
251

6
Trojan Horses

You might have read the last chapter on backdoors and thought to your-
self, “I’d never run a program named Netcat or VNC on my machine, so
I’m safe!” Unfortunately, it isn’t that easy. Attackers with any modest
level of skill will disguise the nasty backdoors we covered in the last chap-
ter or hide them inside of other programs. That’s the whole idea of a Tro-
jan horse, which we define as follows:

A Trojan horse is a program that appears to have some useful or benign purpose,
but really masks some hidden malicious functionality.

As you might expect, Trojan horses are called Trojans for short, and
the verb referring to the act of planting a Trojan horse is to Trojanize or
even simply to Trojan. If you recall your ancient Greek history, you’ll
remember that the original Trojan horse allowed an army to sneak right
through a highly fortified gate. Amazingly, the attacking army hid
inside a giant wooden horse offered as a gift to the unsuspecting victims.
It worked like a charm. In a similar fashion, today’s Trojan horses try to
sneak past computer security fortifications, such as firewalls, by employ-
ing like-minded trickery. By looking like normal, happy software, Tro-
jan horse programs are used for the following goals:

• Duping a user or system administrator into installing the Trojan
horse in the first place. In this case, the Trojan horse and the
unsuspecting user become the entry vehicle for the malicious
software on the system.

• Blending in with the “normal” programs running on a machine.
The Trojan horse camouflages itself to appear to belong on the

PH066-Skoudis.book Page 251 Monday, October 13, 2003 11:36 AM

Lisa Iarkowski
Copyrighted material. Pearson Education, Inc. All rights reserved.

252 Chapter 6 ◗ TROJAN HORSES

system so users and administrators blithely continue their activ-
ity, unaware of the malicious code’s presence.

Many people often incorrectly refer to any program that gives
remote control of or a remote command shell on a victim machine as a
Trojan horse. This notion is mistaken. I’ve seen people label the VNC
and Netcat tools we covered in the last chapter as Trojan horses. How-
ever, although these tools can be used as backdoors, by themselves they
are not Trojan horses. If a program merely gives remote access, it is just
a backdoor, as we discussed in Chapter 5. On the other hand, if the
attacker works to disguise these backdoor capabilities as some other
benign program, then we are dealing with a true Trojan horse.

Attackers have devised a myriad of methods for hiding malicious
capabilities inside their wares on your computer. These techniques
include employing simple, yet highly effective naming games, using
executable wrappers, attacking software distribution sites, manipulating
source code, co-opting software installed on your system, and even dis-
guising items using polymorphic coding techniques. As we discuss each
of these elements throughout this chapter, remember the attackers’
main goal: to disguise their malicious code so that users of the system
and other programs running on the machine do not realize what the
attacker is up to.

In this chapter, we’ll discuss both widely used and cutting-edge
techniques. Keep in mind, however, that attackers are a creative and
devious lot. They use the concepts we’ll cover, but tweak them in innu-
merable ways to achieve maximum subterfuge.

What’s in a Name?

‘Tis but thy name that is my enemy.
—William Shakespeare, Romeo and Juliet, 1595

At the very simplest level of Trojan horse techniques, an attacker might
merely alter the name of malicious code on a system so that it appears
to belong on that machine. By giving a backdoor program the same
name of some other program you’d normally expect to be on your sys-
tem, an attacker might be able to operate undetected. After all, only the
lamest of attackers would run malicious code using the well-known
name of that code, such as Netcat or VNC. Don’t get me wrong, how-
ever. If a really dim-witted bad guy attacks my system and uses tech-

PH066-Skoudis.book Page 252 Monday, October 13, 2003 11:36 AM

What’s in a Name? 253

niques that I can easily spot, I’m all for it. That makes my job easier. I’m
perfectly happy to catch any attacker when he or she makes a mistake
of that magnitude, and, thankfully, I have found several instances of
attackers calling a backdoor Netcat or even VNC. However, we can’t
expect all of our adversaries to make such trivial errors, so let’s investi-
gate their naming games in more detail.

Playing with Windows Suffixes
One very simple Trojan horse naming technique used by attackers
against Windows systems is to trick victims by creating a file name with
a bunch of spaces in it to obscure the file’s type. As you no doubt know,
the three-letter suffix (also known as an “extension”) of a file name in
Windows is supposed to indicate the file’s type and which application
should be used to view that file. For example, executables have the
.EXE suffix, whereas text files end in .TXT. The information security
business has done a good job over the last decade of informing our
users not to run executable attachments included in e-mail or those that
appear on their hard drive. “Unknown EXE files cause trouble,” we lec-
ture our users, with furled eyebrows and a deep voice to emphasize the
importance of this lesson. So, given users’ fright and awe in the pres-
ence of EXE files, how could a malicious executable program be dis-
guised as something benign, such as a simple text file? An attacker
could confuse a victim by naming a file with a bunch of spaces before its
real suffix, like this:

just_text.txt .exe

That .EXE at the end of the name after all of the spaces makes the
program executable, but the unwary user might not notice the .EXE
suffix. If users look at such a file with the Windows Explorer file viewer,
it’ll appear that the file might just be text, as shown in Figure 6.1. For
comparison to a benign file, the first line in Figure 6.1 shows a normal
text file, with a normal text file icon and a file type of Text Document.
Most users would have no qualms about double-clicking such a nice-
looking, happy file. The second line, however, is far more evil. It shows
an executable file with a name of “just_text.txt .exe”. Note that
the display shows the name of the file as just_text.txt followed by “…”.
Those innocent-looking dots mean that the file name is actually longer
than what is displayed.

PH066-Skoudis.book Page 253 Monday, October 13, 2003 11:36 AM

254 Chapter 6 ◗ TROJAN HORSES

Of course the Explorer file viewer shows the second file’s type as
Application and displays an executable’s icon next to the name instead
of a text file icon. Still, the vast majority of users would never notice
these somewhat subtle distinctions. If this is a huge concern for the
attackers, they could even configure the system so that an executable
program type’s icon actually appears as a .TXT icon. This can be
accomplished by altering the icon using one of a variety of tools, such
as the free E-Icons program available at www.deepgls.com/eicons/. Alter-
natively, an attacker could choose a file type that is both executable
and has an icon that looks quite similar to a text file, such as the Shell
Scrap Object file type, with an .SHS extension. These .SHS files are
used to bundle together commonly copied and pasted text and pic-
tures, as well as commands, for various Windows programs. The third
line of Figure 6.1 shows a typical .SHS file. The fourth line of the figure
shows a combination of these techniques: a .SHS file is given a name
of “just_text.txt .shs”, which includes several spaces to make it
appear as a .TXT file. You can easily see how a user could get duped
into executing this type of file.

Numerous file suffixes could be used to deliver and contain mali-
cious code on a target machine. Table 6.1 shows the different file types
developers use to hold binary, scripts, and other types of executable
code. Many, but certainly not all, of these script types are tied to Win-
dows machines, as the Windows operating system is freakishly obsessed
with a file’s type being stored in the suffix. However, the phenomenon
is not limited to Windows. On UNIX systems, some program types are
also indicated with a suffix, including .sh, .pl, and .rpm files. It’s impor-
tant to note, however, that UNIX doesn’t put any special meaning into
a file’s suffix, unlike Windows. In Windows, the operating system uses
the suffix to determine which application to use when opening a docu-
ment. On UNIX machines, this suffix is just a handy reference for
users; UNIX won’t run a specific application based merely on the file

Figure 6.1
Hiding the EXE extension after several spaces.

A normal text file, named “just_text.txt”

A text file, named “just_text.txt .exe”

A file named “just_text.shs” (By default, the
shs suffix is not displayed by the system.)
A file named “just_text.txt .shs”

PH066-Skoudis.book Page 254 Monday, October 13, 2003 11:36 AM

What’s in a Name? 255

suffix. Still, any one of these file types in Table 6.1 could be abused to
spread malicious code. For a detailed description of any type of file suf-
fix, you can refer to the very handy Filext Web site, at http://filext.com.

Table 6.1
Useful File Extensions to Filter at an Internet Gateway

File
Extension Purpose of This Type of File

.API Acrobat Plug-in, for extending the capabilities of Adobe’s Acrobat file viewing
tool.

.BAT Batch processing file, used to execute a series of contained commands in
sequential order.

.BPL Borland package libraries, containing chunks of shared code used in programs
developed within the Delphi software language and environment.

.CHM Compiled HTML Help file, which could include a link that would download
and execute malicious code on a victim machine.

.COM Command file, containing scripts or even executables for DOS and Windows
systems.

.CPL Windows Control Panel Extension, allowing new capabilities in your
previously dull and monotonous control panels.

.DLL Dynamic Link Library, executable code that is shared by other programs on
the system.

.DPL Delphi Package Library, used to add bundled together shared libraries of code
developed in the Delphi programming environment.

.DRV Device driver, used to extend the hardware support of a Windows machine, but
could be abused to modify the kernel and completely control the victim machine.

.EXE Windows binary executable program.

.HTA HyperText application, a file that can run applications from an HTML document.

.JS JavaScript, a scripting language that can be embedded in HTML or run
through any JavaScript interpreter, including the Windows Scripting Host built
into most Windows systems.

.OCX Object Linking and Embedding (OLE) control, used to orchestrate the
interaction of several programs on a Windows machine.

PH066-Skoudis.book Page 255 Monday, October 13, 2003 11:36 AM

256 Chapter 6 ◗ TROJAN HORSES

There sure are many suffixes that could contain executable code of
some form. Your users are not going to be able to memorize every sin-
gle item in this massive list. Still, they should be wary of the biggies that
are most often abused by bad guys, such as .EXE, .COM, .BAT, .SCR,
.PIF, and .VBS.

.PIF Program Information File, used to tell Windows how to run a non-Windows
application.

.pl Perl script, a powerful, high-level scripting language supported on most UNIX
systems and some Windows machines.

.SCR Screen saver program, which includes binary executable code.

.SHS Shell Scrap Object file, a format used to hold frequently repeated commands,
text, and pictures for Windows programs.

.SYS System configuration file, normally used to establish system settings, but could
be used by an attacker to reconfigure a victim machine.

.VBE VBScript Encoded Script file, used to carry Visual Basic Scripts.

.VBS Visual Basic Script, a scripting language built into many Windows machines.

.VXD Virtual device driver, a device driver with direct access into a Windows kernel.

.WMA Windows Media Audio file, used to store audio data, but has been exploited to
carry a buffer overflow designed to execute malicious code embedded in the file.

.WSF Windows Script File, designed to carry a variety of Windows script types.

.WSH Windows Script Host Settings file, used to configure the script interpreter
program on a Windows machine.

.rpm Red Hat Package Manager, used to bundle libraries, configuration files, and
code for simpler installation on Linux systems.

.sh A UNIX shell script or shell archive file, used to carry sequences of commands
for a UNIX shell, usually the Bourne shell (sh) or Bourne again shell (bash)

Table 6.1
Useful File Extensions to Filter at an Internet Gateway (Continued)

File
Extension Purpose of This Type of File

PH066-Skoudis.book Page 256 Monday, October 13, 2003 11:36 AM

What’s in a Name? 257

Mimicking Other File Names
These Trojan horse naming issues go beyond just putting a bunch of
spaces between the name and its file extension on Windows systems.
We’ve just barely scratched the surface. Often, to fool a victim, attackers
create another file and process with exactly the same name as an exist-
ing program installed on the machine, such as the UNIX init process.
Init normally starts running all other processes while the system boots
up. In this type of naming attack, you could actually see two processes
named init running on your system: your normal init that’s supposed to
be there, and another Trojan horse named init by the attacker. This is a
particularly bizarre circumstance, kind of like waking up and finding
that you have two noses.

Similarly, on a Windows machine, you could notice that there are
two running processes called iexplore. A bunch of such naming
schemes are possible. Table 6.2 lists common programs expected to be
running on Windows and UNIX operating systems whose names are
frequently borrowed by attackers for malicious code. It is hugely
important to note the following: There are often supposed to be
processes running on your machine with these names. Don’t freak out if
you see a running program named init or iexplore! In all likelihood,
these are merely the legitimate programs that should be on your sys-
tem. If these are legitimate processes, you should not kill them, as your
machine requires them to function properly. We’re discussing this issue
because attackers sometimes impersonate these vital programs using
Trojan horses that have the same name.

Of course, the list in Table 6.2 is not comprehensive, as tens of
thousands of possible programs and variations would fill this whole
book. Still, I want to give you a flavor for the types of Trojan horse nam-
ing attacks I’m seeing in the wild in the incidents I handle. If you inves-
tigate computer attacks, expect to see these exact names, subtle
variations on these names, and a variety of other similar tricks.

I remember a particularly compelling Trojan horse naming attack
attempted against me recently. I saw this technique at a SANS security
conference, where I run a hacker tools workshop about once per
month. In these workshops, student attendees get the opportunity to
break into several experimental machines I build and maintain for the
class. Students learn the mindset and skills of an attacker, and I get to
have fun watching them repeatedly smash into my systems. During
one workshop, I received an urgent e-mail from one of my students.
The e-mail extolled the virtues of a very exciting new game, named

PH066-Skoudis.book Page 257 Monday, October 13, 2003 11:36 AM

258 Chapter 6 ◗ TROJAN HORSES

Vixens with No Clothes, or VNC for short. The sender detailed all of the
enticing blockbuster action in this exciting game, which I was invited to
install free of charge! How could any reasonable person pass up such an
incredible opportunity? In keeping with the fun atmosphere of the work-
shop, I decided to take the bait knowingly and installed this supposedly
nifty game. However, as you might expect, not only were there no

Table 6.2
Common Names Given to Trojan Horses to Blend In

Name Given
to Trojan

Horse
Operating

System
Legitimate Program That the Trojan Horse Is Trying

to Look Like

init UNIX During the UNIX system boot sequence, this process runs
first and initiates all other processes running on the box.

inetd UNIX This process listens on the network for connection requests
for various network services, such as Telnet and FTP servers.

cron UNIX This process runs various programs at pre-scheduled times.

httpd UNIX On a UNIX Web server, several copies of this process
typically run to respond to HTTP requests.

win Windows Typically there is no legitimate process by this name on a
Windows box. However, attackers take advantage of the fact
that many administrators might expect to see a process with
this name.

iexplore Windows This executable is Microsoft’s Internet Explorer browser. On
most Windows systems, a spare browser running every once
in a while would go unnoticed.

notepad Windows This familiar editor frequently used on Windows systems is an
ideal program for an attacker to impersonate. Several
backdoor tools attempt to impersonate notepad.exe.

SCSI Any Attackers sometimes name their Trojan horse processes SCSI,
attempting to dupe an administrator into thinking that the
program controls the SCSI chain. An administrator will
hesitate to kill a process named SCSI for fear that it might
disable the hard drive.

UPS Any Sometimes, attackers name their processes UPS to fool
administrators into thinking the program controls the
uninterruptible power supply.

PH066-Skoudis.book Page 258 Monday, October 13, 2003 11:36 AM

What’s in a Name? 259

clothes … there were no vixens either! I watched as the keyboard and
mouse on my screen began to move by themselves, while squeals of joy
erupted from my attacker on the other side of the computer lab! Of
course, this was all just a little game. Real-world attackers might not be
so blatant, but this example really helps illustrate the concept of using
deceptive naming to achieve installation of a Trojan horse backdoor.

For another more real-world example, check out Figure 6.2. You
can see the familiar Windows Task Manager on my Windows 2000 sys-
tem. By hitting Ctrl-Alt-Delete, selecting Task Manager, and then look-
ing at the Processes tab, I can see the various processes running on my
box. The list of Figure 6.2 look pretty reasonable. In particular, you
can see that I’m running one instance of the Internet Explorer browser
(iexplore.exe).

Now, to illustrate a Trojan horse name-based attack, check out Fig-
ure 6.3. Here, we see an attacker copying the Netcat program, giving it
the rather curious name of iexplore.exe. That’s pretty nasty, but rather
common. After creating the copy of Netcat, our intrepid attacker, evil
dude that he is, sets up a backdoor listener with the copy. The backdoor
is waiting with a command shell on TCP port 2222. However, if you
look at the Task Manager now, it appears that there is just another copy
of iexplore.exe, the Internet Explorer browser, running on my machine.

Figure 6.2
Normal Windows Task Manager: Here is what I expect to be running on my Windows
2000 system.

That’s my browser
running. Everything

looks pretty intact
so far.

PH066-Skoudis.book Page 259 Monday, October 13, 2003 11:36 AM

260 Chapter 6 ◗ TROJAN HORSES

Users or administrators searching for a malicious process would likely
overlook this extra little goodie running on the box, as it looks com-
pletely reasonable.

Giving a backdoor a name like iexplore.exe is pretty sneaky. How-
ever, an attacker could do something even worse by taking advantage
of an interesting characteristic of Windows 2000, XP, and 2003. In
these operating systems, the Task Manager won’t allow you to kill pro-
cesses that have certain names [1]. If a process is named winlogon.exe,
csrss.exe, or any other name shown in Table 6.3, the system automati-
cally assumes that it is a sensitive operating system process based solely
on its name. These names are all used for very important processes on a
Windows machine [2], but attackers can use the exact same name for a
backdoor. We’ll discuss the interplay between many of these processes
in more detail in Chapter 8.

Figure 6.3
Bad guy runs Netcat. Now, the evil attacker creates a copy of Netcat called iexplore.exe
and runs a backdoor listening on TCP port 2222.

The backdoor
listener looks like

another copy of
iexplore.exe.

Attacker copies
Netcat to iexplore.exe.

Attacker creates a
Netcat backdoor listener
to run a command shell
on TCP port 2222 using
the renamed copy
of Netcat.

PH066-Skoudis.book Page 260 Monday, October 13, 2003 11:36 AM

What’s in a Name? 261

If an attacker gives a backdoor a name from Table 6.3, Task Man-
ager will refuse to kill it. The system gets confused, believing the back-
door process is really the vital system process. The system is
overprotective. To prevent a user from accidentally killing a vital process
and making the system unstable, Windows goes overboard by prevent-
ing users from killing any process with such a name. To illustrate this
concern, in Figure 6.4, I created a copy of Netcat named winlogon.exe,
executed it as a backdoor listener, and tried to kill this imposter using
Task Manager. The system instantly popped up a dialog box saying,
“This is a critical system process. Task Manager cannot end this pro-
cess.” You might think that Windows would be smart enough to differen-

Table 6.3
Windows Process Names That Cannot Be Killed with Task Manager

Windows
Process Name Purpose of Legitimate Process with This Name

csrss.exe This is the environment subsystem process, which supports creating
and deleting processes and threads, running 16-bit virtual DOS
machine processes, and running console windows.

services.exe This process is the Windows Service Controller, which is responsible
for starting and stopping system services running in the background.

smss.exe The Session Manager SubSystem on Windows machines is invoked
during the boot process. Among numerous other tasks, it starts and
supports the programs needed to implement the user interface,
including the graphics subsystem and the log on processes.

System This process includes most kernel-level threads, which manage the
underlying aspects of the operating system.

System Idle Process On a Windows system, this process is just a placeholder to indicate all
of the CPU cycles consumed by idle tasks, when no specific other
processes have a pressing need.

winlogon.exe This process authenticates users on a Windows system by asking for
user IDs and passwords, and interacting with other components to
verify their validity.

PH066-Skoudis.book Page 261 Monday, October 13, 2003 11:36 AM

262 Chapter 6 ◗ TROJAN HORSES

tiate vital system processes from imposters by looking at the file on the
hard drive the process was started from, or even its process ID number.
However, Windows doesn’t do this, and just assumes that any process
named winlogon.exe or csrss.exe must be okay. Therefore, unfortu-
nately, these names are just perfect for Trojan horse backdoors, because
they are more difficult for a system administrator to terminate, if they are
ever discovered.

As an additional concern, under certain circumstances, you might
legitimately have multiple copies of both csrss.exe and winlogon.exe
running on a machine. If you use Windows Terminal Services or Cit-
rix to allow multiple users to simultaneously log on to virtual desktops
on a single Windows machine, each user will have a csrss.exe and win-
logon.exe. So, if there are two or more copies of these two processes
running, you might not have been attacked; you’re just looking at the
processes created for different users. For the other processes listed in
Table 6.3, however, only a single instance of the process should show
up in Task Manager.

The Dangers of Dot “.” in Your Path
Another issue associated with Trojan horse names involves the setting
of the path variable for users and administrators. On Windows and

Figure 6.4
On Windows, backdoors that have the same names as vital system processes cannot be
killed by Task Manager.

PH066-Skoudis.book Page 262 Monday, October 13, 2003 11:36 AM

What’s in a Name? 263

UNIX, most running programs, including command shells and even
GUIs, have the concept of a path. This variable just contains a list of
directories that are searched in order from start to finish when a new
program or command name is executed. For example, on my UNIX
machine, I can view my path by typing:

$ echo $PATH

The default path for users on my UNIX box includes a variety of
directories, such as /bin, /usr/bin, /usr/local/bin, and so on. These
directories are the locations of the commands commonly run by users
on UNIX machines.

On Windows, you can view your path by using the set command
and searching for the word Path, as follows:

C:\> set Path

My default path on Windows includes folders such as C:\WinNT
\System32, C:\WinNT, and others.

Whenever I type a program’s name at a command prompt, my
system starts combing through the directories in my path, one by one,
until it finds the command and runs it. If it cannot find the command in
my path, the system responds with an error message, saying that the
program or command could not be found.

On UNIX systems, by default, your current working directory,
referred to as “.” and usually pronounced “dot,” is not in your path. So,
if you change to a directory, and type the name of a program in that
directory, you’ll get a “Command not found” error, even though you
are in the same directory as the program you are looking for. This can
be frustrating for new UNIX users, but not having the current working
directory in your path is a very good thing from a security perspective!

Suppose someone misconfigured your UNIX account, and “.” was
in your path. Also, suppose that an attacker gains low-privileged access
to your machine, but hasn’t yet conquered superuser privileges on the
box. This bad guy could name an evil Trojan horse program ls, and put
it in some world writable directory on the machine. The ls command is
used to get a listing of the contents of a directory. With “.” in your path,
if you ever changed directories into the attacker’s trap directory and ran
the ls command to get a directory listing, you’d run the evil Trojan
horse! This Trojan horse might instantly give the attacker all of your
permissions on the machine. If you have superuser privileges, the

PH066-Skoudis.book Page 263 Monday, October 13, 2003 11:36 AM

264 Chapter 6 ◗ TROJAN HORSES

attacker now has such privileges as well, having successfully launched a
privilege escalation attack using a Trojan horse version of ls.

Or, similarly, an attacker could create a backdoor with a name that
matches a commonly mistyped command, such as ipconfig. The nor-
mal UNIX command for viewing network interface information is
ifconfig, with an f instead of a p. However, users sometimes type
ipconfig instead, given that a similar command with that name is
available on Windows. If I create a Trojan horse named ipconfig on
your UNIX machine, I can sit back and wait for an administrator to
accidentally type ipconfig while in the wrong directory. For this rea-
son, “.” isn’t in the path on UNIX machines by default, and you
shouldn’t reconfigure your shell to add it. In this case, the default path
setting for UNIX is quite reasonable. So, do yourself a favor, and leave
it as is. Also, if you do have “.” in your path, consider removing it by
editing the various start-up scripts associated with your login shell,
which depend on the particular shell you are using.

However, not having “.” in your path also means that if you
change directories to a place where a program file is located, you can-
not just type the program’s name to run it. Instead, to run the program,
you have to type ./[program_name] to execute the program. So, if the
system ever complains that it cannot find a file, but you can see the file
in the current working directory using ls, use the “./” notation to start
the program. It’s not too much of a burden.

This matter differs markedly on Windows systems. In the Win-
dows command shell, the current working directory is implicitly in your
path. Even though the set command doesn’t show a “.” in your path,
it’s still there, implicitly represented, just because you are using Win-
dows. Therefore, if you change to a directory with an executable inside
and then type the executable’s name on Windows, the executable runs.
The system automatically finds it, because “.” is implicitly at the very
beginning of your path. Yes, it’s convenient, as you don’t have to ever
mess with the “./” notation. However, having “.” in your path is also a
security hole.

If an attacker gets low-privileged access to your machine, and then
tricks an administrator into running a command, the attacker can esca-
late privileges. One of the most common tricks attackers utilize in Win-
dows is to create a privilege-escalating Trojan horse named cp. On
Windows, the copy command is used to copy a file, and there is no
default command named cp. However, users sometimes mistakenly
type cp when they try to copy files. If they type cp in a directory where

PH066-Skoudis.book Page 264 Monday, October 13, 2003 11:36 AM

What’s in a Name? 265

the attacker placed a Trojan horse with that name, the attacker could
easily get that user’s privileges on the machine.

Unfortunately, you cannot easily remove “.” from your path on a
Windows machine. It’s built into the operating system itself right at the
start of your path. Remember, the system searches for commands start-
ing from the beginning of your path, running the first matching pro-
gram that it finds. Mistyping a command name could lead to a privilege
escalation attack on a Windows system, so be careful when typing com-
mands with an account with administrator privileges.

Trojan Name Game Defenses
So, in light of these deviously named Trojan horses, what can we do to
defend ourselves? First, we must keep the malicious code off of our sys-
tems in the first place by employing the antivirus tools described in
Chapter 2 and the backdoor defenses described in Chapter 5.

Also, you should be ready to kill suspicious processes that usurp the
names of legitimate processes. Even though Task Manager cannot kill
processes with certain names, you can deploy a free tool called PsKill
from the PsTools package, available for free at www.sysinternals.com.
PsKill can shut down any running process, regardless of its name. How-
ever, be careful with this tool! If you shut down a legitimate process, you
could cause your system to be unstable or even create an instant crash.
Therefore, you need to research each process of concern in more detail
before shutting it down.

To conduct this research, you can use some tools we initially dis-
cussed in Chapter 5. Remember our good friends, lsof and Fport? As
you might recall, Fport, run on a regular basis by diligent system
administrators on Windows machines, will help you discover strange
port usage associated with Trojan horses on your system. For each run-
ning process that has an open TCP or UDP port on the network, Fport
shows the process ID, process name, port number, and the full path-
name of the file that the process ran from on the hard drive. Fport is
very simple, yet highly effective. On UNIX machines, you can use the
lsof command to achieve similar functionality to Fport, as we dis-
cussed in Chapter 5.

Remember our example in which the attacker renamed Netcat so
that it appeared as iexplore.exe? In Figure 6.5, we can see how Fport
displays this subterfuge.

PH066-Skoudis.book Page 265 Monday, October 13, 2003 11:36 AM

266 Chapter 6 ◗ TROJAN HORSES

Fport tells us that there are a variety of programs using ports on
this machine. All of these ports are pretty normal on a Windows
machine, except for the one with a Process ID (Pid) of 1084. It’s called
iexplore.exe, but is listening on TCP port 2222 and running out of
C:\iexplore.exe. That just doesn’t look right!

Using Fport, we can differentiate between the real browser, which
should have a path of C:\Program Files\Internet Explorer\iexplore.exe,
and the attacker’s backdoor, which runs from C:\iexplore.exe. Unfortu-
nately, this kind of analysis requires an administrator to be intimately
familiar with what is supposed to be running on the system. That way, if
a counterfeit pops up, an administrator can quickly identify it and inves-
tigate. This can be very difficult, but rock-solid system administrators
should have a gut feel for what is installed and running on critical sys-
tems. If an experienced system administrator notifies you that “some-
thing just doesn’t look right with this program,” you ignore their
concerns at your own peril. Your best bet is to analyze suspect programs
in a laboratory environment to determine if they are attempting to
access files or the network unexpectedly. In Chapter 11, we’ll discuss a
recommended laboratory environment and analysis process you can
use to analyze problematic software.

Another defense for these Trojan naming schemes is to block exe-
cutable e-mail attachments at your Internet gateway. You should filter
out all programs that are potentially executable. These include the
familiar EXE programs, but go well beyond that, too. In reality, you

Figure 6.5
Using Fport. Why is iexplore.exe listening on TCP port 2222 and why is it running from
C:\iexplore.exe? That looks like a problem!

What’s this?
C:\iexplore.exe listening
on TCP port 2222… that
just doesn’t look right.

PH066-Skoudis.book Page 266 Monday, October 13, 2003 11:36 AM

Wrap Stars 267

should filter out at least all of the program types described in Table 6.1.
For more information about these and other file extension types, you
should check out the File Extension Source Web site at http://filext.com.

Wrap Stars

Be afraid. Be very afraid.

—The movie, The Fly, 1986

Bad guys’ Trojan horse ruses aren’t limited to just playing games with
names. Many attackers also combine their malicious code with an
innocuous program to create a nice, cozy-looking package. By grafting
together two programs, one malicious and one benign, an attacker can
more easily trick unsuspecting users or administrators into running or
ignoring the combined result. When unsuspecting victims receive the
combined package and run it, the malicious executable embedded in
the package will typically run first. Of course, the vast majority of back-
doors don’t display anything on the screen, so the victim will not see
anything during this step, which usually takes less than a second. After
the backdoor is firmly lodged on the victim machine, the benign pro-
gram runs. For example, an attacker might take the Tini backdoor we
briefly mentioned in Chapter 5 and combine it with Internet Explorer.
Given Tini’s small size, the resulting program would be only 3 kilobytes
larger than the original browser.

To marry two executables together, an attacker uses a wrapper
tool. The computer underground uses several terms to refer to these
tools, including wrappers, binders, packers, EXE binders, and EXE joiners.
Figure 6.6 illustrates how an attacker uses a wrapper program. In
essence, these wrappers allow an attacker to take any executable back-
door program and combine it with any legitimate executable, creating a
Trojan horse without writing a single line of new code! Even the most
inexperienced attacker can easily create Trojan horses using this tech-
nique. This is the stuff script kiddie attackers fantasize about.

For an analogy of the operation of wrapper programs, consider the
classic movie The Fly. As you might recall, in that epic feature, a scientist
tests his new teleporter invention to whisk himself across his laboratory
at the speed of light. Sadly, a simple housefly zooms into the teleporter
pod just as he initiates his first short journey. The machine cannot handle

PH066-Skoudis.book Page 267 Monday, October 13, 2003 11:36 AM

268 Chapter 6 ◗ TROJAN HORSES

two living beings, so it just combines the scientist and the fly at their
most fundamental level into one very ghastly mutant combination of
the two. That’s essentially what wrapper tools do: combine two or more
separate programs at a fundamental level into one package.

Wrapper Features
Some wrappers allow for combining two, six, nine, or even an arbitrary
number of programs together. Others allow for the addition of static
files into the mix. When the wrapper is run, it executes all included pro-
grams, and also unloads the bundled static files into the attacker’s cho-
sen places on the file system. With such capabilities, these wrappers are
actually becoming the functional equivalent of souped-up install shields
and Setup programs.

For most of the popular wrapper tools available today, when a
combined package file is executed, the malicious program and benign
program will each show up as separate running processes in Windows
Task Manager or Fport output. The two programs only live together in
the file on the hard drive. When a user is duped into running the pack-
age, the two wrapped programs become two separate processes. There-
fore, to hide the malicious processes, attackers use wrappers together
with the deceptive naming schemes we discussed in the last section.

Some wrappers go even further by encrypting the malicious code
portion of the resulting package, so that antivirus programs on the tar-
get system have more difficulty detecting the malicious program. Of
course, to make the malicious program run on its target, the wrapper
must add a decryption routine to the resulting package. Antivirus pro-
grams therefore look for the decryption code added by these popular
wrapping tools. Attackers raise the bar by morphing the decryption

Figure 6.6
Wrapper programs: Two programs enter and one program leaves with the combined
functionality of both input programs.

Nice,
Happy

Program

Wrapper
Tool

Resulting
Single

Program

Malicious
Code

PH066-Skoudis.book Page 268 Monday, October 13, 2003 11:36 AM

Wrap Stars 269

code so that it dynamically alters itself to evade detection, using poly-
morphic coding techniques, as we discussed in Chapter 2.

The computer underground has released dozens of wrapper pro-
grams available for free download from the Internet. Table 6.4 shows some
of the most popular and powerful wrapper programs available today. To
analyze these and other wrapper tools in more detail, you can check out
www.tlsecurity.net/exebinder.htm, a comprehensive Web site devoted to the
fine art of wrappers. It’s important to note that not all of these programs are
inherently evil. They also have a variety of entirely legitimate uses for pack-
aging and distributing useful software, not just Trojan horses.

Table 6.4
Popular Wrapper Tools

Wrapper
Tool Name Function of Wrapper Tool

AFX File Lace This wrapper encrypts an executable and appends it to the end of another,
unencrypted executable.

EliteWrap This program is the premier wrapper tool, with gobs of features, including:
• The ability to bind together an unlimited number of executables.
• A function to start programs in a specified order, with each program

waiting for the other programs ahead of it to finish running before
executing itself.

• Built-in integrity checks to make sure the package hasn’t been altered.

Exe2vbs This tool converts executable programs (in EXE format) into Visual Basic
Scripts (VBSs or VBScripts). By packing the EXE inside of a VBScript, the
attacker might be able to transmit a Trojan horse through e-mail filtering
programs that block standard EXEs, but allow VBScripts to pass through.

PE Bundle This program bundles together an executable with all the DLLs required by
that executable to run. With this combined package, the malicious software
will be able to run on the target system even if some critical DLLs are not
installed there.

Perl2Exe Using this tool, a developer can create standalone programs originally
written in the Perl scripting language that do not require a Perl interpreter
to run. Also, the original Perl code isn’t included inside the resulting
executable, making reverse engineering the functionality of the executable
code significantly more difficult than simply analyzing more easily
understood Perl scripts. This nifty tool is available for both Windows and
UNIX, turning a Perl script into an executable binary program. Binary
executables can be created that will run on Windows or UNIX.

PH066-Skoudis.book Page 269 Monday, October 13, 2003 11:36 AM

270 Chapter 6 ◗ TROJAN HORSES

Wrapper Defenses
To defend your systems against attacks involving Trojan horses created
with wrappers, antivirus tools are really your best bet. By detecting the
malicious code wrapped into a combination package and preventing its
installation, antivirus tools stop the vast majority of these problems. Fol-
lowing the antivirus recommendations we discussed in Chapter 2 goes a
long way in dealing with this problem.

Trojaning Software Distribution Sites

The woman said, “The serpent deceived me, and I ate.”
—Genesis 3:13

So, we’ve seen how attackers use name trickery and wrapper programs
to create and disguise their backdoors. Now, let’s discuss a far nastier
Trojan horse technique that is greatly increasing in popularity: Trojan-
ing software distribution sites. Increasingly, some attackers are aiming
beyond the individual software loaded on your system, and going
upstream by attacking the Internet sites used to distribute software.
What better way could there be to get widespread dispersal of malicious
code than to put a Trojan horse version of a popular program on a Web
site used by millions of people around the world? Everyone who down-
loads and installs the tool would be impacted by such a Trojan horse.

Saran Wrap This easy-to-use GUI-based wrapper combines two executables together.

TOPV4 This so-called Teflon Oil Patch program combines up to nine executables
together and sports a simple GUI.

Trojan Man This wrapper combines two programs, and also can encrypt the resulting
package in an attempt to foil antivirus programs.

Table 6.4
Popular Wrapper Tools (Continued)

Wrapper
Tool Name Function of Wrapper Tool

PH066-Skoudis.book Page 270 Monday, October 13, 2003 11:36 AM

Trojaning Software Distribution Sites 271

Trojaning Software Distribution the Old-Fashioned Way
There is an admittedly lower tech precedent to this trend. Over the last
two decades, attackers would sometimes send software updates contain-
ing malicious code via the snail-mail postal service. A package would
arrive containing a tape or CD of supposedly crucial software updates,
claiming to be from a legitimate vendor. Some administrators and users
would fall for the trick, and blindly load the software onto their systems.
Bingo! The attacker’s backdoor would be loaded onto the system by the
administrators or users themselves. Of course, such an attack could con-
stitute mail fraud, a felony in some countries.

Sending Trojan horse updates with backdoors via the postal ser-
vice still works today. If several administrators in your organization
received an official-looking package claiming to be from Microsoft Cor-
poration, Sun Microsystems, or even Ed’s Linux Software and Chop
Suey Take Out Service, would they install it? Similarly, what would
happen if some of your telecommuters received a CD in the mail at
home with a note on company letterhead describing an important
update? Unfortunately, in most organizations, at least some administra-
tors and users would install the package without a second thought. All it
takes is one mistake for the attacker to get a foothold in the organiza-
tion. Of course, if any users start asking questions about the mysterious
new package that arrived in the mail, the attacker’s subterfuge should
be quickly detected.

Popular New Trend: Going after Web Sites
While the snail-mail technique works like a charm, attackers don’t want
to have to pay postage. Instead, they’ve set their sights on higher targets
with a wider spread of dispersal possibilities, such as the Web servers
used to distribute new software and updates across the Internet. These
attacks are particularly pernicious, as they could impact thousands or
millions of unsuspecting administrators and users who are simply trying
to download the latest versions of popular programs. One of the earliest
attacks of this kind involved the Washington University at St. Louis FTP
server (wu-ftpd), which was Trojanized way back in April 1994 [3]. In
January 1999, a similar attack occurred involving the TCPWrapper dis-
tribution, which is, rather ironically, a security tool [4]. However, much
more recently, we’ve seen a rash of successful attacks against Web sites,
including these:

PH066-Skoudis.book Page 271 Monday, October 13, 2003 11:36 AM

272 Chapter 6 ◗ TROJAN HORSES

• Monkey.org: In May 2002, someone broke into the Web site that
distributes the popular security and hacking tools written by Dug
Song. Attackers modified the Dsniff sniffing program, as well as
the Fragroute and Fragrouter IDS evasion tools distributed
through Monkey.org. The attacker replaced each tool with a Tro-
jan horse version that created a backdoor on the systems of any-
one who downloaded and installed these tools. This attack was
especially insidious, considering the widespread use of these
tools by security professionals and computer attackers alike.

• Openssh.org: From July 30 to August 1, 2002, an attacker loaded
a Trojan horse version of the Open Secure Shell (OpenSSH)
security tool onto the main OpenSSH distribution Web site.
OpenSSH is widely used to provide rock-solid security for
remote access to a system. However, diligent administrators
who tried to protect their systems by downloading this security
tool in late July 2002 unwittingly installed a backdoor. Sadly,
this tool often utilized to protect systems against attack included
its own backdoor for this short period of time.

• Sendmail.org: This one is just plain evil. From September 28 until
October 6, 2002, a period of more than one week, the distribution
point for the most popular e-mail server software on the Internet
was subverted. The main FTP server that distributes the free, open-
source Sendmail program was Trojanized with a nasty backdoor.

• Tcpdump.org: From November 11 to 13, 2002, tcpdump, the pop-
ular sniffing program, and libpcap, its library of packet capture
routines, were replaced with a Trojan horse backdoor on the
main tcpdump Web site. Not only is the tcpdump sniffer widely
used by security, network, and system administrators around
the world, but the libpcap (pronounced using the elegant term
lib-pee-cap, which is short for “library for packet capture”) com-
ponent is a building block for numerous other tools. Administra-
tors who installed tcpdump, libpcap, or any other package built
on top of libpcap during this time frame were faced with a back-
door running on their systems.

Some pretty big names have fallen to this attack! This list contains
some pretty important software, used by millions of people each and
every day. Heck, I personally use Dsniff, OpenSSH, and tcpdump all the
time, to say nothing of Sendmail. With all of these attacks over a six-
month period, I began to take this whole thing very much to heart. In
most of these attacks, the bad guys manipulated the install program

PH066-Skoudis.book Page 272 Monday, October 13, 2003 11:36 AM

Trojaning Software Distribution Sites 273

associated with each tool so that it created a backdoor listener on the
machine where the program was configured and compiled. In these
cases, the compiled binary executable itself wasn’t altered; the installa-
tion program was modified to include the backdoor. The great similari-
ties in each of these attacks could indicate that a single perpetrator
committed all of these dastardly deeds, or the actions could merely
have been copycat crimes.

The Tcpdump and Libpcap Trojan Horse Backdoor
To understand the nature of the Trojan horses bundled with these pro-
grams, let’s look at the functionality of the malicious code included in
the tcpdump and libpcap distribution during that fateful week in
November 2002. This Trojan horse was similar to the one used in the
Monkey.org, Sendmail, and OpenSSH attacks, so analyzing it will help
us better understand this whole class of attacks.

To install an up-to-date version of tcpdump, an administrator typi-
cally downloads the latest package from the tcpdump Web site. This
package includes a script called “configure” that analyzes the system used
to compile the tool, typically an administrator’s machine. The configure
script verifies that certain required compiler options, libraries, and other
programs needed for building tcpdump are included on the system. The
script then devises a plan for compiling the software on that particular
machine. After configure runs, the administrator can compile the tool.

However, the version of the configure script distributed with tcp-
dump and libpcap included a nasty yet invisible surprise. The whole
process is illustrated in Figure 6.7, starting with the download of the
Trojan horse version of the installation package in step 1. The adminis-
trator runs the configure script in step 2. While the configure script
checks the system configuration as expected, it also attempts to connect
to a Web server operated by the attacker to grab a copy of another
script, named “services,” shown in step 3. With a simple name like ser-
vices, it sounds pretty innocuous, huh?

Step 3 is a somewhat risky move for the attacker, because the vic-
tim’s machine will send out an HTTP request to the attacker’s machine.
It is conceivable, although highly unlikely, that an administrator might
notice this request on the network, and trace it down to a Web site con-
trolled by the attacker. Still, this Web request to download the services
script gives the attacker flexibility. Rather than bundling a set of fixed
backdoor functionality into the installation package, the attacker can
add new capabilities to the backdoor and load it on a Web site. Then,

PH066-Skoudis.book Page 273 Monday, October 13, 2003 11:36 AM

274 Chapter 6 ◗ TROJAN HORSES

the attacker can just sit back and wait for a new set of victims to inad-
vertently install the updated functionality of the backdoor. After down-
loading the services script, the configure script executes it. In step 4, the
services script, in turn, creates a small amount of C code for a backdoor,
which it compiles and executes.

This little compiled C program is really a simple backdoor, which
starts running in step 5. The backdoor then makes a connection across
the network to the attacker’s own machine. In step 6, the backdoor polls
the attacker’s system on TCP port 1963 to retrieve a single character
indicating what the backdoor should do. This request for a command is
sent every few minutes. The backdoor responds to three possible con-
trol characters:

• The A character indicates that the backdoor program should
stop running.

Figure 6.7
The tcpdump and libpcap Trojan horse backdoor.

Attacker’s
Web Server

Victim’s
System

Attacker types
commands here
for execution on
victim’s machine.

Admin downloads
Trojan horse version
of tcpdump and/or
libpcap package.

If D character,
run shell and shovel

input to attacker

Poll for control character,
A, D, or M on TCP port 1963

Shovel shell across network

Download
and Run

1 3
Generate,
compile, and
execute

4

tcpdump
install

package
configure

script
services
script C program

backdoor

shell

2

5

6

7

PH066-Skoudis.book Page 274 Monday, October 13, 2003 11:36 AM

Trojaning Software Distribution Sites 275

• The D character tells the backdoor program to create a shell
and shovel this shell to the attacker. It uses the same shell-shov-
eling technique we discussed in Chapter 5. The attacker can
then type any commands into the shell for execution on the vic-
tim machine, shown in step 7. If tcpdump or libpcap was
installed by an administrator, these commands would run with
root privileges. Otherwise, the commands would still run, but
with the privileges of a more limited account. Of course, most
people who compile and install tcpdump or libpcap do so with
root permissions.

• The M character tells the backdoor tool to sleep for one hour,
and then poll for another control character.

After the attacker finishes executing commands on the victim, the
shell is terminated and the backdoor’s polling for A, D, or M com-
mands continues. At a later time, the attacker can fire up the shell shov-
eler again, and access the system.

There are a couple of interesting little twists in this Trojan horse
backdoor. First, look at those control characters: A-D-M. A rather
famous group of hackers calls itself the ADM Crew, known for writing
some seriously powerful computer attack tools. Is this a mere coinci-
dence? That’s highly doubtful, as the odds that someone would ran-
domly select control characters of A, D, and M are very slim. Did ADM
perpetrate the attack, or was someone trying to frame them? At the time
of this writing, the information security community at large just doesn’t
know the answers to these questions. Given the secrecy in certain quar-
ters of the computer underground, we might never know the full truth.

A second twist in this tcpdump Trojan horse involves alterations to
the sniffer tools themselves. The attacker manipulated the source code
of the libpcap library so that any sniffer that uses it will not show any
traffic destined for TCP port 1963. That way, if administrators run a
sniffer built from the compromised program on the compromised
machine, they won’t see the polling request for the A-D-M control char-
acters, or the traffic going to and from the shell! If you are going to Tro-
janize a sniffer with an embedded backdoor, you might as well make
the sniffer itself hide the backdoor’s traffic. This certainly helps to mask
the attacker’s activity. Not only does the Trojan horse tcpdump distribu-
tion open up a backdoor, it also installs a Trojan version of a sniffer to
hide that very same backdoor quite effectively. Any sniffer built on the
system that relies on the modified libpcap package, such as tcpdump,
Snort, Ethereal, or others, would likewise ignore this traffic.

PH066-Skoudis.book Page 275 Monday, October 13, 2003 11:36 AM

276 Chapter 6 ◗ TROJAN HORSES

Unfortunately, this trend of Trojanizing software distribution Web
sites didn’t end with the Trojan horse version of tcpdump. Attackers are
certainly setting their sights on even larger prey. I’m sure they are con-
stantly scanning large-scale software distribution sites, such as
Microsoft’s own Windows Update servers, various Linux software dis-
tribution sites, and other popular software depots to find flaws and
upload their malicious wares. On the plus side, these sites are usually
quite carefully secured, and software vendors such as Microsoft are
increasingly using digital signatures to ensure the integrity of their
patches. On the negative side, a single error in any of these schemes
could lead to Trojan horse backdoors installed on millions of systems.
That’s not a happy thought.

Defenses against Trojan Software Distribution
Defenses against this type of attack fall into three categories: user aware-
ness, administrator integrity checks, and carefully testing new software.
First, you and your organization must be aware of the threat. Without
fundamental knowledge of what you’re up against, you’re guaranteed to
lose. Your policies must clearly state that users are strictly forbidden
from installing unauthorized programs on your organization’s systems.
Users should not install any unexpected software updates that arrive in
the mail, no matter how “official” they appear to be. I don’t care if the
package included the company logo; it should never be installed. If any
updates do arrive, they should immediately be forwarded to the secu-
rity team. If you need to update users’ systems, you should have a for-
malized plan announcing how you’ll be distributing software to them.
This plan should be included in user awareness materials.

Furthermore, put together an awareness campaign to let your com-
puter users and administrators know that attackers sometimes distribute
nasty software via the Internet or even via snail mail. Dress up your
awareness efforts by setting up a booth outside of a cafeteria with color-
ful signs and balloons. I call this the froo-froo components of a security
awareness campaign, because it’s neither deep nor technical. Still, the
froo-froo is important, as it gets users’ attention. Distribute simple pam-
phlets with silly cartoons to your user base to let them know how to do
the right thing. Although a solid security awareness program takes a lot
of work, it can be fun. In fact, it’ll be far more effective if it’s entertain-
ing and full of froo-froo rather than just the same old droning on about
policy this blah-blah-blah policy that blah-blah-blah. Typical users rap-

PH066-Skoudis.book Page 276 Monday, October 13, 2003 11:36 AM

Trojaning Software Distribution Sites 277

idly tune out any dialogue they don’t understand or care about, but if it
has cool balloons and cartoons, they just might listen.

Another important area for defending against these attacks
involves administrative procedures for checking the integrity of the
packages you download. Whenever I upgrade a software tool across the
Internet, I always download copies from at least three different mirrors.
I then verify the integrity of the programs using a cryptographically
strong hash against each mirror’s copy to make sure they all match. You
can create an MD5 hash, kind of like a digital fingerprint, for any file
using the great md5sum program included in most Linux distributions.
On Windows, you can use the free md5summer program written by
Luke Pascoe, available at www.md5summer.org. Because MD5 is a one-
way hash function, an attacker would find it very, very difficult to create
a Trojan horse with the exact same hash as the legitimate program. By
difficult, I mean that they would require a supercomputer running for
thousands of years to create an evil program that has the exact same
hash as your good program. At least, that’s the idea if these one-way
algorithms are as good as we hope they are.

A lot of Web sites that distribute software include a file containing
the MD5 hash of the latest version on the site itself. However, I’m
uncomfortable downloading a program from just a single mirror and
checking this single hash from the exact same site. Think about it. If
attackers could compromise a single Web site and Trojanize the soft-
ware, of course they could alter the file containing the hash on that
same Web server. The idea here is that an attacker would have a more
difficult time compromising several mirrors of the code, and therefore
I’ll be able to catch their treachery by observing different versions on
the mirrors. By downloading from multiple mirrors and checking for
consistency across them, I get much better odds that the attacker hasn’t
compromised them all, and I’ll have an intact program to run. Unfortu-
nately, if the mirrors are automatically updated from a single central
server, I’d still lose if the bad guy contaminates the code on the main
server. I’ve raised the bar some by comparing hashes across multiple
mirrors, but the bad guys could still leap over the higher bar.

Some software download sites go beyond hashes and include a
digital signature of the software, using a public key encryption package
such as Pretty Good Privacy (PGP). If you download any software with
such signatures, you should verify those signatures using an appropriate
package, such as the open source clone of PGP called “Gnu Privacy
Guard,” available for free at www.gnupg.org. Of course, an attacker
could modify the digital signature or even replace the key used to sign

PH066-Skoudis.book Page 277 Monday, October 13, 2003 11:36 AM

278 Chapter 6 ◗ TROJAN HORSES

the package. However, such attacks would be much more difficult, and
are therefore far less likely.

Finally, you should always test new tools before rolling them into
production. Such a test process not only gives you a chance to detect the
malicious software in advance, but it also gives you some precious time
for others to discover the problem before you blindly put code into pro-
duction. I was working with one bank whose bacon was saved simply
because they spend at least one month reviewing any new release of
Sendmail before putting it into production. I’d love to tell you that they
discovered the Sendmail backdoor while they were looking through the
program in their evaluation network. However, they didn’t find it. Still,
while they were analyzing the new release to make sure it met corporate
functionality requirements, other folks had discovered and publicized the
backdoor in October 2002. When the bank heard about the discovery of
a backdoor in this version of Sendmail, they yanked it from their test sys-
tems and never rolled it into production. The built-in lag of their analysis
process certainly helped this organization avoid catastrophe. For critical
security patches, rapid deployment is crucial. For simple upgrades or new
features, a few weeks lag can actually help improve security.

Poisoning the Source

Most software sucks.

—Jim McCarthy, founder of a software quality training company,
as quoted in Technology Review Magazine, July/August, 2002

So, we’ve seen a variety of techniques bad guys use to squeeze Trojan
horse functionality into our systems. However, perhaps the most worri-
some Trojan horse vector involves inserting malicious code into a soft-
ware product before it’s even released. Attackers could Trojanize
programs during the software vendor’s development and testing pro-
cesses. Suppose an attacker hires on as an employee at a major software
development shop or volunteers to contribute code to an open source
software project. The target could be anything; a major operating sys-
tem, a widely used enterprise resource planning tool, or even a very eso-
teric program used by banks to manage their funds transfer would all
make juicy targets. As a developer or even a tester, the attacker could
insert a relatively small backdoor of less than 100KB of code inside of
hundreds of megabytes of legitimate code. That’s really a needle in a

PH066-Skoudis.book Page 278 Monday, October 13, 2003 11:36 AM

Poisoning the Source 279

haystack! Any users purchasing the product would then unwittingly be
buying a Trojan horse and installing it on their systems. The whole soft-
ware product itself becomes the Trojan horse, doing something useful
(that’s why you buy or download it), yet masking this backdoor.

Ken Thompson, noted UNIX cocreator and C programming lan-
guage guru, discussed the importance of controlling source code and
the possibility of planting backdoors in it in his famous 1984 paper
titled “Reflections on Trusting Trust.” In that classic paper, Thompson
described modifying the source code for a compiler so that it built a
backdoor into all code that it compiles [5]. The proposed attack was
particularly insidious, as even a brand new compiler that is compiled
with a Trojan version of the old compiler would have the backdoor in it,
too. This avenue of attack has long been a concern, and is an even big-
ger potential problem today.

This concern is even more disturbing than the Trojaning of soft-
ware distribution sites that we discussed in the last section. When an
attacker Trojanizes a software distribution site, the developers of the
software at least have a clean version of the software that they can com-
pare against to detect the subterfuge. Backing out problems is relatively
easier after discovery, as a clean version of the software can be placed
on the Web site for distribution. On the other hand, if an attacker
embeds a Trojan horse during the software development process, the
vendor might not even have a clean copy. If the attackers are particu-
larly clever, they will intertwine a small, inconspicuous backdoor
throughout the normal code, making eradication extremely difficult.
The software developer would have to scan enormous quantities of
code to ensure the integrity of a whole product. The larger the software
product, the more difficult detection and eradication become. Let’s ana-
lyze why this is so.

Code Complexity Makes Attack Easier
Most modern software tools are vast in scope. Detecting bugs in code,
let alone backdoors, is very difficult and costly. To Trojanize a software
product, an evil employee doesn’t even have to actually write an entire
backdoor into the product. Instead, the malicious developer could pur-
posefully write code that contains an exploitable flaw, such as a buffer
overflow, that would let an attacker take over the machine. Effectively,
such a purposeful flaw acts just like a backdoor. If the flaw sneaks past
the software testing team, the developer would be the only one who

PH066-Skoudis.book Page 279 Monday, October 13, 2003 11:36 AM

280 Chapter 6 ◗ TROJAN HORSES

knows about the hole initially. By exploiting that flaw, the developer
could control any systems using his or her code.

To get a feel for how easily such an intentional flaw or even a full
Trojan horse could squeak past software development quality processes,
let’s consider the quality track record of the information technology
industry over time. Software quality problems have plagued us for
decades. With the introduction of higher density chips, fiber-optic tech-
nology, and better hard drives, hardware continues to get more reliable
over time. Software, on the other hand, remains stubbornly flawed.
Watts Humphrey, a software quality guru and researcher from Carnegie
Mellon University, has conducted surveys into the number of errors
software developers commonly make when writing code [6]. Various
analyses have revealed that, on average, a typical developer acciden-
tally introduces between 100 and 150 defects per 1,000 lines of code.
These issues are entirely accidental, but a single intentional flaw could
be sneaked in as well.

Although many of these errors are simple syntactical problems
easily discovered by a compiler, a good deal of the remaining defects
often result in gaping security holes. In fact, in essence, a security vul-
nerability is really just the very controlled exploitation of a bug to
achieve an attacker’s specific goal. If the attacker can make the program
fail in a way that benefits the attacker (by crashing the system, yielding
access, or displaying confidential information), the attacker wins. Esti-
mating very conservatively, if only one in 10 of the defects in software
has security implications, that leaves between 10 and 15 security defects
per 1,000 lines of code. These numbers just don’t look very heartening.

A complex operating system like Microsoft Windows XP has
approximately 45 million lines of code, and this gigantic number is
growing as new features and patches are released [7]. Other operating
systems and applications have huge amounts of code as well. Doing the
multiplication for XP, there might be about 450,000 security defects in
Windows XP alone. Even if our back-of-the-envelope calculation is too
high by a factor of 100, that could still mean 4,500 security flaws. Ouch!
Indeed, the very same day that Windows XP was launched in October
2001, Microsoft released a whopping 18 megabytes of patches for it.

Don’t get me wrong; I love Windows XP. It’s far more reliable
and easier to use than previous releases of Windows. It’s definitely a
move in the right direction from these perspectives. However, this is
just an illustration of the security problem inherent in large software
projects. It isn’t just a Microsoft issue either; the entire software indus-
try is introducing larger, more complex, ultra-feature-rich (and some-

PH066-Skoudis.book Page 280 Monday, October 13, 2003 11:36 AM

Poisoning the Source 281

times feature-laden) programs with tons of security flaws. Throughout
the software industry, we see very fertile soil for an attacker to plant a
subtle Trojan horse.

Test? What Test?
Despite these security bugs, some folks still think that the testing process
employed by developers will save us and find Trojan horses before the
tainted products hit the shelves. I used to assuage my concerns with that
argument as well. It helped me sleep better at night. But there is another
dimension here to keep in mind to destroy your peaceful slumber: Easter
eggs. According to The Easter Egg Archive™, an Easter egg is defined as:

Any amusing tidbit that creators hid in their creations. They could be in computer
software, movies, music, art, books, or even your watch. There are thousands of
them, and they can be quite entertaining, if you know where to look.

Easter eggs are those unanticipated goofy little “features” squir-
reled away in your software (or other products) that pop up under very
special circumstances. For example, if you run the program while hold-
ing down the E, F, and S keys, you might get to see a dorky picture of
the program developer. The Easter Egg Archive maintains a master list
of these little gems at www.eeggs.com, with more than 2,775 software Eas-
ter eggs on record as of this writing.

What do Easter eggs have to do with Trojan horses in software? A
lot, in fact. If you think about our definition of a Trojan horse from early
in this chapter, an Easter egg is really a form of Trojan horse, albeit a
(typically) benign one. However, if software developers can sneak a
benign Easter egg past the software testing and quality assurance teams,
there’s no doubt in my mind that they could similarly pass a Trojan
horse or intentional buffer overflow as well. In fact, the attacker could
even put the backdoor inside an Easter egg embedded within the main
program. If the testing and quality assurance teams don’t notice the Eas-
ter egg or even notice it but let it through, they likely won’t check it for
such hidden functionality. To me, the existence of Easter eggs proves
quite clearly that a malicious developer or tester could put nasty hidden
functionality inside of product code and get it through product release
without being noticed.

To get a feel for an Easter egg, let’s look at one embedded within
a popular product, Microsoft’s Excel spreadsheet program. Excel is
quite famous for its Easter eggs. An earlier version of the program,

PH066-Skoudis.book Page 281 Monday, October 13, 2003 11:36 AM

282 Chapter 6 ◗ TROJAN HORSES

Excel 97, included a flight simulator game. A more recent version,
Excel 2000, includes a car-driving game called Dev Hunter, which is
shown in Figure 6.8.

For this Easter egg to work, you must have Excel 2000 (pre Service
Release 1), Internet Explorer, and DirectX installed on your computer.
To activate the Easter egg and play the game, you must do the following:

• Run Excel 2000.
• Under the File menu, select Save as Web Page.
• On the Save interface, select Publish and then click the Add

Interactivity box.
• Click Publish to save the resulting HTM page on your drive.
• Next, open the HTM page you just created with Internet

Explorer. The blank spreadsheet will appear in the middle of
your Internet Explorer browser window.

• Here’s the tricky part. Scroll down to row 2000, and over to col-
umn WC.

• Now, select the entirety of row 2000 by clicking on the 2000
number at the left of the row.

• Hit the Tab key to make WC the active column. This column will
be white, while the other columns in the row will be darkened.

• Hold down Shift+Ctrl+Alt and, at the same time, click the
Microsoft Office logo in the upper left corner of the spreadsheet.

• In a second or two, the game will run.
• Use the arrow keys to drive and steer and the spacebar to fire.

The O key drops oil slicks to confound the other cars. When it
gets dark, you can use the H key to turn on your headlights.

Figure 6.8
The game hidden inside of the Microsoft Excel 2000 spreadsheet application.

PH066-Skoudis.book Page 282 Monday, October 13, 2003 11:36 AM

Poisoning the Source 283

If the game isn’t invoked on your system, it is likely because you
have Service Release 1 or a later version of Microsoft Excel installed on
your machine, which doesn’t include the Easter egg. You could hunt
down an earlier version of Microsoft Excel, or just take my word for it.

Now, mind you, this “feature” is in a spreadsheet, an office produc-
tivity program. Depending on your mindset, it might be quirky and fun.
However, how does such a thing get past the software quality process
(which should include code reviews) and testing team? Maybe the qual-
ity assurance and testing personnel didn’t notice it. Or, perhaps the
quality assurance folks and testers were in cahoots with the developers
to see that the game got included into the production release. Either
way, I’m concerned with the prospects of a Trojan horse being inserted
in a similar way at other vendors.

Again, I’m not picking on just Microsoft here. In fact, Microsoft
has gotten better over the past couple of years with respect to these con-
cerns. New service packs or hot fixes frequently and quickly squash any
Easter eggs included in earlier releases. Microsoft’s Trusted Computing
initiative, although often derided, is beginning to bear some fruit as
fewer and fewer security vulnerabilities and Easter eggs appear to be
coming to market in Microsoft programs. However, I say this with great
hesitation, as another huge gaping egg could be discovered any day.
Still, underscoring that this is not a Microsoft-only issue, many other
software development shops have Easter eggs included in their prod-
ucts, including Apple Computer, Norton, Adobe, Quark, the open
source Mozilla Web browser, and the Opera browser. The list goes on
and on, and is spelled out for the world to see at www.eeggs.com.

The Move Toward International Development
A final area of concern regarding malicious software developers and
Trojan horses is associated with code being developed around the
world. Software manufacturers are increasingly relying on highly dis-
tributed teams around the planet to create code. And why not? From an
economic perspective, numerous countries have citizens with top-notch
software development skills and much lower labor rates. Although the
economics make sense, the Trojan horse security issue looms much
larger with this type of software development.

Suppose you buy or download a piece of software from Vendor X.
That vendor, in turn, contracts with Vendors Y and Z to develop certain
parts of the code. Vendor Z subcontracts different subcomponents of
the work to three different countries around the globe. By the time the

PH066-Skoudis.book Page 283 Monday, October 13, 2003 11:36 AM

284 Chapter 6 ◗ TROJAN HORSES

product sits on your hard drive, thousands of hands distributed across
the planet could have been involved in developing it. Some of those
hands might have planted a nasty backdoor. Worse yet, the same analy-
sis applies to the back-end financial systems used by your bank and the
database programs housing your medical records. Information security
laws and product liability rules vary significantly from country to coun-
try, with many nations not having very robust regulations at all.

This concern is not associated with the morality of the developers
in various countries. Instead, the concern deals with the level of quality
control that can be applied with limited contract and regulatory sup-
porting structures. Also, the same economic effects that are driving
development to countries with less expensive development personnel
could exacerbate the problem. An attacker might be able to bribe a
developer making $100 a week or month into putting a backdoor into
code for very little money. “Here’s 10 years’ salary … please change two
lines of code for me” might be all that it would take. We don’t want to
be xenophobic here; international software development is a reality
with significant benefits in today’s information technology business.
However, we must also recognize that it does increase the security risks
of Trojan horses or intentional software flaws.

Defenses against Poisoning the Source
How can you defend yourself from a Trojan horse planted by an
employee of your software development house? This is a particularly
tough question, as you have little control over the development of the
vast majority of the software on your systems. Still, there are things we
can all do as a community to improve this situation.

First, you can encourage your commercial vendors to have robust
integrity controls and testing regimens for their products. If they don’t,
beat them up1 and threaten to use other products. When the market-
place starts demanding more secure code, we’ll gradually start inching
in that direction. Additionally, if you use a lot of open source software,
support that community with your time and effort in understanding
software flaws. If you have the skills, help out by reviewing open source
code to make sure it is secure.

Next, when you purchase or download new software, test it first to
make sure it doesn’t include any obvious Trojan horse capability. Use

1. I don’t mean to beat them up literally. I don’t want to incite violence, for goodness sakes. By
“beat them up,” I mean give them a hard time. Challenge them. Yell at them. Let your software
development vendors know how important secure code is to your operations.

PH066-Skoudis.book Page 284 Monday, October 13, 2003 11:36 AM

Poisoning the Source 285

the software tests we described in Chapter 11 to look for unusual open
ports, strange communication across the network, and suspect files on
your machine. With a thorough software test and evaluation process in
house, you might just find some Trojan horses in your products before
anyone else notices them. Communicate this information to the vendor
to help resolve the issue.

If your organization develops any code in house, make sure your
software testing team is aware of the problems of Easter eggs, Trojan
horses, and intentional flaws. Sadly, software testers are often viewed as
the very bottom tier of importance in the software development hierar-
chy, usually getting little respect, recognition, or pay. Yet, their impor-
tance to the security of our products is paramount. Train these folks so
that they can quickly spot code that doesn’t look right and report it to
appropriate management personnel. Reward your testers when they find
major security problems before you ship software. Be careful, though.
You don’t want to have testers working with developers to game the sys-
tem and plant bugs so they can make more money. That’s like having a
lottery where people can print their own winning tickets. Carefully mon-
itor any bug reward programs you create for such subterfuge.

Furthermore, ensure that your testers and developers can report
security concerns without reprisals from desperate managers trying to
meet a strict software deadline. Depending on the size of your organiza-
tion and its culture, you might even have to introduce an anonymous
tipline for your developers to report such concerns. By giving this
much-needed additional attention to your software testers, you can help
to squelch problems with Trojan horses as well as improve the overall
quality of your products.

To infuse this mindset throughout the culture of your software
development teams, consider transforming your test organization into a
full-fledged quality assurance function. The quality assurance organiza-
tion should be chartered with software security responsibility as a facet
of quality. Build your quality assurance process into the entire cycle of
software development, including design, code reviews, and testing. You
should also impose careful controls on your source code, requiring
developers to authenticate before working on any modules. All changes
should be tracked and reviewed by another developer. Only with thor-
ough quality processes and source code control can we improve the sit-
uation associated with untrustworthy source code.

PH066-Skoudis.book Page 285 Monday, October 13, 2003 11:36 AM

286 Chapter 6 ◗ TROJAN HORSES

Co-opting a Browser: Setiri
You know, attackers don’t have to poison source code to implement a tro-
jan. Instead, they can co-opt software already installed on a system. As we
saw in the section on deceptive naming, impersonating an Internet browser
is a very useful Trojan horse technique, but the issue goes way beyond
mere name games. In February 2002, two very bright developers pushed
this trend of Trojanizing browsers to the extreme by creating a tool that
they later named Setiri. After installing Setiri on a victim machine, a bad
guy can remotely control the system, executing arbitrary commands on the
victim’s box. In that regard, Setiri is a pretty standard backdoor, like many
of the specimens we discussed throughout Chapter 5. However, the tool
goes a lot further than most backdoors and Trojan horses in the way that it
hides the communication channel with the attacker. These extreme hiding
techniques make detecting and blocking the backdoor very challenging,
and finding the actual location of the attacker highly difficult.

Setiri represents an extremely stealthy Trojan horse backdoor that
works by co-opting the Internet Explorer browser included on most
Windows machines. Setiri hasn’t been released to the public yet, thank-
fully. However, its authors, Roelof Temmingh and Haroon Meer, have
demonstrated their code at a variety of information security and hacker
conferences. Others have independently implemented similar ideas,
such as the IEEvents.pl tool by Dave Roth at www.roth.net/perl/scripts/
scripts.asp?IEEvents.pl. In fact, the very clever techniques implemented
in Setiri are just starting to trickle down into other tools that are being
used in real-world attacks.

Setiri Components
So, what are these clever techniques? First, the Setiri code consists of
two components, as shown in Figure 6.9: the connection broker code
and the Setiri backdoor code. The connection broker is installed on a
Web server of the attacker’s choosing anywhere on the Internet. This
system could be the attacker’s own Web server, or, better yet (from the
attacker’s perspective), it could be on someone else’s Web server con-
quered by the attacker. The connection broker code is simply a few
Common Gateway Interface (CGI) scripts, installed on the Web server.
These scripts do not impair the normal functioning of the Web server,
and could be added to any Web server the attacker has conquered or
has been given the privileges necessary to write these scripts. As we
shall see, the connection broker will be used to temporarily hold the
attacker’s commands and responses, as well as obscure where the

PH066-Skoudis.book Page 286 Monday, October 13, 2003 11:36 AM

Co-opting a Browser: Setiri 287

attacker comes from. Attackers use the connection broker to launder
their actual location on the Internet, making them virtually untraceable.

The second component of Setiri is the backdoor itself, which is
installed on the victim’s computer, shown with a sad face in Figure 6.9.
In step 1, the attacker could install this code on the victim machine by
tricking a user into running an executable built with a wrapper tool.
Alternatively, attackers could install the Setiri backdoor on the victim
themselves, given physical access to the machine or through any attack
that executes a command on the victim machine, such as a buffer over-
flow exploit.

Setiri Communication
The attacker accesses the connection broker using a standard browser
on the attacker’s machine. All communication occurs via the HTTPS
protocol, which encrypts the data in transit across the network. Fur-
thermore, the attacker uses an anonymizing Web surfing service, such
as the one available at www.anonymizer.com, to strip all information
going to the connection broker about where the attacker is located.
These anonymizing services hide a Web surfer’s location from Web
servers by removing all information associated with the browser, such

Figure 6.9
The Setiri Trojan horse browser architecture: This tool represents a new level of Trojan
horse stealthiness.

Attacker

Connection
Broker

(Any Web server
that includes the

attacker’s CGI scripts)

Victim Attacker somehow installs the
Setiri backdoor on victim machine.

HTTPS

HTTPSHTTPS

HTTPS

Setiri backdoor uses
OLE to communicate

with the Internet
Explorer browser,

bypassing a personal
firewall. 1

3

2Anonymizer
Anonymizer

FIREWALL

PH066-Skoudis.book Page 287 Monday, October 13, 2003 11:36 AM

288 Chapter 6 ◗ TROJAN HORSES

as the source IP address, browser type, and any user profiling informa-
tion stored in cookies. Essentially, these services function as intelligent
Web proxies that users surf through to hide their identity and location.

In step 2 of Figure 6.9, the attacker surfs to the connection broker
and types commands into HTML forms generated by the CGI scripts
on the connection broker machine. These commands will be executed
later by the Setiri backdoor. There are only three commands supported
by Setiri:

• Upload a file.
• Execute a program.
• Download a file.

That’s it! Although these commands might seem pretty simple,
they really are all an attacker needs to have complete domination of a
victim system. With the ability to upload files, an attacker can install a
variety of other attack tools on the victim machine, such as the Netcat
program we discussed in Chapter 5. The attacker can also execute any
local commands on the victim machine and store the results in a file on
the victim. Then, by downloading the file, the attacker can get the
results of the commands.

Things get really interesting in step 3. To retrieve the attacker’s
commands from the connection broker, the Setiri backdoor code uses
Microsoft’s Object Linking and Embedding (OLE) technology to inter-
act with the Internet Explorer browser on the victim. OLE is a frame-
work that lets different objects and applications running on a machine
communicate with each other. The Setiri backdoor uses OLE to send
messages to Internet Explorer running in an invisible mode, telling the
browser to surf to the connection broker and retrieve a command. The
Internet Explorer browser supports both visible and invisible window
panes on the system’s GUI. Invisible browser windows are a rather
dubious function that allows the browser to access information from the
Internet using a whole new window without crowding the user’s screen.
Some Web applications use these invisible panes to make connections,
run scripts, or conduct other activities that don’t need to interact with
the user. The Setiri backdoor uses an invisible browser window to poll
the connection broker for commands at a periodic interval configured
by the attacker, usually every 60 seconds or so. In effect, the backdoor
on the victim machine uses Internet Explorer to surf out to the connec-
tion broker to pick up the attacker’s commands.

So far, you might be thinking that this sounds like a pretty standard
backdoor, like those we discussed in Chapter 5. “What’s the big deal?”

PH066-Skoudis.book Page 288 Monday, October 13, 2003 11:36 AM

Co-opting a Browser: Setiri 289

you might ask. The big deal involves Setiri’s use of Internet Explorer to
retrieve commands, and how this operation bypasses many widely used
security tools. Many users and organizations are deploying personal fire-
walls on desktop and laptop systems to limit the flow of data into and out
of those machines. As we saw in Chapter 5, personal firewalls block unau-
thorized access by controlling which applications can send and/or receive
data on the network. Many personal firewalls include a list of applications
that can use the network on specific ports; all others are blocked.

Here’s the rub. Most personal firewalls are configured to allow an
Internet browser to access the network. After all, without allowing the
browser to access the Internet, the user couldn’t surf the Internet,
severely limiting the usefulness of the computer. However, as long as the
victim machine’s browser can access the Internet, the Setiri backdoor
can use the browser to reach across the network and get the attacker’s
commands from the connection broker! In this way, Setiri bypasses per-
sonal firewalls, Network Address Translation (NAT) devices, proxies,
and stateful firewalls by running an invisible browser on the victim’s PC.
These security components do not know whether a user is accessing the
network or the Setiri backdoor is retrieving commands from the connec-
tion broker. As an added bonus, Setiri hides the victim’s location from
the connection broker by using the Anonymizer Web site as well. To
completely confound the victim, all communication between the Setiri
backdoor and connection broker is encrypted using HTTPS.

Let’s analyze what the victims of this Setiri Trojan horse would see.
First, suppose someone installs the Setiri CGI scripts on your Web
server. You’d see a few extra scripts in your CGI directory, as well as
Web access via HTTPS through the Anonymizer service. You wouldn’t
be able to determine the location of the attacker or the Setiri backdoor.

Next, consider what the backdoor victim sees. On the end system
running the backdoor, the victim would not be able to see the Setiri cli-
ent or the invisible browser on the GUI, as each runs hidden in the
background. Fport wouldn’t show the Setiri client, as it isn’t receiving or
sending data on the network itself. It’s only using OLE to communicate
with the browser, which is expected to be using TCP ports to transmit
data. Fport can show a browser process communicating across the net-
work, but that’s a pretty common occurrence. From a network perspec-
tive, all data would be masked via HTTPS. However, the network
firewall on the victim’s machine would be able to see the connection
going to the Anonymizer Web site. This latter element is really the only
item that indicates something fishy might be going on, depending on
how commonly the Anonymizer Web site is used at this organization.

PH066-Skoudis.book Page 289 Monday, October 13, 2003 11:36 AM

290 Chapter 6 ◗ TROJAN HORSES

Setiri Defenses
So how do you defend against Setiri and other tools that borrow its
ideas? To get started, you should configure your firewall and/or outgo-
ing Web proxies to block access to various anonymizing Web sites, such
as those shown in Table 6.5. The vast majority of Internet users in your
organization have no business masquerading their Internet browsing
activities. Now, depending on your particular industry and individual
job roles, a handful of users in your organization might in fact require
access to anonymizing services. For instance, your organization might
have some select employees whose jobs require them to visit the com-
petitions’ Web sites, foreign government sites, or even hacking tool dis-
tribution centers to conduct research covertly. You can configure your
filters to allow this limited number of employees to access specific sanc-
tioned anonymizer sites.

Table 6.5
A Brief List of Anonymizing Web Sites*

Service Name URL Services Provided

Anonymizer www.anonymizer.com This service was one of the first
anonymizers, and remains one of the
most popular. It offers free anonymizing
services, which are extremely slow, as
well as much higher bandwidth
commercial services. Both HTTP and
HTTPS access are available.

idMask www.idmask.com This site provides free and commercial
services, but currently supports only
HTTP (not HTTPS).

SamAir Resources www.samair.ru/proxy/ This free site maintains a giant list of
thousands of free, anonymous proxies
located around the world, supporting
both HTTP and HTTPS access.

Anonymity 4 Proxy www.inetprivacy.com/a4proxy/ This site provides commercial software
that a user loads onto a machine that
automatically directs all HTTP and
HTTPS requests to an updated list of
free proxy services.

PH066-Skoudis.book Page 290 Monday, October 13, 2003 11:36 AM

Co-opting a Browser: Setiri 291

To accomplish this filtering, you can block individual sites by load-
ing their domain name and/or IP address ranges into your firewall or
Web proxies. Alternatively, you could deploy software that filters out
Web requests for sites that your users shouldn’t be accessing, such as
porn, games, hacking sites, and anonymous Web services. Many such
tools are available, but the market leader for such Web filtering software
is the commercial tool SurfControl, which includes a specific filtering
category called “Remote Proxies.” SurfControl includes a nifty free fea-
ture on its Web site that allows anyone on the Internet to check if a
given URL is included in their filtering rules and to determine which
type of rule the given Web site triggers. You can check out this feature at
http://mtas.surfcontrol.com/mtas/MTAS.asp. I’ve frequently used this free
service to get a feel for the nature of some URLs without having to actu-
ally surf to the possibly malicious Web site.

Of course, none of these filtering solutions will stop access to
every single anonymous Web service on the planet. Highly intelligent
users and attackers continuously find creative ways to dodge such fil-
ters. Vast numbers of small, private Web anonymizers are continually
being added to the Internet, as indicated by an amazingly huge list of
these sites at www.samair.ru/proxy/. An attacker could even reconfigure
a Setiri-like tool so that it surfs directly to the connection broker
instead of using an anonymizer. So, although you cannot use filtering
to completely squelch this problem, you’ll still get rid of much of the riff-
raff by strictly controlling access to the most popular anonymizing ser-
vices. Also, when a user tries to get access to one of these popular
blocked sites, the log of that attempt will alert you in advance to a pos-
sible problem with that employee. You can then, with appropriate writ-

The Cloak www.the-cloak.com This free service offers both HTTP and
HTTPS access.

JAP anon.inf.tu-dresden.de This is another anonymous proxy,
hosted out of Germany.

Megaproxy™ www.megaproxy.com This commercial anonymizer offers
monthly or quarterly subscriptions.

* This list is by no means exhaustive, but it lists the most popular Web sites that strip off the source IP
address and other ways of identifying the source of Web traffic.

Table 6.5
A Brief List of Anonymizing Web Sites* (Continued)

Service Name URL Services Provided

PH066-Skoudis.book Page 291 Monday, October 13, 2003 11:36 AM

292 Chapter 6 ◗ TROJAN HORSES

ten permission from your Human Resources (HR) organization, keep a
closer watch on other potentially malicious activities associated with
that employee. Make sure HR signs off on monitoring that targets any
individual person, though, or else you could get into serious trouble
both inside your organization and possibly with the law for privacy
violations!

In addition to blocking anonymizing Web sites, other Setiri
defenses include keeping your antivirus tools widely deployed and up
to date, as we discussed in detail in Chapter 2. Setiri has not yet been
released publicly, so there aren’t any antivirus detection signatures for it
at this point. However, antivirus vendors do a pretty decent job at keep-
ing their tools up to date with the latest malicious software. I expect
antivirus tool vendors to release signatures for Setiri soon after a public
release. Before that time, however, there are a lot of other Trojan horse
backdoors with lesser functionality than Setiri that antivirus tools can
detect today. With up-to-date antivirus tools, you can prevent their
installation and detect attackers’ attempts to use these tools in your
organization.

Another possible longer term defense against Setiri involves
changes to the fundamental functionality of the Internet Explorer
browser itself. Sadly, you can’t make these changes yourself, because
they require the browser vendor to modify source code and release a
new browser version. Remember, Setiri works by creating an invisible
browser window pane to retrieve commands across the network.

If Microsoft altered Internet Explorer to limit the actions of an
invisible browser, a significant component of this problem would go
away. Why should an invisible browser window be able to surf any-
where on the Internet in the first place? This capability seems to have
very limited benefit and enormous security risks. There are rumors in
the computer underground that Microsoft is considering implementing
such a solution in future versions of Internet Explorer, although
Microsoft hasn’t made a public comment on the issue as of this writing.
In the meantime, make sure you keep your browsers patched, applying
the latest service packs and fixes regardless of which browser you use
(Internet Explorer, Conqueror, Netscape, Mozilla, Opera, Lynx, etc.)

Another interesting option for dealing with code like Setiri involves
a concept we originally discussed in Chapter 4, namely cross-site script-
ing. We might be able to turn the tide against the bad guys and utilize
cross-site scripting to undermine their own technology and pierce the
cloaking features of Setiri. Suppose you discover a Setiri-like program
running on one of your machines. You could send a little snippet of Java-

PH066-Skoudis.book Page 292 Monday, October 13, 2003 11:36 AM

Hiding Data in Executables: Stego and Polymorphism 293

Script to the connection broker as the result of a command. When the
attacker retrieves the results of the command from the connection broker
using a browser, the JavaScript would run in the attacker’s browser itself,
provided that the attacker’s browser is configured to automatically run
JavaScript. We could create a JavaScript that e-mails law enforcement
agents a message saying, “Come and arrest me, big guy!” This e-mail, cre-
ated by the JavaScript running in the attacker’s browser, would originate
at the attacker’s machine, and could include information about the
attacker, such as the source address. Although I’ve never seen this tech-
nique used by law enforcement, and significant civil liberties issues are
involved, it still remains an intriguing possibility.

Hiding Data in Executables: Stego and Polymorphism
So far in this chapter, we have focused on Trojan horses that masquer-
ade some sort of remote control or command shell backdoor, but that’s
not the full extent of what Trojan horse techniques could disguise.
Beyond hidden executables for remotely taking over a system, attackers
could embed hidden messages inside programs. The program looks like
a nice, happy executable, but in fact contains a hidden message. There-
fore, this executable fits our definition of a Trojan horse, and also acts as
a covert channel for communication.

The art and science of hiding messages is called steganography, from
the Greek words for hidden writing. Steganography is often referred to
as stego for short. To get a feel for its use, consider this scenario. Suppose
a military general wants to send the message “Attack at dawn” to
another general without their mutual adversary knowing about their
communication. Of course, they could just encrypt the message so the
adversary wouldn’t know for sure whether the message says “Attack at
dawn” or “Gee, you smell funny.” Still, by analyzing the traffic between
the two generals and seeing the encrypted message sent across the net-
work, the adversary could figure out that something significant is afoot.

Traditional cryptography mathematically transforms the message
so the adversary cannot read its contents, but can still see that some
form of information is being exchanged. Steganography conceals the
message so that the adversary doesn’t even know that there is data
being exchanged in the first place. Of course, clever generals would use
steganography to hide a message and cryptography to transform the
message just in case it is discovered. Detecting and eliminating all such
covert communication is an extremely difficult endeavor.

PH066-Skoudis.book Page 293 Monday, October 13, 2003 11:36 AM

294 Chapter 6 ◗ TROJAN HORSES

Steganographic techniques have been used for thousands of years.
However, in the field of computer science, they’ve really gotten a lot
more attention in just the last few years. Typical computer steganogra-
phy techniques hide information in pictures, such as BMP, JPEG, or
GIF files. Other techniques hide information in sound files, such as
MP3, WAV, or other formats. However, newer techniques stash infor-
mation inside of computer executable programs without altering the
program’s function or size.

Hydan and Executable Steganography
In February 2003, Rakan El-Khalil released a program called Hydan to
stash messages inside of executable programs written for x86 proces-
sors, such as Intel’s or AMD’s popular chips. The tool stores hidden
information inside of executables for the Linux, Windows, NetBSD,
FreeBSD, and OpenBSD operating systems. Available at www.crazy-
boy.com/hydan, Hydan implements this steganography by using poly-
morphic coding techniques. There’s that fancy-sounding word again:
polymorphic. We saw it before in Chapter 2 associated with viruses,
and in Chapter 3 on worms. Remember, polymorphic code simply
means that you can have multiple different pieces of computer code
that all do the exact same thing. By carefully selecting certain variations
of that functionally equivalent code, we can transmit a message in the
executable. In other words, there’s more than one way to skin a cat, and
Hydan embeds messages by selecting specific cat-skinning techniques.
Figure 6.10 illustrates how Hydan works.

The process starts with an executable program, such as a word
processor, backdoor, or operating system command. Really, any x86
executable will do. Hydan’s not too picky. Hydan also needs some
secret information to hide, such as a message, a picture, some other
executable code, or anything else. The user feeds both the executable
and the secret information into the Hydan tool. Hydan prompts the
user, asking for a pass phrase that can be used to encrypt the message
before the stego process ensues. Hydan first encrypts the message with
the blowfish encryption algorithm using this passphrase as an encryp-
tion key.

Hydan then works its magic by embedding the encrypted secret
information inside the executable program. For this embedding, Hydan
defines two different sets of CPU instructions that have exactly the same
function, Set 0 and Set 1. For example, when you add two numbers, you
can use the add or subtract instructions. You could add X and Y, or you

PH066-Skoudis.book Page 294 Monday, October 13, 2003 11:36 AM

Hiding Data in Executables: Stego and Polymorphism 295

could subtract negative Y from X. If you remember your high school
algebra class, these two different instructions have the exact same result.
So, we could put the add instruction into Set 0 and the subtract
instruction into Set 1. Hydan takes the original executable and rebuilds
it by choosing instructions from Set 0 or Set 1 based on the particular
bits from the secret information to hide. It looks for the first instruction
in the executable that is represented in one of the sets, such as an add
instruction. If a given bit to be hidden is a zero, we will choose an
instruction from the Set 0 group of instructions to replace the existing
instruction. If the bit is a one, we will choose a functionally equivalent
instruction from Set 1.

Then, after the entire code is rebuilt with instructions from these
two sets, the new executable is rewritten to the hard drive. Because each
instruction in Set 0 is chosen so that it has the same size as its function-
ally equivalent counterpart in Set 1, the resulting executable program
has exactly the same size, and exactly the same function! However, it is
a brand new piece of code. Most important, by using Hydan again in
reverse mode, the original secret information can be retrieved from the
resulting executable if the proper passphrase is typed in.

Hydan’s stego technique, implemented with polymorphic instruc-
tions, isn’t the only way to hide messages, of course. Data can be
embedded inside of nonexecutable files as well, such as pictures,
sounds, and other data types. For these other types of files, the stego

Figure 6.10
How Hydan embeds data using polymorphic coding techniques.

Encryption
Passphrase

Two sets of functionally equivalent instructions

Original
executable

Message
to be hidden

1
0
1
.
.
.

MOV 4, eax
ADD ecx, 2
MOV 0, ebx
ADD ecx, ebx
ADD ecx, 4
DEC eax
.
.
.

New executable with
embedded hidden message

MOV 4, eax
SUB ecx, -2
MOV 0, ebx
ADD ecx, ebx
SUB ecx, -4
DEC eax
.
.
.

Set0
ADD X,Y

...

Set1
SUB X,-Y

...

Hydan
1

0
1

Instruction
represents:

PH066-Skoudis.book Page 295 Monday, October 13, 2003 11:36 AM

296 Chapter 6 ◗ TROJAN HORSES

technique might alter the color or sound frequency distribution of the
image or other mathematical properties to hide data, using techniques
analogous to Hydan’s instruction substitution. Because our focus in this
book is on malware (e.g., malicious programs), we’ve addressed hiding
data inside of programs. For more information about stego techniques
for other types of files, I highly recommend that you consult Eric Cole’s
book, Hiding in Plain Sight [8].

Hydan in Action
Look at Figure 6.11 to get a feel for Hydan in action on Linux. The
Windows version of Hydan is virtually identical to this Linux version.
In this example, I created a small file called hideme.txt that contains my
super-secret text. I then used Hydan to embed hideme.txt inside a GUI
calculator named xcalc. Note that it put 40 bytes into the file, but it
could have stored up to 72 bytes. The total storage capacity of an exe-
cutable is based on the number of adds and subtracts, as well as other

Figure 6.11
Hydan in action on Linux: Hydan encrypts and hides a message inside of a calculator
program.

Create file with
secret text.

Hide secret text
inside a calculator.

Yet, the
secret message is

password-protected
inside the new

calculator.

And, the new
calculator has the

exact same
functionality as

the original!

The size of the
new calculator is
the same as the

original.

PH066-Skoudis.book Page 296 Monday, October 13, 2003 11:36 AM

Hiding Data in Executables: Stego and Polymorphism 297

related polymorphic instructions, in that executable. After it ran, Hydan
generated a new copy of the xcalc tool, which I named xcalc-steg. This
version is exactly the same size (29,784 bytes) and has the same func-
tionality as the original xcalc. I ran a copy of the new calculator so you
can see that it is, in fact, a calculator. However, this xcalc-steg also
includes my hidden super-secret message. By using the hydan-decode
routine, I can recover my original message, the contents of hideme.txt.
So, the new calculator program is now a Trojan horse: It still runs as a
program, but I could send this program to other people to transmit my
secret information.

Hydan is capable of stashing one byte of the secret information in
approximately 150 to 250 bytes of executable code, depending on the
particular instructions used by that executable. That’s not nearly as effi-
cient as more traditional stego techniques for hiding data inside of pic-
tures (which often get up to one byte hidden in 20 bytes of image). Still,
it’s not a bad ratio for hiding data.

It’s also important to note that Hydan does alter the statistical dis-
tribution of instructions used in the Trojan horse executable. By creating
a histogram showing how frequently various instructions are used in
that executable, an investigator could determine that the program just
doesn’t look right. For an analogy, think of the use of various letters of
the alphabet in standard English text: There are many uses of e and t,
but not very many uses of q or z. We could graph the relative occur-
rences of letters to create a histogram. By analyzing the histogram of a
sample file, we could get a good feel for whether the sample is English
text or something else, such as an encrypted file, an executable, or even
non-English text. If the histogram matches what we’d expect for the
alphabetic distribution for English, it’s probably an English text file.

You could do a similar analysis with x86 instructions. “Normal”
programs have a certain predictable usage pattern for various instruc-
tions. There are lots of add and move instructions, but somewhat fewer
subtracts. In this way, an analyst or automated tool might be able to
detect the presence of hidden data in an executable without knowing
what that hidden data is. This statistical analysis technique would cer-
tainly work, but no current tool is available for such analysis on execut-
able programs. For similar types of analysis of images with hidden
data, however, there is a popular analysis tool called StegDetect by
Niels Provos available at www.outguess.org/detection.php.

You might be wondering what an attacker could do with a Hydan-
generated program containing hidden text. There are several possibili-
ties, including the following:

PH066-Skoudis.book Page 297 Monday, October 13, 2003 11:36 AM

298 Chapter 6 ◗ TROJAN HORSES

• Hiding Information for Covert Communication: Two people might
have login access to a single machine somewhere on the Inter-
net. One user could cram secret information inside a user pro-
gram, service, or even a kernel module and install the resulting
program on the shared machine. The other user could log in,
analyze the appropriate executable, and retrieve the message.
An eavesdropper looking to see if the two parties are communi-
cating might not notice this subtle covert channel.

• Watermarking or Signing an Executable: By using Hydan, a soft-
ware developer could mark an executable with an identification
code unique to that instance of the program so that a copy of the
program can be easily correlated with the original. Further-
more, by using Hydan to embed a digital signature inside the
executable, a user can verify that he or she was the author of an
executable. Suppose I’m a software vendor. If I ever want to
prove that I was the one who compiled a particular version of a
program, I can digitally sign a document saying so, and then
embed this document inside of the executable itself. When I
want to prove that I compiled the executable, I could extract the
document and show that it was signed with my own key. This
technique could be applied to copyrighting mechanisms and
digital rights management for executables.

• Evading Signatures: Finally, and perhaps most ominously, the
technique could be extended to implement evasion of signature-
based antivirus tools and network-based IDS tools. Many antivi-
rus and IDS tools look for specific sequences of bits to identify
malicious software. By using the polymorphic techniques
included in Hydan, an attacker can morph an executable so that
it no longer matches the signatures and therefore evades detec-
tion. Simply embedding a different hidden message totally alters
an executable so it won’t match an existing signature. It’s impor-
tant to note that Hydan doesn’t yet do this. It lacks enough differ-
ent types of polymorphic substitutions to do effective signature
evasion. When Hydan is used, enough of the original program
survives so that signature matching still works. However, in the
near future, these Hydan concepts could be extended to achieve
true signature evasion … stay tuned!

PH066-Skoudis.book Page 298 Monday, October 13, 2003 11:36 AM

Conclusions 299

Hydan Defenses
To check if someone has been altering your critical executables with a
tool like Hydan, you really need to use a file integrity checking tool,
such as Tripwire or AIDE as we’ve highlighted in Chapters 2 and 5.
We’ll discuss these tools briefly here, but will cover them in far more
depth in Chapter 7 when we deal with RootKits. At this point, though,
we need to note that these file integrity checking tools create a database
of hashes of your critical system files, which you can store on secure
media (e.g., a write-protected floppy disc or write-once CD-ROM).
Then, you run a check against this database on a regular basis (every
hour, day, or week) to see if someone has altered your files. If you spot
changes, you need to figure out whether a system administrator or an
attacker made them. If an attacker tries to use Hydan to embed data in
any of your critical executables, you’ll notice the change the next time
you run the file integrity checker. Of course, this technique will only
detect problems associated with those programs that you actually ana-
lyze with the file integrity checking tool, such as your operating system
commands and important applications. Changes to any other programs
on your system would fly under your file integrity checking radar.

Conclusions
In battle, soldiers use camouflage and stealth to evade detection by their
adversaries and gain the upper hand in a conflict. Trojan horses provide
a similar kind of cover in the world of computer attacks. From the sim-
ple name games we discussed at the start of this chapter to the highly
sophisticated Setiri methods of co-opting browsers, Trojan horses let
bad guys gain access to and operate on your computer systems without
your knowledge. Because they can be so effective, we see numerous
attacks in the wild using the techniques described throughout this chap-
ter. Indeed, more often than not, attackers use at least some form of Tro-
jan horse subterfuge to hide.

However, if you look at the Trojan horse techniques described in
this chapter, they all rely on adding software to the victim machine to
accomplish the attacker’s goal. In our discussion so far, the attackers
place new programs on the victim machine and disguise them as legiti-
mate code. In the next chapter, we’ll move beyond this use of addi-
tional disguised programs into the area of RootKits, an even nastier
form of Trojan horse. With a RootKit, attackers don’t add new pro-
grams to your machine. Instead, they replace or modify the existing

PH066-Skoudis.book Page 299 Monday, October 13, 2003 11:36 AM

300 Chapter 6 ◗ TROJAN HORSES

programs on your box, especially those associated with your operating
system. By supplanting your existing programs with malicious code,
RootKits are far more insidious than anything we’ve covered so far. So,
go grab a latte, fasten your seat belt, and get ready for RootKits.

Summary
This chapter discussed Trojan horses, which are computer programs
that appear to be benign, but really include hidden malicious function-
ality. The term Trojan is often abused, being applied to any type of
backdoor. However, the term should only apply if that backdoor is dis-
guised as some benign program. Attackers use Trojan horses to sneak
onto systems and hide there, without triggering the suspicion of admin-
istrators or users.

One of the simplest Trojan horse strategies involves giving a mali-
cious program the name of a benign program. By including many
spaces between the program’s name and suffix on a Windows machine,
such as “just_text.txt .exe,” an attacker can trick some users into
running an executable application, thinking it’s just text. Also, attackers
choose program suffixes or names from those programs that would nor-
mally be installed and running on the victim machine, such as init,
inetd, iexplore, and notepad. To defend against this technique, system
administrators must become very familiar with their systems, so that
they know what programs should normally be running on them. With
this detailed familiarity, a counterfeit can be spotted and investigated.
The Fport tool helps this process by showing which programs are listen-
ing on TCP and UDP network ports. Additionally, filter .EXE, .COM,
.SCR, and other related programs at your Internet gateway.

Attackers also use wrapping programs to combine two or more
executables into a single package. The victim is duped into thinking
that the combined package is sweet and innocent. When it’s run, how-
ever, the package first installs the malicious code, and then executes a
benign program. Wrappers let an attacker create Trojan horses by mar-
rying malicious code to benign programs, without writing a single line
of code themselves. Antivirus tools are one of the best defenses against
wrapper programs.

Attackers are also increasingly targeting software distribution
channels to distribute Trojan horses, including snail-mail and Web site
downloads. The main OpenSSH, sendmail, and tcpdump Web sites
were all conquered by an attacker and used to distribute malicious

PH066-Skoudis.book Page 300 Monday, October 13, 2003 11:36 AM

References 301

code. The Trojan horse built into the tcpdump distribution communi-
cated with an attacker across the network and supported shoveling a
shell back to the attacker. To defend against this type of attack, make
sure you check the integrity of all downloaded software across multiple
mirrors using MD5 hashes. Also, test software before putting it into pro-
duction to look for squirrelly functionality, such as backdoor listeners
and sniffers.

If attackers get jobs with or break into software development firms,
they could even Trojanize the source code of a product, infecting unsus-
pecting users of the code with malware. This trend is exacerbated by
the enormous complexity of today’s software, the limitations of software
testing (as exemplified by the large number of Easter eggs), and the
move toward international software development. To defend against
this attack vector, make sure you have strong integrity controls and test
regimens for software used in your environment.

The Setiri tool is an extremely powerful Trojan horse. Although it
was never publicly released, concepts from Setiri are trickling into other
Trojan horse tools. The Setiri code runs an invisible Internet Explorer
window to send requests for commands through a personal firewall and
any network filtering devices to a connection broker. The attacker
plants commands on the connection broker for the Setiri victim to exe-
cute. To defend against Setiri and related tools, make sure to keep anti-
virus programs up to date and consider blocking access to the more
popular anonymizing Web surfing proxies.

The Hydan tool embeds messages of any kind inside of executable
programs using polymorphic coding techniques. Hydan stores data by
selecting from different sets of functionally equivalent instructions. To
defend against tools like Hydan, guard the integrity of your critical sys-
tem files using tools such as Tripwire and AIDE.

References
[1] “Win2K Processes,” http://users.aber.ac.uk/anw1/processes.html.
[2] David A. Solomon and Mark E. Russinovich, Inside Microsoft Win-

dows 2000, Third Edition, Microsoft Press, 2000.
[3] CERT Coordination Center, “Wuarchive Ftpd Trojan Horse,”

April 6, 1994, www.cert.org/advisories/CA-1994-07.html.
[4] CERT Coordination Center, “Trojan Horse Version of TCP Wrap-

pers,” January 21, 1999, www.cert.org/advisories/CA-1999-01.html.

PH066-Skoudis.book Page 301 Monday, October 13, 2003 11:36 AM

302 Chapter 6 ◗ TROJAN HORSES

[5] Ken Thompson, “Reflections on Trusting Trust,” Communication of
the ACM, Vol. 27, No. 8, August 1984, pp. 761–763, www.acm.org/
classics/sep95/.

[6] Watts S. Humphrey, “Bugs or defects?” http://interactive.sei.cmu.edu/
news@sei/columns/watts_new/1999/March/watts-mar99.htm#humphrey.

[7] Kathryn Balint, “Software Firms Need to Plug Security Holes, Crit-
ics Contend,” San Diego Union-Tribune, www.signonsandiego.com/
news/computing/personaltech/20020128-9999_mz1b28securi.html.

[8] Eric Cole, Hiding in Plain Sight: Steganography and the Art of Covert
Communication, Wiley, 2003.

PH066-Skoudis.book Page 302 Monday, October 13, 2003 11:36 AM

