that you'll usealot, car and cdr . car takesa
pointer to apair, and extracts the value of itsfirst (car ) field. cdr takes a pointer to a pair and returns

the value of its second (cdr ) field.

(It might have been better if car had been calledf i r st and cdr had beencalled r est , since that's
more suggestive of how they're used: a pointer to thefirst item in alist, and a pointer to the pair that
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heads the rest of the list.)
Given our list stored inm xed5, we can extract parts of the list using car and cdr .

Schenme>(car m xedb)

one

Schenme>(cdr m xedb)

(2 (three and a) "four" five)

By using car and cdr multiple times, we can extract things beyond the first element. For example,
taking the cdr of thecdr of alist skipsthefirst two elements, and returns the rest:

Schenme>(cdr (cdr m xedb))
((three and a) "four" 5)

Taking the car of that list (that is, the car of thecdr of thecdr ) returnsthefirst item in that list:

Schene>(car (cdr (cdr m xed5)))
(three and a)

We can keep doing this, for example taking the second element of that sublist by taking the car of its
cdr.

Schenme>(car (cdr (car (cdr (cdr mxed5)))))
and

This starts to get tedious and confusing--too many nestings of procedures that do too little at each step--
so Scheme provides a handful of procedures that do two list operations at a whack. The two most
important onesare cadr and cddr .

cadr takesthecar of thecdr , which givesyou the second item in thelist. cddr takesthe cdr of the
cdr, skipping thefirst two pairsin alist and returning the rest of thelist.

Thislets us do the same thing we did above, alittle more concisely and readably:

Schenme>(cadr (car (cddr m xed5)))
and

With alittle practice, it's not hard to read afew nested expressions like this. In this example, taking the
cddr of m xed5 skips down the list two places, giving usthe list that starts with the sublist we want.
Then taking the car of that gives usthe sublist itself off the front of that list, and taking the cadr of
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that gives us the second item in the sublist.

Of course, even if Scheme didn't provide cadr and cdr , you could write them yourself in terms of car
and cdr :

(define (cadr x)
(car (cdr x)))

(define (cddr x)
(cdr (cdr x)))

Scheme actually provides predefined list operations for all combinations of up to four car 'sand cdr 's.
For example, cadadr takesthecadr of thecadr . (The naming schemeisthat the pattern of a's and
d's reflects the equivalent nesting of callstocar and cdr .)

Y ou probably won't want to bother with most of those, because the names aren't very intuitive. Two
procedures that are worth knowing arel i st -ref andlist-tail .

(11 st-ref listn) extractsthenth element of alist| i st , which isequivalent to n-1 applications of
cdr followed by car . For example, (1 ist-ref '(a b ¢ d e) 3) isequivaentto(car
(cdr (cdr '"(a b c de)))),andreturnsd.)

In effect, you can index into alist asthough it were an array, using | i st - r ef . (Of course, the access
time for an element of alist islinear in the index of the element. If you need constant-time access, you
can use vectors, i.e., one-dimensional arrays.) Notice that the numbering is zero-based, which is why
(list-ref lis 3) returnsthefourth element of al i s. Thisis consistent with the indexing of
vectors, which are also zero-based, as well as reflecting the number of cdr operations.

(list-tail listn) skipsthefirst n elementsof alist and returns a pointer to the rest, whichis
equivalent to repeated applications of cdr . (Thisis standard R4RS Scheme, but not IEEE Scheme. If
your Scheme doesn't providel i st -t ai | , you can easily write your own.)

These two procedures can make it much clearer what you're doing when you extract elements from
nested lists. Suppose that we have alist f 0o, which isatriply-nested list--alist of lists of lists, and we
want to extract the second element of the bottom-level list that is the third element of the middle-level
list that is the fourth element of the outermost list.

We couldwrite(car (cdr (car (cdr (cdr (car (cdr (cdr (cdr f00))))))))),
but that's pretty hard to read. If we use cadr , caddr , and cadddr , we can make it somewhat more
readable by using one function call at each level of structure: (cadr (caddr (cadddr foo0))).
But it'sstill clearer towrite (I i st-ref (list-ref (list-ref foo 4) 3) 2)

http://www.federated.com/~jim/schintro-v14/schintro_105.html (4 of 5)11/3/2006 9:07:19 PM



An Introduction to Scheme and its Implementation - Lists Again

or (indented)

(list-ref (list-ref (list-ref foo 4)
3)
2)

list-ref andli st-tail aremuch moreconvenient than thingslike caddr when the indexesinto
alist vary at run time. For example, we might use an index variablei (or some other expression that
returns an integer) to pick out the ith member of alist: (1 i st-ref foo i).Writingthiswith car
and cdr would require writing aloop or recursion to performn-1 cdr 'sand acar .

This is the end of Hunk N

At this point, you should go back to the previous chapter and
read Hunk O before returning here and continuing this tutorial.

(Go BACK to read Hunk O, which starts at section Tail Recursion (Hunk O).)

Go to thefirst, previous, next, last section, table of contents.
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Basic Programming Examples (Hunk P)

[ From here on, the text is not structured as a type-along tutorial interleaved with Chapter 2. However, it'sagood
ideato experiment with the examples interactively in arunning Scheme system . | In thissection, I'll give afew
simple examples of Scheme programming, mostly using recursion to manipulate lists without side effects. (Later,
I'll revisit some of these examples, and show how to implement them more efficiently, using tail recursion, but still
without side effects.)

I'll show how to implement simple versions of some standard Scheme procedures; this may help you understand
what those procedures do, and how to use them. (Later, I'll return to some of these examples and show how to
implement more general versions.) I'll also give some examples that aren't standard Scheme procedures, but
illustrate common idioms.

Some of these examples use higher-order procedures--procedures which operate on procedures--and toward the end
of the section, I'll discuss currying, atechnique for creating specialized versions of proceduresin a particular
context.

Y ou should get used to thinking recursively, and avoiding side effects most of the time. It's often easier to write
things recursively than using normal loops and side effects.

An Error Signaling Routine

It's often useful to put error-checking code in your procedures, to make sure that their arguments satisfy whatever
preconditions they need to operate correctly.

In a dynamically-typed language, thisis often good for making sure that you detect errors where pass valuesto a
procedure that can't handle arguments of those types. Usually when you do that, you'll find out soon enough,
because you'll perform an illegal operation (like taking the car of a number), and Scheme will detect the error and
tell you.

Scheme doesn't yet have a standard error signaling routine, but we will use one that many systems provide, called
error.error takesany number of arguments, di spl aysthem to tell the user what went wrong, and signals an
error. (In most interactive Scheme systems, you'll get a break prompt like the one you get when Scheme itself
detects an error.)

[ If your system doesn't have er r or , you'll get an error signaled anyway, in the form of an unbound variable
exception whenyoutry tocal error! ]

[ moved example code for length, append, reverse from hereto an earlier section ]

map and f or - each
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map and f or - each are used to apply a procedure to elements of lists. They're good for coding repetitive
operations over sets of objects.

map

map takes a procedure and appliesit to the elements of alist (or corresponding elements of a set of lists), returning
alist of results.

For example, if we want to double the elements of alist, we can use nap and the doubl e procedure we defined
earlier:

Schene>(map double "(1 2 3))
(2 4 6)

If the procedure we're calling takes more than one argument, we can pass two lists of argumentsto map. For
example, if we want to add corresponding elements of two lists, and get back a corresponding list of their sums, we
can do this:

Schenme>(map + '(1 2 3) '(4 5 6))
(5 7 9)

Right now, we'll just write asimplified version of map, which takes one list of values and applies a one-argument
procedure to them.

(define (map proc lis)
(cond ((null? lis)
()
((pair? lis)
(cons (proc (car lis))
(map proc (cdr lis))))))

Notice that map may construct alist of results front-to-back, or back-to-front, depending on the order of the
evaluation of the argumentsto cons. That is, it may apply the mapped procedure on the way down during
recursion, or on the way back up. (Thisis allowed by the Scheme standard--the order of the results in the resulting
list corresponds to the ordering of the argument list(s), but the dynamic order of applicationsis not specified.)

f or-each

Like map, f or - each applies a procedure to each element of alist, or to corresponding el ements of a set of lists.
Unlike map, f or - each discards the values returned by all of the applications except the last, and returns the last
value. (The applications are al'so guaranteed to occur in front-to-back list order.) Thisis sort of like what abegi n
expression does, except that the "subexpressions’ are not textually written out--they're applications of afirst-class
procedure to list items.

Likebegi n, f or - each isused to execute expressions in sequence, for effect rather than value, except that the
last value may be useful.
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Here'sasimplified version of f or - each, whichwelll call f or - each1. It takes exactly one procedure, assumed
to be a procedure of one argument, and one list. It applies the procedure to each of the elements of thelist in turn,
and returns the result of the last application.

(define (for-eachl proc lis)

(cond ((null? (cdr lis)) ; one-elenent list?
(proc (car lis)))
(el se

(proc (car lis))
(for-eachl proc (cdr lis)))))

Notice that thisis alittle different from our usual recursive list traversal, where the first thing we do is check
whether the list isempty. f or - each makes no sense for an empty list, since it must return the value of the last
application.

Sincef or - each must take alist of one or more items, the base case for the recursion is when we hit a one-
element list, rather than an empty list. The recursive case is when we have alist that's got more than one element.
Anything else is an error due to bad input.

We can characterize this kind of data structure recursively, almost the same way as the normal definition of a proper
list:

A list-of-one-or-more-elementsis

. alist of one element, i.e., apair whose cdr is null, or
. alist of more than one element, i.e., a pair whose cdr is alist-of-one-or-more-el ements.

The codefor f or - eachl directly reflects this characterization of the data it's expected to handle. The base case
comes first, and then the recursive case.

If f or - each1 encounters anonlist or an empty list, it will signal an error immediately, because both branches
assume that they're operating on a pair, and attept to take the car of it, which isan error for anything but a pair. If
f or - eachl encounters an improper list, it will likewise signal an error at the first cdr that doesn't refer to pair.

Asusual, thisis what we want--the recursive structure of the data structure we're operating on is reflected directly
in the structure of the recursive code, and unexpected data cause errors to be signaled immediately.

nmenber and assoc, and friends

The standard Scheme procedures nenber and assoc are used for searching lists. I'll show how they can be
implemented in Scheme, even though every Scheme system includes them.

Each of these procedures has two alternative versions, which use different equality tests (eq? or eqv?) when
searching for aniteminlist.
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menber, neny, and menv

menber searchesalist for an item, and returns the remainder of the list starting at the point where that itemis
found. (That is, it returns the pair whose car refersto theitem.) It returns #f if theitemisnot inthelist.

For example, (nenber 3 ' (1 4 3 2)) returns(3 2),and(nenber 'foo ' (bar baz quux))
returns #f .

Lists are often used as an implementation of sets, and menber servesnicely asatest of set membership. If anitem
isnot found, it returns#f , and if it is, it returnsapair. Since apair is atrue value, the result of nenber can be used
like aboolean in a conditional.

Since member returns the "rest” of alist, starting with the point where the item is found, it can also be particularly
useful with ordered lists, by skipping past all of the elements up to some desired point, and returning the rest.

(define (nmenber thing lis)
(if (null? 1lis)
#f
(if (equal? (car lis) thing)
lis
(menber thing (cdr lis)))))
Note that menber usestheequal ? test (data structure equivalence) when searching. This makes sensein
situations where you want same-structured data structures to count as "the same." (For example, if you're searching

alist of lists, and you want a sublist that has the same structure as the target list to count as "the same.") Note that if
the elements of thelist are circular data structures, menber may loop infinitely.

If you want to search for a particular object, you should use menq?, which islike menber except that it usesthe
eq? test, and may be much faster.

If the list may include numbers, and you want copies of the same number to count as "the same”, you should use
menv.

assocC, assq, and assv

assoc isused to search a special kind of nested list called an association list. Association lists are often used to
represent small tables.

An association list isalist of lists. Each sublist represents an association between a key and alist of values. The car
of thelist istaken as the key field, but the whole list of valuesis returned.

(Typically, an association list is used as a simple table to map keys to single values. In that case, you must
remember to take the cadr of the sublist that assoc returns.)

Some example uses:
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Schenme>(assoc 'julie '((paul august 22) (julie feb 9) (veronique march 28)))
(julie feb 9)

Schene>(assoc 'key2 '((keyl vall) (key2 val 2) (keyO val0)))
(key2 val 2)

Schene>(cadr (assoc 'key2 '((keyl vall) (key2 val2) (keyO val0))))
val 2

Schenme>(assoc '(feb 9)
"(((aug 1) maggie phil) ((feb 9) jimheloise) ((jan 6) declan)))
((feb 9) jimhel oi se)

And the code:

(define (assoc thing alist)
(if (null? alist)
#f
(i1f (equal? (car (car alist)) thing)
(car alist)
(assoc thing (cdr alist)))))

Notice that the basic pattern of recursion here isthe same as for traversing other proper lists. The Like menber ,
assoc usestheequal ? test when searching alist. Thisiswhat you want if (and only if) you want same-
structured data structures to count as "the same."

assqislikeassoc, but usesthe eq? test. Thisisthe most commonly-used routine for searching association lists,
because symbols are commonly used as keys for association lists. (The name assq suggests "associate using the
eq? test.")

If the keys may be numbers, assv? should probably be used instead. It considers = numbers the same, but
otherwise tests object identity, likeeq?. (The name assv suggests "associate using the eqv ? test.")

Go to thefirst, previous, next, last section, table of contents.
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Procedural Abstraction

Scheme's main abstraction mechanism is procedural abstraction; we define procedures that represent
common operations, and "specialize" those procedures by passing arguments. by passing different
arguments,w we can make the same routine do somewhat different things, depending on the particular
data it encounters at run time.

Since Scheme procedures are first-class data objects, we can customize procedures in terms of other
procedures. We can write a general procedure with a"hol€e" init, to be specialized by another procedure.

Go to thefirst, previous, next, last section, table of contents.

http://www.federated.com/~jim/schintro-v14/schintro_107.html11/3/2006 9:07:39 PM


http://www.federated.com/~jim/schintro-v14/schintro_1.html
http://www.federated.com/~jim/schintro-v14/schintro_1.html

An Introduction to Scheme and its Implementation - Procedure Specialization

Go to thefirst, previous, next, last section, table of contents.

Procedure Specialization

Suppose that we are writing a program where we need to take alist of numbers and produce a
corresponding lists with numbers ten times as big.

Notice that we already have a procedure, map, that can iterate over alist, apply afunction to each item,
and return the list of function values. We also have a multiplication procedure, * that can multiply
numbers by any value we want.

Wecan'tjust write(map * sone-|i st), though, because when map iterates over asinglelist, it
expects a procedure that takes exactly one argument, and * takes two arguments. Somehow, we need to
supply the argument 10 to each of the calls map makesto * .

What we need is a one-argument function that multiplies its argument by ten. We could define our own
multiplication-by-ten procedure, * 10, and then use map to apply it to the elements of sone- | i st .

(define (*10 nunber)
(* 10 nunber))

(map *10 sone-1ist)

Here we've specialized * to create * 10---we've taken afunction with some number of arguments, and
produced a function with fewer arguments, which is equivalent to calling the original procedure with the
missing argument always the same.

If * 10 isonly used in one place, there's really no need to create a named procedure--we can just use a
| anmbda expression to create the procedure where we need it, at the call to map:

(map (Il anbda (nunber)
(* 10 nunber))
sonme-1ist)

Here we create an anonymous procedure that multiplies its argument by 10, and pass that procedure and
alist to map, which will map the procedure over the list and return the corresponding list of results.

It is often a good idea to design procedures with specialization in mind.

Consider assoc, which hasvariantsassq and assv; the only difference between them is what
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comparison operator they use.
Likewise, menber has variants meng and nenv.

Consider the similarities between nenber , nenv, and neng. All of them do aimost the same thing,
with the difference being which equality test they use during a search.

We can define a general procedure, mem which expresses the similarities between these procedures, and
then specialize that procedure. That is, in writing mem welll leave a"hole" for the comparison operator.
That holeisjust an argument. Our general procedure will ook like menber , except that it will take an
argument saying which test to use. In Scheme, thisis easy--we can simply hand it afirst-class procedure
likeequal ? or eq?, or any other test we want to use, and have it call that procedure to perform the
test.

(define (nmemtest-proc thing |lis)
(if (null? lis)
#f
(if (test-proc (car lis) thing)
lis
(memtest-proc thing (cdr lis)))))

To get the effect of ( menber sone- key sone-1|ist),wecanwrite( mem equal ? sone-
key sone-list).

Note that here we're not calling equal ? directly--we're just passing the value of the variable equal ?

(i.e., the procedure first-class procedure object equal ?) to mem nemreceives this value when the
argument variablet est - pr oc isbound, and can call it by that name.

(Inthe* 10 example, we specialized * with data--the number 10---but here we're specializing memwith
a procedure. The same technique works, because procedures are data objects, and can be passed as
arguments like any other data, then called as procedures.)

If Scheme didn't provide menber , we could easily define it by specializing mem--we ssmply define
menber to call mem but always pass equal ? asthe first argument:

(define (nmenber thing lis)
(memequal ? thing lis))

Likewise, we could define menqg and menv by specializing nemwith eq? and eqv?, respectively.

Thiskind of function specialization is particularly useful when you have a pattern for a procedure, but
may need arbitrary variants of it in the future.
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For example, suppose you want to search alist of lists, and you want your search routine to return the
first sublist whose first two elements match a particular two-element list. (This might be an ordered list
of birthdays, and you could be searching for the part of the list that starts with a particular month of a
particular year.)

Y ou might search the list for any list whose first elements are 1964 and Decenber , by handing it a
target list (1964 Decenber), likethis:

(memfirst-two? ' (1964 Decenber)
"((1961 January 15 "Susan")
(1964 March 28 "Edward")
(1964 March 29 "Sel ena")
(1964 Decenber 31 "Anton")
(1965 January 8 "Booker"))))

and get back the result

((1964 Decenber 31 "Anton")
(1965 January 8 "Booker"))))

menber , meny, and menv are uselessfor this, but it's pretty easy with mem First we define a match
predicate for our purpose:

(define (first-two-eqv? target thing)
(and (eqv? (car target) (car thing))
(eqv? (cadr target) (cadr thing))))

Then we curry mnemwith that predicate to create our search procedure:

(define (memfirst-two? thing lis)
(memfirst-two-eqv? thing 1is))

Iffirst-two-eqv?isonlylikelytobeusedinnmem first-two,wecanputitinsdenem
first-two,asalocal procedure, instead of leaving it hanging out where it can be called from other
procedures. Thisisagood ideafor a procedure that is so specialized that it's unlikely to be useful in any
other way--especially if you're sure it works for what you designed it for, but think it may be tricky to
use for dlightly different purposes. (For example, we've chosen to use the eqv ? test for matching list
elements, but for some purposes this might be the wrong choice.)

(define (memfirst-two thing lis)
(let ((first-two-eqv? (lanbda (target thing)
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(and (eqv? (car target) (car thing))
(eqv? (cadr target) (cadr thing))))))
(memfirst-two-eqv? thing lis)))

In thisroutine, f i r st - t wo- eqv? isonly called from one place--the call to mem Rather than defining
it as anamed procedure, using | et r ec and | anbda, we can ssimply use thel anbda expression at the
one place the procedure is needed:

(define (memfirst-two thing lis)
(mem (| anbda (target thing)
(and (eqv? (car target) (car thing))
(eqv? (cadr target) (cadr thing))))
t ar get

lis))
Thisidiom is very common in situations where you need a small procedure in exactly one place.

Likewise, if mem f i r st - t wo itself isonly useful in one place, it would be reasonable to avoid
making it aprocedure at all, and instead to simply call memfrom that place:

(mem (| anbda (target thing)
(and (eqv? (car target) (car thing))
(eqv? (cadr target) (cadr thing))))
t ar get
lis)

Go to thefirst, previous, next, last section, table of contents.
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Procedure Composition

Go to thefirst, previous, next, last section, table of contents.
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Currying

[ ugh... need to decide what's technically currying and what isn't... and provide a precise definition.]

Above | showed that we can "specialize" a procedure by having it take an argument that specifies an
action to take. It is often useful to have a procedure that can create procedures of some general type,
producing a specialized procedure each timeit's called.

For example, rather than having to specialize memby hand, we can provide a procedure that automates
the process. This procedure make- mem pr oc will take a comparison routine as an argument, and
return a specialized version of memthat uses that procedure.

(define (nmake-nmem proc pred?)
(lanbda (target lis)
(mem pred? target lis)))

Each time this procedure is called, it will bind its argument variable pr ed?, and create a new procedure
that will call mem Each new procedure will "remember"” the binding of pred? that was created for it, so
each one can do something different.

Now we can define mnenber , menmv, and neny, by using this procedure to create three new procedures,
each with its own captured binding of pr ed?.

(define nmenber (make-nmem proc equal ?))
(define nmeny (make- mem proc eq?))
(define nmenv (make- mem proc eqv?))

(Notice that we're using plain variable definition syntax here. We're just defining variables nenber ,
meny, and nenv, and initializing them with procedures (closures) returned by make- mem pr oc.)

Of course, if we only use memin this way, then we don't actually need separate memand and nak e-
mem pr oc procedures. We can just write make- mem pr oc using alambda expression that's
equivalent to mem

(define (make-nmem proc pred?)
(letrec ((memproc (lanbda (thing lis)
(if (null? Iis)
#f
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(if (pred? (car lis) thing)
lis
(memproc pred? thing (cdr lis)))))))
mem proc))

Herel'veused al et r ec so that the procedure will be able to call itself recursively. Each time we call
make- mem pr oc, it will bind itsargument pr ed?, initializing it with the procedure argument we
pass. Then it will bind mem pr oc and create the specialized procedure using | anbda. Note that the
bindings of both pr ed? and mem pr oc will be remembered by the closure created by | anbda. This
allows the new closure to see both the predicate it should use, and itself, so that it can call itself
recursively.

[ A picture would be nice here, showing what we get when we define mem nment, and nenv using
make- mem pr oc... three variable bindings, holding three closures, each of which is closed in an
environment with its own binding of mem pr oc scoped inside its own binding of pr ed?. ] There are
two advantages to coding make- mem pr oc thisway. Oneisthat it avoids cluttering up our code with
adefinition of memthat's external to make- mem pr oc. [ another advantage is that a good compiler
will be able to optimize the code better, because it can tell that the value of a bindings of pr ed? or
mem pr oc will never change once the binding is created. It may use that information to generate better
code... |

Discussion and Review

Go to thefirst, previous, next, last section, table of contents.
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Writing an Interpreter

In this chapter, I'll show asimple interpreter for a subset of Scheme, written in Scheme.

I'll start out with avery ssmple interpreter for atiny subset of Scheme, which only understands ssimple
arithmetic expressions.

Then I'll improve the interpreter in variety of ways.

In alater chapter, well return to thisinterpreter and add macros, [ bl ah bl ah bl ah... ].

Go to thefirst, previous, next, last section, table of contents.
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Interpretation and Compilation

Programming languages are usually implemented by interpreters or compilers, or some mix of both. In
reality, amost all language implementations are amix of both, to at least a small degree, and the line
between them is surprisingly fuzzy.

A pure interpreter reads the source text of aprogram, analyzesit, and executesit asit goes. Thisis
usualy very slow--the interpreter spends alot of time analyzing strings of characters to figure out what
they mean. A pure interpreter must recognize and analyze each expression in the source text each time it
Is encountered, so that it knows what to do next. Thisis pretty much how most command shell
languages work, including UNIX shellsand Tcl.

A pure compiler reads the source text of a program, and translates it into machine code that will have the
effect of executing the program when it isrun. A big advantage of compilersisthat they can read
through and analyze the source program once, and generate code that you can run to give the same effect
as interpreting the program. Rather than analyzing each expression each time they encounter it,
compilers do the analysis once, but record the actions an interpreter would take at that point in the
program.

In effect, acompiler isaweird kind of interpreter, which "pretends’ to interpret the program, and
records what an interpreter would do. It then goes through its record of actions the interpreter would
take, and spits out instructions whose effect is the same as what the interpreter would have done. Most
of the decision-making that the interpreter does--like figuring out that an expression is an assignment
expression, or a procedure call--can be done at compile time, because the expression is the same each
time it's encountered in running the program.

The compiler'sjob isto do the work that's always the same, and spit out instructions that will do the
"real work™ that can only be done at runtime, because it depends on the actual data that the program is
manipulating. For example, ani f statement isalwaysani f statement each timeit's encountered, so
that analysis can be done once. But which branch will be taken depends on the runtime value of an
expression, so the compiler must emit code to test the value of the expression, and take the appropriate
branch.

Most real interpreters are somewhere in between pure interpreters and compilers. They read through the
source code for aprogram once, and trandlate it into an "intermediate representation” that's easier to
work with--a data structure of some kind--and then interpret that. Rather than stepping through strings of
source text, they step through a data structure that represents that source text in a more convenient form,
which is much faster to operate on. That is, they do some analysis once, while converting the source text
into a data structure, and the rest as they execute the program by stepping through the data structure.
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There are four good reasons for using a Scheme interpreter as an example Scheme program:

1. A simpleinterpreter really issimple, but it can show off some of the handy features of Scheme.

2.

It's a good example of Scheme programming.

Most serious programs include some kind of command interpreter, so every programmer should
know how to write a decent one. Often, the command interpreter has a tremendous impact on the
usability and power of a system, and too many programs have bad ones.

Understanding how a Scheme interpreter works may clarify language issues. It gives you anice,
concrete understanding of what Scheme does when it encounters an expression, so you know
what your programs will do--for example, it'll be obvious when you need a quote, or parentheses,
and when you don't.

Every programmer should understand the basics of how a compiler works. Understanding a
Scheme interpreter gets you half-way to understanding a Scheme compiler. A Scheme compiler
isrealy very much like a Scheme interpreter--it analyzes Scheme expressions and figures out
what to do. The main difference between an interpreter and a compiler isjust that when an
interpreter figures out what to do, it does it immediately, while a compiler records what to do
when you run the program later.

Go to thefirst, previous, next, last section, table of contents.
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Implementing a Simple Interpreter

In this section, we'll use Scheme to implement an interpreter for atiny subset of Scheme--just ssimple
arithemetic expressions. The interpreter we'll show issimple, but it'sareal interpreter--it works on the
same principles as many real Scheme systems. In the next chapter, we'll show how a dlightly more
complicated interpreter which implements most of Scheme's important features, and the skeleton of a
compiler for Scheme.

Theinterpreter is agood example for learning Scheme programming, because it makes heavy use of
recursion--the processes of reading and evaluation are naturally recursive. Asyou'll see, the code is also
an example of mostly-functional programming (with very few side effects); using recursion in the
natural way avoids the need for side effects, because data structures are generally created at the right
times, rather than being created too early and having to be updated | ater.

Our interpreter will use Scheme's built-inr ead procedure to accept input in the form of s-expressions, i.
e., expressions represented as standard Scheme data structures such as symbols, numbers, and possibly
nested lists of those constituents. [Recall that...] S-expressions can be ssimple, asin the case of symbols,
or complex, asin the case of nested lists.

Go to thefirst, previous, next, last section, table of contents.
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The Read-Eval-Print Loop

(This section could be skimmed if you're not interested in the read-eval-print-loop, which isjust asimple
command interpreter that acts as a"front end" to the evaluator.)

When you're interacting with Scheme by typing text, you're interacting with a Scheme procedure called the
read-eval-print loop. This procedure just loops, accepting one command at atime, executing it, and printing
the result.

The three steps at each iteration of the loop are:

1. calingr ead to read the characters that make up atextual expression expression from the keyboard
input buffer, and construct a data structure to represent it,

2. callingeval to evaluate the expression--intuitively, eval "figures out what the expression means,”
and "does what it says to do," returning the value of the expression--and

3. calingwri t e to print atextual representation of the resulting from eval , so that the user can seeiit.

(More generally, we might read expressions from afile rather than the keyboard buffer. Well ignore that for
now.)

Y ou can write your own read-eval-print loop for your own programs, so that users can type in expressions,
and you can interpret them any way you want. Later, I'll show how to write an evaluator, and this will come
in handy. Y ou can start up your read-eval-print loop (by typingin (r ep- 1 oop) ), and it will take over from
the normal Scheme read-eval-print loop, interpreting expressions your way.

Here'savery simple read-eval-print loop:

(define (rep-1oop)

(di splay "repl>") ; print a pronpt
(wite (eval (read))) ; read expr., pass to eval, wite result
(rep-1oo0p)) ; loop (tail-recursive call) to do it again

(Noticethat theexpression (wite (eval (read))) doesthingsinthe proper read-eval-print order,
because the argument to each procedure call is computed before the actual call. In Scheme, as in most
languages, nested procedure calls expressions are done "from the inside out.")

I've coded the iteration recursively, rather than using alooping construct. The procedure is tail-recursive,
since all it does at the end is call itself. Remember that Scheme is smart about this kind of recursion, and
won't build up procedure activation information on the stack and cause a stack overflow. Y ou can do tall
recursion all day. Since nothing happensin agiven call to the procedure after the tail-call, Scheme can avoid
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returning to it at al, and avoid saving any state to return to.

The above read-eval-print loop isn't very friendly, because it loops infinitely without giving you any chance to
break out of it. Let's modify it to allow you to stop the tail recursion by typing in the symbol hal t .

(define (rep-Ioop)

(di splay "repl>") ; print a pronpt
(let ((expr (read))) ; read an expression, save it in expr
(cond ((eqg? expr 'halt) ; user asked to stop?
(display "exiting read-eval -print |oop")
(new ine))
(#t ; ot herw se,
(wite (eval expr)) ; evaluate and print
(new i ne)
(rep-loop))))) ; and loop to do it again

Notice that thisis still tail recursive, because the branch that does the recursive call doesn't do anything else
after that.

This read-eval-print loop could be improved alittle. By using the symbol hal t asthe command to tell the
loop to stop, we prevent people from being able to evaluate hal t as an expression. We could get around this
by ensuring that the halt command doesn't have the syntax of any expression in the language, but we won't
bother right now.

Another improvement would be to make it possible to use different interpreters with the same read-eval-print
loop. Ther ep- | oop procedure above assumes that it should call a procedure named eval to evaluate an
expression. We'd liketo writear ep- | oop that works with different evaluators, so instead of having it call
eval by name, well hand it an argument saying which evaluator to use. Since procedures are first class, we
can just hand it a pointer to the evaluation procedure.

(define (rep-loop eval uator)

(di splay "repl>") ; print a pronpt
(let ((expr (read))) ; read an expression, save it in expr
(cond ((eq? expr 'exit) ; user asked to stop?
(display "exiting read-eval -print |oop")
(new i ne))
(#t ; ot herw se,
(wite (evaluator expr)) ; evaluate and print
(rep-loop evaluator))))) ; and loop to do it again

Here | just made three changes. | added an argument our - eval , which is expected to be a procedure. Then
we changed the call to eval tocal our - eval , i.e., whatever evaluator was given. Then we changed the
recursive call tor ep- | oop to pass that argument on to the next recursive call.
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The Reader

We won't write awhole reader for our interpreter, but I'll sketch how the reader works, and show a simplified reader.

(Our interpreter will just "cheat" the reader from the underlying Scheme system we're implementing it in, but it's good
to know how we could write areader, and it's a nice example of recursive programming.)

The reader isjust the procedure r ead, which iswritten in terms of afew lower-level procedures that read individual
characters and construct tokens, which r ead puts together into nested data structures. A token isjust afairly simple
item that doesn't have a nested structure. For example, lists nest, but symbol names don't, strings don't, and numbers
don't.

The low-level routinesthat r ead usesjust read individual tokens from the input (a stream of characters). These tokens
include symbols, strings, numbers, and parentheses. Parentheses are special, because they tell the reader when recursion
is needed to read nested data structures.

(I haven't explained about character 1/O, but don't worry--there are Scheme procedures for reading a character of input
at atime, testing characters for equality, etc. For now, we'll ignore those details and I'll just sketch the overall structure
of the reader.)

L ets assume we have a simple reader that only reads symbols, integers, and strings, and (possibly nested) lists made up
of those things. It'll be pretty clear how to extend it to read other kinds of things.

Implementing r ead

r ead uses recursion to construct nested data structures while reading through the character input from left to right.
For example, the input character sequence
(foo 20 (baz))

will be read as a three-element list, whose first two elements are symbolsf oo and the number 20; its third element is
another list, whose single element is the symbol bar .

r ead can also read simple things, like symbols and numbers, by themselves.

The data structures that r ead constructs are called s-expressions. An s-expression may be something simple like a
string or anumber, or alist of s-expressions. (Notice that this recursive definition covers arbitrarily deeply nested lists.)

(Generally, s-expressions are tree-structured (acyclic) data structures consisting of things that Scheme knows how to
read and write--symbols, numbers, string and character literals, booleans, and lists or vectors of s-expressions.
Sometimes the term is used even more broadly, to include ailmost any kind of Scheme data structure, but usually we use
the term s-expression to refer to something that has a standard textual representation, which can be read to create a
standard data structure.)
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The traditional term s-expression is very unfortunate. Technically an expression is a piece of a program, which can be
evaluated to yield a Scheme value.

An s-expression isn't really an expression at al--it'sjust a data structure, which we can chooseto use as a
representation of an expression in a program, or not.(6) Remember that the reader's job is only to convert textual
expressions into handy data structures, not to interpret those data structures as programs. It's the evaluator that actually
interprets data structures as programs, not the reader. That's why the read-eval-print loop hands the s-expressions
returned fromr ead to eval for evaluation.

I'll show adlightly oversimplified version of r ead, which we'll call m cr o- r ead. The main ssimplifications are that
m cr o- r ead only handles afew basic types--symbols, nonnegative integers, and lists--and we've left out most error-
checking code. We assume that what we're reading is alegal textual representation of a Scheme data structure. We aso
haven't dealt with reading from files, instead of the standard input, or what to do when reaching the end of afile.

To makeit easier to implement r ead, we'll use a helper procedure that reads a single token at atime, called r ead-
t oken. Intuitively, callingr ead- t oken repeatedly will chop the input into "words." Thenr ead can group these
"words" together to form "phrases,” which may describe complex data structures.

For example, the following input character sequence
(foo 1 (a "bar"))

will be chopped into the following tokens, one at atime, in aleft-to-right scan of the input by repeated callstor ead-
t oken

Notice that |eft and right parentheses are tokens, even though they're written as single characters. Y ou can think of
them as specia words that tell read where anew list starts and where it ends.

Givenr ead- t oken, r ead must recognize nested structures---intuitively, wherer ead- t oken recognizes
individual words, read must recognize phrases, which may be nested. Each phrase corresponds to an s-expression that
r ead must construct, and nested phrases correspond to nested s-expressions.

Most of the work of reading is actually done by r ead- t oken, which reads a single input token--e.g., asymbol, a
literal string, anumber, or aleft or right parenthesis. That is, r ead- t oken performslexical analysis (also known as
scanning). That is, r ead- t oken reads a sequence of characters from the input until it recognizes a"word."

(Our little scanner will use the standard Scheme procedure r ead- char to read one character of input at atime, and
also the predicate procedures char - al phabet i ¢? and char - nuner i c?; these tell whether a character represents
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aletter or anumber. We'll aso use the Scheme character literal objects#\ ", #\ (, and #\ ) , which represent the double
guote character, |eft parenthesis character, and right parenthesis character, respectively.)

;;; a scanner for a sinple subset of the |exical syntax of Schene
(define (read-token)
(let ((first-char (read-char)))
(cond ;; if first-char is a space or line break, just skip it
and loop to try again by calling self recursively
((char-whitespace? first-char)
(read-token))
;; else if it's a left paren char, return the special
;; Object that we use to represent |eft parenthesis tokens.
((eq? first-char #\( )
| ef t - par en-t oken)
;; likew se for right parens
((eqg? first-char #\) )
ri ght - par en-t oken)
;; else if it's aletter, we assune it's the first char
;; of a synbol and call read-identifier to read the rest of
;; of the chars in the identifier and return a synbol object
((char-al phabetic? first-char)
(read-identifier first-char))
;; else if it's adigit, we assune it's the first digit
of a nunber and call read-nunber to read the rest of
;; the nunmber and return a nunber object
((char-nuneric? first-char)
(read-nunber first-char))
;; else it's sonething this little reader can't handl e,
;; SO0 signal an error
(el se
(error "illegal lexical syntax")))))

[ see handout with discussion of lexical analysis, state machines, etc. ]

The basic operation of r ead- t oken isto read a character from the input, and use that to determine what kind of

token is being read. Then a specialized routine for that kind of token is called to read the rest of the characters that
make up the token, and return a Scheme object to represent it. We represent identifiers tokens like f oo as Scheme
symbols, and digit sequenceslike 122 as the obvious Scheme number objects.

r ead- t oken also uses some helper predicates that we define ourselves. char - whi t espace? checks whether a
character is awhitespace character--either a space or anewline. For this, we use the literal representation of the space
character object and the newline character object, which are written #\ space and #\ new i ne. Here's the code:

., whitespace? checks whether char is either space or newine
(define (char-whitespace? char)
(or (eq? char #\ space)
(eg? char #\newine)))
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r ead- t oken uses several helper procedures, some of which are standard Scheme procedures. char - nuneri c? isa
predicate that tests a character object to see whether the character it representsisadigit. char - al phabeti c?
likewise tests a character to see whether it represents aletter athrough z or A through Z. We represent left and right
parenthesis tokens specially, because there's not an obvious Scheme object to represent them. (We could use the
Scheme left and right parenthesis character objects, but that could cause trouble if we add the ability to read character
literals--we'd like to have unique objects that can't be confused with anything else that r ead- t oken might return.

To create unique objects to represent these tokens, we'll use a special trick--well cal | i st to create lists, which
ensure's they'll be distinct from any other objects that might be returned by r ead- t oken.

(define left-paren-token (list "* | eft-parenthesis-token*)) (define right-paren-token (list * right-parenthesis-token*))

Now we can use these particular list objects as the special objects to represent left and right parentheses. We can refer
to them by the names| ef t - par ent hesi s-t oken andri ght - par ent hesi s-t oken, because they're the
values of those variables.

We can check to seeif an object is one of these tokens by comparing it against that object using eq?. Notice that these
values can't be confused with anything else that r ead- t oken might return, for two reasons. The first is that read-
token never returns alist. Even if it could, though, they'd still be distinct values, because it'd never return these same
lists.

(define (left-parenthesis-token? thing)
(eq? thing | eft-parenthesis-token))

(define (right-parenthesis-token thing)
(eq? thing right-parenthesis-token))

[ see handout with complete code for the little lexer and reader | So that you can use any number of whitespace
characters between tokens, r ead- t oken skips any whitespace that occurs at the beginning of the input.

. read-identifier.If thecharacter weread isaletter, we're reading a symbol, so we call r ead-
i denti fi er tofinishreadingit. (We passit the character we read, sinceit's the first character of the symbol's
print name.) r ead- i dent i fi er just readsthrough more characters, saving them until it hits a character that
can't be part of an identifier, e.g., whitespace or a parenthesis. Once it has read the characters that make up the
symbol printname, r ead- i dent i fi er must obtain a pointer to the unique symbol object with that name; if
thereisn't one, it must be created. Here's the code:

;;;, read-identifier reads an identifier and returns a synbol
;;; to represent it
(define (read-identifier chr)

read-identifier-helper reads in one character a tine and puts it into
;; alist. If it finds the character is a finishing character, then
. It reverses the |list and returns.

(define (read-identifier-helper list-so-far)
(let ((next-char (peek-char)))
;; If next-char is aletter or a digit then call self recursively
(if (or (char-al phabetic? next-char)
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(char-nuneric? next-char))
(read-identifier-helper (cons (read-char) list-so-far))
;; else return list we've read, reversing it into proper order
(reverse list-so-far))))

;; call read-identifier-helper to accunmulate the characters in the

;; 1dentifier, then convert that to a string object and convert *that?*
;; to a synbol object.

;; Note that string->synbol ensures that only one synbol with a given
;; printname string is ever constructed, so there are no duplicates.

(string->synbol (list->string (read-identifier-helper (list chr)))))

When it finishes reading the whole print name of the symbol, r ead- i denti fi er passesthelist of characters
to the built-in Scheme procedure| i st - >st ri ng to create a Scheme string object with that sequence of
characters. Then it passes that string object to the built-in Scheme procedure st ri ng- >synbol . stri ng-
>synbol checksthetable of existing symbolsto seeif there's already a symbol with that printname. If so, it
just returns a pointer to it. (Thisensuresthat it never creates two symbol objects with the same name, and
always returns the same symbol for a string with the same sequence of characters.) If a symbol with that
printname doesn't exist, it constructs a symbol by that name, adds it to the table, and returns a pointer to that.
(string->synbol ensuresthat thereisonly ever one symbol with a given printname.) Either way, the
pointer to the unique symbol with that name isreturned asthe value fromr ead- i denti fi er.

r ead- nunber . If the character we read is adigit, we're reading a number, so we call r ead- nunber . (We
pass it the first character we read, since that's the first digit of the number.) r ead- nunber just reads through
successive characters, accumulating alist of character objects that represent digits. It stops when it encounters a
character that can't be part of a number. (For our simple little subset, that's anything that's not a digit.) Then it
passes this list to the standard Scheme procedurel i st - >st r i ng, which returns a Scheme string object with
that sequence of characters. That's passed inturnto st r i ng- >nunber , which returns a Scheme number
object that represents the corresponding number.

read- nunber reads a sequence of digits and constructs a Schenme nunber
object to represent it. Gven the first character, it reads one
char at at tine and checks to see if it's adigit. |If so, it

conses it onto a list of nunbers read so far. Oherwse, it

reverses the list of digits, converts it to a string, and converts
that to a Schene nunber object.

(define (read-nunber chr)
(define (read-nunber-hel per list-so-far)

(let ((next-char (peek-char)))
;; If next-char is a digit then call self resursively
(if (char-numeric? next-char)
(read- nunber - hel per (cons (read-char) list-so-far))
;; else return the list we've read, reversing into proper order
(reverse list-so-far))))
read the string of digits, convert to string, convert to nunber

(string->nunber (list->string (read-nunber-helper (list chr)))))

Implementing the r ead procedure
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Givenr ead- t oken, it'seasy to implement r ead. r ead uses recursion to recognize nested data structures. It calls

r ead- t oken to read the next token of input. If thisisanormal token, e.g., asymbol or string, r ead just returns that.
If it's aleft parenthesis token, however, read constructs alist, reading all of the elements of the list up to the matching
right parenthesis. Thisis done by another helper procedure, r ead- | i st .

To avoid confusion with the standard Scheme r ead procedure, we'll call our ssimplified versionm cr o- r ead.

;7 Sinplified version of read for subset of Schene s-expression syntax
(define (mcro-read)
(let ((next-token (read-token))
(cond ((token-leftpar? next-token)
(read-list '"()))
(el se
next -t oken))))

(define (read-list list-so-far)
(let ((token (mcro-read-token)))
(cond ((token-rightpar? token)

(reverse list-so-far))
((token-leftpar? token)
(read-list (cons (read-list "()) list-so-far)))
(el se
(read-list (cons token list-so-far))))))

Herel'vecodedr ead- | i st recursively in two ways.

The iteration that reads successive items in the list isimplemented as tail recursion, passing the list so far asan
argument to the recursive call. Intuitively, thisiterates "rightward" in the list structure we're creating. Each list element
Is consed onto the list so far, and the new list is passed to athe tail-recursive call that performsiteration. (At the first
call tor ead- | i st, we passthe empty list, because we've read zero elements so far.)

This constructs alist that's backwards, because we push later elements onto the front of the list. When we hit aright
parenthesis and end arecursive call, we reverse the backwards list we've accumulated, to put it in the proper order, and
return that.

Each list element isread by ssimply calling m cr o- r ead, which iswhat allows alist to contain arbitrary s-
expressions, including other lists. Intuitively, this recurses downward through the nested data structures we're creating.
The mutual recursion between m cr o-r ead andr ead- | i st isthekey to the structure of the reader.

Thisrecursion is the interesting recursion--the mutual recursion between m cr o-r ead andr ead- | i st iswhat
makesit possible for m cr o- r ead to read arbitrary data structures.

Comments on the Reader

The reader isasimple kind of recursive descent parser for normal Scheme data structures. (A parser converts a
sequence of tokensinto a syntax tree that describes the nesting of expressions or statements.) It is a "top-down" parser,
because it recognizes high-level structures before lower-level ones--e.g., it recognizes the beginning of alist before
reading and recognizing the itemsin thelist. (That is, on seeing aleft parenthesis, it "predicts” that it will see sequence
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of list elements followed by a matching right parenthesis.)(7) (8)

The reader converts a linear sequence of charactersinto asimple parsetree. A parse tree represents the syntactic
structure (phrase groupings) of a sequence of characters.

(If you're familiar with standard compiler terminology, you should recognize that r ead- t oken performs lexical
analysis (a.k.a. scanning or tokenization) usingr ead- stri ng,read-i dentifi er,andr ead- nunber.read
performs simple predictive recursive-descent ("top down") parsing viathe mutual recursion of r ead and r ead-
list.)

Unlike most parsers, the data structure r ead generates is a data structure in the Scheme language--an s-expression--
rather than a data structure internal to a compiler or interpreter. Thisis one of the nice things about Scheme; there's a
simple but flexible parser you can use in your own programs. Y ou can use it for parsing normal data as well asto help
parse programs.

When implementing the Scheme language, that's not all there isto doing parsing of Scheme programs. The reader does
thefirst part of parsing, translating input into s-expressions. The rest of parsing is done during interpretation or
compilation, in avery straightforward way. The reader only recognizes nesting of expressions, and basic syntactic
distinctions between tokens, e.g., whether they are parentheses, identifiers, or numeric literals. Later parsing must
detect what kind of Scheme expressions the s-expressions represent, e.g., whether a particular list represents a
procedure call or aspecia form, or just alitera list.

The rest of the parsing isn't much more complicated than reading, and is also done recursively.(9)

Go to thefirst, previous, next, last section, table of contents.
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Recursive Evaluation

The evaluator is the core of the interpreter--it's what does all of the interesting work to evaluate complicated
expressions. The reader trandlates textual expressions into a convenient data structure, and the evaluator
actudly interpretsit, i.e., figures out the "meaning" of the expression.

Evaluation is done recursively. We write code to evaluate simple expressions, and use recursion to break
down complicated expressions into simple parts.

I'll show a simple evaluator for simple arithmetic expressions, like a four-function calculator, which you can
use like this, given the read-eval-print-loop above:

Schenme>(repl math-eval) ; start up read-eval-print loop warithnetic eval
repl >1

1

repl >(plus 1 2)

3

repl>(tinmes (plus 1 3) (mnus 4 2))

8

As before, the read-eval-print-loop reads what you type at ther epl > prompt as an s-expression, and calls
mat h- eval .

Here's the main dispatch routine of the interpreter, which figures out what kind of expression it's given, and
either evaluatesit trivially or callsmat h- eval - conbo to help:

(define (math-eval expr)

(cond ;; self-evaluating object? (we only handl e nunbers)
((nunber ? expr)
expr)
;; conpound expression? (we only handl e two-arg conbi nations)
(el se

(mat h-eval - combo expr))))

First mat h- eval checksthe expression to seeif it's something simple that it can evaluate straightforwardly,
without recursion.

The only simple expressions in our language are numeric literals, so mat h- eval just usesthe predicate
nunber ? to test whether the expression isanumber. If so, it just returns that value. (Voilal We've
implemented self-evaluating literals.)
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If the expression is not simple, it's supposed to be an arithmetic expression with an operator and two
operands, represented as athree element list. (Thisis the subset of Scheme's combinations that this interpreter
can handle.) In thiscase, mat h- eval calsmat h- eval - conbo.

(define (math-eval -conbo expr)
(let ((operator-nanme (car expr))
(argl (mat h-eval (cadr expr)))
(arg2 (math-eval (caddr expr))))
(cond ((eq? operator-nane 'plus)
(+ argl arg2))
((eqg? operator-nane 'm nus)
(- argl arg2))
((eq? operator-nane 'tines)
(* argl arg2))
((eqg? operator-nane 'quotient)
(/ argl arg2))
(el se
(error "lInvalid operation in expr:" expr)))))

mat h- eval - conbo handles a combination (math operation) by calling mat h- eval recursively to
evaluate the arguments, checking which operator is used in the expression, and calling the appropriate
Scheme procedure to perform the actual operation.

Comments on the Arithmetic Evaluator

The 4-function arithmetic evaluator is very ssimple, but it demonstrates several important principles of Scheme
programming and programming language implementation.

. Recursive style and Nested Lists. Notice that an arithemetic expression is represented asan s-
expression that may be a 3-element list. If it's athree-element list, that list is made up of three objects
(pairs), but we essentially treat it as a single conceptual object--anode in a parse tree of arithemetic
expressions. The overall recursive structure of the evaluator is based on this conceptual tree, not on the
details of the lists internal structure. We don't need recursion to traverse the lists, because the lists are
of fixed length and we can extract the relevant fieldsusing car , cadr , and caddr . We are
essentially treating the lists as three-element structures. This kind of recursion is extremely common in
Scheme--nested lists are far more common than "pair trees." Asin the earlier examples of recursion
over lists and pair trees, the main recursive procedure can accept pointers to either interior nodes (lists
representing compound expressions), or leaves of the tree. Either counts as an expression. Dynamic
typing lets us implement this straightforwardly, so that our recursion doesn't have to "bottom out™ until
we actually hit aleaf. Things would be more complicated in C or Pascal, which don't allow a
procedure to accept an argument that may be either alist or a number.\footnote{ In C or Pascal, we
could represent all of the nodes in the expression tree as variant records (in C, "unions') containing an
integer or alist. We don't need to do that in Scheme, because in Scheme every variable'stypeisreally
akind of variant record--it can hold a (pointer to @) number or a (pointer to a) pair or a (pointer to)
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anything else. Cis particularly problematic for this style of programming, because even if we bite the
bullet and always define a variant record type, the variant records are untagged. C doesn't
automatically keep track of which variant a particular record represents--e.g., aleaf or nonleaf--and
you must code this yourself by adding atag field, and setting and checking it appropriately. In effect,
you must implement dynamic typing yourself, every time.} It is possible to do Scheme-style recursion
straightforwardly in some statically-typed languages, notably ML and Haskell. These polymorphic
languages allow you to declare digoint union types. A digoint union isan "any of these" type--you
can say that an argument will be of some type or some other type. In Scheme, the language only
supports one very general kind of digoint union type: pointer to anything. However, we usually think
of data structure definitions as digoint unions. As usual, we can characterize what an arithmetic
expression recursively. It is either anumeric literal (the base case) or athree-element "node" whose
first "field" is an operator symbol and whose second and third "fields" are arithmetic expressions. Also
as usual, thisrecursive characterization is what dictates the recursive structure of the solution---not the
details of how nodes are implemented. (The overall structure of recursion over trees would be the
same if the interior nodes were arrays or records, rather than linear lists.) The conceptual "digoint
union” of leaves and interior nodes is what tells us we need a two-branch conditional in mat h- eval .
It isimportant to realize that in Scheme, we usually discriminate between cases at edgesin the graph, i.
e., the pointers, rather than focusing on the nodes. Conceptually, the type of the expr argument is an
edge in the expression graph, which may point to either aleaf node or an interior node. We apply

mat h- eval to each edge, uniformly, and it discriminates between the cases. We don't examine the
object it points to and decide whether to make the recursive call--we always do the recursive call, and
sort out the cases in the callee.

. Primitive expressions and operations. In looking at any interpreter, it'simportant to notice which
operations are primitive, and which are compound. Primitive operations are "built into" the interpreter,
but the interpreter allows you to construct more complicated operations in terms of those. In mat h-
eval , the primitive operations are addition, subtraction, multiplication, and division. We "snarf" these
operations from the underlying Scheme system, in which we're implementing our little four-function
calculator. We don't implement addition, but we do dispatch to this built-in addition operation. On the
other hand, compound expressions are not built-in. The interpreter doesn't have a special case for each
particular kind of expression--e.g., there's no code to add 4 to 5. We allow users to combine
expressions by arbitrarily nesting them, and support an effectively infinite number of possible
expressions. Later, I'll show more advanced interpreters that support more kinds of primitive
expressions--not just numeric literals and more kinds of primitive operations--not just four arithmetic
functions. I'll also show how a more advanced interpreter can support more different ways of
combining the primitive expressions.

. Flexibility Y ou may be wondering why we'd bother to write mat h- eval , sinceit essentially
implements a small subset of Scheme, and we've aready got Scheme. One reason for implementing
your own interpreter is flexibility. Y ou can change the features of the language by making minor
changes to the interpreter. For example, it istrivial to modify mat h- eval to evauate infix
expressions rather than postfix expressions. (That is, with the operator in the middle, e.g., (10 pl us
(3 times 2)).All wehaveto do is change the two lines where the operator and the first operand
are extracted from a compound expression. We just swap thecar and cadr , so that we treat the
second element of the list as the operand and the first element as the operator.
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A Note on Snarfing and Bootstrapping

Two concepts worth knowing about language implementation are snarfing and bootstrapping. Snarfing is
"stealing" features from an underlying language when implementing a new language. Bootstrapping is the
process of building alanguage implementation (or other system) by using the system to extend itself.

Snarfing

Our example interpreter implements Scheme in Scheme, but we could have written it in C or assembly
language. If we had done that, we'd have to have written our own read-eval-print loop, and a bunch of not-
very interesting code to read from the keyboard input and create data structures, display data structures on the
screen, and so on. Instead, we "cheated" by snarfing those features from the underlying Scheme system--we
simply took features from the underlying Scheme system and used them in the language we interpret. Our
tiny language requires you to type in Scheme lists, because it uses the Scheme read-eval-print to get its input
and call the interpreter. If we wanted to, we could provide our own reading routine that reads thingsin a
different syntax. For example, we might read input that uses square brackets instead of parentheses for
nesting, or which uses infix operatorsinstead of prefix operators.

There are some features we didn't just snarf, though--we wrote our own evaluation procedure which controls
recursive evaluation. For example, we use basic Scheme arithemetic procedures to implement individual
arithmetic operations, but we don't ssimply snarf them: the interpreter recognizes arithmetic operationsin its
input language, and maps them onto procedure calls in the underlying language. We can change our language
by changing those mappings. for example, we could use the symbols +, - , *, and/ to represent those
operations, as Scheme does, or whatever we choose for the language we're interpreting. Or we could use the
same names, but implement the operations differently. (For example, we might have our own arithmetic
routines that allow arepresentation of infinity, and do something reasonable for division by zero.)

We aso use recursion to implement recursion, when we recursively call eval ). But since we coded that
recursion explicitly, we can easily changeit, and do something different. Our arithmetic expressions don't
have to have the same recursive structure as Scheme expressions.

We could also implement recursion ourselves. Aswritten, our tiny interpreter uses Scheme's activation
"stack" to implement it's own stack--each recursive call to eval implements arecursive cal in our input
language. We didn't have to do this. We could have implemented our own stack as a data structure, and
written our interpreter as a simple non-recursive loop. That would be a little tedious, however, so we don't
bother.

What counts as "snarfing"? The term is a good one, but not clearly defined. If we call Scheme'sr ead rather
than using our own reader, we clearly just snarf the Scheme reader, but we've done something alittle different
with recursion. We've done something very different with the interpretation of operator names.

Bootstrapping and Cross-compiling

Implementing a programming language well requires attention to the fine art of bootstrapping--how much of
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the system do you have to build "by hand" in some lower-level system, and how much can you build within
the systemitself, once you've got alittle bit of it working.

Most Scheme systems are written mostly in Scheme, and in fact it's possible (but not particularly fun) to
implement a whole Scheme system in Scheme, even on a machine that doesn't have a Scheme system yet.

How are these things possible?

First, let's take the simple case, where you're willing to write alittle code in another language. Y ou can write
an interpreter for a small subset of Schemein, say, C or assembler. Then you can extend that little language
by writing the rest of Scheme in Scheme--you just need a simple little subset to get started, and then things
you need can be defined in terms of things you already have. Writing an interpreter for a subset of Schemein
C isnot hard--just alittle tedious. Then you can use | anbda to create most of the rest of the proceduresin
terms of simpler procedures. Interestingly, you can also implement most of the defining constructs and
control constructs of Scheme in Scheme, by writing macros, which we'll discuss later.

Y ou can start out thisway even if you want your Scheme system to use acompiler. Y ou can write the
compiler in Scheme, and use the interpreter to run the compiler and generate machine code. Now you have a
compiler for Scheme code, and can compile procedures so that they run faster than if you interpreted them.

Y ou can take most of the Scheme code that you'd been interpreting, and use the compiler to create faster
versions of them. Y ou then replace the old (interpreted) versions with the new (compiled) versions, and the
system is suddenly faster.

Once the compiler works, you can compile the compiler, so that it runs faster. After all, acompiler isjust a
program that takes source code as input and generates executable code--it's just a program that happens to
operate on programs. Now you're set--you have a compiler that can compile Scheme code that you need to
run, including itself, and you don't need the interpreter anymore.

To get Scheme to work on a new system, without even needing an interpreter, you can cross-compile. If you
have Scheme working on one kind of machine, but want to run it on another, you can write your Scheme
compiler in Scheme, and have it run on one machine but generate code for the new machine. Then you can
take the executable code it generates, copy it onto the new machine, and run it.

Most Scheme systems are built using tricks like this. For example, the RScheme system never had an
interpreter at all. Its compiler wasinitially run in a different Scheme system (Scheme-48) and used to compile
most of RScheme itself. This code was then used to run RScheme with no further assistance from another
implementation.

The first Scheme system was built by writing a Scheme interpreter in Lisp, [ or wasit a compiler first? ...
blah blah ... ]

Go to thefirst, previous, next, last section, table of contents.
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Improving the Simple Interpreter

We can easily improve the little interpreter in lots of ways. [ We should put the code in a file minieval .scm so
people can experiment with it. Need to debug it first, of course. It's changed since the one I've used in class. |

First, we can add a toplevel binding environment, so we can have some variables. (Local variables will be
discussed in the next chapter.) To make them useful, we need some special forms, like def i ne and (while
wereatit) set!.

We can also add afew more data types; for now, we'll just add booleans.
Here's what our new main dispatch routine looks like:

(define (eval expr)
(cond ;; variable reference

((synbol ? expr)

(eval -vari abl e expr))

;; conbination OR special form (any parenthesized expr)
((pair? expr)

(eval -list expr))

;; any kind of self-eval uating object
((sel f-eval uating? expr)

expr)
(el se

(error "lllegal expression: " expr))))

Since we're adding variables to our interpreter, symbols can be expressions by themselves now--references to
top-level variable bindings. We've added a branch to our cond to handle that, and a helper procedure eval -
var i abl e. (Well discuss how the variable lookup is done shortly.)

We need to recognize two kinds of self-evaluating types now (and may add more later), so we come up with a
proceduresel f - eval uat i ng? that covers both cases and can easily be extended.

(define (self-eval uating? expr)
(or (nunber? expr) (bool ean? expr)))

[hmm... haven't extended the reader to handle booleans yet... need to use the standard Scheme reader, or
extend m cr o-r ead]

Be sure you understand the significance of this. We chose to read numeric literals as Scheme numbers, and
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boolean literals as Scheme objects. This representation makes them easy to evaluate--we just return the same
object that the reader created.

We aso need to recognize two basic types of compound expressions. combinations and special forms. These
(and only these) are represented as lists, so we can use pai r ? asatest, and dispatchtoeval -1 i st .

What we're really doing here is checking to see whether we're eval uating a parenthesized expression of either
kind. Since parenthesized expressions are read in as lists, we can just check to see whether the s-expression is
alist. That is, we chose to parse (read) parenthesized expressions as lists, and by checking to see if
something's alist, we're implicitly checking whether it was a parenthesized expression in the original code.
(We could have chosen to represent parse trees as some other kind of tree, rather than s-expressions, but s-
expressions are handy because Scheme provides procedures for manipulating and displaying them.)

Here'sthe codefor eval - | i st , which just checksto see whether a compound expression is a special form.
It dispatchesto eval - speci al - f or mif itis, ortoeval - conbo if it's not.

(define (eval -list expr)
(if (and (synbol ? (car expr))
(speci al -f orm nane? (car expr)))
(eval - speci al -form expr)
(eval -conbo)))

We could use acond to check whether symbols are special form names, but using mrenber on aliteral listis
clearer and easily extensible--you can just add namesto the list.

(define (special-formnane? expr)
(nmenber ' (if define set!)))

eval - speci al - f or mjust dispatches again, calling a routine that handles whatever kind of special form
it'sfaced with. (Later, we'll see prettier ways of doing this kind of dispatching, using first-class procedures.)
From here, we've done most of the analysis, and are dispatching to little procedures that actually do the work.

[ need to come back to this after discussing backquote--this would make a good example |

(define (eval -special -form expr)
(let ((nanme (car expr)))
(cond ((eqg? nane 'define)
(eval -define expr))
((eqg? nane 'set!)
(eval -set! expr))
((eg? name "if)
(eval -if expr)))))

Notice that each specia form has its own special routine to interpret it. Thisiswhat makes specia forms

http://www .federated.com/~jim/schintro-v14/schintro_117.html (2 of 5)11/3/2006 9:09:43 PM



An Introduction to Scheme and its Implementation - Improving the Simple Interpreter

"special," in contrast to combinations, which can be handled by one procedure, eval - conbo.

Once the evaluator hasrecognized ani f expression, it calseval -i f todothework. eval -i f calseval
recursively, to evaluate the condition expression, and depending on the result, callsit again to evaluate the
“then" branch or the "else" branch. (One slight complication is that we may have a one-branch else, so eval -
I f hasto check to seeif the else branch isthere. If not, it just returns #f .)

(define (eval -if expr)
(let ((expr-length (length expr)))
(if (eval (cadr expr))
(eval (caddr expr))
(if (= expr-length 4))
(eval (cadddr expr))
#t)))

[ note that what we're doing includes parsing... one-branch vs. two branch i f . Should actually be doing more
parsing, checking syntax and signaling errors gracefully. E.g., should check to seethat expr - | engt hiisa

legal length. ]

[ Also note that we're snarfing booleans, and our i f behaves like a Schemei f ... but we don't have to. We
could put a different interpretationoni f , e.g., only interpreting #t asatrue value. ]

Implementing top-level variable bindings

For atoplevel binding environment, we'll use an association list. (A more serious interpreter would probably
use a hash table, but a association list will suffice to demonstrate the principles.)

We start by declaring avariable to hold our interpreter's environment, and initializing it with an empty list.
(define t-1-envt '())
To add bindings, we can define aroutine to add an association to the association list.

(define (toplevel -bind! nane val ue)
(let ((bdg (assoc nane t-l-envt))) ;; search for association of nane
;; 1f binding al ready exists, put new value (in cadr) of association
;; else create a new association wth given val ue
(i f bdg
(set-car! (cdr bdg) val ue)
(set! t-1-envt
(cons (list nanme value) t-l-envt)))))

Recall that the elements of an association list are "associations,” which are just lists whose first valueis used
as akey. Well use the second element of the list as the actual storage for a variable.
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For example, an environment containing just bindings of f oo and bar with values 2 and 3 (respectively)
would look like ((foo 2) (bar 3)).

At the level of the little Scheme subset we're implementing, we'd draw this environment this way:

oo ---- + [ envt]
t-1-envt | e St------- +
Hoommo-- + foo | Fooit---> 2
S +
bar | *oo-4--->3
S +

This emphasizes the fact that these are variable bindings with values, i.e., named storage locations. Notice
thatt - | - envt isavariable in the language we're using to implement our interpreter, but f oo and bar are
variablesin the language the interpreter implements.

If we want to show how it'simplemented at the level of the Scheme we're writing our interpreter in, we can
draw it more like this:

S +
t-1-envt | Ea R e T Ty +- - - - -+
® IR + R B > * | * 4+
+-|-+---+ +- - +---+
I I
+- - - -+ +-- - - -+ R S
I I B I IR N B
+-|-+---+ +--+---+ +-|-+---+ +- - +---+
| | | |
f oo 2 bar 3

Now we can add the four procedures we had in the math evaluator:
(topl evel -bind! '+ +)
(toplevel -bind! " - -)
(topl evel - bi nd! ' * *)
(topl evel -bind! '/ /)

Again, we're just snarfing procedures straight from the Scheme we're implementing our interpreter in. We put
them in our binding environment under the same names.

Now we need accessor routines to get and set values of bindings for variable lookups and set !
(define (toplevel -get nane)
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(cadr (assoc nane t-1-envt)))

(define (toplevel-set! nane val ue)
(set-car! (cdr (assoc nane t-l-envt))
val ue))

[ of course, these really should have some error checking--give examples that signal unbound variable
errors? |

Given this machinery, we can now writeeval - var i abl e. (Recall that when eval encountersan
expression that's just asymbol, it interpretsit as areferenceto avariable by calling eval - vari abl e.)

(define (eval -variabl e synbol)
(topl evel -get synbol))

We can also defineeval - defi ne andeval - set! . All they do is extract a variable name from the
defi ne orset! expression, and create binding for that name or update its value. (Recall that eval -
defi ne! andeval - set! arecdled fromeval - speci al - f or mto interpret expressions of the forms
(define ...) or(set! ...),respectively.)

(define (eval -define! expr)
(topl evel -bi nd! (cadr expr)
(eval (caddr expr))))

(define (eval -set! expr)
(topl evel -set! (cadr expr)
(eval (caddr expr))))

Running the improved interpreter

[ need some example uses |

Go to thefirst, previous, next, last section, table of contents.
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| et

One difference between a C or Pascal block and a Schemel et isthat | et variable bindings don't
necessarily cease to exist when thel et isexited, and the bindings therefore can't be allocated on a stack
in the general case. (The reason for thiswill become clear when we talk about | anbda and closures.)

One way to visualize the creation of block variablesisto seeit asthe creation of a new table mapping
names to storage, like the toplevel environment in our interpreter.

Except for the new variables, the new environment (table) is the same as the one that was in use when
the block was entered. We say that thel et expression "extends' the "outer" environment with bindings
for thel et variables.

Suppose wetypeal et expression at the Scheme prompt, (Assume we we're just doing the usual
expression evaluation in the usual top-level environment.)

Scheme>(let ((x 10) (y 20))

(+xy))
30

The interpreter maintains a pointer to the "current environment” when evaluating an expression. This
pointer always points to the environment the currently-executing code must execute in, i.e., the variable
bindings it must see for the variables it uses. When we evaluate a variable, we look for abinding of its
name in the current environment, by searching up the environment chain starting from the "current
environment" pointer.

Before evaluating the | et expression, Scheme's environment pointer points to the top-level
environment, which contains the usual bindings holding the built-in Scheme procedures, plus any top-
level variables we've defined. Supposing we've defined avariable f 0o, we can draw the top-level
environement like this:

+- - + S SRR +- - +
envt | ¥ -4------- > car | *--+----> #<proc ...>#
+- - + S SRR +- - +
| cons | *--+----> #<proc ...>#
S SRR +- - +
| + | *--4---->#<proc ...>#
S SRR +- - +
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I pep—_— +---- - +
| foo | +--+4+----> #<proc ...>#
I pep—_— +---- - +

(Here I've drawn the environment as a simple table of names and bindings. It might actually be
implemented as an association list, asin our simple example interpreter, or more likely as a hash table.)

After entering the |l et and creating the bindings for x and y, the interpreter changes the environment
pointer to point to the resulting new environment. Thisis typically implemented by representing the
environment as a chain of tables called frames, rather than asimple flat table. The newest frameis
searched first, and so on down the chain, to find the appropriate bindings. This environment chainis
used as a pointer-linked stack, for the most part, with new frames being pushed onto the stack when a
| et isentered, and popped off the stack when al et isexited.

Each frame holds bindings created by a particular binding construct in the program, e.g., on entering a

| et . A whole environment is not represented by just one frame, but by the chain of frames starting at a
particular frame. In the figure below, for example, the smaller binding frame only holds bindings of x
andy, but it represents an environment that includes bindings of car , etc. The environment inherits
bindings from the environment it's scoped inside, and thisiswhat thescope | i nk isfor.

S +----- +
| car | +--+----> #<proc ...>#
S +----- +
| cons | +--+4----> #<proc ...>#
S +----- +
| + | +--+----> #<proc ...>#
S +----- +
| * |
*
| * |
S +----- +
| foo | +--+----> #<proc ...>#
S +----- +
[\
|
|
|
+----- + S +--+--+
envt |  +--+------- >| [scope] | * |
+----- + S +----- +
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The link that connects the two frames (tables) is called a scope link. It reflects the nesting of naming
scopes in the program. In this case, when avariable isreferenced inside the |l et , the search for a
binding begins at the new frame (table). If it is not found, the search follows the scope link to the next
frame and looks there. This can continue for as many levels as there are nested scopes in the program.

While we're executing in the new environment, bindings in the new frame shadow (hide) any bindings of
variables with the same name in the outer environment. For example, if there's atop-level variable
named x bound in the top-level environment, they won't be seen by code executing in the | et
environment.

When we exit the | et , the current environment pointer is set back to point to the same environment
frame as before entering the | et . In the usual case, that environment becomes garbage because there are
no pointersto it, and the garbage collector will eventually reclaim its space.

Keep in mind that an environment is alanguage-level entity, and just consists of a set of bindings; itis
just a mapping from names to storage that can hold values. Our chain of framesis a convenient and
efficient data structure we've chosen to implement this abstraction, so that environments nest properly.

The difference between frames and environmentsis similar to the difference between pairs and lists. A
pointer to a pair that begins alist may be thought of as pointer to the pair itself, or as a pointer to the
whole list of pairs connected by their cdr's. Likewise, a pointer to an environment frame points to that
frame, but also points to the sequence of environment frames connected by their scope links. This
corresponds to the scope rule that an expression can see bindings created by enclosing expressions, as
long as they're not shadowed by another binding in between.

Aswith pairs and lists, environment frames can share structure, and the same frame may be part of
severa (nested) environments. (Aswelll see later, thisisimportant for implementing lexical scope
correctly in the presence of first-class procedures.)

Unlike pairs and lists, however, a particular environment doesn't necessarily include all of the parts of
all of the frames in the sequence. The scope rules of the language allow shadowing of bindings in outer
environments by bindings in inner environments; our lookup routine implements this by searching an
environment chain in inner-to-outer order, and taking the first binding of the name.

If we think of environments as sets of bindings, the act of pushing an environment frame on the front of
an environment creates a new environment with new bindings added--and with any shadowed bindings
removed. We don't actually modify the old environments, however--they're not changed by the creation
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of new environments with scope links to them. What effectively "removes' abinding to create a new
envioronment is our search procedures--it searches an environment front-to back, to find the binding of a
name, and ignores any bindings after the first one it finds.

Aswe will see later, it's significant that we never actually modify the structure of an environment chain
once it's created--we never clobber the scope links. This allows us to save a pointer to an environment by
saving a pointer to the first frame in the chain, and restore that environment later by simply setting our
environment pointer to point to that frame. In effect, we can switch from one whole environment (set of
bindings) to another just by changing a pointer. It also lets us have environments that share structure--
nested environments simply have more frames in their chains, and the chains share structure with they're
nested in. These properties of environment chains turn out to be very convenient when implementing
procedure calling.

Go to thefirst, previous, next, last section, table of contents.

http://www.federated.com/~jim/schintro-v14/schintro_121.html (4 of 4)11/3/2006 9:10:11 PM


http://www.federated.com/~jim/schintro-v14/schintro_1.html

An Introduction to Scheme and its Implementation - Understanding lambda

Go to thefirst, previous, next, last section, table of contents.

| anbda

Recall that in Scheme, we can create anonymous (unnamed) procedures any time we want, using the
| anbda special form.

For example, suppose you want a procedure that doubles the values of the itemsin alist. You could do
what we did before, and define anamed doubl e procedure, but if you only need to use the proceduein
one place, it's easier to use an anonymous procedure created with | anbda.

Instead of writing

(define (double x)
(+ x x))

and then using it like this
(map doubl e nylist)
Y ou can simply define it whereit's used, using | anbda.

(map (1anbda (x) (+ x x))
nylist)

This can help avoid cluttering your code with lots of auxiliary procedures. (Don't overdo it, though--if a
procedure is nontrivial, it's good to give it a name that reflects what it does.) Thisis very convenient
when using higher-order procedures like map, or higher-order procedures you come up with for your
own programs.

[ Aswell seein alittlewhile, | anbda has some very interesting properties that make it more useful
than it might seem right now. ]

[ point out that variable arity works with lambda arg lists just like with define arg lists ]

Procedures are Closures
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Scheme procedure's aren't really just pieces of code you can execute; they're closures.

A closure records not only what code a procedure must run, but also what environment it was created in.
When you call it, that environment is restored before the actual code is executed. That is, the "current
environment pointer" is set to point to that environment, and whenever the procedure references a
variable, it will be looked up there.

This ensures that when a procedure executes, it sees the exact same variable bindings that were visible
when it was created--it doesn't just remember variable namesin its code, it remembers what storage
each name referred to when it was created.

Since variable bindings are allocated on the heap, not on a stack, this allows procedures to remember
binding environments even after the expressions that created those environments have been evaluated.
For example, aclosure created by al anbda insideal et will remember thel et 'svariable bindings
even after we've exited the | et . Aslong as we have a pointer to the procedure (closure), the bindings it
refers to are guaranteed to exist. (The garbage collector will not reclaim the procedure's storage, or the
storage for thel et bindings.)

We say that a procedureis closed in the environment where it is created. Technically, thisis because a
closure records the transitive closure of the "scoped in" relation; that is, it can see bindings created by
the enclosing binding construct, bindings created by the one enclosing that, and so on until reaching the
top level. Intuitively, you can also think of the set of bindings as cl osed when a procedure is created:
bindings that are not lexically visible when the procedure is created are not visible when it runs.
(Except for bindings created by the procedure itself when asit runs, that is--it can bind arguments,
evaluate let expressions, etc.)

Here's an example that may clarify this, and show one way of taking advantage of it.

Suppose we type the following expression at the Scheme prompt, to be interpreted in atop-level
environment:

Schene> (let ((count 0))

(I ambda ()
(set! count (+ count 1))
count)))
#<proc ....>#

Noticethat thel et isnot inside a procedure; Scheme variables don't have to be local to a procedure. In
thiscase, count isjust local tothel et expression that bindsiit.

[ need picture here]
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Evaluating this| et expression first creates a binding environment with abinding for count. The initial
value of thisbinding is 0. In this environment, the |lambda expression creates a closure. WWhen executed,
this procedure will increment the count, and then return its value. (Note that the procedure is not
execut ed yet, however--it'sjust created so that it can be called to operate on the binding of count
later.) This procedure, returned by the lambda expression, is also returned as the value of thel et
expression, because al et returnsthe value of itslast body expression. The read-eval-print loop
therefore prints a representation of the (anonymous) procedure.

Unfortunately, we didn't do anything with the value, like give it a name, so we can't refer to it anymore,
and the garbage collector will just reclaim it. (OOPS!) Now suppose we want to do the same thing, but
hold onto the closure so that we can do something with it, like caling it.

WE'l bind anew variable my- count er , and use the above | et expression to create a new
environment and procedure, just like before.

Schene> (define ny-counter
(let ((count 0))
(1 ambda ()
(set! count (+ count 1))
count))))
#voi d

(Notice that we're using plain variable definition syntax here--the only procedure we're creating is the
value of the| anbda expression, which we're storing in the binding of nmy- count er .

Now we have atop-level binding of my- count er , whose value is the procedure we created. It will
remember the binding of count created by thel et before evaluating the lambda expression.

(The crucial trick here relies on the fact that the let expression not only creates the local variable binding
for count , but returns the value of the last expression in its body--i.e., the closure returned by the
lambda expression. The pointer to the closure is passed along by the let to become the initial value for
the binding of ny- count er.)

The procedure keeps a pointer to the environment created by the | et , which in turn has a pointer to the
top-level environment, thus:

[ should simplify this picture and use it earlier, for the simpler example where we don't keep a pointer to
the closure. Should show the envt register pointing to thel et envt at the moment the closureis
created. |

[ envt]
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R T T S +
| | car | *--+-->
| S +----- +
| | cons | F--+4-->
| S +----- +
I I * I
| *
I I * I
| S +----- +
| | ny-counter | F--A4------------ +
| S +----- + |
I I\ I
I I I
I [envt] I I
| S +--+--+ |
I I [scope] | * | I
| S +----- + |
| | count | *--+-->0 |
| e +----- + \ |/
| /]\ [ cl osure]
| | S SIS +
| T +----* |
| S SIS +
I I * I
| e
I I
| \ |/
| [ code]
| o e e e e oo - +
oo t-- -+ | (set! count |
envt | * | | (+ count 1)) |
+----- - + | count |
o e e eeaa-- +

Now if we call the procedure my- count er , it will execute in its own "captured" environment (created
by thel et ). It will increment the binding of count in that environment, and return the result. The
environment will continue to exist as long as the procedure does, and will store the latest value until next
timeny- count er iscalled:

Scheme>(ny- count er)
1
Scheme>(ny- count er)
2
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Schene>(ny-count er)
3

Notice that if we evaluate the whole| et form again, wewill get anew | et environment, with a new
binding of count , and anew procedure that will increment and return itscount value--in effect, each
procedure has its own little piece of state which only it can see (because only it was created in that
particular environment). Each one remembers which piece of storage count referred to when it was
created, and operates on that particular piece of storage.

If we want, we can define a procedure that will create new environments, and new procedures that
capture those environments--we can generate new counter procedures just by calling that "higher-order"
procedure. (Recall that a higher-order procedure isjust a procedure that manipul ates other procedures. In
this case, we're making a procedure that generates procedures.)

Eachtime make- count er iscalled, it will executeal et , creating an environment, and inside that it
will usel anbda to create a counter procedure.

Schene> (define (make-counter)
;; bind count and create a new procedure that will (when
;; called) increnment that binding and return its val ue
(let ((count 0))
(1 ambda ()
(set! count (+ count 1))
count)))
make- count er

(Note that here we're using procedure-definition syntax.)

Each of the resulting procedures will have its own captured count variable, and keep it independently of
the other procedures.

Make sure you understand that the above procedure definition could have used an explicit | anbda to
create the procedure make- count er , rather than the special procedure definition syntax:

Schene> (defi ne make-counter

;; create a procedure that will bind count and
;; return a new procedure that will increnent that
;; binding and return its val ue
(I ambda ()
(let ((count 0))
(I ambda ()

(set! count (+ count 1))
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count)))

Y ou may actually find this easier to understand, because it shows you exactly what's going on: binding
make- count er and creating a procedure (with the outer | anbda) that when called, will evaluate a
| et to create an environment, and al anbda (the inner one) to create a new procedure that captures
that particular environment.)

Now welll call the procedure created by the above definition, three times, and each time it will create a
new procedure:

Schene> (define cl (make-counter))
Cl
Schene> (define c2 (make-counter))
C2
Schene> (define c¢3 (make-counter))
C3

Now welll call those procedures and look at their return values, to illustrate that they're independent
counters:

Schene> (cl)
1
Schene> (cl)
2
Schene> (c2)
1
Schene> (c2)
2
Schenme> (cl)
3
Schene> (cl)
4
Schene> (c3)
1

Neat, huh? The combination of block structure (local environments) with first-class procedures
(closures), allows us to associate state with procedures. Garbage collection makes this very convenient,
because we know that the environments will hang around as long as the procedures do.

This example shows that we can use closures to create private variable bindings. Notice that once we've
exited al et , the variables aren't visible anymore. But if we call a closure that was created there, they
become visible again---to that closure only. The onl y way to operate on a variable binding after it has
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gone out of scopeisto call aprocedure that was created while it was in scope. This means that once a
binding construct has been exited, the set of procedures that can operate on the bindings it createsis
fixed. AsI'll show later in this chapter, we can use this to structure programs and make sure that things
don't interact when they're not supposed to.

If you're familiar with object-oriented programming, you may notice a resemblance between closures
and "objects" in the object-oriented sense. A closure associates data with a procedure, where an object
associ ates data with multiple procedures. After we get to object-oriented programming, we'll explain
how object-oriented programming facilities can be implemented in Scheme using closures.

If you're familiar with graphical user interface systems, you may notice that GUI's often use "callbacks,"
which are procedures that are executed in response to user input events like button clicks and menu
selections, and do something application-specific. (The application "registers’ callback procedures with
the GUI system, which then calls them when the user clicks on the specified buttons.) Closures make
excellent GUI callback procedures, because the application can create a closure for a specific context by
capturing variable bindings, to customize the behavior of the procedure.

Since argument variables are just local variables that get their initial valuesin a special way, we can use
argument variablesin much the sameway as| et variables.

Heresanew version of nake- count er , which takes an argument that givestheinitial value for a
counter--it doesn't have to start at zero.

(define (nmake-counter count)
;; return a new procedure to increnent argunent variable
;; count and return its val ue
(I anmbda ()
(set! count (+ count 1))
count))

Here we're using procedure-definition syntax, so we're creating a procedure of one argument count .

Whenever the procedure is called, count will be bound (once) and initialized to whatever value we
give asan argument to make- count er . Then thel anbda expression will be evaluted to create anew
procedure that captures that binding of count .

(The argument variable count isbound to afresh piece of storage when the procedure is entered, and
we can "capture” that binding by creating a closure in its scope. Aswith alet variable, we get a different
piece of storage each time we call nake- count er )

For thiskind of counter, we'd probably rather return the old value of the counter, rather than the new
one, each time we increment it. To do that, we can put al et insidethel anbda expression, to hold
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onto the old value

(define (make-counter count)
;; Create a procedure that

(lanbda ()
(let ((value count)) ;; hang onto val ue of count
(set! count (+ count 1)) ;; increnent count
val ue))) ;; return previous val ue

Lambda is cheap, and Closures are Fast

It may seem that | anbda is an expensive operation--after all, it creates procedure objects on the fly. At
first glance, you might think that executing lambda would require a call to the compiler each time. This
Is not the case, though, and lambda is actually afairly cheap constant-time operation.

Notice that the procedure part of al anbda expression is known at compile time--each time the

| anmbda is executed at run time, it will create anew closure, and may capture a new environment, but
the expression closed in that environment is determined solely by the body of the lambda expression. A
compiler for Scheme will therefore compile the code for all of the closures created by a particular

| anmbda expression, when it compiles the enclosing procedure. So, for example, when our example
procedure make- count er iscompiled, the compiler will also compile the code for the | anmbda body.
This code will be kept around for use by make- count er.

The actual run-time code for | anbda just fetches the address of the code, and the current environment
pointer, and puts them in a creates a new closure object on the heap. | anbda istherefore about as fast
ascons---all that's really happening is the creation of the closure object itself, not anything expensive
like calling the compiler at run-time.

(At this point, some people who are really concerned with efficiency may be wondering if Schemeis
slow because variable bindings are allocated on the heap rather than on a stack, or in registers. Don't
worry much about this--a good Scheme compiler can actually avoid heap-allocating environments when
no closures are created in their scope, and can register-allocate most variables, as other compilers do.

(10))

Go to thefirst, previous, next, last section, table of contents.
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An Interpreter with | et and | anbda

In this section, I'll present a new interpreter for abigger subset of Scheme; it handles all of the essential
special forms of Scheme, except for macro definitions. (A macro facility would be easy to add, as well, and
would make it easy to implement the remaining special forms by automatic transformation, in terms of the
specia formsthe interpreter "understands” directly. A later chapter will show how to do this.)

The new interpreter is very much like the one from the last chapter, with three important differences:

. It implementslocal binding environments as well as atop-level environment. Evaluating an expression
(suchasal et ) may create anew environment, and subexpressions (such asthel et body) can
simply be evaluated in the new environment by recursive callsto eval

. It allows new procedures to be defined, creating closures. Closures pair environments with code bodies
that are interpreted by the interpreter. Calling a closure is much like evaluating al et . The arguments
are bound in alocal environment (likel et variables), and the body is interpreted in that environment.

. Wewill treat specia forms differently, binding special form names in much the same way as normal
variable names. Thiswill make the interpreter cleaner and more extensible.

Hereisour new eval :

(define (eval expr envt)
(cond ((synbol ? expr)
(eval - synbol expr envt))
((pair? expr)

(eval -list expr envt))
((sel f-eval uati ng? expr)

expr)
(#t

(error "lllegal expression form expr))))

Notice that not much has changed---eval till just analyzes expressions and dispatches to more specialized
hel per procedures that handle particular kinds of expressions.

The important difference isthat eval expects an environment argument envt , which represents the binding
environment in which to evaluate an expression. That is, the environment argument is used to keep track of
the meaning of variable names--what storage they refer to--as teh interpretation process movesin and out of
SCOpES.

Nested Environments and Recursive Evaluation
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Instead of using the old "flat" representation of an environment, which was just atable of name-value pairs,
we'll represent nested environments as alist of tables, or environment chain.

When we begin interpreting, the environment chain will consist of one table, the top-level environment.
When we evaluate a binding construct such asal et , we will create anew table, or environment frame,
which binds the local variables. Thisframe will contain the name-value pairs bound locally, plus a pointer to
the next enclosing environment. The environment chain is thus alinked list that acts like a stack, for the most
part--new enviornment frames are pushed on the front of the list when entering a binding construct, and
popped off the front of the list when exiting it.

We could implement this stack-like behavior with an explicit stack data structure in the interpreter, but it's
easier to use the activation "stack" of the language we're using to implement the interpreter. (In this case, that
happens to be Scheme, but if we were implementing the interpreter in C, we could use C's activation stack.)
WEIlI just use recursion to evaluate subexpressions, and rely on the language we're implementing the
interpreter in to remember where we were in interpreting the enclosing expressions.

At any given point during evaluation, the current environment is the environment referred to by the
interpreter's internal variable envt , an in particular the most recent binding of envt .

When we evaluate an expression that doesn't change the interpretive environment, and call eval recursively
to evaluate subexpressions, we simply passthe envt variable's value to the recursive calls. Thiswill ensure
that the subexpressions execute in the same environment as the enclosing expression expression.

When we evaluate a binding construct, and evaluate subexpressions in that environment, we create a new
environment and pass that to the recursive callsto eval , so the subexpressions will execute in the new
enviornment instead.

Notice that we don't actually modify the environment chain when creating a new environment--we simply
create a new frame which holds a pointer to the old environment, and passit to the recursive eval . The fact
that we don't actually modify the structure of the environment isimportant--it's will let usimplement closure
correctly.

When the interpreter returns from evaluating a subexpression, it returns to an enclosing invocation of eval ;
the old environment will become visible again because we return to an eval where that environment is the
value of theenvt argument.

For example, consider what happens when we interpret the following expression, starting at the top level:

(let ((foo 1))
(if (a)
(let ((bar 2))
(if (b)
(c)
(d))
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(e))
()
(9))

[ WEe'll focus on the nested callsto eval corresponding to the nesting of let, if, let, if ]

If we look at the nested callsto eval , wefirst see acall that evaluates the whole expression in the top-level
environment:

F----- +
eval expr: (let...) envt: | *--+--> [toplevel envt]
+- - - - +

(I've given atextual representation of the expr argument, but a pictorial representation of the envt
argument to eval .)

eval will dispatchtoeval -1 et , passing it the same environment. eval - | et will evaluate theinitial
value expression 1 in that environment, and create a new environment binding f 0o. (I'll ignore the recursive
call toeval toevaluate the argument.) It will then call eval recursively to evaluatethel et body in that
environment.

I'll depict the nested invocations of eval and eval - | et top-to-bottom, showing the stack growing toward
the bottom of the picture. (Thisjust turns out to be simpler than drawing the stack growing up.)

Ho-m - - +
eval expr: (let...) envt: | *--+--> [toplevel envt]
- -- + I\ I\
| |
oo | |
eval -l et expr: (let...) envt: |  F--4------- + |
+----- + |
|
+----- + |
eval expr: (if...) envt: | *--+4--> [ [foo 1] * ]
- - - +

eval - i f will evaluate the condition expression ( a) in the given environment. We'll ignore that recursive
call toeval , but assumeit returns atrue value. In that case, eval - i f will evaluate its consequent, the inner
| et expression, by another recursive call to eval .

At this point, the "stack” of invocationsof eval ,eval -| et ,andeval -i f lookslikethis:

eval expr: (let...) envt: | *--+4+--> [toplevel envt]
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+----- + I\ I\
| |
R | |
eval -l et expr: (let...) envt: |  F--4------- + |
+----- + |
|
+----- + |
eval expr: (if...) envt: | *--+--->1 [foo 1] * ]
oo + I\
|
|
+---- - + |
eval -if expr: (if...) envt: |  F--4------- +
+----- + |
|
+- - - - + |
eval expr: (let...) envt: |  F--4------- +
+----- +

Again, thel et will evaluate the intial value expression, 2, by arecursive call to eval , which we will ignore
here. Then it will bind bar in anew environment frame, and call eval recursively to evaluate the body in
that environment. The body consists of another if, so eval - i f will be called, and it will evaluate its
argument expression and either the consequent or the alternative in that environment.

Assuming the condition returns true and it eval uates the consequent, ( c) , here'sthe "stack” of invocations of
eval ,eval -l et,andeval -i f at thepoint where ( c) isevauated:

+----- +
eval expr: (let...) envt: | *--+--> [toplevel envt]
t----- + I\ I\
| |
+oo-o | |
eval -let expr: (let...) envt: |  *--H------- + |
+--- - - + |
|
+o-m - + |
eval expr: (if...) envt: | *--+--->1 [foo 1] * ]
- + I\ I\
| |
| |
+oo-o | |
eval -if expr: (if...) envt: |  F-o-H------- + |
RREES | |
| |
R | |
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eval expr: (let...) envt: |  Fo-4------- + |
oo + |
|
+---- - + |
eval expr: (if...) envt: | *--+4---> 1] [bar 2] * ]
+--- - - + /\
|
+----- + |
eval expr: (c) envt: |  F-o-H------- +
+----- +

[ Note that the pictures above all depict evaluation of nested non-tail expressions. In the case of tail
expressions, the "stack" will not include as much information, because the state of the callsto eval , etc., will
not be saved before the calls that evaluate subexpressions.

Our interpreter is written in good tail-recursive style, with tail callsto evaluate expressionsthat are tails of
expressions in the language we're interpreting. This means that the intepreter is tail-recursive wherever the
program it's implementing is tail-recursive, and since it's implemented in atail-recursive language (Scheme),
we preserve the tail-recurson of the program we're interpreting. In effect, we snarf tail-call optimization from
the underlying Scheme system. If we were implementing our interpreter in C, we'd have to use special tricks
to preservetail recursion. We'll show how this can be done later, when we discuss our compiler. |

Integrated, Extensible Treatment of Special Forms

In the interpreter in the last chapter, we implemented special forms directly in the interpreter---eval - | i st
checked compound expressions to see if they began with a special form name. In effect, we hardcoded the
meanings of special form namesin the procedure eval - speci al -form

In our new interpreter, we'll use a cleaner approach, which treats special form definitions pretty much like
variable definitions. Thiswill let us put special formsin particular environments, and use the normal scoping
mechanisms to look up the routines that compile them.

This has several advantages. Thefirst isthat it makes our interpreter more modular. We can create different
environments with different special forms, and use the same interpreter to interpret different languages. That
IS, we separate out the basic operation of the interpreter from the particular special forms we decide on.

The second advantage is that it will allow usto build an elegant macro facility, so that new special forms can
be defined in terms of old ones. (Thiswill be described in detail in [ alater chapter ].)

[ thisisout of place, but fwd ref idea anyway? Shorten? Or just move?]

A Scheme interpreter or compiler only needs to "understand” procedure calling and afew basic special
forms---| anbda,i f,set!, quot e, and one very special special form for defining new special forms
(macros). (We canwritecond asamacrousingi f,| et asamacrousingl anbda, | et r ec asamacro
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using!l et ,l anbda, andset !, and soon.)

The third advantage is that we can use the same scoping rules for special forms that we use for variables. This
will be very convenient later, because we will be able to define local macros, in much the same way we
define local procedures.

To support this, we need to represent bindings slightly differently. In the ssmple interpreter from the last
chapter, each binding was just a name-value pair. Now we'll have athird part to each binding, telling what
kind of binding it is--a variable binding, a specia form binding, or a macro binding.

We can still use associations to represent the bindings. Where the simpler interpreter representing each
binding as an association of the form ( name val ue) , the new one will use bindings of the form ( nane

t ype whatever) . In the case of a normal variable binding, the "whatever" isthe actual value of the variable.
In the case of a special form, the "whatever" is the information the interpreter needs to interpret that particular
special form, including the procedure to evaluate it. For example, when binding the namel et , we can store a
pointer to the procedure eval - | et right there in the binding information.

Since the exact representation of bindingsisirrelevant, and we may want to changeit, we'll call the whole
thing abi ndi ng- i nf o data structure. This reflects that fact that it may not hold just a binding, but also any
auxiliary information we want to store.

To abstract away from exactly how bindings are implemented, we'll define several procedures that operate on
bi ndi ng-i nf o's. These include:

. bdg-t ype, which returns a symbol saying what kind of bindingitis: <vari abl e> for anormal
variable, <speci al - f or > for abuilt-in special form binding, and <synt ax> for a syntax
(macro) binding.

. bdg-vari abl e-r ef , which returns the value of a normal variable binding.

. bdg- speci al - f or m eval uat or, which returns an evaluation procedure for a special form
binding.

For now we'll ignore <synt ax> bindings, which will be discussed in alater chapter.
[ give actual code for accessors, etc? ]
Heresour new eval - | i st for handling compound expressions:

(define (eval -list |ist-expr envt)
;; only try to consider it specially if the head is a synbol
(if (synbol? (car list-expr))

;; look it up in the current |exical environnment
(let ((binding-info (envt-Iexical-lookup envt (car list-expr))))
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;; switch on the type of thing that it is
(cond ((not binding-info)
(error "Unbound synbol™ (car list-expr)))
(el se
(cond
;; special forns just call the special-form
;; eval uator, which is stored in the binding-info
; Oobject itself
((eq7 ( bi ndi ng-type binding-info) '<special-fornp)
((bdg-speci al -form eval uat or bi ndi ng-info) |ist-expr
envt))

((eq? (binding-type binding-info) '<variabl e>)
(eval -conmbo (bdg-vari abl e-ref bindi ng-info)
(cdr list-expr)
envt))
((eq? (binding-type binding-info) '<syntax>)
(eval -macro-call (bdg-syntax-transforner binding-info)
| i st-expr
envt))
(el se
(error "Unrecogni zed binding type"))))))

;; the head of the list is not a synbol, so evaluate it
;; and then do an eval -conbo to evaluate the args and
;; call the procedure
(eval -conbo (eval (car list-expr) envt)

(cdr 1ist-expr)

envt)))

eval - | i st first checksto see whether the head of the list isa symboal; if not, it's just a combination

(procedure call expression), and is handled by eval - conbo. (Remember that a combination can have an
arbitrary expression asits operator, and that expression is assumed to return a procedure to call.)

If it isasymbol, the binding of the variable islooked up. If it's a special form binding, the evaluation
procedure is extracted from the binding info, and called to evaluate the expression.

If the head of thelist isjust the name of a normal variable, that's also just a combination, and eval - conbo
iscalled in that case, too.

If the head of the list isthe name of a syntax binding (macro), we call eval - macr o- cal | to deal with it;
don't worry about this for now--it will be discussed in detail in Chapter [ whatever ].

Notice that in all cases, the environment is passed along unchanged to whatever procedure handles the
expression.
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Interpreting | et

The procedureeval - | et will be stored in the binding for the special form | et . In the case of al et
expression, eval - | et (above) will extract this procedure from the binding and call it to evaluate the
expression.

(define (eval-let let-formenvt)

;; extract the relevant portions of the let form
(let ((binding-fornms (cadr let-form)
(body-fornms (cddr let-form))

;; break up the bindings part of the form
(let ((var-list (map car binding-forns))
(init-expr-list (map cadr binding-forms)))

;; evaluate initial value expressions in old envt, create a
. new envt to bind val ues,
(let ((newenvt (make-envt var-1li st
(eval -multi init-expr-list envt)
envt)))
;; evaluate the body in new envt
(eval - sequence body-fornms newenvt)))))

Thefirstthing | et doesisto extract the list of variable binding clauses and the list of body expressions
fromthe overall | et expression. Then it further decomposes the variable binding clauses, extracting alist
of names and a corresponding list of initial value expressions. (Notice how easy thisisusing map to create
listsof car 'sand cadr 's of the original clause list.)

eval - | et then callsahelper procedure, eval - mul t i, to recursively evaluate the list of initial value
expressions and return alist of the actual values.

Thenit callsmake- envt to make the new environment. This creates a new environment frame, scoped
inside the old environment--i.e., with a scope link to it--with variable bindings for each of the variables,
initialized with the corresponding val ues.

Theneval - | et callseval - sequence to recursively evaluate the body expressions in the new
environment, in sequential order, and return the value of the last expression. This valueis returned from
eval - | et asthevaueof thel et expression.
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Here'sthe codefor eval - mul t i , which just uses map to evaluate each expression and accumulate a list
of results.

(define (eval-multi arg-fornms envt)
(map (Il anmbda (x)
(eval x envt))
arg-forns))

eval -nmul ti calseval recursively to evaluate each subexpression in the given environment. To do
this, it must passt wo argumentsto eval . It usesmap to iterate over the list of expressions, but instead of
callingeval directly, map calls a helper procedure that takes an expression as its argument, and then
passes the expression and the environment to eval .

Recall from section [ whatever ] that technique is known as currying. We use | anbda to create a
specialized version of a procedure (in this case eval ), which automatically supplies one of the arguments.
In effect, we create a specialized, one-argument version of eval that evaluates expressionsin a particular
environment, and then map that procedure over the list of expressions.

Here'sthe code for eval - sequence, which isvery much likeeval - nmul ti ---it just evaluates alist of
expressions in agiven environment. It's different fromeval - mul ti inthat it returns only the value of
the last expression in the list, rather than alist of al of the values.

(define (eval -sequence arg-forns envt)
(if (pair? arg-fornms)

(cond ((pair? (cdr arg-fornmns))
(eval (car arg-forms) envt)
(eval -sequence (cdr arg-forns) envt))
(el se
(eval (car arg-forms) envt)))

' *undefi ned-val ue*)) ; the value of an enpty sequence

(Notice that we've written eval - sequence tail-recursively, and we've been careful to evaluate the last
expression using atail-call to eval . This ensures that we won't have to returnto eval - sequence, so if
the expression we're interpreting is atail-call, we won't lose tail-recursiveness in the interpreter.)

Variable References and set !

eval - synbol handlesvariable references. It looks up the binding of the symboal, if there is one--if not, it
signals an unbound variable error--and checks to see that it's a variable reference and not a special form or
macro. If it isanormal variable, it fetches the value from the binding and returnsiit.

(define (eval -synbol name-synbol envt)
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(let ((binding-info (envt-1exical-lookup envt name-synbol)))
(cond ((not binding-info)
(error "Unbound vari abl e" nane-synbol))
((eq? (binding-type binding-info) '<variabl e>)
(bdg-vari abl e-ref binding info))
(el se
(error "non-variable name referenced as vari abl e"
name- synbol )))))

eval - set! handlestheset! special form. It will be stored in a special form binding of the name
set !, and extracted and called (by eval - | i st) toevaluateset ! expressions.

(define (eval -set! set-formenvt)
(let ((nanme (cadr set-form)
(val ue-expr (caddr set-form))
(let ((binding-info (envt-1exical-lookup envt nane)))
(cond ((not binding-info)
(error "Attenpt to set! unbound vari abl e" nane))
((eq? (binding-type binding-info) '<variabl e>)
(bdg-vari abl e-set! binding-info (eval val ue-expr envt)))
(el se
(error "Attenpt to set! a non-variable" nane))))))

Go to thefirst, previous, next, last section, table of contents.
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Interpreting | anbda and Procedure Calling

Our new interpreter will handle defining and calling new procedures. Thisis not difficult, because al of
the mgjor mechanisms are already in place. We need the ability to define local variables (e.g., arguments),
which we aready implemented for | et . We also need the ability to interpret the procedure bodies, but the
interpreter we've got isjust fine for that. We'll smply store the procedure bodies as s-expressions, and
interpret them like any other expressions when the procedure is called.

Our representation of closures will be very simple. A closure mainly pairs an environment with a
procedure body, but we aso need to specify alist of argument the procedure will accept.

Well define a procedure nake- cl osur e to construct a closure, given a pointer to an environment, a
pointer to alist of argument names (symbols), and pointer to a procedure body (alist of expressions).

Well also define the procedures cl osur e- envt , cl osur e- ar gs, and cl osur e- body to extract
those parts when we call the procedure.

Asadight complication, we'd like to start out with some predefined procedures, and the easiest way to do
that is ssmply to snarf the corresponding procedures from the underlying Scheme system, i.e., the language
we're using to implement our interpreter. (If we were writing our interpreter in C or assembly language, we
might write the code bodies of built-in proceduresin that language.)

These snarfed procedures will be the built-in "primitive" operations in our language, which can be "glued
together” by the interpreter to build new procedures, which may be arbitrarily complicated.

In the ssmple interpreter in the last chapter, we snarfed procedures directly--we just used closuresin the
underlying Scheme as procedures in our language. In the new interpreter, we need to distinguish between
snarfed procedures (which we can simply call from inside the interpreter) and user-defined procedures,
which we must interpret viarecursive callsto eval .

Our representation of closures will therefore support two predicates. cl osur e? will test an object to see
if itisaclosure of either sort. pri m ti ve-cl osur e? will test whether a closure represents a snarfed
procedure from the underlying Scheme system.

In the case of a primitive closure, calling the closure just consists of extracting the underlying Scheme
closure, and calling it with the given argument values. (We don't snarf any procedures that depend on what
environment they execute in. We only snarf functions like + and cons, which depend only on their
arguments.)
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A closure therefore has three important fields: a pointer to an environment, a pointer to alist of argument
names, and a pointer to a code body. It aso has a"hidden" type field, saying that what kind of object it is.

[ I'm glossing over the actual representation in the underlying Scheme system, because it really doesn't
matter. It could be an association list, avector, or whatever. ]

eval - | anbda isthe procedure called fromeval - I i st tohandlel anbda expressions. It will be
stored in binding of | anbda of the name | anbda (with binding type <speci al - f or n¥), and
extracted and called to actually interpret | anbda's.

(define (eval -1 anbda | anbda-f orm envt)
(let ((formals (cadr | anbda-form)
(body (cddr |anbda-form))
(make-cl osure envt formals body)))

eval - | anmbda simply extracts the argument list and body expression list from the | anbda expression,
and callsmake- cl osur e with them (and the current environment) to create the closure object. Storing
the current environment in the closure ensures that when the closure is interpreted later, it will still be able
to refer to the same bindings that were visible when it was created.

eval - conbo iscaledfromeval - | i st to evaluation combinations (procedure call expressions).
(Notethat eval - 11 st evaluates the operator expression before calling eval - conbo, and handsit the

closure plus alist of unevaluated argument expressions. Thisis not particularly significant--we could have
passed the operator expression to eval - conbo unevaluated, like the argument expressions, and have
eval - conbo evaluateit instead. As we've written it, we ensure that the operator expression is evaluated
before the arguments. We could change it to get the opposite effect. This would still be legal--the Scheme
standard does not specify the order of evaluation, and an implementation may even use different orders at
different call sites.)

[ DONOV AN--maybe we should change it. RScheme eval uates the operator expression last, so maybe the
interpreter should, too. |

eval - conbo evaluates the argument expressions in the given environment to get the argument values,
usingeval -nul ti,and callseval - appl y to cal the given closure with those val ues.

(define (eval -conbo proc arg-expr-1list envt)
;; use our own kind of apply to run our own kind of closures
(eval -apply proc
;; evaluate the argunments, collecting results into a |ist
(eval -rmul ti arg-expr-1ist
envt)))
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eval - appl y doesthe actual procedure call, after the arguments have been evaluated. That is, it applies
the given procedure (closure) to the given arguments.

If the closure we're calling is a primitive closure, we simply extract the underlying Scheme procedure and
call that, using the standard Scheme procedure appl y. Scheme'sappl y takesalist of any number of
values, and calls the procedure as though the arguments had been passed to it in the normal way.

(To make sure that you understand that, here's a simple usage of Scheme'sappl y: (apply + ' (1
2) ) . Thiscall to apply will take the procedure + and call it with thevalues1 and 2, just asif we had
written (+ 1 2).Likewise, (apply list '(1 2 3 4)) returnsthesamethingas(list 1 2
3 4))

(define (eval -apply proc arg-1list)
(if (primtive-closure? proc)

;; It's a primtive, so extract the underlying | anguage's

;; closure for the primtive, and do a real (underlying Schene)
;; apply to call it

(apply (closure-primtive proc) arg-Ilist)

;; It's not a primtive closure, so it nust be sonething
;; we created with nake-cl osure
;; first, bind the actuals into a new environnent, which
;; 1S scoped inside the environnent in which the cl osure
;; was cl osed
(let ((newenvt (nmake-envt (closure-args proc)
arg-1i st
(closure-envt proc))))
;; then, evaluate the body fornms, returning the
;; value of the last of them
(eval - sequence (cl osure-body proc)
new envt))))

In the case of auser-defined (interpreted) closure, eval - conbo creates a new environment to bind the
arguments values, much asit doesto bind the local variables of al et ; it callsmake- envt with the name
list, the corresponding value list, and the old environment, and gets back a pointer to the new environment
frame, scoped inside the old one.

There's a big difference here, though. The "old" environment that's used in creating the new one is not the
environment that was passed to eval - conbo. (Notice that eval - conbo did not even pass that
environment to eval - appl y.)
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When we call the closure, we extract the environment stored in the closure, and use that as the "old"
environment. This ensures that the closure body will evaluate in the environment where it was defined,
augmented with the bindings of its arguments. Thisisthe crucia step in preserving lexical scope--the
meanings of identifiers in the procedure body are fixed at the moment the closure is created, because it
captures the current environment at that point.

Once the new environment is created, eval - conbo simply callseval - sequence to evaluate the
sequence of body expressions and return the value of the last one. eval - conbo simply returnsthis value
as the return value of the procedure call. (Notice that the call to eval - sequence isatail cal, preserving
the tail recursion of the program we're interpreting.)

Mutual Recursion Between Eval and Eval-apply

It is important to understand the relationship between eval and eval - appl y intheinterpreter. This
will help you understand how scoping is implemented, and will also help you understand the relationship
between an interpreter and a compiler.

eval calsitself to evaluate normal nested expressions. It may do thisindirectly, by using helper
procedures that handle different kinds of expressions, but in general recursive callsto eval correspond to
the nested structure of a procedure.

eval - appl y isvery different. When the interpreter gets to a procedure call, it callseval - appl y to
jump to a different procedure, not a nested expression of the same procedure. (Note that the argumentsto a
procedure call are evaluated like any other nested expressions, by calling eval , but the call itself is done

by eval - appl y.)

Normal recursive callsto eval therefore correspond to the local nesting structure of the code, but callsto
appl y correspond to transfers of control to different procedures.

[ Any other miscellaneous stuff | should explain? Should have a pointer to the source file for the whole
interpreter... |

[ Say that'sit for the interpreter for now... we'll come back to it when we talk about macros, and we'll talk
about a compiler with very similar structure later... ]

Go to thefirst, previous, next, last section, table of contents.
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Variantsof let:l etrec and | et *

Scheme provides two useful variantsof | et . | et r ec supports the creation of recursive local procedures,
including mutually recursive sets of procedures. | et * supports the sequenced binding of variables, where each
initial value expression can use the previous bindings.

Understanding | et r ec

When anormal | et isevauated, theinitial value expressions are evaluated before binding is done. Theinitial
value expressions execute in the environment outside the let, and then the bindings are created and initialized
with those values.

Often, we want the initial value expression for a binding to be able to create a procedure that will see the new
bindings. For example, suppose we want to create alocal procedure which isrecursive. We might try this:

;; buggy exanple with (non-)tail-recursive | ocal procedure
(define (some-procedure...)
(let ((helper (lanmbda (x)

(if sonme-test?
(helper ...))))) ;; broken recursive call

(helper ...) ;; call to (non-)recursive |ocal procedure

)

The problem with this example isthat when the| et isevaluated, thel anbda expression will create the
helper procedure in the wrong environment--before the variable hel per isbound. The resulting procedure
will be scoped in the environment outside the | et , not the new environment where hel per isvisible. When
the procedure calls hel per ---which we had intended to be arecursive call--it will not use new binding of

hel per that we created. Insidethe| anbda body, hel per will still refer to whatever binding of hel per
was visible before intering the let. (Very likely, that'sno variable at al, and this will cause an unbound variable
error.)

| et r ec letsus create an environment before evaluating the initial value expressions, so that the initial value
computions execute inside the new environment. We can fix the problem by using al et r ec instead of al et :

(define (some-procedure...)
(letrec ((hel per (lanbda (x)

(if some-test?
(helper ...))))) ;; recursive call
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(helper ...) ;,; call to recursive |ocal procedure

)

Now the procedure hel per can"seeitsown name,” since the lambda expression is evaluated in the
environment where hel per isbound.

More concretely, notice that when this procedureis run, it creates an environment and closure that are linked
circularly. The environment contains a binding of hel per that holds a pointer to the closure created by

| anbda. The closure, in turn, contains a pointer back to that same environment, which is where it was created.
Itisthiscircularity that makes the procedure recursive; when it refersto hel per , it fetches the value of this
binding, which points to itself.

We can get the same effect using | et andset ! .

Al et rec expressionisequivalent to al et where the bindings are initialized with dummy values, and then
theinitial values are computed and assigned into the bindings. The above example is equivalent to:

(define (some-procedure ...)
(let ((hel per '*dunmmy-val ue*))
(set! hel per (lanbda (x)

(if some-test?
(helper ...))))) ; recursive call

(helper ...) ; call to recursive |ocal procedure

)

Herethel et createsabinding, initializing it with an arbitary value that isn't actually used--it'sjust a
placeholder. Then, oncethel et isentered and the binding isvisible, aclosureis created (in that environment)
and apointer to it isinstalled in that binding. | et r ec can be used when defining mutually recursive
procedures, each of which can see the others names and call them.

(define (sone procedure ...)
(letrec ((helperl (lanbda ()
(hel per2) ...))
(hel per2 (I anbda ()

(helperl) ...)))

(hel perl) ; start up mutual recursion

)

Noticethat al | et r ec doesishind variables and (re-)initialize them. Y ou can use it to define plain variables
aswell as procedure variables. For example, if the recursive procedures above need to reference a shared
variable, you can do this:
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(define (sonme procedure ...)
(letrec ((hel perl (Ianbda ()
: varl ... (helper2) ...))
(hel per2 (I anbda ()
(helperl) ... varl ...))
(varl #f))
(hel perl) ;; start up mutual recursion
o))

[ should come up with some simple concrete examples...]

Aswith| et , the order of evaluation of al et r ec'sinitial value expressions is undefined. For example, the
abovel et r ec might be compiled asthough it were al et likethis:

(define (some procedure ...)
(let ((helperl '*dumy-val ue*)
(hel per2 ' *dunmmy-val ue*)
(varl ' *dummy-val ue*))
(set! hel per2 (lanmbda ()
(helperl) ... varl ...))

(set! varl #f)
(set! hel perl (lanmbda ()
varl ... (helper2) ...))

(hel perl) ;; start up nutual recursion

)

Whenusing | et r ec and | anbda to define local procedures, in the usual way, the order of evaluation is
irrelevant--the | antbda expressions can be executed in any order, because they only refer to the bi ndi ngs of
thel et r ec variables, not their val ues. The values are only used when the resulting procedures are called.
The following would be an error, however:

(define (sone procedure ...)
(letrec ((helperl ...)
(hel per2 ...)
(varl (list hel perl helper2)))

((car (varl helperl))) ; start up nutual recursion

)

Heretheinitialization of var 1 depends on the values of hel per 1 and hel per 2, which may not have been
computed yet.
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Using | et rec and | anbda to Implement Modules

Standard Scheme does not have amodule system, but | et r ec and | anbda are powerful enough to
implement modules in portable Scheme.

Suppose we would like to define a modul e that encapsulates a set of procedures and variables, but only exports
a subset of those procedures.

We can represent the module as al et r ec environment which exports an association list of of procedures.

Here we'll create amodule called f 0o, which defines four procedures and two variables, and exports two of the
procedures, f 0o and bar .

(define foo-nodul e
. create a letrec environnent with internal definitions
;; of sone variables and procedures

(letrec ((private-procl (lambda (...) ...))
(private-proc2 (lanmbda (...) ...))
(private-varl ...)

(private-var2 ...)

(foo (lanbda (...) ...))

(bar (lanbda (...) ...)))
;; return an association list of "exported" closures
(list (list '"foo foo)

(list "bar bar))))

Thel et r ec expression will create an environment, and within that environment it will evaluate the initial
value expressions to initialize the bindings. All of the proceduresinthel et r ec can see each other's names,
and call each other freely. Procedures outside thel et r ec cannot.

The only procedures that can be called from outside the | et r ec aref oo and bar , which are returned from
thel et r ec inan association list. We've saved thislist in the binding of f 0o- nodul e, so that we can ook
those procedures up and call them.

We can clean this up alittle by providing an accessor function that will extract a single procedure from a
module, by using assq to find the appropriate closure:

(define (nodul e-get nod nane)
(cadr (assg nod nane)))

To import a procedure and give it aname in another environment, we can do this:

(define foo (nodul e-get foo-nodule 'foo))
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If we want to, we can give it adifferent name in the environment we're "importing" it into.
(defi ne quux (nodul e-get foo-nodule 'foo))

Thislets us rename a procedure imported from a module, to avoid naming conflicts. quux is exactly the same
procedure asf 00, but by a different name in adifferent scope. When we call it, it will executein the
environment where it was defined, namely the "private" environment of the module we created with | et r ec.

| et *

For situations where the order of initialization isimportant, Scheme provides avariant of | et caled| et *.
Suppose we tried the following using | et :

(define (foo epsilon)
(let ((a 0)
(upper (+ a epsilon))
(lower (- a epsilon)))

)

Thiswill not do what we probably meant, because the initial values of upper and | ower will be computed
before a is bound. We could fix this by using nested | et 's, to force evaluation and binding to happen in the
desired order:

(define (foo epsilon)

(let ((a 0))
(let ((lower (- a epsilon))
(upper (+ a epsilon)))
)

Thisensures that a is bound before we evaluate the initial value expressions for upper and | ower .

Scheme provides| et * to avoid needing lots of nested lets when initilizing a series of bindings, each of which
may depend ont the previous ones, e.g.,

(define (bar x vy)
(let* ((diff (- x vy))
(diff-squared (* diff diff))
(diff-cubed (* diff-squared diff)))
)
Is exactly equivalent to

(define (bar x vy)
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(let ((diff (- xvy)))
(let ((diff-squared (* diff diff)))
(let ((diff-cubed (* diff-squared diff)))
--))))

lteration Constructs

Named | et

Named | et isageneral and flexible iteration construct that isreally just syntactic sugar for al et r ec and one
or more | anbda's. It lookslikeal et , but it'susually used as aloop.

Named | et implements iteration asrecursion. If you useit in normal ways, you write loops that act as tail-
recursive procedures. You can also use it to write "loops" that aren't tail recursive, but that's uncommon.

Named | et bindsloop variables, and executes the loop body. Anywhere in the loop body, you can call a
procedure to iterate the loop.

Here's an example loop, which prints out the integers from 0 to 9:

(let loop ((i 0))
(display i)
(if (< i 10)
(loop (+i 1))))

Here we've written aloop and given it an identifier, | oop; that's just a name we chose for this particular loop--
we could have used any identifier.

Thisloop binds the loop variablei , giving it theintial value 0. Then it enters the body of the loop, which prints
out i using display, and evaluatesthei f expression. If thei f condition returns atrue value, it evaluates the
expression (1 oop (+ i 1)), whichiteratestheloop. Thislookslike acall to aprocedure named | oop,
which iterates the loop. The argument passed is the new value of the loop variable for the next iteration.

The reason that the expression that iterates aloop looks like a procedure call isthat it is aprocedure call. A
named | et isexactly equivalent to al et r ec that defines a named procedure, whose body is the body of the
named | et , and then calls that procedure to start the recursion. When you write a"loop" with named | et ,
you're really writing arecursive procedure and a call to that procedure. The loop variable(s) are really
arguments to the procedure, and the initial values of the loop variables are just the first argument passed to the
procedure to start the recursion.

The above example is exactly equivalent to:

(letrec ((loop (lanbda (i) ; define a recursive
(display i) ; procedure whose body
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(if (<1i 10) ; is the |oop body
(loop (+1i 1))))))
(loop 0)) ;; start the recursion with 0 as arg i

When you supply the name of anamed | et , you'rereally supplying the name of al et r ec variable that will
name a procedure. When you supply the body of the named | et , you're really supplying the body of the
named procedure. When it iterates the loop, it is calling itself recursively, passing the new invocation the new
value of the loop variable as an argument.

To start off the loop, named | et passes this procedure the initial value expression for the loop variable.

We can provide any expression we want to compute the new value of the loop variable--we don't have to
increment it by one. We can also provide any test we want to decide whether to iterate the loop.

For example, here's procedure which uses aloop to search alist of aternating key/value pairs. (Thisis not an
association list, but alinear list of alternating keys and values, called a property list.) It iterates through the list
two elements at atime. If it finds an odd-numbered element that's eq? to what it's looking for, it returns the
next (even-numbered) element; otherwise, it continues through the loop.

(define (property-list-search lis target)

(let Toop ((I lis))
(cond ((null? 1)

#f)

((eqg? (car |) target)
(cadr 1))
(#t

(l'oop (cddr 1))))))

[ sameas: |

(define (property-list-search lis target)
(letrec ((loop (lanbda (I)
(cond ((null? 1)

#f
((eq? (car 1) target)
(cadr 1))
(#t
(loop (cddr 1))))))))
(loop 1is))) ;; start the recursion

The reason we supply aname for aloop inanamed | et isso that we can have nested loops with different
names, and we can iterate any of the loops by calling it by name.

For example, suppose we want to have a nested pair of 1oops, but want to be able to bail out of the iteration of
the inner loop, and go directly to the next iteration of the outer loop. We can do this:
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[ need example here ]

(let outer-loop ((i ...))
(let inner-loop ((j ...))
(if (shoul d-abort-inner-Ioop)
(outer-loop ...)) ;; go directly to next iteration of outer | oop
. do normal inner |oop action
...(inner-loop ...) ;; iterate inner |oop normally
(outer-loop ...)) ; iterate outer | oop nornmally

Some things to notice about Scheme loops:

. Loops can have any number of loop variables, each updated in any way you like. This corresponds to
having a recursive procedure with any number of arguments, and passing it any values you like at each
recursion.

. Unlike most languages' |oops, each time we iterate aloop, we rebind the loop variable. There's anew
binding at each iteration, because each iteration is really acall to a procedure that binds arguments. We
don't bind the loop variable once and side-effect it at each iteration.

. Sinceloop bodies are really just procedure bodies, and loop iterations are really just procedure calls, we
can put callsthat iterate aloop anywhere in the body; we can have multiple pointsin the body that call
the procedure to iterate the loop.

. Thevariable bindings created at each iteration of aloop are independent, and can be captured by lambda
expressions in the loop body. Each closure created by lambdawill capture the bindings for that iteration
of the loop.

Programming with Procedures and Environments

Exercises

Go to thefirst, previous, next, last section, table of contents.
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Recursion in Scheme

In this chapter, I'll discuss procedure calling and recursion in more depth. [ blah blah blah | Scheme's
procedure-calling mechanism supports efficient tail-recursive programming, where recursion is used
instead of iteration. In conventional programming languages, you can't generally use recursion to get the
effect of iteration, because you may get activation stack overflows if the recursion istoo deep.

After clarifying how recursion works, I'll give examples of how to program recursively in Scheme.

(Inalater chapter, I'll show how the mechanisms that support tail recursion also support a powerful
control featurecalledcal | -w t h- current - cont i nuat i on that lets you implement novel control
structures like backtracking and coroutines.)

Subproblems and Reductions (non-tail and tail calls)

In most implementations of most programming languages, an activation stack is used to implement
procedure calling. At acall, the state of the "caller" (calling procedure) is saved on the stack, and then
control istransferred to the callee.

Because each procedure call requires saving state on the stack, recursion is limited by the stack depth. In
many systems, deep recursions cause stack overflow and program crashes, or use up unnecessary virtual
memory swap space. |n most systems, recursion is unnecessarily expensive in space and/or time. This
limits the usefulness of recursion.

In Scheme, things are somewhat different. As| noted earlier, recursive calls may betail recursive, in
which case the state of the caller needn't be saved before calling the callee.

More generally, whether a procedure is recursive or not, the calls it makes can be classified as
subproblems or reductions If the last thing a procedure doesisto call another procedure, that's known as
areduction--the work being done by the caller is complete, because it "reduces to" the work being done
by the callee.

For example, consider the following procedures:
(define (foo)

(bar)
(baz))
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(define (baz)
(bar)

(fo0))

Notice that when f oo iscalled, it doestwo things: it callsbar and then callsbaz. After the call to
bar , control must return to f 0o, so that it can continue and call baz. The call to bar isthereforea
subproblem--a step in the overall plan of executing f oo. When f oo callsbaz, however, that's all it
needs to do--all of its other work is done. The result of the call to f oo isjust theresult of f 0o's call to
baz.

In aconventional programming language implementation, f 0o's state would be saved before the call to
baz, aswell as before the call to bar . Each call would return control to f 00. In the case of the call to
baz, al f oo will doisreturn theresult of the call toitscaller. That is, all f 00 does after the return
from baz isto leave the result wherever its caller expectsit, and return again to pop a stack frame off
the activation stack.

In Scheme, things are actually smpler. If the last thing a procedure doesisto call another procedure, the
caller doesn't save its own state on the stack. When the callee returns, it will return to its caller's caller
directly, rather than to its caller. After all, there's no reason to return to the caller if al the caller is going
to do is pass the return value along to its caller.

This optimizes away the unnecessary state saving and returning at tail calls. Y ou don't have to do
anything special to get this optimization--Scheme implementations always do it for tail calls.

Consider both f oo and baz above. Neither ever returns--each just calls the other. In Scheme, these two
procedures will repeatedly call each other, without saving their state on the stack, producing an infinite
mutual recursion. Will the stack overflow? No. Each will save its state before calling bar , but the return
from bar will pop that information off of the stack. The infinite tail-calling between f oo and baz will
not increase the stack height at all.

Above | said that a callee may return to its caller's caller, but that doesn't really capture the extent of
what's going on. In general a procedure may return to its caller (if it was non-tail called), or it's caller's
caller (if it wastail-called but its caller wasn't) or it's caller's caller's caller (if it and it's caller were both
tail-called), and so on. A procedure returnsto the last caller that did a non-tail call.

Because of this"tail call optimization," you can use recursion very freely in Scheme, which is a good
thing--many problems have a natural recursive structure, and recursion is the easiest way to solve them.

Notice that thistail call optimization is afeature of the language, not just some implementations. Any
implementation of standard Scheme is required to support it, so that you can count on it and write
portable programs that rely on it. (In fact, the definition of the Scheme language itself depends on this,
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because the specia forms for iteration are defined in terms of equivalent tail-calling--aloop isreally a
kind of procedure, that procedure tail-callsitself ot iterate the [oop.)

Also notice that the interpreter we presented earlier istail-recursive. Therecursive callsto eval aretail
calls, and since it'simplemented in Scheme, the interpreter relies on the underlying Scheme's tail-call
optimization. The evaluator thus snarfs the tail-call optimization from the underlying Scheme system. If
you implement a Scheme interpreter in another language, you have to be more careful, and implement
the tail call optimization yourself.

It's something of a misnomer to call Scheme's procedure calling mechanism an "optimization." What's
really going on is that Scheme simply distinguishes between two things that most languages lump
together--saving the caller's state, and actually transferring control to the callee. Scheme notices that
these things are distinct, and doesn't bother to do the former when only the latter is necessary.

A procedure call isredlly rather like a (safe) goto that can pass arguments: control is transferred directly
to the callee, and the caller has the option of saving its state beforehand. (Thisis safer than unrestricted
goto's, because when a procedure does return, it returns to the right ancestor in the dynamic calling
pattern, just as though it had done a whole bunch of returns to get there.)

The Continuation Chain

In this section, I'll describe a straightforward implementation of Scheme's state-saving for procedure
calling. It may clarify things that are discussed later, however, suchascal | -w t h-current -
cont i nuat i on and our example compiler's code generation strategy.

In most conventional language implementations, as noted above, calling a procedure allocates an
activation record (or "stack frame") that holds the return address for the call and the variable bindings
for the procedure being called. The stack is a contiguous area of memory, and pushing an activation
record onto the stack is done by incrementing a pointer into this contiguous area by the size of the stack
frame. Removing a stack frame is done by decrementing the pointer by the size of the stack frame.

Scheme implementations are quite different. As we've explained previously, variable bindings are not
allocated in a stack, but instead in environment frames on the garbage-collected heap. Thisis necessary
so that closures can have indefinite extent, and can count on the environments they use living aslong as
is necessary. The garbage collector will eventually reclaim the space for variable bindings in frames that
aren't captured by closures.

(Actualy, I'm oversimplifying a bit here. Some implementations of Scheme do use arelatively
conventional stack, often so that they can compile Scheme straightforwardly to C. They must provide
tail-call optimization somehow, though. | won't go into alternative implementation strategies here.)
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Most Scheme implementations also differ from conventional language implementations in how they
represent the saved state of callers. (In a conventional language implementation, the callers stateisin
two places: the variable bindings are in the callers own stack frames, and the return addressis stored in
the callee's stack frame.)

In most Scheme implementations, the caller's state is saved in arecord on the garbage-collected heap,
called a partial continuation. It's called a continuation because it says how to resume the caller when we
return into it--i.e., how to continue the computation when control returns. It's called a partial
continuation because that record, by itself, it only tells us how to resume the caller, not the caller's caller
or the caller's caller's caller. On the other hand, each partial continuation holds a pointer to the partial
continuation for its caller, so a chain of continuations represents how to continue the whole computation:
how to resume the caller, and when it returns, how to resumeits caller, and so on until the computation
is complete. This chain istherefore called afull continuation.

(Notice that the relationship between the partial continuationsin afull continuation chain is similar to
the relationship between an environment frame and an environment chain. The former represents control
information while the latter represents scope information.)

In most Scheme implementations, a special register called the continuation register isused to hold the
pointer to the partial continuation for the caller of the currently-executing procedure. When we call a
procedure, we can package up the state of the caller as arecord on the heap (a partial continuation), and
push that partial continuation onto the chain of continuations hanging off the continuation register.

part. cont. (saved state of caller's
/]\ caller's caller)

part. cont. (saved state of caller's caller)

I\
|
+--- - oo - + |
CONT | R > part. cont. (saved state of caller)
+--- - oo - +

(It is often convenient to draw stacks and continuations as growing downward, which is our convention
here--the newer elements are on the bottom.) Note that the continuation register may be aregister in the
CPU, or it may just be a particular memory location that our implementation uses for this purpose. The
point isjust that when we're executing a procedure, we always know where to find a pointer to the
partial continuation that lets us resume its caller (or whichever procedure last did anon-tail call). We
will sometimes abbreviate this register's name as CONT. A typical implementation of Scheme using a
compiler has several important registers that encode the state of the currently-executing procedure:
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. Theenvironment register (ENVT) holds the pointer to the chain of environment frames that make
up the environment that the procedure is executing in.

. The program counter register (PC) holds the pointer to the next instruction to execute. In a
normal system that compiles to normal machine code, thisis the actual program counter of the
underlying hardware.

. The continuation register (CONT), as we've said, holds the pointer to the chain of partial
continuations that lets us resume callers. Thisis very roughly the equivalent of an activation stack
pointer.

Before we call a procedure, we must save a continuation if we want to resume the current procedure
after the calleereturns.

Since the important state of the currently-executing procedure isin the registers listed above, we will
create arecord that has fields to hold them, and push that on the continuation chain. We will save the
value of the CONT, ENVT, and PCregistersin the partial continuation, then put a pointer to this new
partial continuation in the continuation registers. We also need to save any other state that the caller will
need when it resumes, as suggested by the ellipsis below. (Wel'll discuss what else goesin a partial
continuation when we talk about compilersin detail.)

ol d cont
/]\
|
S + |
+e-emm-- + | p. cont . | |
CONT I R e T TSI St+=======+ I
S + cont | S SRR - +
S +
envt | s >0l d envt
S +
pc | R >return address
S +
|
+ ..
| |
S +

Notice that since we saved the old value of the continuation register in the partial continuation, that
serves asthe "next" pointer in the linked list that makes up the full continuation. Thisis exactly asit
should be. The value of the continuation register is part of the caller's state, and saving it naturally
constructs alinked list, because each procedure's state is fundamentally linked to the state of its caller.
Saving the return addressis a little bit special--rather than just copying the program counter and saving
It, we must save the address we want to resume at when we resume this procedure.
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Once a procedure has pushed a continuation, it has saved its state and can call another procedure. The
other procedure can use the ENVT, CONT, and PC registers without destroying the values of those
registers needed by the caller. Thisis called a caller saves register usage convention; the assumption is
that the calleeis allowed to freely clobber the valuesin the registers, so it's the caller's responsibility to
save any valuesit will need when it resumes.

To do aprocedure return, it is only necessary to copy the register values out of the continuation that's
pointed to by the CONT register. Thiswill restore the caller's environment and its pointer to its caller's
continuation, and setting the PC register will branch to the code in the caller where execution should
resume. We often call this "popping" a continuation, because it's a stacklike operation--saving a (partial)
continuation pushes the values in registers onto the front of the "stack," and restoring one pops the
values back into the registers. (Aswe will explain later, however, Scheme continuation chains don't
always observe this simple stack discipline, which iswhy they can't be implemented efficiently as
contiguous arrays.)

If we save state and do a procedure call, and before returning our caller saves its state and does a
procedure call, the chain of continuations gets longer. For the most part, thisis like pushing activation
information on a stack.

[\
|
R + |
| p.cont. | |
+===—=—===—==+ I
cont | N S +
+--------- +
envt | A >0l d envt
+--------- +
pC | LR e >return address

+--------- +

|
+

|
+--------- +

I\

\
\
\
\

N —— + |
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+----- - + | p.cont. | |
cont | e S+=========+ /

+----- - + cont | L

S SIS +
envt | L >0l d envt
S SIS +
pc | L >return address
S SIS +
I

+ Ca
I I
S SIS +

Notice that when we say we save the "state" of the caller, we mean the values in our important registers,
but we don't directly save particular variable values--when we save the environment pointer, we don't
make copies of the values in the bindings in the environment. In effect, saving the environment pointer
records which names refer to which pieces of storage. If other code then executes in that same
environment and changes those val ues, the new values will be seen by this procedure when it returns and
restores the environment pointer. This policy has two important consequences:

1. we can save an environment pointer into a continuation very quickly, and restore it quickly,
because we're just saving and restoring one pointer, and

2. it ensuresthat environments have the right semantics: closures that live in the same environment
should see each others changesto variables. Thisis one of the ways that procedures are supposed
to be able to communicate--by operating on variables that they can see.

Executing areturn ("popping a continuation") does not modify the partial continuation being popped--it
just involves getting values out of the continuation and putting them into registers. Continuations are
thus created and used nondestructively, and the continuations on the heap form a graph that reflects the
pattern of non-tail procedure calls. Usually, that graph isjust atree, because of the tree-like pattern of
call graphs, and the current "stack™ of partial continuationsis just the rightmost path through that graph,
I.e., the path from the newest record all the way back to the root.

Consider the following procedures, where a calls b twice, and each time b iscalled, it calls ¢ twice:

(define (a)
(b)
(b)
#t)

(define (b)
(c)
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(c)
#t)

(define (c)
#f)

All of these calls are non-tail calls, because none of the procedures ever endsin a (tail) call.

Suppose we call a after pushing a continuation for a's caller, then a calls b the first time. a will push a
continuation to save its state, then call b. While executing b, b's state will bein the registers, including a
pointer to the continuation for a in the CONT register.

cont. for a's caller

/
/
cont. for a
|\
+---+ |
CONT | +-+----+
+---+

b will then push a continuation and call c.

cont. for a's caller

/
/
cont. for a
/
/
cont. for b
/]\
I
+- |-+
CONT | + |
+---+

When c returns, it will restore b's state by popping the partial continuation's values into registers. At this
point, the CONT register will point past the continuation for b to the continuation for a.

cont for a's caller
/

http://www.federated.com/~jim/schintro-v14/schintro_127.html (8 of 18)11/3/2006 9:11:15 PM



An Introduction to Scheme and its Implementation - Recursion in Scheme

cont. for a

[ 1|\
/ |
cont. for b |
|
+---+ |
CONT | +-+4------- +
+---+

Then b will push another continuation and call ¢ again.

cont for a's caller

/
/
cont. for a
[\
/ \
cont. for b cont for b
/]\
|
+---+ |
CONT | +-+---------- +
+---+

Again, ¢ will return, restoring b's state, and the CONT register will point past the continuation for b to
the continuation for a.

cont for a's caller

/
/

cont. for a <------- +
[\ |
/ \ |
cont. for b cont for b |
+-- -+ I
CONT | #-t-mmmmmmmmmemeee e - +

+-- -+

After returning to a, the CONT register will point past the continuation for a to the continuation for a's
caller. Then before a callsb again, it will push another continuation to save its state.
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cont for a's caller

/ \
/ \
cont. for a cont for a

[\ /]\

/ \ |

cont. for b cont for b |

I

+---+ |
CONT | +-4----mmmmm e e e m e a o +

+---+

Then a will return and the CONT register will point past the continuation for a to the continuation for a's
caller.

cont for a's caller <--+

/ |

/ |

cont. for a |

[\ |

/ \ |

cont. for b cont for a |

+---+ I

(00 1 I I +
+---+

This continues in the obvious way, so that at the time of the fourth and last call to C, the continuations
on the heap look like this:

cont for a's caller

/ \
/ \
cont. for a cont. for a
[\ [\
/ \ / \
cont for b cont for b cont for b cont for b

/]\

I

+---+ |
60\ I e +

+-- -+
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Most of the time, the rest of this graph becomes garbage quickly--each continuation holds pointers back
up the tree, but nothing holds pointers down the tree. Partial continuations therefore usually become
garbage the first time they're returned through.

The fact that this graph is created on the heap will allow usto implementcal | -wi t h- current -
conti nuati on,ak.a cal |/ cc, avery powerful control construct. cal | / cc can capture the
control state of aprogram at a particular point in its execution by pushing a partial continuation and
saving apointer to it. Later, it can magically return control to that point by restoring that continuation,
instead of the one in the continuation register. (Wewill discusscal | / cc indetail in Chapter XX.)

Exploiting Tail Recursion

In an earlier section, we presented example recursive implementations of several Scheme functions;
some of them were tail recursive, and some not.

At first glance, many routines seem as though they can't conveniently be coded tail recursively. On
closer inspection, many of them can in fact be coded this way.

Passing Intermediate Values as Arguments

Summing a List

Suppose we want to sum alist of numbers. The most obvious way of doing it isthe way we did it earlier,
like this:

(define (list-sumlis)
(if (null? Iis)
0
(+ (car lis)
(list-sum (cdr 1is)))))

The problem with this code is that it's not particularly efficient, because it's not tail recursive. After each
recursivecal tol i st - sum we must return to do the addition that adds one element to the sum of the
rest of the list. We're adding the elements of the list back-to-front, on the way back up from nested
recursion. (This means that Scheme must push a partial continuation before every recursive call, and
each one must be popped when we're finished, to return the sum back from each call to its caler.)

The problem here is that evaluation of the arguments to a combination isn't atail call, even if the
combination as awholeis. Control must always return so that the actual call can be done.

We can write atail-recursive version of | i st - sumthat adds thingsin front-to-back order instead. The
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trick isto do the addition before the tail call, and to pass the sum so far to the recursive call, i.e., to pass
it forward as an argument until anon-tail call returnsit.

To do this, we have to keep a running sum, and each recursive call must passit as an argument to the
next. To start it off, we have to have a"running sum" of 0.

We can do this by defining two procedures. The one that does the real work takes alist and arunning
sum, adds one element to the running sum, and tail-callsitself to add the rest of the elements to the
running sum. When it reaches the end of thelist, it just returns the value. (Scheme doesn't need to save a
partial continuation before each call, since only the last call ever returns.) Wel'll call this procedure

| oop, because we're using tail recursion to implement looping. For convenience, we also wrap this
procedure up in afriendlier procedure that will start off the recursion, by supplying aninitial "running
sum" of 0.

;; a tail-recursive list summ ng procedure
(define (loop Iis sumso-far)
(cond ((null? lis)
sum so-far)
(el se
(loop (cdr lis)
(+ sumso-far (car lis))))))

;; a friendly wapper that supplies an initial running sumof O
(define (list-sumlis)
(loop lis 0))

We can make this cleaner by encapsulating | oop, sinceit's only used by list-sum. We make | oop a
local procedureusing | et r ec and | anbda.

(define (list-sumlis)
;; define a local, tail-recursive |ist summ ng procedure
(letrec ((loop (lanbda (lis sumso-far)
(cond ((null? Iis)
sum so-far)
(el se
(loop (cdr lis)
(+ sumso-far (car 1is))))))))
(loop lis 0))) ;; start off recursive summng with a sumof O

We can write this more clearly using named | et . Named let is one of Scheme's two specia forms for
looping (the other isdo). A named | et lookslikeal et , but it'sreally a shorthand for the kind of thing
we did above--defining alocal procedure that can tail-call itself to give the effect of iteration, and
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starting it off with the appropriate initial value.

(define (list-sumlis)

(let Toop ((lis lis)
(sumso-far 0))

(cond ((null? lis)

sum so-far)

(el se
(loop (cdr lis)
(+ sumso-far (car lis)))))))

Notice that here we're using two loop variables, | i s and sum so- f ar , rebound at each iteration. One
keeps track of the remaining part of the original list, and the other the sum of the list items we've seen so
far.

Be sure you understand that this version using named | et isexactly equivalent to the version using

| etrec and| anbda. Thenamed | et bindsthevariable!l oop, and initializesit with afirst-class
procedure that takes two arguments, | i st and sum so- f ar . When we used the name | oop for the
named | et , we'reredly giving the name of the procedure that implements the loop body. Each time we
iterate the loop, we're really calling this procedure--the call to | oop looks like a procedure call because
itisaprocedure call.

The argument expressions provide the new values for the next iteration of the loop, and the loop
variables are rebound and initialized to those values at the next iteration of the loop. Asin the version
with an explicit letrec and lambda, the loop is started off by evaluating the initial value expressions for
the loop variables (which look like | et variables) and calling thel oop procedure.

Since we re-bind the loop variables at each iteration of the loop, it generally doesn't make sense to side-
effect loop variables. The old binding goes out of scope, and new bindings are created at each iteration,
initialized with whatever values are passed to the looping procedure.

Implementing | engt h tail-recursively

Recall that in [ Chapter whatever | we implemented | engt h thisway:

(define (length Iis)
(if (null? 1lis)
0
(+ 1 (length (cdr lis)))))

This definition looks alot like the definition of | i st - sum and has the same basic problem. By using
straightforward recursion (adding one to the length of the rest of the list), we're ensuring the addition
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happens back-to-front. We can compute the list length front to back by passing the running sum forward
through tail recursions, as an argument. Each tail call will add to the running sum, and pass it forward.
When thelast tail call returnsto its caller, it just returns the sum.

To do this, it's convenient to write thel engt h procedure as a wrapper around a two-argument
procedure that passes the running sum (as well as the remainder of list) to recursive callsto itself.

(define (length lis)
(letrec ((len (lanbda (lis | ength-so-far)
(if (null? lis)
| engt h-so-far
(len (cdr lis)
(+ 1 length-so-far)))))))
(len lis 0))

Or equivaently, using named | et :

(define (length lis)
(let Toop ((lis lis)
(I ength-so-far 0))
(if (null? lis)
| en-so-far
(loop (cdr lis)
(+ (car lis) length-so-far)))))

r educe

In this section, I'll give an extended example of the use of higher-order functions to express patterns
common to many functions, and customizing general procedures with procedural arguments and closure
creation.

Consider the following function to sum the elements of alist
(define (list-sumlis)
(if (null? lis)
0
(+ (car lis)
(list-sum (cdr lis)))))

Given this definition,

(list-sum' (10 15 20 25))
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Isequivalent to
(+ 10 (+ 15 (+ 20 (+ 25 0)))).
[ the following couple of examples are now redundant with earlier material... trim and refer back. ]
Now consider avery similar function to multiply the elements of alist, where we've adopted the
convention that the product of anull listis 1. (1 is probably the right value to use, because if you
multiply something by 1 you get back the same thing--just asif you add something to O you get back the
same thing.)
(define (list-prod |is)
(if (null? lis)
1
(+ (car lis)
(list-prod (cdr 1is)))))

Given this definition,
(list-prod '(2 3 4 5))
Isequivalent to
(* 2 (*3(*4(*51))))
Given these definitions, you can probably imagine a very similar function to subtract the elements of a

list, or to divide the elements of alist. For subtraction, the base value for an empty list should probably
be zero, because subtracting zero doesn't change anything. For division it should probably be one.

At any rate, what we want is a single function that captures the pattern
( op thing1( op thing2 ...( op thingn base-thing) ...) )

We can write a higher-order procedurer educe that implements this pattern in a general way, taking
three arguments: any procedure you want successively applied to the elements of alist, an appropriate
base value to use on reaching the end of the list, and thelist to do it to.

(define (reduce fn base-value |i5s)

(if (null? lis)
base-val ue
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(fn (car lis)
(reduce fn base-value (cdr lis)))))

Thisisavery general procedure, that can be used for lots of things besides numerical operations on lists
of numbers: it can be used for any computation over successive itemsin alist.

[ need to check the following couple of examples--they're off the top of my head |

What does(reduce cons '() '(a b c d)) do?lt'sequivaentto(cons "a (cons 'b
(cons 'c (cons 'd '()))).Thatis, (reduce cons ' () list) copiesalist. We could
definel i st - copy that way:

(define (list-copy lis)
(reduce cons '() lis))

We could also define append that way, because r educe alows you to specify what goes at the end of
alist--we don't haveto end our list with' () . Here's atwo-argument version of append:

(define (append listl |ist2)
(reduce cons list2 listl))

Thereduction of alistusing (| anbda (x rest) (cons (* x 2) rest)) constructsanew list
whose elements are twice the values of the corresponding elementsin the original list.

Schene>(reduce (|l anbda (x rest)
(cons (* x 2) rest))
()
‘(1 2 3 4))
(2 4 6 8)

[ show tail-recursive version... that'd make a good exercise ]

Ther educe procedure above is handy, because you can use it for many different kinds of
computations over different kinds of lists values, aslong as you can process the elements (and construct
the result) front-to-back. It's alittle awkward, though, in that each time you use it, you have to remember
the appropriate base value for the operation you're applying to alist. Sometimesit would be preferable
to come up with asingle specialized procedure like |l i st - sum which implicitly remembers which
function it should apply to the list elements (e.g., +) and what base value to return for an empty list (e.g.,
0). We can write a procedure make- r educer that will automatically construct a reducer procedure,
given afunction and a base value. Here's an example usage:

Schene> (define list-sum (nmake-reducer + 0))
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| i st-sum

Schene> (define |ist-product (make-reducer * 1))
| i st-copy

Scheme> (list-sum' (1 2 3 4))
10

Scheme> (list-product '(1 2 3 4))
24

Make sure you understand the expressions above. The define forms are not using procedure definition
syntax--they're using plain variable definition syntax, but the initial value expressions return procedures
constructed by make-reducer. If we hadn't wanted to define procedures named list-sum and list-product,
and hang on to them, we could have just taken the procedures returned by make-reducer and called them
immediately:

Scheme> ((make-reducer + 0) '(1 2 3 4))
10

Schenme> ((make-reducer * 1) '(1 2 3 4))
24

Thisisvery much like calling our original r educe procedure, except that each time we're constructing
a specialized procedure (closure) that'sliker educe customized for particular values of itsfirst two
arguments; then we call that new, specialized procedure to do the work on a particular list.

Here's asimple definition of make-r educer intermsof r educe:
(define (make-reducer fn base-val ue)
(lanmbda (lis)

(reduce fn base-value lis)))

Notice that we are using procedure definition syntax here, so the | antbda in the body will create and
return a closure.

[ can also do thiswith cur ry. ] But suppose we don't already have a reduce procedure, and we don't
want to leave one lying around. A cleaner solution isto define the general r educe procedure asaloca
procedure, and create closures of it in different environments to customize it for different functions and
base values.

(define (nmake-reducer fn base-val ue)
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(letrec ((reduce (lanmbda (1is)
(if (null? 1lis)
base-val ue
(fn (car lis)
(reduce (cdr 1is)))))))
reduce)) ;; return new closure of |ocal procedure

This procedure uses closure creation to create a customized version of r educe When make- r educer
Is entered, its arguments are bound and initialized to the argument values--i.e., the function and base
value we want the custom reducer to use. In this environment, we create a closure of the reducer
procedure using | anbda. We wrap the lambda in aletrec so that the reducer can refer to (and call)
itself. Notice that sincer educe isalocal procedure, it can see the argumentsto nake- r educer, and
we don't have to pass it those arguments explicitly. By using local procedure definition syntax--which
not al Schemes support--we can write this as:

(define (make-reducer fn base-val ue)
(define (reduce lis)
(if (null? lis)
base- val ue
(fn (car lis)
(reduce (cdr 1is)))))
reduce)) ;; return new closure of |ocal procedure

Make sure that you understand that these are equivalent--the local procedure def i ne isequivalent to a
| et rec and al anbda, and in either case the closure created (by the | anbda or thedef i ne) will
capture the environment where the argumentsto nake- r educer are bound.

Ilteration as Recursion

named | et

[ move earlier discussion here? |

do

Go to thefirst, previous, next, last section, table of contents.
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Quasiquotation and Macros

Scheme provides facilities for transforming expressions automatically to create new expressions. These
facilities are called quasiquotation and syntax extension (or "macros"). Transformational programming
Is one of the most powerful features of Scheme.

Quasiquotation allows you to specify patterns that can be used to construct data structures, and also
specify how to fill in "holes" in the patterns. In effect, you can define atemplate for a data structure,
much like a quoted data structure, but also specify how to fill in holes to create variations on the data
structure.

Syntax extension allows you to do something very similar for code. Y ou can write "macros' that specify
most of an expression, and you can fill in the holes in these templates to create particular expressions.
With macros, you can write "templates’ for programs, which you can customize by filling in the holes.
Thislets you create both code-structuring and data-structuring facilities that express stereotyped patterns
with variations.

[ Scheme macros are actually more powerful than this, however, because you can use them to analyze
code before transforming it... sort of... ]

With Scheme macros, you can define new control constructs, data structuring facilities, full-blown
object systems with inheritance, parameterized coding facilities (like C++ templates), and other more
application-specific facilities to make your life easier.

Go to thefirst, previous, next, last section, table of contents.
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quasi quot e

The special form quasi quot e behavesalot like quot e, allowing you to write out literal expressions
In your program, using the standard textual representation of s-expressions. Scheme automatically
constructs the data structures. quasi quot e is much more powerful than quot e, however, because you
can write expressions that are mostly literal, but leave holes to be filled in with values computed at
runtime.

For example, the value of the expression (quot e (foo bar baz)) isalist(foo bar baz).
Likewise, the value of the expression ( quasi quot e (foo bar baz)) isalist(foo bar baz).

There's abig difference, though. quot e constructs an s-expression at compile time, when the procedure
containing the quot e expression is compiled.(11) quasi quot e constructs an s-expression at run time,
when the quasi quot e form is executed. This allows Scheme to "customize" a data structure, so that
you actually get a different data structure each time you execute the same quasi quot e form. Y ou can
use the unquot e operator to specify which parts should be customized.

For example, suppose you want to write a procedure that creates a three-element list whose first and last
elements are the literal symbolsf oo and baz, but whose middlie element istheval ue of the variable
bar .

Try thisin your scheme system:

Schenme>(defi ne bar 2)

baz

Schene>(quasi quote (foo (unquote bar) baz))
(foo 2 baz)

Without quasi quot e and unquot e, you could get the same effect by replacing ( quasi quot e
(foo (unquote bar) baz)) with(list (quote foo) bar (quote baz)),orthe
equivalent sugared form (1 i st 'quote foo ' baz). Forthissmple example, that's probably at
least as clear, because the use of (quasi quote ...) and(unquote ...) israther clunky.

To make it easier to write quasiquoted expressions, Scheme provides a little syntactic sugar. Just as you
can use a single quote character and write' (f oo bar baz) instead of (quote (foo bar baz),
you can use a backquote character (" ) to replace (quot e . ..) and acomma character (, ) to replace
(unquote ...).
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Now we can do this:

Schenme>" (foo , bar baz)
(foo 2 baz)

Thisis much clearer. Intuitively, the backquote character means " construct an s-expresson of the
following (literal) form, except where commas appear,” and the comma character means "use the value of
the following expression here, instead of using it literally."

Now you can see why it's called quasi quot e---it'saway of writing "mostly quoted" expressions,
instead of pure literals. Y ou can turn quoting off where you want to. Thisis particularly useful in
constructing s-expressions that are in fact mostly literal, especially if they're complicated.

For a simple example, suppose you want to write a procedure that constructs a greeting to print to a user.
The greeting is always mostly the same, but includes the current day of the week:

Scheme> (defi ne day-of-week ' Sunday)
day- of - week

Schenme> (define (make-greeting)
"(Wel cone to the FooBar systeml W hope you
enj oy your visit on this fine ,day-of-week)))
gr eet

Schenme>( make- greeti ng)
(Wel cone to the FooBar systeml We hope you enjoy your visit on this
fine Sunday)

Schene>(set! day-of-week ' Monday)
day- of - week

Scheme>( nmake- gr eeti ng)
(Wel cone to the FooBar systeml We hope you enjoy your visit on this
fi ne Monday)

Y ou may have notice that thisis somewhat similar to formatted output in other languages you've used,
like C. (C'spri nt f procedure takes astring that is (mostly) quoted, but has special escape charactersin
it to tell where to substitute the printed representation of runtime values. For example, if day _of _week
holds a pointer to the string " Sunday" ,printf ("Wl cone. It's %.", day_of week)
prints"Wl cone. It's Sunday.")

The nice thing about Scheme quasiquotation is that it works on normal data structures. For example,
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Suppose you want to write aroutine that creates an association list with several literal elements, and a
several customized ones.

(define (create-shipping-enpl oyee-associ ati on nane)
“((nane , nane)
(enpl oyee-id-no , (get-next-enpl oyee-id!))
(departnment shi pping)
(hire-date ,(get-day) ,(get-nonth) ,(get-year))))

(Notice that here that most of the unquoted expressions are calls to procedures, whose return values will
be used. We can fill the holesin our templates with anything we want, not just variable values.)

Depending on the value of the variable the values returned by the procedure calls, ( new shi ppi ng-
enpl oyee-al i st "Phil boyd Studge") will return something like

((nanme "Phil boyd Studge")
(enpl oyee-i d-no 6357)
(departnment shi ppi ng)
(hire-date 18 August 1997))

Hereit should be clear that quasi quot e haslet uswrite out a stereotyped data structure, and
unquot e letsusfill in the varying parts. More complicated examples would be make this benefit
clearer, but I'll leave them to your imagination.

ungquot e-spl i ci ng

Scheme provides avariant of unquot e for use when you want to merge an unquoted list into aliteral
list, rather than nesting it.

For example, suppose you want to embed a phrase in a sentence, where the phraseisalist of symbols,
and the sentenceisalist of symbols.

If you tried this with unquote, you'd get a nested list, rather than just alist of symbols:

Schenme> (define phrase-of-the-day '(the Lord hel ps those who take a big
hel ping for thensel ves))
phr ase- of -t he- day

Schenme> " (Renenber that , phrase-of-the-day)

(Renmenber that (the Lord hel ps those who take a big hel ping for
t hensel ves))
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Rather than using , expr) , we can use use (unquot e- spl i ci ng expr) , or the syntactically sugared
form, , @xpr.

Schenme> " (And renenber that , @hrase of the day)
(And renenber that the Lord hel ps those who take a big hel ping for
t hensel ves)

Go to thefirst, previous, next, last section, table of contents.
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Go to thefirgt, previous, next, last section, table of contents.

Defining New Special Forms

Sometimes we want to write stereotyped code, not just stereotyped data structures. As with data, we sometimes
want part of our stereotyped piece of code to vary. We can do this with syntax extensions, also known as
Macros.

(If you're familiar with macros from C, don't scoff. Macros in C are stunningly lame and hard to use compared
to Lisp or Scheme macros. Read on to find out what you've been missing. If you're familiar with Lisp macros,
but have never done advanced programming with them, you probably don't realize how powerful they are--Lisp
macros are so error-prone that people often avoid them. Scheme macros are very powerful, but automate away
some of the tricky parts.)

Macros are syntax extensions to a programming language, expressed as a tranglation of expressions. By writing
amacro, what you're really doing is extending the functionality of the compiler or interpreter--you're telling it
how to compile (or interpret) a new construct, by telling it how to rewrite that construct into something it
already knows how to compile or interpret.

(Conceptually, defining a macro is extending the compiler--you're telling the parser how to recognize a new
construct, to change the grammar of the language, and also specifying how to generate code for the new
construct. Thisis something you can't do in most languages, but it's easy in Scheme.)

Scheme recognizes macro definitions, and then uses them to recognize and translate the new constructs into
other constructs. The interpreter or compiler's process of translating alevel constructsis often called "macro
expansion,” despite the fact that the resulting expression may not be bigger than the original expression.
Macroexpansion can be recursive, because macros can use macros, and a macro can even use itself, likea
recursive procedure.

Syntax extension is powerful, and hence somewhat dangerous when used too casually. Be aware that when you
write amacro, you can change the syntax of your programming language, and that can be a bad thing--you and
others may no longer be able to easily understand what the program does. Used judiciously, however, such
syntactic extensions are often just what you need to simplify your programs. They are especially useful for
writing programs that write programs, so that you can avoid alot of tedious repetitive coding.

Macros are so useful that they're usually used in the implementation of Scheme itself. Most Scheme compilers
actually understand only afew special forms, and the rest are written as macros.

In alater chapter, I'll describe some advanced uses of macros, which let your "roll your own" language with
powerful new features.

Macros vs. Procedures
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Why do we want macros? In Scheme, the main code abstraction mechanism is procedural abstraction, e.g.
using def i ne or | anbda to write procedures that do stereotyped things. In a sense, we "specialize"
procedures by passing them argument values--a procedure can do different things depending on the valuesiit's
given to work with. We can also "specialize" procedures by creating closures in different environments. Isn't
this enough?

Not in general. While procedural abstraction is very powerful, there are times when we may want to write
stereotyped routines that can't be written as procedures.

Suppose, for example, you have a Scheme system which gives you thingslikel et andi f , but not or . (Real
Schemes all provide or , but pretend they don't. It makes a nice, simple example.)

You want an or construct (rather like the one actually built into Scheme). Thisor can take two arguments; it
evaluates the first one and returns the result if it's atrue value, otherwise it eval uates the second one and returns
that result.

Notice that you can't write or asaprocedure. If or were a procedure, both of its arguments would always be
evaluated before the actual procedure call. Since or isonly supposed to evaluate its second argument if the
first onereturns #f , it just wouldn't work.

If Scheme didn't have or , you could fake it at any given point in your program, by writing an equivalent | et
expression withani f statement init.

For example, suppose you wanted to write the equivalent of (or (foo0?) (bar?)).
Asafirst try, you might do this:
(if (foo?)

(fo0?)

(bar?))

That is, test (f 007?) , and return itsvalue if it'satrue value. That's not really quite right though, because this if
statement evaluatesf 00? twice: once to test it, and once to return it.

We redlly only want to evaluate it once--if (f 00?) isan expression with side effects, evaluating it twice could
make the program incorrect as well as inefficient.

To avoid this, we can always evaluate the first expression just once to get the value, and store that valuein a
temporary variable so that we can return it without evaluating it again:

Y ou could instead write

(let ((tenmp (fo07?)))
(if tenp
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tenp
(bar?)))

This| et expression givesthe sameeffectas(or (foo?) (bar?)),becauseit evauatesf oo exactly
once, and then tests the value; if the valueistrue, it returnsthat value. (The use of al et variableto stash the
value allows usto test it without evaluating (f 0o?) again.) If thevalueis#f , it evaluates ( bar ?) and
returns the result.

Thisisthe transformation we'd like to be able to automate by defining or as a macro.
Here'sasimple version of or written asamacro. I've caled it or 2 to distinguish it from Scheme's normal or .

(define-syntax or?2
(syntax-rules ()

((or2 a b) ; pattern
(let ((tenmp a)) ; tenplate
(if tenp
tenp
b)))))

What we're saying to Scheme is that we want to define the syntax of or by giving syntax rules for recognizing
it and trangdlating it. For this ssmple version of or , we only need one rule, which saysto trandlate (or ab)
into the desired | et expression.

(or a b) iscaledtherule's pattern, which specifies what counts as a call to the or macro, and thel et
expression is the rule's template, which specifies the equivalent code that Scheme should tranglate calls into.
The variablesa and b are called pattern variables. They stand for the actual expressions passed as arguments
to the macro. They are "matched" to the actual expressions when the pattern is recognized, and when the
template isinterpreted or compiled, the actual expressions are used where the pattern variables occur.

Y ou can think of thisin two steps. When amacro is used,
1. thetemplate is copied, except that the pattern variables are replaced with the macro's argument
expressions,
2. theresult isinterpreted (or compiled) in place of the call expression.

(It'sreally not quite this simple, but that's the basic idea.)

In some ways, macro arguments are a lot like procedure arguments, but in other ways they're very different.
The pattern variables are not bound at run time, and don't refer to storage locations. They're only used in
translating a macro call into the equivalent expression.

Always remember that arguments to a macro are expressions used in transforming the code, and then the code
Is executed. (For example, the output of the or macro doesn't contain avariable named a; a isjust a shorthand
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for whatever expression is passed as an argument to the macro. In the exampleuse (or (foo?) (bar?)),
the expression ( f 00?) iswhat gets evaluated at the point where a is used in the macro body.)

Thisiswhy our macro has to use atemporary variable, like the hand-written equivalent of or . If wetried to
write the macro like a procedure, without using atemporary variable, like this

(define-syntax or
(syntax-rules ()
((or a b)
(if a

a
b))))

then(or (foo?) (bar?)) wouldbetransated into

(if (foo?)
(fo0?)
(bar?))

As with the buggy handwritten version, (f 00?) would be evaluated twice when this expression was
evaluated.

(Thisisthe most common mistake in writing macros--forgetting that while macros give you the ability to
control when argument expressions are evaluated, they also require you to control it. It'ssafeto usea
procedure argument multiple times, because that's just referring to a value in arun-time binding. Using a macro
argument causes evaluation of the entire argument expression at that point.)

We can make a better or by using more rules. We might want or to work with any number of arguments, so
that

=

or of zero arguments returns #f , because it has zero true arguments,

or of one argument is equivalent to that argument--it'strue if and only if that argument is true.

3. or of two or more arguments evaluates its first argument, and returnsits value if it's true. Otherwise, it
computesthe or of the rest of its arguments, and returns its result.

N

Here's the Scheme definition with these three rules:

(defi ne-syntax or
(syntax-rules ()

((or) ; OR of zero argunents

#f) ; I s al ways fal se

((or a) ; OR of one argunent

a) ; I's equivalent to the argunent expression
((or abec...) ; OR of two or nore argunents

(let ((tenp a)) ; is the first or the OR of the rest
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(if tenp
tenp
(or bc...))))))

Notice that this definition isrecursive. (The third rule's template uses the or macro recursively.) If we hand or
four arguments, likethis: (or foo bar baz quux),itshould beequivalentto(or foo (or bar
(or baz (or quux)))).

Scheme will use recursion to tranglate the expression, one step at atime. When Scheme encounters a macro
call, it transforms the call into the equivalent code, using the appropriate rule. It then interprets (or compiles)
the resulting expression. If the result itself includes a macro call, then the interpreter (or compiler) callsitself
recursively to translate that before evaluating it. For a correctly written macro, the recursive translation will
eventually "bottom out" when no more macro calls result, and the code will be evaluated in the usual way.

(AsI'll show later, thisfitsin very neatly with the interpreter's or compiler's recursive evaluation of
expressions.)

Thisrecursion is recursion in Scheme's transformation of the call expression into equivalent code--it doesn't
mean that the resulting code is recursive. A Scheme compiler will do al of the recursive transformation at
compile time, so there's no runtime overhead. Of course, the recursion has to terminate, or the compiler will not
be able to finish the translation.

In this definition of or , the third rule containsthe symbolsc . . . . The Scheme identifier . . . istreated
specially, to help you write recursive rules. (In previous examples, | used . . . asan ellipsisto stand for code |
didn't want to write out, but here we're usuing the actual Scheme identifier . . . ; it'sactually used in the

Scheme code for macros.)

Scheme treats a pattern variable followed by . . . asmatchingzer o or nor e subexpressions. Inthisor
macro, ¢ ... matchesall of the arguments after the first two.

Schemematches(or foo bar baz quux) by thethird rule, whose pattern (or a b ¢ ...), because
it has at least two arguments. In applying the rule, Scheme matchesa tof oo, b tobar,andc ... tothe

sequence of expressionsbaz bl een.

[ Thisissimilar to how you use unquot e- spl i ci ng inside backquote--you can splice alist into alist at the
same level, rather than nesting it. |

The result of processing thisor is

(let ((tenmp foo0))
(if tenp
tenmp
(or bar baz quux)))
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Now Scheme evaluates this expression.

But there's another or in there--when Scheme getsto (or bar baz quux) it will match the third rule
again, with a matched to bar , b matchedto baz,andc ... being matched to just quux. Theresult of this
macro-processing step is

(let ((tenmp foo0))
(if tenp
tenp
(let ((tenp bar))
(if tenp
tenp
(or baz quux)))))

And the new let expression is evaluated.

Thereor isagain, so Schemewill treat (or baz quux) the sameway, again using the third rule--this time
matching a tobaz, b toquux,andc ... tonothingat al, producing

(let ((tenmp foo0))
(if tenp
tenp
(let ((tenp bar))
(if tenp
tenp
(let ((tenp baz)
(if tenp
tenp
(or quux))))))))

And thiswill be evaluated.

Now the resulting or matches the second rule in the or macro, because it has only one argument quux, which
Ismatched to a. The whole trandation is therefore:

(let ((tenmp foo0))
(if tenp
t enp
(let ((tenp bar))
(if tenp
tenp
(let ((tenp baz)
(if tenmp
tenp
quux)))))))
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There are no more macro calls here, so the recursion terminates.

Y ou might have noticed that the example trandlation of (or foo bar baz quux) hassevera different
variablesnamed t enp init. You might have wondered if this could cause problems--is there a potential for
accidentally referring to the wrong variable in the wrong place in the code generated by a macro?

The answer no. Scheme's macro system actually does some magic to avoid this, which I'll discuss later in a
later section. Scheme actually keeps track of which variables are introduced by different applications of
macros, and keeps them distinct--the different variables named t enp are treated as though they had different
names, so that macros follow the same scope rules as procedures. (Scheme macros are said to be hygienic; what
that really meansis that they respect lexical scope.)

Y ou can think of this as arenaming, asthough Scheme had sneakily changed the names each time the macro
was applied to transform the expression, and the result were

(let ((tenmp_1 foo0))
(if tenmp_1
temp_1
(let ((tenp_2 bar))
(if tenp_2
tenp_2
(let ((tenmp_3 baz)
(if tenp_3
temp_3
quux)))))))

Scheme implements the same scoping rule for macros and their arguments as for procedures and their
arguments. When you call a procedure, the argument expressions are evaluated at the call site, i.e., in the call
site environment, and the values are passed to the procedure--the environment inside the called procedure
doesn't affect the meaning of the argument expressions. Likewise

In writing macros like or , we want to control when and whether the arguments are evaluated, but otherwise we
want them to mean the same thing they would if they were arguments to a procedure.

For example, suppose we call or with an argument expression that happens to use a name that's used inside
or . or usesaloca variable named t enp, and we might just happen to pass it an expression using the name

t enp.
Consider the following procedure, which uses local variablesper mandt enp, and callsor in their scope.

(define (enpl oyee? person)
(let ((perm (nmenber person pernanent-enpl oyees))
(temp (nenber person tenporary-enpl oyees)))

(or permtenp))
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If we trandlated the or macro naively, without worrying about accidental naming conflicts, we'd get this:

(define (enpl oyee? person)
(let ((perm (nmenber person pernanent-enpl oyees))
(temp (nenber person tenporary-enpl oyees)))
(let ((tenmp perm
(if tenp
tenp
tenp)))

(Thisis not what R5RS Scheme macros do!)

Note what's wrong here. The namet enp was passed into the macro from the call site, but it appeared in the
body of the macroinsidethel et binding of t enp. At the call site, it referred to the "outer” t enp, but inside
the macro, it turne out to refer to something else--in the process of moving the expression around, we
accidentally changed its meaning.

Implementing More Scheme Special Forms

As examples of Scheme macros, I'll show how to implement several specia formsintermsof | anmbda. Thisis
how most real Scheme compilers work--the compiler itself only "understands’ how to compile afew special
forms directly, but the others can be defined as macros.

Traditionally, the compiler understands | antbda, and all other binding forms are implemented in terms of
| anmbda and procedure calling. The compiler must also understand afew other special forms,i f,set !,
quot e, asimpleversion of def i ne [ did | leave one out?].)

| et

Recall that in chapter [ whatever ], | explained how the semantics of | et can be explained in terms of

| anbda. For any | et expression, which binds variables and evaluates body expressions in that scope, thereis
an exactly equivalent expression using | antbda and procedure calling. Thel anbda creates a procedure
which will bind the variables as its argument variables, and execute the body of the |l et . This| anbda isthen
used in a combination--calling the procedure makes it bind variables when it accepts arguments.

(define-syntax let ()
(syntax-rul es
((_ ((var value-expr) ...) body-expr ...) ; pattern
((lanbda (var ...)
body-expr ...)
(val ue-expr ...)))))

Here I've used an underscore to stand for the keyword | et inthe macro call pattern. Thisis alowable, and
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recommended, because it avoids having to write the keyword in severa places. (If you had to write out the
keyword in each pattern, it would make it more difficult and error-prone to change the name of a macro.)

I've also taken advantage of the fact that Scheme is pretty smart about patternsusing the. . . (elipsis) symbol.
The pattern has two ellipses. One matches any number of binding forms (variable names and initial value
expressions); the other matches any number of body expressions.

The body expressions matched by body- expr ... aresimply used in the body of thel anbda expression.
The expressions matched by (var val ue-expr) ... areuseddifferently, however--they are not simply
substituted into the macro template. Instead, (var . ..) isused to generate the argument list for the

| anbda, andval ue- expr ... isusedto generatethelist of initial expressions.

Scheme's macro system is smart enough to figure out what's going on. If the pattern contains an ellipsis
following acompound form (like (var init-expr) ..., andthetemplate usesone of the pattern
variables from that compound form (followed by an €ellipsis), then Scheme assumes you want the
corresponding part of each form matched by the pattern form.

If we think of the expressions as s-expressions, we've matched a pattern that is one list of two-element lists, and
restructured it into two separate lists of elements. (That is, we're going from alist of car sand cadr sto alist
of car sand alist of cadr s.)

As an example of use, consider

(let ((var-a (some-procedure foo0))

(var-b (sone-procedure bar)))
(quux var-a)
(quux var-b))

which trand ates to

((lanbda (var-a var-b)
(quux var-a)
(quux var-b))
(sone- procedure foo)
(sone- procedure bar))

[ Thefollowing is out of place--here | should just be showing some uses of macros. The problem isthat | don't
want to lie and pretend that it's al very simple--Scheme does something sophisticated when you write binding
contstructs as macros... This stuff will al be clearer after I've talked about hygiene problems with Lisp macros,
and laziness and call-by-name... how to fwd ref gracefully?] An extraordinarily astute and thoughtful reader
might wonder if there's something wrong here. (Luckily, there's actually nothing to worry about.) Recall that
when discussing or , | said that Scheme is careful to treat names introduced by a macro as though they were
distinct, effectively renaming variables introduced in a macro. What about the argument variablesto | anbda
in this example? One might think var - a and var - b would just be renamed and we'd get:
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((lanbda (var-a-1 var-b-1)
(quux var-a)
(quux var-b))
(sone- procedure foo0)
(sone- procedure bar))

Clearly, thisisn't what we want--we want var - a and var - b inthel anbda body to refer to the variables
introduced in by | anbda---that's what it'sfor.

Scheme's macro processor is smart enough to infer that this is what you want. When you write a macro that
accepts a name as an argument and binds it, Scheme assumes you're doing that for a good reason. If you then
take another argument to the same macro and use it in the scope of that new variable, Scheme assumes you
want occurrences of the name to refer to the new variable.

That is, Scheme uses an algorithm that checks what you do with names in forms that get passed as arguments
into amacro. If you just use them in the normal ways, evaluating or assigning to them as variable names,
Scheme assumes you mean to refer to whatever those names refer to at the call site of the macro. (That's
normal lexical scope.) But if you takethe nameand useitas t he nanme of a new vari abl e, Scheme
assumes you're defining a binding construct, and that any other arguments you put in that scope should see the
new binding, instead of being scoped at the call site.)

Scheme can generally assume this, because if you're not implementing a scoping binding form (likel et or
do), there's no reason for amacro to accept a name as an argument and then turn around and bind it.

| et *

Oncewe havel et , we canimplement | et * intermsof that. We simply write a recursive macro that peels off
one binding form at atime and generates al et , so that we get anested set of | et sthat each bind one
variable.

(define-syntax let* ()
(syntax_rul es

((_ () body-expr ...)
(begi n body-expr ...))

((_ ((varl val ue-exprl)(var value-expr) ...)
(let ((varl val ue-expr))
(_ ((var val ue-expr) ...)

body-expr ...)))))

This macro uses two syntax rules. Thefirst is the termination case for recursive macroexpansion. A | et * that
has an empty binding form (i.e., binds zero variables) should be trandated into abegi n; it will just sequence
the body expressions.
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Therecursiverule saysthat al et * with one or more binding subforms should translate into al et that
performs the first binding and another | et * to bind the rest and evaluate the body. (Note that |I've used the
shorthand for | et * inthe recursive call, aswell asin the pattern.)

Aswith | et , Scheme recognizes this as a binding construct, and does the right thing--it notices that the var
argument passed into the macro is used as a name of anew binding in the macro, so it assumes that the new
binding should be visible to the body expressions.

cond

Discussion

Scheme macros also have several features | haven't demonstrated, to make it easier to write more sophisticated
macros than or , and I'll demonstrate those later, too.

In the next section, though, | will discuss adifferent and ssmpler kind of macro system, which is not standard
Scheme, and does have problems with variable names.

Lisp-style Macros

In this section, I'll discuss asimple kind of macro system that isn't standard in Scheme (and you might be able
to skim this section without too much loss) but is interesting for several reasons.

. Itisvery easy to explain how it works--it is areal macro system, but one which isvery easy to
implement. We can add it to our interpreter with afew function definitions. This should clear up any
confusion about what macros basically are, and how to think about them. (It's also another nice example
of Scheme programming--we'll get to cheat and use quasi quot e to do most of our work for us. Then
I'll show how to implement quasi quot e, too.)

. The simple Lisp-style macro system also demonstrates two important issues in macros: the power of
procedural transformation, and problems with scoping when code is transformed. An understanding of
Lisp macros can only help later when we return to Scheme macros for an in-depth discussion of how to
work and how to use them.

. The new standard Scheme macro system is safer than Lisp macros, and very useful, but not quite as
powerful. Sometimesit's they're still useful, if you use them for ssmple things they're appropriate for.
Some of our later examples will use this kind of macro.

. [ RSRSwill have macros, but IEEE/ANSI Scheme does not, and may not for some time. Most Schemes
do support Lisp-style macros, even though they're not part of the standard... and you can use them to
bootstrap a portable implementation of R5RS macros. [Guile uses Lisp-style macros fairly heavily, so
Guile programmers should definitely pay attention.] ]

. [ You might need to program in Lisp some day, or talk intelligently about Lisp. ]

. [ People keep reinventing them, and not noticing that they were invented decades ago, for Lisp--I've
seen at least three languages with reinventions of Lisp macros, usually in an inferior form. | want to
make it clear what Lisp macros do, and what's good and bad about them, to avoid further awkward
reinventions of the wheel. ]
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Ultra-simple Lispish Macros

The classic macro system is the Lisp macro system, which allows the user to define an arbitrary Lisp procedure
to rewrite anew construct. (Most dialects of Lisp, e.g., Common Lisp, have amacro facility of the same
genera kind, called def macr 0.) Well talk for amoment about a simplified version of Lisp-style macros.
Later we'll explain why and how Scheme macros are better, at least for most purposes.

Suppose we have a macro system that we can use to tell the interpreter or compiler that when it sees an
expression that's alist starting with a particular symbol, it should call a particular routine to rewrite that
expression, and use the rewritten version in its place.

For the or example, we want to tell the compiler that if it sees an expression of theform (or ab) it should
rewrite that into an expression of the form

(let ((tenmp a)
(if tenp
t enp
b))

So now we want to tell the compiler how to rewrite expressions like that. Since Lisp expressions are
represented as lists, we can use normal list operations to examine the expression and generate the new
expression. Let's assume our system has a special form called def i ne-rewr i t er that lets us specify a
procedure of one argument to write a particular kind of expression.

Here's arather ugly rewriter macro for or :

; ORwth subtle scope bug
(define-rewiter 'or ; tell conpiler howto rewite (or ...)
(1 anbda (expr)
(let ((a (cadr expr))
(b (caddr expr)))

(cons 'let ; make LET form
(cons (list (list '"tenp a))) ; make let binding form
(append ' (if tenp tenp) ; make |F form
(list b))

There's actually a scoping problem with this macro, which I'll ignore for now--it's the problem that define-
syntax fixes. Later, I'll show what'swrong and fix it, but for awhile | just want to talk about basic syntax of
Lisp-style macros.

Now when the interpreter or compiler is about to evaluate an expression represented asalist, it will check to
seeif it startswith or . If so, it will pass the expression to the above rewriter procedure, and interpret or
compile the resulting list instead.
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(Actually, macroexpansion doesn't have to happen just before interpreting or compiling a particular expression.
The system might rewrite al of the macro callsin awhole procedure, or awhole program, before feeding the
procedure or program to the normal part of the compiler. It's easier to understand macros if they're interleaved
with expression evaluation or compilation, though--it's just an extra case in the main dispatch of your
interpreter or compiler.)

Implementing defi ne-rew it er iseasy. (Well show an implementation for our example interpreter in a
later section.) We only need to do two simple things:

. Provide a procedure that can add rewriter procedures to a table, keyed by the name of the forms they
rewrite.

. Modify the interpreter (or compiler) to check whether expressions of the form ( symbol ...) begin with
the name of arewriter macro, and if so, to call the rewriter to transform the expression before
interpreting (or compiling) it.

That's all.

The above system works, but it has several awkwardnesses. Oneisthat it is tedious to write routines that
construct s-expressions directly. We can use quasi quot e to makethiseasier. It will alow usto simply write
the s-expression we want the macro to produce, and use unquote to fill in the parts we get from the arguments
to the macro.

; ORwth subtle scope bug
(define-rewiter 'or ; tell conpiler howto rewite (or ...)
(I anrbda (expr)
(let ((a (cadr expr))
(b (caddr expr)))
“(let ((tenp ,a)) ; return an s-expression of this form
(if tenp
tenp
, b))

Thisis much easier to read. The backquoted expression is now readable as code--it tells us the general structure
of the code produced by the macro, and the commas indicate the parts that vary depending on the arguments
passed to the macro.

Note that thereisno magic here: def i ne-r ewr i t er and quasiquotation can be used independently, and are
very different things. It just happens that quasiquotation is often very useful for the things you want to doin
macros--returning an s-expression of a particular form.

This simple rewriting system is still rather tediousto use, for several of reasons. First, we always have to quote
the name of the specia form we're defining. Second, it's tediousto write al anbda every time. Third, it's
tedious to always have to destructure the expression we're rewriting to get the parts we want to put into the
expression we generate. ("Destructure’ means take apart to get at the components--in this case,
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subexpressions.)

Better Lisp-style Macros

It would be nice if the macro facility allowed you to declare the argument pattern to the macro, and
automatically destructured it for you. Most Lisp systems have a special form called def nmacr o that doesthis
for you, and avoids the need to write al anbda expression every time. For consistency with Scheme naming
conventions, we'll call our equivalent def i ne- macr o.

def i ne- macr o implicitly creates a transformation procedure whose body is the body of the define-macro
form. It also implicitly destructures the expression to be transformed, and passes the subexpressions to the
transformation procedure.

Using def i ne- macr o, we can write or thisway, specifying that or takes two arguments:

; ORwth subtle scope bug
(define-macro (or a b)
“(let ((tenp ,a))
(if tenp
tenmp
, b))

We didn't have to write the code that destructures the form into a and b---def i ne- nacr o did that for us. We
also didn't have to explicitly write al anbda to generate the transformation procedure; def i ne- macr o did
that too.

This makes the syntax of def i ne- macr o similar to a procedure-defining def i ne form. Still, you should
always remember that you're not writing a normal procedure: you're writing a procedure to transform code
beforeit isinterpreted or compiled. The combination of automatic argument destructuring and template-filling
(using backwuote and comma) makes it easier to do thisin many cases.

Like a procedure, a macro can take a variable number of arguments, with the non-required ones automatically
packaged up into arest list. We can define avariable-arity or with def i ne- macr o:

[ need to check this example--it's off the top of my head ]

; variable arity OR with subtle scope bug
(define-macro (or . args)
(if (null? args) ; zero arg or?
#f
(if (null? (cdr? arg-exprs)) ; one arg or?
(car arg-exprs)
“(let ((tenp ,(car arg-exprs)))
(if tenp
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tenp
(or ,@cdr arg-exprs)))))))

Here we're just accepting the list of argument expressionsto the or expression astherest list ar gs.

If it'san empty list, we return #f . Keep in mind that we're returning the #f object, which will be used in place
of theor expression, i.e. astheliteral #f to usein the resulting code. (Conceptualy, it's a fragment of a
program code, even though that program fragment will in fact return the value #f when it executes, because #f
Is self-evaluating. We could have quoted it to make that clearer.)

If it'saone-element list, we just return the code (s-expression) for the first argument.

If it'salist of more than one argument expression, we return an s-expression for thel et with anestedi f .
(Note the use of unquot e- spl i ci ng (, @ to splicethecdr of the expression list into the or form asits
whole list of arguments.)

Y ou should be aware, though, that what you're really doing is specifying a procedure for transforming
expressions before they're compiled or interpreted, and that quasiquote is just syntactic sugar for procedural
code that constructs an s-expression.

def i ne- macr o iseasy to write, once we've got def i ne-r ewr i t er ; we don't have to modify the
interpreter or compiler at al. Wejust usedef i ne-rew it er towritedef i ne- macr o asasimple macro.
WEe'l makedef i ne- macr o amacro that generates transformation procedures, and usesdef i ne-
rewiter toregister them with the interpreter.

Problems With Lisp-Style Macros

Earlier we aluded to alurking bug in our def i ne-rewr i t er anddefi ne- macr o definitionsfor or .

Suppose we use the or macro this way--we check to see if someone is employed as either a permanent or
temporary employee, and generate aw?2 tax form if either of those istrue.

(let ((tenmp (nmenber x tenporary-enpl oyees))
(perm (nmenber x permanent - enpl oyees)))
(if (or tenp perm
(generate-w2 x)))

The expansion of thisis:

(let ((tenmp (nmenber x tenporary-enployees))
(perm (nmenber x permanent - enpl oyees)))
(if (let ((tenp tenp))
(if tenp
tenp
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tenp))) ; BUG@ (should refer to outer tenp, not inner)
(generate-w2 x)))

The problem here is that we happened to use the same name, t enp, at both the call site and inside the macro
definition. Thereferencetot enp in(or tenp perm gets"captured” by the binding of temp introduced in
the macro.

This occurs because a normal macro facility does not understand issues of name binding--the namet enp
refersto one program variable at the call site, and another at the site of its use inside the macro--and the
macroexpander doesn't know the difference. To the macroexpansion mechanism, the symbol t enp isjust a
symbol object, not a name of anything in particular, i.e., a particular program variable.

There are two ways to get around this problem. One is for the macro-writer to be very careful to use names that
are very unlikely to conflict with other names. This makes code very ugly, because of the unnatural names
given to variables, but more importantly, it's harder to get right than it may seem. The other way around the
problem isto get a much smarter macro facility, like the new Scheme def i ne- synt ax macro system.

Ugly Hacks Around Name Conflicts

One way to avoid name conflictsisto pick names for variables used inside macros in such away that they're
unlikely to conflict with names that users of the macros might pick, e.g.,

(define-macro (or first-arg second-arg)
“(let ((tenp!inlor!macro ,first-arg)
(if tenmp!inlor!mcro
tenp!in!tor!macro
, second-arg)))

It's unlikely that anyone will name adifferent variablet enp! i n! or ! macr o someplace else, so the problem
Is solved, right? Not necessarily.

Besides the fact that thisisincredibly tacky, there's still a situation where this kind of solution islikely to fail--
when people nest calls to the same macro. Each nested call will use the same name for different variables, and
things can go nuts. (Food for thought: is this true of the or macro above? Does it nest properly?)

The standard hack around that problem is to have each use of the macro use a different name for each local
variable that might get captured. This requires some extra machinery from the underlying system--there has to
be a procedure that generates new, unique symbols, and which can be called by the macro code each time the
macro is expanded. The traditional Lisp name for this procedureisgensym but well call it gener at e-
synbol for clarity.

Now we can write afixed version of the two-argument OR macro.

; Version of 2-arg OR with scope bug fixed
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(define-macro (or first-arg second-arg)
(let ((tenp-nane (generate-synbol)))
“(let ((,tenp-nanme ,first-argq)
(if ,tenp-nane
, t enp- nane
, second-arg)))

Notice that the outer | et isoutside the backquote--it will be executed when the macro is used (i.e., once each
timean or expression is rewritten; the quasiquoted part is the code to be interpreted or compiled (after the
commad holes arefilled in).

Each timeacall to or isprocessed by the compiler (or interpreter), thisl et will generate a new symbol before
trandating it; quasiquote will fill in the holes for the new symbol. (Be sure to get your metalevels right here:

t enp- nane isthe name of avariable in the macro transformation procedure, whose binding will hold a
pointer to the the actual name symbol that will be used for the variable.)

Isn't this ugly? To some degree, Lisp macros are nice because you can use the same language (Lisp) in macros
asyou can in normal code. But due to these funky scoping issues, you effectively end up having to learn a new
language--one with lots of generate-symbol calls and commas.

On the other hand, maybe it builds character and abstract reasoning abilities, because you have to think alot
about names of names and things like that. Fun, maybe, but not for the faint of heart.

Implementing Simple Macros and Quasiquote

Implementing Simple Macros

Implementing quasi quot e and unquot e

[ Thissection is particularly rough and needs to be reworked. Sorry. |

guasi quot e isaspecia form that (like quot e) has avery special sugared syntax. Part of this syntax is
recognized by the reader, rather than the compiler or interpreter proper; the rest of the work is done by the
compiler or interpreter.

Translating backquotes to quasi guot e

A backquote character isinterpreted very specialy by the Scheme (or Lisp) reader, and backquoted expressions
are converted into quasi quot e expressions with a normal-looking nested-prefix-expression syntax. The
expression  (a b c) isactualy just shorthand for (quasi quote (a b c)) Similarly, commad
expressions are converted, e.g. (a,b,c)isreadinas(quasi quote (a (unquote b) (unquote

c))) . Noticethat asfar asthe reader is concerned, these are just lists--it is up to the compiler or interpreter to
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process them further, and the reader just preprocesses them into lists that the compiler or interpreter can deal
with.

quasi quot e

Thequasi quot e special form may be built into the compiler or interpreter, but it can be implemented as a
macro, in Scheme. That's the easy way to do it, and it's what we'll do.

I'll show asimplified version of quasi quot e that only deals with commas at the top level of alist, e.g.,
(quasi quote (foo ,bar (baz x y)))

but not

(quasi quote (foo ,bar (baz ,x y)))

Noticethat (quasi quote (foo ,bar (baz x y))) should expand to something like

(list "foo bar '(baz x y))

Wel'll actually generate an expression that usescons instead of | i st , because we want to write

quasi quot e recursively; if itsargument isalist, it will peel one element at atime of off thelist of
arguments, and either quote it or not before using it in the resulting expression that is the rewritten version of
the macro call.

Given this strategy, (quasi quote (foo , bar (baz x y))) shouldexpandto

(cons 'foo
(cons bar
(cons '(baz x vy))

"()))

Notice that what we've done is generate an expression to generate a list whose components are explicitly
guoted where necessary, as opposed to the original backquoted list where things are quoted by default and
explicitly unquoted. And since' thing isjust a shorthand for ( quot e thing) , we'll really generate an ugly
expression like

(cons (quote foo)
(cons bar
(cons (quote baz x y)

"())))

written as a straighforward low-level macro. We'll defineit as atrivial macro that just calls a procedure
quasi quot el to do the actual transformation.
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[ NEED TO DEBUG THIS... PRW ]

(define-macro (quasi quote expr)
(quasi quot el expr))

(define (quasiquotel expr)

(if (not (pair? expr)) ; if quoted expr is not a list, it's just
expr ;a literal
; else we'll grab a subexpression and cons it (appropriately

; quoted or not) onto the result of recursively quasiquoting
; the remai ni ng argunents
(let ((first-subexpr (car expr))
(rest-subexprs (cdr expr)))
(if (and (pair? next-subexpr)
(eq? (car first-subexpr) 'unquote)))
(list 'cons
first-subexpr ; gen expr to eval this subexpr
(quasi quot el rest-subexprs))
(list '"cons
(list "quote first-subexpr) ; quote this subexpr
(quasi quot el rest-subexprs)))))

A full implementation of quasiquote isalittle trickier, because it must deal with nested uses of quasi quot e
and unquot e; each subexpression that is not unquoted must be traversed and treated similarly to the top-level
list--i.e., rather than just using the subexpressions as literals and quoting them, an equivalent expression should
be constructed to create a similarly-structured list with the unquoted holesfilled in. Also, afull implementation
should handleunquot e- spl i ci ng aswell asunquot e.

define-rewiter

In Chapter [ whatever ], | showed the code for an interpretive evaluator that was designed to support macros. In
this section, I'll explain how to implement the macro processor and install it in the interpreter.

Recall that when eval encounters an expression that's represented as alist, it must determine whether the list

represents a combination (procedure call), a built-in special form, or amacro call. It callseval - 11 st todo
this dispatching.

Also recall that we implemented environments that can hold different kinds of bindings--of normal variables or
macros. A macro binding holds a transformation procedure that can be used to rewrite an expression beforeit is
interpreted.

eval - | i st checksto seeif thelist begins with a symbol, which might be the name of a macro, or the name
of aprocedure. It looks in the environment to find the current binding of the symbol.
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If it'sasyntax (macro) binding, eval - | i st it extracts the transfromer procedure from the binding
information, and callseval - macr o- cal | to evauate the list expression.

Hereseval - macr o-cal | :

(define (eval -macro-call transfornmer expr envt)
(eval (transformer expr) envt))

All it doesis apply the transformation procedure to the expression, and call eval recursively to evaluate the
result.

Thisis sufficient to be able to use macros, once they're defined. We also need to be able to define macros, so
that we can use them.

For that, we'll add one special form to our interpreter, def i ne-rewr i t er , which takes aname symbol and a
transformation procedure as its arguments.

[ Show defi ne-rewiter .. hastoaccept aclosurein our language, not the underlying Scheme ]

defi ne-nacro

Once we've added define-rewriter to our interpreter, we don't have to modify the interpreter at al to add

def i ne- macr 0. We can simply define it as a macro in the languauge we interpret, using def i ne-
rewiter "fromtheinside.” Wehadtoadd defi ne-rew i ter tothelanguage implementation itself, but
once that's done, we can bootstrap a better macro system with no extra help from the interpreter.

def i ne- macr o doesthree things:

. It anayzesthe calling form of a macro (the argument pattern) and generates code to destructure
expressions of that form.

. it creates a procedure that will do the destructuring and the transformation expressed in the macro body.

. itinstallsanew syntax binding in the current binding environment, holding that transformation
procedure.

Bear in mind that the following code is not code in the interpreter, but code to be interpreted, to create a
def i ne- macr o macro, from inside our language.

[ show def i ne- macr o ... pattern matching on arg form and creating a routine to destructure and bind... ]

Go to thefirst, previous, next, last section, table of contents.
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Records and Object Orientation

Most programming languages have a standard facility for defining new types of records or structures. A record is
an object with named fields. For example, we might defineapoi nt record type, to represent geometric pointsin a
plane. Each poi nt object might have ax field and ay field, giving the horizontal and vertical coordinates of a
point relative to the origin. Once thispoi nt classis defined, we can create instances of it, i.e., actual objects of
type point, to represent particular pointsin space.

Scheme is an unusual language in that there is not a standard facility for defining new types. We can build atype-
definition facility, however, using macros.

In this chapter, I'll show asimple record definition facility written in Scheme. Then I'll describe a simple object-
oriented programming system for Scheme, and show how it can be implemented in Scheme, too. (Both of these
systems rely on Lisp-style macros, which are not standard Scheme, but are available in ailmost every Scheme
implementation.)

Records (Structures)

Using Procedural Abstraction to Implement Data Abstraction

Scheme's main abstraction mechanism is procedural abstraction. We can define procedures that represent higher-
level operations, i.e., operations not built into the language, but which are useful for our purposes. We can construct
abstract data types, which are data types that represent higher-level concepts (such as points in a coordinate space),
and use procedures to implement the operations.

For example, we can fake apoi nt datatype by hand, by writing a set of procedures that will construct point
objects and access their fields. We can choose a representation of pointsin terms of preexisting Scheme types, and
write our procedures accordingly.

For example, we can use Scheme vectors to represent points, with each point represented as a small vector, with a
dot for the x field and adot for the y field. We can write a handful of procedures to create and operate on instances
of our poi nt datatype, which will really allocate Scheme vectors and operate on them in ways that are consistent
with our higher-level poi nt abstraction.

We start with a constructor procedure make- poi nt , which will create ("construct") a point object and initialize
itsx andy fields. It redly allocates a Scheme vector. The zeroth slot of the vector holds the symbol poi nt , so that
we can tell it represents a point object.

; a point is represented as a three-elenment vector, with the Oth
; slot holding the synbol point, the 1st slot representing
. the x field,, and the 2nd slot representing the y field.
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(define (nmake-point x vy)
(vector 'point x vy))

We also define a predicate for testing whether an object isapoi nt record. It checksto seeif the object is actuall a
Scheme vector and its zeroth dot holds the symbol poi nt . Thisisn't perfect--we might mistake another vector that
happens to hold that symbol in its zeroth slot for a point, but we'll ignore that for now. (It's easy to fix, and we'll fix
it later when we build a more sophisticated object system.)

; check to see if sonething is a point by checking to see if it's
; a vector whose Oth slot holds the synbol point.
(define (point? obj)
(and (vector? obj)
(eq? (vector-ref obj 0) '"point)))

Now we define accessor procedures to get and set the x and y fields of our points--the 1st and 2nd slots of the
Vector we use to represent a point.

; accessors to get and set the value of a point's x field.
(define (point-x obj)
(vector-ref obj 1))

(define (point-x-set! obj val ue)
(vector-set obj 1 value))

; accessors to get and set the value of a point's y field.
(define (point-y obj)
(vector-ref obj 2))

(define (point-y-set! obj)
(vector-set! obj 2 value))

Thisisn't perfect, either--we should probably test to make sure an object isapoi nt before operatingonit asa
poi nt . For example, poi nt - x should be more like this:

(define (point-x obj)
(if (point? obj)
(vector-ref obj 1)
(error "attenpt to apply point-x to a non-point)))

Once we've defined the procedures that represent operations on an abstract data type, we can ignore how it's
implemented--we no longer have to worry about how poi nt s are represented.

We can also change the implementation of an abstract data type by redefining the procedures that create and operate
on instances of that type.

For example, we could decide to represent points as lists, rather than vectors, and redefine the constructor,
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predicate, and accessors to use that representation.

We could also change the representation to polar form, rather than Cartesian, storing a direction and distance from
the origin rather than x and y distances. With a polar representation, we could still support the operations that return
or set x coordinates, using trigonometric functions to compute them from the direction and distance.

Automating the Construction of Abstract Data Types with Macros

Asl| just showed, it's easy to define an abstract datatype in Scheme, by hand, using procedural abstraction. Doing
thisfor every abstract data type is very tedious, however, so it would be good to automate the process and provide a
declarative interfaceto it.

We'd like to be able to write something like this:

(define-structure point
X

y)

and have Scheme automatically construct the constructor, type predicate, and accessor procedures for us. In most
languages, thisis done by the compiler, but we can tell Scheme how to do it by defining def i ne- st ruct ur e as
amacro. Whenever the interpreter or compiler encountersadef i ne- st ruct ur e form, our macro
transformation procedure will be called and will generate the relevant procedures, which will then be interpreted or
compiled in place of thedef i ne- st ruct ur e form.

WEell useadef i ne- macr o (Lisp-style) macro for this. this macro will intercept each def i ne- st ruct ure
form, analyze it, and produce an s-expression that is a sequence of procedure definitions to be interpreted or
compiled. Each define-structure form will be translated into abegi n form containing a series of procedure
definitions.

; define-struct is a macro that takes a struct name and any nunber of field

; names, all of which should be synbols. Then it generates a begin expression
; to be conpiled, where the begin expression contains the constructor for this
; structure type, a predicate to identify instances of this structure type,

: and all of the accessor definitions for its fields.

(define-macro (define-struct struct-nanme . fiel d-nanes)

; analyze the macro call expression and construct sone handy synbol s
; and an s-expression that will define and record the accessor nethods.

(let* ((maker-nanme (string->synbol
(string-append "nake-"
(synbol ->string struct-nane))))
(pred-nanme (string->synbol
(string-append (synbol ->string struct-nanme) "?")))
(accessor-defns (generate-accessor-defns struct-nane fiel d-nanes)))
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; return an s-expression that's a series of definitions to be
; interpreted or conpil ed.
"(begin (define (,nmaker-nane , @i el d- nanes)
(vector ',struct-nane , @i el d-nanes))
(define (,pred-nane obj)
(and (vector? obj)
(eq? (vector-ref obj 0) ,struct-nane)))
, @ccessor-defns)))

To generate all of the accessor definitions, we call aspecia helper routine, gener at e- accessor - def ns, and
splice the result into the sequence of definitionsusing unquot e- spl i ci ng (, @. gener at e- accessor -
defi ni ti ons simply iterates over the list of slot names tail-recursively (using named | et ), consing two
definitions onto the definitions for the rest of the dots:

; generat e-accessor-defns generates a |ist of s-expressions that
; define the accessors (getters and setters) for a structure.

(define (generate-accessor-defns structnane fnanes)
(let ((structnanme-string (synbol->string structnane)))

; loop over the fieldnanes, and for each fieldnane, generate two

; S-expressions: one that is a definition of a getter, and one that's
; a definition of a setter.

; As we | oop, increnent a counter i so that we can use it as the index
; for each slot we're generating accessors for

(let loop ((fieldnanes fnanes)
(i 1))
(if (null? fieldnanes)
()
; take a fieldnane synbol, convert to string, append it to the
; struct nane string with a hyphen in the mddle, and convert
; that to a synbol...
(let* ((fieldnanme-string (synbol->string (car fieldnanes)))
(getter-nane (string->synbol
(string-append structname-string
fieldnanme-string)))
(setter-nanme (string->synbol
(string-append structnanme-string

fieldnanme-string

"-set!"))))

: now construct the define forns and cons themonto the
; front of the list of the remaining define forns, generated
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; iteratively (tail-recursively)

(cons " (define (,getter-nanme obj)
(vector-ref obj ,i))
(cons " (define (,setter-nane obj val ue)
(vector-set! obj ,i value))
(loop (cdr fieldnanes)

(+1 1)))))))))
Simple Uses of OOP Objects

In this section, I'll discuss a simple object system and how it it used. This object system is not part of Standard
Scheme, but can be [almost entirely 7] implemented in portable Scheme, and used in any Scheme system with a
reasonably powerful macro system.

The object system is based on classes and generic procedures. It is a subset of the RScheme object system, and its
basic functionality is similar to a subset of CLOS object system for Common Lisp, the Dylan object system,
Meroon, TinyCLOS, and STKLOS.

Late Binding

One of the mgjor features of object-based and object-oriented programming is late binding of methods, which
means that we can write code in terms of abstract operations without knowing exactly which concrete operations
will be executed at run time.

For example, consider a graphical program that maintains a list of objects whose graphical reprsentations are
visiblle on the user's screen, and periodically redraws those objects. It might iterate over this"display list" of
objects, applying a drawing routine to each object to display it on the screen. In most interesting applications, there
would be avariety of graphical object types, each of which is drawn in a different ways.

If our graphical objects are represented as traditional records, such as C structs or Pascal records, the drawing
routine must be modified each time a new graphical type is added to the program. For example, suppose we have a
routine dr aw which can draw any kind of object on the screen. dr aw might be written with a case expression, like
this:

(define (draw obj)

(cond ((triangle? obj)
(drawtriangl e obj))
((square? obj)

(draw square obj))
((circle? obj)

(drawcircle obj))
: nmore branches. ..
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((regul ar - pent agon? obj)
(draw-regul ar - pent agon obj))

Each time we define a new kind of record that represents a graphical object, we must add a branch to thiscond to
check for that kind of object, and call the appropriate drawing routine.

In large, sophisticated programs that deal with many kinds of objects, the code may be littered with cond or case
statements like this, which represent abstract operations, and map them onto concrete operations for specific types.
(This example maps the abstract operation "draw an object” onto concrete operations likedr aw-t ri angl e,

dr aw squar e, and so on.)

Such codeis very difficult to maintain and extend. Whenever anew type is added to the system, al of thecond or
case expressions that could be affected must be located and modified.

What we would likeis away of specifying how an abstract operation isimplemented for a particular kind of object,
and having the system keep track of the details. For example, we'd like to say at one point in the program, "here's
how you draw aregular pentagon,” and then be able to use regular pentagons freely. We can then use the abstract
operation dr aw, and rely on the system to automatically check what kind of object is being drawn, find the
appropriate drawing routine for that type, and call it to draw that particular object.

For example, the routine that draws all of the visible objects might just ook like this:
(map draw di splay-1ist)

When we later add anew type, such asi r r egul ar - hexagon, we can just define a method for drawing irregular
hexagons, and the system will automatically make the dr aw operation work for irregular hexagons. We don't have
to go find all of the code that might encounter irregular hexagons and modify it.

Thisfeature is called late binding of methods. When we write code that uses an abstract operation, we don't have to
specify exactly what concrete operation should be performed.

(Note: here we're using afairly general sense of the word "binding,” which is more general than the notion of
variable binding. We're making an association between a piece of code and the operation it represents, rather than
between a name and a piece of storage. In this general sense, "binding" means to associate something with
something else, and in this example, we associating the abstract operation dr aw with the particular procedure
needed to draw a particular object at run time.)

Aswell see alittle later, we can define a generic procedure that reprsents the abstract dr aw operation, and rely on
an object system to bind that abstract operation to the appropriate drawing procedure for a particular type at run
time. When we later define new types and methods for drawing them, the generic procedure will be automatically
updated to handle them. This lets us write most of our code at a higher level of abstraction, in terms of operations
that "just work" for all of the relevant types. (E.g., we might have abstract operations that can draw, move, and hide
any kind of graphical object, so that we don't need to worry about the differences between the different kinds of
graphical objectsif those differences don't matter for what we're trying to do.)

Class Definitions and Slot Specifications
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A classisan object that describes a particular kind of object. A class definition is an expression like arecord or
structure definition, which defines the structure of that kind of object. Classes can also have associated behavior or
methods, which are routines for performing particular operations on instances of a class.

For example, suppose we would like to have a class of objects that can be used to represent points in two-
dimensional space. Each point object will have an x ot and ay dot, which hold the object's position in the x and y
dimensions.

(A dotisafield of an object, which in other languages may be known as an instance variable, a data member, an
attribute, or afeature.)

We can define our point classlike this:

(defi ne-class <poi nt> (<object>)
(x init-value: 0)
(y init-value: 0))

Here we have chosen to name the class <poi nt >. By convention, we use angle brackets to begin and end the
names of classes, so that it's clear that they are class names, not names of normal objects.

The parenthesized expression after the class name <poi nt > is a sequence of superclass names, which will be
explained later.(12) (When in doubt, it isagood ideato use <obj ect > as the sole superclass, so use

(<obj ect >) after the class namein the class definition.)

The two remaining fields after the superclasses are the slot specifications, which say what kinds of fields an
instance of <poi nt > will have. A dlot specification iswritten in parentheses, and the first thing is the name of the
dot. After that come keyword/value pairs. Here we use the keyword i ni t - val ue: followed by the value 0.

The specification (x i nit-val ue: 0) saysthat each instance of <point> will have adlot (field) named x, and
that the initial value of thefield is0. That is, when we create a<poi nt > instance to represent a 2-d point, the
initial x value will be zero. Likewise, the slot specification (y 1 ni t-val ue 0 saysthat each point will also
have ay slot whose initial valueisO.

We can create an instance of an object by using the special form make, which is actually implemented as a macro.
The make operation takes a class asits first argument, and returns a new object that is an instance of that class.

To make a<poi nt >, we might use the nake expression
(make <poi nt >)
This expression returns a new point whose x and y slots are initialized to zero.

If we want the slots of an object to beinitialized to arequested value at the time the object is initialized--rather than
always being initialized the to the same value for every object, we can omit the initial value specification in the
class definition, and provideit to the make call that creates an object.
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(defi ne-cl ass <poi nt> (<object>)
(x)
(y))

Given this class definition, we can use nake to create a<poi nt > instance with particular x and y values:

(define ny-point
(make <point> x: 10 y: 20))

Here we've created a point object with an x value of 10 and ay value of 20. Note that the x value is labeled by a
keyword x: . Asin aclass definition, a keyword argument to nak e looks sort of like an argument, but it really isn't:
it's the name of the following argument.

Keyword argumentsto def i ne- cl ass and nake let you write the arguments in any order, by giving the name
before the value. We could have written the above call to make with the valuesin the opposite order:

(define ny-point (make <point>y: 20 x: 10))

The result of this definition is exactly the same as the earlier one. The make macro will sort out the arguments,
looking at the keyword to figure out what the following arguments are for.

By default, when we define a class with dlots x and y, we implicitly define operations on those fields of those
objects.

For each field, two routines are defined, a getter, which fetches the value of the field, and a setter, which setsthe
value of the field. The name of the getter isjust the name of the field. The name of the setter startswith set -,
followed by the name of the field, followed by an exclamation point to indicate that the operation is destructive (i.
e., modifies the state of the object by replacing an old value with a new one.)

Given the point we created, we can ask the value of its x field by evaluating the expression ( X mny- poi nt ),
which will return 10. We can change teh value to 50 by evaluating the expression ( set - x! ny- poi nt 50).
We can increment it by 1 with the expression

(set-x! ny-point
(+ 1 (x ny-point)))

Different kinds of objects can have fields with the same name, and the getters and setters will operate on the

appropriate field of whatever kind of object they are applied to. (Accessors are actually generic procedures, which
will be explained later.)

Generic Procedures and Methods

A generic procedure is a procedure that does a certain operation, but may do it in different ways depending on what
kind of argument it is given. A generic procedure can be specialized, telling it how to perform a particular kind of
operation for a particular kind of argument.
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A method definition specifies how a generic operation should be done for an object of a particular type.
Conceptually, a generic function keeps track of al of the methods which perform a particular operation on different
kinds of objects. A generic procedureis called just like any other function, but the first thing it doesisto look up
the appropriate method for the kind of object being operated on. Then it applies that method. A generic procedureis
therefore akind of dispatcher, which maps abstract operations onto the actual procedures for performing them.

For example, suppose we would like to define several classes, @code<stack>, @code<queue>, and @code<d-e-
gueue>, to represent stacks, queues, and double-ended queues, respectively.

We could define stack this way:

(define-class <stack> (<object>)
(items init-value: '()) ; list of itens in the stack

Aninstance of <st ack> hasonefield, i t ens, which pointsto alist of itemsin the stack. We can push items onto
the stack by consing them onto the front of itslist of items, or pop items off of the stack by cdr ing the list.

To define the behavior of <st ack>---and things like stacks--we need some generic procedures, i nsert -
first! andrenove-first!.Thesewill add anitem to the front (top) of a stack, or remove and return the item
from the front (top) of a stack, respectively.

(define-generic (insert-first! obj item)

(define-generic (renove-first! obj))

These two generic procedures define "generic operations" which may be supported by different classes, but do
semantically "the same thing." That is, the generic procedures don't represent how to do a particular kind of

operation on a particular kind of object, but instead represent a general kind of operation that we can define for
different kinds of objects.

This pair of generic procedures therefore acts as an abstract data type, which represents object that can behave as
stacks. The don't say how any particular implementation of stacks works.

To make the generic operations work for the particular class <st ack>, we need to define methods that say how to
performthei nsert-first! andrenove-first! operationson objectsthat areinstances of class<st ack>.

For this, we use the macro def i ne- net hod. Here'sthe definition of thei nsert -fi rst! operation for the
class<st ack>:

(define-nmethod (insert-first! (self <stack>) item
(set-itenms! self
(cons item (itens self))))

This method definition is very much like a procedure definition. Here we're defining a method that takes two
arguments, named self andi t em Thecalingform (i nsert-first! (<stack> self) item saysthat
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thisisthe particular procedure to use for the generic procedurei nsert -first! operation whenit's given two
arguments, and the first argument is an instance of class<st ack>.

That is, we're defining a procedure of two arguments, sel f andi t em but we're also saying that this procedureis
to be used by the generic procedurei nsert -first! only whenitsfirst argument is astack. (The namessel f
and i t emwere chosen for convenience--as with anormal procedure, we can name arguments anything we want.)

Given thisdefinition, wheni nsert-first! iscaledwith two arguments, and the first is a stack, this procedure
will be executed to perform the operation in the appropriate way for stacks. We say that we are specializing the
generic procedurei nsert-first! forinstancesof theclass<st ack>.

The body of this method definition refers to the stack being operated on assel f , the name given as the first
argument name;, it refersto the second argument, which is being pushed on the stack, asi t em The body of the
method is

(set-itens! self
(cons item (itenms self)))

which relies on the getter and setter implicitly defined for thei t ens dot by the class definition. It fetches the
value of thehead dot of sel f using head, consesthe argument i t emonto that list, and assigns the result to the
head ot using set - head! .

The method for the generic procedurer enove-fi rst! when applied to stacks could be defined like this:

(define-nmethod (renove-first! (self <stack>))
(let ((first-item(car (itenms self))))
(set-itens! (cdr (itens self)))))

Now let's implement a queue data type. Like a stack, a queue data type alows you to push an item on the front of an
ordered sequence of items--it supportsthei nsert-first! operation.

However, a queue doesn't let you add items to the front--it only lets you add itemsto the rear. So our <queue>
class should support r enove-first!, like<stack>,buti nsert-1| ast! insteadofi nsert-first!.

This means that we can define a method for <queue> onther enove-first! generic procedures, but we need
anew generic procedurei nsert - | ast!, which represents the abstract operation of removing the last item from
an ordered sequence.

(define-generic insert-|ast!)

The pair of generic operationsi nsert -1 ast! andrenove-first! represent the abstract datatype of queues
and things that can behave like queues.

To actually implement queues, we need a class definition and some method definitions, to say how a queue should
be represented, and how the queue operations should be done on it.
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For aqueue, it's good for accesses to be fast at either end, so we'll want a doubly-linked list, rather than asimple list
of pairs. Here's a class definition for <queue>:

(define-class <queue> (<object>)
(front '())
(rear ' ()))

Each <queue>skeep apointer to the beginning of the linked list and a pointer to the end of the linked list. The
gueue itself is structured as a doubly-linked list of queue nodes, each of which has a pointer to an item that's
conceptually in the queue, plusanext pointer to the next doubly-linked list node, and apr ev pointer to the
previous one.

To implement the doubly-linked list, we'll use a helper class to implement the list nodes, called <d- | - | i st -
node>.

(define-class <d-1-1list-node> (<object>)

(item

(next)
(prev))

This definition will implicitly define setters and getters for thefields, e.g., set - next ! andset - next! for the
next fieldof a<d-1|-1i st-node>.

Now we can define the methods for ther enpve-first! andi nsert -1 ast! operationson instances of
<queue>.

(define (insert-last! (self <queue>) item

(let ((newnode (make <d-I-list-node> item item
prev: (rear self))
next: " ())))
(cond ((null? (front self)) ; nothing in queue yet?
(set-front! self new node) ; this will be first
(el se : ot herw se
(set-next! (rear self) newnode))) ; append to rear of I|ist
(set-rear! self new node)))) ; update rear pointer

(define (remove-first! (self <queue>))
(let ((first-node (front self)))
(if (null? first-node)
(error "attenpt to renove-first! froman enpty queue:" self)
(let* ((first-item(itemfirst-node))
(rest (next first-node)))
(cond((null? rest) ; no nodes left in queue?

(set-front! self "())
(set-rear! self '()))
(el se
(set-prev! rest '())
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(set-front! self rest)))))))

Note that what stacks and queues both support the abstract operation of removing the first item, but each doesitina
different way--the same operation (generic procedure) isimplemented by different code (methods).

Generic Procedures and Classes are First-Class

A generic procedure is a procedure, like any other--it is afirst-class object that happensto be calable as a
procedure. Y ou can therefore use store generic procedures in data structures, pass them as arguments to other
procedures, and so on.

For example, in agraphical program, we may have a generic dr aw procedure to display any kind of graphical
object, and each class of graphical object may have its own dr aw method. By mapping the generic procedure
dr awover alist of graphical objects, like this,

(map draw | i st-of -objects-to-be-drawn)

we can invoke the appropriate draw method for each kind of object.

In our system, classes are also first class. When we use def i ne- cl ass to define aclass named <poi nt >, we
are actually doing two things: we are creating a special kind of object to represent the class, and we are defining a
variable named <poi nt > initialized with a pointer to the class object.

Implementing the Simple Object System

In this section, I'll present a simple implementation of the simple object system described so far. Our object system
is based on metaobjects, i.e., objects which represent or manipulate other objects such as class instances and
methods. (The meta- is Greek for "about," "beyond," or "after".

In programming language terminol ogy, metaobjects are objects that are "about" other objects or procedures. The
two most important kinds of metaobjects are class objects and generic procedure objects. A class object represents
instances of a particular class, and a generic procedure object represents a generic operation.

M etaobjects control how other objects behave. For example, a class object controls how instances of the class are
constructed, and a generic procedure object controls when and how the particular methods on that generic
procedure are invoked to do the right thing for particular kinds of objects.

A big advantage of the metaobject approach is that since metaobjects are just objects in the language, we can
implement most or all of the object system in the language--in this section, we'll show how to implement asimple
object system for Scheme, in portable Scheme. (We will rely on macros, which some versions of Scheme don't
support yet, however.) An advantage of writing a Scheme object system in Scheme is that we can modify and
extend the object system without having to change the compiler.

We will use macros to tranglate class, generic procedure, and method definitions into standard Scheme data
structures and procedures. A class object in our system is just a data structure, for which we'll use a vector (one-
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dimensional array) asthe main representation. A class object will record al of the information necessary to create
instances of that class.

Instances of aclass will also be represented as Scheme vectors. Each slot of an object will be represented as afield
of avector, and we'll trandate slot names into vector indexes.

Generic procedures will be represented as Scheme procedures, constructed in away that lets us define methods--
each generic procedure will maintain a table of methods indexed by which classes they work for. When ageneric
procedure is called in the normal way, it check the class of the object it's being applied to, and will search itstable
of methods for the appropriate method, and call that method, passing along the same arguments. Methods will also
be represented as Scheme procedures.

Implementing defi ne-cl ass

def i ne- cl ass isamacro which accepts the users's description of a class, massages it alittle, and passesit on to
the procedure cr eat e- cl ass to construct a class object.

Thereason that def i ne- cl ass iswritten as amacro and not a procedure is so that the arguments to the macro
won't be evaluated immediately. For example, the class name (e.g., <poi nt > or <queue passedto def i ne-
cl ass isn't avariable to be evaluated--it's a symbol to be used as the name of the class.

When acall todef i ne- macr o iscompiled (or interpreted), the transformation procedure for the macro does two
things. First, it constructs the class object and adds it to a special data structure by callingr egi st er - cl ass.
Then it generates code to define a variable whose name is the name of the class, and initialize that with a pointer to
the class. The generated code (the variable definition) is returned by the transformer, and that's what's interpreted or
compiled at the point where the macro was called.

For example, consider acall to create a<poi nt > class:
(defi ne-class <poi nt> (<object>)

(x)

(y))

This should be translated by macro processing into avariable definition for <poi nt >, which will hold a pointer to
the class object, like this:

(defi ne <poi nt > complicated expression)

where complicated expression has the side-effect of constructing the class object, registering its existence with
related objects (virtual procedures for the accessors), and so on. conpl i cat ed_expr essi on should look
something like this, for our <poi nt > definition:

; construct an association |ist describing the slots of this kind of object,
; indexed by slot nane and holding the routines to get and set the slot
; val ues.
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(let ((slots-alist (generate-slots-alist '((x) (y)))))

; create the class object, inplenented as a Schene vect or

(let ((class-object (vector <<class>> ; pointer to class of class
' <poi nt> ;. nane synbol for this class
(l'ist <object>) ; list of superclass objects
sl ots-alist ; sl ot nanes/getters/setters
"*dummy*))) ; pl acehol der
: create and install the instance allocation routine, which will create

; and initialize an instance of this class, inplenented as a vector
(vector-set! class-object 4 (lanmbda (x vy)
(vector class-object x vy)))

; register accessor nethods with appropriate generic procedures
(regi ster-accessor-net hods cl ass-object slots-alist)

; and return the class object we constructed
cl ass-object))

In more detail, what this generated code doesiis:

. builds an association list, indexed by slot name, holding getter and setter procedures for each slot of a
<poi nt > object. It creates procedures that will get and set the values of the dlots x and y, which have been
mapped to indexed fields 1 and 2 of the vector used to represent an instance. (These are the methods for the
generic procedures x, set - x! ,y,andset - y! , which will be registered with those generic procedures.)

. creates avector that will be the class object. I1ts Oth slot is initialized with a pointer to the special object
<cl ass>, which identifies this object as a class object.(13) The 1st slot holds a pointer to the name symbol
that isthis class's class name. (Thisisjust for documentation purposes.) The 2nd slot holds alist of pointers
to this object's immediate superclasses. (Note that thisisalist of pointersto actual class objects, not name
symbols.(14)

. Ccreates aprocedure that will allocate and initialize an instance, given the initial values of the slots. A pointer
to this object is stored in the class object. (This side-effect is needed because the class object must be created
before this procedure, so that the class pointer is available to it.) This procedure takes the slot valuesin the
same order the slots are laid out. (The make macro will ensure that arguments are passed in the right order
from calsto make using keywords.)

. registersthe accessor methods for the slots with the appropriate generic procedures. For now, we'll assume
that the generic procedure objects already exist--they must be defined explicitly, like any other generic
procedures. Later we'll show how the necessary generic procedure definitions can be automatically
generated as needed.

. returnsthe class object.

Sincethisisal doneintheinitial value expression of the definition of the variable <poi nt >, the returned class
object becomes theinitial value of that variable binding.

Once all thisis done, we could create an instance of class point by extracting the allocator procedure from the class
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object and calling it with theinitial valuesin the proper order. For example,
((vector-ref <point> 4) 20 30)

would extract the point-allocator procedure from the <point> class object, and call it to create a<poi nt > instance
with an x value of 20 and ay value of 30. (The make macro will provide afriendlier interface.)

Now well show asimplified version of the procedure gener at e- cl ass- code, which generates the kind of
class-creating s-expression shown above.

Now let'slook at the macro to produce code like this from a simple class definition.

For now, we'll assume that the body of the class definition consists of nothing but slot declarations with no keword
options--initial value specifiers or other options--i.e., they're one-element lists holding just a symbol that names a
dot. Ignoring inheritance and assuming that a class includes only the slots declared in this class definition, welll
simply assign slots index numbers in the order they're declared.

WE'll also continue to ignore issues of inheritance and automatic generation of generic procedures for slot accessor
methods. When we implement inheritance, described later, we'll need to do something with the list of superclasses.)

efi ne-nmacro efi ne-cl ass cl ass-nane superclass-list . slot-decls
def def [ I p [ |ist | ot - decl
“(define ,class-nane
(let ((slots-slist (generate-slots-alist ',slot-decls 1)))

; Create the class object, inplenented as a Scherre vect or

(let ((class-object (vector <<c| ass>> ; metacl ass
, cl ass- nane ; hane
(I I st , @upercl ass-1i st) ; supers
sl ot s- allst ; slots
"*dumy*))) ; Creator

cinstall a routine to create
I nst ances
(vector-set! cl ass-object
4
;. creation routine takes sl ot val ues
; as args, creates a vector w cl ass
; pointer for this class foll owed by
; slot values in place.
(Ianbda (map car sl ot-decls)
(vector cl ass- obj ect
, @map car slot-decls))))

; register accessor nethods with appropriate generic procs
(regi ster-accessor-nethods cl ass-object slots-alist)
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cl ass-object))

Two important helper routines are used by thismacro: gener at e- sl ot s-al i st andr egi st er - accessor -
nmet hods.

Theinitial value expression for sl ot s- al i st isacall togener at e- sl ot s-al i st, with an argument that is
aquoted version of the argument declarations passed to the macro. Notice that we're using unquote inside a quoted
expression, and thisworks. The value of slot-decls will be substituted inside the quote expression during macro
processing.

For the <poi nt > definition, the expression (gener at e-sl ots-al i st ', sl ot-decls 1) will trandate
to(generate-slots-alist '((x) (y)) 1).(15) Severa other expressionsin the macro work thisway,
aswell: For the<poi nt > example, ' , cl ass- nane will trandateinto' <poi nt >, alitera referring to the name
symbol for the particular class we're defining.

Likewise, (I 1 st , @upercl ass- 11 st), which uses unquote-splicing, will be translatedto (| i st

<obj ect >) ; when that expression is evaluated, the value of the variable <obj ect > will be fetched and put in a
list. (Notice that this makes alist with the actual class object in it, not the symbol <obj ect >.) The lambda
expression that generates an instance creating procedure uses both unquote and unquote-splicing:

(lanbda , (nmap car sl ot-decl s)
(vector class-nane , @map car slot-decls))

It will trandate to

(lanbda (x vy)
(vector class-nane x y))

gener at e- sl ot s-al i st just traversesthelist of slot declarations recursively, inrementing an index of which
slot number is next, and constructs list of associations, one per slot. Each association isalist hose car (i.e., the key)
isthe name of the slot, and its second and third elements are procedures to access the slot. The actual accessor
procedures are generated by callsto sl ot - n- gett er andsl ot - n- set t er, which return procedures to get or
set the nth slot of a vector.

(define (generate-slots-alist slot-decls slot-num
(if (null? slot-decls)
O]
(cons " (, (caar slot-decls)
, (slot-n-getter slot-num
,(slot-n-setter slot-num)
(generate-slots-alist (cdr slot-decls)

(+ 1 slot-num))))

(This procedureisinitialy called with a slot-num of 1, reserving the zeroth slot for the class pointer.)

Here are smpleversions of sl ot - n- get t er andsl ot - n- set t er . Each one simply makes a closure of an
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accessor procedure, capturing the environment where n is bound, to specialize the accessor to access a particular
dot. (If we handle keyword options, we'll have to make the code a little more complicated.)

(define (slot-n-getter offset)

(I anrbda (obj) ; return a procedure to read
(vector-ref obj offset))) . slot n of an object
(define (slot-n-setter offset)
(I arbda (obj val ue) ; return a procedure to update
(vector-set! obj offset value))) ; slot n of an object

We construct a new closure for each slot accessor, but that really isn't necessary. We could cache the closures, and
always return the same closure when we need an accessor for a particular slot offset.

class <<cl ass>>

Our simple object system implementation assumes that every instance is represented as a Scheme vector whose Oth
dlot holds a pointer to a class object, which is also an object in the system. Thisimplies that a class object must also
have a class pointer in its zeroth slot. A question naturally arises asto what the class of a class object is, and what
its class pointer points to.

Thisisactualy a deep philosophical question, and for advanced and powerful object system, it has practical
consequences. For our little object system, we'll settle the question in asimple way. All class objects have a class
pointer that points to a special object, the class of al classes. We call this object <<cl ass>>, where the doubled
angle brackets suggest that it is not only a class, but the class of other class objects. Thisisknown asa

met acl ass, because it's aclass that's about classes.

It doesn't do very much--it just gives a special object we can use as the class value for other class objects, so that we
can tell that they're classes.

In our simple system, the unique object <<cl ass>> has aclass pointer that points to itself---that is, it describes
itself in the same sense that it describes other classes. This circularity isn't harmful, and alows us to terminate the
possibly infinite regression of classes, metaclasses, meta-metaclasses, and so on.

We construct this one special object "by hand." Like other class objectsin our system, it is represented as a Scheme
vector whose first element points to itself, and which has a few other standard fields. Most of the standard fields
will be empty, because class <<class>> has no superclasses, no slots, and no allocator--because we create the one
instance specialy.

The following definition suffices to create the class <<cl ass>>:

(define <<cl ass>>

(let ((the-object (vector '*dunmy* ; placehol der for class ptr
'<<class>> ; nane of this class
() ; supercl asses (none)
() ; slots (none)
#f ; allocator (none)
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“()))) ; prop. list (initially enpty)
; set class pointer to refer to itself
(vector-set! the-object O the-object)
; and return the class object as initial value for define
t he- obj ect))

Oncethisis done, we can define afew other routines that will come in handy in implementing the rest of the object
system:

i nst ance? isapredicate that checks whether an object is an instance of aclassin our class system, as opposed to
aplain old Scheme object like apair or anumber. (In a better object system, like RScheme's, all Scheme objects
would also be instances of classes, but we'll ignore that for now.)

; An object is an instance of a class if it's represented as a
; Schene vector whose Oth slot holds a class object.

; Note: we assune that we never shove class objects into other
; vectors. W could relax this assunption, but our code
; woul d be sl ower.

(define (instance? obj)

(and (vector? obj)
(class? (vector-ref 0 obj)))

; An object is a class (neta)object if it's represented as a Schene
; vector whose Oth slot holds a pointer to the class <<class>>.
; Note: we assunme that we never shove the <<class>> object into
; ot her vectors. W could relax this, at a speed cost.
(define (class? obj)
(and (vector? obj)
(eq? (vector-ref 0 obj) <<class>>)))

; We can fetch the class of an instance by extracting the val ue
; inits zeroth slot. Note that we don't check that the argunent
; obj *is* an instance, so applying this to a non-instance is an error.
(define (class-of-instance obj)
(vector-ref obj 0))

Implementing def i ne- generic

Each generic procedure maintains a table of methods that are defined on it, indexed by the classes they are
applicable to. In our simple object system implementation, this table will be implemented as an association list,
keyed by class pointer. That is, the association list isalist of lists, and each of those lists holds a class object and a
procedure. The class object represents the class on which the method is defined, and the procedure is the method
itself.

When the generic procedureis called on a particular instance, it will extract the class pointer from the zeroth slot of
the instance, and use it as a key to probe its own association list. It will then extract the procedure that's the second
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element of the resulting list, and call it. When calling the method, it will pass aong the same arguments it received.

This scheme can be rather slow--a linear search of all methods may be slow if there are many methods defined on a
generic procedure, and especially if the frequently-called ones are not near the front of the list. We could speed this
up considerably by using caching tricks, e.g., reorganizing the list to put recently-used elements at the front. A more
aggressive system could figure out how to avoid looking up methods at runtime in most cases, but that's
considerably more complicated. We won't bother with any of that for now, to keep our example system simple.

(Understanding this simple system will be a good start toward understanding more sophisticated systems that
perform much better, and even this ssmple system is fast enough for many real-world uses, such as most scripting
and GUI programming, or coarse-grained object-oriented programming where most of the real work is done in non-
object-oriented code.)

When we evaluate an expression such as
(define-generic (insert-first! obj item)
we would like the macro to be translated into code that will do severa things:

. Create an association list to store methods later defined on this generic procedure

. create the generic procedure itself

. provide ameans for adding methods to the association list.

. bindthename(e.g.,i nsert-first! andinitiaize the binding with a pointer to the generic procedure.

The first two and the last are easy, and we'll ignore the third for now. def i ne- gener i ¢ can generate code like
this:

(define insert-first!
;  create an environnment that only the generic procedure wll
. be able to see.
(let ((method-alist "()))
;  create and return the generic procedure that can see that
;  method a-list.
(lanbda (obj item
(let* ((class (class-of-instance obj))
(method (cadr (assq class nethod-alist))))
(if nethod
(nmethod obj item
(error "nmethod not found"))))))

Hereweusel et to create alocal variable binding to hold the association list, and capture it by using lambdato
create the generic procedure in its scope. Once the procedure is returned from the let, only that procedure will ever
be able to operate on that association list.

The procedure returned by | anbda will take the two arguments specified by the generic procedure declaration,
extract the class pointer from the first argument object, probe the association list to get the appropriate method for
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that class, and (tail-)call that method, passing along the original arguments. If it fails to find a method for the class
of the instance it's being applied to, it signals an error.

Keeping in mind that this code doesn't quite work because we can't actually add methods to the method association
list, we could definedef i ne- generi ¢ asamacro thisway:

(define-macro (define-generic nane . args)
“(define , nane
(let ((method-alist "()))
(lanbda (, @rgs)
(let* ((class (class-of-instance ,(car args))))
(method (cadr (assq class nethod-alist))))
(i f nmethod

(method obj item
(error "nmethod not found"))))))

To allow methods to be added to the method-alist, we'll change the macro to create another procedure, along with
the generic procedure, in the environment where met hod- | i st isvisible. This procedure can be used to add a
new method to the method association lists. Thistable will be an association list stored in the global variable
*generi c- procedur es*.

WEell also maintain atable of generic procedures and the corresponding procedures that add methods to their
association lists. Whilewe're at it, we'll modify def i ne- gener i ¢ record the name of a generic procedure when
it's defined, so that it can print out a more helpful error message when alookup fails. The inital value expression
will be aletrec which lets us define four variables, two of which are procedure-valued, and then returns one of those
procedures, the actual generic procedure

(define *generic-procedures* '())

(define-macro (define-generic nane . args)
“(define , nane
(letrec ((gp-name , nane)
(method-alist '())
(et hod- adder
(1 anbda (generic-proc nethod)
(set! nethod-alist
(cons (list generic-proc nethod)
net hod-alist))))
(generi c-proc
(I anrbda (, @rgs)
(let* ((class (class-of-instance ,(car args))))
(method (cadr (assq cl ass
nmet hod-alist))))
(if nethod
(method obj item
(error "nmethod not found for
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gp-nane))))))

; add the generic procedure and its nethod-addi ng
; routine to the association |list of generic procedures

(set! *generic-procedures*
(cons (list generic-proc nethod-adder)
*generi c- procedures?*))

generi c-procedure)))

Implementing def i ne- net hod

Now that each generic procedure is associated with a method-adding procedure that can add to its list of methods,
we can definethe def i ne- met hod macro. def i ne- net hod will create amethod using | anbda, and add it to
the generic procedure’'s method association list, indexed by the classthat it isto be used for.

In this ssmple system, where only the first argument is dispatched on (used in selecting the appropriate method), we
only need to treat the first argument declaration specially.

Consider an example the example of definingani nsert-first! methodfor classst ack.

(define-nmethod (insert-first! (self <stack>) iten)
(set-itenms! self
(cons item (itenms self))))

We'd like this to be transated by macro processing into the equivalent

(add- net hod-t o-generic-proc insert-first!
<st ack>
(lanrbda (self item
(set-itens! self
(cons item (itenms self)))))

The real work is done by the procedure add- net hod- t o- generi c- pr ocedur e, which we can write as

(defi ne (add-nethod-to-generic-procedure generic-proc class nethod)
(let ((nethod-adder! (cadr (assqg *generic-procedures* generic-proc))))
(et hod- adder! class nethod)))

This procedure expects three arguments--a generic procedure object, a class object, and a closure that implments the
corresponding method. It searces the association list The calling pattern for the def i ne- met hod macro will
ensure that the actual calling expression is destructured into three parts, giving us the first argument's name and the
name and its class.

(define-macro (define-nmethod (gp (argl class) . args) . body)
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" (add- et hod-t o- generic-proc ,gp
, cl ass
(lanbda (argl , @rgs)
, @ody)))

Installing Accessor Methods

Given the code we've seen so far, we've almost got a working object system, but we left out a detail when we
defined def i ne- cl ass. Recall that the accessor routines for a class's ots are supposed to be used as methods on
generic procedures such as x. def i ne- cl ass generates code that callsr egi st er - accessor - met hods, to
install the accessor routines for the slots of a class as methods on generic procedures.

regi st er-accessor - met hods iterates over the slots association list of the class, looking at each slot name
and its corresponding accessors, and adding the accessor procedures to the appropriate generic procedure. For a
given slot name, the appropriate generic procedure name is automatically constructed using the accessor naming
conventions.

[ OOPS--theres a hitch here. We didn't index the generic procedures by name... it's also awkward that Scheme
doesn't provide a standard bound? procedure so that we can tell if the generic procedure aready exists. Isit even
possible to automatically define the generic procedures in absolutely portable Scheme, without doing something
painful ? | suppose that if we can search the list of generic procedures by name, the macro transformer for define-
class can look to see which accessor names don't have corresponding generic functions, BEFORE actually
generating the transformed code. It could then add a (define-generic ...) to its output for each accessor that doesn't
already have an existing generic procedure to add it to. Tedious, and annoying to have to explain. |

Keyword options

Inheritance

So far we've described a simple object-based programming system and shown how it can be implemented. A fully
object-oriented system requires another feature---inheritance.

Inheritance allows you to define a new classin terms of another class. For example, we might have a class
<poi nt >, and want to define asimilar class, <col or ed- poi nt >, which records the color to be used to display
apoint when it is drawn on the user's screen.

Given our simple object-based system so far, we would have to define col or ed- poi nt from scratch, defining its
x and y fields as well asits color field. This definition would be mostly redundant with the definition of <poi nt >,
making the code harder to understand and maintain.

Inheritance lets us define new classes by describing its differences from another class. For example, we could
define colored-point like this:

(defi ne-cl ass <col ored- poi nt > (<poi nt >)
(color))
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This definition says that instances of <col or ed- poi nt > haveal of the dlotsof <poi nt s> (i.e, x andy), as
well as another dlot, col or . We say that <col or ed- poi nt > inherits the dotss defined for <poi nt >.

Inheritance applies to methods as well as slots. The definition above tells our object system that the methods
defined for the superclass <poi nt > should also be used for <col or ed- poi nt >s, unless we specifically define
new methods just for <col or ed- poi nt >s on the same generic procedures.

This gives us a concise declarative way of defining classes--we can declare that a<col or ed- poi nt > islikea
<poi nt >, except for the particular differences we specify. The object system then inferswhat slotsa<col or ed-
poi nt > must have from this declaration (and methods we define for this class) plus the declarations for <poi nt >
and its methods.

Note that inheritance is transitive. If we define a subclass of <colored-point>, say <f | ashi ng- col or ed-
poi nt >, it will inherit the slots and methods of <col or ed- poi nt >, and also the dlots and methods of
<poi nt >.

Overriding and Refining Inherited Methods

By default, aclassinherits all of the methods defined for its superclasses. We can override an inherited definition,
though, by defining a method definition explicitly. For example, we might have adr aw method for class <poi nt >
which simply draws a black pixel on the screen at the point's coordinates. (This might be through acall to an
underlying graphics library provided by the operating system.) For <col or ed- poi nt >, we would probably want
to define anew dr aw method so that the point would be drawn in color.

Sometimes, we don't want to completely redefine an inherited method for a new class, but we would like to refine
it--we may want to define the new method in terms of the inherited method.

For example, suppose we have a class <queue>, which maintains a queue as we saw earlier, and we woulto refine
it to create anew kind of queue that keeps track of the size of the queue--i.e., the number of itemsin the queue.

We might define <count ed- queue> as asubclass of <queue>, but with asize dot, likethis:

(defi ne <count ed- queue> (<queue>)
(size initial-value: 0))

Then we can definetheget - f i r st and put -1 ast methodsfor count ed- queue in terms of the
corresponding methods for <queue>. We do this by using a special pseudo-procedure called next - net hod.
Inside a method definition, the name next - met hod refersto an inherited procedure by the same name. This
allows usto call theinherited version of a method even though we're overriding that definition.

(define-nmethod (get-first! (self <counted-queue>))
(count-set! self (- (count self) 1)) ; update count of itens, and
(next-nmethod self)) ; call inherited get-first

(define-nmethod (put-last! (self <counted-queue>) item
(next-nethod self item
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(count-set! self (+ (count self) 1))
next - met hod's name comes from the fact that it represents the next most specific method for this operation
applied to this class, according to the inheritance graph. The method we're defining is the most specific method,

because it's defined for this class exactly, and the inherited one is the next most specific. (The inherited one may in
turn call amethod that was inherited earlier, which will in turn be the next most specific method, and so on.)

Late Binding and Inheritance

Implementing an Object System with Inheritance

Interfaces and Inheritance

A More Advanced Object System and Implementation

The simple object system

Language Features

Purity

Encapsulation

Multiple Dispatching

Multiple Inheritance

Explictit Subtyping

Control Over Compilation

A Metaobject Protocol

Implementation Improvements

Factoring out Work at Compile Time

Supporting Runtime Changes

Faster Dynamic Dispatching

Compiling Slot Accessors And Methdos Inline
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call -wth-current-conti nuati on

cal | -wi t h-current-conti nuati onisavery powerful control construct, which can be used to
create more conventional control constructs, likecat ch andt hr owin Lisp (or set j np and

| ongj np in C), or coroutines, and many more. It is extremely powerful because it allows a program to
manipulate its own control "stack™ so that procedure calls and returns needn't follow the normal depth-
first textual call ordering.

Recall that we said [ WHERE?] that Scheme's equivalent of an activation stack is really a chain of
partial continuations (suspension records), and this chain is known as afull continuation. And since
continuations are immutabl e, they usually form atree reflecting the call graph (actually, only the non-tail
calls). Normally, the parts of this tree that are not in the current continuation chain are garbage, and can
be garbage collected.

If you take a pointer to the current continuation, and put it in alive variable or data structure, however,
then that continuation chain will remain live and not be garbage collected. That is, you can "capture” the
current state of the stack.

If you keep a captured state of the stack around, and later install the pointer to it in the system's
continuation register, then you can return through that continuation chain, just as though it were a
normal continuation. That is, rather than returning to your caller in the normal way, you can take some
old saved continuation and return into that instead!

Y ou might wonder why anybody would want to do such aweird thing to their "stack," but there are
some useful applications. Oneis coroutines. It is often convenient to structure a computation as an
alternation between two different processes, perhaps one that produces items and another that consumes
them. It may not be convenient to either of those processes into a subroutine that can be called once to
get an item, because each process may have complex state encoded into its control structure.

(Y ou probably wouldn't want to have to structure your program as a bunch of incremental operations
that were called by successive calls to a do-next-increment routine. It may be that the program it getsits
datafrom can't easily be structured that way, either. Each program should probably be written with its
own natural control structure, each suspending its operation when it needs the other to do itsthing.)

Coroutines allow you to structure cooperating subprograms this way, without making one subservient to
(and callable piecemeal from) another.

Coroutines can be implmemented as operations on continuations. When a coroutine wants to suspend
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itself and activate another (co-)routine, it smply pushes a partial continuation to save its state, then
captures the value of the continuation register in some way, so that it can be restored later. To resume a
suspended routine, the continuation chain is restored and the top partial continuation is popped into the
system state registers. Alternation between coroutines is thus accomplished by saving and restoring the
routines' continuations.

Note that in this case, we can have two (or more) trees of continuations that represent the course of the
computation, and that control flow can alternate back and forth between trees. Usually, computations are
structured so that most of the work is done in the usual depth-first procedure calling and returning, with
occasional jumps from one routine's depth-first activity to another's.

Another use of continuationsisto implement cat ch and t hr ow, which are roughly like setjmp and
longjmp in C. Theideaisthat you may want to abort a computation without going through the normal
nested procedure returns. In anormal stack-based lagnuage (without continuations), thisis usually
accomplished by storing a pointer into the stack before starting the abortable computation. If itis
necessary to abort the computation, all of the activation records above the point of call can be ignored,
and the stack pointer can be restored to that point, just as though all of the invocations above it had
returned normally.

This can be implemented withcal | -wi t h- current - cont i nuat i on by saving the continuation
at the point where an abortable computation is begun. Anywhere within that computation, that
continuation may be restored (clobbering the "normal” value of the continuation register, etc.) to resume
from that point.

Butcal | -wi t h-current-conti nuati on ismore powerful than coroutines or catch and throw.
Not only can we escape "downward" from a computation (by popping multiple partial continuatons at
once without actually returning through them), we can aso escape "upwards" back into a computation
that we bailed out of before. This can be useful in implementing exception handling, where we may
want to transfer control to a specia coroutine that may "fix up" an error that was detected, but then
resume the procedure that encountered the error, after the problem is fixed.

call -wi th-current-continuati on canalso be used to implement backtracking, where the
control flow backs up and re-executes from some saved continuation. In this case, we may save the
continuation for some computation, but go ahead and return through it normally. Later, we may restore
the saved continuation and return through it again.

Note that in general, continuations in Scheme can be used multiple times. The essential ideais that rather
than using a stack, which dictates a depth-first call graph, Scheme allows you to view the call graph AS
A GRAPH, which may contain cycles, even directed cycles (which represent bactracking).

Thesyntax of cal | -wi t h-current -conti nuati onisfarly ugly, but for some good reasons; in
itsraw form, it is very powerful, but correspondingly hard to use. Typically, it is encapsulated in macros
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or other procedures to implement other, higher-level control constructs.

call -with-current-continuati onisitself anormal first-class procedure, which encapsulates
the very low-level continuation munging abilities in something like a civilized package. Sinceit's afirst-
class procedure, you can write higher-order procedures that treat it like data, or call it, or both.

call -wi th-current-continuati on isaprocedure of exactly one argument, which is another
procedure to execute after the current continuation has been captured. The current continuation will be
passed to that procedure, which can useit (or not) asit pleases.

The captured continuation isitself packaged up as a procedure, also of one argument. That's so that you
can't muck around with the continuation itself in any data-structure-like way. There are only two things
you can do with captured continuations--capture them and resume them. Continuations are captured by
executingcal | -wi t h-current - conti nuati on, which creates an escape procedure. They are
resumed by calling the escape procedure. When called, the escape procedure abandons whatever
computation is going on, restores the saved continuation, and resumes executing the saved computation
at the point wherecal | - wi t h- current - conti nuat i on occurred.

Notethat cal | -wi t h- current - conti nuati on isaprocedure of one argument. We'll call that
procedure the abortable procedure. The abortable procedure must also be a procedure of exactly one
argument. (If you want to call a procedure that takes a bunch of arguments, and still make it abortable
usingcal | -wi t h-current-conti nuati on, youhaveto useatrick I'll describe below.)

The abortable procedure's argument is the escape procedure that encapsul ates the captured continuation.
call -wi th-current-continuati on doesthefollowing:

. Creates an escape procedure that captures the current continuation. If called, this procedure will
restore the continuation at the point of call tocal | -wi t h-current-conti nuati on.

. Callsthe procedure passed as its (call-with-current-continuation's) argument, handing it the
escape procedure as its argument.

If and when the escape procedureis called, it restores the continuation captured at the point of call to
cal | -wi t h-current-conti nuati on. Werefer to thisas anonlocal return---from the point of
view of thecaller of cal | -wi t h-current-conti nuati on,itlooksasthoughcal | -w t h-
current -conti nuati on had returned normally.

The (abortable) procedure we want to call must take one argument, which is the escape procedure that
can resume the computation just beyondthecal tocal | -wi t h-current - conti nuati on.

Asif thisweren't cryptic enough, the escape procedure is also a procedure of exactly one argument.
When the escape procedure is used to perform a nonlocal return, it returns a value as the result of the call
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tocall -with-current-conti nuati on.
The argument to the escape procedure is the value that will be returned as the value of the call. Note that

If the escape procedure is not called, and the abortable procedure returns normally, the value it returnsis
returned asthe value of thecall tocal | -wi t h-current - conti nuati on.

Acdltocal | -wi t h-current-conti nuati on therefore can return in two ways. Either the
abortable procedure returns normally, and cal | - wi t h- current - cont i nuat i on simply returns
that value, or the escape procedure can be called, and its argument is returned as the value of the call to
call-with-current-continuati on.

Consider the following example, where I've given line numbers to refer to later:

0: (define sone-flag #f)

1. (define (ny-abortabl e-proc escape-proc)

2: (display "in ny-abortabl e-proc")

3: (if sonme-flag

4: (escape- proc "ABORTED"))

5: (display "still in ny-abortabl e-proc")

6: "NOT ABORTED")

7: (define (ny-resumabl e-proc)

8: (do- sonet hi ng)

9: (display (call-with-current-continuation my-abortabl e-proc))
10: (do-sone-nore))

11: (my-resunabl e- procedure)

Atline 11, wecall my- r esumabl e- pr ocedur e. It calsdo- sonet hi ng, and then calls display.
But before it callsdisplay it has to evaluate its argument, whichisthecall tocal | -wi t h- current -
conti nuati on.

cal | -wi t h-current-conti nuati on savesthe continuation at that point, and packagesit up as
an escape procedure. (Line 9) The escape procedure, if called, will return its argument as the value of the
call -wi th-current-conti nuati on form.

That is, if the escape procedureis called, it will resume execution of the display procedure, which prints
that value, and then execution will continue, calling do-some-more.

Oncecal | -wi t h-current -conti nuat i on has created the escape procedure, it callsits
argument, ny- abor t abl e- pr oc, with the escape procedure as its argument.
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nmy- abort abl e- pr oc then displays (prints) "i n my- abort abl e- proc. " Thenit checkssone-
f 1 ag, whichisfalse, and does not execute the consequent of thei f ---that is, it doesn't execute the
escape procedure. It continues executing, displaying”sti || i nmy-abortabl e-proc. " Itthen
evaluatesits last body form, the string " NOT ABORTED' , which evaluates to itself, and returns that as
the normal return value of the procedure call.

At this point, the value returned from my-abortable-proc is printed by the call todi spl ay inline9.
But suppose we set somre- f | ag to #t , instead of #f .

Then when control reachesline 3, thei f does evaluate its consequent. This calls the escape procedure,
handing it the string " ABORTED" as its argument. The escape procedure resumes the captured
continuation, returning control to thecaler of cal | -wi t h- current - cont i nuat i on, without
executing lines 5 and 6.

The escape procedure returns its argument, the string " ABORTED" asthevalue of thecal | - wi t h-
current-conti nuati on form. It restores the execution of my-resumable-proc at line 9, handing
display the string " ABORTED" (asthe value of its argument form). At this point " ABORTED" is
displayed, and execution continues at line 10.

Often we want to use call-with-current-continuation to call some procedure that takes arguments other
than an escape procedure. For example, we might have a procedure that takes two arguments besides the
escape procedure, thus:

(define (foo x y escape)

(if (=x 0)
(escape ' ERROR))
L))

We can fix this by currying the procedure, making it a procedure of one argument.
[ An earlier chapter should have a discussion of currying! |

Suppose we want to pass 0 and 1 as the values of x and y, as well as handing foo the escape procedure.
Rather than saying

(call-with-current-continuation foo)

which doesn't pass enough arguments to the call to foo, we say
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(call-with-current-continuation (lanbda (escape) (foo O 1 escape)))

The lambda expression creates a closure that does exactly what we want. It will call foo with arguments
0, 1, and the escape procedure created by cal | -wi t h- current - conti nuati on.

Implementing a Better Read-Eval-Print Loop

Implementing Catch and Throw

Implementing Backtracking

Implementing Coroutines

Implementing Cooperative Multitasking

Caveats aboutcall -w t h-current-conti nuati on

Go to thefirst, previous, next, last section, table of contents.
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A Simple Scheme Compiler

[ The example compiler in compiler.scm is the skeleton of a simple compiler for a subset of Scheme, whose
structure corresponds fairly closely to the example interpreter in eval.scm. |

[ thisis out of place, or needs more introductory intro first: |

Where the interpreter has a basic dispatch routine called eval , which can evaluate any kind of expression,
the compiler has a basic dispatch routine called conpi | e, which can compile any kind of expression. Like
eval , conpi | e examines the expression to be compiled, and dispatches to an appropriate routine for that
kind of expression. The routine that compiles an expression may recursively call compile to compile
subexpressions, just asthe interpretive evaluator may call eval recursively to evaluate subexpressions.

What is a Compiler?

[ Thisis somewhat redundant with earlier stuff, but more concrete. Should | cut it down?]

Before answering what acompiler is, let's backtrack and talk about interpreters.

What is an Interpreter?

Aninterpreter realy does two things:

1. it examines expressions and dispatches to the appropriate code for that kind of expression
2. it performsthe actual operations specified by the program

Typically, most of the work done by an interpreter isin the first category--our example interpreter, for
example, spends alot of time examining expressions to see if they're self-evaluating or symbols or lists, and
dispatching to the appropriate procedure to evaluate that kind of expression. This dispatching isinterleaved
with the actual work that evaluates the expressions.

One of the problems with an interpreter isthat every time an expression is encountered, it is analyzed again.
Consider an expression like (+ f oo bar) embedded in aloop that iterates many times. Our interpreter will
encounter this expression at each iteration of the loop, and at each iteration of the loop it will do mostly the
same things: it will examine the expression and find out it'salist, then call eval -1 i st , which will further
examine it to find out it's a combination (not a special form or macro), and call eval - conbo. Theneval -
conbo will call eval recursively to evaluate the subexpressions, and each call to eval will examine the
subexpressions and dispatch to the appropriate specialized evaluation routine. Only then do we start actually
computing the value of the expression, by computing the values of the subexpressions +, f 00, and bar , i.e.,
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looking up the values of those variables.

OK, so what's a compiler?

We would rather factor out most of this redundant work, and examine the expression just once to see what to
do. Then each time we "evaluate" the expressions, we can just do those things. For the expression ( + f 00
bar) , the set of actions an interpreter will execute (Ileaving out all of the analysis and dispatching is):

| ook up vari abl e bar
| ook up variable foo
| ook up variable +

apply

(Here we've assumed that we evaluate subexpressions of a combination from right-to-left, rather than the
more intuitive left-to-right order; that's alegal way to do it in Scheme an it turns out to be handy in avery
simple compiler, aswe'll explain in aminute.)

[ maybe | should change this to do args left-to-right, but the operator last, like RScheme. |

For code like this, which doesn't have any conditionals in it, we can convert an interpreter into a compiler
very easily. We just modify the interpreter so that instead of actually evaluating the expressions, it just
records what operations it would execute if it were interpreting the expression. I'm intentionally being vague
asto how exactly these simple operations (like | ook- up- vari abl e) work, but you should be able to see
that each of them should be trandatable into a handful of machine instructions. That's how most compilers
work: they first tranglate a program into an intermediate code representation, like our look-up-variable
operations, and then tranglate that representation into machine instructions. (In between there may be one or
more steps that "optimize" the intermediate code, and each step may represent the code in a different way.)

So this ssimple compiler just "pretends’ to evaluate the expression, but whenever it gets to an actual action
(like looking up avariable, or calling a procedure), it simply records what action it would take if it were just
an interpreter. Theresult isalist of actions which, if taken, will have the same effect as interpreting the
expression.

Here's another example:

(let ((x 22)

(y 15))
(+ x (* xy)))

Supposing that our intermediate code representation is a sequence of lists that represent operations and their
operands, the code that our simple compiler will generateis.

(fetch-literal 22)
(fetch-literal 15)
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(bind x vy)

(1 ook-up-vari abl e y)
(1 ook-up-vari abl e x)
(1 ook-up-variable *)
(cal | - procedure)

(1 ook-up-vari abl e x)
(cal | - procedure)
(unbi nd)

Later on, we'll talk in more concrete detail about where values are temporarily stored when they're looked up,
and various tweaks to make it possible to trandate intermediate code into smaller and faster sequences of
machine instructions. For now just notice that we can string together sequences of these intermediate code
operations, and if we just translate each of them into some machine instructions, we can string those
sequences of machine instructions together and get alarger sequence that we can execute to evaluate the
whole expression. We can execute it as many times as we want, and all of the expression analysis and
dispatching will already have been done--the only work done each time it's executed is the work that actually
binds variables, looks up values, calls procedures, and so on.

It's not much harder to compile conditional expressionslikei f . When we compileani f , we need to
generate code for the condition expression, the consequent expression, and the alternative expression. (The
"consequent” is the code executed if the condition istrue, and the "alternative" is the code executed if it's
false.) Then we need to string the code for those expressions together appropriately with some conditional
branches:

<code for condition>
(branch-if-false "el se-action-|abel")
<code for consequent >
(branch-unconditionally "end-| abel ")
"el se-action-| abel "
<code for alternative>
"“end- | abel "

The labels here will actually be translated into the addresses of the code they label, and the branches will be
filled in with those addresses. (We have to be careful to use a unique pair of new labelsfor eachi f we
compile, so or some other trick like that, so that we cannesti f expressions and keep their |abels straight.)

(One way of generating machine code from this representation is to translate each of the statementsinto a
short sequence of assembly instructions and each label into an assembly label, stringing them together as
shown. Then the assembly code can be assembled into machine code.)

Notethat for ani f , the control structure of the compiler is actually simpler than the control structure of an
interpreter. The interpreter will evaluate the condition expression, and then decide at run time whether to
evaluate the consequent ("then") expression or the alternative ("else") expression. The compiler will always
compile al three subexpressions, and string them together with conditional branches that will do the deciding
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at run time, based on the runtime value computed by the code for the condition expression.
Here's adlightly more complicated example:

(let ((x 15))

(if x
(let ((y (* 2 x)))
(+ xy))
#t))

trandlates to intermediate code roughly like:

(fetch-literal 15)

(bi nd x)

(1 ookup-vari abl e x)
(branch-if-false "el se22")
(1 ookup-vari abl e x)
(fetch-literal 2)

(1 ookup-vari abl e *)

(cal | - procedure)

(bi nd vy) ; create and enter envt that binds y
(1 ookup-vari abl e y)

(1 ookup-vari abl e x)

(1 ookup-vari abl e +)

(cal | - procedure)

(unbi nd) ; exit envt that binds y
(branch "end22")

"el se22"
(fetch-literal #t)

"end22"

There are actually a couple of minor things wrong with the code we've generated, but thisis pretty closeto a
workable intermediate representation.

What Does a Compiler Generate?

[ Talk about machine code, interpretive virtual machines, etc. |

Basic Structure of the Compiler

The main function of the compiler isconpi | e, which generates intermediate code for an expression, and
which may call itself recursively to generate code for subexpressions.
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Callsto conpi | e hand it an expression and some bookkeeping information we'll discuss later. Compile
returns intermediate code, plus updated versions of some of the bookkeeping information.

To start this process off, top-level forms (like the ones you type into ther ead- conpi | e-run- pri nt
loop, or definitions of top-level procedures) are massaged a little, then intermediate code for them is
generated. Then the intermediate code is converted into real executable code and packaged up as a closure
that can be called.

We will discuss these issues of massaging top-level forms and generating executable closures |ater; for now,
the main thing to understand is the recursive generation of intermediate code for nested expressions.

Here's the main dispatch routine of the compiler, which is analagous to the interpreter'seval :

(define (conpile expr c-t-envt literal-state c-t-cont)
(cond ((synbol ? expr)

(conpi | e-synbol expr c-t-envt literal-state c-t-cont))
((pair? expr)
(conpile-list expr c-t-envt literal-state c-t-cont))
((sel f-eval uati ng? expr)
(conpil e-self-eval expr c-t-envt literal-state c-t-cont))
(#t
(syntax-error "lllegal expression fornt expr))))

For now, ignore most of the argumentsto conpi | e, we'lll explain them later. The main thing to notice is that
it looksalot likeeval .

[ blah blah blah...]
[ Somewhere, it's important to bring out the difference between the mutual recursion of eval and apply in the
interpreter and the way the compiler works. Eval recurs locally, but just generates code for apply... The

control structure of the compiler is actualy simpler than for the interpreter, because the hairy stuff just
happens at run time... ]

Data Representations, Calling Convention, etc.

Before trying to understand the compiler itself in more detail, it is probably best to have a concrete idea of
what the representations of data are, how procedure calls work, and how registers are used. That is, you have
to understand the "abstract machine" that the compiler compilesfor.

An abstract machineis an abstraction of low-level operations and objects. The compiler first compiles code
from the source language into this lower-level representation, and then translates the "abstract machine
language” into actual executable code. (The executable code may be machine code that runs directly on the
hardware, or an interpretive executable code such as bytecodes, which are interpreted by afast interpreter.)
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Y ou can think of an abstract machine as being more like an assembler than an interpreter, but maybe alittle
smarter than most assembl ers.

| will describe one particular set of features to make things concrete; thisis not quite how RScheme works, or
Scheme-48, or any particular other system that | know of, but there's nothing unusual about it except maybe
itssimplicity.

In fleshing out our example compiler, let's suppose our system works this way:

1. We have several important registers used in stereotyped ways, e.g., to hold a pointer to the current
binding environment.

2. We have an evaluation stack that's used to store intermediate values while evaluating nested
expressions.

3. We use a continuation chain to represent the saved state of callers, their callers, and so on, so that they
can be resumed after a procedure returns.

The registers of the abstract machine may represent hardware registers, or just storage locations that are used
in these stereotyped ways. (For example, if compiling to C, the registers might be C global variables, and the
C compiler might or might not let you specify that the variables should be put in hardware registers.)

The Registers

WEelll assume that there are several important registers that can be used by the code our compiler generates:

1. The VALUE register, where an expression leaves a value so that it can be used by an enclosing

expression. In The case of a procedure, thisiswhere the value is | eft for the caller when the procedure

returns. The value register is also used when calling a procedure.

The ENVT register, which holds a pointer to the environment that code is currently executing in.

The CONT register, which holds a pointer to the chain of saved continuations of callers.

The TEMPLATE register, which holds a pointer to a special data structure associated with the

procedure that is currently executing, and

5. The PC (program counter) register, which says which instruction we are currently executing. (If we're
compiling to normal machine code, thisis a special register built into the CPU for this purpose, and we
useit pretty much like any other code would. If we're compiling to an interpretive executable code,
thisis probably variable in the interpreter.)

HWN

The Evaluation Stack (or Eval Stack, for short)

The eval stack is used for holding values that have been computed by evaluating subexpressions, but not yet
used or bound.

In evaluating the expression (+ f oo 22), the three values will be computed. When each value is
computed, it will be left in the VALUE register. We evaluate right to left, and after evaluating each argument,
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we perform a PUSH operation on the eval stack, which copies the value in the value register onto the eval
stack. When we get to the first subexpression (the one that's supposed to return a function to call), we leave
the value in the value register, because that's where we put the closure pointer for a procedure call.

The eval stack is used for two main purposes:

1. storing intermediate values for nested expressions, and
2. passing arguments to procedures.

The eval stack is not used to hold intermediate values or local variables for suspended procedures--it isn't like
the activation stack in a conventional implementation of C or Pascal. The valuesin the eval stack at any given
time are only the intermediate values stored for the currently executing procedure. Intermediate values for
suspended procedures are saved in the continuation chain as necessary.

When we call aprocedure, the only values on the eval stack are the arguments to the procedure. Any other
values used by the caller are moved from the eval stack into a continuation before calling.

The Continuation Chain

The continuation chain is a data structure that fills roughly the role of an activation stack in the
implementation of a conventional programming language. The continuation chain isalinked list of partial
continuations, each of which isarecord that stores the saved state of a procedure.

When a procedure performs a non-tail procedure call, it packages itsimportant state information up into a
partial continuation; this record saves the values of the environment, template, PC, and continuation registers,
and any temporary values on the eval stack.

Once acaller has saved its state in a partial continuation, then the callee can do whatever it wants with the
important registers and the evaluation stack. (Thisis called a caller-saves register usage convention, because
the caller of a procedure is obliged to save any values that it will need when it resumes.)

Remember that continuations are allocated on the garbage collected heap and are immutable--we never
modify a continuation once it's created. When we resume from a saved partial continuation, we copy the
values from the partail continuation into the registers and eval stack, but that doesn't modify the partia
continuation itself--it's still sitting out there on the heap. Thisisimportant for being able to implement call-
with-current-continuation: it's what allows us to resume from the same continuation any number of times.

Environments

The compiler assumes that a binding environment is a chain of frames, each of which is avector of slots
which are the variable bindings. Each frame also has a static link or scope link field, which points to the frame
representing the next lexically enclosing environment.
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Top-level environments are represented specially, as hash tables that map names to bindings. We'll use a hash
table instead of the association lists we used in our ssmple interpreter, because they're faster if you have alot
of bindings. A binding object for atop-level environment is pretty much the same asin the interpreter: alittle
vector with two important slots: a slot for its name and another slot that is the actual value field.

Local environments are represented very differently from toplevel environments: each frameis a vector of
slots, and does not store the names of the bindings. It turns out that the names are only needed at compile
time, so they don't actually have to be stored in the runtime environment. (The compiler also turns out to be
able to do most of the work for looking up atoplevel variable at compile time, so the speed of our hash tables
IS not going to be critical to our runtime speed.)

Closure Representation and Calling

Closuresin our system are represented as objects with two fields. a pointer to the environment captured by
the closure, and a pointer to an object called atemplate, which in turn contains a pointer to the code for the
procedure.

When we evaluate the following expression

(let ((foo 22)
(bar 15))
(lambda (...)

)

wel'll create an environment frame to hold the bindings of foo and bar, and initialize them to 22 and 15,
respectively. This environment frame will have a scope link pointing to the environment we were executing in
when we entered the | et . Inside this environment, we'll create a closure. The closure will hold a pointer to
the new environment, and a pointer to a template object representing the anonymous procedure being closed.
The template will have a pointer to the actual executable code. All of these things will be heap-allocated
objects, and in our implementation we'll give each one header field showing what kind of object itis:

<to envt. frane
for encl osing

scope>

N

|

R + |

| envt. fr.| |

L >S4+ I

| scope | S
S + / S TR +
| closure | / foo | 22 |
===+ / B +
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envt | A bar | 15 |
S + S SR +
proc | to-- -t
I + \ N +
\ | tenplate | Fo---mm - +
Y o> ==========+ | code |
COde | B > -+
Fommmm e eea - + | execut abl e|
| | + code for +
R + | procedure |
| | + +
hommmmme e + | |
| . | LEEEEEPEERE +
S SR +

The template object holds not only the pointer to the actual code, but any other handy values that the compiler
can compute or look up at compile time, and which should be available to the procedure at run time. Well
discuss that more later.

When we want to apply a procedure to some argument values, we put the argument values on the eval stack,
and a pointer to the closure we want to call in the VALUE register. Then we execute a short sequence of
instructions that does the call:

. Extract the environment pointer from the closure and put it in the environment register. (Thisis
basically just an indexed load using the value register as a base.)

. Extract the template pointer from the closure and put it in the template register. (Thisisbasically just
another indexed load using the value register as a base.)

. Extract the code pointer from the template and put it in the program counter register, i.e., jump to that
code. (Thisisbasically just another indexed load using the template register as a base, and ajump to
that address.)

Thus actual machine code for our "apply" operation in our intermediate representation is just a handful of
instructions that do this stuff--a stereotyped little instruction sequence that destructures a closure and puts the
appropriate values in registers before beginning execution of the procedure.

Because this is the way the procedure calling convention works, we know that when we begin executing the
code for a procedure, the environment register will point to the right environment (where the procedure was
defined) and the template register will point to the template for that procedure. Any values stored in the
template by the compiler can be fetched at compile time by doing an indexed load with the template register
asabase.

Consider this procedure:

(define (foo x vy)

http://www.federated.com/~jim/schintro-v14/schintro_142.html (9 of 40)11/3/2006 9:17:07 PM



An Introduction to Scheme and its Implementation - Compiling Scheme

(list "bar x vy))

Here, the literal bar is needed by the procedure--there must be some code in foo that will somehow fetch a
pointer to the symbol bar. That's what the template object is for. When this procedure is compiled, the
compiler accumulates alist of such literals, and when the template object for the procedure is created, all of
those values will be stored into it. When the compiler generates code to fetch the symbol bar , it just looks at
the symbol's position in the literal list (and thusits offset in the template object), and generates code to do an
indexed load to fetch that value from the template at run time.

Continuations

Applying a Procedure Doesn't Save the Caller's State

Remember that when we do a procedure call, we do not necessarily save the state of the caller. For a non-tail
call, the compiler must generate code to save the caller's state plus code for the actual call. For atail call,
there is no need to save the state. Because of this, thereisn't really asingle "procedure call” operation that
saves the caller's state and invokes the callee. There are two separate operations, save- cont i nuat i on
and appl y.

As mentioned above, the code sequence that performs a procedure applicatin assumes that the pointer to the
closureto be caled isin the VALUE register. The procedure will leave its value in that register when it
returns.

Continuation Saving

save- conti nuat i on isthe operation that saves the state of the currently executing procedure in a partial
continuation, and pushes it onto the continuation chain.

When pushing a continuations, it isimportant to save all of the values on the eval stack, except for the
arguments to the procedure being called. Therefore, when generating code for a combination (procedure call)
expression, the code to save the caller's state does not come just before the actual code to call the procedure.
This would remove the arguments to the procedure from the eval stack. Instead, the continuation save comes
just before the code that generates the argument values that will be passed to the procedure:

(save-continuation <l abel >) ; save everything el se before conputing args
<conpute argn>

<conpute argl>

<conpute cal |l ee>

(apply)
<| abel >

that way, the arguments to the call (and nothing else) will be on the eval stack when the procedure is called,
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and when the procedure returns, it will restore the other values from the partial continuation onto the eval
stack.

This separation of the saving and calling code looks especially funny for nested expressions that call
procedures, but it makes perfect sense.

save- cont i nuat i on takes an argument which is the address of the code to execute when the
continuation is resumed. This addressis saved in the partial continuation, and when the continuation is
resumed, it will be branched to (put in the PC register).

An Example

Now that we have a more detailed idea how the registers, eval stack, and continuations work, here's an
example:

(+ (- ab) (/ cd))
compiles to intermediate code something like:

(push-continuation "resune23") ; save cont for call to +
(push-continuation "resune24") ; save cont for call to -

(1 ookup-vari abl e d) ; get value of d into value reg
(push) ; push value of d on eval stack
(1 ookup-vari abl e c) ; get value of c into value reg
(push) ; push value of ¢ on eval stack
(1 ookup-variable /) ; ook up /
(appl y) ; call /, which is in value reg after | ookup
(push)
"resune24"
(push-continuation "resune25") ;save cont for -, incl. value of (/ c d)
(1 ookup-vari abl e b) ; get value of b
(push)
(1 ookup-vari abl e a) ; get value of a
(push)
(1 ookup-variable -) ; get value of -
(apply) ; call -
(push) ; push returned value on top of restored e
st ack
"resunme25”
(1 ookup-vari abl e +) ; ook up +
(appl y) ; tail call +
"resunme23"

Things to notice:
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1. after thefirst appl y, the called routine (or something it directly or indirectly tail calls) will eventualy
do a procedure return, and pop the latest continuation we pushed, restoring anything that was on the
eval stack at that point, and resuming execution at label1. [ OOPS... fix this]

2. after the second apply, the called routine will eventually (directly or indirectly) do a procedure return,
which will pop the second continuation we pushed, restoring the already-computed value of the
subexpression (/ ¢ d) totheeva stack.

3. we generated code for theexpression (+ (- a b) (/ ¢ d)) tobeusedintail position. This code
doesn't save a continuation before the final call to +. If the expression is to be used in non-tail position,
we must generate slightly different code, which will save a continuation that will resume after this
expression.

Generating Unigue Labels

[ where does this go? ]

Likeconpi | e-i f, conpi | e- conbo generates |abels as necessary to be able to name the code where
execution should be resumed after a call--in the code it generates, it puts the label just before the intermediate
code instruction to resume, and the same label in the call to save- cont i nuat i on that should resume
there.

It is easy to generate unique labels for every resumable point in a program. We just keep a counter of labels
we've used so far, and to create a new one we append the digits representing this number to the string
"resune",sothatweget"resunel"”,"resunme2", and soon.

We can write a Scheme procedure, gener at e- | abel , which keeps a counter, and when given a string as
an argument, returns the a new string with the same characters plus the digits representing the number in the
counter. That way, we can use labels that start with" el se" and" end" to label the branch targets of ani f
expression, and labels that start with" r esune” to represent the resumption points for continuation saving.
This makes the intermediate code we generate fairly understandable, while ensuring that |abels are still
unigue, and easy to use as assembler labels when trand ating intermediate code to machine language.

More on Representations of Environments

To get reasonable performance for our system, we'll want to treat the top-level environment differently from
local variable binding environments. We'll use atrick involving lexical scope to precompute most of the work
donein looking up alocal variable binding, and a different trick to make it fast to ook up top-level variables.

Aswe said before, each local variable binding contour (e.g., the bindings introduced by al et , or by binding
the argsto a procedure) is represented at run time as a frame with slots for each variable, plus a scope link
that points to the frame representing the enclosing contour.

A top-level environment islikely to be large, and we will want to be able to access it in special ways. We will
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represent it as a hash table that maps symbols (variable names) to their toplevel bindings. The bindings
themselves will be represented as objects, whose main function is to have one field that holds the current
value of the variable. For ssmplicity, we'll make them self-identifying as well: not only will the names be used
as keysin the hash table, but the binding objects will hold pointers to their names as well as values.

Keep in mind that this representation is just one that's convenient. A toplevel environment could be
represented as any kind of table (e.g., an association list), but we want it to be reasonably fast to access even
if there are thousands of top-level variables. (We'll use a special trick to make normal accesses to top-level
variable bindings very fast at run time, but we want to make them reasonably fast at compile time as well, and
hash tables are good for that.)

Suppose we evaluate the following expressions at the top level, to define and initialize a couple of variables:

(define quux "fubar")

(define (double x) (+ x X))

Thiswill modify the toplevel environment by adding bindings for quux and doubl e, in addition to what's
aready there:

o m m e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e +
| I
| |
\[/ I
RS + |
| topl evel env. | |
R e ——(——r o} e e e e a - - + I
| cons | R > binding | |
B O + ===+ |
| | val ue | R ><cl osure for cons> |
S SRS + |

nane | cons |

S IR — + |

I

| | EREEEEEEEE + |
- - - oo - - - + | binding | |
| guux | E S+-————=——=——=—+ |
Hemmmaaa- S DI + val ue | L >"f ubar" |
| I L + I
nane | quux | |

S R — + |

I

I

S SRS + |

Hommm - - Fo-eme - - - + | binding | A + |
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| double | R >+==========+ | closure
oo oo . + val ue | e S+=-—————=—=——=—=—+
|
| | | R + envt | R +
name | double | R R R +
S R —— + proc | ermeataaa>
dommm e +

Several things to note:

. Therepresentation of the hash table itself may not really be asimple array of name-value pairs, but |
didn't want to clutter up the picture with overflow buckets and whatnot.

. Inprinciple, we don't need to have pointers to separate binding objects. We could just store the values
of bindings right in the table, using the value fields of the name-value pair to hold the actual variable
values. (After all, abinding isreally just alocation with a name, used to hold avalue.) It will turn out
to be convenient for our implementation to have separate objects that hold the values.

. The occurrences of symbol names in the picture would really be pointers to symbol objects, and the
string " f ubar " would really be an object itself aswell. As usual, we selectively abbreviate our
pictorial representation to avoid cluttering things up.

. Werefer to the toplevel binding objects as objects, but they're not Scheme objects--standard Scheme
doesn't give you any way to get a pointer to one of these and play with it from inside the language.
These "objects" are objectsin the sense that they're allocated on the heap and referred to via pointers
by the compiler and by compiled code, but they're not "first class.” (An extended version of the
Scheme language may | et you get at them from inside the language, but that's not standard.)

Compiling Code for Literals

When the compiler compiles code for alitera, like' f oo or " f 00" or 22 in the following expression,
(list "foo "foo" 22)

it notices which literals the expression will need at run time, and ensures that those literals will appear in the
template of the procedure. It keeps alist of literals needed by the procedure it's compiling, and after
compiling the code for the procedure, it uses that list to construct the template that goes with the code.

If f oo isthefirst literal encountered, it might be put into the list first, and assigned the first free slot in the
template (after the code pointer). " f 00" might be assigned the second slot, and so on. In the terminology of
language implementation, the template acts as aliteral frame, as well as holding the pointer to the procedure's
code.

After assigning aliteral a position in the template, the compiler can generate one or two instructions that can
fetch the value out of the template, by using the address of the template, adding the offset of that slot, and
loading from the resulting address. Since the template address is guaranteed to be in the TEMPLATE register,
thisis probably just asingle indexed load instruction. In pseudo-C, it might look like:

http://www.federated.com/~jim/schintro-v14/schintro_142.html (14 of 40)11/3/2006 9:17:07 PM



An Introduction to Scheme and its Implementation - Compiling Scheme

val ue register = *(tenplate register + offset)

where offset is computed by the compiler and therefore is probably an immediate operand to the load
instruction that loads the value into the value register.

Notice that here we're taking advantage of the fact that the compiler runsin our system, and generates code
that's just data in our system. The code will run in the same heap, and the compiler can therefore just compute
values and put them in the template, and they'll stay around until that code is executed. (Life gets alittle more
complicated if you want to generate code that will be loaded into a different system and executed there.)

[ Now we should explain that thel i t er al - st at e argument to conpi | e isthelist of literals seen so far
in compiling a procedure. The return value of conpi | e isintermediate code that includes an updated
literal -state.]

Compiling Code for Top-Level Variable References

Because of lexical scoping, it iseasy for the compiler to tell the difference between areference to atop-level
variable binding and areference to alocal variable. Well talk about that in detail later, but for now just
assume that the compiler knows the difference at the point where it generates code for a variable reference.

When the compiler generates code for atop-level variable, it can usually look up the binding of that variable
in the environment that the code is being generated for--the expression that defines the variable has already
been executed, so the binding already exists.

The compiler can therefore do the actual lookup at compile time, e.g., hashing into the hash-table that
implements a toplevel environment and getting a pointer to the actual binding object that will be referenced at
run time.

To make references to this object fast, the compiler can simply put this pointer in the template for the
procedure being compiled, asthough it were aliteral value.

Be clear on what's going on here: the compiler can't look up the value of the variable, because that's not
known until the moment the variable is referenced at run time. (Before the code is executed, some other piece
of code might run and change the value stored in the binding.) But the identity of the binding itself is known,
and can be stashed in the literal frame.

Actudly, it'sjust slightly more complicated than this. A variable can be used in a procedure definition before
the variable itself is defined. (Thisis called a"forward reference.") To get around this, the compiler "cheats,"
and goes ahead and creates the binding object and its entry in the toplevel environment before the definition
of the variable is actually encountered. At the language level, the variable hasn't been bound or given avalue,
but we go ahead and create the unigque binding object and use it in compiling other expressions. For error
checking, we put a special value in the binding to indicate that the binding isn't "real" yet--we put areference
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to some object we consider "not areal value," so that we can detect uses of avariable that isn't really bound.

(In asystem designed for maximum safety and early error checking, we could ensure that each reference to a
toplevel variable would check for this value, and signal an error if it's found. If we're not quite so concerned
with early error checking, we can wait until somebody attempts to use such avalue, e.g., by adding it to
something, or taking the car of it, and we rely on the normal type checking of the language to tell us
something's wrong at the point that operation occurs.)

Now consider compiling a procedure like

(define (make-foo-Iist)
(list "foo "foo"))

The compiler will accumulate alist of toplevel bindings and literals needed for the procedure, namely a string
"f 00", thesymbol f 00, and toplevel binding of the symbol | i st . These will be put in the template for the
procedure, in the first, second, and third slots after the code pointer. The code generated for this procedure
(assuming right-to-left evaluation) will be something like:

(fetch-literal 1) ; get string "foo" fromtenplate slot 1

(push) ; push it on eval stack

(fetch-literal 2) ; get synbol foo fromtenplate slot 2

(push) ; push it on eval stack

(fetch-literal 3) ; get toplevel binding of list fromtenplate slot 3
(t-1-bdg-get) ; extract value from binding

(appl y) ; (tail-)call Iist

Notice, of course, that we've made our intermediate code representation more concrete now--we use slot
numbers as the arguments to fetch-literal, and we explicitly get the value of the toplevel variable from the
toplevel binding object in the value register. For setting the value in abinding, we'll use adifferent
intermediate code instruction, t - | - bdg-set! (t-1-bi ndi ng- set! expectsthe valueregister to hold a
pointer to atoplevel binding object; it extracts the value of the binding, and leaves that value in the value
register.)

[ Now we can explain more about literal states--we accumulate alist of literal values and top-level variable
bindings that must be accessible when the procedure runs. |

By now it should be very clear how you would translate each of these little operations in our intermediate
representation into a few assembly-language instructions.

[ need picture? ]

Precomputing Local Variable Lookups using Lexical Scope
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We can't really look up local variable bindings at compile time the way we can toplevel bindings--local
variable bindings don't exist yet when we're compiling the expressions that create and use them. (Consider the
fact that every time you enter al et , or call a procedure that binds arguments, a new binding environment
frameis created. Code that executes in such environments will see a different binding environment frame in
the environment register each time it runs.)

What we can do is take advantage of lexical scope to precompute most of the search for avariablein an
environment.

Consider the execution of this procedure:

(lanbda (x vYy)
(let ((a <somne-expression>
(b <sone- expression>))
(list a b xy)))

When we compute the argumentstothecall to | i st , it's obvious that the first and second variables (a and b)
will bein thefirst and second slots of the first binding environment frame, pointed directly to by the ENVT
register. Thisisthe environment created by thel et . The third and fourth variables (x and y) will bein the
next environment frame, pointed to by the scope link of the first.

The compiler can compute the lexical address of each variable binding at the point where areferencetoitiss
compiled--that's the relative location of the variable starting from the environment register. A lexical address
has two parts: the number of environment frames to skip to find the right frame, and the offset of the binding
in that frame. In the above example, the lexical addresses are:

< X o
PP OO

(We use the convention that frame numbers start at zero, but slot numbers appear to start at 1 because the
scopelink isinglot 0.)

The code generated for the reference to a can simply be an indexed load instruction, using the environment
register plus an offset to grab the value in the first variable binding slot. In pseudo-C, that's something like

val ue _register = *(envt _register + offset)

where offset is probably 4 (bytes) to index past the scope link slot. Slightly more abstractly, itslexical address
is[ WHAT?]

The code for the reference to the variable y would involve one level of indirection--first the scope link pointer
must be extracted from the first environment frame, and then that can be used for an indexed load to get the
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value of the second dot of the second frame:

val ue_register = *(envt _register) ; get ptr to 2nd envt frane
val ue_register = *(envt _register + offset)

where offset is probably 8 (bytes) to index past the scope link and the binding of x.

Given this scheme, accessing alocal variable takes time proportional to the number of environment frames
intervening between between the expression being compiled and the environment where the referenced
variableis defined. That's usually fairly fast, for two reasons:

1. The depth of lexical nesting is usually small--it corresponds to the nesting of binding expressionsin
the program, and is usually between one and three, an only rarely greater than five or so.

2. Most references that are executed at run time are to variables in the current scope, or maybe alevel or
two back from that. (Consider references to variables in inner loops, which constitute the most
frequently-executed code in most programs.)

For these reasons, most references to local variables will take between one and five instructions. To afirst
approximation, the time to reference local variables can be regarded as a small constant. (A slightly snazzier
compiler can reduce this by using more registers, and leaving many valuesin registersinstead of pushing and
popping them from the eval stack, but that's a more advanced technique than we want to address here.)

Lexical Addressing and Compile-Time Environments

Computing lexical addressesis very easy for the compiler. All it needs to do is maintain a data structure
called a compile-time environment, which records the structure of the runtime environment.

Each time the compiler compiles an expression that creates new bindings, it extends the compile-time
environment to reflect the change to the environment structure, and when compiling expressions that will
execute in that environment, it hands the new compile-time environment to the recursive call toconpi | e
which will compile that expression.

For example, when compiling al et , the compiler dispatchesto conpi | e- | et , the analogue of eval -
| et , which does four things:

1. Compilescode for theinitial value expressions. This code executes in the environment outside the
| et,sotheconpi | e- | et usesthe environment iswas given when making recursive callsto
conpi | e to generate theinitial value code.

2. Generates code to create a binding environment and intialize it with those values.

3. Extends the compile-time environment with a new frame, reflecting the fact that the body of thel et
will execute in anew scope including the new bindings.

4. Callsconpi | e- sequence to compile the body of thel et , passing it the new compile-time
environment.
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Just as the overall recursive structure of the compiler closely resembles the recursive structure of the
interpreter, the role of the compile-time environment is very much like the role of the environment in the
interpreter.

When the interpreter (compiler) evaluates (compiles) subexpressions that execute in the same environment as
their parent expressions, it hands the recursive invocation the same environment it was given. When the
interpreter (compiler) evaluates (compiles) an expression in anew environment, it hands the recursive call the
new (compile-time) environment.

The structure of the compile time environment at any point in the compilation process mirrors the structure of
the runtime environment where the code will execute. Unlike the interpreter's representation of the
environment, however, the compile-time environment doesn't contain actual bindings--it can't, and it doesn't
need to.

In effect, we split the interpreter's environment into two parts with parallel structure. Where the interpreter's
environements are chains of frames holding name-binding pairs, the compiler splits those into two chains of
frames: the runtime environment, whose frames hold the actual bindings, and the compile-time environment,
whose frames hold the corresponding names.

Consider the expression

(let ((x 1)
(y 2))
(let ((foo 3)
(bar 4))
(list foo bar x vy)))

Atthepointwhere(list a b x y) iscompiled or executed, the environment for an interpreted system
appears as shown on the left, below, while the environments for a compiled system appear as shown on the
right:

| NTERPRETED COWPI LED COVPI LED
(conpile tine) (run tine)
/\ /\ /\
| | |
R + | I + | IS + |
| envt. franme | | | c.t.e.fr.| | | envt. fr.| |
+===—=—=—==—==——=—====—4 [ 4==========4 |/ 4===—=======+ |/
| +- - - - - | T | +- oo - -
Fommmm o Fomm e o + Fommmmm oo + Fommmmm oo +
| X | 1| | X | | 1|
e - e - + oo oo + oo +
| y | 2 | | y | | 2 |
Fomm e e o Fommmm o + Fommmmm oo + Fommmmm oo +
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I I I

\ \ \

\ \ \

S + | S + S +
| envt. franme | | | c.t.e.fr.| | | envt. fr.| |
+===——=—====——=—====—4 |/ 4==========4 |/ 4===—=====—==4 |/
| SR | +-- - - | S I S
Fommmme e Fommmmm e + Fommmm oo + I +
| foo | 3| | foo | | 3|
Fomm e e + oo + oo +
| bar | 4 | | bar | | 4 |
Fommmm o Fomm e o + Fommmmm oo + Fommmmm oo +

Note that there is a many-to-one relationship between the compile-time environments and the run-time
environments: al et or | anbda expression is compiled once, and the corresponding environment frameis
created and passed to the recursive calls that compile subexpressions. The code may be executed many times,
however, and each time a run-time environment frame will be created so that the code for subexpressions can
be executed in that environment.

A Detailed Example

Taking it step by step, let's ook at the compilation of the expression

(let ((x 1234)
(y 3456))
(let ((foo z))
(+ (- foo x)
(+ bar y))))

goes as follows. (We'll assume that this expression occurs at the top level.)

Since we're compiling atop-level expression, we compile it in a compile-time environment that corresponds
to the top-level environment. Toplevel environments are treated specially, because they're not created
dynamically the way local binding environments. There's a one-to-one relationship bewteen top-level compile-
time environments and the corresponding run-time environments. We'll represent the top-level compile-time
environment as a special kind of environment frame, which really just holds a pointer to the top-level runtime
environment so that top-level variables can be looked up.

So we start in atop-level environment, which we'll depict as[ t op- | evel ] ; we hand thistoconpi | e

along with the expression to compile. conpi | e isthe main dispatch that analyzes the expression; in this

case, it analyzesit and dispatches (viaconpi | e-1i st andconpi | e- speci al -fornm) toconpi |l e-
| et , the specialized procedure for compiling | et expressions.
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conpi | e-1 et compilestheinitia value expressionsfor x andy using conpi | e- mul ti , whichinturn
callsconpi | e recursively; they are compiled in the (top-level) environment, which is just passed along
because no new environments have been created yet. In this case it doesn't matter, though, because they're just
literals. (The values 1234 and 3456 get added to the literal list at thispoint.) Then conpi | e- | et

generates the codeto bind x andy.

So far, the code generated looks like:

(fetch-literal #1) ; fetch 1234

(push) ; push it on eval stack

(fetch-literal #2) ; fetch 3456

(push) ; push it on eval stack

(bind 2) ; bind 2 vars (x and y), w values formeval stack

and theliteralslist holds 1234 and 3456.

conpi | e-1 et thencalsconpi | e- sequence to compile the body of thel et , but first it creates a new
compile-time environment, to represent the fact that the body sequence will execute in the new runtime
environment after x and y have been bound. The structure of this environment is

[ x y ] ->[toplevel]

(Thisisour new, terse way of drawing the box-and-arrow data structure for compile time environments. | got
tired of drawing ascii art.)

conpi | e- sequence calsconpi | e recursively to evaluate a sequence of expressions; in this case, there's
only one expression in the body.

Therecursive call to conpi | e dispatches (againviaconpi | e-1i st andconpi | e- speci al - f or mto
conpi | e-1 et , tocompiletheinner| et .

conpi | e-1 et compilestheinitial value expressionsusingconpi | e-mul ti.conpil e-nul ti cals
conpi | e recursively to compile the one expression in the list, the symbol z. (Again, the same environment
IS just passed along, because we haven't created a new environment.)

The recursive call to compile now dispatchesto conpi | e- synbol , which looks up the binding information
for the symbol z in the compile-time environment. There's no binding in the first frame (containing x and y),
so the search goes to the second frame, which is the top-level environment, and the top-level binding is

returned. This causes adispatch to conpi | e-t opl evel - var - r ef , which adds the toplevel binding of z
to the literals list and generates code to get it from the template and extract its value at run time.

Thenconpi | e- | et generates code to bind the fetched value as the local variable foo.

The code generated so far is:

http://www.federated.com/~jim/schintro-v14/schintro_142.html (21 of 40)11/3/2006 9:17:07 PM



An Introduction to Scheme and its Implementation - Compiling Scheme

(fetch-literal 1) ; fetch 1234

(push)

(fetch-literal 2) ; fetch 3456

(push)

(bind 2) ; bind 2 values (x and vy)
(fetch-literal 3) ; get toplevel binding (of z)
(t-1-bdg-get) ; get value from (z's) binding
(push)

(bind 1) ; bind one variable (foo)

and the literals list contains 1234, 3456, and the binding of z. Now conpi | e- | et createsanew compile-
time environment to represent the environment created by theinner | et ; its structureis

[ foo] ->[ xy ] ->[toplevel]
and it passes thisto conpi | e- sequence to compile the body of thelet. conpi | e- sequence calls
conpi | e recursively once, handing it the new environment, to compile the one body expression, (+ ( -
foo x) (+ bar y)).
Therecursive call to conpi | e dispatches (through conpi | e- 11 st) toconpi | e- conbo, which
recursively callsconpi | e threetimes, to generate code for the subexpressions ( + bar y),(- foo x),
and +. Since no new bindings are being created, the recursive calls are given the same environment.
Therecursivecal tocal (+ bar y) similarly dispatchesto conpi | e- conbo and compilesy, bar , and
+. Each of these calls dispatchesto conpi | e- synbol and the variables are looked up in the compile-time
environment. The lookup for y returns alexical address of 1,2, so the intermediate code generated is

(local -var-ref 1 2)

The lookup for bar doesn't find any local bindings and returns the toplevel binding so the binding is added to
theliteral list and the intermediate code is

(literal -1 ookup 4)
(t-1-bdg-get)

Similarly, the lookup for + doesn't find any local bindings and returns the toplevel binding, so the binding is
added to the literal list and the intermediate code is

(literal -1 ookup 4)
(t-1-bdg-get)

now the call to conpi | e- conbo that compiles ( + bar y) can string these three fragments together to
get
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(save-continuation "resune26") ; save state for call to +

(local -var-ref 1 2) ; ook up vy
(push)
(literal -1 ookup 4) ; get toplevel binding (of bar)
(t-1-bdg-get) ; get value frombdg (of bar)
(push)
(literal -1 ookup 5) ; get toplevel binding (of +)
(t-1-bdg-get) ; get value from binding (of +)
(apply) ; call +

"resune26”

and return that. Notice that for the argument subexpressions, conpi | e- conbo inserts ( push) esto save
the values on the eval stack. For the first (function position) subexpression, it leaves the value in the value
register, which iswhere it's expected (by appl y).

Therecursive cal to conpi | e- conbo tocompile(- foo Xx) goespretty similarly to the one for ( +
bar vy),themain difference being that both f 0o and x are found to be local variables and compiled
appropriately, with the result being the sequence

(save-continuation "resune27") ; save state for call to -

(local -var-ref 1 2) ; ook up x
(push)
(local -var-ref 0 1) ; ook up foo
(push)
(literal -1 ookup 4) ; get toplevel binding (of -)
(t-1-bdg-get) , get value from binding (of -)
(apply) ; call -
"resune27"

The recursive call to compile the symbol + goes striaghtforwardly to conpi | e- synbol , which looks up +
and finds that it's atoplevel variable; the binding is already on the literals list, so the code generated is:

(literal -1 ookup 5) ; get toplevel binding (of +)
(t-1-bdg-get) ; get value from binding (of +)

and thisisreturned to the outer invocation of conpi | e conbo. It can then string together the code for the
outer + expression, putting asave- cont i nuat i on at the front and adding an appl y at theend. This
code isreturned to the inner invocation of conpi | e- | et , which appendsiit to its code and returns it to the
outer invocation of conpi | e-| et , which returns the entire code sequence

(fetch-literal 1) ;, fetch 1234
(push)
(fetch-literal 2) ; fetch 3456
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(push)
(bind 2) ; bind 2 values (x and vy)
(fetch-literal 3) ; get toplevel binding (of z)
(t-1-bdg-get) ; get value from (z's) binding
(push)
(bind 1) ; bind one variable (foo)
(save-continuation "resune26") ; save state for call to +
(local -var-ref 1 2) ; look up y
(push)
(literal -1 ookup 4) ; get toplevel binding (of bar)
(t-1-bdg-get) ; get value frombdg (of bar)
(push)
(literal -1 ookup 5) ; get toplevel binding (of +)
(t-1-bdg-get) ; get value from binding (of +)
(apply) ; call +

"resune26”
(save-continuation "resune27") ; save state for call to -
(local -var-ref 1 2) ; ook up x
(push)
(local -var-ref 0 1) ; ook up foo
(push)
(literal -1 ookup 4) ; get toplevel binding (of -)
(t-1-bdg-get) ; get value frombinding (of -)
(apply) ; call -

"resunme27"
(literal -1 ookup 5) ; get toplevel binding (of +)
(t-1-bdg-get) ; get value frombinding (of +)
(appl y) ; (tail-)call +

Preserving Tail-Recursiveness using Compile-Time Continuations

One very important thing we glossed over just now when describing the workings of the compiler was when
exactly to save continuations, and when not to. It isimportant to save continuations before calling procedures,
if the callee must return and resume the execution of the caller. Thisis not necessary for tail cals, and in fact
Scheme requires that continuations not be saved for tail calls--if we save continuations before tail-calls that
happen to implement loops, we may end up with an unbounded accumulation of unnecessary continuations.

Another important question is when returns should be executed. If a procedure endsin atail-call, itis
assumed that the callee will do areturn. But eventually something actually has to do areturn, and pass control
back to its caller (or the caller of its caller... whatever). This situation occurs when the tail expression of a
procedure is not another procedure call, e.g., returning the value of avariable or aliteral.

When Should We Save Continuations?
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The general ruleisthat if aprocedure call isthe last thing a procedure does, no continuation should be saved--
we can just jJump into the callee, and since our state was not saved, the callee's return will resume our caller.
To get thisright, we just have to keep track of which expressions are being compiled in "tail position."

In the procedure

(I anbda (x)
(if (foo x)
(bar (quux X))
(baz)))

thei f expressionisintail position, because the value of theif will be returned as the value of the procedure.
The condition expression (f 00 Xx) isnot in tail position, because after it is executed, control must return to
this procedure so that either the consequent expression ( bar (quux x)) or the aternative expression
(baz) can be executed.

Note that both the consequent and the aternative expressions are in tail-position; whichever is executed, that
will be the last thing this procedure does, and the value computed will be the result of this procedure.

On the other hand, if we modify the procedure to always return #f , none of these expressionsisin tail
position.

(I anbda (x)
(1f (foo x)
(bar (quux x))
(baz))
#f)

That's because now the expression #f isin tail position, not thei f expression; whatever the if does, control
must come back to this procedure so that the value #f can be returned.

Notice that the values to compute the arguments of a combination (procedure call) are never in tail position--

after computing them, control must always come back so that the procedure can be applied. The combination
itself may be atail call, of course, in which case once the arguments are computed, the apply may happen and
control may never return.

To get thiskind of right, all that is necessary is that each recursive call to compile should know whether the
code being compiled is going to be used in tail position or not; for this we use a compile-time continuation.
(Fear not--it's simpler than compile time environments. It's really just aflag that gets passed along to
recursive callsto conpi | e, sometimes getting turned off along the way.) Keep in mind that tails of tails are
in tail positions, but non-tail subexpressions are not. So in the case of nested i f 'swherethe outer i f isin tal
position, only the consequent and the alternative of the consequent and the alternative arein tail position, e.g.,
in
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(1 anbda ()
(if (if (a)
(b)

(c))

(it (d)

(e)

(f))

(irf (g)

(h)

(i)))

thetail callsare(e),(f),(h),and (i) .All of thecalsinthefirstinneri f must return, because the value
returned must be used by the outer i f . The calls to the condition expressions in the other two inner ifs must
also return, because the values must be used to tell which of their aternative and consequent to use.

For each basic kind of expression, we can tell which subexpressions should be considered tailsif the overall
expression is:

. For asequence, only the last subexpression can be atail--the rest are non-tails.

. Forl et , theinitia value expressions for bindings are never tails, and the body is just a sequence,
whose last subexpression can be atail.

. For anif, the consequent and alternative can be tails, but the condition never can.

. For aprocedure, the body is a sequence that's alwaysin tail position.

When we compile something in tail position, we passconpi | e aflag saying so. The flag will be examined,
and passed along to subexpressions if appropriate for compiling the kind of subexpression in question.

For example, if conpi | e- sequence ishanded aflag saying it should compile for tail position, it will pass
the tail flag aong when calling conpi | e recursively on itslast subexpression. For its other subexpressions,
however, it will always pass the non-tail flag, because they must always return to execute the next expression
in the sequence.

Similarly, conpi | e-i f will passwhatever flag it is given along to when calling conpi | e for its
consequent and alternative subexpressions, but never when compiling its condition expression.

conpi | e- conbo will always pass along a non-tail flag when calling compile on its subexpressions, but will
examine the flag it's given to tell whether it should save a continuation before evaluating all of them.

conpi | e- | anbda will always compile body expressions in non-tail position, except for the last one, which
isaways compiled in tail position. (For simplicitly, conpi | e- | anbda just hands the whole body to
conpi | e- sequence, with atail flag.)

conpi | e-1 et , aways compilesitsinitial value expressions in non-tail position, and its body expressions
like a sequence. (For simplicity, it just hands the whole body to conpi | e- sequence, with whatever flag
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it'sgiven.)

Compiling Returns

As mentioned above, when an expression other than a procedure call isatail of aprocedure, it must be
accompanied by areturn. That is, every tail of a procedure must be either an appl y (which will call
something which will return, perhaps indirectly because of tail calling) or ar et ur n.

The compiler can handle this by putting ensuring that wherever we generate intermediate code that is aleaf of
the expression graph (e.g., inconpi | e-vari abl e-ref andconpi | e-11it eral ), we check the
compile-time continuation flag to see if the expression occursin tail position. If so, rather than ssmply leaving
the value in the value register, we also execute ar et ur n sequence--a series of instructions that will grab the
values out of the first partial continuation on the chain, and restore them into the registers and evaluation
stack to resume the suspended procedure. We have a special intermediate code instruction that stands for this
sequence, called return.

Consider the following procedure:

(lanbda (a b c)
(if (if a
(b)
c)
d

(e)))

When compiling its body, we dispatch through conpi | e- sequence and recursively call conpi | e to
compilethei f intail position. It recursively callsconpi | e to compile the nested if in non-tail position,
which inturn recursively callsconpi | e to compilea, ( b) and ¢ in non-tail position.

Notethat a isaleaf expression, and sinceit'sin non-tail position, it can just leave its value in the value
register. The subsequent code (the test for false and conditional branch that's part of the code for theinneri )
will expect that value there, so that's fine.

The expression ( b) isnotin tail position, because it inherits non-tail position fromtheinneri f,soa
continuation must be saved before the call to b. When b returns, its value will be in the value register and
execution will resume at the branch that is part of thei f .

Similarly, the expression ¢ isin non-tail position (which it also inherited from the inner if); it can just leave
its value in the value register where subsequent code can find it. (In this case, it's the value returned by the
inner i f, and tested by the outer i f 'stest for false and conditional branch.)

The expression d isdifferent. It'sin tail position, and it'saleaf (not acall). It can't just leave it's value in the
register, because it's the end of the procedure; it must therefore have ar et ur n sequence tagged onto it.
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The expression ( €) isjust atail call, which can just call e without saving a continuation. Whatever e cals
can do whatever it wants, and probably something will eventually leave something in the value register and
pop the caller's continuation.

The code generated for the above procedureis:

(bind 3) ; bind args (a, b, and c)
(local -var-ref 0 1) ; get value of a
(push)
(branch-on-fal se "el se32") ; conpare and maybe br to inner el se
(save-continuation "resune33")
(local -var-ref 0 2) ; get value of b
(appl y) ; call b

"resune33”
(branch end)

"el se32"
(local -var-ref 0 3) ; get value of c

"end32"
(branch-on-fal se el sel) ; conpare and may br to outer el se
(fetch-literal 1) ; get toplevel binding of d
(t-1-var-get) ; get value of d from bindi ng
(return) ; and return it
(branch endl)

"el se31"
(fetch-literal 2) ; get toplevel binding of e
(t-1-var-get) ; get value of e from binding
(appl y) ; and tail-call it

"end31"

(Notice that when we generated the code for the outer else, we generated a branch that can never be taken.
conpi | e-i f generates alabel for the end of the code, so that after executing the consequent, control will
resume at whatever code followsthei f . In the case of thisi f , the consequent will always execute areturn
before encountering the branch. A slightly smarter compiler would probably recognize this situation, and
eliminate the branch.)

Compiling Top-Level Expressions

We said earlier that the compiler mainly uses recursion to generate intermediate code for nested expressions.
To make this useful, though, at some point the intermediate code for a top-level expression must be converted
into actual executable code and packaged up so that it can be called.

Suppose we interact with our system via aread-eval-print loop where eval is really implemented by
compiling the expression and executing the resulting compiled code.
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To make it easy to implement this, it's nice if there aren't very many kinds of top-level expressions that the
compiler hasto generate code for and be able to actually call. In particular, it's convenient if different kinds of
expression can be transformed into the same kind of expression. The easy way to do thisisto make all
different kinds of executable expressions into expressions that generate procedures, and then call those
procedures.

If wetype

(let ((x 2))
(+ x X))

to ther.e.p. loop, ther.e.p. loop can simply wrap this up in a procedure expression compile that and package it
up as something executable, and call it. In effect the read-eval-print loop will convert it to

(1 anbda ()
(let ((x 2))
(+ X X))

before compiling it, and call the resulting closure to execute it.
Likewise, expressionslike

(set! foo quux)

and

(if bar baz)

can be wrapped up as

(lanmbda () (set! foo quux))

and

(lanmbda () (if bar baz))

Now when we start compiling, we only have to deal with one kind of thing--a whole procedure, and when we
get the resulting code back and package it up to run it, we'll always be dealing with the code for awhole
procedure. That makesit easy to create an actual closureto call.

The main routine we use to start off compilationisconpi | e- pr ocedur e, which takes an expression, a
compile-time environment, a compile-time continuation, and aliteral list as arguments. It returns intermediate
code and an updated literal list for the procedure.
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We take the intermediate code and hand it to the procedurei nt er nedi at e- code- >execut abl e-
code which generates the executable code object. (This may be by trandating the sequence of intermediate
code instructions into the equivalent sequences of assembly language instructions, and running that through
an assembler. Before doing the assembly, it may run the intermediate code through one or more optimization
phases.

We take the resulting executable code and the literals list, and hand them to make- t enpl at e to create the
template object.

Now we can hand the appropriate runtime environment and the template to make- cl osur e and get back a
callable closure for the procedure.

Compiling | anbda Expressions Inside Procedures

When we compile al anbda expression, we must generate code that will create a closure at run time. A very
naive way to do thiswould be to generate code that would call the compiler at runtime to compile the

| anmbda expression into a procedure, plus alittle code to create a closure of that object in the runtime
environment.

Luckily, thisis not necessary, and the compiler can do all of the real compilation at compile time--since the
code for thel ambda expression will be the same every time it's executed, and since lexical scope guarantees
that it will always execute in an environment with the same structure, only one version of the code is needed,
and it can be shared among all closures of that procedure. The template can be shared as well.

The compiler therefore generates code and atemplate for the | anbda procedure; at run time, the actual code
for thel anbda expression just makes a closure on the heap and initializes its environment pointer and
template pointer. This code will get the environment pointer from the environment register (and put it in the
environment field of the new closure); the template pointer will be the ponter to the template for thel anbda
procedure.

To alow thislittle code sequence to quickly grab the template for the procedure being closed, the compiler
stores a pointer to that template in the template of the procedure which executesthe | anbda expression. For
example, if al anbda expression is encountered while compiling procedure f 0o, the compiler will compile
thel anbda procedure and store its template in the template of f 0o0. (While compiling f oo, it simply
records the pointer to the new | anbda procedure's template as another literal. Thenit will endupinf oo's
template like other literals.)

So the code generated for

(1 anbda (x)
(...))
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looks like

(envt-reg-get) ; primtive to copy envt. reg. onto eval stack

(push)
(fetch-literal 15) ; grab tenplate pointer for |anbda proc

(push)
(make-cl osure) ; code that will create closure wthose val ues

Theredl trick isin compiling the | anbda procedure and stuffing its template into the template of the
procedure that containsthe | ambda expression. The compiler just calls itself to generate the code and
template then saves the template in the literal list and generates code like the above to reference the right
literal.

Compiling Top-level Definitions

We said above that we can deal with top-level expressions by turning them all into | anbda expressions,
which will have the effect of evaluating those expressions when called.

Thisisalittle bit tricky when dealing with top-level definitions, because top-level definitions can't be nested
inside lambda expressions in the obvious way--they'd just become local definitions.

We therefore have to treat them specially. We use a special procedure, envi r onnent - def i ne! , which
operates on top-level environments and allows usto create top-level bindings. Thisis not a standard Scheme
procedure--it's a specia procedure that the compiler can generate callsto, but normal portable Scheme code
cannot use directly.

The read-eval-print-loop will therefore recognize top-level definitions and treat them specially. When it
encounters one, the initial-value expression will be wrapped up asal anbda and compiled, and the results
turned into code, atemplate, and a closure. (The closure is given the runtime toplevel environment pointer.)

The closure will be called to get aresult for the initial value expression, and envi r onnent - def i ne! will
be used to create and initialize the toplevel variable.

(This might appear at first to cause a scoping problem: if the binding isn't created until after the initial value
expression is compiled, the compiler won't see the binding. But recall that if we compile an expression that
uses an undefined variable, we assume it's atoplevel variable and create a binding object for it, and mark that
object invalid. If the binding has already been created by aforward reference in thisway, envi r onnent -
def i ne! will just overwrite the marker with areal value.)

Of coursg, if the top-level definition uses procedure definition syntax, it is necessary to massage that into a
| armbda expression before doing the above massaging and compiling.
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Interfacing to the Runtime System

In order to support garbage collection (asisrequired for Scheme), there must be some agreement between the
compiler and the garbage collector, so that the collector can find the pointers that the running program might
find, and ensure that all objects the program could reach from them are preserved.

A common way of doing this (used in RScheme and Scheme-48) isto have afixed set of registers (plus
maybe an eval stack) that hold all of the root values that the collector needs to know about, and guarantee that
whenever garbage collection occurs, all pointers will be identifiable as such. Any given register must be
known to never contain pointers, to always contain a pointer, or to contain self-identifying (tagged) values
that are decodable to seeif they're pointers.

For example, in the straightforward compiled system we've described in detail, the VALUE register and the
EVAL stack only contain normal Scheme values: tagged values that can be checked to seeif they're pointers.
On the other hand, the template and procedure, pointers would probably always contain raw pointers, since
they can only point at one kind of thing, and the tags would slow some things down.

There might also be some other registers, which always contain nonpointers.

Garbage Collection

Safe Points

Many systems (like RScheme and Scheme-48) ensure that garbage collection can only happen when a
program is at awell-defined "safe point”, not at an arbitrary point in the code. At a safe point, all pointer
values are known to be recognizable. In between safe points, it's okay for the code to use values that aren't
properly decipherable by the GC. (For example, aregister that normally contains only tagged values might
briefly hold araw pointer.)

Thisis easy in asingle-threaded system; the GC just keeps some space in reserve, so that it never runs out of
memory between safe points. If an allocation requires dipping into thisreserve, aflag is set so that a GC will
occur at the next safe point.

The usual trick isto ensure that each procedure call and backward branch is a safe point. This ensures that the
aprogram (or thread) reaches safe points periodicaly,

It's alittle bit trickier in a multithreaded system--you have to make sure that you suspend threads at safe
points, so that if another thread forces a GC while another thread is suspended.

GC at Any Time

Some systems do not use safe points, and in effect make every point in the code a safe point for collection.
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They ensure that no matter where a GC occurs (or where athread was suspended before the GC occurred),
there will be enough information lying around so that the collector can find all of the pointersit needs to find.

Some compilers do this by restricting the way registers are used and code is generated. (For example, the
Orbit compiler only uses certain registers to hold pointers, and only uses certain others to hold nonpointers. In
addition, all pointersin registers must point directly to the beginning of an object; array indexing cannot be
converted into arbitrary ponter arithmetic by the optimizing compiler.)

Other compilers allow more use of odd representations and more flexible use of registers, so that values can
be figured out at run time. For example, aregister might be assumed to hold nonpointers, except at pointsin
the code flagged by the compiler, based on its having register alocated a variable there.

Interrupts

Advanced Compiler and Runtime System Techniques

Inlining Small Procedures

The system we've described so far generates fairly slow code, and amajor culprit is the frequency of
continuation saving and procedure calls. Even very small, frequently-executed procedures like eq?, car, cdr,
and + require a handful if instructions to call and another handful to return, plus another handful to save a
continuation if it'sanon-tail call. Thisis much slower that the cost of similar operations in conventional
languages like C or Pascal; in those languages, these simple little "operations' don't have the semantics of
callsto first-class procedures.

Sometimesiit is desirable to trade away some of the purity and elegance of alanguage like Scheme, and trade
reduced flexibility for better performance. One way of doing thisis by declaring frequently-used small
procedures not to be redefinable, and allowing the compiler to compile those operations inline rather than as
procedure calls. In some systems this only works for built-in procedures that the compiler understands, but in
others the compiler is smart enough to inline user-defined procedures if so directed.

In some Scheme systems, you can declare procedures to be inlinable, or use acompiler flag that says you
promise not to redefine the common little procedures that are most valuable to inline. This means that you
can't change the definition of something like + on the fly, but you seldom want to. A common tradeoff isto
avoid inlining any but the most frequently-called procedures during program devel opment, and once the
program is finished, recompile with lots of inlining. This gives you the flexibility to modify procedure
definitions on the fly during debugging, while getting maximum speed once it's clear which procedures won't
ever be redefined in normal operation.

Some high-tech compilers use advanced techniques to do lots of inlining when it's safe, without reducing
flexibility much or requiring the user to supply alot of declarations.

The Self compiler aggressively inlines code, and automatically recompiles the code that isinvalidated by
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changes to procedure definitions. (This compiler isfor the language Self, not Scheme, but similar techniques
could be applied to Scheme.)

Some compilers currently in development have a special mode for compiling finished programs which will
not be used with aread-eval-print loop. Such a compiler takes advantage of the fact that if it can look at the
whole program (rather than having parts typed in by the user interactively), it can tell which variables could
ever be modified at run time. (Aslong as there are no callsto eval at run time, the compiler can tell that all of
the code for the program exists at compile-time; new closures may be created at run time, but not totally new
procedures.) After globally determining that there is no code in the program that could change the definition
of aprocedure, it isfreeto inline the code for that procedure into its callers.

Type Declarations and Type Analysis

Another key performance problem with naive implementations of Scheme (or other dynamically typed
languages) is that basic operations are generally slow relative to their execution in conventional statically-
typed languages. For example, the Scheme procedure + must check the types of its arguments and (depending
on those types) execute any of several possible code sequences to add two numbers. Usually, the checking
overhead aloneis several times greater than the cost of the actual addition.

One way of reducing this cost is by extending Scheme to allow the user to declare the types of some
variables. The compiler may be able to use thisinformation to compile fast versions of operations for values
of known types. (Thisis especially true if common operations are inlined--the compiler can choose to inline
the appropriate version rather than the more general code.)

Another way of reducing type checking cost is for the system to automatically infer the types of some
expressions. For example, consider the expression (+ a 22) . Since 22 isalitera, itstypeis known at
compile time. If the compiler can inline the + procedure, it may at least omit the type check of that argument.

A combination of declarations and inferencing can work well. For example, if the user has declared variable a
to be of type <i nt eger >, then the compiler cantell that (+ a 22) isan expression whose arguments are
integers (so no run time type test are necessary there) and whose result is an integer, which may eliminate the
need for type checks by the expression that uses the value.

More aggressive schemes are possible for reducing the frequency of dynamic type checks. For example, the
Self compiler aggressively inlines and transforms code so that multiple dynamic type checks can be collapsed
into asingle one.

Using More Hardware Registers

[ blah blah]

For example, it's very likely a good ideato use more registers, and either not have an eval stack or not use it
as often. Our simple abstract machine requires arguments to be passed on the eval stack, which means storing

http://www.federated.com/~jim/schintro-v14/schintro_142.html (34 of 40)11/3/2006 9:17:07 PM



An Introduction to Scheme and its Implementation - Compiling Scheme

into memory at least once for each argument, and loading back from memory when arguments are used. Most
modern machines have several hardware registers available for argument passing, and more for holding
intermediate values of computations.

If we have afew more registers that can be used for argument passing, we could just leave the argument
values in those known registers, and procedures could expect them there. In many cases, argument values
could be computed in away that the result is left in the appropriate argument-passing register, without having
to copy it there from somwhere else. Similarly, in many cases, procedures could leave their argumentsin the
argument passing registers and use them there, without actually copying them into a binding environment on
the heap. (Even if only afew registers can be devoted to this, it will account for the large majority of
arguments passed, since most procedure calls are to procedures that take between one and three arguments.)

Similarly, in many cases atemporary value generated by evaluating a subexpression could be left in a
register, and then used by another expression, without pushing and popping the eval stack.

This can be a big performance win--it is much faster to operate on arguments and temporary values that are
aready in registers, rather than copying them to and from memory all of the time.

Using more registers can make the compiler and runtime system more complicated. If variables arein
registers when continuations are saved, their values must be saved in the continuations and restored at
procedure returns. This requires the compiler to keep track of which registers are in use at which points, and
generate appropriate code. It also complicates the interface between the compiled code and the garbage
collector; the garbage collector must be ableto find all of the pointer values that are stored in registers, so that
it can find all of the reachable objects. The compiler must therefore record sufficient information that all
pointer values can be found at garbage collection time. (Alternatively, the compiler may record a safe
approximation of the information, and require the collector to make conservative guesses about what's what.)

Closure Analysis

One of the performance problems with a naive implementation of Scheme isthat in the general case, variable
bindings must be allocated on the garbage-collected heap, and procedure calls must be via pointers to
closures. Thisis often much slower than the usual implementation of conventional programming languages,
which don't have to support | anbda. Allocating closures and environments on the heap is mainly slow
because creating and accessing variable bindings is lower than if the variables were allocated on a stack or in
registers.

A smart Scheme compiler can get rid of most of this overhead by analyzing programs and noticing that many
closures are used in stereotyped ways, and calls to them can be implemented more cheaply than the naive
implementation. Similarly, analysis of expressions may reveal that most binding environments can't possibly
be captured by closures, and therefore don't need to be allocated on the garbage-collected heap. The bindings
can be saved in continuations along with temporary values, or a more conventional stack may be used, or
(best of all), the bindings can be register-allocated.

A simple example of alanguage-level closure that doesn't need the fully general naive implementation isa
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closure created by al anbda expression that appears in the function position of a combination:

((1 anbda (x)
(+ x X))
2))

(Recall that constructs like this are often generated by macros that implement binding constructslikel et ---
thisoneis equivalent to

(let ((x 2)
(+ x x))

In this case, we can tell from the fact that the | anbda expression appears in the function position that the
closure can't "escape”" and have anything weird done with it. That is, no pointer to the closure is assigned into
avariable binding, or passed to a procedure call, or inserted into a data structure. It's clear that the only thing
that can happen to this closureisthat it will be called, and then the pointer to it will be "dropped,” i.e., not
passed anywhere else. The closure will therefore become garbage immediately after it's executed.

A smart compiler will therefore recognize that all the closure really doesis bind its variable and execute it's
body; it will leave out the code to create the closure and just compile in the equivalent code--in this case, it
will generate the obvious codefor al et expression.

(Some compilers alwaystransform| et 'sand| et r ec'sinto | anbda combinations, and rely on their
optimizers to recognize the unnecessary | anbda's and remove them. This may seem backwards, but it's nice
because the same optimizations work whether the |lambda combinations were the result of transforming a

| et , or macroexpanding a user-defined macro, or written directly by the user, or whatever. The more
sophisticated the optimizer, the more ssmply the user can write macros and procedures, and expect the
compiler to sort it all out and generate efficient code.)

Another ssmple case for closure and environment analyis is binding environments that don't have any closures
created in their scopes. Suppose that our compiler inlinescallsto car , eq?, and cdr , and consider the
expression

(let ((x (car a))
(if (eq? (car x) target)
(car (cdr x))
#f))

in this case, the body of thel et can be compiled into entirely inline code, and it is clear that thereis no
possible path of execution that can create a closure that captures x. x can therefore be allocated in aregister
for its whole lifetime, making this code much faster.

[ separate section? Figure out structure here... |
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Actually, some of these analyses are trickier than they appear, due to the presence of side effectsand cal | /
cc.

[ Haven't talked about cal | / cc yet! |

Consider the expression, where we don't assume any inlining

(let ((x (car a)))
(if (eq? (car x) target)
(car (cdr x))
(set! x (fo0))))

At first it appears that since there are no | anbda's in the expression, x can be allocated in aregister, and
saved in continuations across calls. (E.g., when calling car , we could just save the value of x in the
continuation and have it restored when car returns, right?) Unfortunately, if we don't have any guarantees
that car won't be redefined in weird ways, then it's possible that the call will be to procedure that will
(directly or indirectly) call cal | / cc, and capture a continuation that could be used to return into this
procedure any number of times. In that case, we can't be sure that we won't return into this code and modify
x. If we did, then each time we returned into this environment, we should see the latest value of x. Thiswill
happen if the value of x isin anormal binding environment on the heap, but not if it'sin aregister that gets
saved in a continuation. Recall that when we restore a continuation, we just copy the values out into the
registers. If we restore the same continuation multiple times, we'll just keep copying the same value of x back
out.

To get thisright, we have to ensure that if there are any assignments to x, then all referencesto x go through
a pointer to a heap-allocated binding. Then when we save a continuation, we save this pointer to the binding
of x, not the state (value) of the binding of x. Every time set or read the value of x, we go through this
indirection to the same binding, and see the latest value.

Because of this, high-tech scheme compilers keep track of which variables are ever set ! anywherein their
scopes, and make sure to allocate those variables bindings on the heap.

In Scheme, it is acommon idiom to code iteration as recursion; macros for different looping constructs often
compileinto | et r ec'swith tail-calling | anbda expressions.

While thisis avery powerful framework for expression various patterns of iteration, a naive implementation
isslow. In most cases, loops created in thisway are actually just used as loops, and it is desirable to compile
away the overhead of closure creation and calling. For example, consider anamed | et like

(let loop ((x 0))
<body>
(if (< x 10)
(loop (+ x 1))))
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that has been transformed to

(let ((loop (lanmbda x)
<body>
(if (< x 10)
(loop (+ x 1))))))
(1 oop 0)

We can look at this expression, and if no reference to the variable | oop occursin the <body> expression, we
can tell that we can compileit asaloop.

The analysis hereisjust slightly more complicated than the one that alows us to optimize closures that are
produced by | anmbda expressions in function position of a combination.

When compiling the | et , we can keep track of each | et variable and see whether it is ever used for as
anything but the name of a procedure to tail-call--if the value of loop is never assigned, and never read except
to cal it, then we know that the "calls"' to loop don't really need to be full-blown closure calls at al. We can
inline the code for the body of the loop and compile these calls as jumps directly to that code.

FOOD FOR THOUGHT--does it matter whether the calls are tail-calls or not, if we just treat them as
procedure calls to a known address, and go ahead and save a continuation with the right 1abel ?

Register Allocating Loop Variables for Loops

Notice that register closure analysisis particularly important for loop control variables and variables for little
| et 'sinside loops. Because Scheme requires that a loop variable be bound again (to fresh memory) at each
iteration of aloop, actually allocating them on the heap is expensive. If it can be determined that the variable
isdead at the end of the loop, however, then the variable can be re-bound at each iteration by smply re-using
the same register. (We're binding the name to a particular piece of memory--the register--over and over again,
and it just happens that these conceptual rebindings incur no runtime cost.)

With good closure analysis, loop conversion, and register allocation, a Scheme compiler can compile
"normal” loops into code that's just as efficient as any compiler's.

Conventional Optimizations

Besides the optimizations described above, conventional compiler optimizations are applicable to optimizing
languages like Scheme.

Just asin a FORTRAN or C compiler, data flow analysis and control flow analysis can let the compiler
simplify intermediate code and produce better machine code.

Stack Caches
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Inlining and closure analyisis can greatly reduce the amount of heap alocation in a Scheme implementation.
Allocating all binding environments and continuations on the heap may inflate allocation rates by an order of
magnitude over the rate of allocation of normal data structures like pairs and vectors. With a simple compiler
and garbage collector, this can greatly inflate garbage collection costs. Despite the high rate at which
continuations and environments are alocated, there are typically relatively few of them live at any given
time--the vast majority of them are used very, very briefly and then become garbage.

Inlining procedure calls may greatly reduce the allocation of continuations, and closure analysis may allow
most bindings to be allocated in registers instead of on the heap.

Still, it may be desirable to keep most of the continuations and environments from making it to the normal
garbage-collected heap.

A st ack cache isanareaof memory (or pool of discontiguous chunks of memory) that's used to for initial
alocation of continuations and/or binding environments, in the expectation that most of them will die quickly.
A stack cache caches part of the continuation chain; it's called a stack cache because it behaves mostly like a
stack. Stack caches may be used for continuatons, with environments still being allocated on the heap, or a
more complex design may be used to keep most environments from making it to the heap as well.

For the most part, a stack cacheistreated like a stack, in that continuations are pushed and popped as though
it were a stack. When a continuation is captured by cal | / cc, however, the continuation chain isfirst moved
to the heap so that it can be preserved in the usual way. Thisis generally a good tradeoff, becausecal | / cc
is not typically executed very often, and the stack cache can behave like a stack most of the time. The large
magjority of continuations will be reclaimed very quickly, by popping the stack cache, while a small minority
will be moved out to the normal heap.

Caching binding environmentsis alittle trickier, but the basic principle is the same; most environments are
created in the stack cache, and only moved to the garbage-collected heap when necessary, i.e., when a closure
is created on the heap. At that moment, the environment is moved to the heap, one frame at atime, until a
frameisreached that is already on the heap. (The code that does this must ensure that an environment is never
copied to the heap twice, destroying the sharing of outer environements by inner environments created in their
scope.)

It is not clear how desirable a stack cache for environmentsis, given acompiler that does a reasonably good
job of closure analysis. Using a stack cache for environments makes closure creation slower, and if most of
the short-lived environments have been eliminated by closure analysis and register allocation, it may not be
worth it.

There is also some controversy about whether stack caches are worthwhile in general, or whether a
generational garbage collector will take care of the large volume of short-lived data efficiently.

One interesting point isthat a stack cachereally isakind of generational garbage collection scheme, which
exploits the typically short lifetimes of particular kinds of data. (When environments and continuations are
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moved to the normal heap, that can be viewed as moving objects from one generation to the next. This specia
generation is cheaper than anormal generational scheme, however, because of the stereotyped structures of
continuation chains and binding environments.)

A stack cache, because it's small, can reduce the amount of memory that is used very frequently, compared to
agenerational GC without a stack cache. (A stack cache may only be afew kilobytes, but the youngest
generation of agenerational GC may be hundreds of kilobytes, or megabytes.) For some cache architectures,
frequent reuse of this large an area causes significant cache miss penalties. (For some other architectures, the
misses still occur but the cost is surprisingly low. | believe that stack caches are nonetheless a good idea,
because they never hurt much and may sometimes help alot.)

Scheme-48 has a stack cache that caches both continuations and binding environments. RScheme has a stack
cache for continuations only, and relies on the compiler to compile away most heap allocation of binding
environments. (This may not currently be as effective as it should be--the compiler needs more testing and
improvement before it will generate really good code.)

Go to thefirst, previous, next, last section, table of contents.
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garbage collection

higher-order procedure
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immediate values
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improper list

indefinite extent
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interrupting Scheme
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. recovering from mistakes
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. restlists

. RETURN and ENTER keys

. return values
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. Side effects, cons doesn't have any
. snarfing

. Specia forms

. string (datatype)

. Structural equivaence

. Symbol (datatype)

. Syntactic sugar

. System hangs

. tail call

. tall recursion

. truth

. type predicates

. vauecdls

. values
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. Variablesvs. bindings
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