Linux-course -LOG Files — 8 January 2007 Michel Bisson

. 55-LOG Files (See english Linux Magazine September 2000 Page 80)
System logging Daemons:
-klogd - Kernel logging daemon (clientto syslogd)
- syslogd - System wide (all programs) logging Daemon
These files are started by the Script /etc/init.d/syslog
Location of standard sytem and kernel log : /var/log/messages
Config file for both daemons: /etc/syslog.conf

« The syslodg Daemon.
This daemon process runs in the background, receives log information from the
kernel and from other applications or Daemons and, according to the configuration
in /etc/syslog.conf, it distributes the log information either to files or send it to
a console or even can send it to a syslog server via network.
- Each log information contains only a one line message.
- The same log information can be sent to many files or other destinations.
- The log information is received with the following content:

- Facility: auth, authpriv, cron, daemon, kern, lpr,mail, news,
localN,user
- Priority Level: debug, info, notice,warning,err,crit,alert, emerg

- Tag: (Title) and maybe the PID of process.
- Log Text : (actual message).

- - The saved or sent information(one line) is having the following content:
Date Time Hostname Tag [Process ID] Message

- Format of /etc/syslog.conf:

facility.level; [facility.levell;...... destination

IMPORTANT: Remember to use TABs and NOT spaces in your
syslog.conf file. Otherwise it won't work.

Facilities: (For multiple facilities separate by ', eg. auth, cron. *)

* All Facilities

auth General authentications

authpriv Login authentication

cron cron subsystem

daemon System server processes

kern Linux Kernel

ftp FTP server

lpr Spooling subsystem

mail Mail subsystem

news News subsystem

uucp Unix-To-Unix copy service/Program
user Users system messages

syslog Syslogd daemon

localhN Locally defined syslog facilities n~=0 to 7
mark Regular mark for reference purposes

55 _Log_Files.odt -1

Linux-course -LOG Files — 8 January 2007 Michel Bisson

Levels: (Priority) From the least to the most important level

none Exclude messages of this facility
eg. mail.none = no mail messages
* All messages
most important emerg High emergency
A alert Very critical
| crit Critical
| err Errors
] warning
] notice
| info Information
least important debug Lots of messages. For debugging purposes
Destinations:
- files eg. /var/log/cron.msgs
- devices eg. /dev/ttyé6 (to virtual console 6)
- usernames eg. root (to root) or * (to all logged-in users)
- computer eg. @moon (to 'moon' host....syslog server)
- named pipes eg. |/dev/xconsole (to the virtual x console)

The xconsole can be then started with the command:
kdesu 'xconsole —-file /dev/xconsole'
—' before the filename means: buffered before writing.
eg: *.*;mail.none;auth.none -/var/log/messages

Messages exclusive logging: (examples)

mail.warn log the mail warning or more serious messages
mail.!warn log ONLY the messages less serious than warn
mail.=warn log ONLY the mail warning messages
mail.!=warn log all mail messages except the warning ones
Here are few examples of the above selection possibilities:
debug
info)|
notice 4—mail.'warn

‘warning H‘*H@il.:warn ————mail.!=warn
err 4 mail.err
crit
alert D
emerg

General Examples:
kern.=warn; *.err;authpriv.none -/var/log/warnings
- send Kernel warnings only
- error messages from all facilities
- BUT none from the authrpiv
- to the file /var/log/warnings

('~ before the filename means buffered before writing to disk)

*.emerg;user.none *
- send to whosoever is now logged-in about real emergencies
- BUT not the messages concerning users

55 _Log_Files.odt -2

Linux-course -LOG Files — 8 January 2007 Michel Bisson

Syslog server (hosts messages logging center)
*.info @mainlogger.gdf.local

Send all info level messages and more serious to the host 'mainlogger' using:
Prot: uDP port: 514

The host mainlogger.gdf.local will log these messages according to its
/etc/syslog.conf configuration file as if coming from is local processes.
Messages will include the IP of sending host though.

IMPORTANT: The receiver host must start the syslogd daemon with the —r option
(/usr/sbin/syslogd -r) inthe /sbin/init.d/syslog script to enable the
receiving logging messages on port 514 from other hosts.

Special for SUSE distribution 8.0 and up:
in /etc/sysconfig/syslog the parameter SYSLOGD_PARAMS should include
the " —r " (SYSLOGD_PARAMS="-r ")

oruse YAST (/etc/sysconfig/ editor)and Search for SYSLOGD

Using syslog-ng as remote log collector:
Sending all logs to a log collector:
destination loghost { tcp("192.168.0.2" port(5140)); };
Receiving all logs from local and log sender:
All logs from remote hosts will go into a separate file named for each host in
/var/log. $HOST is a variable that gets translated into the sending hostname.
source r_src { tcp(ip("192.168.0.2") port(5140)); };
destination r_all { file("/var/log/$HOST"); };
log { source(r src); destination(r all); };

Real-time watching the content of a log file.
The following command allows to watch real-time the content of a log file.
eg. tail -f /var/log/messages
or less +F /var/log/messages
Other GUIs like xtail and xlogmaster can also dothe same more elegantly.

Generating log messages from command line or scripts:
logger —-p facility.level -1 -t "MessageTitle" "Message"
("*' not allowed as facility or level here) (-i option for adding the process PID)

Command to show the very start of kernel mesages at boot-up:
dmesg | less All kernel messages (including booting messages)
Cat /proc/kmsg’ nn nn nn nn nn nn

Stop generation of the ————- MARK————-— Lines in the log files
(good for laptops: to stop the frequent harddisk access in idle)
start the syslogd with the option -m 0

The logrotate program

This program allows to save and compress the log files regularly based on their age
or their size. These parameters are defined in its configuration file:
/etc/logrotate.conf The parameters in this file will decide which files will be
backed-up and according to which criteria.

(The content of this configuration file is not needed for the LPI 102 exam.)

55 _Log_Files.odt - 3

Linux-course -LOG Files — 8 January 2007 Michel Bisson

Example of rotation and compression instructions:

compress

/var/log/messages {
rotate 5 Make 5 weekly rotations of the file before deleting old ones.
weekly Rotate weekly.

postrotate Run the following script after rotating

/sbin/killall -HUP syslogd
endscript

55 _Log_Files.odt - 4

Linux-course -LOG Files — 8 January 2007 Michel Bisson

Other possible log files(SuSE only):
/var/log/boot .msg System hardware initialization
log at bootup.
It records lilo and kernel boot messages till end of
default runlevel initialization.
Ctrl-Alt-F10 Shows the kernel modules messages.

Exampes of default configured log files:
/var/log/messages All messages except mail and

auth
/var/log/faillog System failures log file
/var/log/warn System warnings log file

Log files viewer under X-Windows (kde):
xterm -e "tail -f /var/log/messages"

xtail Very good
xlogmaster Very good
kwatch Good. Mixed log information with log file source titles

Logrotate Programm (in German)

Mit dem Logrotate Programm kann man sich darum kimmern, dass alte Logfiles nach
einer einstellbaren Zeit - oder wenn sie eine bestimmte Grof3e erreicht haben -
weiterverarbeitet werden.

Dabei sind verschiedene Parameter in der logrotate.conf daflr zustandig, was mit
den Dateien passieren soll. Auf den ersten Blick fallen dabei die Optionen compress und
nocompress auf, die dafur zustandig sind, ob die rotierte Logdatei komprimiert wird oder
nicht. Was aber, wenn man die Dateien gar nicht aufheben will? - Eine delete oder
remove Option sucht man vergeblich.

Naturlich kann man die Dateien aber mit Logrotate auch einfach wegwerfen. Das
passiert dann, wenn man bei der ‘rotate’ Option als Parameter eine 0 angibt:

rotate O

55 _Log_Files.odt -5

Linux-course -LOG Files — 8 January 2007 Michel Bisson

syslog-ng (new generation)

This syslog daemon allows for more control on the logged messages.

Its is included from Version 8.0 and on of SUuSE distribution

Its configuration file has a very different but clear rule format. Its name is:
/etc/syslog-ng/syslog-ng.conf

Its Manual is in HTML format is located in :
/usr/share/doc/packages/syslog-ng/html/

Good extract from web site:

If you want to compile in TCP wrappers support, you can add the —--enable-tcp-
wrapper flag to the configure script. After syslog-ng is finished compiling, become root
and run make install. This will install the syslog-ng binary and manpages. To configure
the daemon, create the /usr/local/etc/syslog-ng directory and then create a syslog-ng.conf
to put in it. To start off with, you can use one of the sample configuration files in the doc
directory of the syslog-ng distribution.

There are five types of configuration file entries for syslog-ng, each of which begins with a specific
keyword. The options entry allows you to tweak the behavior of the daemon, such as how often
the daemon will sync the logs to the disk, whether the daemon will create directories automatically,
and hostname expansion behavior. source entries tell syslog-ng where to collect log entries from. A
source can include Unix sockets, TCP or UDP sockets, files, or pipes. destination entries allow
you to specify possible places for syslog-ng to send logs to. You can specify files, pipes, Unix
sockets, TCP or UDP sockets, TTYs, or programs. Sources and destinations are then combined with
filters (using the £i1ter keyword), which let you select syslog facilities and log levels. Finally,
these are all used together in a 1og entry to define precisely where the information is logged. Thus
you can arbitrarily combine any source, select what syslog facilities and levels you want from it, and
then route it to any destination. This is what makes syslog-ng an incredibly powerful and flexible
tool.

To set up syslog-ng on the remote end so that it can replace the syslogd on the system and send
traffic to a remote syslog-ng, you'll first need to translate your syslog.confto equivalent source,
destination, and 1og entries.

Here's the syslog.conf for a FreeBSD system:

*.err;kern.debug;auth.notice;mail.crit /dev/console
*.notice;kern.debug;lpr.info;mail.crit;news.err /var/log/messages
security.* /var/log/security
auth.info;authpriv.info /var/log/auth.log
mail.info /var/log/maillog
lpr.info /var/log/lpd-errs
cron.* /var/log/cron
*.emerg *

First you'll need to configure a source. Under FreeBSD, /dev/log is a link to /var/run/log. The
following source entry tells syslog-ng to read entries from this file:

source src { unix-dgram("/var/run/log"); internal(); };

If you were using Linux, you would specify unix-stream and /dev/log like this:

source src { unix-stream("/dev/log"); internal() };

55 _Log_Files.odt - 6

Linux-course -LOG Files — 8 January 2007 Michel Bisson

The internal () entry is for messages generated by syslog-ng itself. Notice that you can include
multiple sources in a source entry. Next, include destination entries for each of the actual log files:

destination console { file("/dev/console"); };
destination messages { file("/var/log/messages"); };
destination security { file("/var/log/security"); };
destination authlog { file("/var/log/auth.log"); };
destination maillog { file("/var/log/maillog"); };
destination lpd-errs { file("/var/log/lpd-errs"); };
destination cron { file("/var/log/cron"); };
destination slip { file("/var/log/slip.log"); };
destination ppp { file("/var/log/ppp.log"); };
destination allusers { usertty("*"); 1},

In addition to these destinations, you'll also want to specify one for remote logging to another
syslog-ng process. This can be done with a line similar to this:

destination loghost { tcp("192.168.0.2" port(5140)); };

The port number can be any available TCP port.

Defining the filters is straightforward. You can simply create one for each syslog facility and log
level, or you can create them according to those used in your syslog.conf. If you do the latter, you
will only have to specify one filter in each log statement, but it will still take some work to create
your filters.

Here are example filters for the syslog facilities:

filter £ auth { facility(auth); };

filter f authpriv { facility(authpriv); };
filter f console { facility(console); };
filter £ cron { facility(cron); };

filter f daemon { facility(daemon); };
filter £ ftp { facility(ftp); };

filter £ kern { facility(kern); };

filter £ lpr { facility(lpr); };

filter f mail { facility(mail); };

filter f news { facility(news); };
filter f security { facility(security); };
filter f user { facility(user); };

filter £ uucp { facility(uucp); };

and examples for the log levels:

filter £ emerg { level (emerg); };

filter £ alert { level(alert..emerg); };
filter £ crit { level(crit..emerg); };
filter £ err { level(err..emerg); };

filter f warning { level (warning..emerg); };
filter £ notice { level (notice..emerqg); };
filter £ info { level(info..emerqg); };
filter £ debug { level (debug..emerg); };

Now you can combine the source with the proper filter and destination within the log entries:

*.err;kern.debug;auth.notice;mail.crit /dev/console
log { source(src); filter(f err); destination(console); };

log { source(src); filter(f kern); filter(f debug);

destination (console); };

log { source(src); filter(f auth); filter(f notice);

destination (console); };

55 _Log_Files.odt -7

Linux-course -LOG Files — 8 January 2007 Michel Bisson

log { source(src); filter(f mail); filter(f crit);
destination (console); };

*.notice;kern.debug;lpr.info;mail.crit;news.err
/var/log/messages

log { source(src); filter(f notice); destination (messages); };
log { source(src); filter(f kern); filter(f debug);
destination (messages); };

log { source(src); filter(f lpr); filter(f info);
destination (messages); };

log { source(src); filter(f mail); filter(f crit);
destination (messages); 1};
log { source(src); filter(f news); filter(f err);
destination (messages); };

security.*
/var/log/security
log { source(src); filter(f security); destination(security); };

auth.info;authpriv.info /var/log/auth.log
log { source(src); filter(f auth); filter(f info);

destination (authlog); };

log { source(src); filter(f authpriv); filter(f info);

destination (authlog); 1};

mail.info

/var/log/maillog

log { source(src); filter(f mail); filter(f info);
destination(maillog); };

lpr.info /var/log/lpd-
errs

log { source(src); filter(f lpr); filter(f info); destination (lpd-
errs); };

cron.* /var/log/cron
log { source(src); filter(f cron); destination(cron); };

*.emerg *

log { source(src); filter(f emerg); destination(allusers); };

You can set up the machine that will be receiving the logs in much the same way as if you were
replacing the currently used syslogd.

To configure syslog-ng to receive messages from a remote host, you must specify a source entry:
source r_src { tcp(ip("192.168.0.2") port(5140)); };

Alternatively, you can dump all the logs from the remote machines into the same destinations that
you use for your local log entries. This is not really recommended, because it can be a nightmare to
manage, but can be done by including multiple source drivers in the source entry that you use for
your local logs:

source src {
unix-dgram("/var/run/log") ;
tep (1p("192.168.0.2") port (5140));
internal();

}i

55 _Log_Files.odt - 8

Linux-course -LOG Files — 8 January 2007 Michel Bisson

Now logs gathered from remote hosts will appear in any of the destinations that were combined with
this source.

If you would like all logs from remote hosts to go into a separate file named for each host in /var/log,
you could use a destination like this:
destination r all { file("/var/log/SHOST"); };

syslog-ng will expand the SHOST macro to the hostname of the system sending it logs and create a
file named after it in /var/log. An appropriate log entry to use with this would be:

log { source(r src); destination(r all); };

However, an even better method is to recreate all of the remote syslog-ng log files on your central
log server. For instance, a destination for a remote machine's messages file would look like this:

destination fbsd messages { file("/var/log/SHOST/messages"); };

Notice here that the SHOST macro is used in place of a directory name. If you are using a destination
entry like this, be sure to create the directory beforehand, or use the create dirs () option:

options { create dirs(yes); };

syslog-ng's macros are a very powerful feature. For instance, if you wanted to separate logs by
hostname and day, you could use a destination like this:

destination fbsd messages {
file("/var/log/SHOST/SYEAR.SMONTH.SDAY/messages") ;
}i

You can combine the remote source with the appropriate destinations for the logs coming in from the
network just as you did when configuring syslog-ng for local logging—just specify the remote source
with the proper destination and filters.

Another neat thing you can do with syslog-ng is collect logs from a number of remote hosts and then
send all of those to yet another sys/log-ng daemon. You can do this by combining a remote source
and a remote destination with a log entry:

log { source(r src); destination(loghost); };

Since syslog-ng is now using TCP ports, you can use any encrypting tunnel you like to secure the
traffic between your syslog-ng daemons. You can use SSH port forwarding or stunnel to create an
encrypted channel between each of your servers. By limiting connections on the listening port to
include only localhost (using firewall rules, as in or), you can eliminate the possibility of bogus log
entries or denial-of-service attacks.

Server logs are among the most critical information that a system administrator needs to do her job.
Using new tools and strong encryption, you can keep your valuable log data safe from prying eyes.

55 _Log_Files.odt -9

