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Preface to Cryptography 
Engineering 

Most books cover what cryptography is-what current cryptographic designs 
are and how existing cryptographic protocols, like SSL/TLS, work. Bruce 
Schneier's earlier book, Applied Cryptography, is like this. Such books serve 
as invaluable references for anyone working with cryptography. But such 
books are also one step removed from the needs of cryptography and security 
engineers in practice. Cryptography and security engineers need to know 
more than how current cryptographic protocols work; they need to know how 
to use cryptography. 

To know how to use cryptography, one must learn to think like a cryp­
tographer. This book is designed to help you achieve that goal. We do this 
through immersion. Rather than broadly discuss all the protocols one might 
encounter in cryptography, we dive deeply into the design and analysis of 
specific, concrete protocols. We walk you-hand-in-hand-through how we 
go about designing cryptographic protocols. We share with you the reasons 
we make certain design decisions over others. and point out potential pitfalls 
along the way. 

By learning how to think like a cryptographer, you will also learn how to 
be a more intelligent user of cryptography. You will be able to look at existing 
cryptography toolkits, understand their core functionality, and know how 
to use them. You will also better understand the challenges involved with 
cryptography, and how to think about and overcome those challenges. 

This book also serves as a gateway to learning about computer security. 
Computer security is, in many ways, a superset of cryptography. Both com­
puter security and cryptography are about designing and evaluating objects 
(systems or algOrithms) intended to behave in certain ways even in the presence 

xxiii 
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of an adversary. In this book, you will learn how to think about the adversary 
in the context of cryptography. Once you know how to think like adversaries, 
you can apply that mindset to the security of computer systems in general. 

History 

This book began with Practical Cryptography by Niels Ferguson and Bruce 
Schneier, and evolved with the addition of Tadayoshi Kohno-Yoshi-as 
an author. Yoshi is a professor of computer science and engineering at the 
University of Washington, and also a past colleague of Niels and Bruce. Yoshi 
took Practical Cryptography and revised it to be suitable for classroom use and 
self-study, while staying true to the goals and themes of Niels's and Bruce's 
original book. 

Example Syllabi 

There are numerous ways to read this book. You can use it as a self-study 
guide for applied cryptographic engineering, or you can use it in a course. A 
quarter- or semester-long course on computer security might use this book as 
the foundation for a 6-week intensive unit on cryptography. This book could 
also serve as the foundation for a full quarter- or semester-long course on 
cryptography, augmented with additional advanced material if time allows. 
To facilitate classroom use, we present several possible syllabi below. 

The following syllabus is appropriate for a 6-week intensive unit on cryp­
tography. For this 6-week unit, we assume that the contents of Chapter 1 are 
discussed separately, in the broader context of computer security in general. 

- Week 1: Chapters 2, 3, and 4; 

- Week 2: Chapters 5, 6, and 7; 

- Week 3: Chapters 8, 9, and 10; 

- Week 4: Chapters 11, 12, and 13; 

- Week 5: Chapters 14, 15, 16, and 17; 

- Week 6: Chapters 18, 19, 20, and 21. 

The following syllabus is for a 1 O-week quarter on cryptography engineering. 

- Week 1: Chapters 1 and 2; 

- Week 2: Chapters 3 and 4; 



- Week 3: Chapters 5 and 6; 

- Week 4: Chapters 7 and 8; 

- Week 5: Chapters 9 and 10; 

- Week 6: Chapters 11 and 12; 

- Week 7: Chapters 13 and 14; 

- Week 8: Chapters IS, 16, and 17; 

- Week 9: Chapters 18, 19,20; 

- Week 10: Chapter 21. 

Preface to Cryptography Engineering xxv 

The following syllabus is appropriate for schools with 12-week semesters. It 
can also be augmented with advanced materials in cryptography or computer 
security for longer semesters. 

- Week 1: Chapters 1 and 2; 

- Week 2: Chapters 3 and 4; 

- Week 3: Chapters 5 and 6; 

- Week 4: Chapter 7; 

- Week 5: Chapters 8 and 9; 

- Week 6: Chapters 9 (continued) and 10; 

- Week 7: Chapters 11 and 12; 

- Week 8: Chapters 13 and 14; 

- Week 9: Chapters 15 and 16; 

- Week 10: Chapters 17 and 18; 

- Week 11: Chapters 19 and 20; 

- Week 12: Chapter 21. 

This book has several types of exercises, and we encourage readers to com­
plete as many of these exercises as possible. There are traditional exercises 
designed to test your understanding of the technical properties of cryptog­
raphy. However, since our goal is to help you learn how to think about 
cryptography in real systems, we have also introduced a set of non-traditional 
exercises (see Section 1.12). Cryptography doesn't exist in isolation; rather, 
cryptography is only part of a larger ecosystem consisting of other hardware 
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and software systems, people, economics, ethics, cultural differences, politics, 
law, and so on. Our non-traditional exercises are explicitly designed to force 
you to think about cryptography in the context of real systems and the sur­
rounding ecosystem. These exercises will provide you with an opportunity to 
directly apply the contents of this book as thought exercises to real systems. 
Moreover, by weaving these exercises together throughout this book, you will 
be able to see your knowledge grow as you progress from chapter to chapter. 

Additional Information 

While we strove to make this book as error-free as possible, errors have 
undoubtedly crept in. We maintain an online errata list for this book. The 
procedure for using this errata list is below. 

- Before reading this book, go to http://www.schneier.com/ce . html and 
download the current list of corrections. 

- If you find an error in the book, please check to see if it is already on the 
list. 

- If it is not on the list, please alert us at cryptographyengineering 

@schneier . com. We will add the error to the list. 

We wish you a wonderful journey through cryptography engineering. 
Cryptography is a wonderful and fascinating topic. We hope you learn a great 
deal from this book, and come to enjoy cryptography engineering as much as 
we do. 

October 2009 Niels Ferguson 
Redmond, Washington 
USA 
niels@ferguson.net 

Tadayoshi Kohno 
Seattle, Washington 
USA 
yoshi@cs.washington.edu 

Bruce Schneier 
Minneapolis, Minnesota 
USA 
schneier@schneier.com 
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Cryptography (the 1 st Edition) 

In the past decade, cryptography has done more to damage the security 
of digital systems than it has to enhance it. Cryptography burst onto the 
world stage in the early 1990s as the securer of the Internet. Some saw 
cryptography as a great technological equalizer, a mathematical tool that 
would put the lowliest privacy-seeking individual on the same footing as 
the greatest national intelligence agencies. Some saw it as the weapon that 
would bring about the downfall of nations when governments lost the ability 
to police people in cyberspace. Others saw it as the perfect and terrifying 
tool of drug dealers, terrorists, and child pornographers, who would be able 
to communicate in perfect secrecy. Even those with more realistic attitudes 
imagined cryptography as a technology that would enable global commerce 
in this new online world. 

Ten years later, none of this has corne to pass. Despite the prevalence of 
cryptography, the Internet's national borders are more apparent than ever. 
The ability to detect and eavesdrop on criminal communications has more 
to do with politics and human resources than mathematics. Individuals still 
don't stand a chance against powerful and well-funded government agencies. 
And the rise of global commerce had nothing to do with the prevalence of 
cryptography. 

For the most part, cryptography has done little more than give Internet users 
a false sense of security by promising security but not delivering it. And that's 
not good for anyone except the attackers. 

The reasons for this have less to do with cryptography as a mathematical 
science, and much more to do with cryptography as an engineering discipline. 
We have developed, implemented, and fielded cryptographic systems over the 
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past decade. What we've been less effective at is converting the mathematical 
promise of cryptographic security into a reality of security. As it turns out, this 
is the hard part. 

Too many engineers consider cryptography to be a sort of magic security 
dust that they can sprinkle over their hardware or software, and which will 
imbue those products with the mythical property of "security." Too many 
consumers read product claims like "encrypted" and believe in that same 
magic security dust. Reviewers are no better, comparing things like key lengths 
and on that basis, pronouncing one product to be more secure than another. 

Security is only as strong as the weakest link, and the mathematics of cryp­
tography is almost never the weakest link. The fundamentals of cryptography 
are important, but far more important is how those fundamentals are imple­
mented and used. Arguing about whether a key should be 112 bits or 128 
bits long is rather like pounding a huge stake into the ground and hoping the 
attacker runs right into it. You can argue whether the stake should be a mile 
or a mile-and-a-half high, but the attacker is simply going to walk around the 
stake. Security is a broad stockade: it's the things around the cryptography 
that make the cryptography effective. 

The cryptographic books of the Last decade have contributed to that aura of 
magic. Book after book extolled the virtues of, say, 112-bit triple-DES without 
saying much about how its keys should be generated or used. Book after book 
presented complicated protocols for this or that without any mention of the 
business and social constraints within which those protocols would have to 
work. Book after book explained cryptography as a pure mathematical ideal, 
unsullied by real-world constraints and realities. But it's exactly those real­
world constraints and realities that mean the difference between the promise 
of cryptographic magic and the reality of digital security. 

Practical Cryptography is also a book about cryptography, but it's a book 
about sullied cryptography. Our goal is to explicitly describe the real-world 
constraints and realities of cryptography, and to talk about how to engineer 
secure cryptographic systems. In some ways, this book is a sequel to Bruce 
Schneier's first book, Applied Cryptography, which was first published ten years 
ago. But while Applied Cryptography gives a broad overview of cryptography 
and the myriad possibilities cryptography can offer, this book is narrow and 
focused. We don't give you dozens of choices; we give you one option and 
tell you how to implement it correctly. Applied Cryptography displays the 
wondrous possibilities of cryptography as a mathematical science-what is 
possible and what is attainable; Practical Cryptography gives concrete advice to 
people who design and implement cryptographic systems. 

Practical Cryptography is our attempt to bridge the gap between the promise 
of cryptography and the reality of cryptography. It's our attempt to teach 
engineers how to use cryptography to increase security. 
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We're qualified to write this book because we're both seasoned cryptogra­
phers. Bruce is well known from his books Applied Cryptography and Secrets 
and Lies, and from his newsletter "Crypto-Gram." Niels Ferguson cut his cryp­
tographic teeth building cryptographic payment systems at the CWI (Dutch 
National Research Institute for Mathematics and Computer Science) in Ams­
terdam, and later at a Dutch company called DigiCash. Bruce designed the 
Blowfish encryption algorithm, and both of us were on the team that designed 
Twofish. Niels's research led to the first example of the current generation of 
efficient anonymous payment protocols. Our combined list of academic papers 
runs into three digits. 

More importantly, we both have extensive experience in designing and 
building cryptographic systems. From 1991 to 1999, Bruce's consulting com­
pany Counterpane Systems provided design and analysis services to some 
of the largest computer and financial companies in the world. More recently, 
Counterpane Internet Security, Inc., has provided Managed Security Monitor­
ing services to large corporations and government agencies worldwide. Niels 
also worked at Counterpane before founding his own consulting company, 
MacFergus. We've seen cryptography as it lives and breathes in the real world, 
as it flounders against the realities of engineering or even worse, against the 
realities of business. We're qualified to write this book because we've had to 
write it again and again for our consulting clients. 

How to Read this Book 

Practical Cryptography is more a narrative than a reference. It follows the 
design of a cryptographic system from the specific algorithm choices, out­
wards through concentric rings to the infrastructure required to make it work 
We discuss a single cryptographic problem-one of establishing a means for 
two people to communicate securely-that's at the heart of almost every cryp­
tographic application. By focusing on one problem and one design philosophy 
for solving that problem, it is our belief that we can teach more about the 
realities of cryptographic engineering. 

We think cryptography is just about the most fun you can have with 
mathematics. We've tried to imbue this book with that feeling of fun, and we 
hope you enjoy the results. Thanks for coming along on our ride. 

Niels Ferguson 
Bruce Schneier 
January 2003 
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The Context of Cryptography 

Cryptography is the art and science of encryption. At least, that is how it 
started out. Nowadays it is much broader, covering authentication, digital 
signatures, and many more elementary security functions. It is still both an 
art and a science: to build good cryptographic systems requires a scientific 
background and a healthy dose of the black magic that is a combination of 
experience and the right mentality for thinking about security problems. This 
book is designed to help you cultivate these critical ingredients. 

Cryptography is an extremely varied field. At a cryptography research 
conference, you can encounter a wide range of topics, including computer 
security, higher algebra, economics, quantum physics, civil and criminal law, 
statistics, chip designs, extreme software optimization, politics, user interface 
design, and everything in between. In some ways, this book concentrates on 
only a very small part of cryptography: the practical side. We aim to teach you 
how to implement cryptography in real-world systems. In other ways, this 
book is much broader, helping you gain experience in security engineering 
and nurturing your ability to think about cryptography and security issues 
like a security professional. These broader lessons will help you successfully 
tackle security challenges, whether directly related to cryptography or not. 

The variety in this field is what makes cryptography such a fascinating area 
to work in. It is really a mixture of widely different fields. There is always 
something new to learn, and new ideas come from all directions. It is also one 
of the reasons why cryptography is so difficult. It is impossible to understand 
it all. There is nobody in the world who knows everything about cryptography. 
There isn't even anybody who knows most of it. We certainly don't know 
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everything there is to know about the subject of this book. So here is your 
first lesson in cryptography: keep a critical mind. Don't blindly trust anything, 
even if it is in print. You'll soon see that having this critical mind is an essential 
ingredient of what we call "professional paranoia." 

1 . 1 The Role of Cryptography 

Cryptography by itself is fairly useless. It has to be part of a much larger 
system. We like to compare cryptography to locks in the physical world. A 
lock by itself is a singularly useless thing. It needs to be part of a much 
larger system. This larger system can be a door on a building, a chain, a safe, 
or something else. This larger system even extends to the people who are 
supposed to use the lock: they need to remember to actually lock it and to not 
leave the key around for anyone to find. The same goes for cryptography: it is 
just a small part of a much larger security system. 

Even though cryptography is only a small part of the security system, it 
is a very critical part. Cryptography is the part that has to provide access to 
some people but not to others. This is very tricky. Most parts of the security 
system are like walls and fences in that they are designed to keep everybody 
out. Cryptography takes on the role of the lock: it has to distinguish between 
"good" access and "bad" access. This is much more difficult than just keeping 
everybody out. Therefore, the cryptography and its surrounding elements 
form a natural point of attack for any security system. 

This does not imply that cryptography is always the weak point of a system. 
In some cases, even bad cryptography can be much better than the rest of the 
security system. You have probably seen the door to a bank vault, at least in 
the movies. You know, lO-inch-thick, hardened steel, with huge bolts to lock 
it in place. It certainly looks impressive. We often find the digital equivalent 
of such a vault door installed in a tent. The people standing around it are 
arguing over how thick the door should be, rather than spending their time 
looking at the tent. It is all too easy to spend hours arguing over the exact 
key length of cryptographic systems, but fail to notice or fix buffer overflow 
vulnerabilities in a Web application. The result is predictable: the attackers find 
a buffer overflow and never bother attacking the cryptography. Cryptography 
is only truly useful if the rest of the system is also sufficiently secure against 
the attackers. 

There are, however, reasons why cryptography is important to get right, 
even in systems that have other weaknesses. Different weaknesses are useful 
to different attackers in different ways. For example, an attacker who breaks 
the cryptography has a low chance of being detected. There will be no traces 
of the attack, since the attacker's access will look just like a "good" access. This 
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is comparable to a real-life break-in. If the burglar uses a crowbar to break in, 
you will at least see that a break-in has occurred. If the burglar picks the lock, 
you might never find out that a burglary occurred. Many modes of attack leave 
traces, or disturb the system in some way. An attack on the cryptography can 
be fleeting and invisible, allowing the attacker to come back again and again. 

1 .2 The Weakest Link Property 

Print the following sentence in a very large font and paste it along the top of 
your monitor. 

A security system is only as strong as its weakest link. 

Look at it every day, and try to understand the implications. The weakest 
link property is one of the main reasons why security systems are so fiend­
ishly hard to get right. 

Every security system consists of a large number of parts. We must assume 
that our opponent is smart and that he is going to attack the system at the 
weakest part. It doesn't matter how strong the other parts are. Just as in a 
chain, the weakest link will break first. It doesn't matter how strong the other 
links in the chain are. 

Niels used to work in an office building where all the office doors were 
locked every night. Sounds very safe, right? The only problem was that the 
building had a false ceiling. You could lift up the ceiling panels and climb over 
any door or wall. If you took out the ceiling panels, the whole floor looked 
like a set of tall cubicles with doors on them. And these doors had locks. Sure, 
locking the doors made it slightly harder for the burglar, but it also made it 
harder for the security guard to check the offices during his nightly rounds. 
It isn't clear at all whether the overall security was improved or made worse 
by locking the doors. In this example, the weakest link property prevented 
the locking of the doors from being very effective. It might have improved 
the strength of a particular link (the door), but there was another link (the 
ceiling) that was still weak. The overall effect of locking the doors was at best 
very small, and its negative side effects could well have exceeded its positive 
contribution. 

To improve the security of a system, we must improve the weakest link. 
But to do that, we need to know what the links are and which ones are weak. 
This is best done using a hierarchical tree structure. Each part of a system has 
multiple links, and each link in turn has sublinks. We can organize the links 
into what we call an attack tree [113]. We give an example in Figure 1.1. Let's 
say that we want to break into a bank vault. The first-level links are the walls, 
the floor, the door, and the ceiling. Breaking through any one of them gets 
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us into the vault. Let's look at the door in more detail. The door system has 
its own links: the connection between the door frame and the walls, the lock, 
the door itself, the bolts that keep the door in the door frame, and the hinges. 
We could continue by discussing individual lines of attack on the lock, one of 
which is to acquire a key, which in tum leads to a whole tree about stealing 
the key in some way. 

through 
walls 

through 
connection 
door-wall 

through 
floor 

defeat 
lock 

Figure 1 .1 :  Example attack tree for a vault 

enter 
vault 

break 
door 

through 
door 

disable 
bolts 

through 
ceiling 

break 
hinge 

We can analyze each link and split it up into other links until we are left 
with single components. Doing this for a real system can be an enormous 
amount of work. If we were concerned about an attacker stealing the diamonds 
stored in the vault, then Figure 1.1 is also just one piece of a larger attack tree; 
an attacker could trick an employee into removing the diamonds from the 
vault and steal them once removed. Attack trees provide valuable insight as 
to possible lines of attack. Trying to secure a system without first doing such 
an analysis very often leads to useless work. In this book, we work only on 
limited components-the ones that can be solved with cryptography-and 
we will not explicitly talk about their attack trees. But you should be certain 
to understand how to use an attack tree to study a larger system and to assess 
the role of cryptography in that system. 

The weakest link property affects our work in many ways. For example, it 
is tempting to assume that users have proper passwords, but in practice they 
don't. They often choose simple short passwords. Users may go to almost any 
length not to be bothered by security systems. Writing a password on a sticky 
note and attaching it to their monitor is just one of many things they might do. 
You can never ignore issues like this because they always affect the end result. 
If you design a system that gives users a new 12-digit random password every 
week, you can be sure they will stick it on their monitors. This weakens an 
already weak link, and is bad for the overall security of the system. 
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Strictly speaking, strengthening anything but the weakest link is useless. 
In practice, things are not so clear-cut. The attacker may not know what the 
weakest link is and attack a slightly stronger one. The weakest link may be 
different for different types of attackers. The strength of any link depends on 
the attacker's skill and tools and access to the system. The link an attacker 
might exploit may also depend on the attacker's goals. So which link is the 
weakest depends on the situation. It is therefore worthwhile to strengthen any 
link that could in a particular situation be the weakest. Moreover, it's worth 
strengthening multiple links so that if one link does fail, the remaining links 
can still provide security-a property known as defense in depth. 

1 .3 The Adversarial Setting 

One of the biggest differences between security systems and almost any other 
type of engineering is the adversarial setting. Most engineers have to contend 
with problems like storms, heat, and wear and tear. All of these factors affect 
deSigns, but their effect is fairly predictable to an experienced engineer. Not 
so in security systems. Our opponents are intelligent, clever, malicious, and 
devious; they'll do things nobody had ever thought of before. They don't play 
by the rules, and they are completely unpredictable. That is a much harder 
environment to work in. 

Many of us remember the film in which the Tacoma Narrows suspension 
bridge wobbles and twists in a steady wind until it breaks and falls into the 
water. It is a famous piece of film, and the collapse taught bridge engineers 
a valuable lesson. Slender suspension bridges can have a resonance mode in 
which a steady wind can cause the whole structure to oscillate, and finally 
break. How do they prevent the same thing from happening with newer 
bridges? Making the bridge significantly stronger to resist the oscillations 
would be too expensive. The most common technique used is to change the 
aerodynamics of the bridge. The deck is made thicker, which makes it much 
harder for the wind to push up and down on the deck. Sometimes railings are 
used as spoilers to make the bridge deck behave less like a wing that lifts up in 
the wind. This works because wind is fairly predictable, and does not change 
its behavior in an active attempt to destroy the bridge. 

A security engineer has to take a malicious wind into account. What if 
the wind blows up and down instead of just from the side, and what if it 
changes directions at the right frequency for the bridge to resonate? Bridge 
engineers will dismiss this kind of talk out of hand: "Don't be silly, the wind 
doesn't blow that way." That certainly makes the bridge engineers' jobs much 
easier. Cryptographers don't have that luxury. Security systems are attacked 
by clever and malicious attackers. We have to consider all types of attack. 
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The adversarial setting is a very harsh environment to work in. There are 
no rules in this game, and the deck is stacked against us. We talk about an 
"attacker" in an abstract sense, but we don't know who she is, what she 
knows, what her goal is, when she will attack, or what her resources are. Since 
the attack may occur long after we design the system, she has the advantage 
of five or ten years' more research, and can use technology of the future 
that is not available to us. And with all those advantages, she only has to 
find a single weak spot in our system, whereas we have to protect all areas. 
Still, our mission is to build a system that can withstand it all. This creates 
a fundamental imbalance between the attacker of a system and the defender. 
This is also what makes the world of cryptography so exciting. 

1 .4 Professional Paranoia 

To work in this field, you have to become devious yourself. You have to think 
like a malicious attacker to find weaknesses in your own work. This affects 
the rest of your life as well. Everybody who works on practical cryptographic 
systems has experienced this. Once you start thinking about how to attack 
systems, you apply that to everything around you. You suddenly see how 
you could cheat the people around you, and how they could cheat you. 
Cryptographers are professional paranOids. It is important to separate your 
profeSSional paranoia from your real-world life so as to not go completely 
crazy. Most of us manage to preserve some sanity . . .  we think.1 In fact, we 
think that this practical paranoia can be a lot of fun. Developing this mindset 
will help you observe things about systems and your environment that most 
other people don't notice. 

Paranoia is very useful in this work. Suppose you work on an electronic pay­
ment system. There are several parties involved in this system: the customer, 
the merchant, the customer's bank, and the merchant's bank. It can be very 
difficult to figure out what the threats are, so we use the paranoia model. For 
each participant, we assume that everybody else is part of a big conspiracy to 
defraud this one participant. And we also assume that the attacker might have 
any number of other goals, such as compromising the privacy of a participant's 
transactions or denying a participant's access to the system at a critical time. 
If your cryptographic system can survive the paranoia model, it has at least a 
fighting chance of surviving in the real world. 

We will interchangeably refer to professional paranoia and the paranoia 
model as the security mindset. 

1 But remember: the fact that you are not paranoid doesn't mean they are not out to get you or 
compromise your system. 
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Once you develop a sense of professional paranoia, you will never look at 
systems the same way. This mindset will benefit you throughout your career, 
regardless of whether you become a cryptographer or not. Even if you don't 
become a cryptographer, you may someday find yourself working on the 
deSign, implementation, or evaluation of new computer software or hardware 
systems. If you have the security mindset, then you will be constantly thinking 
about what an attacker might try to do to your system. This will nicely position 
you to identify potential security problems with these systems early. You may 
not always be able to fix all of the security problems by yourself, but that's 
all right. The most important thing is to realize that a security problem might 
exist. Once you do that, it becomes a straightforward task to find others to 
help you fix the problem. But without the security mindset, you might never 
realize that your system has security problems and, therefore, you obviously 
can't protect against those problems in a principled way. 

Technologies also change very rapidly. This means that some hot security 
mechanisms of today may be outdated in 10 or 15 years. But if you can learn 
how to think about security issues and have an appreciation for adversaries, 
then you can take that security mindset with you for the rest of your life and 
apply it to new technologies as they evolve. 

1 .4.2 Discussing Attacks 

Professional paranoia is an essential tool of the trade. With any new system 
you encounter, the first thing you think of is how you can break it. The sooner 
you find a weak spot, the sooner you learn more about the new system. 
Nothing is worse than working on a system for years, only to have somebody 
come up and say: "But how about if I attack it this way . . . ?" You really don't 
want to experience that "Oops" moment. 

In this field, we make a very strict distinction between attacking somebody's 
work and attacking somebody personally. Any work is fair game. If somebody 
proposes something, it is an automatic invitation to attack it. If you break one 
of our systems, we will applaud the attack and tell everybody about it.2 We 
constantly look for weaknesses in any system because that is the only way to 
learn how to make more secure systems. This is one thing you will have to learn: 
an attack on your work is not an attack on you. Also, when you attack a system, 
always be sure to criticize the system, not the designers. Personal attacks in 
cryptography will get you the same negative response as anywhere else. 

But be aware that this acceptance of attacks may not extend to everyone 
working on a system-particularly if they are not familiar with the field 

2Depending on the attack, we might kick ourselves for not finding the weakness ourselves, but 
that is a different issue. 
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of cryptography and computer security. Without experience in the security 
community, it is very easy for people to take criticism of their work as a 
personal attack, with all the resulting problems. It is therefore important to 
develop a diplomatic approach, even if it makes it initially difficult to get the 
message across. Being too vague and saying something like "There might be 
some issues with the security aspects" may not be productive, since it may 
get a noncommittal response like "Oh, we'll fix it," even if the basic design is 
fundamentally flawed. Experience has shown us that the best way to get the 
message across technically is to be specific and say something like "If you do 
this and this, then an attacker could do this," but such a statement may be 
felt as harsh by the reCipient. Instead, you could begin by asking, "Have you 
thought about what might happen if someone did this?" You could then ease 
the designers of the system into a discussion of the attack itself. You might 
also consider complimenting them on the remaining strengths of their system, 
observe the challenges to building secure systems, and offer to help them fix 
their security problems if possible. 

So the next time someone attacks the security of your system, try not to 
take it personally. And make sure that when you attack a system, you only 
focus on the technology, you don't criticize the people behind it, and you are 
sensitive to the fact that the designers may not be familiar with the culture of 
constructive criticism in the security community. 

1 .5 Threat Model 

Every system can be attacked. There is no such thing as perfect security. The 
whole point of a security system is to provide access to some people and not 
to others. In the end, you will always have to trust some people in some way, 
and these people may still be able to attack your system. 

It is very important to know what you are trying to protect, and against 
whom you wish to protect it. What are the assets of value? What are the 
threats? These sound like simple questions, but it turns out to be a much 
harder problem than you'd think. Since there's really no such thing as perfect 
security, when we say that a system is "secure," what we are really saying is 
that it provides a sufficient level of security for our assets of interest against 
certain classes of threats. We need to assess the security of a system under the 
designated threat model. 

Most companies protect their LAN with a firewall, but many of the really 
harmful attacks are performed by insiders, and a firewall does not protect 
against insiders at all. It doesn't matter how good your firewall is; it won't 
protect against a malicious employee. This is a mismatch in the threat model. 

Another example is SET. SET is a protocol for online shopping with a credit 
card. One of its features is that it encrypts the credit card number so that 
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an eavesdropper cannot copy it. That is a good idea. A second feature-that 
not even the merchant is shown the customer's credit-card number-works 
less well. 

The second property fails because some merchants use the credit card 
number to look up customer records or to charge surcharges. Entire commerce 
systems have been based on the assumption that the merchant has access to 
the customer's credit card number. And then SET tries to take this access away. 
When Niels worked with SET in the past, there was an option for sending the 
credit card number twice-once encrypted to the bank, and once encrypted 
to the merchant so that the merchant would get it too. (We have not verified 
whether this is still the case.) 

But even with this option, SET doesn't solve the whole problem. Most credit 
card numbers that are stolen are not intercepted while in transit between the 
consumer and the merchant. They are stolen from the merchant's database. 
SET only protects the information while it is in transit. 

SET makes another, more serious, mistake. Several years ago Niels's bank 
in the Netherlands offered a SET-enabled credit card. The improved security 
for online purchases was one of the major selling points. But this turned 
out to be a bogus argument. It is quite safe to order online with a normal 
credit card. Your credit card number is not a secret. You give it to every 
salesperson you buy something from. The real secret is your signature. That is 
what authorizes the transaction. If a merchant leaks your credit card number, 
then you might get spurious charges, but as long as there is no handwritten 
signature (or PIN code) there is no indication of acceptance of the transac­
tion, and therefore no legal basis for the charge. In most jurisdictions you 
simply complain and get your money back. There might be some inconve­
nience involved in getting a new credit card with a different number, but 
that is the extent of the user's exposure. With SET, the situation is different. 
SET uses a digital signature (explained in Chapter 12) by the user to autho­
rize the transaction. That is obviously more secure than using just a credit 
card number. But think about it. Now the user is liable for any transaction 
performed by the SET software on his Pc. This opens the user up to huge 
liabilities. What if a virus infects his PC and subverts the SET software? 
The software might sign the wrong transaction, and cause the user to lose 
money. 

So from the user's point of view, SET offers worse security than a plain 
credit card. Plain credit cards are safe for online shopping because the user can 
always get his money back from a fraudulent transaction. Using SET increases 
the user's exposure. So although the overall payment system is better secured, 
SET transfers the residual risk from the merchant and/ or bank to the user. It 
changes the user's threat model from "It will only cost me money if they forge 
my signature well enough" to "It will only cost me money if they forge my 
signature well enough, or if a clever virus infects my pc." 
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Threat models are important. Whenever you start on a cryptographic secu­
rity project, sit down and think about what your assets are and against which 
threats you wish to protect them. A mistake in your threat analysis can ren­
der an entire project meaningless. We won't talk a lot about threat analysis 
in this book, as we are discussing the limited area of cryptography here, but 
in any real system you should never forget the threat analysis for each of the 
participants. 

1 .6 Cryptography Is Not the Solution 

Cryptography is not the solution to your security problems. U might be 
part of the solution, or it might be part of the problem. In some situations, 
cryptography starts out by making the problem worse, and it isn't at all clear 
that using cryptography is an improvement. The correct use of cryptography 
must therefore be carefully considered. Our previous discussion of SET is an 
example of this. 

Suppose you have a secret file on your computer that you don't want others 
to read. You could just protect the file system from unauthorized access. Or 
you could encrypt the file and protect the key. The file is now encrypted, and 
human nature being what it is, you might not protect the file very well. You 
might store it on a USB stick and not worry if that USB stick is lost or stolen. 
But where can you store the key? A good key is too long to remember. Some 
programs store the key on the disk-the very place the secret file was stored 
in the first place. But an attack that could recover the secret file in the first 
situation can now recover the key, which in turn can be used to decrypt the file. 
Further, we have introduced a new point of attack: if the encryption system is 
insecure or the amount of randomness in the key is too low, then the attacker 
could break the encryption system itself. Ultimately, the overall security has 
been reduced. Therefore, simply encrypting the file is not the entire solution. 
It might be part of the solution, but by itself it can create additional issues that 
need to be solved. 

Cryptography has many uses. It is a crucial part of many good security 
systems. It can also make systems weaker when used in inappropriate ways. 
In many situations, it provides only a feeling of security, but no actual security. 
It is tempting to stop there, since that is what most users want: to feel secure. 
Using cryptography in this manner can also make a system comply with 
certain standards and regulations, even if the resulting system isn't actually 
secure. In situations like this (which are all too common), any voodoo that the 
customer believes in would provide the same feeling of security and would 
work just as well. 
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1 .7 Cryptography Is Very Difficult 

Cryptography is fiendishly difficult. Even seasoned experts design systems that 
are broken a few years later. This is common enough that we are not surprised 
when it happens. The weakest-link property and the adversarial setting con­
spire to make life for a cryptographer-or any security engineer-very hard. 

Another significant problem is the lack of testing. There is no known way of 
testing whether a system is secure. In the security and cryptography research 
community, for example, what we try to do is publish our systems and then 
get other experts to look at them. Note that the second part is not automatic; 
there are many published systems that nobody has even glanced at after they 
were published, and the conference and journal review process alone isn't 
sufficient to preemptively identify all potential security issues with a system 
prior to publication. Even with many seasoned eyes looking at the system, 
security deficiencies may not be uncovered for years. 

There are some small areas of cryptography that we as a community 
understand rather well. This doesn't mean they are simple; it just means that 
we have been working on them for a few decades now, and we think we know 
the critical issues. This book is mostly about those areas. What we have tried to 
do in this book is to collect the information that we have about designing and 
building practical cryptographic systems, and bring it all together in one place. 

For some reason, many people still seem to think that cryptography is easy. 
It is not. This book will help you understand the challenges to cryptography 
engineering and help propel you on the road to overcoming those challenges. 
But don't go out and build a new cryptographic voting machine or other critical 
security system right away. Instead, take what you learn here and work with 
others-especially seasoned cryptography experts-to design and analyze 
your new system. Even we, despite our years of experience in cryptography 
and security, ask other cryptography and security experts to review the 
systems that we design. 

1 .8 Cryptography Is the Easy Part 

Even though cryptography itself is difficult, it is still one of the easy parts 
of a security system. Like a lock, a cryptographic component has fairly 
well-defined boundaries and requirements. An entire security system is much 
more difficult to clearly define, since it involves many more aspects. Issues like 
the organizational procedures used to grant access and the procedures used 
to check that the other procedures are being followed are much harder to deal 
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with, as the situation is always changing. Another huge problem in computer 
security is the quality of much software. Security software cannot be effective 
if the software on the machine contains numerous bugs that lead to security 
holes. 

Cryptography is the easy part, because there are people who know how 
to do a reasonably good job. There are experts for hire who will design a 
cryptographic system for you. They are not cheap, and they are often a pain 
to work with. They insist on changing other parts of the system to achieve 
the desired security properties. Still, for all practical purposes, cryptography 
poses problems that we know how to solve, and this book will give you a 
sense for how to go about solving them. 

The rest of the security system contains problems we don't know how 
to solve. Key management and key storage is crucial to any cryptographic 
system, but most computers have no secure place to store a key. Poor software 
quality is another problem. Network security is even harder. And when you 
add users to the mix, the problem becomes harder still. 

1 .9 Generic Attacks 

It is also important to realize that some security problems can't be solved. 
There are black box or generic attacks against certain types of systems. A 
classic example of this is the analog hole for digital rights management 
(DRM) systems. These DRM systems try to control the copying of digital mate­
rials, such as a picture, song, movie, or book. But no technology -cryptography 
or otherwise-can protect against a generic attack outside the system. For 
example, an attacker could take a photo of a computer screen to create a copy 
of the picture, or use a microphone to re-record the song. 

It is important to identify what the generic attacks against a system are. 
Otherwise, you might spend a lot of time trying to fix an unfixable problem. 
Similarly, when someone claims that they've secured a system against a generic 
attack, you know to be skeptical. 

1 . 1 0  Security and Other Design Criteria 

Security is never the only design criterion for a system. Instead, security is but 
one of many criteria. 

1 .1 0. 1  Security Versus Performance 
The bridge over the Firth of Forth in Scotland has to be seen to be believed. 
A 19th-century engineering marvel, it is mind-numbingly large (and there­
fore expensive) compared to the trains that cross it. It is so incredibly 
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over-engineered it is hard to believe your eyes. Yet the designers did the right 
thing. They were confronted with a problem they had not solved successfully 
before: building a large steel bridge. They did an astoundingly good job. They 
succeeded spectacularly; their bridge is still in use today over a century later. 
That's what good engineering looks like. 

Over the years, bridge designers have learned how to build such bridges 
much more cheaply and efficiently. But the first priority is always to get a 
bridge that is safe and that works. Efficiency, in the form of reducing cost, is a 
secondary issue. 

We have largely reversed these priorities in the computer industry. The 
primary design objective all too often includes very strict efficiency demands. 
The first priority is always speed, even in areas where speed is not important. 
Here speed might be the speed of the system itself, or it might be the speed 
with which the system can be brought to market. This leads to security cost­
cutting. The result is generally a system that is somewhat efficient, yet is not 
sufficiently secure. 

There is another side to the Firth of Forth bridge story. In 1878, Thomas 
Bouch completed the then-longest bridge in the world across the Firth of Tay 
at Dundee. Bouch used a new design combining cast iron and wrought iron, 
and the bridge was considered to be an engineering marvel. On the night of 
December 28, 1879, less than two years later, the bridge collapsed in a heavy 
storm as a train with 75 people on board crossed the bridge. All perished. It 
was the major engineering disaster of the time.3 So when the Firth of Forth 
bridge was designed a few years later, the designers put in a lot more steel, 
not only to make the bridge safe but also to make it look safe to the public. 

We all know that engineers will sometimes get a design wrong, especially 
when they do something new. And when they get it wrong, bad things can 
happen. But here is a good lesson from Victorian engineers: if it fails, back off 
and become more conservative. The computer industry has largely forgotten 
this lesson. When we have very serious security failures in our computer 
systems, and we have them all too frequently, it is very easy to just plod along, 
accepting it as if it were fate. We rarely go back to the drawing board and 
design something more conservative. We just keep throwing a few patches 
out and hoping this will solve the problem. 

By now, it will be quite clear to you that we will choose security over 
efficiency any time. How much CPU time are we willing to spend on security? 
Almost all of it. We wouldn't care if 90% of our CPU cycles were spent on a 
reliable security system if the alternative was a faster but insecure system. The 
lack of computer security is a real hindrance to us, and to most users. That is 

3William McGonagall wrote a famous poem about the Tay Bridge disaster, ending with the 
lines For the stronger we our houses do build/fhe less chance we have of being killed. This advice is still 
highly relevant today. 



1 6  Part I • Introdudion 

why people still have to send pieces of paper around with signatures, and why 
they have to worry about viruses and other attacks on our computers. Digital 
crooks of the future will know much more and be much better equipped, 
and computer security will become a larger and larger problem. We are still 
only seeing the beginnings of the digital crime wave. We need to secure our 
computers much better. 

There are of course many ways of achieving security. But as Bruce extensively 
documented in Secrets and Lies, good security is always a mixture of prevention, 
detection, and response [114]. The role for cryptography is primarily in the 
prevention part, which has to be very good to ensure that the detection and 
response parts (which can and should include manual intervention) are not 
overwhelmed. Cryptography can, however, be used to provide more secure 
detection mechanisms, such as strong cryptographic audit logs. Cryptography 
is what this book is about, so we'll concentrate on that aspect. 

Yes, yes, we know, 90% still sounds like a lot. But there is some consolation. 
Remember first that we are willing to spend 90% of our CPU on security if 
the alternative is an insecure system. Fortunately, in many cases the costs of 
security can be hidden from the user. We can only type around 10 characters 
per second-on a good day-and even the slow machines of a decade ago 
had no trouble keeping up with that. Today's machines are over a thousand 
times faster. If we use 90% of the CPU for security, the computer will appear 
one-tenth as fast. That is about the speed that computers were five years ago. 
And those computers were more than fast enough for us to get our work 
done. We may not always have to spend so many cycles on security. But we're 
willing to, and that's the point. 

There are only a few situations in which we have to wait on the computer. 
These include waiting for Web pages, printing data, starting certain programs, 
booting the machine, etc. A good security system would not slow down any of 
these activities. Modern computers are so fast that it is hard to figure out how 
to use the cycles in a useful manner. Sure, we can use alpha-blending on screen 
images, 3D animations, or even voice recognition. But the number-crunching 
parts of these applications do not perform any security-related actions, so they 
would not be slowed down by a security system. It is the rest of the system, 
which is already as fast as it can possibly get on a human time scale, that will 
have the overhead. And we don't care if it goes at one-tenth the speed if it 
increases security. Most of the time, you wouldn't even notice the overhead. 
Even in situations where the overhead would be significant, that is just the 
cost of doing business. 

It will be clear by now that our priorities are security first, second, and 
third, and performance somewhere way down the list. Of course, we still want 
the system to be as efficient as possible, but not at the expense of security. 
We understand that this design philosophy is not always possible in the real 
world. Often the realities of the marketplace trump the need for security. 
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Systems can rarely be developed from scratch, and often need to be secured 
incrementally or after deployment. Systems need to be backward-compatible 
with existing, insecure, systems. The three of us have designed many security 
systems under these constraints, and we can tell you that it's practically 
impossible to build a good security system that way. The design philosophy 
of this book is security first and security foremost. It's one we'd like to see 
adopted more in commercial systems. 

1 . 1 0.2 Security Versus Features 

Complexity is the worst enemy of security, and it almost always comes in the 
form of features or options. 

Here is the basic argument. Imagine a computer program with 20 different 
options, each of which can be either on or off. That is more than a million 
different configurations. To get the program to work, you only need to test 
the most common combination of options. To make the program secure, you 
must evaluate each of the million pOSSible configurations that the program can 
have, and check that each configuration is secure against every possible form 
of attack. That is impossible to do. And most programs have considerably 
more than 20 options. The best way to have confidence in building something 
secure is to keep it simple. 

A simple system is not necessarily a small system. You can build large 
systems that are still fairly Simple. Complexity is a measure of how many 
things interact at any one point. If the effect of an option is limited to a small 
part of the program, then it cannot interact with an option whose effect is 
limited to another part of the program. To make a large, simple system you 
have to provide a very clear and simple interface between different parts of 
the system. Programmers call this modularization. This is all basic software 
engineering. A good simple interface isolates the rest of the system from the 
details of a module. And that should include any options or features of the 
module. 

One of the things we have tried to do in this book is define simple interfaces 
for cryptographic primitives. No features, no options, no special cases, no extra 
things to remember, just the simplest definition we could come up with. Some 
of these definitions are new; we developed them while writing the book. They 
have helped us shape our thinking about good security systems, and we hope 
they will help you, too. 

1 .1 0.3 Security Versus Evolving Systems 

One of the other biggest problems for security is that the full system continues 
to evolve even after the underlying security mechanisms are put in place. This 
means that the deSigner of the security mechanism needs not only to exhibit 
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professional paranoia and consider a wide range of attackers and attack goals, 
but also to anticipate and prepare for future uses of the system. This can also 
create enormous challenges, and is an issue that systems designers need to 
keep in mind. 

1 . 1 1 Further Reading 

Anyone interested in cryptography should read Kahn's The Codebreakers [67]. 
This is a history of cryptography, from ancient times to the 20th century. The 
stories provide many examples of the problems engineers of cryptographic 
systems face. Another good historical text, and a pleasurable read, is The Code 
Book [120]. 

In some ways, the book you're holding is a sequel to Bruce's first book, 
Applied Cryptography [112]. Applied Cryptography covers a much broader range 
of subjects, and includes the specifications of all the algorithms it discusses. 
However, it does not go into the engineering details that we talk about in this 
book. 

For facts and precise results, you can't beat the Handbook of Applied Cryp­
tography, by Menezes, van Oorschot, and Vanstone [90]. It is an encyclopedia 
of cryptography and an extremely useful reference book; but just like an 
encyclopedia, it's hardly a book to learn the field from. 

If you're interested in the theory of cryptography, an excellent sequence of 
texts is Foundations of Cryptography, by Goldreich [55, 56] . Another excellent 
text is Introduction to Modern Cryptography, by Katz and Lindell [68]. There are 
also numerous excellent university course notes available online, such as the 
course notes from Bellare and Rogaway [10]. 

Bruce's previous book Secrets and Lies [114] is a good explanation of computer 
security in general, and how cryptography fits into that larger picture. And 
there's no better book on security engineering than Ross Anderson's Security 
Engineering [2]. Both are essential to understand the context of cryptography. 

There are a number of good online resources for staying abreast of 
recent issues in cryptography and computer security. We suggest subscribing 
to Bruce's Crypto-Gram newsletter, http : //www . schneier.com/crypto-gram 

. html, and reading Bruce's blog, http: / /www . schneier.com/ blog I .  

1 . 1 2  Exercises for Professional Paranoia 

They say that one of the best ways to learn a foreign language is to immerse 
yourself in it. If you want to learn French, move to France. This book is 
designed to immerse you in the language and mindset of cryptography and 

--------��--- -- --
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computer security. The following exercises will help immerse you further. 
They will force you to think about security on a regular basis, such as when 
you're reading news articles, talking with friends about current events, or 
reading the description of a new product on Slash dot. Thinking about security 
will no longer be a chore relegated to the time when you are specifically tasked 
with thinking about security. You may even start thinking about security while 
you're out walking your dog, in the shower, or at a movie. In short, you will 
be developing the professional paranoia mindset and will start thinking like a 
security professional. 

It is also extremely important for a computer security practitioner (and, 
actually, all computer scientists) to be aware of the broader contextual issues 
surrounding technology. Technologies don't exist in isolation. Rather, they 
are one small aspect of a larger ecosystem consisting of people, economics, 
ethics, cultural differences, politiCS, law, and so on. These exercises will also 
give you an opportunity to discuss and explore these bigger picture issues as 
they relate to security. 

We suggest that you regularly return to the exercises below. Try to do 
these exercises as often as possible. For example, you might do these exercises 
every week for a month straight, or after you finish every few chapters in 
this book, whichever is more frequent. The exercises might seem laborious 
and tedious at first. But if you're dedicated to this practice, you will soon 
find yourself doing these exercises automatically whenever you encounter 
a security-related news article or see a new product. This is the professional 
paranoia mindset. Further, if you continue to do these exercises as you read 
this book, you will notice that your ability to evaluate the technical properties 
of systems will mature over time. 

We also recommend doing the exercises with a friend or, if you are in a class, 
with a classmate as part of group instruction. Discussing security issues with 
others can be very enlightening-you will soon realize firsthand that security 
is incredibly subtle and that it is very easy to overlook critical weaknesses. 

Obviuusly, if you're not taking a class and doing the formal exercises, then 
you may choose to conduct these exercises in your head rather than actually 
producing written reports. Still, we suggest producing a written report at 
least once; doing so will force you to really think through the relevant issues 
completely. 

1 .1 2.1  Current Event Exercises 

For these exercises, you should critically analyze some event currently in the 
news. The event you choose should somehow relate to computer security. 
Maybe improved computer security mechanisms would have thwarted the 
event. Maybe the event motivates the design of new security mechanisms or 
poliCies. 
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The current events retrospective that you write should be short, concise, very 
thoughtful, and well written. Assume a general audience. Your goal should 
be to write an article that will help the reader learn about and understand the 
computer security field and how it fits into the broader context. 

You should summarize the current event, discuss why the current event 
arose, reflect on what could have been done differently prior to the event 
arising (to perhaps prevent, deter, or alter the consequences of the event), 
describe the broader issues surrounding the current event (such as ethical 
issues or societal issues), and propose possible reactions to the current event 
(e.g., how the public, policy makers, corporations, the media, or others should 
respond). 

1 . 1 2.2 Security Review Exercises 

These exercises deal with developing your security mindset in the context of 
real products or systems. Your goal with the security reviews is to evaluate the 
potential security and privacy issues of new technologies, evaluate the severity 
of those issues, and discuss how to address those security and privacy issues. 
These reviews should reflect deeply on the technology that you're discussing, 
and should therefore be significantly longer than your current event exercises. 

Each security review should contain: 

- Summary of the technology that you're evaluating. You may choose to 
evaluate a specific product (like a recently introduced wireless im­
plantable drug pump) or a class of products with some common goal 
(like the set of all implantable medical devices). This summary should be 
at a high level, around one or two paragraphs in length. State the aspects 
of the technology that are relevant to your observations in the following 
bullets. 

For these exercises, it is acceptable to make assumptions about how the 
products work. However, if you do make assumptions about a product, 
then you should make it clear that you are doing so, and you should 
explicitly state what those assumptions are. 

Being able to clearly summarize a product (even with explicitly stated 
assumptions) is very important. If you don't understand the technology 
well enough to provide a crisp and clear summary, then yuu probably 
don't understand the technology well enough to evaluate its security and 
privacy. 

- State at least two assets and, for each asset, a corresponding security 
goal. Explain why the security goals are important. You should produce 
around one or two sentences per asset/ goal. 
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- State at least two possible threats, where a threat is defined as  an  action 
by an adversary aimed at compromising an asset. Give an example 
adversary for each threat. You should have around one or two sentences 
per threat/ adversary. 

- State at least two potential weaknesses. Again, justify your answer using 
one or two sentences per weakness. For the purposes of these exercises, 
you don't need to fully verify whether these potential weaknesses are 
also actual weaknesses. 

- State potential defenses. Describe potential defenses that the system 
could use or might already be using to address the potential weaknesses 
you identified in the previous bullet. 

- Evaluate the risks associated with the assets, threats, and potential 
weaknesses that you describe. Informally, how serious do you think 
these combinations of assets, threats, and potential weaknesses are? 

- Conclusions. Provide some thoughtful reflections on your answers 
above. Also discuss relevant "bigger picture" issues (ethics, likelihood 
the technology will evolve, and so on). 

Some examples of past security reviews are online at http://www . schneier 
. cornice . htrnl. 

1 . 1 3  General Exercises 

Exercise 1.1 Create an attack tree for stealing a car. For this and the 
other attack tree exercises, you can present your attack tree as a figure (like 
Figure 1.1), or you can present your attack tree as a list numbered in outline 
form (e.g., 1, 1.1, 1.2, 1.2.1, 1.2.2, 1.3, . . .  ). 

Exercise 1.2 Create an attack tree for getting into a gym without paying. 

Exercise 1.3 Create an attack tree for getting food from a restaurant without 
paying. 

Exercise 1.4 Create an attack tree for learning someone's online banking 
account name and password. 

Exercise 1.5 Create an attack tree for reading someone else's e-mail. 

Exercise 1.6 Create an attack tree for preventing someone from being able to 
read his own e-mail. 
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Exercise 1.7 Create an attack tree for sending e-mail as someone else. Here, 
the attacker's goal is to convince an e-mail recipient that an e-mail she receives 
is from someone else (say, Bob), when in fact Bob never sent that e-mail. 

Exercise 1.8 Find a new product or system that was announced or released 
within the last three months. Conduct a security review of that product or 
system as described in Section 1.12. Pick one of the assets that you identified 
and construct an attack tree for compromising that asset. 

Exercise 1.9 Provide a concrete example, selected from media reports or your 
personal experiences, in which attackers compromised a system by exploiting 
something other than the weakest link. Describe the system, describe what 
you view the weakest link of the system to be and why, and describe how the 
system was compromised. 

Exercise 1.10 Describe a concrete example, excluding the ones given in this 
chapter, where improving the security of a system against one type of attack 
can increase the likelihood of other attacks. 



Introduction to Cryptography 

This chapter introduces basic cryptographic concepts and provides back­
ground information you will need for the rest of the book. 

2.1 Encryption 

Encryption is the original goal of cryptography. The generic setting is shown 
in Figure 2.1. Alice and Bob want to communicate with each other. (The 
use of personal names, particularly Alice, Bob, and Eve, is a tradition in 
cryptography.) However, in general, communication channels are assumed 
not to be secure. Eve is eavesdropping on the channel. Any message m that 
Alice sends to Bob is also received by Eve. (The same holds for messages 
sent by Bob to Alice, but that is the same problem, except with Alice and Bob 
reversed. As long as we can protect Alice's messages, the same soltition will 
work for Bob's messages, so we concentrate on Alice's messages.) How can 
Alice and Bob communicate without Eve learning everything? 

Eve 

m 
Alice i Bob 

L-____ 
m ____ �--m�------�----------·�I _____ m ____ � 

Figure 2.1 : How can Alice and Bob communicate securely? 

]] 
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To prevent Eve from understanding the conversation that Alice and Bob are 
having, they use encryption as shown in Figure 2.2. Alice and Bob first agree 
on a secret key K". They have to do this via some communication channel that 
Eve cannot eavesdrop on. Perhaps Alice mails a copy of the key to Bob, or 
something similar. We will return to the exchange of keys later. 

Eve 

Alice Bob 

m. c := E(Ke• m) 
c 

c. m := D(Ke• c) 

Figure 2.2: Generic setting for encryption 

When Alice wants to send a message m, she first encrypts it using an 
encryption function. We write the encryption function as E(K", m) and we 
call the result the ciphertext c. (The original message m is called the plaintext.) 
Instead of sending m to Bob, Alice sends the ciphertext c := E(K,., m). When 
Bob receives c, he can decrypt it using the decryption function O(Ke, c) to get 
the original plaintext m that Alice wanted to send to him. 

But Eve does not know the key K", so when she receives the ciphertext c she 
cannot decrypt it. A good encryption function makes it impossible to find the 
plaintext m from the ciphertext c without knowing the key. Actually, a good 
encryption function should provide even more privacy than that. An attacker 
shouldn't be able to learn any information about m, except possibly its length 
and the time it was sent. 

This setting has obvious applications for transmitting e-mails, but it also 
applies to storage. Storing information can be thought of in terms of transmit­
ting a message in time, rather than in space. In that situation Alice and Bob are 
often the same person at different points in time, so the same solution applies. 

2. 1 . 1 Kerckhoffs' Principle 

Bob needs two things to decrypt the ciphertext. He must know the decryption 
algorithm 0, and the key K". An important rule is Kerckhoffs' principle: the 
security of the encryption scheme must depend only on the secrecy of the key 
K", and not on the secrecy of the algorithm. 

There are very good reasons for this rule. Algorithms are hard to change. 
They are built into software or hardware, which can be difficult to update. In 
practical situations, the same algorithm is used for a long time. That is just a 
fact of life. And it is hard enough to keep a simple key secret. Keeping the 
algorithm secret is far more difficult (and therefore more expensive). Nobody 
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builds a cryptographic system for just two users. Every participant in the 
system (and there could be millions) uses the same algorithm. Eve would only 
have to get the algorithm from one of them, and one of them is bound to be 
easy to subvert. Or she could just steal a laptop with the algorithm on it. And 
remember our paranoia model? Eve might very well be one of the other users 
of the system, or even one of its designers. 

There are also good reasons why algorithms should be published. From 
experience, we know that it is very easy to make a small mistake and create 
a cryptographic algorithm that is weak. If the algorithm isn't public, nobody 
will find this fault until the attacker tries to attack it. The attacker can then 
use the flaw to break the system. We have analyzed quite a number of secret 
encryption algorithms, and all of them had weaknesses. This is why there is 
a healthy distrust of proprietary, confidential, or otherwise secret algorithms. 
Don't be fooled by the old "Well, if we keep the algorithm secret too, it will 
only increase security" assurance. That is wrong. The potential increase in 
security is small, and the potential decrease in security is huge. The lesson is 
simple: don't trust secret algorithms. 

2.2 Authentication 

Alice and Bob have another problem in Figure 2.1. Eve can do more than just 
listen in on the message. Eve could change the message in some way. This 
requires Eve to have a bit more control over the communication channel, but 
that is not at all an impossibility. For example, in Figure 2.3, Alice tries to send 
the message m, but Eve interferes with the communication channel. Instead 
of receiving m, Bob receives a different message m'. We assume that Eve also 
learns the contents of the message m that Alice tried to send. Other things that 
Eve could do are delete a message so that Bob never receives it, insert new 
messages that she invents, record a message and then send it to Bob later, or 
change the order of the messages. 

Eve 

m' 

Alice 

r 
Bob 

m -I m' 
m m' 

Figure 2.3: How does Bob know who sent the message? 

Consider the point in the process where Bob has just received a message. 
Why should Bob believe the message came from Alice? He has no reason to 
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think it did. And if he doesn't know who sent the message, then the message 
is pretty useless. 

To resolve this problem, we introduce authentication. Like encryption, 
authentication uses a secret key that Alice and Bob both know. We'll call the 
authentication key K/I to distinguish it from the encryption key Kc. Figure 2.4 
shows the process of authenticating a message m. When Alice sends the 
message m, she computes a message authentication code, or MAC. Alice computes 
the MAC a as a := h(Ka, m), where h is the MAC function and Ka is the 
authentication key. Alice now sends both m and a to Bob. When Bob receives 
m and a, he recomputes what a should have been, using the key K'lT and checks 
that the a he receives is correct. 

Eve 

Alice Bob 

m, a m, a 
? 

m, a �  h(Ka, m) m, a := h(Ka, m) 

Figure 2.4: Generic setting for authentication 

Now Eve wants to modify the message m to a different message m'. If she 
simply replaces m with m', Bob will still compute h(Ka, m') and compare it to 
a. But a good MAC function will not give the same result for two different 
messages, so Bob will recognize that the message is not correct. Given that the 
message is wrong in one way or another, Bob will just discard the message. 

If we assume that Eve does not know the authentication key Ka, the only 
way Eve can get a message and a valid MAC is to listen to Alice when she 
sends messages to Bob. This still allows Eve to try some mischief. Eve can 
record messages and their MACs, and then replay them by sending them to 
Bob at any later time. 

Pure authentication is only a partial solution. Eve can still delete messages 
that Alice sends. She can also repeat old messages or change the message 
order. Therefore, authentication is almost always combined with a numbering 
scheme to number the messages sequentially. If m contains such a message 
number, then Bob is not fooled by Eve when she replays old messages. Bob 
will simply see that the message has a correct MAC but the sequence number 
is that of an old message, so he will discard it. 

Authentication in combination with message numbering solves most of 
the problem. Eve can still stop Alice and Bob from communicating, or delay 
messages by first deleting them and then sending them to Bob at a later time. 
If the messages aren't also encrypted, then Eve can selectively delete or delay 
messages based on their content. But deleting or delaying messages is about 
the extent of what she can do. 
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The best way to look at it is to consider the case where Alice sends a sequence 
of messages ml, m2, m3, . . . .  Bob only accepts messages with a proper MAC 
and whose message number is strictly greaterl than the message number of 
the last message he accepted. So Bob receives a sequence of messages that is a 
subsequence of the sequence that Alice sent. A subsequence is simply the same 
sequence with zero or more messages deleted. 

This is the extent to which cryptography can help in this situation. Bob will 
receive a subsequence of the messages that Alice sent, but other than deleting 
certain messages or stopping all communications, Eve cannot manipulate 
the message traffic. To avoid the loss of information, Alice and Bob will 
often use a scheme of resending messages that were lost, but that is more 
application-specific, and not part of the cryptography. 

Of course, in many situations Alice and Bob will want to use both encryption 
and authentication. We will discuss this combination in great detail later. Never 
confuse the two concepts. Encrypting a message doesn't stop manipulation of 
its contents, and authenticating a message doesn't keep the message secret. 
One of the classical mistakes in cryptography is to think that encrypting a 
message also stops Eve from changing it. It doesn't. 

2.3 Public-Key Encryption 

To use encryption as we discussed in Section 2.1, Alice and Bob must share the 
key Ke. How did they get far enough along to share a key? Alice couldn't just 
send the key to Bob over the communication channel, as Eve could read the 
key too. The problem of distributing and managing keys is one of the really 
difficult parts of cryptography, for which we have only partial solutions. 

Alice and Bob could have exchanged the key when they met last month 
for a drink. But if Alice and Bob are part of a group of 20 friends that like to 
communicate with each other, then each member of the group would have to 
exchange a total of 19 keys. All in all, the group would have to exchange a 
total of 190 keys. This is already very complex, and the problem grows with 
the number of people Alice communicates with. 

Establishing cryptographic keys is an age-old problem, and one important 
contribution to the solution is public-key cryptography. We will first discuss 
public-key encryption, shown in Figure 2.5. We left Eve out of this diagram; 
from now on, just assume that all communications are always accessible to 
an enemy like Eve. Apart from Eve's absence, this figure is very similar to 
Figure 2.2. The major difference is that Alice and Bob no longer use the same 

l"Strictly greater" means "greater and not equal to." 
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key, but instead use different keys. This is the significant idea behind public­
key cryptography-the key to encrypt a message is different from the key to 
decrypt that message. 

Alice Bob 

I m, c := E(PBob' m) 1-1--c--+l"1 c, m := D(SBob' c) I 
Figure 2.5: Generic setting for public-key encryption 

To set things up, Bob first generates a pair of keys (SBob, PBob) using a special 
algorithm. The two keys are the secret key SBob and the public key PBob• Bob 
then does a surprising thing: he publishes PBob as his public key. This act makes 
Bob's public key PBob universally accessible to everyone, including both Alice 
and Eve. (Why else would it be called a public key?) 

When Alice wants to send a message to Bob, she first obtains Bob's public 
key. She might obtain the public key from a public directory, or perhaps 
she obtains the public key from someone else she trusts. Alice encrypts the 
message m with the public key PBob to get the ciphertext c, and sends c to 
Bob. Bob uses his secret key SBob and the decryption algorithm to decrypt the 
message and get the message m. 

For this to work, the key-pair generation algorithm, encryption algorithm, 
and decryption algorithm have to ensure that the decryption actually yields 
the original message. In other words: D(SBob, E(PBob, m» = m must hold for all 
possible messages m. We'll examine this in more detail later. 

Not only are the two keys that Alice and Bob use different, but the encryption 
and decryption algorithms can also be very different. All public-key encryption 
schemes depend heavily on mathematics. One obvious requirement is that it 
should not be possible to compute the secret key from the corresponding 
public key, but there are many more requirements as well. 

This type of encryption is called asymmetric-key encryption, or public­
key encryption, as opposed to the symmetric-key encryption or secret-key 
encryption we discussed earlier. 

Public-key cryptography makes the problem of distributing keys a lot 
Simpler. Now Bob only has to distribute a single public key that everybody 
can use. Alice publishes her public key in the same way, and now Alice and 
Bob can communicate securely. Even in large groups, each group member 
only has to publish a single public key, which is quite manageable. 

So why do we bother with secret-key encryption if public-key encryption 
is so much easier? Because public-key encryption is much less efficient, by 
several orders of magnitude. Using it for everything is simply too expensive. 
In practical systems that use public-key cryptography, you almost always see 
a mixture of public-key and secret-key algorithms. The public-key algorithms 
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are used to establish a secret key, which in turn is used to encrypt the 
actual data. This combines the flexibility of public-key cryptography with the 
efficiency of symmetric-key cryptography. 

2.4 Digital Signatures 

Digital signatures are the public-key equivalent of message authentication 
codes. The generic setting is shown in Figure 2.6. This time, it is Alice who uses 
a key generation algorithm to generate a key pair (SAlice, PAlice) and publishes 
her public key P Alice' When she wants to send a signed message m to Bob, she 
computes a signature s := a (SAlice, m). She sends m and s to Bob. Bob uses a 
verification algorithm v(P Aliw m, s) that uses Alice's public key to verify the 
signature. The signature works just like a MAC, except that Bob can verify 
it with the public key, whereas the secret key is required to create a new 
signature. 

Alice Bob 

I m, s := a(SAlice, m) I-I-m-,-s-.�I m, v(PAlice, m. s)? I 
Figure 2.6: Generic setting for digital signature 

Bob only needs to have Alice's public key to verify that the message came 
from Alice. Interestingly enough, anybody else can get Alice's public key and 
verify that the message came from Alice. This is why we generally call s a 
digital signature. [n a sense, Alice signs the message. If there is ever a dispute, 
Bob can take m and s to a judge and prove that Alice signed the message. 

This is all very nice in theory, and it works too . . .  in theory. In real life, 
digital signatures have a number of limitations that are important to realize. 
The main problem is that Alice doesn't compute the signature herself; instead, 
she has her computer compute the signature. The digital signature is therefore 
no proof that Alice approved the message, or even saw it on her computer 
screen. Given the ease with which viruses take over computers, the digital 
signature actually proves very little in this scenario. Nonetheless, when used 
appropriately, digital signatures are extremely useful. 

2.5 PKI 

Public-key cryptography makes key management simpler, but Alice stil1 
has to find Bob's public key. How can she be sure it is Bob's key, and 
not somebody else's? Maybe Eve created a key pair and published the key 
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while impersonating Bob. The general solution is to use a PKI, or public key 
infrastructure. 

The main idea is to have a central authority called the certificate authority, 
or CA. Each user takes his public key to the CA and identifies himself to the 
CA. The CA then signs the user's public key using a digital signature. The 
signed message, or certificate, states: "I, the CA, have verified that public key 
PBob belongs to Bob." The certificate will often include an expiration date and 
other useful information. 

Using certificates, it is much easier for Alice to find Bob's key. We will 
assume that Alice has the CA's public key, and has verified that this is the 
correct key. Alice can now retrieve Bob's key from a database, or Bob can 
e-mail his key to Alice. Alice can verify the certificate on the key, using the 
CA's public key that she already has. This certificate ensures that she has the 
correct key to communicate with Bob. Similarly, Bob can find Alice's public 
key and be sure that he is communicating with the right person. 

In a PKI, each participant only has to have the CA certify his public key, 
and know the CA's public key so that he can verify the certificates of other 
participants. This is far less work than exchanging keys with every party he 
communicates with. That's the great advantage of a PKI: register once, use 
everywhere. 

For practical reasons, a PKI is often set up with multiple levels of CAs. 
There is a top-level CA, called the root, which issues certificates on the keys of 
lower-level CAs, which in tum certify the user keys. The system still behaves 
in the same way, but now Alice has to check two certificates to verify Bob's 
key. 

A PKI is not the ultimate solution; there are still many problems. First of 
all, the CA must be trusted by everybody. In some situations, that's easy. In a 
company, the HR department knows all employees, and can take on the role 
of CA. But there is no entity in the world that is trusted by everybody. The 
idea that a single PKI can handle the whole world does not seem viable. 

The second problem is one of liability. What if the CA issues a false certificate, 
or the secret key of the CA is stolen? Alice would be trusting a false certificate, 
and she might lose a lot of money because of that. Who pays? Is the CA is 
willing to back it up with some kind of insurance? This requires a far more 
extensive business relationship between Alice and the CA. 

There are many companies at the moment that are trying to be the world's 
CA. VeriSign is probably the best-known one. However, VeriSign explicitly 
limits its own liability in case it fails to perform its function properly. In most 
cases, the liability is limited to $100. That is probably less than we paid for our 
last order of books: transactions which were secured using certificates signed 
by VeriSign. That wasn't a problem because payment by credit card is safe for 
the consumer. However, we won't be buying our next car using a certificate 
that VeriSign only backs with a $100 guarantee. 
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Having described the most important functions used in cryptography, we will 
now talk about some attacks. We will focus on attacks against encryption 
schemes here. There are many types of attacks, each with its own severity. 

2.6. 1 The Ciphertext-Only Model 

A ciphertext-only attack is what most people mean when talking about breaking 
an encryption system. This is the situation in which Alice and Bob are 
encrypting their data, and all you as the attacker get to see is the ciphertext. 
Trying to decrypt a message if you only know the ciphertext is called a 
ciphertext-only attack. This is the most difficult type of attack, because you 
have the least amount of information. 

2.6.2 The Known-Plaintext Model 

A known-plaintext attack is one in which you know both the plaintext and 
the ciphertext. The most obvious goal is to find the decryption key. At first 
this looks very implausible: how could you know the plaintext? It turns out 
that there are many situations in which you get to know the plaintext of a 
communication. Sometimes there are messages that are easy to predict. For 
example: Alice is away on holiday and has an e-mail autoresponder that sends 
an "I'm away on holiday" reply to every incoming e-mail. You get an exact 
copy of this message by sending an e-mail to Alice and reading the reply. 
When Bob sends an e-mail to Alice, the autoresponder also replies, this time 
encrypted. Now you have the ciphertext and the plaintext of a message. If 
you can find the key, you can decrypt all other messages that Alice and Bob 
exchange with the same key. The latter part is important and bears repeating: 
You use the knowledge of some plaintext-ciphertext pairs to learn the key, and 
then use knowledge of the key to decrypt other ciphertexts. 

Another typical situation is where Alice sends the same message to many 
people, including you. You now have the plaintext and the ciphertexts of the 
copy she sent to everybody else. 

Maybe Alice and Bob are sending drafts of a press release to each other. 
Once the press release is published, you know the plaintext and the ciphertext. 

Even if you don't know the entire plaintext, you often know part of it. 
E-mails wil1 have a predictable start, or a fixed signature at the end. The 
header of an IP packet is highly predictable. Such predictable data leads to a 
partially known plaintext, and we classify this under known-plaintext attacks. 

A known-plaintext attack is more powerful than a ciphertext-only attack. 
You, as the attacker, get more information than in the ciphertext-only case. 
Extra information can only help you. 
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2.6.3 The Chosen-Plaintext Model 

The next Level of control is to let you choose the plaintext. This is a more 
powerful type of attack than a known-plaintext attack. Now you get to select 
specially prepared plaintexts, chosen to make it easy to attack the system. You 
can choose any number of plaintexts and get the corresponding ciphertexts. 
Again, this is not unrealistic in practice. There are quite a large number of 
situations in which an attacker can choose the data that is being encrypted. 
Quite often Alice will get information from some outside source (e.g., one that 
can be influenced by the attacker) and then forward that information to Bob in 
encrypted form. For example, the attacker might send Alice an e-mail that she 
knows Alice will forward to Bob. 

Chosen-plaintext attacks are not unreasonable in any way. A good encryption 
algorithm has no trouble withstanding a chosen-plaintext attack. Be very 
skeptical if anyone ever tries to convince you that a chosen-plaintext attack is 
not relevant to their system. 

There are two variations on this attack. In the offline attack, you prepare 
a list of all the plaintexts you want to have encrypted before you get the 
ciphertexts. In the online attack, you can choose new plaintexts depending on 
the ciphertexts you've already received. Most of the time this distinction can 
be ignored. We will normally talk about the online version of the attack, which 
is the more powerful of the two. 

2.6.4 The Chosen-Ciphertext Model 

The term chosen-ciphertext is a misnomer. It should really be called a chosen 
ciphertext and plaintext attack, but that is too long. In a chosen-plaintext 
attack, you get to choose plaintext values. In a chosen-ciphertext attack, you 
get to choose both plaintext values and ciphertext values. For every plaintext 
that you choose, you get the corresponding ciphertext, and for any Ciphertext 
you choose, you get the corresponding plaintext. 

Obviously, the chosen-ciphertext attack is more powerful than a chosen­
plaintext attack, as the attacker has more freedom. The goal still is to recover 
the key. With the key, you can decrypt other ciphertexts. Again, any reasonable 
encryption scheme has no trouble surviving a chosen ciphertext attack. 

2.6.5 The Distinguishing Attack Goal 

The attacks described above recover the plaintext or the decryption key. There 
are attacks that do not recover the key, but let you decrypt a specific other 
message. There are also attacks that do not recover a message, but reveal 
some partial information about the message. For example, given 10 chosen 
plaintexts, their corresponding ciphertexts, and an 11  th ciphertext, it may be 
possible to learn whether the least significant bit of the 11  th plaintext is a 1 or a 
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o even if it's not possible to learn the corresponding decryption key. Even this 
sort of information can be very valuable to an attacker. There are too many 
forms of attack to list here, and new forms of attack are thought up all the 
time. So what should we defend against? 

We wish to defend against a distinguishing attack. A distinguishing attack is 
any nontrivial method that detects a difference between the ideal encryption 
scheme and the actual one. This covers all the attacks we have discussed so far, 
as well as any yet-to-be-discovered attacks. Of course, we will have to define 
what the ideal scheme is. This probably all sounds very confusing right now, 
since we haven't defined what an ideal scheme is yet. We will begin to clarify 
this in the next chapter. 

Isn't this all rather far-fetched? Well, no. Our experience shows that you 
really want your building blocks to be perfect. Some encryption functions 
have imperfections that cause them to fail the distinguishing attack definition, 
but other than that they are perfectly satisfactory encryption functions. Every 
time you use them, you have to check that these imperfections do not lead 
to any problems. In a system with multiple building blocks, you also have 
to check whether any combination of imperfections leads to problems. This 
quickly becomes unworkable, and in practice we have found actual systems 
that exhibit weaknesses due to known imperfections in their building blocks. 

2.6.6 Other Types of Attack 
So far we have mostly talked about attacking encryption functions. You can 
also define attacks for other cryptographic functions, such as authentication, 
digital signatures, etc. We will discuss these as they arise. 

Even for encryption functions, we only discussed the basic attack models 
in which an attacker knows or chooses plaintexts or ciphertexts. Sometimes 
the attacker also knows when the ciphertexts were generated, or how fast the 
encryption or decryption operations were. Timing information and ciphertext 
length can reveal private information about encrypted messages. Attacks that 
make use of this type of additional information are called information leakage 
or side-channel attacks. 

2.7 Under the Hood 

Let's now look under the hood at two generic attack techniques. 

2.7. 1 Birthday Attacks 
Birthday attacks are named after the birthday paradox. If you have 23 people 
in a room, the chance that two of them will have the same birthday exceeds 
50%. That is a surprisingly large probability, given that there are 365 possible 
birthdays. 
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So what is a birthday attack? It is an attack that depends on the fact that 
duplicate values, also called collisions, appear much faster than you would 
expect. Suppose a system for secure financial transactions uses a fresh 64-bit 
authentication key for each transaction. (For simplicity, we assume that no 
encryption is used.) There -are 264 (=18 . 1018, or eighteen billion billion) possible 
key values, so this should be quite difficult to break, right? Wrong! After seeing 
about 232 (=4 . 109, or four billion) transactions, the attacker can expect that 
two transactions use the same key. Suppose the first authenticated message is 
always the same II Are you ready to receive a transaction?" message. If two 
transactions use the same authentication key, then the MAC values on their 
first messages will also be the same, which is easy to detect for the attacker. 
By knowing that the two keys are the same, the attacker can now insert the 
messages from the older transaction into the newer transaction while it is 
going on. As they are authenticated by the correct key, these bogus messages 
will be accepted, which is a clear break of the financial transaction system. 

In general, if an element can take on N different values, then you can expect 
the first collision after choosing about .,fN random elements. We're leaving out 
the exact details here, but .,fN is fairly close. For the birthday paradox, we have 
N = 365 and .,fN � 19. The number of people required before the chance of a 
duplicate birthday exceeds 50% is in fact 23, but .,fN is close enough for our 
purposes and is the approximation that cryptographers often use. One way of 
looking at this is that if you choose k elements, then there are k(k - 1)/2 pairs 
of elements, each of which has a l/N chance of being a pair of equal values. 
So the chance of finding a collision is close to k(k - 1)/2N. When k � .,fN, this 
chance is close to 50%.2 

Most of the time we talk about n-bit values. As there are 2" possible values, 
you need almost ,J2!i = 2"/2 elements in the set before you expect a collision. 
We will often talk about this as the 2"/2 bound, or the birthday bound. 

2.7.2 Meet-in-the-Middle AHacks 
Meet-in-the-middle attacks are the cousins of birthday attacks. (Together we call 
them collision attacks.) They are more common and more useful. Instead of 
waiting for a key to repeat, you can build a table of keys that you have chosen 
yourself. 

Let's go back to our previous example of the financial transaction system 
that uses a fresh 64-bit key to authenticate each transaction. By using a meet­
in-the-middle attack, the attacker can break the system even further. Here is 
how he does it: he chooses 232 different 64-bit keys at random. For each of these 

2These are only approximations, but good enough for our purposes. 
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keys, he computes the MAC on the "Are you ready to receive a transaction?" 
message, and stores both the MAC result and the key in a table. Then he 
eavesdrops on each transaction and checks if the MAC of the first message 
appears in his table. If the MAC does appear in the table, then there is a very 
good chance that the authentication key for that transaction is the same key 
as the attacker used to compute that table entry, and that key value is stored 
right alongside the MAC value in the table. Now that the attacker knows the 
authentication key, he can insert arbitrary messages of his choosing into the 
transaction. (The birthday attack only allowed him to insert messages from an 
old transaction.) 

How many transactions does the attacker need to listen to? Well, he has 
precomputed the MAC on 1 in 232 of all the possible keys, so any time the 
system chooses a key, there is a 1 in 232 chance of choosing one that he can 
recognize. So after about 232 transactions, he can expect a transaction that uses 
a key he precomputed the MAC for. The total workload for the attacker is 
about 232 steps in the precomputation plus listening in to 232 transactions, 
which is a lot less work than trying all 264 possible keys. 

The difference between the birthday attack and the meet-in-the-middle 
attack is that in a birthday attack, you wait for a single value to occur twice 
within the same set of elements. In a meet-in-the-middle attack, you have two 
sets, and wait for an overlap between the two sets. In both cases, you can 
expect to find the first result at around the same number of elements. 

A meet-in-the-middle attack is more flexible than a birthday attack. Let's 
look at it in a more abstract way. Suppose we have N possible values. The 
first set has P elements, the second has Q elements. There are PQ pairs of 
elements, and each pair has a chance of 1jN of matching. We expect a collision 
as soon as PQjN is close to 1 .  The most efficient choice is P � Q � .IN. This 
is exactly the birthday bound again. The meet-in-the-middle attack provides 
extra flexibility. Sometimes it is easier to get elements for one of the sets than it 
is to get elements for the other set. The only requirement is that PQ be close to 
N. You could choose P � Nl/3 and Q � �/3. In the example above, the attacker 
might make a list of 240 pOSSible MAC values for the first message, and expect 
to find the first authentication key after listening to only 224 transactions. 

When we do a theoretical analysis of how easy a system is to attack, we often 
use the .IN size for both sets, because this generally minimizes the number 
of steps the attacker has to perform. It also requires a more detailed analysis 
to find out whether the elements of one set might be harder to get than the 
elements of another set. If you ever want to perform a meet-in-the-middle 
attack in real life, you should carefully choose the sizes of the sets to ensure 
PQ � N at the least possible cost. 
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2.8 Security Level 

With enough effort, any practical cryptographic system can be attacked suc­
cessfully. The real question is how much work it takes to break a system. An 
easy way to quantify the workload of an attack is to compare it to an exhaustive 
search. An exhaustive search attack is one that tries all possible values for some 
target object, like the key. If an attack requires 2235 steps of work, then this 
corresponds to an exhaustive search for a 235-bit value. 

We always talk about an attacker needing a certain number of steps, 
but haven't yet specified what a step is. This is partly laziness, but it also 
simplifies the analysis. When attacking an encryption function, computing a 
single encryption of a given message with a given key can be a single step. 
Sometimes a step is merely looking something up in a table. It varies. But 
in all situations, a step can be executed by a computer in a very short time. 
Sometimes it can be done in one clock cycle, sometimes it needs a million 
clock cycles, but in terms of the workloads that cryptographic attacks require, 
a single factor of a million is not terribly important. The ease of using a 
step-based analysis far outweighs the built-in inaccuracies. You can always 
do a more detailed analysis to find out how much work a step is. For a quick 
estimate, we always assume that a single step requires a single clock cycle. 

Any system designed today really needs at least a 128-bit security level. That 
means that any attack will require at least 2128 steps. A new system designed 
today is, if successful, quite likely to still be in operation 30 years from now, 
and should provide at least 20 years of confidentiality for the data after the 
point at which it was last used. So we should aim to provide security for the 
next 50 years. That is a rather tall order, but there has been some work done to 
extrapolate Moore's law and apply it to cryptography. A security level of 128 
bits is sufficient [85]. One could potentially argue for 100 bits, or even 110 bits, 
but cryptographic primitives are often engineered around powers of two, so 
we'll use 128 bits. 

This concept of security level is only approximate. We only measure the 
amount of work the attacker has to do, and ignore things like memory 
or interactions with the fielded system. Dealing only with the attacker's 
workload is hard enough; complicating the model would make the security 
analysis much harder still, and greatly increase the chance of overlooking 
a vital point. As the cost for using a simple and conservative approach is 
relatively low, we use the simple concept of security level. The level of security 
is, however, a function of the access of the adversary-is the adversary 
restricted to the known plaintext model or can she operate under the chosen 
plaintext model, and how many encrypted messages can she see as part of her 
attack? 
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Security does not come for free. While cryptographers try to make cryptographic 
algorithms as efficient as possible, these algorithms are sometimes perceived as 
being too slow. Creating custom cryptography for efficiency can be very risky. 
If you deviate from the beaten path in security, you have to do an enormous 
amount of analysis work to make sure you don't accidentally end up creating 
a weak system. Such analysis requires experienced cryptographers. For most 
systems, it is much cheaper to buy a faster computer than to go to the trouble 
and expense of designing and implementing a more efficient security system. 

For most systems, the performance of the cryptography is not a problem. 
Modern CPUs are so fast that they can keep up with almost any data stream they 
handle. For example, encrypting a 100 Mb / s data link with the AES algorithm 
requires only 20% of the cycles on a 1 GHz Pentium III CPU. (Less in real life, as 
you never get to transfer 100 Mb / s over such a link, due to the overhead of the 
communication protocol.) 

There are, however, some situations in which cryptography creates a perfor­
mance bottleneck. A good example is Web servers that use a very large number 
of SSL connections. The initialization of an SSL connection uses public-key cryp­
tography and requires a large amount of computing power on the server side. 
Instead of developing a custom SSL-replacement that is more efficient for the 
server, it is far cheaper and safer to buy hardware accelerators to handle the 
existing SSL protocol. 

Recently we ran across a good argument to convince people to choose security 
over performance. "There are already enough insecure fast systems; we don't 
need another one." This is very true. Half-measures in security cost nearly as 
much as doing it well, but provide very little practical security. We firmly believe 
that if you're going to implement any security, you should do it well. 

2.1 0 Complexity 

The more complex a system, the more likely it has security problems. Indeed, 
we like to say that compleXity is the worst enemy of security. This is a simple 
statement, but it took us a while to really understand it. 

Part of the problem is the test-and-fix development process used all too fre­
quently: build something, test for errors, go back and fix the errors, test to find 
more errors, etc. Test, fix, repeat. This goes on until company finances or other 
factors dictate that the product be shipped. Sure, the result is something that 
works reasonably well, as long as it is used only for the things it was tested for. 
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This might be good enough for functionality, but it is wholly inadequate for 
security systems. 

The problem with the test-and-fix method is that testing only shows the pres­
ence of errors, and really only those errors the testers were looking for. Security 
systems have to work even when under attack by clever, malicious people. The 
system cannot be tested for all the situations to which the attackers will expose 
the system. Testing can only test for functionality; security is the absence of 
functionality. The attacker should not be able to achieve a certain property irre­
spective of what he does, yet testing cannot show the absence of functionality. 
The system has to be secure from the start. 

Consider the following analogy. Suppose you write a medium-sized appli­
cation in a popular programming language. You fix the syntax errors until it 
compiles the first time. Then, without further testing, you put it in a box and ship 
it to the customer. Nobody would expect to get a functional product that way. 

Yet this is exactly what is normally done for security systems. They're impos­
sible to test because nobody knows what to test for. By definition, an attacker 
wins by finding any aspect that wasn't tested. And if there is any bug, the prod­
uct is defective. So the only way to get a secure system is to build a very robust 
system from the ground up. This requires a simple system. 

The only way we know of making a system simple is to modularize it. We 
all know this from software development. But this time we cannot afford any 
bugs at all, so we have to be quite ruthless in the modularization. This leads us 
to another rule: correctness must be a local property. In other words, one part 
of the system should behave correctly regardless of how the rest of the system 
works. No, we don't want to hear "This won't be a problem because this other 
part of the system will never let this happen." The other part may have a bug, 
or may change in some future version. Each part of the system is responsible 
for its own functionality. 

2.1 1 Exercises 

Exercise 2.1 Consider Kerckhoffs' principle. Provide at least two arguments 
in favor of Kerckhoffs' principle and at least two arguments against Kerckhoffs' 
principle. Then state and argue your view of the validity of Kerckhoffs' principle. 

Exercise 2.2 Suppose Alice and Bob are sending e-mails to each other over the 
Internet. They're sending these e-mails from their laptops, which are connected 
to free wireless networks provided by their favorite coffee shops. 

- List all the parties who might be able to attack this system and what they 
might be able to accomplish. 

- Describe how Alice and Bob might be able to defend against each of the 
attacks you identified above. Be as specific as possible. 
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Exercise 2.3 Consider a group of 30 people who wish to establish pair-wise 
secure communications using symmetric-key cryptography. How many keys 
need to be exchanged in total? 

Exercise 2.4 Suppose Bob receives a message signed using a digital signa­
ture scheme with Alice's secret signing key. Does this prove that Alice saw the 
message in question and chose to sign it? 

Exercise 2.5 Suppose that PKls, as we describe in Section 2.5, do not exist. 
Suppose Alice obtains a public key P that purportedly belongs to Bob. How can 
Alice develop confidence that P really belongs to Bob? Consider this question 
in each of the following scenarios: 

- Alice can talk with Bob over the phone. 

- Alice can talk with someone else she trusts over the phone (let's call him 
Charlie), and Charlie has already verified that P belongs to Bob. 

- Alice can communicate with Charlie via e-mail, and Charlie has already 
verified that P belongs to Bob. 

Explicitly state any additional assumptions you need to make. 

Exercise 2.6 Suppose a chosen-ciphertext attacker cannot recover the secret 
decryption key for an encryption scheme. Does this mean the encryption scheme 
is secure? 

Exercise 2.7 Consider a symmetric-key cryptosystem in which cryptographic 
keys are randomly selected from the set of all n-bit strings. Approximately what 
should n be in order to provide 128 bits of security against a birthday attack? 
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Block Ciphers 

Block ciphers are one of the fundamental building blocks for cryptographic 
systems. There is a lot of literature on block ciphers, and they are among the 
best-understood parts of cryptography. They are, however, building blocks. 
For most applications, you probably don't want to use a block cipher directly. 
Instead, you'll want to use a block cipher in what is called a "mode of oper­
ation," which we'll discuss in subsequent chapters. This chapter is designed 
to give you a firmer understanding of block ciphers: what they are, how 
cryptographers view them, and how to choose between different options. 

3.1  What Is a Block Cipher? 

A block cipher is an encryption function for fixed-size blocks of data. The current 
generation of block ciphers has a block size of 128 bits (16 bytes). These block 
ciphers encrypt a 128-bit plaintext and generate a 128-bit ciphertext as the 
result. The block cipher is reversible; there is a decryption function that takes 
the 128-bit ciphertext and decrypts it to the original 128-bit plaintext. The 
plaintext and ciphertext are always the same size, and we call this the block 
size of the block cipher. 

To encrypt with a block cipher, we need a secret key. Without a secret key, 
there is no way to hide the message. Like the plaintext and ciphertext, the key 
is also a string of bits. Common key sizes are 128 and 256 bits. We often write 
E(K, p) or EK(p) for the encryption of plaintext p with key K and D(K, c) or DK(C) 
for the decryption of ciphertext c with key K. 

4] 
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Block ciphers are used for many purposes, most notably to encrypt infor­
mation. For security purposes, however, one rarely uses a block cipher 
directly. Instead, one should use a block cipher mode, which we will discuss in 
Chapter 4. 

When using block ciphers, as with any encryption task, we always follow 
Kerckhoffs' principle and assume that the algorithms for encryption and 
decryption are publicly known. Some people have a hard time accepting this, 
and they want to keep the algorithms secret. Don't ever trust a secret block 
cipher (or any other secret cryptographic primitive). 

It is sometimes useful to look at a block cipher as a very big key-dependent 
table. For any fixed key, you could compute a lookup table that maps the 
plaintext to the ciphertext. This table would be huge. For a block cipher with 
32-bit block size, the table would be 16 GB; for a 64-bit block size, it would be 
150 million TB; and for a 128-bit block size it would be 5 . 1039 bytes, a number 
so large there is not even a proper name for it. Of course, it is not practical 
to build such a table in reality, but this is a useful conceptual model. We also 
know that the block cipher is reversible. In other words, no two entries of the 
table are the same, or else the decryption function could not possibly decrypt 
the ciphertext to a unique plaintext. This big table will therefore contain every 
possible ciphertext value exactly once. This is what mathematicians call a 
permutation: the table is merely a list of all the possible elements where the 
order has been rearranged. A block cipher with a block size of k bits specifies 
a permutation on k-bit values for each of the key values. 

As a point of clarification, since it is often confused, a block cipher does not 
permute the bits of the input plaintext. Rather, it takes all the 2k possible k-bit 
inputs and maps each to a unique k-bit output. As a toy example, if k = 8, an 
input 00000001 might encrypt to 0100000 under a given key but it might also 
encrypt to 11011110 under a different key, depending on the design of the 
block cipher. 

3.2 Types of Attack 

Given the definition of a block cipher, the definition of a secure block cipher 
seems simple enough: it is a block Cipher that keeps the plaintext secret. 
Although this certainly is one of the requirements, it is not sufficient. This 
definition only requires that the block cipher be secure against ciphertext-only 
attacks, in which the attacker gets to see only the ciphertext of a message. There 
are a few published attacks of this type [74, 121], but they are rare against 
well-known and established block ciphers. Most published attacks are of the 
chosen-plaintext type. (See Section 2.6 for an overview of attack types.) All of 
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these attack types apply to block ciphers, and there are a few more that are 
specific to block ciphers. 

The first one is the related-key attack. First introduced by Eli Biham in 
1993 [13], a related-key attack assumes that the attacker has access to several 
encryption functions. These functions all have an unknown key, but their keys 
have a relationship that the attacker knows. This sounds very strange, but it 
turns out that this type of attack is useful against real systems [70]. There are 
real-world systems that use different keys with a known relationship. At least 
one proprietary system changes the key for every message by incrementing the 
key by one. Consecutive messages are therefore encrypted with consecutively 
numbered keys. It turns out that key relationships like this can be used to 
attack some block ciphers. 

There are even more esoteric attack types. When we designed the Twofish 
block cipher (Section 3.5.4), we introduced the concept of a chosen-key attack, 
in which the attacker specifies some part of the key and then performs a 
related-key attack on the rest of the key [115] .1  

Why would we even consider far-fetched attack types like related-key 
attacks and chosen-key attacks? We have several reasons. First, we have seen 
actual systems in which a related-key attack on the block cipher was possible, 
so these attacks are not that far-fetched at all. In fact, we have even seen 
standardized protocols that required implementations to key a block cipher 
with two related keys-one key K that is chosen at random and another key 
K' that is equal to K plus a fixed constant. 

Second, block ciphers are very useful building blocks. But, as building blocks, 
they tend to get abused in every imaginable way. One standard technique 
of constructing a hash function from a block cipher is the Davies-Meyer 
construction [128]. In a Davies-Meyer hash flmction, the attacker suddenly 
gets to choose the key of the block cipher, which allows related-key and 
chosen-key attacks. We talk about hash functions in Chapter 5, but won't go 
into the details of the Davies-Meyer construction in this book. It is safe to say, 
however, that any definition of block-cipher security that ignores these attack 
types, or any other attack type, is incomplete. 

The block cipher is a module that should have a simple interface. The 
simplest interface is to ensure that it has all the properties that anyone could 
reasonably expect the block cipher to have. Allowing imperfections in the block 
cipher just adds a lot of complexity, in the form of cross-dependencies, to any 
system using the cipher. In short, we want to over-engineer our block ciphers 
for security. The challenge is to define the properties that one reasonably 
expects from a block cipher. 

1 Later analysis showed that this attack does not work on Twofish [50], but it might be successful 
against other block ciphers. 
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3.3 The Ideal Block Cipher 

It is actually very hard to define what a block cipher is. It is something 
that you know when you see it-but can't quite define. The theoretical 
community has crystallized some of these properties into specific definitions, 
like pseudorandomness and super-pseudorandomness [6, 86, 94]. The block 
cipher community itself, however, uses a much broader definition, covering 
things like weak keys and chosen-key attacks. Here we take the approach of 
trying to help you understand what the block cipher primitives community 
believes a block cipher to be. We call this an "ideal" block cipher. 

What would the ideal block cipher look like? It should be a random 
permutation. We should be more precise: for each key value, we want the 
block cipher to be a random permutation, and the different permutations for 
the different key values should be chosen independently. As we mentioned in 
Section 3.1, you can think of a 12S-bit block cipher (a single permutation on 
128-bit values) as a huge lookup table of 2128 elements of 128 bits each. The 
ideal block cipher consists of one of these tables for each key value, with each 
table chosen randomly from the set of all possible permutations. 

Strictly speaking, this definition of the ideal block cipher is incomplete, as 
the exact choice of the tables has not been specified. As soon as we specify the 
tables, however, the ideal cipher is fixed and no longer random. To formalize 
the definition, we cannot talk about a single ideal block cipher, but have to treat 
the ideal block cipher as a uniform probability distribution over the set of all 
possible block ciphers. Any time that you use the ideal block cipher, you will 
have to talk in terms of probabilities. This is a mathematician's delight, but the 
added complexity would make our explanations far more complicated -so 
we will keep the informal but simpler concept of a randomly chosen block 
cipher. We also stress that an ideal block cipher is not something that can be 
obtained in practice; it is an abstract concept that we use when discussing 
security. 

3.4 Definition of Block Cipher Security 

As noted above, there are formal definitions of security for block ciphers in 
the literature. For our purposes we can use a simpler but informal definition. 

Definition 1 A secure block cipher is one for which no attack exists. 

This is a bit of a tautology. So now we have to define an attack on a block 
cipher. 

Definition 2 An attack on a block cipher is a non-generic method of distinguishing 
the block cipher from an ideal block cipher. 
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What do we mean by distinguishing a block cipher from an ideal block 
cipher? Given a block cipher X, we compare it to an ideal block cipher with 
the same block size and the same key size. A distinguisher is an algorithm that 
is given a black-box function that computes either the block cipher X or an 
ideal block cipher. (A black-box function is a function that can be evaluated, 
but the distinguisher algorithm does not know the internal workings of the 
function in the black box.) Both the encryption and decryption functions are 
available, and the distinguisher algorithm is free to choose any key for each 
of the encryptions and decryptions it performs. The distinguisher's task is to 
figure out whether the black-box function implements the block cipher X or 
the ideal cipher. It doesn't have to be a perfect distinguisher, as long as it 
provides the correct answer significantly more often than the wrong answer. 

There are, of course, generic (and trivial) solutions to this. We could encrypt 
the plaintext 0 with the key 0 and see if the result matches what we expect 
to get from block cipher X. This is a distinguisher, but to make it an attack, 
the distinguisher has to be non-generic. This is where it becomes difficult 
to define block cipher security. We cannot formalize the notion of "generic" 
and "non-generic." It is a bit like obscenity: we know it when we see it.2 
A distinguisher is generic if we can find a similar distinguisher for almost 
any block cipher. In the above case, the distinguisher is generic because we 
can construct one just like it for any block cipher. This "attack" would even 
allow us to distinguish between two ideal block ciphers. Of course, there's no 
practical reason for wanting to distinguish between two ideal block ciphers. 
Rather, this attack is generic because we could use it to distinguish between 
two ideal block ciphers if we wanted to. The attack doesn't exploit any internal 

property of the block cipher itself. 
We can also create a more advanced generic distinguisher. Encrypt the 

plaintext 0 with all keys in the range 1, . . .  ,232 and count how often each 
value for the first 32 bits of the ciphertext occurs. Suppose we find that for a 
cipher X the value t occurs 5 times instead of the expected one time. This is a 
property that is unlikely to hold for the ideal cipher, and would allow us to 
distinguish X from an ideal cipher. This is still a generic distinguisher, as we 
can easily construct something similar for any cipher X. (It is in fact extremely 
unlikely that a cipher does not have a suitable value for t.) This attack is generic 
since, the way it is described, it is applicable to all block ciphers and doesn't 
exploit a specific weakness of X. Such a distinguisher would even allow us to 
distinguish between two ideal ciphers. 

Things become more complicated if we design a distinguisher as follows: 
We make a list of 1000 different statistics that we can compute about a cipher. 
We compute each of these for cipher X, and build the distinguisher from the 

21n 1964, U.S. Supreme Court judge Potter Stewart used these words to define obscenity: "1 shall 
not today attempt further to define the kinds of material . . .  but 1 know it when I see it." 
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statistic that gives the most significant result. We expect to find a statistic 
with a significance level of about 1 in 1000. We can of course apply the same 
technique to find distinguishers for any particular cipher, so this is a generic 
attack, but the generic nature now depends not only on the distinguisher itself, 
but also on how the distinguisher was found. That's why nobody has been 
able to formalize a definition of generic attacks and block cipher security. We 
would love to give you a clean definition of block cipher security, but the 
cryptographic community does not yet know enough about cryptography to 
be able to do this in full generality. Instead, existing formal definitions often 
limit the capability of an attacker. For example, existing formal definitions 
might not allow chosen-key attacks. While these assumptions can hold in 
some cases, we try to build block ciphers that are much stronger. 

We must not forget to limit the amount of computation allowed in the 
distinguisher. We could have done this explicitly in the definition, but that 
would have complicated it even further. If the block cipher has an explicit 
security level of n bits, then a successful distinguisher should be more efficient 
than an exhaustive search on n-bit values. If no explicit design strength is 
given, the design strength equals the key size. This formulation is rather 
roundabout for a reason. It is tempting to just say that the distinguisher 
has to work in less than 2n steps. This is certainly true, but some types of 
distinguishers give you only a probabilistic result that is more like a partial 
key search. The attack could have a trade-off between the amount of work and 
the probability of distinguishing the cipher from the ideal cipher. For example: 
an exhaustive search of half the key space requires 2/-1 work and provides 
the right answer 75% of the time. (If the attacker finds the key, he knows 
the answer. If he doesn't find the key, he still has a 50% chance of guessing 
right simply by guessing at random. Overall, his chances of getting the right 
answer are therefore 0.5 + 0.5 · 0.5 = 0.75.) By comparing the distinguisher to 
such partial key-space searches, we take this natural trade-off into account, 
and stop such partial key searches from being classified as an attack. 

Our definition of block cipher security covers all possible forms of attack. 
Ciphertext only, known plaintext, (adaptively) chosen plaintext, related key, 
and all other types of attack all implement a non-generic distinguisher. That 
is why we will use this informal definition in this book. It also captures the 
essence of profeSSional paranoia that we talked about in Chapter 1; we want 
to capture anything that could possibly be considered a non-generic attack. 

So why spend multiple pages on defining what a secure block cipher is? This 
definition is very important because it defines a simple and clean interface 
between the block cipher and the rest of the system. This sort of modularization 
is a hallmark of good design. In security systems, where complexity is one of 
our main enemies, good modularization is even more important than in most 
other areas. Once a block cipher satisfies our security definition, you can treat 
it as if it were an ideal cipher. After all, if it does not behave as an ideal cipher 
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in the system, then you have found a distinguisher for the cipher, which means 
the cipher is not secure according to our definition. If you use a secure block 
cipher, you no longer have to remember any particularities or imperfections; 
the cipher will have all the properties that you expect a block cipher to have. 
This makes the design of larger systems easier. 

Of course, some ciphers that don't meet our stringent definition might be 
"good enough" in practice or for a specific application as currently defined, 
but why take the risk? Even if the weaknesses of a particular block cipher 
under our definition are highly theoretical-such as requiring an unrealistic 
amount of work to exploit and thus not being very vulnerable to compromise 
in practice-a block cipher that meets our definition is much more attractive. 

3.4.1 Parity of a Permutation 

Unfortunately, we have one more complication. As we discussed in Section 3.1, 
encryption under a single key corresponds to a lookup in a permutation table. 
Think about constructing this table in two steps. First you initialize the table 
with the identity mapping by giving the element at index i the value i. Then you 
create the permutation that you want by repeatedly swapping two elements 
in the table. It turns out there are two types of permutations: those that can 
be constructed from an even number of swaps (called the even permutations) 
and those that can be constructed from an odd number of swaps (called the 
udd permutations). It should not surprise you that half of all permutations are 
even, and the other half are odd. 

Most modern block ciphers have a 128-bit block size, but they operate on 
32-bit words. They build the encryption function from many 32-bit operations. 
This has proved to be a very successful method, but it has one side effect. It 
is rather hard to build an odd permutation from small operations; as a result, 
virtually all block ciphers only generate even permutations. 

This gives us a simple distinguisher for nearly any block cipher, one which 
we call the parity attack. For a given key, extract the permutation by encrypting 
all possible plaintexts. If the permutation is odd, we know that we have 
an ideal block cipher, because the real block cipher never generates an odd 
permutation. If the permutation is even, we claim to have a real block cipher. 
This distinguisher will be right 75% of the time. It will produce the wrong 
answer only if it is given an ideal cipher that produces an even permutation. 
The success rate can be improved by repeating the work for other key values. 

This attack has no practical significance whatsoever. To find the parity of 
a permutation, you have to compute all but one of the plaintext/ciphertext 
pairs of the encryption function. (The last one is trivial to deduce: the sole 
remaining plaintext maps to the sole remaining ciphertext.) You should 
never allow that many plaintext/ ciphertext queries to a block cipher in a real 
system, because other types of attacks start to hurt much sooner. In particular, 
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once the attacker knows most of the plaintext/ciphertext pairs, he no longer 
needs a key to decrypt the message, but can simply use a lookup table created 
from those pairs. 

We could declare the parity attack to be generic by definition, but that seems 
diSingenuous, since the even parity of block ciphers is a peculiar artifact of 
their designs. Rather, we prefer to change the definition of the ideal block 
cipher, and limit it to randomly chosen even permutations. 

Definition 3 An ideal block Cipher implements an independently chosen random 
even permutation for each of the key values. 

It is a pity to complicate our "ideal" cipher in this way, but the only alter­
native is to disqualify nearly al1 known block ciphers. For the overwhelming 
majority of applications, the restriction to even permutations is insignificant. 
As long as we never allow all plaintext/ ciphertext pairs to be computed, even 
and odd permutations are indistinguishable. 

If you ever have a block cipher that can generate odd permutations, you 
should revert to the original definition of the ideal cipher. In practice, parity 
attacks have more effect on the formal definition of security than on real-world 
systems, so you can probably forget about this whole issue of parity. 

This discussion also serves as another example of how cryptographers think. 
It is more important to exhibit professional paranoia and consider a superset 
of realistic attacks, and then pare away the unrealistic ones, than to start with 
only realistic attacks and try to find new ones. 

3.5 Real Block Ciphers 

There are hundreds of block ciphers that have been proposed over the years. 
It is very easy to design a new block cipher. It is fiendishly hard to design a 
good new block cipher. We're not merely talking about security; that a block 
cipher has to be secure goes without saying. Building a secure block cipher is a 
challenge unto itself. But it becomes even more difficult to create a block cipher 
that is efficient in a wide variety of different applications. (We previously said 
that we'd give up performance for security. We would. But when possible, we 
still prefer both. ) 

Designing block ciphers can be fun and educational, but one shouldn't use 
an unknown cipher in a real system. The cryptographic community doesn't 
trust a cipher until it has been reviewed thoroughly by other experts. A basic 
prerequisite is that the cipher has been published, but this is not enough. There 
are so many ciphers out there that few get any effective peer review. You are 
much better off using one of the well-known ciphers that already has been 
reviewed for you. 

Virtually all block ciphers consist of several repetitions of a weak block 
cipher, known as a round. Several of these weak rounds in sequence make a 



Chapter 3 • Block Ciphers 51 

strong block cipher. This structure is easy to design and implement, and is also 
a great help in the analysis. Most attacks on block ciphers begin by attacking 
versions with a reduced number of rounds. As the attacks improve, more and 
more rounds can be attacked. 

We will discuss several block ciphers in more detail, but we won't define 
them exhaustively. The full specifications can be found in the references or 
on the Internet. We will instead concentrate on the overall structure and the 
properties of each cipher. 

3.5.1 DES 

The venerable workhorse of cryptography, the Data Encryption Standard 
(DES) [96] has finally outlived its usefulness. Its restricted key size of 56 bits 
and small block size of 64 bits make it unsuitable for today's fast computers 
and large amounts of data. It survives in the form of 3DES [99], which is a 
block cipher built from three DES encryptions in sequence-encrypt with DES 
with one 56-bit key, decrypt with a second 56-bit key, and then encrypt again 
either with the first key or a third 56-bit key. This solves the most immediate 
problem of the small key size, but there is no known fix for the small block 
size. DES is not a particularly fast cipher by current standards, and 3DES is 
one-third the speed of DES. You will still find DES in many systems, but we 
do not recommend using either DES or 3DES in new designs. It is, however, a 
classic design worth studying in its own right. 

Figure 3.1 gives an overview of a single round of DES. This is a line diagram 
of the DES computations; you will commonly find diagrams like this in 
cryptographic literature. Each box computes a particular function, and the 
lines show which value is used where. There are a few standard conventions. 
The XOR or exclusive-or operation, sometimes called bitwise addition or 
addition without carry, is shown in formulas as a EI1 operator and in figures as 
a large version of the EI1 operator. You might also find drawings that include 
integer additions, which often are drawn to look like the EE operator. 
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Figure ].1 : Structure of a single round of DES 
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DES has a 64-bit plaintext, which is split into two 32-bit halves L and 
R. This splitting is done by rearranging the bits in a semi-ordered fashion. 
Nobody seems to know why the designers bothered to rearrange the bits of 
the plaintext-it has no cryptographic effect-but that's how DES is defined. 
A similar swapping of bits is implemented at the end of the encryption to 
create the 64-bit ciphertext from the two halves L and R. 

DES consists of 16 rounds numbered 1 through 16. Each round i uses a 
separate 48-bit round key Kj• Each round key is formed by selecting 48 bits 
from the 56-bit key, and this selection is different for each round key.3 The 
algorithm that derives these round keys from the main block cipher key is 
called the key schedule. 

Round i transforms the (L, R) pair into a new (L, R) pair under control of a 
round key Kj• Most of the work is done by the round function F, shown in the 
dashed box. As shown in the figure, the R value is first processed by an expand 
function, which duplicates a number of bits to produce 48 bits of output from 
the 32-bit input. The 48-bit result is xORed with the 48-bit round key Kj• The 
result of this is used in the S-box tables. An S-box (the term derives from substi­
tution box) is basically just a lookup table that is publicly known. As you cannot 
build a lookup table with 48 input bits, the S-boxes consist of eight small lookup 
tables, each of which maps 6 bits to 4 bits. This brings the result size back to 32 
bits. These 32 bits are then swapped around by the bit shuffle function before 
being xORed into the left value L. Finally, the values of L and R are swapped. 
This entire computation is repeated 16 times for a single DES encryption. 

The basic structure of DES is called the Feistel construction [47]. It is a really 
elegant idea. Each round consists of XORing L with F(Kj, R) for some function F, 

and then swapping L and R. The beauty of the construction is that decryption 
requires exactly the same set of operations as encryption. You need to swap 
L and R, and you need to XOR L with F(K" R). This makes it much easier to 
implement the encryption and decryption functions together. It also means 
that you only have to analyze one of the two functions, as they are almost 
identical. A final trick used in most Feistel ciphers is to leave out the swap 
after the last round, which makes the encryption and decryption functions 
identical except for the order of the round keys. This is particularly nice for 
hardware implementations, as they can use the same circuit to compute both 
encryptions and decryptions. 

The different parts of the DES cipher have different functions. The Feistel 
structure makes the cipher design simpler and ensures that the two halves L 
and R are mixed together. XORing the key material ensures that the key and 
data are mixed, which is the whole point of a cipher. The S-boxes provide 
nonlinearity. Without them, the cipher could be written as a bunch of binary 
additions, which would allow a very easy mathematical attack based on linear 

3There is some structure to this selection, which you can find in the DES specifications [96]. 
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algebra. Finally, the combination of the S-box, expand, and bit shuffle functions 
provide diffusion. They ensure that if one bit is changed in the input of F, more 
than one bit is changed in the output. In the next round there will be more bit 
changes, and even more in the round after that, etc. Without good diffusion, a 
small change in the plaintext would lead to a small change in the ciphertext, 
which would be very easy to detect. 

DES has a number of properties that disqualify it according to our security 
definition. Each of the round keys consists purely of some of the bits selected 
from the cipher key. If the cipher key is 0, then all the round keys are 0 as 
well. In particular, all the round keys are identical. Remember that the only 
difference between encryption and decryption is the order of the round keys. 
But all round keys are zero here. So encryption with the 0 key is the same 
function as decryption with the 0 key. This is a very easy property to detect, 
and as an ideal block cipher does not have this property, it leads to an easy 
and efficient distinguishing attack.4 

DES also has a complementation property that ensures that 

E(R, P) = E(K, P) 

for all keys K and plaintexts P, where X is the value obtained by complementing 
all the bits in X. In other words, if you encrypt the complement of the plaintext 
with the complement of the key, you get the complement of the (original) 
ciphertext. 

This is rather easy to see. Look at the figure and think about what happens 
if you flip all the bits in L, R, and Ki• The expand function merely copies bits 
around, so all the output bits are also flipped. The XOR with the key Ki has 
both inputs flipped, so the output remains the same. The input to the S-boxes 
remains the same, the output of the S-boxes remains the same, so the final XOR 
has one input that is flipped and one input that is the same. The new L value, 
soon to be swapped to the R position, is therefore also flipped. In other words, 
if you complement L and R at the beginning of the round and complement Ki 
as well, then the output is the complement of what you had originally. This 
property passes through the entire cipher. 

The ideal block cipher would not have this curious property. More impor­
tantly, this particular property can lead to attacks on systems that use DES. 

In short, DES does not pass muster anymore. The above properties disqualify 
DES according to our security definition. But even ignoring the properties 
above, the DES key length is wholly inadequate. There have already been 
several successful attempts to find a DES key by simple exhaustive search [44]. 

3DES has a larger key, but it inherits both the weak keys and the com­
plementation property from DES, each of which is enough to disqualify the 

4There are three other keys that have this property; together, they are called the weak keys of 
DES. 
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cipher by our standards. It is also severely limited by its 64-bit block size, 
which imposes severe restrictions on the amount of data we can encrypt with 
a single key. (See Section 4.8 for details.) Sometimes you have to use 3DES in a 
design for legacy reasons, but be very careful with it because of its small block 
size and because it does not behave like an ideal block cipher. 

3.5.2 AES 

The Advanced Encryption Standard (AES) is the U.S. government standard 
created to replace DES. Instead of designing or commissioning a cipher, the U.s. 
National Institute of Standards and Technology (NIST) asked for proposals 
from the cryptographic community. A total of 15 proposals were submitted 
[98]. Five ciphers were selected as finalists [100], after which Rijndael was 
selected to become AES.5 AES became a standard in 200l. 

AES uses a different structure than DES. It is not a Feistel cipher. Figure 3.2 
shows a single round of AES. The subsequent rounds are similar. The plaintext 
comes in as 16 bytes (128 bits) at the very top. The first operation is to XOR the 
plaintext with 16 bytes of round key. This is shown by the EEl operators; the key 
bytes come into the side of the XORS. Each of the 16 bytes is then used as an 
index into an S-box table that maps 8-bit inputs to 8-bit outputs. The S-boxes 
are all identical. The bytes are then rearranged in a specific order that looks 
a bit messy but has a simple structure. Finally, the bytes are mixed in groups 
of four using a linear mixing function. The term linear just means that each 
output bit of the mixing function is the XOR of several of the input bits. 

Mix Mix Mix Mix 

Figure ].2: Structure of a single round of AES 

5There has been some confusion about the correct pronunciation of "Rijndael." Don't worry; it's 
hard to pronounce unless you speak Dutch, so just relax and pronounce it any way you like, or 
just call it "AES." 
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This completes a single round. A full encryption consists of 10-14 rounds, 
depending on the size of the key. AES is defined for 128-, 192-, and 256-bit 
keys, and uses 10 rounds for 128-bit keys, 12 rounds for 192-bit keys, and 14 
rounds for 256-bit keys. Like DES, there is a key schedule that generates the 
necessary round keys, but the key schedule uses a very different structure. 

The AES structure has advantages and disadvantages. Each step consists 
of a number of operations that can be performed in parallel. This parallelism 
makes high-speed implementations easy. On the other hand, the decryption 
operation is significantly different from the encryption operation. You need 
the inverse lookup table of the S-box, and the inverse mixing operation is 
different from the original mixing operation. 

We can recognize some of the same functional blocks as in DES. The XORS 
add key material to the data, the 5-boxes provide nonlinearity, and the byte 
shuffle and mixing functions provide diffusion. AES is a very clean design 
with clearly separated tasks for each part of the cipher. 

AES has always been a fairly aggressively designed cipher. In the original 
presentation, the AES designers showed an attack on 6 rounds. This means 
that the designers knew of an attack if AES was defined to have only 6 rounds. 
The authors therefore chose 10-14 rounds for the full cipher, depending on 
the key size [27]. 

During the AES selection process, the attacks were improved to handle 
7 rounds for 128-bit keys, 8 rounds for 192-bit keys, and 9 rounds for 256-
bit keys [49]. This still left a 3 to 5 round security margin. From a different 
perspective: for 128-bit keys, the best attack we knew when Rijndael was 
selected as AES covered 70% of the cipher. In other words, the selection of 
Rijndael as AES relied on the assumption that future attacks would not give 
large improvements. 

Will AES stand the test of time? It is, as always, impossible to predict the 
future, but sometimes it helps to look at the past. Until recently, the best­
analyzed ciphers were DES, FEAL, and IDEA. In all cases, the attacks were 
significantly improved many years after the initial publication. Since then, the 
field has progressed, but it still takes a leap of faith to think we know it all and 
that no significant improvements in attacks will be found. 

In fact, at the time of this writing we are starting to see some pretty amazing 
breakthroughs in the cryptanalysis of AES [14, 15, 16] .  One attack can break 
the full 12 rounds of AES with 192-bit keys using four related keys and 2176 
operations, and another attack can break the full 14 rounds of AES with 2S6-bit 
keys using four related keys and 2119 operations [15] . Another attack can break 
10 of the 14 rounds of AES with 256-bit keys using two related keys and only 
245 operations [14]. 

These are huge results. They mean we now know AES does not meet our 
definition of security for a block cipher. The attacks against the full 192- and 
256-bit versions of AES are theoretical-not practical-so we aren't ready to 
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lose any sleep over them just yet. But they are attacks under our definition, so 
192- and 256-bit AES have theoretically been broken. And even better attacks 
might be discovered over time. 

The community is still trying to come to grips with what these results mean 
for the use of AES in a real system. Given all that we know today, using 
AES still seems like a reasonable decision. It is the U.S. government standard, 
which means a great deal. Using the standard avoids a number of discussions 
and problems. But it is important to realize it is still possible that future 
cryptanalytic advances may uncover even more serious weaknesses. If you are 
developing a system or standardizing a protocol, we recommend building in 
some flexibility or extensibility in case you need to replace AES with another 
block cipher in the future. We will come back to this in Section 3.5.6. 

3.5.3 Serpent 

Serpent was another AES finalist [1]. It is built like a tank. Easily the most 
conservative of all the AES submissions, Serpent is in many ways the opposite 
of AES. Whereas AES puts emphasis on elegance and efficiency, Serpent is 
designed for security all the way. The best attack we know of covers only 12 of 
the 32 rounds [38]. The disadvantage of Serpent is that it is about one-third the 
speed of AES. It can also be difficult to implement efficiently, as the S-boxes 
have to be converted to a Boolean formula suitable for the underlying CPU. 

In some ways, Serpent has a similar structure to AES. It consists of 32 rounds. 
Each round consists of xORing in a 128-bit round key, applying a linear mixing 
function to the 128 bits, and then applying 32 four-bit S-boxes in parallel. In 
each round, the 32 5-boxes are identical, but there are eight different S-boxes 
that are used each in tum in a round. 

Serpent has an especially nice software implementation trick. A straightfor­
ward implementation would be very slow, as each round requires 32 5-box 
lookups and there are 32 rounds. In total there are 1024 5-box lookups, and 
doing those one by one would be very slow. The trick is to rewrite the S-boxes 
as Boolean formulas. Each of the four output bits is written as a Boolean 
formula of the four input bits. The CPU then evaluates this Boolean formula 
directly, using AND, OR, and XOR instructions. The trick is that a 32-bit CPU can 
evaluate 32 S-boxes in parallel, as each bit position in the registers computes 
the same function, albeit on different input data. This style of implementation 
is called a bitslice implementation. Serpent is specifically designed to be imple­
mented in this way. The mixing phase is relatively easy to compute in a bitslice 
implementation. 

If Serpent had been as fast as Rijndael (now AES), it would almost certainly 
have been chosen as AES because of its conservative design. But speed is 
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always a relative thing. When measured per encrypted byte, Serpent is nearly 
as fast as DES and much faster than 3DES. It is only when Serpent is compared 
to the other AES finalists that it seems slow. 

3.5.4 Twofish 
Twofish was an AES finalist as well. It can be seen as a compromise between 
AES and Serpent. It is nearly as fast as AES, but it has a larger security margin. 
The best attack we know of is on 8 of the 16 rounds. The biggest disadvantage 
of Twofish is that it can be rather expensive to change the encryption key, as 
Twofish is best implemented with a lot of precomputation on the key. 

Twofish uses the same Feistel structure as DES. An overview is given in 
Figure 3.3.6 Twofish splits the 128-bit plaintext into four 32-bit values, and 
most operations are on 32-bit values. You can see the Feistel structure of 
Twofish, with F being the round function. The round function consists of two 
copies of the g function, a function called the PHT, and a key addition. The 
result of the F function is xORed into the right half (the two vertical lines on 
the right). The boxes with «< or >� symbols in them denote rotations of the 
32-bit value by the specified number of bit positions. 

Each g function consists of four 5-boxes followed by a linear mixing function 
that is very similar to the AES mixing function. The S-boxes are somewhat 
different. In contrast to all the other block ciphers we have seen in this book, 
these 5-boxes are not constant; rather, their contents depend on the key. There 
is an algorithm that computes the 5-box tables from the key material. The 
motivation for this design is that key-dependent S-boxes are much harder for 
an attacker to analyze. This is also why Twofish implementations often do 
precomputations for each key. They precompute the 5-boxes and store the 
result in memory. 

The PHT function mixes the two results of the g functions using 32-bit 
addition operations. The last part of the F function is where the key material 
is added. Note that addition is shown as EE and exclusive or as EEl. 

Twofish also uses whitening. At both the start and the end of the cipher, 
additional key material is added to the data. This makes the cipher harder to 
attack for most types of attacks, and it costs very little. 

As with the other ciphers, Twofish has a key schedule to derive the round 
keys and the two additional keys at the start and end from the actual cipher 
key. 

6There is a reason why this figure is so much larger and detailed than the others. Two of 
us were on the Twofish design team, so we could lift this figure straight from our Twofish 
book [115]. 
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3.5.5 Other AES Finalists 
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We have discussed three of the five AES finalists in some detail. There were 
two more: RC6 [108] and MARS [22]. 

RC6 is an interesting design that uses 32-bit multiplications in the cipher. 
During the AES competition, the best attack broke a 17-round version of RC6, 
compared to 20 rounds of the full RC6. MARS is a design with a nonuniform 
structure. It uses a large number of different operations and is therefore more 
expensive to implement than the other AES finalists. 

Both RC6 and MARS were selected as AES finalists for a reason: They are 
both probably good block ciphers. Details about their internal operations are 
in their respective specifications. 
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3.5.6 Which Block Cipher Should I Choose? 

The recent cryptanalytic advances against AES make this a tough choice. 
Despite these cryptanalytic advances, AES is still what we recommend. It is fast. 
All known attacks are theoretical, not practical. Even though AES is now broken 
academically, these breaks do not imply a significant security degradation of 
real systems in practice. It is also the official standard, sanctioned by the U.S. 
government. And everybody else is using it. They used to say "Nobody gets 
fired for buying IBM." Similarly, nobody will fire you for choosing AES. 

AES has other advantages. It is relatively easy to use and implement. All 
cryptography libraries support it, and customers like it, because it is "the 
standard." 

There are probably circumstances in which 3DES still is  the best solution. If 
you have to be backward-compatible, or are locked into a 64-bit block size by 
other parts of the system, then 3DES is still your best choice. However, keep 
in mind that 3DES has some unique properties that cause it to not satisfy our 
security criteria; and be especially careful with the small 64-bit block size. 

If you are really concerned about future cryptanalytic advances, you could 
always double encrypt-first with AES and then with Serpent or Twofish. 
If you do this, remember to use different, independent keys for each block 
cipher. Or use AES with an increased number of rounds-say, 16 rounds for 
AES with 128-bit keys, 20 rounds for AES with 192-bit keys, and 28 rounds for 
AES with 256-bit keys. 

Further, remember that the recent cryptanalytic advances against AES are 
only just coming out as we finalize this book. It is too early to tell exactly 
how the community will respond. Keep an eye out for a general consensus or 
shift in direction from the community. Perhaps NIST will issue some specific 
recommendations for how to address the recent discoveries against AES. If 
NIST makes recommendations on how to respond to the new attacks against 
AES, or if there is a clear shift in the consensus of the community, no one will 
fault you for following those recommendations or that shift. 

We also need to return to one other issue with AES. We haven't talked much 
about side-channel or timing attacks yet (we'll talk about these in Sections 8.5 
and 15.3). It turns out that even though there are no known practical attacks 
against the mathematics of AES, it is possible to implement AES poorly. For 
example, it is possible to implement AES such that the time it takes to perform 
an operation depends on its inputs-on some inputs it will take more time 
and on other inputs it will take less time. If an attacker can measure the 
time a system takes to perform an AES operation, she might be able to learn 
bits of the key. If you use AES, you should be careful to use a constant­
time implementation, or to otherwise conceal the timing information from an 
attacker. 
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3.5.7 What Key Size Should I Use? 

All of the AES finalists (Rijndael, Serpent, Twofish, RC6, and MARS), and 
hence AES, support keys of 128, 192, and 256 bits. For almost all applications, 
a 128-bit security level is enough. However, to achieve 128 bits of security, we 
suggest keys longer than 128 bits. 

A 128-bit key would be great, except for one problem: collision attacks. Time 
and time again, we find systems that can be attacked -at least theoretically, if 
not practically-by a birthday attack or a meet-in-the-middle attack. We know 
these attacks exist. Sometimes designers just ignore them, and sometimes they 
think they are safe, but somebody finds a new, clever way of using them. Most 
block cipher modes allow meet-in-the-middle attacks of some form. We've 
had enough of this race, so here is our recommendation: For a security level of 
n bits, every cryptographic value should be at least 2n bits long. 

Following this recommendation makes any type of collision attack useless. 
In real life, it is hard to keep strictly to this rule. For 128-bit security, we really 
want to use a block cipher with a block size of 256 bits, but all the common 
block ciphers have a block size of 128 bits. This is more serious than it sounds. 
There are quite a number of collision attacks on block cipher modes, which we 
will learn about later. 

Still, at least we can use the large keys that all AES candidate block ciphers 
support. Therefore: use 256-bit keys! We are not saying that I28-bit keys are 
insecure per se; we are saying that 256-bit keys provide a better safety margin, 
assuming that the block cipher is secure. 

Note that we advocate the use of 256-bit keys for systems with a design 
strength of 128 bits. In other words, these systems are designed to withstand 
attackers that can perform 2128 operations in their attack. Just remember to use 
the design strength (128 bits), not the key length of 256 bits, for sizing the rest 
of the system. 

Finally, let's come back to the recent cryptanalytic results against AES. These 
results show that AES with 192- and 256-bit keys are not secure. Moreover, 
the attacks against AES with 192- and 256-bit keys exploit weaknesses in the 
AES key schedule algorithm. This is why the known attacks against AES with 
256-bit keys are more efficient than the attacks against AES with I92-bit keys. 
This is also why we don't yet know of attacks against AES with 128-bit keys. 
So, while in general we'd prefer a block cipher with 256-bit keys over a block 
cipher with I28-bit keys, assuming the block cipher is secure, the situation is a 
bit more murky for AES. To emphasize our desire for 128 bits of security, and 
thus our quest for a secure block cipher with 256-bit keys, we will use AES 
with 256-bit keys throughout the rest of this book. But once there is a clear 
consensus of how to respond to the new cryptanalytic results against AES, we 
will likely replace AES with another block cipher with 256-bit keys. 
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Exercise 3.1 How much space would be required to store a table for an entire 
idealized block cipher that operates on 64-bit blocks and that has 80-bit keys? 

Exercise 3.2 How many rounds are in DES? How many bits are in a DES 
key? What is the DES block size? How does 3DES work as a function of DES? 

Exercise 3.3 What are the possible lengths for AES keys? For each key length, 
how many rounds are in AES? What is the AES block size? 

Exercise 3.4 Under what situations might you choose 3DES over AES? Under 
what situations might you chose AES over 3DES? 

Exercise 3.5 Suppose you have a processor that can perform a single DES 
encryption or decryption operation in 2-26 seconds. Suppose you also have a 
large number of plaintext-ciphertext pairs for DES under a single, unknown 
key. How many hours would it take, on average, to find that DES key, using an 
exhaustive search approach and a single processor? How many hours would 
it take, on average, to find that DES key, using an exhaustive search approach 
and a collection of 214 processors? 

Exercise 3.6 Consider a new block cipher, DES2, that consists only of two 
rounds of the DES block cipher. DES2 has the same block and key size as 
DES. For this question you should consider the DES F function as a black box 
that takes two inputs, a 32-bit data segment and a 48-bit round key, and that 
produces a 32-bit output. 

Suppose you have a large number of plaintext-ciphertext pairs for DES2 
under a single, unknown key. Give an algorithm for recovering the 48-bit round 
key for round 1 and the 48-bit round key for round 2. Your algorithm should 
require fewer operations than an exhaustive search for an entire 56-bit DES key. 
Can your algorithm be converted into a distinguishing attack against DES2? 

Exercise 3.7 Describe an example system that uses DES but is insecure 
because of the DES complementation property. Specifically, describe the 
system, and then present an attack against that system; the attack should 
utilize the DES complementation property. 

Exercise 3.8 Familiarize yourself with a cryptographic software development 
package for your computer. A popular open source package is OpenSSL, 
though there are numerous other alternatives. 

Using an existing cryptography library, decrypt the following ciphertext (in 
hex) 

53 9B 33 3B 3 9  70 60 14 9 0  28 CF El 09 04 A4 07 
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with the following 2S6-bit key (also in hex) 

using AES. 

80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0 0  00 0 0  00 0 0  0 0  0 0  0 0  0 0  0 0  00 0 0  0 0  0 0  0 0  01 

Exercise 3.9 Using an existing cryptography library, encrypt the following 
plaintext (in hex) 

29 6C 93 FD F4 99 AA EB 41 94 BA BC 2E 63 56 1D 

with the following 2S6-bit key (also in hex) 

using AES. 

80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0  
00 00 00 00 0 0  0 0  0 0  0 0  0 0  0 0  00 00 0 0  00 00 01  

Exercise 3.10 Write a program that experimentally demonstrates the comple­
mentation property for DES. This program should take as input a key K and 
a plaintext P and demonstrate that the DES complementation property holds 
for this key and plaintext. You may use an existing cryptography library for 
this exercise. 
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Block Cipher Modes 

Block ciphers encrypt only fixed-size blocks. If you want to encrypt something 
that isn't exactly one block long, you have to use a block cipher mode. That's 
another name for an encryption function built using a block cipher. 

Before proceeding with this chapter, we have one word of warning. The 
encryption modes that we talk about in this chapter prevent an eavesdropper 
from reading the traffic. They do not provide any authentication, so an 
attacker can still change the message-sometimes in any way she wants. 
Many people find this surprising, but this is simple to see. The decryption 
function of an encryption mode simply decrypts the data. It might produce 
nonsense, but it still decrypts a (modified) ciphertext to some (modified and 
possibly nonsensical) plaintext. You should not rely on the fact that nonsensical 
messages do no harm. That involves relying on other parts of the system, 
which all too often leads to grief. Furthermore, for some encryption schemes, 
the modified ciphertexts may not decrypt to garbage; some modes allow 
targeted plaintext changes and many data formats can be manipulated even 
with locally randomizing changes. 

In almost all situations, the damage that modified messages can do is far 
greater than the damage of leaking the plaintext. Therefore, you should always 
combine encryption with authentication. The modes we discuss here should 
be combined with a separate authentication function, which we discuss in 
Chapter 6. 

63 
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4. 1 Padding 

In general, a block cipher mode is a way to encrypt a plaintext P to a ciphertext 
C, where the plaintext and ciphertext are of an arbitrary length. Most modes 
require that the length of the plaintext P be an exact multiple of the block size. 
This requires some padding. There are many ways to pad the plaintext, but the 
most important rule is that the padding must be reversible. It must be possible 
to uniquely determine the original message from a padded message. 

We sometimes see a very simple padding rule that consists of appending 
zeros until the length is suitable. This is not a good idea. It is not reversible, as 
the plaintext p and p \I 0 have the same padded form. (We use the operator \I 
to denote concatenation.) 

Throughout this book, we will only consider plaintexts that are an integral 
number of bytes long. Some cryptographic primitives are specified for odd 
sizes where the last byte is not fully used. We have never found this general­
ization useful, and it often is a hindrance. Many implementations do not allow 
for these odd sizes in any case, so all our sizes will be in bytes. 

It would be nice to have a padding rule that does not make the plaintext 
any longer if it already has a suitable length. This is not possible to achieve for 
all situations. You can show that at least some messages that are already of 
a suitable length must be lengthened by any reversible padding scheme, and 
in practice all padding rules add a minimum of one byte to the length of the 
plaintext. 

So how do we pad a plaintext? Let P be the plaintext and let l(P) be the 
length of P in bytes. Let b be the block size of the block cipher in bytes. We 
suggest using one of two simple padding schemes: 

1. Append a single byte with value 128, and then as many zero bytes as 
required to make the overall length a multiple of b. The number of zero 
bytes added is in the range 0, . . .  , b - l. 

2. Determine the number of padding bytes required. This is a number n 
which satisfies 1 :s n :s b and n + £(P) is a multiple of b. Pad the plaintext 
by appending n bytes, each with value n.  

Either padding scheme works just fine. There are no cryptographic ramifica­
tions to padding. Any padding scheme is acceptable, as long as it is reversible. 
The two we gave are just the simplest ones. You could also include the length 
of P at the beginning, and then P, and then pad to a block boundary. This 
assumes that you know the length of P when you start processing the data, 
which you might not. 

Once the padded length is a multiple of the block size, we cut the padded 
plaintext into blocks. The plaintext P is thereby turned into a sequence of 
blocks PI, . . .  , Pk• The number of blocks k can be computed as r(£(P) + l)/bl, 
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where r· · ·1 denotes the ceiling function that rounds a number upward to the 
next integer. For most the rest of this chapter we will simply assume that 
the plaintext P consists of an integral number of blocks P1, . . . , Pk• 

After decrypting the ciphertext using one of the block cipher modes we 
will discuss, the padding has to be removed. The code that removes the 
padding should also check that the padding was correctly applied. Each of 
the padding bytes has to be verified to ensure it has the correct value. An 
erroneous padding should be treated in the same manner as an authentication 
failure. 

4.2 ECB 

The simplest method to encrypt a longer plaintext is known as the electronic 
codebook mode, or ECB. This is defined by 

C; = E(K, P;) for i = 1, . . .  , k  

This is quite simple: you just encrypt each block of the message separately. 
Of course, things cannot be so simple, or we would not have allocated an 
entire chapter to the discussion of block cipher modes. Do not ever use ECB 
for anything. It has serious weaknesses, and is only included here so that we 
can warn you away from it. 

What is the trouble with ECB? If two plaintext blocks are the same, then 
the corresponding ciphertext blocks will be identical, and that is visible to the 
attacker. Depending on the structure of the message, this can leak quite a lot 
of information to the attacker. 

There are many situations in which large blocks of text are repeated. For 
example, this chapter contains the words "ciphertext block" many times. If 
two of the occurrences happen to line up on a block boundary, then a plaintext 
block value will be repeated. In most Unicode strings, every other byte is a 
zero, which greatly increases the chance of a repeated block value. Many file 
formats will have large blocks of only zeros, which result in repeated block 
values. In general, this property of ECB makes it too weak to use. 

4.3 CBC 

The cipher block chaining (CBC) mode is one of the most widely used block 
cipher modes. The problems of ECB are avoided by xORing each plaintext 
block with the previous ciphertext block. The standard formulation of CBC is 
as follows: 

for i = 1, . . . , k 
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The problems of ECB are avoided by "randomizing" the plaintext using 
the previous ciphertext block. Equal plaintext blocks will typically encrypt to 
different ciphertext blocks, significantly reducing the information available to 
an attacker. 

We are still left with the question of which value to use for Co. This value 
is called the initialization vector, or IV. We discuss strategies for picking the IV 
below. 

4.3.1 Fixed IV 

You should not use a fixed IV, as that introduces the ECB problem for the 
first block of each message. If two different messages start with the same 
plaintext block, their encryptions will start with the same ciphertext blocks. In 
real life, messages often start with similar or identical blocks, and we do not 
want the attacker to be able to detect this. 

4.3.2 Counter IV 

An alternative idea we sometimes see is to use a counter for the IV. Use IV = 0 
for the first message, IV = 1 for the second message, etc. Again, this is not a very 
good idea. As we mentioned, many real-life messages start in similar ways. 
If the first blocks of the messages have simple differences, then the simple 
IV counter could very well cancel the differences in the XOR, and generate 
identical ciphertext blocks again. For example: the values 0 and 1 differ in 
exactly one bit. If the leading plaintext blocks of the first two messages also 
differ in only this bit (which happens much more often than you might expect), 
then the leading ciphertext blocks of the two messages will be identical. The 
attacker can promptly draw conclusions about the differences between the 
two messages, something a secure encryption scheme should not allow. 

4.3.3 Random IV 

The problems with ECB and fixed-IV or counter-IV CBC both stem from the 
fact that plaintext messages are highly nonrandom. Very often they have a 
fixed value header, or a very predictable structure. A chosen plaintext attacker 
could even exert control over the structure of the plaintext. In CBC, the 
ciphertext blocks are used to "randomize" the plaintext blocks, but for the first 
block we have to use the IV. This suggests that we should choose a random IV. 

This leads to another problem. The recipient of the message needs to know 
the IV. The standard solution is to choose a random IV and to send it as a 
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first block before the rest of the encrypted message. The resulting encryption 
procedure is as follows: 

Co := random block value 
Ci := E(K, Pi EB Ci-I) for i = 1, . . .  , k 

with the understanding that the (padded) plaintext PI, . . .  , Pk is encrypted as 
Co, . . .  , Ck• Note that the ciphertext starts at Co and not CI; the ciphertext is one 
block longer than the plaintext. The corresponding decryption procedure is 
easy to derive: 

for i = 1, . . . , k  

The principal disadvantage of a random IV is that the ciphertext is one 
block longer than the plaintext. For short messages, this results in a significant 
message expansion, which is always undesirable. 

4.3.4 Nonce-Generated IV 

Here is another solution to the IV problem. The solution consists of two steps. 
First, each message that is to be encrypted with this key is given a unique 
number called a nonce. The term is a contraction of "number used once." The 
critical property of a nonce is that it is unique. You should never use the same 
nonce twice with the same key. Typically, the nonce is a message number of 
some sort, possibly combined with some other information. Message numbers 
are already available in most systems, as they are used to keep the messages 
in their correct order, detect duplicate messages, etc. The nonce does not have 
to be secret, but it can be used only once. 

The IV necessary for CBC encryption is generated by encrypting the nonce. 
In a typical scenario, the sender numbers the messages consecutively and 

includes the message number in each transmission. The following steps should 
be used to send a message: 

1 .  Assign a message number to this message. Typically, the message number 
is provided by a counter that starts at O. Note that the counter should never 
be allowed to wrap around back to 0, as that would destroy the uniqueness 
property. 

2. Use the message number to construct a unique nonce. For a given key, the 
nonce should be unique in the entire system, not just on this computer. 
For example, if the same key is used to encrypt traffic in two directions, 
then the nonce should consist of the message number plus an indication of 
which direction this message is being sent in. The nonce should be as large 
as a single block of the block cipher. 
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3. Encrypt the nonce with the block cipher to generate the IV. 

4. Encrypt the message in CBC mode using this IV. 

5. Add enough information to the ciphertext to ensure that the receiver can 
reconstruct the nonce. Typically this involves adding the message number 
just in front of the ciphertext, or using a reliable transport method for 
communicating the ciphertext, in which case the message number might 
be implicit. The IV value itself (Co in our equations) does not have to be 
sent. 

The extra information that needs to be included in the message is usually 
much smaller than in the random IV case. For most systems, a message counter 
of 32-48 bits is sufficient, compared to a 128-bit random IV overhead for the 
random IV solution. Most practical communications systems need a message 
counter anyway, or use a reliable transport with an implicit counter, so the 
generated IV solution adds no message overhead. 

If the attacker has complete control over the nonce, then the nonce should be 
encrypted with a separate key when generating the IV. Any practical system 
would need to ensure nonce uniqueness anyway, however, and hence would 
not allow arbitrary nonce choices. So in most situations we would use the 
same key to encrypt the nonce as we use to encrypt the message itself. 

4.4 OFB 

So far the modes have all taken the message and encrypted it by applying 
the block cipher to the message blocks in some way. Output feedback mode, or 
OFB, is different in that the message itself is never used as an input to the block 
cipher. Instead, the block cipher is used to generate a pseudorandom stream 
of bytes (called the key stream), which in turn is xORed with the plaintext to 
generate the ciphertext. An encryption scheme that generates such a random 
key stream is called a stream cipher. Some people seem to think that stream 
ciphers are bad in some way. Not at all! Stream ciphers are extremely useful, 
and do their work very well. They just require a bit of care in their use. Abuse 
of a stream cipher, mostly in the form of reusing a nonce, can very easily lead 
to an insecure system. A mode like CBC is more robust in the sense that even 
when abused it still does a pretty good job. Still, the advantages of stream 
ciphers often outweigh their disadvantages. 

OFB is defined by: 

Ko := IV 
Ki := E(K,Ki_1) 
Cj := Pj EI1 Ki 

for i = 1, . . .  , k  
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Here too, there is an IV Ko which is used to generate the key stream K1, • • •  , Kk 
by repeatedly encrypting the value. The key stream is then xORed with the 
plaintext to generate the ciphertext. 

The IV value has to be random, and as with CBC it can either be chosen 
randomly and transmitted with the ciphertext (see Section 4.3.3), or it can be 
generated from a nonce (see Section 4.3.4). 

One advantage of OFB is that decryption is exactly the same operation as 
encryption, which saves on implementation effort. Especially useful is that 
you only need to use the encryption function of the block cipher, so you don't 
even have to implement the decryption function. 

A second advantage is that you don't need any padding. If you think of the 
key stream as a sequence of bytes, then you can use as many bytes as your 
message is long. In other words, if the last plaintext block is only partially full, 
then you only send the ciphertext bytes that correspond to actual plaintext 
bytes. The lack of padding reduces the overhead, which is especially important 
with small messages. 

OFB also demonstrates the one danger of using a stream cipher. If you ever 
use the same IV for two different messages, they will be encrypted with the 
same key stream. This is very bad indeed. Let us suppose that two messages 
are the plaintexts P and P', and they have been encrypted using the same key 
stream to the ciphertexts C and C' respectively. The attacker can now compute 
C; EEl C; = Pi EEl Ki EEl P; EEl K; = Pi EEl P;. In other words, the attacker can compute 
the difference between the two plaintexts. Suppose the attacker already knows 
one of the plaintexts. (This does happen very often in real life.) Then it is trivial 
for her to compute the other plaintext. There are even well-known attacks 
that recover information about two unknown plain texts from the difference 
between them [66]. 

OFB has one further problem: if you are unlucky, you will repeat a key block 
value, after which the sequence of key blocks simply repeats. In a single large 
message, you might be unlucky and get into a cycle of key block values. Or 
the IV for one message might be the same as a key block halfway through the 
second message, in which case the two messages use the same key stream for 
part of their plaintexts. In either case, you end up encrypting different message 
blocks with the same key block, which is not a secure encryption scheme. 

You need to encrypt quite a lot of data before this becomes plausible. It 
is basically a collision attack between the key stream blocks and the initial 
starting points, so you are talking about encrypting at least 264 blocks of data 
before you expect such a collision. This is an example of why a block cipher 
with 128-bit blocks may only provide 64 bits of security. If you limit the 
amount of data that you encrypt with each key, you can limit the probability 
of repeating a key block value. Unfortunately, the risk always remains, and if 
you are unlucky, you could lose the confidentiality of an entire message. 
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Counter mode, generally known by the three-letter abbreviation CTR, is another 
block cipher encryption mode. Although it has been around for ages, it was 
not standardized as an official DES mode [95], and therefore has often been 
overlooked in textbooks. It has recently been standardized by NIST [40] . Like 
OFB, counter mode is a stream cipher mode. It is defined by: 

Ki := E(K, Nonce II i) for i = 1, . . . , k  
Ci : =  Pi EB Ki 

Like any stream cipher, you must supply a unique nonce of some form. Most 
systems build the nonce from a message number and some additional data to 
ensure the nonce's uniqueness. 

CTR uses a remarkably simple method to generate the key stream. It 
concatenates the nonce with the counter value, and encrypts it to form a single 
block of the key stream. This requires that the counter and the nonce fit in 
a single block, but with modern 128-bit block sizes, this is rarely a problem. 
Obviously, the nonce must be smaller than a single block, as there needs to 
be room for the counter value i. A typical setup might use a 48-bit message 
number, 16 bits of additional nonce data, and 64 bits for the counter i. This 
limits the system to encrypting 248 different messages using a single key, and 
limits each message to 268 bytes. 

As with OFB mode, you must make absolutely sure never to reuse a single 
key I nonce combination. This is a disadvantage that is often mentioned for 
CTR, but CBC has exactly the same problem. If you use the same IV twice, 
you start leaking data about the plaintexts. CBC is a bit more robust, as it 
is more likely to limit the amount of information leaked. But any leakage 
of information violates our requirements, and in a modularized design you 
cannot count on the rest of the system to limit the damage if you only leak 
a little bit of information. So both in the case of CBC and CTR you have to 
ensure that the nonce or IV is unique. 

The real question is whether you can ensure that the nonce is unique. 
If there's any doubt, you should use a mode like random IV CBC mode, 
where the IV is generated randomly and outside of the application developer's 
control. But if you can guarantee that the nonce will be unique, then CTR 
mode is very easy to use. You only need to implement the encryption function 
of the block cipher, and the CTR encryption and decryption functions are 
identical. It is very easy to access arbitrary parts of the plaintext, as any block 
of the key stream can be computed immediately. For high-speed applications, 
the computation of the key stream can be parallelized to an arbitrary degree. 
Furthermore, the security of CTR mode is trivially linked to the security of 
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the block cipher. Any weakness of CTR encryption mode immediately implies 
a chosen plaintext attack on the block cipher. The logical converse of this is 
that if there is no attack on the block cipher, then there is no attack on CTR 
mode (other than the traffic analysis and information leakage we will discuss 
shortly). 

4.6 Combined Encryption and Authentication 

All of the modes we have discussed so far date back to the 1970s and early 
1980s. In the last few years, some new block cipher modes have been proposed. 
NI5T recently chose to standardize two, called CCM [41] and GCM [43]. These 
modes provide both authentication and encryption. We will discuss these 
modes in Chapter 7, after we discuss authentication. 

4.7 Which Mode Should I Use? 

We have discussed several modes, but there are really only two modes we 
would consider using: CBC and CTR. We've already explained that ECB is not 
secure enough. OFB is a good mode, but CTR is better in some respects and 
doesn't suffer from the short cycle problem. There is no reason to choose OFB 
over CTR. 

So, should you use CBC or CTR? In the first edition of this book, we 
recommended CTR. However, we are always learning more, and we now 
recommend CBC with random IV. Why the change? We have seen too many 
applications that are insecure because they do not generate the nonce correctly. 
CTR is a very good mode, but only if the application can guarantee that the 
nonce is unique, even when the system is under attack. That turns out to be 
a major source of problems and security weaknesses. CBC with random IV 
has some disadvantages (the ciphertext is larger, the plaintext needs padding, 
and the system needs a random number generator), but it is robust and stands 
up well to abuse. Nonce generation turns out to be a really hard problem in 
many systems, so we do not recommend exposing to application developers 
any mode that uses nonces. That is even true of CBC with nonce-generated IV. 
So if you're developing an application and need to use an encryption mode, 
play it safe and use random IV CBC mode. 

Always keep in mind that an encryption mode only provides confidential­
ity. That is, the attacker cannot find any information about the data you are 
communicating, other than the fact that you are communicating, when you 
are communicating, how much you are communicating, and whom you are 
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communicating with. Analyzing these sorts of external information is called 
traffic analysis. 1 

Also recall that the encryption modes in this chapter are only designed to 
provide confidentiality against eavesdroppers; they do not stop the attacker 
from changing the data. We will come back to protecting both confidentiality 
and authenticity in Chapter 7. 

4.8 Information Leakage 

We now come to the dark secret of block cipher modes. All block cipher modes 
leak some information. 

For this discussion, we wil1 assume that we have a perfect block Cipher. But 
even with a perfect block cipher, the ciphertexts that the encryption modes 
produce reveal information about the plaintexts. This has to do with equalities 
and inequalities of ciphertext and plaintext blocks. 

Let's start with ECB. If two plaintext blocks are equal (Pi = Pj), then the 
two ciphertext blocks are equal, too (Ci = Cj). For random plaintexts, this will 
happen very rarely, but most plaintext is not random but highly structured. 
Thus, equal plaintext blocks occur far more frequently than random, and the 
equal ciphertext blocks reveal this structure. That is why we dismissed ECB. 

What about CBC mode? Equal plaintext blocks do not lead to equal 
ciphertext blocks, as each plaintext block is first xORed with the previous 
ciphertext block before it is encrypted. Think of all the ciphertext blocks as 
random values; after all, they were produced by a block cipher that produces 
a random output for any given input. But what if we have two ciphertext 
blocks that are equal? We have 

C = Cj 
E(K, Pi EI1 C-l) = E(K, Pj EI1 Cj-1) 

Pi EI1 C-l = Pj EI1 Cj-1 
Pi EI1 Pj = C-l EI1 Cj-1 

from the CBC specifications 
decrypt both sides 
basic algebra 

The last equation gives the difference between two plaintext blocks as the XOR 
of two ciphertext blocks, which we assume the attacker knows. This is certainly 
not something you would expect from a perfect message encryption system. 
And if the plaintext is something with a lot ofredundancy, such as plain English 
text, it probably contains enough information to recover both plaintext blocks. 

A similar situation occurs when two ciphertexts are unequal. Knowing that 
Cj =I- Cj implies that Pi EI1 Pj =I- C-l EI1 Cj-1, so each unequal pair of ciphertexts 
leads to an inequality formula between the plaintext blocks. 

1 Traffic analysis can provide very useful information to an attacker. Preventing traffic analysis is 
possible, but generally too expensive in terms of bandwidth for anyone but the military. 
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CTR has similar properties. With this encryption mode we know that 
the Ki blocks are all different, because they are encryptions of a nonce and 
counter value. All the plaintext values of the encryption are different, so all 
the ciphertext values (which form the key blocks) are different. Given two 
ciphertexts C; and C" you know that Pi EEl Pj =f=. Ci EEl Cj because otherwise the 
two key stream blocks would have had to be equal. In other words, CTR mode 
provides a plaintext inequality for each pair of ciphertext blocks. 

There are no problems \\jith collisions in CTR. Two key blocks are never 
equal, and equal plaintext blocks or equal ciphertext blocks lead to nothing. 
The only thing that makes CTR deviate from the absolute ideal stream cipher 
is the absence of key block collisions. 

OFB is worse than either CBC or CTR. As long as there are no collisions on 
the key stream blocks, OFB leaks the same amount of information as CTR. But 
if there is ever a collision of two key stream blocks, then all subsequent key 
stream blocks also produce a collision. This is a disaster from a security point 
of view, and one reason why CTR is preferable to OFB. 

4.8.1 Chances of a Collision 

So what are the chances that two ciphertext blocks are equal? Let's say we 
encrypt M blocks in total. It doesn't matter whether this is done in a few large 
messages, or in a large number of small messages. All that counts is the total 
number of blocks. A good rough estimate is that there are M(M - 1)/2 pairs of 
blocks, and each pair has a chance of 2-n of being equal, where n is the block 
size of the block cipher. So the expected number of equal ciphertext blocks is 
M(M - 1)/2n+l, which gets close to unity when M � 2n/2. In other words, when 
you encrypt about 2n/2 blocks, you can expect to get two ciphertext blocks that 
are equaP With a block size of n = 128 bits, we can expect the first duplicate 
ciphertext block value after about 264 blocks. This is the birthday paradox we 
explained in Section 2.7.1. Now, 264 blocks is a lot of data, but don't forget that 
we are designing systems with a lifetime of 30 years. Maybe people will want 
to process something close to 264 blocks of data in the future. 

Smaller data sets are also at risk. If we process 240 blocks (about 16 TB of 
data) then there is a 2-48 chance of having a ciphertext block collision. That 
is a really small probability. But look at it from the attacker's point of view. 
For a particular key that is being used, he collects 240 blocks and checks for 
duplicate blocks. Because the chance of finding one is small, he has to repeat 
this whole job for about 248 different keys. The total amount of work before he 

2The actual number of blocks you can encrypt before you expect the first duplicate is closer to 
.Jrr2n-1 = 2n/2.,firf2, but the theory behind the analysis is much harder and we don't need that 
level of precision here. 
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finds a collision is 240 • 248 = 288, which is much less than our design strength 
of 128 bits. 

Let's concentrate on CBC and CTR. In CTR you get a plaintext inequality 
for every pair of blocks. In CBC you get an inequality if the two ciphertext 
blocks are unequal, and an equality if the blocks are equal. Obviously an 
equality provides much more information about the plaintext to the attacker 
than an inequality does, so CTR leaks less information. 

4.8.2 How to Deal With Leakage 

So how do we achieve our goal of a 128-bit security level? Basically, we don't, 
but we get as close as we can. There is no easy way of achieving a 128-bit 
security level with a block cipher whose block size is 128 bits. This is why we 
want to have block Ciphers with 256-bit blocks, but there are no widely studied 
proposals of such a block cipher out there, so that is a dead end. What we can 
do is get close to our design security level, and limit the damage. 

CTR leaks very little data. Suppose we encrypt 264 blocks of data and 
produce a ciphertext C. For any possible plaintext P that is 264 blocks long, the 
attacker can compute the key stream that would have to be used for this P to 
be encrypted to C. There is roughly a 50% chance that the resulting key stream 
will contain a collision. We know that CTR mode never produces collisions, 
so if a collision occurs, that particular plaintext P can be ruled out. This means 
that the attacker can rule out approximately half of all possible plaintexts. 
This corresponds to leaking a single bit of information to the attacker. Even 
revealing a single bit of information can sometimes be problematic. But leaking 
a single bit of information for 264 blocks is not much. If we restrict ourselves to 
encrypting only 248 blocks, then the attacker can rule out approximately 2-32 of 
all plaintexts, which is even less information. In a practical setting, such a small 
leakage is insignificant when taken in the context of the attack requirements. 
So although CTR encryption is not perfect, we can limit the damage to an 
extremely small leak by not encrypting too much information with a single 
key. It would be reasonable to limit the cipher mode to 260 blocks, which allows 
you to encrypt 264 bytes but restricts the leakage to a small fraction of a bit. 

When using CBC mode you should be a bit more restrictive. If a collision 
occurs in CBC mode, you leak 128 bits of information about the plaintext. It 
is a good policy to keep the probability of such a collision low. We suggest 
limiting CBC encryption to 232 blocks or so. That leaves a residual risk of 2-64 
that you will leak 128 bits, which is probably harmless for most applications, 
but certainly far from our desired security level. 

Just a reminder; these limits are on the total amount of information encrypted 
using a single key. It does not matter whether the data is encrypted in one 
very large message, or as a large number of smaller messages. 
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This is not a satisfactory state of affairs, but it is the situation we face. 
The best you can do at this point is use CTR or CBC and limit the amount of 
data you process with any one key. We will talk later about key negotiation 
protocols. It is quite easy to set up a fresh key when the old key is nearing its 
usage limit. Assuming you already use a key negotiation protocol to set up 
the encryption key, having to refresh a key is not particularly difficult. It is a 
complication, but a justifiable one. 

4.8.3 About Our Math 

Readers with a mathematical background may be horrified at our blithe use 
of probabilities without checking whether the probabilities are independent. 
They are right, of course, when arguing from a purely mathematical standpoint. 
But just like physicists, cryptographers use math in a way that they have 
found useful. Cryptographic values typically behave very randomly. After all, 
cryptographers go to great length to absolutely destroy all patterns, as any 
pattern leads to an attack. Experience shows that this style of dealing with 
probabilities leads to quite accurate results. Mathematicians are welcome to 
work through the details and figure out the exact results for themselves, but 
we prefer the rougher approximations for their simplicity. 

4.9 Exercises 

Exercise 4.1 Let P be a plaintext and let f(P) be the length of P in bytes. Let b 
be the block size of the block cipher in bytes. Explain why the following is not 
a good padding scheme: Determine the minimum number of padding bytes 
necessary in order to pad the plaintext to a block boundary. This is a number n 
which satisfies 0 � n � b - 1 and n + f(P) is a multiple of b. Pad the plaintext 
by appending n bytes, each with value n. 

Exercise 4.2 Compare the security and performance advantages and disad­
vantages of each variant of eBC mode covered in this chapter: a fixed IV, a 
counter IV, a random IV, and a nonce-generated IV. 

Exercise 4.3 Suppose you, as an attacker, observe the following 32-byte 
ciphertext C (in hex) 

46 64 DC 06 97 BB FE 69 33 07 15 07 9B A6 C2 3D 

2B 84 DE 4F 90 8D 7D 34 AA CE 96 8B 64 F3 DF 75 

and the following 32-byte ciphertext C' (also in hex) 

51 7E CC 05 C3 BD EA 3B 33 57 OE IB D8 97 D5 30 

7B DO 91 6B 8D 82 6B 35 B7 8B BB 8D 74 E2 C7 3B. 
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Suppose you know these ciphertexts were generated using CTR mode with 
the same nonce. The nonce is implicit, so it is not included in the ciphertext. 
You also know that the plaintext P corresponding to C is 

43 72 79 70 74 6F 67 72 61 70 68 79 20 43 72 79 

70 74 6F 67 72 61 70 68 79 20 43 72 79 70 74 6F. 

What information, if any, can you infer about the plaintext P' corresponding 
to C? 

Exercise 4.4 The ciphertext (in hex) 

87 F3 48 FF 79 B8 11 AF 38 57 D6 71 8E 5F OF 91 

7C 3D 26 F7 73 77 63 5A 5E 43 E9 B5 CC 5D 05 92 

6E 26 FF C5 22 OD C7 D4 05 F1 70 86 70 E6 EO 17 

was generated with the 2S6-bit AES key (also in hex) 

80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 

using CBC mode with a random IV. The IV is included at the beginning of 
the ciphertext. Decrypt this ciphertext. You may use an existing cryptography 
library for this exercise. 

Exercise 4.5 Encrypt the plaintext 

62 6C 6F 63 6B 20 63 69 70 68 65 72 73 20 20 20 

68 61 73 68 20 66 75 6E 63 74 69 6F 6E 73 20 78 

62 6C 6F 63 6B 20 63 69 70 68 65 72 73 20 20 20 

using AES in ECB mode and the key 

80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01. 

You may use an existing cryptography library for this exercise. 

Exercise 4.6 Let PI, P2 be a message that is two blocks long, and let P; be 
a message that is one block long. Let CO, Cv C2 be the encryption of Pl,P2 
using CBC mode with a random IV and a random key, and let C�, C; be the 
encryption of P� using CBC mode with a random IV and the same key. Suppose 
an attacker knows Pl, P2 and suppose the attacker intercepted and thus know 
Co, Cl, C2 and C�, C;. Further suppose that, by random chance, C� = C2• Show 
that the attacker can compute P�. 
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5 

Hash Functions 

A hash junction is a function that takes as input an arbitrarily long string of bits 
(or bytes) and produces a fixed-size result. A typical use of a hash function 
is digital signatures. Given a message m, you could sign the message itself. 
However, the public-key operations of most digital signature schemes are 
fairly expensive in computational terms. So instead of signing m itself, you 
apply a hash function h and sign h(m) instead. The result of h is typically 
between 128 and 1024 bits, compared to multiple thousands or millions of bits 
for the message m itself. Signing h(m) is therefore much faster than signing m 
directly. For this construction to be secure, it must be infeasible to construct 
two messages ml and m2 that hash to the same value. We'll discuss the details 
of the security properties of hash functions below. 

Hash functions are sometimes called message digest functions, and the hash 
result is also known as the digest, or the fingerprint. We prefer the more common 
name hash junction, as hash functions have many other uses besides digesting 
messages. We must warn you about one possible confusion: the term "hash 
function" is also used for the mapping function used in accessing hash tables, 
a data structure used in many algorithms. These so-called hash functions 
have similar properties to cryptographic hash functions, but there is a huge 
difference between the two. The hash functions we use in cryptography have 
specific security properties. The hash-table mapping-function has far weaker 
requirements. Be careful not to confuse the two. When we talk about hash 
functions in this book, we always mean cryptographic hash functions. 

Hash functions have many applications in cryptography. They make a great 
glue between different parts of a cryptographic system. Many times when 
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you have a variable-sized value, you can use a hash function to map it to a 
fixed-size value. Hash functions can be used in cryptographic pseudorandom 
number generators to generate several keys from a single shared secret. And 
they have a one-way property that isolates different parts of a system, ensuring 
that even if an attacker learns one value, she doesn't learn the others. 

Even though hash functions are used in almost every system, we as a 
community currently know less about hash functions than we do about block 
ciphers. Until recently, much less research had been done on hash functions 
than block ciphers, and there were not very many practical proposals to choose 
from. This situation is changing. NIST is now in the process of selecting a new 
hash function standard, to be called SHA-3. The SHA-3 hash function selection 
process is proving to be very similar to the process that selected the AES as 
the new block cipher standard. 

5.1 Security of Hash Functions 

As we mentioned above, a hash function maps an input m to a fixed-size 
output h(m). Typical output sizes are 128-1024 bits. There might be a limit 
on the input length, but for all practical purposes the input can be arbitrarily 
long. There are several requirements for a hash function. The simplest one is 
that it must be a one-way function: given a message m it is easy to compute 
h(m), but given a value x it is not possible to find an m such that h(m) = x. In 
other words, a one-way function is a function that can be computed but that 
cannot be inverted -hence its name. 

Of the many properties that a good hash function should have, the one that 
is mentioned most often is collision resistance. A collision is two different inputs 
ml and m2 for which h(ml) = h(m2). Of course, every hash function has an 
infinite number of these collisions. (There are an infinite number of possible 
input values, and only a finite number of possible output values.) Thus, a hash 
function is never collision-free. The collision-resistance requirement merely 
states that, although collisions exist, they cannot be found. 

Collision resistance is the property that makes hash functions suitable for 
use in signature schemes. However, there are collision-resistant hash functions 
that are utterly unsuitable for many other applications, such as key derivation, 
one-way functions, etc. In practice, cryptographic designers expect a hash 
function to be a random mapping. Therefore, we require that a hash function 
be indistinguishable from a random mapping. Any other definition leads to 
a situation in which the designer can no longer treat the hash function as 
an idealized black box, but instead has to consider how the hash function 
properties interact with the system around it. (We number our definitions 
globally throughout this book.) 
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Definition 4 The ideal hash function behaves like a random mapping from all 
possible input values to the set of all possible output values. 

Like our definition of the ideal block cipher (Section 3.3), this is an incomplete 
definition. Strictly speaking, there is no such thing as a random mapping; you 
can only talk about a probability distribution over all possible mappings. 
However, for our purposes this definition is good enough. 

We can now define what an attack on a hash function is. 

Definition 5 An attack on a hash function is a non-generic method of distinguishing 
the hash function from an ideal hash function. 

Here the ideal hash function must obviously have the same output size as the 
hash function we are attacking. As with the block ciphers, the "non-generic" 
requirement takes care of all the generic attacks. Our remarks about generic 
attacks on block ciphers carry over to this situation. For example, if an attack 
could be used to distinguish between two ideal hash functions, then it doesn't 
exploit any property of the hash function itself and it is a generic attack. 

The one remaining question is how much work the distinguisher is allowed 
to perform. Unlike the block cipher, the hash function has no key, and there is 
no generic attack like the exhaustive key search. The one interesting parameter 
is the size of the output. One generic attack on a hash function is the birthday 
attack, which generates collisions. For a hash function with an n-bit output, 
this requires about 2"/2 steps. But collisions are only relevant for certain uses 
of hash functions. In other situations, the goal is to find a pre-image (given 
x, find an m with h(m) = x), or to find some kind of structure in the hash 
outputs. The generic pre-image attack requires about 2" steps. We're not going 
to discuss at length here which attacks are relevant and how much work would 
be reasonable for the distinguisher to use for a particular style of attack. To be 
sensible, a distinguisher has to be more efficient than a generic attack that yields 
similar results. We know this is not an exact definition, but-as with block 
ciphers-we don't have an exact definition. If somebody claims an attack, 
simply ask yourself if you could get a similar or better result from a generic 
attack that does not rely on the specifics of the hash function. If the answer is 
yes, the distinguisher is useless. If the answer is no, the distinguisher is real. 

As with block ciphers, we allow a reduced security level if it is specified. We 
can imagine a 512-bit hash function that specifies a security level of 128 bits. 
In that case, distinguishers are limited to 21211 steps. 

5.2 Real Hash Functions 

There are very few good hash functions out there. At this moment, you are 
pretty much stuck with the existing SHA family: SHA-1, SHA-224, SHA-
256, SHA-384, and SHA-512. There are other published proposals, including 
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submissions for the new SHA-3 standard, but these all need to receive more 
attention before we can fully trust them. Even the existing functions in the 
SHA family have not been analyzed nearly enough, but at least they have been 
standardized by NIST, and they were developed by the NSA.1 

Almost all real-life hash functions, and all the ones we will discuss, are 
iterative hash functions. Iterative hash functions split the input into a sequence 
of fixed-size blocks mI,' .. , mk, using a padding rule to fill out the last block. A 
typical block length is 512 bits, and the last block will typically contain a string 
representing the length of the input. The message blocks are then processed in 
order, using a compression function and a fixed-size intermediate state. This 
process starts with a fixed value Ho, and defines Hi = h'(Hi-1, m;). The final 
value Hk is the result of the hash function. 

Such an iterative design has significant practical advantages. First of all, 
it is easy to specify and implement, compared to a function that handles 
variable-length inputs directly. Furthermore, this structure allows you to start 
computing the hash of a message as soon as you have the first part of it. So 
in applications where a stream of data is to be hashed, the message can be 
hashed on the fly without ever storing the data. 

As with block ciphers, we will not spend our time explaining the various 
hash functions in great detail. The full specifications contain many details that 
are not relevant to the main goals of this book. 

5.2.1 A Simple But Insecure Hash Function 
Before discussing real hash functions, however, we will begin by giving an 
example of a trivially insecure iterative hash function. This example will help 
clarify the definition of a generic attack. This hash function is built from AES 
with a 256-bit key. Let K be a 256-bit key set to all zeros. To hash the message 
m, first pad it in some way and break it into 12S-bit blocks m1, ... , mk; the 
details of the padding scheme aren't important here. Set Ho to a 128-bit block 
of all zeros. And now compute Hi = AESK(Hi_1 EB mi). Let Hk be the result of 
the hash function. 

Is this a secure hash function? Is it collision resistant? Before reading further, 
try to see if you can find a way of breaking this hash function yourself. 

Now here's a non-generic attack. Pick a message m such that after padding 
it splits into two blocks ml and m2. Let HI and H2 denote the values computed 
as part of the hash function's internal processing; H2 is also the output of the 
hash function. Now let m� = m2 EB HI and let m; = H2 EB mz EB HI, and let m' 
be the message that splits into m; and m; after padding. Due to properties 
of the hash function's construction, m' also hashes to Hz; you can verify this 
in the exercises at the end of this chapter. And with very high probability, m 
and m' are different strings. That's right-m and m' are two distinct messages 

lWhatever you may think about the NSA, so far the cryptography it has published has been 
quite decent. 
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that produce a collision when hashed with this hash function. To convert this 
into a distinguishing attack, simply try to mount this attack against the hash 
function. If the attack works, the hash function is the weak one we described 
here; otherwise, the hash function is the ideal one. This attack exploits a specific 
weakness in how this hash function was designed, and hence this attack is 
non-generic. 

5.2.2 MD5 
Let's now turn to some real hash function proposals, beginning with MD5. 
MD5 is a 128-bit hash function developed by Ron Rivest [1041. It is a further 
development of a hash function called MD4 [106] with additional strengthening 
against attacks. Its predecessor MD4 is very fast, but also broken [36]. MD5 
has now been broken too. You will still hear people talk about MD5, however, 
and it is still in use in some real systems. 

The first step in computing MD5 is to split the message into blocks of 512 
bits. The last block is padded and the length of the message is included as 
well. MD5 has a 128-bit state that is split into four words of 32 bits each. The 
compression function h' has four rounds, and in each round the message block 
and the state are mixed. The mixing consists of a combination of addition, XOR, 
AND, OR, and rotation operations on 32-bit words. (For details, see [104].) Each 
round mixes the entire message block into the state, so each message word is 
in fact used four times. After the four rounds of the h' function, the input state 
and result are added together to produce the output of h'. 

This structure of operating on 32-bit words is very efficient on 32-bit CPUs. 
It was pioneered by MD4, and is now a general feature of many cryptographic 
primitives. 

For most applications, the 128-bit hash size of MD5 is insufficient. Using the 
birthday paradox, we can trivially find collisions on any 128-bit hash function 
using 264 evaluations of the hash function. This would allow us to find real 
collisions against MD5 using only 264 MD5 computations. This is insufficient 
for modern systems. 

But the situation with MD5 is worse than that. MD5's internal structure 
makes it vulnerable to more efficient attacks. One of the basic ideas behind 
the iterative hash function design is that if h' is collision-resistant, then the 
hash function h built from h' is also collision-resistant. After all, any collision 
in h can only occur due to a collision in h'. For over a decade now it has been 
known that the MD5 compression function h' has collisions [30]. The collisions 
for h' don't immediately imply a collision for MD5. But recent cryptanalytic 
advances, beginning with Wang and Yu [124], have now shown that it is 
actually possible to find collisions for the full MD5 using much fewer than 
264 MD5 computations. While the existence of such efficient collision finding 
attacks may not immediately break all uses of MD5, it is safe to say that MD5 
is very weak and should no longer be used. 
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5.2.3 SHA-l 

The Secure Hash Algorithm was designed by the NSA and standardized by 
NIST [97]. The first version was just called SHA (now often called SHA-O). The 
NSA found a weakness with SHA-O, and developed a fix that NIST published 
as an improved version, called SHA-l. However, they did not release any 
details about the weakness. Three years later, Chabaud and Joux published 
a weakness of SHA-O [2S]. This is a weakness that is fixed by the improved 
SHA-1, so it is reasonable to assume that we now know what the problem was. 

SHA-1 is a 160-bit hash function based on MD4. Because of its shared 
parentage, it has a number of features in common with MDS, but it is a far 
more conservative design. It is also slower than MOS. Unfortunately, despite 
its more conservative design, we now know that SHA-1 is also insecure. 

SHA-1 has a 160-bit state consisting of five 32-bit words. Like MOS, it has 
four rounds that consist of a mixture of elementary 32-bit operations. Instead 
of processing each message block four times, SHA-J uses a linear recurrence 
to "stretch" the 16 words of a message block to the 80 words it needs. This 
is a generalization of the M04 technique. In MOS, each bit of the message 
is used four times in the mixing function. In SHA-1, the linear recurrence 
ensures that each message bit affects the mixing function at least a dozen 
times. Interestingly enough, the only change from SHA-O to SHA-1 was the 
addition of a one-bit rotation to this linear recurrence. 

Independent of any internal weaknesses, the main problem with SHA-1 
is the 160-bit result size. Collisions against any 160-bit hash function can be 
generated in only 280 steps, well below the security level of modern block 
ciphers with key sizes from 128 to 2S6 bits. It is also insufficient for our design 
security level of 128 bits. Although it took longer for SHA-1 to fall than MOS, 
we now know that it is possible to find collisions in SHA-J using much less 
work than 280 SHA-J computations [123]. Remember that attacks always get 
better? It is no longer safe to trust SHA-1. 

5.2.4 SHA-224, SHA-256, SHA-384, and SHA-51 2 

In 2001, NIST published a draft standard containing three new hash functions, 
and in 2004 they updated this specification to include a fourth hash function 
[101]. These hash functions are collectively referred to as the SHA-2 family of 
hash functions. These have 224-, 2S6-, 384-, and S12-bit outputs, respectively. 
They are designed to be used with the 128-, 192-, and 2S6-bit key sizes of AES, 
as well as the 112-bit key size of 3DES. Their structure is very similar to SHA-l. 

These hash functions are new, which is generally a red flag. However, the 
known weaknesses of SHA-1 are much more severe. Further, if you want more 
security than SHA-1 can give you, you need a hash function with a larger 
result. None of the published designs for larger hash functions have received 
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much public analysis; at least the SHA-2 family has been vetted by the NSA, 
which generally seems to know what it is doing. 

SHA-256 is much slower than SHA-l. For long messages, computing a hash 
with SHA-256 takes about as much time as encrypting the message with AES 
or Twofish, or maybe a little bit more. This is not necessarily bad, and is an 
artifact of its conservative design. 

5.3 Weaknesses of Hash Functions 

Unfortunately, all of these hash functions have some properties that disqualify 
them according to our security definition. 

5.3.1 Length Extensions 

Our greatest concern about all these hash functions is that they have a length­
extension bug that leads to real problems and that could easily have been 
avoided. Here is the problem. A message m is split into blocks mt, ... , mk and 
hashed to a value H. Let's now choose a message m' that splits into the block 
mt, ... , mk, mk+1. Because the first k blocks of m' are identical to the k blocks 
of message m, the hash value h(m) is merely the intermediate hash value 
after k blocks in the computation of hem'). We get h(m') = h'(h(m), mk+t). When 
using MD5 or any hash function from the SHA family, you have to choose m' 
carefully to include the padding and length field, but this is not a problem as 
the method of constructing these fields is known. 

The length extension problem exists because there is no special processing 
at the end of the hash function computation. The result is that h(m) provides 
direct information about the intermediate state after the first k blocks of m'. 

This is certainly a surprising property for a function we want to think 
of as a random mapping. In fact, this property immediately disqualifies all 
of the mentioned hash functions, according to our security definition. All a 
distinguisher has to do is to construct a few suitable pairs (m, m') and check 
for this relationship. You certainly wouldn't find this relationship in an ideal 
hash function. This is a non-generic attack that exploits properties of the hash 
functions themselves, so this is a valid attack. The attack itself takes only a few 
hash computations, so it is very quick. 

How could this property be harmful? Imagine a system where Alice sends 
a message to Bob and wants to authenticate it by sending h(X II m), where X 
is a secret known only to Bob and Alice, and m is the message. If h were an 
ideal hash function, this would make a decent authentication system. But with 
length extensions, Eve can now append text to the message m, and update the 
authentication code to match the new message. An authentication system that 
allows Eve to modify the message is, of course, of no use to us. 
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This issue will be resolved in SHA-3; one of the NIST requirements is that 
SHA-3 not have length-extension properties. 

5.1.2 Partial-Message Collision 

A second problem is inherent in the iterative structure of most hash functions. 
We'll explain the problem with a specific distinguisher. 

The first step of any distinguisher is to specify the setting in which it will 
differentiate between the hash function and the ideal hash function. Sometimes 
this setting can be very simple: given the hash function, find a collision. Here 
we use a slightly more complicated setting. Suppose we have a system that 
authenticates a message m with h(m II X), where X is the authentication key. 
The attacker can choose the message m, but the system will only authenticate 
a single message.2 

For a perfect hash function of size n, we expect that this construction has 
a security level of n bits. The attacker cannot do any better than to choose 
an m, get the system to authenticate it as h(m II X), and then search for X 
by exhaustive search. The attacker can do much better with an iterative hash 
function. She finds two strings m and m' that lead to a collision when hashed by 
h. This can be done using the birthday attack in only 2"/2 steps or so. She then 
gets the system to authenticate m, and replaces the message with m'. Remember 
that h is computed iteratively, so once there is a collision and the rest of the 
hash inputs are the same, the hash value stays the same, too. Because hashing 
m and m' leads to the same value, h(m II X) = h(m' II X). Notice that this attack 
does not depend on X -the same m and m' would work for all values for X. 

This is a typical example of a distinguisher. The distinguisher sets its own 
"game" (a setting in which it attempts an attack), and then attacks the system. 
The object is still to distinguish between the hash function and the ideal hash 
function, but that is easy to do here. If the attack succeeds, it is an iterative 
hash function; if the attack fails, it is the ideal hash function. 

5.4 Fixing the Weaknesses 

We want a hash function that we can treat as a random mapping, but all 
well-known hash functions fail this property. Will we have to check for length­
extension problems in every place we use a hash function? Do we check for 
partial-message collisions everywhere? Are there any other weaknesses we 
need to check for? 

2Most systems will only allow a limited number of messages to be authenticated; this is just an 
extreme case. In real life, many systems include a message number with each message, which 
has the same effect on this attack as allowing only a single message to be chosen. 
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Leaving weaknesses in the hash function is a very bad idea. We can guarantee 
that it will be used somewhere in a way that exposes the weakness. Even if you 
document the known weaknesses, they will not be checked for in real systems. 
Even if you could control the design process that well, you would run into 
a complexity problem. Suppose the hash function has three weaknesses, the 
block cipher two, the signature scheme four, etc. Before you know it, you will 
have to check hundreds of interactions among these weaknesses: a practical 
impossibility. We have to fix the hash function. 

The new SHA-3 standard will address these weaknesses. In the meantime, 
we need short-term fixes. 

5.4.1 Toward a Short-term Fix 

Here is one potential solution. Ultimately, we'll recommend the fixes in 
the subsequent subsections, and this particular proposal has not received 
significant review within the community. But this discussion is illustrative, so 
we include it here. 

Let h be one of the hash functions mentioned above. Instead of m f--* h(m), one 
could use m f--* h(h(m) II m) as a hash function.3 Effectively we put h(m) before 
the message we are hashing. This ensures that the iterative hash computations 
immediately depend on all the bits of the message, and no partial-message or 
length-extension attacks can work. 

Definition 6 Let h be an iterative hash function. The hash function hOBL is defined 
by hOBL(m) := h(h(m) 1 1 m). 

We believe that if h is any of the newer SHA-2 family hash functions, this 
construction has a security level of n bits, where n is the size of the hash result. 

A disadvantage of this approach is that it is slow. You have to hash the 
entire message twice, which takes twice as long. Another disadvantage is that 
this approach requires the whole message m to be buffered. You can no longer 
compute the hash of a stream of data as it passes by. Some applications depend 
on this ability, and using hOBL would simply not work. 

5.4.2 A More Efficient Short-term Fix 

So how do we keep the full speed of the original hash function? We cheat, 
kind of. Instead of h(m), we can use h(h(Ob II m» as a hash function, and claim 
a security level of only nj2 bits. Here b is the block length of the underlying 
compression function, so Ob II m equates to prepending the message with an 
all zero block before hashing. The cheat is that we normally expect an n-bit 

3The notation x 1-+ f(x) is a way of writing down a function without having to give it a name. For 
example: x 1-+ x2 is a function that squares its input. 
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hash function to provide a security level of n bits for those situations in which 
a collision attack is not possible.4 The partial-message collision attacks all rely 
on birthday attacks, so if we reduce the security level to n/2 bits, these attacks 
no longer fall within the claimed security level. 

In most situations, reducing the security level in this way would be unac­
ceptable, but we are lucky here. Hash functions are already designed to be 
used in situations where collision attacks are possible, so the hash function 
sizes are suitably large. If we apply this construction to SHA-256, we get a 
hash function with a 128-bit security level, which is exactly what we need. 

Some might argue that all n-bit hash functions provide only n/2 bits of 
security. That is a valid point of view. Unfortunately, unless you are very 
specific about these things, people will abuse the hash function and assume 
it provides n bits of security. For example, people want to use SHA-256 to 
generate a 256-bit key for AES, assuming that it will provide a security level 
of 256 bits. As we explained earlier, we use 256-bit keys to achieve a 128-bit 
security level, so this matches perfectly with the reduced security level of 
our fixed version of SHA-256. This is not accidental. In both cases the gap 
between the size of the cryptographic value and the claimed security level is 
due to collision attacks. As we assume collision attacks are always possible, 
the different sizes and security levels will fit together nicely. 

Here is a more formal definition of this fix. 

Definition 7 Let h be an iterative hash function, and let b denote the block 
length of the underlying compression function. The hash function hd is defined by 
hd(m) := h(h(Ob II m», and has a claimed security level of min(k, n/2) where k is the 
security level of h and n is the size of the hash result. 

We will use this construction mostly in combination with hash functions 
from the SHA family. For any hash function SHA-X, where X is 1, 224, 256,384, 
or 512, we define SHAd-X as the function that maps m to SHA-X(SHA-X(Ob II 
m» . SH�-256 is just the function m f--+ SHA-256(SHA-256(0512 II m», for 
example. 

This particular fix to the SHA family of iterative hash functions, in addition to 
being related to our construction in Section 5.4.1, was also described by Coron 
et al. [26]. It can be demonstrated that the fixed hash function hd is at least as 
strong as the underlying hash function h.5 HMAC uses a similar hash-it-again 
approach to protect against length-extension attacks. Prepending the message 
with a block of zeros makes it so that, unless something unusual happens, the 

4Even the SHA-256 documentation claims that an n-bit hash function should require 2" steps to 
find a pre-image of a given value. 
5We're cheating a little bit here. By hashing twice, the range of the function is reduced, and 
birthday attacks are a little bit easier. This is a small effect, and it falls well within the margin of 
approximation we've used elsewhere. 
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first block input to the inner hash function in hd is different than the input to 
the outer hash function. Both hDBL and hd eliminate the length extension bug 
that poses the most danger to real systems. Whether hDBL in fact has a security 
level of n bits remains to be seen. We would trust both of them up to nj2 bits 
of security, so in practice we would use the more efficient hd construction. 

5.4.3 Another Fix 
There is another fix to some of these weaknesses with the SHA-2 family of 
iterative hash functions: Truncate the output [26]. If a hash function produces 
n-bit outputs, only use the first n - s of those bits as the hash value for some 
positive s. In fact, SHA-224 and SHA-384 both already do this; SHA-224 is 
roughly SHA-256 with 32 output bits dropped, and SHA-384 is roughly SHA-
512 with 128 output bits dropped. For 128 bits of security, you could hash 
with SHA-512, drop 256 bits of the output, and return the remaining 256 bits 
as the result of the truncated hash function. The result would be a 256-bit hash 
function which, because of birthday attacks, would meet our 128-bit security 
design goal. 

5.5 Which Hash Function Should I Choose? 

Many of the submissions to NIST's SHA-3 competition have revolutionary 
new designs, and they address the weaknesses we've discussed here and 
other concerns. However, the competition is still going on and NIST has not 
selected a final SHA-3 algorithm. Much additional analysis is necessary in 
order to have sufficient confidence in the SHA-3 submissions. In the short 
term, we recommend using one of the newer SHA hash function family 
members-SHA-224, SHA-256, SHA-384, or SHA-512. Moreover, we suggest 
you choose a hash function from the SH� family, or use SHA-512 and truncate 
the output to 256 bits. In the long term, we will very likely recommend the 
winner of the SHA-3 competition. 

5.6 Exercises 

Exercise 5.1 Use a software tool to generate two messages M and M', M =f=. M', 
that produce a collision for MD5. To generate this collision, use one of the 
known attacks against MD5. A link to example code for finding MD5 collisions 
is available at: http : / /www. schneier . com / c e  . html . 

Exercise 5.2 Using an existing cryptography library, write a program to 
compute the SHA-512 hash value of the following message in hex: 

48 65 6C 6C 6F 2C 20 77 6F 72 6C 64 2E 20 20 20. 
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Exercise 5.3 Consider SHA-S12-n, a hash function that first runs SHA-S12 
and then outputs only the first n bits of the result. Write a program that 
uses a birthday attack to find and output a collision on SHA-SI2-n, where 
n is a multiple of 8 between 8 and 48. Your program may use an existing 
cryptography library. Time how long your program takes when n is 8, 16, 24, 
32, 40, and 48, averaged over five runs for each n. How long would you expect 
your program to take for SHA-SI2-2S6? For SHA-SI2-384? For SHA-SI2 itself? 

Exercise 5.4 Let SHA-SI2-n be as in the previous exercise. Write a program 
that finds a message M (a pre-image) that hashes to the following value under 
SHA-SI2-8 (in hex): 

A9 . 

Write a program that finds a message M that hashes to the following value 
under SHA-SI2-16 (in hex): 

3D 4B . 

Write a program that finds a message M that hashes to the following value 
under SHA-SI2-24 (in hex): 

3A 7F 27 . 

Write a program that finds a message M that hashes to the following value 
under SHA-SI2-32 (in hex): 

C3 co 35 7C . 

Time how long your programs take when n is 8, 16, 24, and 32, averaged 
over five runs each. Your programs may use an existing cryptography library. 
How long would you expect a similar program to take for SHA-SI2-2S6? For 
SHA-SI2-384? For SHA-SI2 itself? 

Exercise 5.5 In Section 5.2.1, we claimed that m and m' both hash to H2• Show 
why this claim is true. 

Exercise 5.6 Pick two of the SHA-3 candidate hash function submissions 
and compare their performance and their security under the currently best 
published attacks. Information about the SHA-3 candidates is available at 
http : / /www . schneier . com/ ce . html . 
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Message Authentication Codes 

A message authentication code, or MAC, is a construction that detects tampering 
with messages. Encryption prevents Eve from reading the messages but does 
not prevent her from manipulating the messages. This is where the MAC 
comes in. Like encryption, MACs use a secret key, K, known to both Alice 
and Bob but not to Eve. Alice sends not just the message m, but also a MAC 
value computed by a MAC function. Bob checks that the MAC value of the 
message received equals the MAC value received. If they do not match, he 
discards the message as unauthenticated. Eve cannot manipulate the message 
because without K she cannot find the correct MAC value to send with the 
manipulated message. 

In this chapter we will only consider authentication. The mechanisms for 
combining encryption and authentication will be dealt with in Chapter 7. 

6.1 What a MAC Does 

A MAC is a function that takes two arguments, a fixed-size key K and an 
arbitrarily sized message m, and produces a fixed-size MAC value. We'll write 
the MAC function as MAC(K, m). To authenticate a message, Alice sends not 
only the message m but also the MAC code MAC(K, m), also called the tag. 
Suppose Bob, also with key K, receives a message m' and a tag T. Bob uses the 
MAC verification algorithm to verify that T is a valid MAC under key K for 
message m'. 

89 
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We start with a look at the MAC function in isolation. Be warned that using 
a MAC function properly is more complicated than just applying it to the 
message. We'll get to those problems later on, in Section 6.7. 

6.2 The Ideal MAC and MAC Security 

There are various ways to define the security of a MAC. We describe here our 
preferred definition. This definition is based on the notion of an ideal MAC 
function, which is very similar to the notion of an ideal block cipher. The 
primary difference is that block ciphers are permutations, whereas MACs are 
not. This is our preferred definition because it encompasses a broad range of 
attacks, including weak key attacks, related-key attacks, and more. 

The ideal MAC is a random mapping. Let n be the number of bits in the 
result of a MAC. Our definition of an ideal MAC is: 

Definition 8 An ideal MAC function is a random mappingfrom all possible inputs 
to n-bit outputs. 

Remember that, in this definition, the MAC takes two inputs, a key and a 
message. In practice, the key K is not known to the attacker or, more precisely, 
it is not fully known. There could be a weakness in the rest of the system that 
provides partial information about K to the attacker. 

We define the security of a MAC as follows. 

Definition 9 An attack on a MAC is a non-generic method of distinguishing the 
MAC from an ideal MAC function. 

Cryptography is a broad field. There are more formal definitions that 
theoreticians use. When possible, we prefer the definition above because it is 
broader and more aligned with the full range of attacks one might consider. Our 
attack model includes some forms of attacks not captured by the conventional, 
formal definitions, such as related-key attacks and attacks that assume that the 
attacker has partial knowledge about the key. That is why we prefer our style 
of security definitions, which are robust even if the function is abused or used 
in an unusual environment. 

The more restrictive standard definition is one in which an attacker selects 
n different messages of her choosing, and is given the MAC value for each of 
these messages. The attacker then has to come up with n + 1 messages, each 
with a valid MAC value. 
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6.3 CBC-MAC and CMAC 

CBC-MAC is a classic method of turning a block cipher into a MAC. The key 
K is used as the block cipher key. The idea behind CBC-MAC is to encrypt 
the message m using CBC mode and then throw away all but the last block of 
ciphertext. For a message PIt . . .  , Pk, the MAC is computed as: 

Ho := IV 
Hi := EK(Pi ffi Hi-I) 

MAC := Hk 

Sometimes the output of the CBC-MAC function is taken to be only part (e.g., 
half) of the last block. The most common definition of CBC-MAC requires the 
IV to be fixed at O. 

In general, one should never use the same key for both encryption and 
authentication. It is especially dangerous to use CBC encryption and CBC­
MAC authentication with the same key. The MAC ends up being equal to 
the last ciphertext block. What's more, depending on when and how CBC 
encryption and CBC-MAC are applied, using the same key for both can lead to 
privacy compromises for CBC encryption and authenticity compromises for 
CBC-MAC. 

Using CBC-MAC is a bit tricky, but it is generally considered secure when 
used correctly and when the underlying cipher is secure. Studying the strengths 
and weaknesses of CBC-MAC can be very educational. There are a number 
of different collision attacks on CBC-MAC that effectively limit the security to 
half the length of the block size [20]. Here is a simple collision attack: let M be 
a CBC-MAC function. If we know that M(a) = M(b) then we also know that 
M(a /I c) = M(b /I c). This is due to the structure of CBC-MAC. Let's illustrate 
this with a simple case: c consists of a single block. We have 

M(a II c) = Edc ffi M(a» 
M(b II c) = EK(C ffi M(b» 

and these two must be equal, because M(a) = M(b). 
The attack proceeds in two stages. In the first stage, the attacker collects 

the MAC values of a large number of messages until a collision occurs. This 
takes 264 steps for a 12S-bit block cipher because of the birthday paradox. 
This provides the a and b for which M(a) = M(b). If the attacker can now get 
the sender to authenticate a /I c, he can replace the message with b /I c without 
changing the MAC value. The receiver will check the MAC and accept the 
bogus message b II c. (Remember, we work in the paranoia model. It is quite 
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acceptable for the attacker to create a message and get it authenticated by the 
sender. There are many situations in which this is possible.) There are many 
extensions to this attack that work even with the addition of length fields and 
padding rules [20]. 

This is not a generic attack, as it does not work on an ideal MAC function. 
Finding the collision is not the problem. That can be done for an ideal MAC 
function in exactly the same way. But once you have two messages a and b, for 
which M(a) = M(b), you cannot use them to forge a MAC on a new message, 
whereas you can do that with CBC-MAC. 

As another example attack, suppose c is one block long and M(a II c) = 

M(b II c). Then M(a II d) = M(b II d) for any block d. The actual attack is similar 
to the one above. First the attacker collects the MAC values of a large number 
of messages that end in c until a collision occurs. This provides the values of 
a and b. The attacker then gets the sender to authenticate a II d. Now he can 
replace the message with b II d without changing the MAC value. 

There are some nice theoretical results which argue that, in the particular 
proof model used, CBC-MAC provides 64 bits of security when the block size 
is 128 bits [6] and when the MAC is only ever applied to messages that are 
the same length. Unfortunately, this is short of our desired design strength, 
though in practice it's not immediately clear how to achieve our desired design 
strength with 128-bit block ciphers. CBC-MAC would be fine if we could use 
a block cipher with a 2S6-bit block size. 

There are other reasons why you have to be careful how you use CBC -MAC. 
You cannot just CBC-MAC the message itself if you wish to authenticate 
messages with different lengths, as that leads to simple attacks. For example, 
suppose a and b are both one block long, and suppose the sender MACs a, b, 
and a II b. An attacker who intercepts the MAC tags for these messages can 
now forge the MAC for the message b II (M(b) EB M(a) EB b), which the sender 
never sent. The forged tag for this message is equal to M(a II b), the tag for a II b. 
You can figure out why this is true as an exercise, but the problem arises from 
the fact that the sender MACs messages that are different lengths. 

If you wish to use CBC-MAC, you should instead do the following: 

1. Construct a string s from the concatenation of 1 and m, where 1 is the length 
of m encoded in a fixed-length format. 

2. Pad s until the length is a multiple of the block size. (See Section 4.1 for 
details.) 

3. Apply CBC-MAC to the padded string s. 

4. Output the last ciphertext block, or part of that block. Do not output any of 
the intermediate values. 

The advantage of CBC-MAC is that it uses the same type of computations 
as the block cipher encryption modes. In many systems, encryption and MAC 
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are the only two functions that are ever applied to the bulk data, so these are 
the two speed-critical areas. Having them use the same primitive functions 
makes efficient implementations easier, especially in hardware. 

Still, we don't advocate the use of CBC-MAC directly, because it is difficult to 
use correctly. One alternate that we recommend is CMAC [42] . CMAC is based 
on CBC-MAC and was recently standardized by NIST. CMAC works almost 
exactly like CBC-MAC, except it treats the last block differently. Specifically, 
CMAC XORS one of two special values into the last block prior to the last block 
cipher encryption. These special values are derived from the CMAC key, and 
the specific one used by CMAC depends on whether the length of the message 
is a multiple of the block cipher's block length or not. The xoRing of these 
values into the MAC disrupts the attacks that compromise CBC-MAC when 
used for messages of multiple lengths. 

6.4 HMAC 

Given that the ideal MAC is a random mapping with keys and messages as 
input and that we already have hash functions that (try to) behave like random 
mappings with messages as input, it is an obvious idea to use a hash function 
to build a MAC. This is exactly what HMAC does [5, 81]. The designers of 
HMAC were of course aware of the problems with hash functions, which 
we discussed in Chapter 5. For this reason, they did not define HMAC to be 
something simple like MAC(K, m) as h(K II m), h(m II K), or even h(K II m il K), 
which can create problems if you use one of the standard iterative hash 
functions [103]. 

Instead, HMAC computes h(K EB a I I h(K EB b I I m», where a and b are specified 
constants. The message itself is only hashed once, and the output is hashed 
again with the key. For details, see the specifications in [5, 81]. HMAC works 
with any of the iterative hash functions we discussed in Chapter 5. What's 
more, because of HMAC's design, it's not subject to the same collision attacks 
that have recently undermined the security of SHA-l [4] . This is because, in 
the case of HMAC, the beginning of the message to hash is based on a secret 
key and is not known to the attacker. This means that HMAC with SHA-l is 
not as bad as straight SHA-l. But given that attacks often get better over time, 
we now view HMAC with SHA-l as too risky and do not recommend its use. 

The HMAC designers carefully crafted HMAC to resist attacks, and proved 
security bounds on the resulting construction. HMAC avoids key recovery 
attacks that reveal K to the attacker, and avoids attacks that can be done 
by the attacker without interaction with the system. However, HMAC-like 
CMAC-is still limited to n/2 bits of security, as there are generic birthday 
attacks against the function that make use of the internal collisions of the 
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iterated hash function. The HMAC construction ensures that these require 2"/2 
interactions with the system under attack, which is more difficult to do than 
performing 2"/2 computations on your own computer. 

The HMAC paper [5] presents several good examples of the problems 
that arise when the primitives (in this case, the hash function) have unex­
pected properties. This is why we are so compulsive about providing simple 
behavioral specifications for our cryptographic primitives. 

We like the HMAC construction. It is neat, efficient, and easy to implement. 
It is widely used with the SHA-1 hash function, and by now you will find it in 
a lot of libraries. Still, to achieve our 128-bit security level, we would only use 
it with a 256-bit hash function such as SHA-256. 

6.5 GMAC 

NIST recently standardized a new MAC, called GMAC [43], that is very 
efficient in hardware and software. GMAC was designed for 128-bit block 
ciphers. 

GMAC is fundamentally different from CBC-MAC, CMAC, and HMAC. 
The GMAC authentication function takes three values as input-the key, the 
message to authenticate, and a nonce. Recall that a nonce is a value that is only 
ever used once. CBC-MAC, CMAC, and HMAC do not take a nonce as input. 
If a user MACs a message with a key and a nonce, the nonce will also need 
to be known by the recipient. The user could explicitly send the nonce to the 
recipient, or the nonce might be implicit, such as a packet counter that both 
the sender and the recipient maintain. 

Given its different interface, GMAC doesn't meet our preferred definition 
of MAC in Section 6.2, which involves being unable to distinguish it from 
an ideal MAC function. Instead, we have to use the unforgeability definition 
mentioned at the end of that section. Namely, we consider a model in which 
an attacker selects n different messages of his choosing, and is given the MAC 
value for each of these messages. The attacker then has to come up with n + 1 
messages, each with a valid MAC value. If an attacker can't do this, then the 
MAC is unforgeable. 

Under the hood, GMAC uses something called an universal hash func­
tion [125]. This is very different from the types of hash functions we discussed 
in Chapter 5. The details of how universal hash functions work are outside 
our scope, but you can think of GMAC as computing a simple mathematical 
function of the input message. This function is much simpler than anything 
like SHA-1 or SHA-256. GMAC then encrypts the output of that function with 
a block cipher in CTR mode to get the tag. GMAC uses a function of its nonce 
as the IV for CTR mode. 
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GMAC is standardized and is a reasonable choice in many circumstances. 
But we also want to offer some words of warning. Like HMAC and CMAC, 
GMAC only provides at most 64 bits of security. Some applications may 
wish to use tags that are shorter than 128 bits. However, unlike HMAC and 
CMAC, GMAC offers diminished security for these short tag values. Suppose 
an application uses GMAC but truncates the tags so that they are 32 bits long. 
One might expect the resulting system to offer 32 bits of security, but in fact it 
is possible to forge the MAC after 216 tries [48]. Our recommendation is to not 
use GMAC when you need to produce short MAC values. 

Finally, requiring the system to provide a nonce can be risky because security 
can be undone if the system provides the same value for the nonce more than 
once. As we discussed in Section 4.7, real systems fail time and time again for 
not correctly handling nonce generation. We therefore recommend avoiding 
modes that expose nonces to application developers. 

6.6 Which MAC to Choose? 

As you may have gathered from the previous discussion, we would choose 
HMAC-SHA-256: the HMAC construction using SHA-256 as a hash function. 
We really want to use the full 256 bits of the result. Most systems use 64- or 
96-bit MAC values, and even that might seem like a lot of overhead. As far 
as we know, there is no collision attack on the MAC value if it is used in the 
traditional manner, so truncating the results from HMAC-SHA-256 to 128 bits 
should be safe, given current knowledge in the field. 

We are not particularly happy with this situation, as we believe that it should 
be possible to create faster MAC functions. But until suitable functions are 
published and analyzed, and become broadly accepted, there is not a whole 
lot we can do about it. GMAC is fast, but provides only at most 64 bits of 
security and isn't suitable when used to produce short tags. It also requires a 
nonce, which is a common source of security problem. 

Some of the submissions for NIST's SHA-3 competition have special modes 
that allow them to be used to create faster MACs. But that competition is still 
ongoing and it is too early to say with much confidence which submissions 
will be deemed secure. 

6.7 Using a MAC 

Using a MAC properly is much more complicated than it might initially seem. 
We'll discuss the major problems here. 

When Bob receives the value MAC(K, m), he knows that somebody who knew 
the key K approved the message m. When using a MAC, you have to be very 
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careful that this statement is sufficient for all the security properties that you 
need. For example, Eve could record a message from Alice to Bob, and then 
send a copy to Bob at a later time. Without some kind of special protection 
against these sorts of attacks, Bob would accept it as a valid message from 
Alice. Similar problems arise if Alice and Bob use the same key K for traffic in 
two directions. Eve could send the message back to Alice, who would believe 
that it came from Bob. 

In many situations, Alice and Bob want to authenticate not only the message 
m, but also additional data d. This additional data includes things like the 
message number used to prevent replay attacks, the source and destination of 
the message, and so on. Quite frequently these fields are part of the header of 
the authenticated (and often encrypted) message. The MAC has to authenticate 
d as well as m. The general solution is to apply the MAC to d II m instead of 
just to m. (Here we're assuming that the mapping from d and m to d II m is 
one-to-one; otherwise, we'd need to use a better encoding.) 

The next issue is best captured in the following design rule: 

The Horton Principle: Authenticate what is meant, not what is said. 

A MAC only authenticates a string of bytes, whereas Alice and Bob want to 
authenticate a message with a specific meaning. The gap between what is said 
(i.e., the bytes sent) and what is meant (i.e., the interpretation of the message) 
is important. 

Suppose Alice uses the MAC to authenticate m := a II b II c, where a, b, and 
c are some data fields. Bob receives m, and splits it into a, b, and c. But how 
does Bob split m into fields? Bob must have some rules, and if those rules 
are not compatible with the way Alice constructed the message, Bob will 

get the wrong field values. This would be bad, as Bob would have received 
authenticated bogus data. Therefore, it is vital that Bob split m into the fields 
that Alice put in. 

This is easy to do in simple systems. Fields have a fixed size. But soon you 
will find a situation in which some fields need to be variable in length, or a 
newer version of the software will use larger fields. Of course, a new version 
will need a backward compatibility mode to talk to the old software. And here 
is the problem. Once the field length is no longer constant, Bob is deriving it 
from some context, and that context could be manipulated by the attacker. For 
example, Alice uses the old software and the old, short field sizes. Bob uses 
the new software. Eve, the attacker, manipulates the communications between 
Alice and Bob to make Bob believe that the new protocol is in use. (Details 
of how this works are not important; the MAC system shouldn't depend on 
other parts of the system being secure.) Bob happily splits the message using 
the larger field sizes, and gets bogus data. 
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This is where the Horton Principle [122) comes in.l You should authenticate 
the meaning, not the message. This means that the MAC should authenticate 
not only m, but also all the information that Bob uses in parsing m into its 
meaning. This would typically include data like protocol identifier, protocol 
version number, protocol message identifier, sizes for various fields, etc. One 
partial solution is to not just concatenate the fields but use a data structure like 
XML that can be parsed without further information. 

The Horton Principle is one of the reasons why authentication at lower 
protocol levels does not provide adequate authentication for higher-level 
protocols. An authentication system at the IP packet level cannot know how 
the e-mail program is going to interpret the data. This precludes it from 
checking that the context in which the message is interpreted is the same as the 
context in which the message was sent. The only solution is to have the e-mail 
program provide its own authentication of the data exchanged in addition 
to the authentication on the lower levels, of course. 

To recap: whenever you do authentication, always think carefully about 
what other information should be included in the authentication. Be sure that 
you code all of this information, including the message, into a string of bytes in 
a way that can be parsed back into the fields in a unique manner. Do not forget 
to apply this to the concatenation of the additional data and the message we 
discussed at the start of this section. If you authenticate d II m, you had better 
have a fixed rule on how to split the concatenation back into d and m. 

6.8 Exercises 

Exercise 6.1 Describe a realistic system that uses CBC-MAC for message 
authentication and that is vulnerable to a length extension attack against 
CBC-MAC 

Exercise 6.2 Suppose c is one block long, a and b are strings that are a 
multiple of the block length, and M(a II c) = M(b II c). Here M is CBC-MAC 
Then M(a II d) = M(b II d) for any block d. Explain why this claim is true. 

Exercise 6.3 Suppose a and b are both one block long, and suppose the 
sender MACs a, b, and a II b with CBC-MAC An attacker who intercepts 
the MAC tags for these messages can now forge the MAC for the message 
b II (M(b) EB M(a) EB b), which the sender never sent. The forged tag for this 

1 For readers who did not grow up in the U.S.: this is named after one of the characters of 
Dr. Seuss, who was a writer of children's books [116]. 
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message is equal to M(a II b), the tag for a II b. Justify mathematically why this 
is true. 

Exercise 6.4 Suppose message a is one block long. Suppose that an attacker 
has received the MAC t for a using CBC-MAC under some random key 
unknown to the attacker. Explain how to forge the MAC for a two-block 
message of your choice. What is the two-block message that you chose? What 
is the tag that you chose? Why is your chosen tag a valid tag for your two-block 
message? 

Exercise 6.S Using an existing cryptography library, compute the MAC of 
the message 

4D 4 1  4 3  7 3  2 0  6 1  72 6 5  2 0  7 6  6 5  72 7 9  2 0  7 5  7 3  

6 5  6 6  7 5  6C 2 0  6 9  6 E  2 0  6 3  7 2  7 9  7 0  7 4  6F 6 7  7 2  

6 1  7 0  6 8  7 9  2 1  2 0  2 0  2 0  2 0  2 0  2 0  2 0  2 0  2 0  2 0  2 0  

using CBC-MAC with AES and the 256-bit key 

8 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  

0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  01 . 

Exercise 6.6 Using an existing cryptography library, compute the MAC of 
the message 

4D 4 1  4 3  7 3  2 0  6 1  7 2  6 5  2 0  7 6  6 5  7 2  7 9  2 0  7 5  7 3  

6 5  6 6  7 5  6C 2 0  6 9  6E 2 0  6 3  7 2  7 9  7 0  7 4  6F 6 7  72 

6 1  70 6 8  7 9  2 1  

using HMAC with SHA-256 and the key 

Db Db Db Db Db Db Db Ob Db Ob Ob Db Db Ob Db Db 

Db Db Db Db Ob Ob Ob Ob Ob Db Db Ob Ob Ob Ob Ob. 

Exercise 6.7 Using an existing cryptography library, compute the MAC of 
the message 

4D 4 1  4 3  7 3  2 0  6 1  7 2  6 5  2 0  7 6  6 5  7 2  7 9  2 0  7 5  7 3  

6 5  6 6  7 5  6C 2 0  6 9  6E 2 0  6 3  7 2  7 9  7 0  74 6F 6 7  7 2  

6 1  7 0  6 8  79 2 1  

using GMAC with AES and the 256-bit key 

and the nonce 

8 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  

0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 1  

0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  01 . 
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7 

The Secure Channel 

Finally we come to the first of the real-world problems we will solve. The 
secure channel is probably the most common of all practical problems. 

7.1 Properties of a Secure Channel 

Informally, we can define the problem as creating a secure connection between 
Alice and Bob. We'll have to formalize this a bit before it becomes clear what 
we are talking about. 

1.1 .1 Roles 

First, most connections are bi-directional. Alice sends messages to Bob, and 
Bob sends messages to Alice. You don't want to confuse the two streams of 
messages, so there must be some kind of asymmetry in the protocol. In real 
systems, maybe one party is the client and the other the server, or maybe it is 
easier to speak of the initiator (the party that initiated the secure connection) 
and the responder. It doesn't matter how you do it, but you have to assign the 
Alice and Bob roles to the two parties in question in such a way that each of 
them knows who is playing which role. 

Of course, there is always Eve, who tries to attack the secure channel in 
any way possible. Eve can read all of the communications between Alice and 
Bob and arbitrarily manipulate these communications. In particular, Eve can 
delete, insert, or modify data that is being transmitted. 

99 
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We always talk about transmitting messages from Alice to Bob, and most of 
the time our mental image is of two separate computers sending messages to 
each other over a network of some sort. Another very interesting application 
is storing data securely. If you think of storing data as transmitting it to 
the future, then all the discussions here apply. Alice and Bob might be the 
same person, and the transmission medium could be a backup tape or a USB 
stick. You still want to protect the medium from outside eavesdroppers and 
manipulations. Of course, when you send data to the future, you cannot have 
an interactive protocol, since the future cannot send a message back to the past. 

7.1 .2 Key 
To implement a secure channel, we need a shared secret. In this case we 
will assume that Alice and Bob share a secret key K, but that nobody else 
knows this key. This is an essential property. The cryptographic primitives 
can never identify Alice as a person. They can at most identify the key. Thus 
Bob's verification algorithm will tell him something like: "This message was 
sent by somebody who knows the key K and who played the role of Alice." 
This statement is only useful if Bob knows that knowledge of K is restricted, 
preferably to himself and Alice. 

How the key is established is not our business here. We just assume the key 
is there. We will talk about key management in great detail in Chapter 14. The 
requirements for the key are as follows: 

- The key K is known only to Alice and Bob. 

- Every time the secure channel is initialized, a new value is generated for 
the key K. 

The second item is also important. If the same key is used over and over 
again, then messages from older sessions can be replayed to Alice or Bob, and 
lead to much confusion. Therefore, even in situations where you have a fixed 
password as key, you need a key negotiation protocol between Alice and Bob 
to set up a suitable unique key K, and you must re-run this protocol every 
time a secure channel is established. A key such as K that is used for a single 
communication session is called a session key. Again, how K is generated will 
be discussed in Chapter 14. 

The secure channel is designed to achieve a security level of 128 bits. 
Following our discussion in Section 3.5.7, we will use a 256-bit key. Thus, K is 
a 256-bit value. 

7.1 .3 Messages or Stream 
The next question is whether we look at the communications between Alice 
and Bob as a sequence of discrete messages (such as e-mails) or as a continuous 
stream of bytes (such as streaming media). We will only consider systems that 



Chapter 7 The Secure Channel 1 01 

handle discrete messages. These can trivially be converted to handle a stream 
of bytes by cutting the data stream into separate messages and reassembling 
the stream at the receiver's end. In practice, almost all systems use a discrete 
message system at the cryptographic layer. 

We also assume that the underlying transport system that conveys the 
messages between Alice and Bob is not reliable. Even a reliable communication 
protocol like TCP lIP does not form a reliable communication channel from a 
cryptographic point of view. After all, the attacker can easily change, remove, 
or insert data in a TCP stream without interrupting the flow of data. TCP is 
only reliable with respect to random events such as loss of packet. It does not 
protect against an active adversary. From our adversarial point of view, there 
is no such thing as a reliable communication protocol. (This is a good example 
of how cryptographers view the world.) 

7.1 .4 Security Properties 
We can now formulate the security properties of the channel. Alice sends 
a sequence of messages mt, m2, . . .  that are processed by the secure channel 
algorithms and then sent to Bob. Bob processes the received messages through 
the secure channel algOrithms, and ends up with a sequence of messages 
m;, m;, . . . .  

The following properties must hold: 

- Eve does not learn anything about the messages mi except for their timing 
and size. 

- Even when Eve attacks the channel by manipulating the data that is being 
communicated, the sequence m�, m;, . . .  of messages that Bob receives is 
a subsequence of mt, m2, . . .  , and Bob learns exactly which subsequence 
he received. (A subsequence is best defined by saying that it can be 
constructed from the original sequence by the removal of zero or more 
elements.) 

The first property is secrecy. Ideally, Eve should not learn anything about 
the messages. In real life, this is very hard to achieve. It is extremely hard 
to hide information such as the size or the timing of the messages. The 
known solutions require Alice to send a continuous stream of messages at 
the maximum bandwidth that she will ever use. If she doesn't have any 
messages to send, she should invent some trivial ones and send those. This 
might be acceptable for military applications, but it is not acceptable for most 
civilian applications. Given that Eve can see the size and timing of messages 
on a communication channel, she can find out who is communicating with 
whom, how much, and when. This is called traffic analysis. It yields a host of 
information, and is extremely hard to prevent. This is a well-known problem 
with other secure channels, like SSL/TLS, IPsec, and SSH. We will not solve it in 
this book, so Eve will be able to perform traffic analysis on our secure channel. 
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The second property ensures that Bob only gets proper messages, and that 
he gets them in their correct order. Ideally, we would want Bob to receive 
the exact sequence of messages that Alice sent. But none of the real-world 
communications protocols are reliable in a cryptographic sense. Eve can always 
delete a message in transit. As we cannot prevent the loss of messages, Bob will 
necessarily have to make do with getting only a subsequence of the messages. 
Note that the remaining messages that he does receive are in order. There 
are no duplicates, no modified messages, and no bogus messages sent by 
someone other than Alice. As a further requirement, Bob learns exactly which 
messages he has missed. This can be important in some applications where the 
interpretation of the message depends on the order in which they are received. 

In most situations, Alice wants to ensure that Bob gets all the informa­
tion she sent him. Most systems implement a scheme whereby Bob sends 
acknowledgments (either explicit or implicit) to Alice, and Alice resends any 
information for which she didn't receive an acknowledgment from Bob. Note 
that our secure channel never takes the initiative in resending a message. Alice 
will have to do that herself, or at least the protocol layer that makes use of the 
secure channel will have to do that. 

So why not make the secure channel reliable by implementing the resend 
functionality inside the secure channel? Because that would complicate the 
secure channel description. We like to keep the security-critical modules 
simple. Message acknowledgments and resends are standard communication 
protocol techniques, and they can be implemented on top of our secure channel. 
Also, this is a book about cryptography, not about basic communication 
protocol techniques. 

7.2 Order of Authentication and Encryption 

Obviously we will apply both encryption and authentication to the message. 
There are three approaches [7, 82]: we can encrypt first and then authenticate 
the ciphertext (encrypt-then-authenticate); authenticate first and then encrypt 
both the message and the MAC value (authenticate-then-encrypt); or both 
encrypt the message and authenticate the message and then combine (such 
as concatenate) the two results (encrypt-and-authenticate). There is no simple 
answer for which method is best. 

There are two main arguments in favor of encrypting first. There are 
theoretical results that show that, given certain specific definitions of secure 
encryption and authentication, the encrypt-first solution is secure, whereas 
the other approaches are insecure. If you look at the details, it turns out that 
authenticate-first is only insecure if the encryption scheme has a specific type 
of weakness. In practical systems, we never use encryption schemes with such 
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weaknesses. However, these weak encryption schemes satisfy a particular 
formal security definition. Applying the MAC to the ciphertext of such a 
weak encryption scheme fixes it and makes it secure. Having these theoretical 
results is valuable. But these theoretical results don't always apply to real-life 
encryption schemes. In fact, there are similar proofs that these problems do not 
occur at all for stream ciphers (such as CTR mode) and CBC-mode encryption 
when the nonce or IV is authenticated. 

The second argument in favor of encrypting first is that it is more efficient 
in discarding bogus messages. For normal messages, Bob has to both decrypt 
the message and check the authentication, irrespective of the order they were 
applied in. If the message is bogus (i.e., has a wrong MAC field) then Bob 
will discard it. With encrypt-first, the decryption is done last on the receiver 
side, and Bob never has to decrypt bogus messages, since he can identify and 
discard them before decryption. With authenticate-first, Bob has to decrypt 
the message before he can check the authentication. This is more work for 
bogus messages. The situation in which this is relevant is when Eve sends 
Bob a very large number of bogus messages. With encrypt-first, Bob saves 
the work of decrypting them, which reduces the CPU load. Under some very 
special circumstances, this makes a denial-of-service (DOS) attack a little bit 
harder, though only by a factor of at most approximately two. Further, in 
many real-life situations, a more effective DOS attack works by saturating the 
communication channel rather than by bogging down Bob's CPU. 

The main argument for encrypt-and-authenticate is that the encryption and 
authentication processes can happen in parallel. This can increase performance 
in some situations. Under the encrypt-and-authenticate composition approach, 
an attacker can view the MAC tag of the initial message itself. This is because 
the MAC is not encrypted (unlike the authenticate-then-encrypt approach) 
and because the MAC is not of an encrypted value (unlike the encrypt­
then-authenticate approach). MACs are designed to protect authenticity, not 
privacy. This means the MAC in an encrypt-and-authenticate approach could 
leak private information about the underlying message, thereby compromising 
the privacy of the secure channel. As with authenticate-first, there are also some 
underlying encryption schemes that are insecure when used in an encrypt-and­
authenticate approach. With judicious choice of the underlying MAC and the 
underlying encryption scheme, and by including additional data like the nonce 
in the input to the MAC, the encrypt-and-authenticate approach can be secure. 

There are two main arguments in favor of authenticating first. In the encrypt­
first configuration, the MAC input and MAC value are both visible to Eve. 
In the authenticate-first configuration, Eve only gets to see the ciphertext and 
the encrypted MAC value; the MAC input (i.e., the plaintext) and actual MAC 
value are hidden. This makes it much harder to attack the MAC than in the 
encrypt-first situation. The real choice is which of the two functions is applied 
last. If encryption is applied last, then Eve gets to attack the encryption function 
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without further hindrance. If the authentication function is applied last, she 
gets to attack the authentication function without further hindrance. In many 
cases, one can argue that authentication is more important than encryption. 
We therefore prefer to expose the encryption function to Eve's direct attacks, 
and protect the MAC as much as possible. Of course, these issues are moot if 
both the underlying encryption scheme and MAC are secure, but we take an 
approach of professional paranoia and would like a secure channel with some 
robustness even if we do not assume that. 

When might authentication be more important than encryption? Imagine a 
situation in which a secure channel is being used. Consider how much damage 
Eve could do if she could read all the traffic. Then think about how much 
damage Eve could do if she could modify the data being communicated. In 
most situations, modifying data is a devastating attack, and does more damage 
than merely reading it. 

The second argument in favor of authenticating first is the Horton Principle. 
You should authenticate what you mean, not what you say. Authenticating 
the ciphertext breaks this rule, and creates a vulnerability. The danger is 
that Bob might check that the ciphertext is correctly authenticated, but then 
decrypt the ciphertext with a different key than what Alice used to encrypt 
the message. Bob will get a different plaintext than Alice sent, even though 
the authentication checked out. This shouldn't happen, but it can. There is 
a particular (unusual) configuration of IPsec that has this problem [51]. This 
vulnerability has to be fixed. You could include the encryption key in the 
additional data being authenticated, but we don't like using keys for anything 
but their normal use. It introduces extra risks; you don't want a faulty MAC 
function leaking information about the encryption key. The standard solution 
is to derive both the encryption key and the authentication key for the secure 
channel from a single secure channel key, as we do in Section 7.4.1 .  This 
removes the vulnerability, but it also introduces a cross-dependency. The 
authentication suddenly depends on the key derivation system. 

You can argue for hours which order of operations is better. All orders 
can result in good systems, all can result in bad systems. Each has its own 
advantages and disadvantages. We choose to authenticate first for the rest of 
this chapter. We like the simplicity of authenticate-first, and its security under 
our practical paranoia model. 

7.3 Designing a Secure Channel: Overview 

The solution consists of three components: message numbering, authentica­
tion, and encryption. We will walk through the design of one possible secure 
channel and, in the process, illustrate how to think about the underlying issues. 
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Message numbers are vital for various reasons. They provide a source for 
IVs for the encryption algorithm; they allow Bob to reject replayed messages 
without the necessity of keeping a large database; they tell Bob which messages 
were lost in transit; and they ensure that Bob receives the messages in 
their correct order. For these reasons, the message numbers must increase 
monotonically (i.e., later messages have larger message numbers) and must be 
unique (no two messages may have the same message number). 

Assigning message numbers is easy. Alice numbers the first message as 1, 
the second message as 2, etc. Bob keeps track of the message number of the 
last message he received. Any new message must have a message number that 
is larger than the message number of the previous message. By accepting only 
increasing message numbers, Bob ensures that Eve cannot replay him an old 
message. 

For our secure channel design, we will use a 32-bit number for the message 
number. The first message is numbered 1. The number of messages is limited 
to 232 - 1. If the message number overflows, then Alice will have to stop using 
this key and rerun the key negotiation protocol to generate a new key. The 
message number must be unique, so we cannot allow it to wrap back to O. 

We could have used a 64-bit message number, but that has a higher 
overhead. (We would have to include 8 bytes of message number with each 
message, instead of only 4 bytes.) 32 bits is enough for most applications. 
Besides, the key should be changed regularly anyway.1 You can, of course, use 
40 or 48 bits if you want to; it doesn't matter much. 

Why start numbering at 1 when most C programmers like to start at O? 
This is a small implementation trick. If there are N numbers that could be 
assigned, then both Alice and Bob need to be able to keep track of N + 1 
states. After all, the number of messages sent so far could be any of the 
set { 0, . . .  , N }. By restricting ourselves to 232 - 1 messages, this state can be 
encoded in a single 32-bit number. Had we started numbering the messages 
at 0, then each implementation would require an additional flag to indicate 
that either no messages had been sent so far, or that the message number 
space was exhausted. Extra flags add a lot of tricky extra code that is executed 
very rarely. If it is rarely used, it will have been tested only a few times, and 
therefore there's a higher chance it won't work. In short, there is an entire area 
of easy mistakes that we can eliminate by starting our numbering at 1 .  

Throughout the rest of this chapter we'll write i for the message number. 

t All keys should be updated at reasonable intervals. Heavily used keys should be updated more 
often. Restricting a key to 232 - 1 messages is quite reasonable. 
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7.3.2 Authentication 

We need a MAC for the authentication function. As you might expect, we 
will use HMAC-SHA-256 with the full 256-bit result. The input to the MAC 
consists of the message mi and the extra authentication data Xi. As we explained 
in Chapter 6, there is often some contextual data that has to be included in 
the authentication. This is the context data that Bob will use to interpret 
what the message means; it typically includes something that identifies the 
protocol, the protocol version number, and the negotiated field sizes. We are 
just specifying the secure channel here; the actual value for Xi will have to be 
provided by the rest of the application. From our point of view, each Xl is a 
string and both Alice and Bob have the same value for Xi. 

Let CO be the function that returns the length (in bytes) of a string of data. 
The MAC value a is computed as 

ai := MAC(i II C(x;) I I Xi II mi) 

where i and C(Xi) are both 32-bit unsigned integers in least-significant-byte-first 
format. The C(Xi) ensures that the string i II C(Xi) II Xi II mi uniquely parses into 
its fields. Without C(Xi)' there would be many ways to split it into i, Xi, and mi, 
and as a result, the authentication would not be unambiguous. Of course, Xi 
should be encoded in such a way that it can be parsed into its different fields 
without further context information, but that is not something we can ensure 
at this level. The application using this secure channel will have to guarantee 
that. 

7.3.3 Encryption 

For encryption, we will use AES in CTR mode. But wait, in Section 4.7 didn't 
we say that CTR mode is dangerous because of the nonce? Yes, we did-sort 
of. We said that exposing the control of the nonce to developers is risky, 
and that we have seen too many applications that are insecure because they 
did not generate the nonce correctly. However, our secure channel handles 
the nonce internally-it never gives control of nonce generation to any other 
party. We use the message number as the unique nonce value that CTR mode 
needs. So our secure channel uses CTR mode. But we still wouldn't expose the 
generation of nonces to external systems. We recommend that you never use 
CTR mode directly. 

We limit the size of each message to 16 . 232 bytes, which limits the block 
counter to 32 bits. Of course, we could use a 64-bit counter, but 32 bits is easier 
to implement on many platforms, and most applications don't need to process 
such huge messages. 
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The key stream consists of the bytes ka, k1, • • • •  For a message with nonce i, 
the key stream is defined by 

ka, . . .  , kz36-1 
:= E(K, O I I i II 0) II E(K, l II i II 0) II . . .  II E(K, 232 - 1 I I i II 0) 

where each plaintext block of the cipher is built from a 32-bit block number, 
the 32-bit message number, and 64 bits of zeros. The key stream is a very 
long string. We will only use the first £(m;) + 32 bytes of the key stream. (We 
shouldn't have to mention that you don't have to compute the rest of the key 
stream . . . .  ) We concatenate mi and ai, and XOR these bytes with ka, . . . , ke(mj)+31 . 

7.3.4 Frame Format 

We cannot just send the encrypted mi II ai, because Bob needs to know the 
message number. The final message sent will consist of i encoded as a 32-bit 
integer, least significant byte first, followed by the encrypted mi and ai. 

7.4 Design Details 

We can now discuss the details of the secure channel. Again, we stress that this 
is not the only way to implement a secure channel, but instead an opportunity 
to dive into the challenges and nuances with building a secure channel. For 
convenience, we've defined the channel to be bi-directional, so the same key 
can be used for both directions. If we define the channel to be one-directional, 
then you can bet that somebody will use the same key for both directions and 
utterly destroy the security. Making the channel bi-directional reduces this 
risk. On the flip side, if you're using a secure channel defined by someone else, 
be extra careful not to use the same key in both directions. 

We describe all our algorithms using a pseudocode notation that should 
be easy to read for anyone familiar with the conventions of programming. 
Program blocks are denoted both by the indent level and by paired key words 
such as if/fi and dolod. 

7.4.1 Initialization 

The first algorithm we show is the initialization of the channel data. This has 
two main functions: setting up the keys and setting up the message numbers. 
We derive four subSidiary keys from the channel key: an encryption key and 
an authentication key to send messages from Alice to Bob, and an encryption 
key and an authentication key to send messages from Bob to Alice. 
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function INITIALIZESECURECHANNEL 
input: K Key of the channel, 256 bits. 

R Role. Specifies if this party is Alice or Bob. 
output: S State for the secure channel. 

First compute the four keys that are needed. The four strings are ASCII strings 
without any length or zero-termination. 

KEySENOENC +- SHA,,-256(K II "Enc Alice to Bob") 
KEyRECENC +- SHAr256(K I I "Enc Bob to Alice") 
KEySENOAuTH +-- SHAr256(K 11 " Auth Alice to Bob") 
KEyREcAUTH +-- SHAr256(K 11 " Auth Bob to Alice") 

Swap the encryption and decryption keys if this party is Bob. 
if R = "Bob" then 

fi 

sWAP(KEySENOENC, KEyRECENC) 
sWAP(KEySENOAuTH, KEyRECAuTH) 

Set the send and receive counters to zero. The send counter is the number of the 
last sent message. The receive counter is the number of the last received 
message. 

(MscCNTSEND, MSCCNTREC) +- (0, 0) 
Package the state. 
S +- (KEySENOENC, 

KEyRECENC, 
KEySENOAUTH, 
KEyRECAuTH, 
MSCCNTSENO, 
MSCCNTREC) 

return S 

There is also a function to wipe the state information S. We will not 
specify this in any detail. All it does is wipe the memory that S used to store 
information. It is vital that this information be wiped because the keys were 
stored in that area. On many systems, just deallocating the memory doesn't 
necessarily wipe it, so you must erase S when you are done with it. 

7.4.2 Sending a Message 

We now turn to the processing required to send a message. This algorithm 
takes the session state, a message to send, and additional data to be authen­
ticated, and produces the encrypted and authenticated message ready for 
transmission. The recipient must have the same additional data at hand to 
check the authentication. 



function SENDMESSACE 
input: S Secure session state. 

m Message to be sent. 
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x Additional data to be authenticated. 
output: t Data to be transmitted to the receiver. 

First check the message number and update it. 
assert MscCNTSEND < 232 - 1 
MSCCNTSEND +- MSCCNTSEND + 1 
i +- MscCNTSEND 

Compute the authentication. The values i(x) and i are encoded in four bytes, least 
significant byte first. 

a +- HMAC-SHA-256(KEySENoAuTH, i II i(x) II x II m) 
t +- m ll a  
Generate the key stream. Each plaintext block of the block cipher consists of a 

four-byte counter, four bytes of i, and eight zero bytes. Integers are 
LSByte first, E is AES encryption with a 2S6-bit key. 

K +- KEySENDENC 
k +- EK(O II i II 0) II EK(l II i II 0) II . . .  

Form the final text. Again, i is encoded as four bytes, LSByte first. 
t +- i II (t EEl FIRST-i(t)-BYTEs(k» 
return t 

Given our earlier discussions, this is relatively straightforward. We check for 
exhaustion of the message counter. We cannot stress enough how important 
this check is. If the counter ever wraps, the entire security falls apart-and 
this is a mistake we've seen often. The authentication and encryption are as 
described in our previous discussion. Finally, we send i with the encrypted 
and authenticated message so that the receiver will know the message number. 

Note that the session state is updated because the MSCCNTSEND value is 
modified. Again, this is vital, as the message number must be unique. In fact, 
almost everything in these algorithms is vital for the security. 

Our secure channel uses CTR mode for encryption. If the encryption scheme 
requires padding, be sure to verify the contents of the padding when you 
decrypt. 

7.4.3 Receiving a Message 

The receiving algorithm requires the encrypted and authenticated message that 
SENDMESSACE produced and the same additional data x to be authenticated. 
We assume the receiver knows x through some out-of-band means. For 
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example, if x contains the protocol version number, then surely Bob must 
know this if he's participating in the protocol. 

function RECEIVEMESSACE 
input: S Secure session state. 

t Text received from the transmitter. 
x Additional data to be authenticated. 

output: m Message that was sent. 

The received message must contain at least a 4-byte message number and a 32-byte 
MAC field. This check ensures that all the future splitting operations 
will work. 

assert £(t) :::: 36 

Split t into i and the encrypted message plus authenticator. The split is well-defined 
because i is always 4 bytes long. 

i ll t +- t  

Generate the key stream, just as the sender did. 
K +- KEyRECENC 
k +- EK(O II i II 0) II EK(1 11 i II 0) II . . . 

Decrypt the message and MAC field, and split. The split is well-defined because a 
is always 32 bytes long. 

m II a +- t EB FIRST-£(t)-BYTES(k) 

Recompute the authentication. The values £(x) and i are encoded in four bytes, 
least significant byte first. 

a' +- HMAC-SHA-256(KEYREcAuTH, i II £(x) II x II m) 
if a' =f:. a then 

destroy k, m 
return AUTHENTlCATlONFAILURE 

else if i :s MSCCNTREC then 
destroy k, m 
return MESSACEORDERERROR 

fi 
MSCCNTREC +- i 
return m 

We have used the canonical order for the operations here. You could put 
the check on the message number before the decryption, but then this function 
would report the wrong error if i were mangled during transmission. Instead 
of notifying the caller that the message was mangled, it would notify the caller 
that the message is in the wrong order. As the caller might wish to handle the 
two situations differently, this routine should not give the wrong information. 
The reason some people like to put the check earlier is that it allows false 
messages to be discarded more quickly. We don't consider this to be of great 
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importance; if you receive so many false packets that the speed of discarding 
them becomes significant, you already have much bigger problems. 

There is one very important issue for the receiver. The RECEIVEMESSAGE 
function may not release any information about the key stream or the plaintext 
message until the authentication has been verified. If the authentication fails, a 
failure indication is returned, but neither the key stream nor the plaintext may 
be revealed. An actual implementation should wipe the memory areas used 
to store these elements. So why is this so important? The plaintext message 
reveals the key stream, because it is assumed that every attacker knows the 
ciphertext. The danger is that the attacker will send a fake message (with an 
incorrect MAC value) but still learn the key stream from the data released by 
the receiver. This is the paranoia model at work again. Any data released or 
leaked by this routine is automatically assumed to end up in possession of the 
attacker. By destroying the data held in k and m before returning with an error, 
this routine ensures that this data can never be leaked. 

7.4.4 Message Order 

Like the transmitter, the receiver updates the state S by modifying the 
MscCNTREc variable. The receiver ensures that the message numbers of 
the messages it accepts are strictly increasing. This certainly ensures that no 
message is accepted twice, but if the stream of messages is reordered during 
transmission, otherwise perfectly valid messages will be lost. 

It is relatively easy to fix this, but at a cost. If you let the receiver accept 
messages out of order, then the application that uses the secure channel must 
be able to handle these out-of-order messages. Many applications cannot deal 
with this. Some applications are designed to handle it, but have subtle bugs 
(often security-relevant) when messages are reordered. In most situations, we 
prefer to fix the underlying transport layer and prevent accidental reordering 
of messages, so that the secure channel does not have to deal with this problem. 

There is one situation that we know of in which the receiver allows messages 
to arrive out of order, and for a very good reason. This is IFsec, the IP security 
protocol [73] that encrypts and authenticates IF packets. As IP packets can be 
reordered during transport, and as all applications that use IP are very well 
aware of this property, IPsec maintains a replay protection window rather 
than just remembering the counter value of the last received message. If c 
is the message number of the last received message, then IPsec maintains 
a bitmap for the message numbers c - 31, c - 30, c - 29, . . .  , c - l, c. Each bit 
indicates whether a message with the corresponding message number has 
been received. Messages with numbers smaller than c - 31 are always refused. 
Messages in the range c - 31 to c - 1 are only accepted if the corresponding 
bit is 0 (and this bit is then set, of course). If the new message has a message 
number larger than c, then c is updated and the bitmap is shifted to maintain 
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the invariant. Such a bitmap construction allows some limited reordering of 
the messages without adding too much state to the receiver. 

Another option is to terminate the communications if a message is dropped. 
This is particularly suited when the secure channel runs on top of a reliable 
transport like TCP. Unless there is malicious activity, messages should arrive 
in order and without any loss. So if a message is dropped or arrives out of 
order, terminate the communications. 

7.5 Alternatives 

The secure channel definition we have given is not always practical; especially 
when implementing a secure channel in embedded hardware, it becomes 
relatively costly to implement SHA-256. As an alternative, there has recently 
been interest in creating dedicated block cipher modes for providing both 
privacy and authenticity at the same time. 

These dedicated privacy-and-authenticity block cipher modes take a single 
key as input, just like CBC mode and CBC-MAC. These modes generally also 
take a message as input, additional data to be authenticated, and a nonce. 
These modes are not as simple as just using CBC mode and CBC-MAC with 
the same key, however. Using the same key for both a regular encryption 
mode and a regular MAC can lead to security problems. 

The most well-known initial combined mode is OCB [109]. This mode is 
very efficient. Each plaintext block can be processed in parallel, which is 
attractive for high-speed hardware. The existence of patents has limited OCB's 
adoption. 

Because of the patent issues surrounding OCB, and because of the need for 
a dedicated, single-key block cipher mode for encryption and authentication, 
Doug Whiting, Russ Housley, and Niels developed a mode called CCM [126]. 
It is a combination of CTR mode encryption and CBC-MAC authentication, 
but with care taken to allow for the use of the same key with both CTR mode 
and CBC-MAC. Compared to OCB, it requires twice as many computations to 
encrypt and authenticate a message, but as far as we know there are no patent 
issues at all with CCM. The designers know of no patents that cover CCM, 
and they have not applied, nor will they apply, for a patent. Jakob Jonsson 
provided a proof of security for CCM [65]. NIST has since standardized CCM 
as a block cipher mode [41]. 

To improve on the efficiency of CCM, Doug Whiting, John Viega, and Yoshi 
developed another mode called CWC [80]. CWC builds on CTR mode to 
provide encryption. Under the hood, CWC uses universal hashing to achieve 
authenticity [125]. We mentioned but did not discuss universal hashing in 
Chapter 6 when we introduced GMAC [43] . CWC's use of universal hashing 
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makes CWC fully parallelizable, like OCB, but avoids the patents surrounding 
OCB. David McGrew and John Viega improved on CWC with a more efficient 
universal hashing function for hardware implementations. Their improved 
mode is called GCM [43]. NIST has now standardized GCM as a block cipher 
mode. 

Just like our secure channel from earlier in this chapter, OCB, CCM, CWC, 
and GCM can all take two strings as input-a message to be sent and additional 
data to be authenticated. The GMAC message authentication scheme is actually 
just GCM mode where the main message is the empty string. 

These modes are all reasonable choices. Because they are standardized and 
unencumbered by patents, we prefer CCM and GCM. Unfortunately, GCM's 
authentication capability shares the limitations of GMAC that we discussed 
in Section 6.5. Therefore, although it is possible to reduce the size of the 
authenticator for GCM from 128 bits to something less, we recommend not 
doing so. Our recommendation is to only use GCM with the full 128-bit 
authentication tag. 

Another important point: OCB, CCM, CWC, GCM, and similar modes 
do not by themselves provide the full secure channeL They provide the 
encryption/ authentication functionality, and require a key and a unique 
nonce for each packet. We discussed the risks of relying on external systems 
to correctly generate nonces in Section 4.7. It is easy, however, to adapt our 
secure channel algorithms to use one of these block cipher modes rather than 
the separate MAC and encryption functions. Instead of the four subsidiary 
keys generated in INITlALlZESEcuRECHANNEL, you will need two keys, one for 
each direction of traffic. The nonce can be constructed by padding the message 
number to the correct size. 

Stepping back, we observe that the secure channel is one of the most use­
ful applications of cryptography, and it is used in almost all cryptographic 
systems. You can construct a secure channel from good encryption and authen­
tication primitives, and there are also dedicated privacy-and-authenticity block 
cipher modes that you can build upon. There are many details to pay attention 
to, and all the details must of course be done correctly. A separate challenge, 
which we will consider later, is establishing a symmetric key. 

7.6 Exercises 

Exercise 7.1 In our design of a secure channel, we said that the message 
numbers must not repeat. What bad things can happen if the message numbers 
do repeat? 

Exercise 7.2 Modify the algorithms for the secure channel in this chapter to 
use the encrypt-then-authenticate order for encryption and authentication. 



1 14 Part II • Message Security 

Exercise 7.3 Modify the algorithms for the secure channel in this chapter 
to use the a dedicated, single-key mode for providing both encryption and 
authentication. You can use OCB, CCM, CWC, or GCM as a black box. 

Exercise 7.4 Compare and contrast the advantages and disadvantages among 
the different orders of applying encryption and authentication when creating 
a secure channel. 

Exercise 7.5 Find a new product or system that uses (or should use) a 
secure channel. This might be the same product or system you analyzed 
for Exercise 1 .8. Conduct a security review of that product or system as 
described in Section 1.12, this time focusing on the security and privacy issues 
surrounding the secure channel. 

Exercise 7.6 Suppose Alice and Bob are communicating using the secure 
channel described in this chapter. Eve is eavesdropping on the commu­
nications. What types of traffic analysis information could Eve learn by 
eavesdropping on the encrypted channel? Describe a situation in which 
information exposure via traffic analysis is a serious privacy problem. 
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Implementation Issues (I) 

Now that we have come this far, we would like to talk a bit about implementa­
tion issues. Implementing cryptographic systems is sufficiently different from 
implementing normal programs to deserve its own treatment. 

The big problem is, as always, the weakest-link property (see Section 1.2). 
It is very easy to screw up the security at the implementation level. In 
fact, implementation errors such as buffer overflows are one of the biggest 
security problems in real-world systems. With few exceptions, you don't hear 
about cryptography systems that are broken in practice. This is not because 
the cryptography in most systems is any good; we've reviewed enough of 
them to know this is not the case. It is just easier in most cases to find an 
implementation-related hole than it is to find a cryptographic vulnerability, 
and attackers are smart enough not to bother with the cryptography when 
there is this much easier route. 

So far in this book we have restricted our discussion to cryptography, but in 
this chapter we will focus more on the environment in which the cryptography 
operates. Every part of the system affects security, and to do a really good job, 
the entire system must be designed from the ground up not just with security 
in mind, but with security as one of the primary goals. The "system" we're 
talking about is very big. It includes everything that could damage the security 
properties if it were to misbehave. 

One major part is, as always, the operating system. But historically, none 
of the operating systems in widespread use was designed with security as a 
primary goal. And the diversity of operating systems is enormous-from the 
operating systems we interact with on our desktop computers to operating 
systems on embedded devices and phones. The logical conclusion to draw 

----_ ._- -- --

1 1 5 



1 16 Part II Message Security 

from this is that it is impossible to implement a secure system. We don't know 
how to do it, and we don't know anyone else who knows how to do it, either. 

Real-life systems include many components that were never designed for 
security, and that makes it impossible to achieve the level of security that we 
really need. So should we just give up? Of course not. When we design a 
cryptographic system, we do our very best to make sure that at least our part 
is secure. This might sound like an odd mentality: all we care about is our little 
domain. But we do care about the other parts of the system; we just can't do 
anything about them in the context of this book. That is one of the reasons for 
writing this book: to get other people to understand the insidious nature of 
security, and how important it is to do it right. 

Another important reason to get at least the cryptography right is one 
we mentioned before: attacks on the cryptography are especially damaging 
because they can be invisible. If the attacker succeeds in breaking your 
cryptography, you are unlikely to notice. This can be compared to a burglar 
who has a set of keys to your house. If the burglar exercises reasonable caution, 
how would you ever find out? 

Our long-term goal is to make secure computer systems. To achieve that 
goal, everybody will have to do their part. This book is about making the 
cryptography secure. Other parts of the system will have to be made secure, 
too. The overall security of the system is going to be limited by the weakest 
link, and we will do our utmost to ensure that the weakest link will never be 
the cryptography. 

Another important reason to do the cryptography right is that it is very 
difficult to switch cryptographic systems once they've been implemented. An 
operating system runs on a single computer. Cryptographic systems are often 
used in communication protocols to let many computers communicate with 
each other. Upgrading the operating system of a single computer is feasible, 
and in practice it is done relatively often. Modifying the communication 
protocols in a network is a nightmare, and as a result many networks still 
use the designs of the 1970s and 1980s. We must keep in mind that any new 
cryptographic system we design today, if adopted widely, is quite likely to 
still be in use 30 or 50 years from now. We hope that by that time the other 
parts of the system will have achieved a much higher level of security, and we 
certainly don't want cryptography to be the weakest link. 

8.1 Creating Corred Programs 

The core of the implementation problem is that we in the IT industry don't 
know how to write a correct program or module. (A "correct" program is one 
that behaves exactly according to its specifications.) There are several reasons 
for the difficulty we seem to have in writing correct programs. 
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The first problem is that for most programs, there is no clear description of 
what they are supposed to do. If there are no specifications, then you cannot 
even check whether a program is correct or not. For such programs, the whole 
concept of correctness is undefined. 

Many software projects have a document called the functional specification. 
In theory, this should be the specification of the program. But in practice, 
this document often does not exist, is incomplete, or specifies things that are 
irrelevant for the behavior of the program. Without clear specifications, there 
is no hope of getting a correct program. 

There are really three stages in the specification process: 

Requirements Requirements are an informal description of what the program 
is supposed to achieve. It is really a "what can I do with it" document, 
rather than a "how exactly do I do something with it" document. 
Requirements are often a bit vague and leave details out in order to 
concentrate on the larger picture. 

Functional specification The functional specification gives a detailed and 
exhaustive definition of the behavior of the program. The functional 
specification can only specify things that you can measure on the outside 
of the program. 

For each item in the functional specification, ask yourself whether you 
could create a test on the finished program that would determine whether 
that item was adhered to or not. The test can only use the external behavior 
of the program, not anything from the inside. If you can't create a test for 
an item, it does not belong in the functional specification. 

The functional specification should be complete. That is, every piece 
of functionality should be specified. Anything not in the functional 
specification does not have to be implemented. 

Another way to think of the functional specification is as the basis for 
testing the finished program. Any item can, and should, be tested. 

Implementation design This document has many names, but it specifies how 
the program works internally. It contains all of the things that cannot be 
tested from the outside. A good implementation design will often split 
the program into several modules, and describe the functionality of each. 
In turn, these module descriptions can be seen as the requirements for the 
module, and the whole cycle starts all over again, this time by splitting 
the module itself into multiple sub-modules. 

Of these three documents, the functional specification is without a doubt 
the most important one. This is the document against which the program 

------------- ---
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will be tested when it is finished. You can sometimes get by with informal 
requirements, or an implementation design that is nothing but a few sketches 
on a whiteboard. But without functional specifications, there is no way to even 
describe what you have achieved in the end when the program is finished. 

8.1 .2 Test and Fix 

The second problem in writing correct programs is the test-and-fix develop­
ment method that is in almost universal use. Programmers write a program, 
and then test whether it behaves correctly. If it doesn't, they fix the bugs and 
test again. As we all know, this does not lead to a correct program. It results in 
a program that kind of works in the most common situations. 

Back in 1972, Edsger Dijkstra commented in his Turing Award lecture 
that testing can only show the presence of bugs, never the absence of bugs 
[35]. This is very true, and ideally we would like to write programs that 
we can demonstrate to be correct. Unfortunately, current techniques in prov­
ing the correctness of programs are not good enough to handle day-to-day 
programming tasks, let alone a whole project. 

Computer scientists do not know how to solve this. Maybe it will be possible 
in the future to prove that a program is correct. Maybe we just need a far 
more extensive and thorough testing infrastructure and methodology. But 
even without having a full solution, we can certainly do our very best with the 
tools we do have. 

There are some simple rules about bugs that any good software engineering 
book includes: 

- If you find a bug, first implement a test that detects the bug. Check that 
the bug is detected. Then fix the bug, and check that the test no longer 
finds the bug. And then keep running that test on every future version 
to make sure the bug does not reappear. 

- Whenever you find a bug, think about what caused it. Are there any 
other places in the program where a similar bug might reside? Go check 
them alL 

- Keep track of every bug you find. Simple statistical analysis of the bugs 
you have found can show you which part of the program is especially 
buggy, or what type of error is made most frequently, etc. Such feedback 
is necessary for a quality control system. 

This is not even a bare minimum, but there is not a lot of methodology to draw 
from. There are quite a few books that discuss software quality. They don't all 
agree with each other. Many of them present a particular software development 
methodology as the solution, and we are always suspicious of such one-cure­
does-it-all schemes. The truth is almost always somewhere in the middle. 
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The third problem is the incredibly lax attitude of many in the computer 
industry. Errors in programs are frequently accepted as a matter of course. If 
your word processor crashes and destroys a day's worth of work, everybody 
seems to think this is quite normal and acceptable. Often they blame the 
user: "You should have saved your work more often." Software companies 
routinely ship products with known bugs in them. This wouldn't be so bad 
if they only sold computer games, but nowadays our work, our economy, 
and-more and more-our lives depend on software. If a car manufacturer 
finds a defect (bug) in a car after it was sold, they will recall the car and fix 
it. Software companies get away with disclaiming any and all liability in their 
software license, something they wouldn't be allowed to do if they produced 
any other product. This lax attitude means there are still not enough serious 
efforts being made at producing correct software. 

8.1 .4 So How Do We Proceed? 

Don't ever think that all you need is a good programmer or code reviews 
or an ISO 9001-certified development process or extensive testing or even 
a combination of all of them. Reality is much more difficult. Software is too 
complex to be tamed by a few rules and procedures. We find it instructive to 
look at the best engineering quality control system in the world: the airline 
industry. Everybody in that industry is involved in the safety system. There are 
very strict rules and procedures for almost every operation. There are multiple 
backups in case of failures. Every nut and boIt of the airplane has to be flight­
qualified before it can ever be used. Anytime a mechanic takes a screwdriver 
to the plane, his work is checked and signed off by a supervisor. Every 
modification is carefully recorded. Any accident is meticulously investigated 
to find all the underlying causes, which are then fixed. This fanatical pursuit 
of quality has a very high cost. An airplane is probably an order of magnitude 
more expensive than it would be if you just sent the drawings to an ordinary 
engineering firm. But the pursuit of quality has also been amazingly effective. 
Flying is an entirely routine operation today, in a machine where every failure 
is potentially fatal-a machine where you cannot just hit the brakes and stop 
when something goes wrong. One where the only safe way back to the ground 
is the quite delicate operation of landing on one of the rare specially prepared 
spots in the world. The airline industry has been amazingly effective at making 
flying secure. We would do well to learn all we can from them. Maybe writing 
correct software would cost an order of magnitude more than what we are used 
to now. But given the cost to society of the bugs in software that we see today, 
we are sure it would be cost-effective in the long run. 

------------- --
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B.2 Creating Secure Software 

So far, we have only talked about correct software. Just writing correct software 
is not good enough for a security system. The software must be secure as well. 

What is the difference? Correct software has a specified functionality. If you 
hit button A, then B will happen. Secure software has an additional require­
ment: a lack of functionality. No matter what the attacker does, she cannot do 
x. This is a very fundamental difference; you can test for functionality, but 
not for lack of functionality. The security aspects of the software cannot be 
tested in any effective way, which makes writing secure software much more 
difficult than writing correct software. The inevitable conclusion is: 

Standard implementation techniques 
are entirely inadequate to create secure code. 

We actually don't know how to create secure code. Software quality is a vast 
area that would take several books to cover. We don't know enough about it 
to write those books, but we do know the cryptography-specific issues and the 
problems that we see most frequently, and that is what we will discuss in the 
rest of this chapter. 

Before we start, let us make our point of view clear: unless you are willing 
to put real effort into developing a secure implementation, there is little point 
in bothering with the cryptography. Designing cryptographic systems might 
be fun, but cryptography is generally only a small part of a larger system. 

B.3 Keeping Secrets 

Anytime you work with cryptography, you are dealing with secrets. And 
secrets have to be kept. This means that the software that deals with the secrets 
has to ensure that they don't leak out. 

For the secure channel we have two types of secrets: the keys and the data. 
Both of these secrets are transient secrets; we don't have to store them for a 
long time. The data is only stored while we process each message. The keys are 
only stored for the duration of the secure channel. Here we will only discuss 
keeping transient secrets. For a discussion on storing secrets long-term, see 
Chapter 21. 

Transient secrets are kept in memory. Unfortunately, the memory on most 
computers is not very secure. We will discuss each of the typical problems 
in turn. 
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A basic rule of writing security software: wipe any information as soon as you 
no longer need it. The longer you keep it, the higher the chance that someone 
will be able to access it. What's more, you should definitely wipe the data 
before you lose control over the underlying storage medium. For transient 
secrets, this involves wiping the memory locations. 

This sounds easy to do, but it leads to a surprising number of problems. If 
you write the entire program in C, you can take care of the wiping yourself. 
If you write a library for others to use, you have to depend on the main 
program to inform you that the state is no longer needed. For example, when 
the communication connection is closed, the crypto library should be informed 
so that it can wipe the secure channel session state. The library can contain 
a function for this, but there's a reasonable chance that the programmer of 
the application won't call this function. After all, the program works perfectly 
well without calling this function. 

In some object-oriented languages, things are a bit easier. In C++, there is a 
destructor function for each object, and the destructor can wipe the state. This 
is certainly standard practice for security-relevant code in C++. As long as the 
main program behaves properly and destroys all objects it no longer needs, the 
memory state will be wiped. The C++ language ensures that all stack-allocated 
objects are properly destroyed when the stack is unwound during exception 
handling, but the program has to ensure that all heap-allocated objects are 
destroyed. Calling an operating system function to exit the program might not 
even unwind the call stack. And you have to ensure that all sensitive data is 
wiped even if the program is about to exit. After all, the operating system gives 
no guarantees that it will wipe the data soon, and some operating systems don't 
even bother wiping the memory before they give it to the next application. 

Even if you do all this, the computer might still frustrate your attempts. 
Some compilers try too hard to optimize. A typical security-relevant function 
performs some computations in local variables, and then tries to wipe them. 
You can do this in C with a call to the memset function. Good compilers will 
optimize the memset function to in-line code, which is more efficient. But some 
of them are too clever by half. They detect that the variable or array that is 
being wiped will never be used again, and "optimize" the memset away. It's 
faster, but suddenly the program does not behave the same way anymore. It is 
not uncommon to see code that reveals data that it happens to find in memory. 
If the memory is given to some library without haVing been wiped first, the 
library might leak the data to an attacker. So check the code that your compiler 
produces, and make sure the secrets are actually being wiped. 
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In a language like Java, the situation is even more complicated. All objects 
live on the heap, and the heap is garbage-collected. This means that the 
finalization function (similar to the C++ destructor) is not called until the 
garbage collector figures out that the object is no longer in use. There are no 
specifications about how often the garbage collector is run, and it is quite 
conceivable that secret data remains in memory for a very long time. The use 
of exception handling makes it hard to do the wiping by hand. If an exception 
is thrown, then the call-stack unwinds without any way for the programmer 
to insert his own code, except by writing every function as a big try clause. 
The latter solution is so ugly that it is impractical. It also has to be applied 
throughout the program, making it impossible to create a security library for 
Java that behaves properly. During exception handling, Java happily unwinds 
the stack, throwing away the references to the objects without cleaning up the 
objects themselves. Java is really bad in this respect. The best solution we've 
been able to come up with is to at least ensure that the finalization routines 
are run at program exit. The main method of the program uses a try-f inally 

statement. The f inally block contains some code to force a garbage collect, 
and to instruct the garbage collector to attempt to complete all the finalization 
methods. (See the functions System . gc ( )  and Sys tem .  runFina l i zation ( )  for 
more details.) There is still no guarantee that the finalization methods will be 
run, but it is the best we've been able to find. 

What we really need is support from the programming language itself. In 
C++ it is at least theoretically pOSSible to write a program that wipes all states 
as soon as they are no longer needed, but many other features of the language 
make it a poor choice for security software. Java makes it very difficult to 
wipe the state. One improvement would be to declare variables as "sensitive," 
and have the implementation guarantee that they will be wiped. Even better 
would be a language that always wipes all data that is no longer needed. That 
would avoid a lot of errors without significantly affecting efficiency. 

There are other places where secret data can end up. All data is eventually 
loaded into a CPU register. Wiping registers is not possible in most program­
ming languages, but on register-starved CPUs like the x86, it is very unlikely 
that any data will survive for any reasonable amount of time. 

During a context-switch (when the operating system switches from running 
one program to running the next program), the values in the registers of the 
CPU are stored in memory where their values might linger for a long time. As 
far as we know, there is nothing you can do about this, apart from fixing the 
operating system to ensure the confidentiality of that data. 

8.3.2 Swap File 
Most operating systems (including all current Windows versions and all UNIX 
versions) use a virtual memory system to increase the number of programs 
that can be run in parallel. While a program is running, not all of its data is kept 
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in memory. Some is stored in a swap file. When the program tries t o  access 
data that is not in memory, the program is interrupted. The virtual memory 
system reads the required data from the swap file into a piece of memory, and 
the program is allowed to continue. What's more, when the virtual memory 
system decides that it needs more free memory, it will take an arbitrary piece 
of memory from a program and write it to the swap file. 

Of course, not all virtual memory systems or configurations keep the 
data secret, or encrypt it before it is written to the disk. Most software is 
deSigned for a cooperative environment, not the adversarial environment that 
cryptographers work in. So our problem is the following: the virtual memory 
system could just take some of the memory of our program and write it to the 
swap file on disk. The program never gets told, and does not notice. Suppose 
this happens to the memory in which the keys are stored. If the computer 
crashes-or is switched off-the data remains on the disk. Most operating 
systems leave the data on disk even when you shut them down properly. 
There may be no mechanism to wipe the swap file, so the data could linger 
indefinitely on disk. Who knows who will have access to this swap file in 
future? We really cannot afford the risk of having our secrets written to the 
swap file.1 

So how do we stop the virtual memory system from writing our data to 
disk? On some operating systems there are system calls that you can use to 
inform the virtual memory system that specified parts of memory are not 
to be swapped out. Some operating systems support a secure swap system 
where the swapped-out data is cryptographically protected, but these systems 
might require the user to toggle the appropriate system configuration flags. If 
neither of these options is available on all the systems that you wish to run 

your application, there might not be much you can do to protect against this 
particular avenue of attack. 

Assuming you can lock the memory and prevent it from being swapped 
out, which memory should be locked? All the memory that can ever hold 
secrets, of course. This brings up a secondary problem. Many programming 
environments make it very hard to know where exactly your data is being 
stored. Objects are often allocated on a heap, data can be statically allocated, 
and many local variables end up on the stack. Figuring out the details is 
complicated and very error-prone. Probably the best solution is to simply lock 
all the memory of your application. Even that is not quite as easy as it sounds, 
because you could lose a number of operating system services such as the 
automatically allocated stack. And locking all the memory makes the virtual 
memory system ineffective. 

It shouldn't be this difficult. The proper solution is, of course, to make a 
virtual memory system that protects the confidentiality of the data. This is an 

lIn fact, we should never write secrets to any pennanent media without encrypting them, but 
that is an issue we will discuss later. 
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operating system change, and beyond our control. Even if the next version 
of your operating system were to have this feature, you should carefully 
check that the virtual memory system does a good job of keeping secrets. 
And, depending on your application, you may still have to deal with the fact 
that your application needs to run on older systems or systems in insecure 
configurations. 

8.3.3 Caches 

Modern computers don't just have a single type of memory. They have a 
hierarchy of memories. At the bottom is the main memory-often gigabytes in 
size. But because the main memory is relatively slow, there is also a cache. This 
is a smaller but faster memory. The cache keeps a copy of the most recently 
used data from the main memory. If the CPU wants to access the data, it first 
checks the cache. If the data is in the cache, the CPU gets the data relatively 
quickly. If the data is not in the cache, it is read (relatively slowly) from main 
memory, and a copy is stored in the cache for future use. To make room in the 
cache, a copy of some other piece of data is thrown away. 

This is important because caches keep copies of data, including copies of our 
secret data. The problem is that when we try to wipe our secrets, this wiping 
might not take place properly. In some systems, the modifications are only 
written to the cache and not to the main memory. The data will eventually be 
written to main memory, but only when the cache needs more room to store 
other data. We don't know all the details of these systems, and they change 
with every CPU. There is no way to know if there is some interaction between 
the memory allocation unit and the cache system that might result in some 
wipe operations escaping the write-to-main-memory part when the memory 
is deallocated before the cache is flushed. Manufacturers never specify how 
to wipe data in a guaranteed manner. At Least, we have never seen any 
specifications like that, and as long as it is not specified, we can't trust it. 

A secondary danger of caches is that under some circumstances a cache 
learns that a particular memory location has been modified, perhaps by the 
other CPU in a multi-CPU system. The cache then marks the data it has for 
that location as "invalid," but typically the actual data is not wiped. Again, 
there might exist a copy of our secrets that has not been wiped. 

There is very little you can do about this. It is not a great danger, because in 
most systems, minus physical attacks, only the OS code can access the cache 
mechanisms directly. And we have to trust the operating system anyway, so 
we could trust it with this as well. We are nevertheless concerned about these 
designs, because they clearly do not provide the functionality that is required 
to implement security systems properly. 
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8.3.4 Data Retention by Memory 
Something that surprises many people is that simply overwriting data in 
memory does not delete the data. The details depend to some extent on the 
exact type of memory involved, but basically, if you store data in a memory 
location, that location slowly starts to "learn" the data. When you overwrite 
or switch off the computer, the old value is not completely lost. Depending 
on the circumstances, just powering the memory off and back on again can 
recover some or all of the old data. Other memories can "remember" old data 
if you access them using (often undocumented) test modes [57]. 

Several mechanisms cause this phenomenon. If the same data is stored for a 
time in the same location in SRAM (Static RAM), then this data becomes the 
preferred power-up state of that memory. A friend of ours encountered this 
problem with his home-built computer long ago [17] .  He wrote a BIOS that 
used a magic value in a particular memory location to determine whether a 
reset was a cold reboot or a warm reboot.2 After a while the machine refused 
to boot after power-up because the memory had learned the magic value, and 
the boot process therefore treated every reset as a warm reboot. As this did not 
initialize the proper variables, the boot process failed. The solution in his case 
was to swap some memory chips around, scrambling the magic value that the 
SRAM had learned. For us, it was a lesson to remember: memory retains more 
data than you think. 

Similar processes happen in DRAM (Dynamic RAM), although they are 
somewhat more complicated. DRAM works by storing a small charge on a 
very small capacitor. The insulating material around the capacitor is stressed 
by the resulting field. The stress results in changes to the material, specifically 
causing the migration of impurities [57]. An attacker with physical control 
over the memory can potentially recover this data. Additionally, because of 
how DRAM capacitors discharge, their values may remain for seconds at room 
temperature if power is removed or even longer if the memory is cooled. 

These are important problems. The latter class of issues was recently demon­
strated in the context of cold boot attacks [59]. These researchers were able 
to recover secret cryptographic keys from the memories of computers after 
they were rebooted. These researchers were also able to physically extract 
the memory from one computer, put that memory in another computer, 
and recover the cryptographic keys. If your computer is ever compromised 
(e.g., stolen), you do not want the data that you had in memory to be 

2In those days home-built machines were programmed by entering the binary form of machine 
language directly. This led to many errors, and the one sure way to recover from a program that 
crashed was to reset the machine. A cold reboot is one after power-up. A warm reboot is the sort 
performed when the user presses the reset button. A warm reboot does not reinitialize all the 
state, and therefore does not wipe the settings the user made. 
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compromised as welL To achieve this goal, we have to make the computer 
forget information. 

We can only give a partial solution, which works if we make some reasonable 
assumptions about the memory. This solution, which we call a Boojum,3 works 
for relatively small amounts of data, such as keys. Our description of Boojum 
has been updated slightly since the first edition of this book, and includes a 
defense against the cold boot attack from [59]. For Boojum, let m be the data we 
want to store. Instead of storing m, we generate a random string R and store 
both R and heR) El1 m where h is a hash function. These two values are stored 
in different memory locations, preferably not too close together. One trick is 
to change R regularly. At regular intervals, say every 1 second, we generate 
a new random R', and update the memory to store R El1 R' and heR El1 R') El1 m. 
This ensures that each bit of the memory is written with a sequence of random 
bits. To wipe the memory, you simply write a new m with the value zero. 

To read information from this storage, you read both parts, hash the first, 
and XOR them together to get m. Writing is done by xoRing the new data with 
heR) and storing it in the second location. 

Care should be taken that the bits of R and heR) El1 m are not adjacent on the 
RAM chip. Without information about how the RAM chip works, this can be 
difficult, but most memories store bits in a rectangular matrix of bits, with some 
address bits selecting the row and other address bits selecting the column. 
If the two pieces are stored at addresses that differ by Ox5 5 5 5 ,  it is highly 
unlikely that the two will be stored adjacent on the chip. (This assumes that the 
memory does not use the even-indexed address bits as row number and the 
odd-indexed address bits as column number, but we have never seen a design 
like that.) An even better solution might be to choose two random addresses 
in a very large address space. This makes the probability that the two locations 
are adjacent very small, independent of the actual chip layouts of the memory. 

This is only a partial solution, and a rather cumbersome one at that. It is 
limited to small amounts of data. But using this solution ensures that there is 
no physical point on the memory chip that is continually stressed or unstressed 
depending on the secret data. Further, as long as k bits of R are not recoverable, 
the attacker would have to exhaustively search for those k bits before being 
able to recover heR) El1 m. 

There is still no guarantee that the memory will be wiped. If  you read the 
documentation of a memory chip, there are no specifications that prevent the 
chip from retaining all data ever stored in it. No chip does that, of course, but 
it shows that we can at most achieve a heuristic security. 

We have concentrated on the main memory here. The same solution will 
work for the cache memory, except that you cannot control the position on 
the chip where the data will be stored. This solution does not work for the 

3 After Lewis Carroll's The Hunting of the Snark [24]. 
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CPU registers, but they are used so often for so much different data that we 
doubt they will pose a data retention problem. On the other hand, extension 
registers, such as floating point registers or MMX-style registers, are used far 
less frequently, so they could pose a problem. 

If you have large amounts of data that need to be kept secret, then the 
solution of storing two copies and xORing new random strings into both copies 
regularly becomes too expensive. A better solution is to encrypt a large block of 
data and store the ciphertext in memory that potentially retains information. 
Only the key needs to be stored in a way that avoids data retention, for 
example, using a Boojum. For details, see [32] . 

8.3.5 Access by Others 

There's yet another problem with keeping secrets on a computer: other 
programs on the same machine might access the data. Some operating systems 
allow different programs to share memory. If the other program can read your 
secret keys, you have a serious problem. Often the shared memory has to be 
set up by both programs, which reduces the risk. In other situations, the shared 
memory might be set up automatically as a result of loading a shared library. 

Debuggers are especially dangerous. Modern operating systems often con­
tain features designed to be used by debuggers. Various Windows versions 
allow you to attach a debugger to an already running process. The debugger 
can do many things, including reading the memory. Under UNIX, it is some­
times possible to force a core-dump of a program. The core-dump is a file that 
contains a memory image of the program data, including all of your secrets. 

Another danger comes from especially powerful users. Called superusers, 
or administrators, these users can access things on the machine that normal 
users cannot. Under UNIX, for example, the superuser can read any part of 
the memory. 

In general, your program cannot effectively defend itself against these types 
of attacks. If you are careful, you may be able to eliminate some of these 
problems, but often you'll find yourself limited in what can be achieved. Still, 
you should consider these issues on the particular platform you are working on. 

8.3.6 Data Integrity 

In addition to keeping secrets, we should protect the integrity of the data we 
are storing. We use the MAC to protect the integrity of the data during transit, 
but if the data can be modified in memory, we still have problems. 

In this discussion, we will assume that the hardware is reliable. If the 
hardware is unreliable, there is very little you can do. If you are unsure about 
the hardware reliability, perhaps you should spend part of your time and 
memory simply to verify it, although that is really the operating system's job. 
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One thing we try to do is make sure the main memory on our machines is 
ECC (error-correcting code) memory.4 If there is a single bit failure, then the 
error-correcting code will detect and correct the error. Without ECC memory, 
any bit error leads to the CPU reading the wrong data. 

Why is this important? There is an enormous number of bits in a modem 
computer. Suppose the engineering is done really well, and each bit has only 
a 10-15 chance of failing in each second. If you have 128 MB of memory, then 
you have about 109 bits of memory, and you can expect one bit failure every 11 
days. The error rate increases with the amount of memory in the machine, so 
it is even worse if you have 1 GB of memory, with one failure every 32 hours. 
Servers typically use ECC memory because they have more memory and run 
for longer periods of time. We like to have the same stability in all machines. 

Of course, this is a hardware issue, and you typically don't get to specify the 
type of memory on the machine that will run the final application. 

Some of the dangers that threaten data confidentiality also endanger the 
data integrity. Debuggers can sometimes modify your program's memory. 
Superusers can directly modify memory, too. Again, there is nothing you can 
do about it, but it is useful to be aware of the situation. 

8.3.7 What to Do 

Keeping a secret on a modem computer is not as easy as it sounds. There are 
many ways in which the secret can leak out. To be fully effective, you have to 
stop all of them. Unfortunately, current operating systems and programming 
languages do not provide the required support to stop the leakage completely. 
You have to do the best you can. This involves a lot of work, all of it specific 
to the environment you work in. 

These problems also make it very difficult to create a library with the cryp­
tographic functions in it. Keeping the secrets safe often involves modifications 
to the main program. And of course, the main program also handles data 
that should be kept confidential; otherwise, it wouldn't need the cryptography 
library in the first place. This is the familiar issue of security considerations 
affecting every part of the system. 

8.4 Quality of Code 

If you create an implementation for a cryptographic system, you will have to 
spend a great deal of time on the quality of the code. This book is not about 
programming, but we will say a few words about code quality here. 

4you have to make sure that all components of the computer support ECC memory. Beware of 
slightly cheaper memory modules that do not store the extra information but instead recompute 
it on the fly. This defeats the whole purpose of ECC memory. 
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Complexity is the main enemy of security. Therefore, any security design 
should strive for simplicity. We are quite ruthless about this, even though this 
does not make us popular. Eliminate all the options that you can. Get rid of all 
those baroque features that few people use. Stay away from committee designs, 
because the committee process always leads to extra features or options in 
order to achieve compromise. In security, simplicity is king. 

A typical example is our secure channel. It has no options. It doesn't allow 
you to encrypt the data without authenticating it, or to authenticate the data 
without encrypting it. People always ask for these features, but in many 
cases they do not realize the consequences of using partial security features. 
Most users are not informed enough about security to be able to select the 
correct security options. The best solution is to have no options and make the 
system secure by default. If you absolutely have to, provide a single option: 
secure or insecure. 

Many systems also have multiple cipher suites, where the user (or someone 
else) can choose which cipher and which authentication function to use. If at 
all possible, eliminate this complexity. Choose a single mode that is secure 
enough for all possible applications. The computational difference between 
the various encryption modes is not that large, and cryptography is rarely the 
bottleneck for modern computers. Apart from getting rid of the complexity, 
it also gets rid of the danger that users might configure their application to 
use weak cipher suites. After all, if choosing an encryption and authentication 
mode is so difficult that the designer can't do it, it will be even more challenging 
for a user to make an informed decision. 

8.4.2 Modularization 

Even after you have eliminated a lot of options and features, the resulting 
system will still be quite complex. There is one main technique for making the 
complexity manageable: modularization. You divide the system into separate 
modules, and design, analyze, and implement each module separately. 

You should already be familiar with modularization; in cryptography it 
becomes even more important to do it right. Earlier we talked about crypto­
graphic primitives as modules. The module interface should be simple and 
straightforward. It should behave according to the reasonable expectations of 
a user of the module. Look closely at the interface of your modules. Often 
there are features or options that exist to solve some other module's problems. 
If possible, rip them out. Each module should solve its own problems. We 
have found that when module interfaces start to develop weird features, it is 
time to redesign the software because they are almost always a result of design 
deficiencies. 
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Modularization is so important because it is the only efficient way we have of 
dealing with complexity. If a particular option is restricted to a single module, 
it can be analyzed within the context of this module. However, if the option 
changes the external behavior of one module, it can affect other modules as 
well. If you have 20 modules, each with a single binary option that changes the 
module behavior, there are over a million possible configurations. You would 
have to analyze each of these configurations for security-an impossible task. 

We have found that many options are created in the quest for efficiency. 
This is a well-known problem in software engineering. Many systems contain 
so-called optimizations that are useless, counterproductive, or insignificant 
because they do not optimize those parts of the system that form the bottleneck. 
We have become quite conservative about optimizations. Usually we don't 
bother with them. We create a careful design, and try to ensure that work 
can be done in large "chunks." A typical example is the old IBM PC BIOS. 
The routine to print a character on the screen took a single character as an 
argument. This routine spent almost all of its time on overhead, and only 
a very small fraction on actually putting the character on the screen. If the 
interface of the routine had allowed a string as argument, then the entire string 
could have been printed in only slightly more time than it took to print a 
single character. The result of this bad design was that all DOS machines had 
a terribly slow display. This same principle applies to cryptographic designs. 
Make sure that work can be done in large enough chunks. Then only optimize 
those parts of your program that you can measure as having a significant effect 
on the performance. 

8.4.3 Assertions 
Assertions are a good tool to help improve the quality of your code. 

When implementing cryptographic code, adopt an attitude of professional 
paranoia. Each module distrusts the other modules, and always checks 
parameter validity, enforces calling sequence restrictions, and refuses unsafe 
operations. Most of the times these are straightforward assertions. If the mod­
ule specifications state that you have to initialize the object before you use 
it, then using an object before initialization will result in an assertion error. 
Assertion failures should always lead to an abort of the program with ample 
documentation of which assertion failed, and for what reason. 

The general rule is: any time you can make a meaningful check on the 
internal consistency of the system, you should add an assertion. Catch as 
many errors as you can, both your own and those of other programmers. An 
error caught by an assertion will not lead to a security breach. 

There are some programmers who implement assertion checking in devel­
opment, but switch it off when they ship the product. This is not the security 
perspective. What would you think of a nuclear power station where the 
operators train with all the safety systems in place, but switch them off when 
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they go to work on the real reactor? Or a parachutist who wears his emergency 
parachute while training on the ground, but leaves it off when he jumps out 
of the airplane? Why would anyone ever switch off the assertion checking on 
production code? That is the only place where you really need it! If an asser­
tion fails in production code, then you have just encountered a programming 
error. Ignoring the error will most likely result in some kind of wrong answer, 
because at least one assumption the code makes is wrong. Generating wrong 
answers is probably the worst thing a program can do. It is much better to at 
least inform the user that a programming error has occurred, so he does not 
trust the erroneous results of the program. Our recommendation is to leave all 
your error checking on. 

8.4.4 Buffer Overflows 

Buffer overflow problems have been known for decades. Perfectly good 
solutions to avoid them have been available for the same amount of time. 
Some of the earliest higher-level programming languages, such as Algol 
60, completely solved the problem by introducing mandatory array bounds 
checking. Even so, buffer overflows cause a huge number of security problems 
on the Internet. There also exist a larger number of software attacks beyond 
buffer overflows, such as format string attacks and integer overflow attacks. 

But these are things we cannot change. We can give you advice on how to 
write good cryptographic code. A void any programming language that allows 
buffer overflows. Specifically: don't use C or C++. And don't ever switch off 
the array bounds checking of whichever language you use instead. It is such a 
simple rule, and will probably solve half of all your security bugs. 

8.4.5 Testing 

Extensive testing is always part of any good development process. Testing can 
help find bugs in programs, but it is useless to find security holes. Never confuse 
testing with security analysis. The two are complementary, but different. 

There are two types of tests that should be implemented. The first is a generic 
set of tests developed from the module's functional specifications. Ideally, one 
programmer implements the module and a second programmer implements 
the tests. Both work from the functional specification. Any misunderstanding 
between the two is a clear indication that the specifications have to be clarified. 
The generic tests should attempt to cover the entire operational spectrum of 
the module. For some modules, this is simple; for others, the test program will 
have to simulate an entire environment. In much of our own code, the test 
code is about as big as the operational code, and we have not found a way of 
significantly improving that. 

A second set of tests is developed by the programmer of the module itself. 
These are designed to test any implementation limits. For example, if a module 
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uses a 4 KB buffer internally, then extra tests of the boundary conditions at the 
start and end of the buffer will help to catch any buffer-management errors. 
Sometimes it requires know ledge of the internals of a module to devise specific 
tests. 

We frequently write test sequences that are driven by a random generator. 
We will discuss pseudorandom number generators (PRNGS) extensively in 
Chapter 9. Using a PRNG makes it very easy to run a very large number of 
tests. If we save the seed we used for the PRNG, we can repeat the same test 
sequence, which is very useful for testing and debugging. Details depend on 
the module in question. 

Finally, we have found it useful to have some "quick test" code that can 
run every time the program starts up. In one of Niels's projects, he had to 
implement AES. The initialization code runs AES on a few test cases and 
checks the output against the known correct answers. If the AES code is ever 
destabilized during the further development of the application, this quick test 
is very likely to detect the problem. 

8.5 Side-Channel Attacks 

There is a whole class of attacks that we call side-channel attacks [72]. These 
are possible when an attacker has an additional channel of information about 
the system. For example, an attacker could make detailed measurements of 
the time it takes to encrypt a message. Depending on how the system is 
implemented, this timing information could allow an attacker to infer private 
information about the message itself or the underlying encryption key. If the 
cryptography is embedded in a smart card, then the attacker can measure how 
much current the card draws over time. Magnetic fields, RF emissions, power 
consumption, timing, and interference on other data channels can all be used 
for side-channel attacks. 

Not surprisingly, side-channel attacks can be remarkably successful against 
systems that are not designed with these attacks in mind. Power analysis of 
smart cards is extremely successful [77]. 

It is very difficult, if not impossible, to protect against all forms of side­
channel attacks, but there are some simple precautions you can take. Years 
ago, when Niels worked on implementing cryptographic systems in smart 
cards, one of the design rules was that the sequence of instructions that 
the CPU executed could only depend on information already available to 
the attacker. This stops timing attacks, and makes power analysis attacks 
more complicated because the sequence of instructions being executed can 
no longer leak any information. It is not a full solution, and modern power 
analysis techniques would have no problem breaking the smart cards that 
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were fielded in those days. Still, that fix was about the best that could be done 
with the smart cards of the day. Resistance against side-channel attacks will 
always come from a combination of countenneasures-some of them in the 
software that implements the cryptographic system, and some of them in the 
actual hardware. 

Preventing side-channel attacks is an arms race. You try to protect yourself 
against the known side channels, and then a smart person somewhere discovers 
a new side channel, so then you have to go back and take that one into account 
as well. In real life, the situation is not that bad, because most side-channel 
attacks are difficult to perform. Side channels are a real danger to smart cards 
because the card is under full control of the adversary, but only a few types 
of side channels are practical against most other computers. In practice, the 
most important side channels are timing and RF emissions. (Smart cards are 
particularly vulnerable to measuring the power consumption.) 

8.6 Beyond this Chapter 

We hope this chapter has made it clear that security does not start or stop with 
the cryptographic design. All aspects of the system have to do their part to 
achieve security. 

Implementing cryptographic systems is an art in itself. The most important 
aspect is the quality of the code. Low-quality code is the most common cause 
of real-world attacks, and it is rather easy to avoid. In our experience, writing 
high-quality code takes about as long as writing low-quality code, if you count 
the time from start to finished product, rather than from start to first buggy 
version. Be fanatical about the quality of your code. It can be done, and it 
needs to be done, so go do it! 

There are a number of great books for further reading. Among these are 
Software Security: Building Security In by McGraw [88], The Security Development 
Lifecycle by Howard and Lipner [62], and The Art of Software Security Assessment: 
Identifying and Preventing Software Vulnerabilities by Dowd, McDonald, and 
Schuh [37] . 

8.7 Exercises 

Exercise 8.1 Describe how each of the issues in Section 8.3 applies to your 
personal computer's hardware and software configuration. 

Exercise 8.2 Find a new product or system that manipulates transient secrets. 
This might be the same product or system you analyzed for Exercise 1 .8. Con­
duct a security review of that product or system as described in Section 1.12, 
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this time focusing on issues surrounding how the system might store these 
secrets (Section 8.3). 

Exercise 8.3 Find a new product or system that manipulates secret data. This 
might be the same product or system you analyzed for Exercise 1.8. Conduct 
a security review of that product or system as described in Section 1 .12, this 
time focusing on issues surrounding code quality (Section 8.4). 

Exercise 8.4 Monitor the bugtraq mailing list for one week. Create a table 
listing all the different types of vulnerabilities that are announced or fixed 
during that week, as well as the number of such vulnerabilities for each 
type. What sorts of larger inferences can you draw from this table? See 
http : / /www . schneier . com/ ce . html for additional information about the bug­
traq mailing list. 
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Generating Randomness 

To generate key material, we need a random number generator, or RNG. 
Generating good randomness is a vital part of many cryptographic operations. 
Generating good randomness is also very challenging. 

We won't go into a detailed discussion of what randomness really is; an 
informal discussion suffices for our purposes. A good informal definition is 
that random data is unpredictable to the attacker, even if he is taking active 
steps to defeat our randomness. 

Good random number generators are necessary for many cryptographic 
functions. Part II discussed the secure channel and its components. We 
assumed there to be a key known to both Alice and Bob. That key has to 
be generated somewhere. Key management systems use random number 
generators to choose keys. If you get the RNG wrong, you end up with a 
weak key. This is exactly what happened to one of the early versions of the 
Netscape browser [54]. 

The measure for randomness is called entropy [118] . Here's the high-level 
idea. If you have a 32-bit word that is completely random, it has 32 bits of 
entropy. If the 32-bit word takes on only four different values, and each value 
has a 25% chance of occurring, the word has 2 bits of entropy. Entropy does 
not measure how many bits are in a value, but how uncertain you are about the 
value. You can think of entropy as the average number of bits you would need 
to specify the value if you could use an ideal compression algorithm. Note 
that the entropy of a value depends on how much you know. A random 32-bit 
word has 32 bits of entropy. Now suppose you happen to know that the value 
has exactly 18 bits that are 0 and 14 bits that are 1 .  There are about 228.8 values 
that satisfy these requirements, and the entropy is also limited to 28.8 bits. In 
other words, the more you know about a value, the smaller its entropy is. 

1 31 
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It is a bit more complicated to compute the entropy for values that have a 
nonuniform probability distribution. The most common definition of entropy 
for a variable X is 

H(X) := - L P(X = x) log2 P(X = x) 
x 

where P(X = x) is the probability that the variable X takes on the value x. 
We won't use this formula, so you don't need to remember it. This definition 
is what most mathematicians refer to when they talk about entropy. There 
are a few other definitions of entropy that mathematicians use as well; which 
one they use depends on what they are working on. And don't confuse our 
entropy definition with the entropy that physicists talk about. They use the 
word for a concept from thermodynamics that is only tangentially related to 
our definition of entropy. 

9.1 Real Random 

In an ideal world we would use "real random" data. The world is not ideal, 
and real random data is extremely hard to find. 

Typical computers have a number of sources of entropy. The exact timing 
of keystrokes and the exact movements of a mouse are well-known examples. 
There has even been research into using the random fluctuations in hard-disk 
access time caused by turbulence inside the enclosure [29]. All of these sources 
are somewhat suspect because there are situations in which the attacker can 
influence or perform measurements on the random source. 

It is tempting to be optimistic about the amount of entropy that can be 
extracted from various sources. We've seen software that will generate 1 or 2 
bytes of supposedly random data from the timing of a single keystroke. Cryp­
tographers in general are far more pessimistic about the amount of entropy 
in a single keystroke. A good typist can keep the time between consecutive 
keystrokes predictable to within a dozen milliseconds. And the keyboard 
scan frequency limits the resolution with which keystroke timings can be 
measured. The data being typed is not very random either, even if you ask 
the user just to hit some keys to generate random data. Furthermore, there 
is always a risk that the attacker has additional information about the "ran­
dom" events. A microphone can pick up the sounds of the keyboard, which 
helps to determine the timing of keystrokes. Be very careful in estimating how 
much entropy you think a particular piece of data contains. We are, after all, 
dealing with a very clever and active adversary. 
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There are many physical processes that behave randomly. For example, the 
laws of quantum physics force certain behavior to be perfectly random. It 
would be very nice if we could measure such random behavior and use it. 
Technically, this is certainly possible. However, the attacker has a few lines 
of attack on this type of solution. First of all, the attacker can try to influence 
the behavior of the quantum particles in question to make them behave 
predictably. The attacker can also try to eavesdrop on the measurements we 
make; if he gets a copy of our measurements, while the data might still be 
random, it won't have any entropy from the attacker's point of view. (If 
he knows the value, then it has no entropy for him.) Maybe the attacker 
can set up a strong RF field in an attempt to bias our detector. There are 
even some quantum physics-based attacks that can be contemplated. The 
Einstein-Podolsky-Rosen paradox could be used to subvert the randomness 
we are trying to measure [11, 19]. Similar comments apply to other sources 
of entropy, such as thermal noise of a resistor and tunneling and breakdown 
noise of a Zener diode. 

Some modern computers have a built-in real random number generator 
[63]. This is a significant improvement over a separate real random generator, 
as it makes some of the attacks more difficult. The random number generator 
is still only accessible to the operating system, so an application has to trust 
the operating system to handle the random data in a secure manner. 

9.1 .1 Problems with Using Real Random Data 

Aside from the difficulty of collecting real random data, there are several other 
problems with its practical use. First of all, it is not always available. If you 
have to wait for keystroke timings, then you cannot get any random data 
unless the user is typing. That can be a real problem when your application is a 
Web server on a machine with no keyboard connected to it. A relatt::d problem 
is that the amount of real random data is always limited. If you need a lot of 
random data, then you have to wait; something that is unacceptable for many 
applications. 

A second problem is that real random sources, such as a physical random 
number generator, can break. Maybe the generator will become predictable in 
some way. Because real random generators are fairly intricate things in the 
very noisy environment of a computer, they are much more likely to break 
than the traditional parts of the computer. If you rely on the real random 
generator directly, then you're out of luck when it breaks. What's worse, you 
might not know when it breaks. 

A third problem is judging how much entropy you can extract from any spe­
cific physical event. Unless you have specially designed dedicated hardware 
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for the random generator it is extremely difficult to know how much entropy 
you are getting. We'll discuss this in greater detail later. 

9.1 .2 Pseudorandom Data 

An alternative to using real random data is to use pseudorandom data. 
Pseudorandom data is not really random at all. It is generated from a seed 
by a deterministic algorithm. If you know the seed, you can predict the 
pseudorandom data. Traditional pseudorandom number generators, or PRNGS, 
are not secure against a clever adversary. They are designed to eliminate 
statistical artifacts, not to withstand an intelligent attacker. The second volume 
of Knuth's The Art of Computer Programming contains an extensive discussion 
of random number generators, but all generators are analyzed for statistical 
randomness only [75] . We have to assume that our adversary knows the 
algorithm that is used to generate the random data. Given some of the 
pseudorandom outputs, is it possible for him to predict some future (or past) 
random bits? For many traditional PRNGS the answer might be yes. For a 
proper cryptographic PRNG the answer is no. 

In the context of a cryptographic system, we have more stringent require­
ments. Even if the attacker sees much of the random data generated by the 
PRNG, she should not be able to predict anything about the rest of the output of 
the PRNG. We call such a PRNG cryptographically strong. As we have no need 
for a traditional PRNG, we will only talk about cryptographically strong PRNGS. 

Forget about the normal random function in your programming library, 
because it is almost certainly not a cryptographic PRNG. Unless the crypto­
graphic strength is explicitly documented, you should never use a library 
PRNG. 

9.1 .3 Real Random Data and PRNGS 

We only use real random data for a single thing: to seed a PRNG. This 
construction resolves some of the problems of using real random data. Once 
the PRNG is seeded, random data is always available. You can keep adding the 
real random data that you receive to the PRNG seed, thereby ensuring that it 
never becomes fully predictable even if the seed becomes known. 

There is a theoretical argument that real random data is better than pseu­
dorandom data from a PRNG. In certain cryptographic protocols you can 
prove that certain attacks are impossible if you use real random data. The 
protocol is unconditionally secure. If you use a PRNG, the protocol is only 
secure as long as the attacker cannot break the PRNG; the protocol is compu­
tationally secure. This distinction, however, is only of theoretical interest. All 
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cryptographic protocols use computational assumptions for almost everything. 
Removing the computational assumption for one particular type of attack is 
an insignificant improvement, and generating real random data, which you 
need for the unconditional security, is so difficult that you are far more likely 
to reduce the system security by trying to use real random data. Any weakness 
in the real random generator immediately leads to a loss of security. However, 
if you use real random data to seed a PRNG, you can afford to be far more 
conservative in your assumptions about the entropy sources, which makes it 
much more likely that you will end up with a secure system in the end. 

9.2 Attack Models for a PRNG 

The task of generating pseudorandom numbers from a seed is fairly simple. 
The problem is how to get a random seed, and how to keep it secret in a 
real-world situation [71] .  One of the best designs up to now that we know of 
is called Yarrow [69], a design we created a few years ago together with John 
Kelsey. Yarrow tries to prevent all the known attacks. 

At any point in time the PRNG has an internal state. Requests for random data 
are honored by using a cryptographic algorithm to generate pseudorandom 
data. This algorithm also updates the internal state to ensure that the next 
request does not return the same random data. This process is easy; any hash 
function or block cipher can be used for this step. 

There are various forms of attack on a PRNG. There is a straightforward 
attack where the attacker attempts to reconstruct the internal state from the 
output. This is a classical cryptographic attack, and rather easy to counter 
using cryptographic techniques. 

Things become more difficult if the attacker is at some point able to acquire 
the internal state. For the purposes of this discussion, it is unimportant how 
that happens. Maybe there is a flaw in the implementation, or maybe the 
computer was just booted for the first time and has had no random seed yet, 
or maybe the attacker managed to read the seed file from disk. Bad things 
happen, and you have to be able to handle them. In a traditional PRNG, if 
the attacker acquires the internal state, she can follow all the outputs and all 
the updates of the internal state. This means that if the PRNG is ever attacked 
successfully, then it can never recover to a secure state. 

Another problem arises if the same PRNG state is used more than once. This 
can happen when two or more virtual machines (VMs) are booted from the 
same state and read the same seed file from disk. 

Recovering a PRNG whose state has been compromised is difficult, as is 
avoiding the re-use of the same state across VMs booted from the same 
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instance. We will need some source of entropy from a real random number 
generator. To keep this discussion simple, we will assume that we have one or 
more sources that provide some amount of entropy (typically in small chunks 
that we call events) at unpredictable times. 

Even if we mix the small amounts of entropy from an event into the internal 
state, this still leaves an avenue of attack. The attacker simply makes frequent 
requests for random data from the PRNG. As long as the total amount of 
entropy added between two such requests is limited to, say, 30 bits, the 
attacker can simply try all possibilities for the random inputs and recover the 
new internal state after the mixing. This would require about 230 tries, which 
is quite practical to do.1 The random data generated by the PRNG provides the 
necessary verification when the attacker hits upon the right solution. 

The best defense against this particular attack is to pool the incoming events 
that contain entropy. You collect entropy until you have enough to mix into 
the internal state without the attacker being able to guess the pooled data. 
How much is enough? Well, we want the attacker to spend at least 2128 steps 
on any attack, so you want to have 128 bits of entropy. But here is the real 
problem: making any kind of estimate of the amount of entropy is extremely 
difficult, if not impossible. It depends heavily on how much the attacker knows 
or can know, but that information is not available to the developers during the 
design phase. This is Yarrow's main problem. It tries to measure the entropy 
of a source using an entropy estimator, and such an estimator is impossible to 
get right for all situations. 

9.3 Fortuna 

In practice you are probably best off using a cryptographic PRNG provided 
by a well-accepted cryptographic library. For illustrative purposes, we focus 
now on the design of a PRNG we call Fortuna. Fortuna is an improvement on 
Yarrow and is named after the Roman goddess of chance.2 Fortuna solves the 
problem .of having to define entropy estimators by getting rid of them. The 
rest of this chapter is mostly about the details of Fortuna. 

There are three parts to Fortuna. The generator takes a fixed-size seed 
and generates arbitrary amounts of pseudorandom data. The accumulator 
collects and pools entropy from various sources and occasionally reseeds the 
generator. Finally, the seed file control ensures that the PRNG can generate 
random data even when the computer has just booted. 

1 We are being sloppy with our math here. In this instance we should use guessing entropy, 
rather than the standard Shannon entropy. For extensive details on entropy measures, see [23). 
2We thought about calling it Tyche, after the Greek goddess of chance, but nobody would know 
how to pronounce it. 
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The generator is the part that converts a fixed-size state to arbitrarily long 
outputs. We'll use an AE5-like block cipher for the generator; feel free to 
choose AES (Rijndael), Serpent, or Twofish for this function. The internal state 
of the generator consists of a 256-bit block cipher key and a 128-bit counter. 

The generator is basically just a block cipher in counter mode. CTR mode 
generates a random stream of data, which will be our output. There are a few 
refinements. 

If a user or application asks for random data, the generator runs its 
algorithm and generates pseudorandom data. Now suppose an attacker 
manages to compromise the generator's state after the completion of the 
request. It would be nice if this would not compromise the previous results 
the generator gave. Therefore, after every request we generate an extra 256 
bits of pseudorandom data and use that as the new key for the block cipher. 
We can then forget the old key, thereby eliminating any possibility of leaking 
information about old requests. 

To ensure that the data we generate will be statistically random, we can­
not generate too much data at one time. After all, in purely random data 
there can be repeated block values, but the output of counter mode never 
contains repeated block values. (See Section 4.8.2 for details.) There are vari­
ous solutions; we could use only half of each ciphertext block, which would 
hide most of the statistical deviation. We could use a different building block 
called a pseudorandom junction, rather than a block cipher, but there are no 
well-analyzed and efficient proposals that we know of. The simplest solution 
is to limit the number of bytes of random data in a single request, which makes 
the statistical deviation much harder to detect. 

If we were to generate 264 blocks of output from a single key, we would 
expect close to one collision on the block values. A few repeated requests of 
this size would quickly show that the output is not perfectly random; it lacks 
the expected block collisions. We limit the maximum size of any one request 
to 216 blocks (that is, 220 bytes). For an ideal random generator, the probability 
of finding a block value collision in 216 output blocks is about 2-97, so the 
complete absence of collisions would not be detectable until about 297 requests 
had been made. The total workload for the attacker ends up being 2113 steps. 
Not quite the 2128 steps that we're aiming for, but reasonably close. 

We know we are being lax here and accepting a (slightly) reduced security 
level. There seems to be no good alternative. We don't have any suitable 
cryptographic building blocks that give us a PRNG with a full 128-bit security 
level. We could use SHA-256, but that would be much slower. We've found 
that people will argue endlessly not to use a good cryptographic PRNG, and 
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speed has always been one of the arguments. Slowing down the PRNG by a 
perceptible factor to get a few bits more security is counterproductive. Too 
many people will simply switch to a really bad PRNG, so the overall system 
security will drop. 

If we had a block cipher with a 2S6-bit block size, then the collisions would 
not have been an issue at all. This particular attack is not such a great threat. 
Not only does the attacker have to perform 2113 steps, but the computer that 
is being attacked has to perform 2113 block cipher encryptions. So this attack 
depends on the speed of the user's computer, rather than on the speed of the 
attacker's computer. Most users don't add huge amounts of extra computing 
power just to help an attacker. We don't like these types of security arguments. 
They are more complicated, and if the PRNG is ever used in an unusual setting, 
this argument might no longer apply. Still, given the situation, our solution is 
the best compromise we can find. 

When we rekey the block cipher at the end of each request, we do not 
reset the counter. This is a minor issue, but it avoids problems with short 
cycles. Suppose we were to reset the counter every time. If the key value ever 
repeats, and all requests are of a fixed size, then the next key value will also 
be a repeated key value. We could end up in a short cycle of key values. 
This is an unlikely situation, but by not resetting the counter we can avoid 
it entirely. As the counter is 128 bits, we will never repeat a counter value 
(2128 blocks is beyond the computational capabilities of our computers), and 
this automatically breaks any cycles. Furthermore, we use a counter value of 
o to indicate that the generator has not yet been keyed, and therefore cannot 
generate any output. 

Note that the restriction that limits each request to at most 1 MB of data is 
not an inflexible restriction. If you need more than 1 MB of random data, just 
do repeated requests. In fact, the implementation could provide an interface 
that automatically performs such repeated requests. 

The generator by itself is an extremely useful module. Implementations 
could make it available as part of the interface, not just as a component, of 
Fortuna. Take a program that performs a Monte Carlo simulation.3 You really 
want the simulation to be random, but you also want to be able to repeat 
the exact same computation, if only for debugging and verification purposes. 
A good solution is to call the operating system's random generator once at 
the start of the program to get a random seed. This seed can be logged as 
part of the simulator output, and from this seed our generator can generate 
all the random data needed for the simulation. Knowing the original seed of 
the generator also allows all the computations to be verified by running the 
program again using the same input data and seed. And for debugging, the 

3 A Monte Carlo simulation is a simulation that is driven by random choices. 
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same simulation can be run again and again, and it will behave exactly the 
same every time, as long as the starting seed is kept constant. 

We can now specify the operations of the generator in detail. 

9.4.1 Initialization 

This is rather simple. We set the key and the counter to zero to indicate that 
the generator has not been seeded yet. 

function INITIALIZEGENERATOR 
output: 9 Generator state. 

Set the key K and counter C to zero. 
(K, C) � (0, 0) 

Package up the state. 
9 +--- (K, C) 
return 9 

9.4.2 Reseed 

The reseed operation updates the state with an arbitrary input string. At this 
level we do not care what this input string contains. To ensure a thorough 
mixing of the input with the existing key, we use a hash function. 

function RESEED 
input: 9 Generator state; modified by this function. 

s New or additional seed. 

Compute the new key using a hash function. 
K +--- SHA.t-2S6(K II s) 

Increment the counter to make it nonzero and mark the generator as seeded. 
Throughout this generator, C is a 16-byte value treated as an integer 
using the LSByte first convention. 

C � C + l  

The counter C is used here as an integer. Later it will be used as a 
plaintext block. To convert between the two we use the least-significant-byte­
first convention. The plaintext block is a block of 16 bytes po, . . .  , PIS that 
corresponds to the integer value 

By using this convention throughout, we can treat C both as a 16-byte string 
and as an integer. 
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9.4.3 Generate Blocks 

This function generates a number of blocks of random output. This is an 
internal function used only by the generator. Any entity outside the PRNG 
should not be able to call this function. 

function GENERATEBLOCKS 
input: 9 Generator state; modified by this function. 

k Number of blocks to generate. 
output: r Pseudorandom string of 16k bytes. 

assert C =j:. 0 

Start with the empty string. 
r � E 
Append the necessary blocks. 
for i = 1, . . .  , k  do 

r +-- r II E(K, C) 
C +-- C + l 

od 
return r 

Of course, the E(K, C) function is the block cipher encryption function with 
key K and plaintext C. The GENERATEBLOCKS function first checks that C is not 
zero, as that is the indication that this generator has never been seeded. The 
symbol E denotes the empty string. The loop starts with an empty string in r 
and appends each newly computed block to r to build the output value. 

9.4.4 Generate Random Data 
This function generates random data at the request of the user of the generator. 
It allows for output of up to 220 bytes and ensures that the generator forgets 
any information about the result it generated. 

function PSEUDORANDOMDATA 
input: 9 Generator state; modified by this function. 

n Number of bytes of random data to generate. 
output: r Pseudorandom string of n bytes. 

Limit the output length to reduce the statistical deviation from perfectly random 
outputs. Also ensure that the length is not negative. 

assert 0 S n S 220 

Compute the output. 
r +--first-n-bytes(GENERATEBLocKs(g, fnjI61 » 
Switch to a new key to avoid later compromises of this output. 
K +-- GENERATEBLOCKS(g, 2) 
return r 
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The output is generated by a call to GENERATEBLOCKS, and the only change 
is that the result is truncated to the correct number of bytes. (The r'l operator 
is the round-upwards operator.) We then generate two more blocks to get a 
new key. Once the old K has been forgotten, there is no way to recompute 
the result r. As long as PSEUDORANDOMDATA does not keep a copy of r, or 
forget to wipe the memory r was stored in, the generator has no way of leaking 
any data about r once the function completes. This is exactly why any future 
compromise of the generator cannot endanger the secrecy of earlier outputs. It 
does endanger the secrecy of future outputs, a problem that the accumulator 
will address. 

The function PSEUDORANDOMDATA is limited in the amount of data it can 
return. One can specify a wrapper around this that can return larger random 
strings by repeated calls to PSEUDORANDOMDATA. Note that you should not 
increase the maximum output size per call, as that increases the statistical 
deviation from pure random. Doing repeated calls to PSEUDORANDOMDATA is 
quite efficient. The only real overhead is that for every 1 MB of random data 
produced, you have to generate 32 extra random bytes (for the new key) and 
run the key schedule of the block cipher again. This overhead is insignificant 
for all of the block ciphers we suggest. 

9.4.5 Generator Speed 

The generator for Fortuna that we just described is a cryptographically strong 
PRNG in the sense that it converts a seed into an arbitrarily long pseudorandom 
output. It is about as fast as the underlying block cipher; on a PC-type CPU it 
should run in less than 20 clock cycles per generated byte for large requests. 
Fortuna can be used as a drop-in replacement for most PRNG library functions. 

9.5 Accumulator 

The accumulator collects real random data from various sources and uses it to 
reseed the generator. 

9.5.1 Entropy Sources 

We assume there are several sources of entropy in the environment. Each 
source can produce events containing entropy at any point in time. It does not 
matter exactly what you use as your sources, as long as there is at least one 
source that generates data that is unpredictable to the attacker. As you cannot 
know how the attacker will attack, the best bet is to tum anything that looks like 
unpredictable data into a random source. Keystrokes and mouse movements 
make reasonable sources. In addition, you should add as many timing sources 
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as practical. You could use accurate timing of keystrokes, mouse movements 
and clicks, and responses from the disk drives and printers, preferably all at 
the same time. Again, it is not a problem if the attacker can predict or copy the 
data from some of the sources, as long as she cannot do it for all of them. 

Implementing sources can be a lot of work. The sources typically have to be 
built into the various hardware drivers of the operating system. This is almost 
impossible to do at the user level. 

We identify each source by a unique source number in the range 0 . . .  255. 
Implementors can choose whether to allocate the source numbers statically 
or dynamically. The data in each event is a short sequence of bytes. Sources 
should only include the unpredictable data in each event. For example, timing 
information can be represented by the two or four least significant bytes of an 
accurate timer. There is no point including the day, month, and year. It is safe 
to assume that the attacker knows those. 

We will be concatenating various events from different sources. To ensure 
that a string constructed from such a concatenation uniquely encodes the 
events, we have to make sure the string is parsable. Each event is encoded 
as three or more bytes of data. The first byte contains the random source 
number. The second byte contains the number of additional bytes of data. The 
subsequent bytes contain whatever data the source provided. 

Of course, the attacker will know the events generated by some of the 
sources. To model this, we assume that some of the sources are completely 
under the attacker's control. The attacker chooses which events these sources 
generate at which times. And like any other user, the attacker can ask for 
random data from the PRNG at any point in time. 

9.5.2 Pools 

To reseed the generator, we need to pool events in a pool large enough that 
the attacker can no longer enumerate the possible values for the events in the 
pool. A reseed with a "large enough" pool of random events destroys the 
information the attacker might have had about the generator state. Unfortu­
nately, we don't know how many events to collect in a pool before using it 
to reseed the generator. This is the problem Yarrow tried to solve by using 
entropy estimators and various heuristic rules. Fortuna solves it in a much 
better way. 

There are 32 pools: Po, PI, . . .  , P31 . Each pool conceptually contains a string 
of bytes of unbounded length. In practice, the only way that string is used 
is as the input to a hash function. Implementations do not need to store the 
unbounded string, but can compute the hash of the string incrementally as it 
is assembled in the pool. 

Each source distributes its random events over the pools in a cyclical 
fashion. This ensures that the entropy from each source is distributed more or 
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less evenly over the pools. Each random event is appended to the string in the 
pool in question. 

We reseed the generator every time pool Po is long enough. Reseeds are 
numbered 1, 2, 3, . . . .  Depending on the reseed number r, one or more pools 
are included in the reseed. Pool Pi is included if 2i is a divisor of r. Thus, Po is 
used every reseed, PI every other reseed, P2 every fourth reseed, etc. After a 
pool is used in a reseed, it is reset to the empty string. 

This system automatically adapts to the situation. If the attacker knows very 
little about the random sources, she will not be able to predict Po at the next 
reseed. But the attacker might know a lot more about the random sources, or 
she might be (falsely) generating a lot of the events. In that case, she probably 
knows enough of Po that she can reconstruct the new generator state from the 
old generator state and the generator outputs. But when PI is used in a reseed, 
it contains twice as much data that is unpredictable to her; and P2 will contain 
four times as much. Irrespective of how many fake random events the attacker 
generates, or how many of the events she knows, as long as there is at least 
one source of random events she can't predict, there will always be a pool that 
collects enough entropy to defeat her. 

The speed at which the system recovers from a compromised state depends 
on the rate at which entropy (with respect to the attacker) flows into the pools. 
If we assume this is a fixed rate p, then after t seconds we have in total pt 
bits of entropy. Each pool receives about pt/32 bits in this time period. The 
attacker can no longer keep track of the state if the generator is reseeded with a 
pool with more than 128 bits of entropy in it. There are two cases. If Po collects 
128 bits of entropy before the next reseed operation, then we have recovered 
from the compromise. How fast this happens depends on how large we let 
Po grow before we reseed. The second case is when Po is reseeding too fast, 
due to random events known to (or generated by) the attacker. Let t be the 
time between reseeds. Then pool Pi collects 2ipt/32 bits of entropy between 
reseeds and is used in a reseed every 2't seconds. The recovery from the 
compromise happens the first time we reseed with pool Pi where 128 :::: 
2i pt /32 < 256. (The upper bound derives from the fact that otherwise pool Pi-1 
would contain 128 bits of entropy between reseeds.) This inequality gives us 

and thus 

2i t � < 256 
32 

it < 
8192 

p 

In other words, the time between recovery points (2it) is bounded by the time 
it takes to collect 213 bits of entropy (8192/ p). The number 213 seems a bit 
large, but it can be explained in the follOWing way. We need at least 128 = 27 
bits to recover from a compromise. We might be unlucky if the system reseeds 
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just before we have collected 27 bits in a particular pool, and then we have to 
use the next pool, which will collect close to 28 bits before the reseed. Finally, 
we divide our data over 32 pools, which accounts for another factor of 25. 

This is a very good result. This solution is within a factor of 64 of an ideal 
solution (it needs at most 64 times as much randomness as an ideal solution 
would need). This is a constant factor, and it ensures that we can never do 
terribly badly and will always recover eventually. Furthermore, we do not 
need to know how much entropy our events have or how much the attacker 
knows. That is the real advantage Fortuna has over Yarrow. The impossible-to­
construct entropy estimators are gone for good. Everything is fully automatic; 
if there is a good flow of random data, the PRNG will recover quickly. If there 
is only a trickle of random data, it takes a long time to recover. 

So far we've ignored the fact that we only have 32 pools, and that maybe 
even pool P31 does not collect enough randomness between reseeds to recover 
from a compromise. This could happen if the attacker injected so many 
random events that 232 reseeds would occur before the random sources that 
the attacker has no knowledge about have generated 213 bits of entropy. This 
is unlikely, but to stop the attacker from even trying, we will limit the speed 
of the reseeds. A reseed will only be performed if the previous reseed was 
more than 100 Ins ago. This limits the reseed rate to 10 reseeds per second, 
so it will take more than 13 years before P32 would ever have been used, had 
it existed. Given that the economic and technical lifetime of most computer 
equipment is conSiderably less than ten years, it seems a reasonable solution 
to limit ourselves to 32 pools. 

9.5.3 Implementation Considerations 

There are a couple of implementation considerations in the design of the 
accumulator. 

9.5.3. 1 Distribution of Events Over Pools 

The incoming events have to be distributed over the pools. The simplest 
solution would be for the accumulator to take on that role. However, this is 
dangerous. There will be some kind of function call to pass an event to the 
accumulator. It is quite possible that the attacker could make arbitrary calls to 
this function, too. The attacker could make extra calls to this function every 
time a "real" event was generated, thereby influencing the pool that the next 
"real" event would go to. If the attacker manages to get all "real" events into 
pool Po, the whole multi-pool system is ineffective, and the Single-pool attacks 
apply. If the attacker gets all "real" events into P31, they essentially never 
get used. 
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Our solution is to let every event generator pass the proper pool number 
with each event. This requires the attacker to have access to the memory 
of the program that generates the event if she wants to influence the pool 
choice. If the attacker has that much access, then the entire source is probably 
compromised as well. 

The accumulator could check that each source routes its events to the pools 
in the correct order. It is a good idea for a function to check that its inputs are 
properly formed, so this would be a good idea in principle. But in this situation, 
it is not always clear what the accumulator should do if the verification fails. If 
the whole PRNG runs as a user process, the PRNG could throw a fatal error and 
exit the program. That would deprive the system of the PRNG just because a 
single source misbehaved. If the PRNG is part of the operating system kernel, it 
is much harder. Let's assume a particular driver generates random events, but 
the driver cannot keep track of a Simple 5-bit cyclical counter. What should 
the accumulator do? Return an error code? Chances are that a programmer 
who makes such simple mistakes doesn't check the return codes. Should the 
accumulator halt the kernel? A bit drastic, and it crashes the whole machine 
because of a single faulty driver. The best idea we've come up with is to 
penalize the driver in CPU time. If the verification fails, the accumulator can 
delay the driver in question by a second or so. 

This idea is not terribly useful, because the reason we let the caller determine 
the pool number is that we assume the attacker might make false calls to the 
accumulator with fake events. If this happens and the accumulator checks the 
pool ordering, the real event generator will be penalized for the misbehavior 
of the attacker. Our conclusion: the accumulator should not check the pool 
ordering, because there isn't anything useful the accumulator can do if it detects 
that something is wrong. Each random source is responsible for distributing 
its events in cyclical order over the pools. If a random source screws up, we 
might lose the entropy from that source (which we expect), but no other harm 
will be done. 

9.5.3.2 Running Time of Event Passing 

We want to limit the amount of computation necessary when an event is 
passed to the accumulator. Many of the events are timing events, and they 
are generated by real-time drivers. These drivers do not want to call an 
accumulator if once in a while the call takes a long time to complete. 

There is a certain minimum number of computations that we will need to 
do. We have to append the event data to the selected pool. Of course, we are 
not going to store the entire pool string in memory, because the length of a 
pool string is potentially unbounded. Recall that popular hash functions are 
iterative? For each pool we wil1 have a short buffer and compute a partial hash 



1 52 Part III • Key Negotiation 

as soon as that buffer is full. This is the minimum amount of computation 
required per event. 

We do not want to do the whole reseeding operation, which uses one or 
more pools to reseed the generator. This takes an order of magnitude more 
time than just adding an event to a pool. Instead, this work will be delayed 
until the next user asks for random data, when it will be performed before the 
random data is generated. This shifts some of the computational burden from 
the event generators to the users of random data, which is reasonable since 
they are also the ones who are benefiting from the PRNG service. After all, most 
event generators are not benefiting from the random data they help to produce. 

To allow the reseed to be done just before the request for random data is 
processed, we must encapsulate the generator. In other words, the genera­
tor will be hidden so that it cannot be called directly. The accumulator will 
provide a RANDOMDATA function with the same interface as PSEUDORANDOM­
DATA. This avoids problems with certain users calling the generator directly 
and bypassing the reseeding process that we worked so hard to perfect. Of 
course, users can still create their own instance of the generator for their 
own use. 

A typical hash function, like SHA-256, and hence SHA.t-256, processes 
message inputs in fixed-size blocks. If we process each block of the pool string 
as soon as it is complete, then each event will lead to at most a Single hash block 
computation. However, this also has a disadvantage. Modern computers use 
a hierarchy of caches to keep the CPU busy. One of the effects of the caches is 
that it is more efficient to keep the CPU working on the same thing for a while. 
If you process a single hash code block, then the CPU must read the hash 
function code into the fastest cache before it can be run. If you process several 
blocks in sequence, then the first block forces the code into the fastest cache, 
and the subsequent blocks take advantage of this. In general, performance 
on modern CPUs can be significantly increased by keeping the CPU working 
within a small loop and not letting it switch between different pieces of code 
all the time. 

Considering the above, one option is to increase the buffer size per pool and 
collect more data in each buffer before computing the hash. The advantage is 
a reduction in the total amount of CPU time needed. The disadvantage is that 
the maximum time it takes to add a new event to a pool increases. This is an 
implementation trade-off that we cannot resolve here. It depends too much on 
the details of the environment. 

9.5.4 Initialization 

Initialization is, as always, a simple function. So far we've only talked about 
the generator and the accumulator, but the functions we are about to define 
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are part of the external interface of Fortuna. Their names reflect the fact that 
they operate on the whole PRNG. 

function INITIALIZEPRNG 
output: R PRNG state. 

Set the 32 pools to the empty string. 
for i = 0, . . .  , 31 do 

Pi +-- E 

od 

Set the reseed counter to zero. 
RESEEOCNT +-- 0 
And initialize the generator. 
g +-- INITIALIZEGENERATORO 

Package up the state. 
R +- (g, RESEEOCNT, Po, . . .  , P31) 
return R 

9.5.5 Getting Random Data 

This is not quite a simple wrapper around the generator component of the 
PRNG, because we have to handle the reseeds here. 

function RANOOMDATA 
input: R PRNG state, modified by this function. 

n Number of bytes of random data to generate. 

output: r Pseudorandom string of bytes. 

if length(Po) � MINPOOLSIZE 1\ last reseed > 100 ms ago then 

We need to reseed. 

fi 

RESEEOCNT +-- RESEEOCNT + 1 
Append the hashes of all the pools we will use. 
s +-- E 

for i E O, . . .  , 31 do 

od 

if 2i I RESEEOCNT then 

fi 

s +- s II SHAd-256(Pd 
Pi +- E 

Got the data, now do the reseed. 
RESEEOW, S) 
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if REsEEDCNT = 0 then 

Generate error, PRNG not seeded yet 
else 

fi 

Reseeds (if needed) are done. Let the generator that is part of R do the work. 
return PSEUDORANDOMDATA(Q, n) 

This function starts by checking the size of pool Po against the parameter 
MINPOOLSIZE to see if it should do a reseed. You can use a very optimistic 
estimate of how large the pool size has to be before it can contain 128 bits of 
entropy. Assuming that each event contains 8 bits of entropy and takes 4 bytes 
in the pool (this corresponds to 2 bytes of event data), a suitable value for 
MINPOOLSIZE would be 64 bytes. It doesn't matter much, although choosing 
a value smaller than 32 seems inadvisable. Choosing a much larger value is 
not good, either, because that will delay the reseed even if there are very good 
random sources available. 

The next step is to increment the reseed count. The count was initialized to 
0, so the very first reseed uses the value 1 .  This automatically ensures that the 
first reseed uses only Po, which is what we want. 

The loop appends the hashes of the pools. We could also have appended 
the pools themselves, but then every implementation would have to store 
entire pool strings, not just the running hash-computation of each pool. The 
notation 2i I RESEEDCNT is a divisor test. It is true if 2i is a divisor of the value 
RESEEDCNT. Once an i value fails this test, all tests of the subsequent loop 
iterations will also fail, which suggests an optimization. 

9.5.6 Add an Event 
Random sources call this routine when they have another random event. Note 
that the random sources are each uniquely identified by a source number. 
We will not specify how to allocate the source numbers because the solution 
depends on the local situation. 

function ADDRANDoMEvENT 
input: R PRNG state, modified by this function. 

s Source number in range 0, . . . , 255. 
Pool number in range 0, . . . , 31 .  Each source must distribute its 
events over all the pools in a round-robin fashion. 

e Event data. String of bytes; length in range 1, . . .  , 32. 

Check the parameters first. 
assert 1 S length(e) S 32 /\ 0 S S S 255 /\ 0 S i S  31 
Add the data to the pool. 
Pi +- Pi II s I I length(e) II e 
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The event is encoded in 2 + length(e) bytes, with both s and length(e) being 
encoded as a single byte. This concatenation is then appended to the pool. 
Note that our specifications just append data to the pool, but do not mention 
any hash computation. We only specify the hashing of the pool at the point in 
time where we use it. A real implementation should compute the hashes on 
the fly. That is functionally equivalent and easier to implement, but specifying 
it directly would be far more complicated. 

We have limited the length of the event data to 32 bytes. Larger events 
are fairly useless; random sources should not pass large amounts of data, but 
rather, only those few bytes that contain unpredictable random data. If a source 
has a large amount of data that contains some entropy spread throughout it, 
the source should hash the data first. The ADD RANDOM EVENT function should 
always return quickly. This is especially important because many sources-by 
their very nature-perform real-time services. These sources cannot spend 
too much time calling ADDRANDOMEvENT. Even if a source produces small 
events, it should not have to wait on other callers whose events are large. 
Most implementations will need to serialize the calls to ADDRANDOMEvENT 
by using a mutex of some sort to ensure that only one event is being added at 
the same time.4 

Some random sources might not have the time to call ADD RANDOM EVENT. 
In this case, it might be necessary to store the events in a buffer and have 
a separate process pick the events from the buffer and feed them to the 
accumulator. 

An alternative architecture allows the sources to simply pass the events to 
the accumulator process, and has a separate thread in the accumulator perform 
all the hash computations. This is a more complex design, but it does have 
advantages for the entropy sources. The choice depends very much on the 
actual situation. 

9.6 Seed File Management 

Our PRNG so far will collect entropy and generate random data after the first 
reseed. However, if we reboot a machine we have to wait for the random 
sources to produce enough events to trigger the first reseed before any random 
data is available. In addition, there is no guarantee that the state after the first 
reseed is, in fact, unpredictable to the attacker. 

The solution is to use a seed file. The PRNG keeps a separate file full of 
entropy, called the seed file. This seed is not made available to anyone else. 
After a reboot, the PRNG reads the seed file and uses it as entropy to get into an 

41n a multithreaded environment, you should always be very careful to ensure that different 
threads do not interfere with each other. 
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unknown state. Of course, once the seed file has been used in this manner, it 
needs to be rewritten with new data. 

We will describe seed file management, first under the assumption that 
the file system supports atomic operations; later we will discuss the issues 
involved with implementing seed file management on real systems. 

9.6.1 Write Seed File 

The first thing to do is generate a seed file. This is done with a simple function. 

function WRITESEEDFILE 
input: R PRNG state, modified by this function. 

f File to write to. 
write(j, RANDOMDATA(R, 64» 

This function simply generates 64 bytes of random data and writes it to the 
file. This is slightly more data than absolutely needed, but there is little reason 
to be parsimonious with the bytes here. 

9.6.2 Update Seed File 

Obviously we need to be able to read a seed file, too. For reasons explained 
below, we always update the seed file in the same operation. 

function UPDATESEEDFILE 
input: R PRNG state, modified by this function. 

f File to be updated. 
s +- read(f) 
assert length(s) = 64 
RESEED(9, s) 
write(j, RANDOMDATA(R, 64» 

This function reads the seed file, checks its length, and reseeds the generator. 
It then rewrites the seed file with new random data. 

This routine must ensure that no other use is made of the PRNG between the 
reseed it causes and the writing of the new data to the seed file. Here is the 
problem: after a reboot, the seed file is read by this function, and the data is 
used in a reseed. Suppose the attacker asks for random data before the seed 
file has been updated. As soon as this random data is returned, but before the 
seed file is updated, the attacker resets the machine. At the next reboot, the 
same seed file data will be read and used to reseed the generator. This time, 
an innocent user asks for random data before the seed file has been rewritten. 
He will get the same random data that the attacker got earlier. This violates 
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the secrecy of the random data. As we often use random data to generate 
cryptographic keys, this is a rather serious problem. 

The implementation should ensure that the seed file is kept secret. Also, all 
updates to the seed file must be atomic (see Section 9.6.5). 

9.6.3 When to Read and Write the Seed File 

When the computer is rebooted, the PRNG does not have any entropy to 
generate random data from. This is why the seed file is there. Thus, the seed 
file should be read and updated after every reboot. 

As the computer runs, it collects entropy from various sources. We eventu­
ally want this entropy to affect the seed file as well. One obvious solution is to 
rewrite the seed file just as the machine is shutting down. As some computers 
will never be shut down in an orderly fashion, the PRNG should also rewrite 
the seed file at regular intervals. We won't spell out the details here, as they are 
quite uninteresting and often depend on the platform. It is important to ensure 
that the seed file is updated regularly from the PRNG after it has collected a fair 
amount of entropy. A reasonable solution would be to rewrite the seed file at 
every shutdown and every 10 minutes or so. 

9.6.4 Backups and Virtual Machines 

Trying to do the reseeding correctly opens a can of worms. We cannot allow 
the same state of the PRNG to be repeated twice. We use the file system to store 
a seed file to prevent this. But most file systems are not designed to avoid 
repeating the same state twice, and this causes us a lot of trouble. 

First of all, there are backups. If you make a backup of the entire file system 
and then reboot the computer, the PRNG will be reseeded from the seed file. 
If you later restore the entire file system from the backup and reboot the 
computer, the PRNG will be reseeded from the very same seed file. In other 
words, until the accumulator has collected enough entropy, the PRNG will 
produce the same output after the two reboots. This is a serious problem, as 
an attacker can do this to retrieve the random data that another user got from 
the PRNG. 

There is no direct defense against this attack. If the backup system is capable 
of recreating the entire permanent state of the computer, there is nothing we 
can do to prevent the PRNG state from repeating itself. Ideally, we would fix 
the backup system to be PRNG-aWare, but that is probably too much to ask. 
Hashing the seed file together with the current time would solve the problem 
as long as the attacker does not reset the clock to the same time. The same 
solution could be used if the backup system were guaranteed to keep a counter 
of how many restore-operations it had done. We could hash the seed file with 
the restore counter. 
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Virtual machines pose a similar problem to backups. If a VM's state is saved. 
and then restarted twice, both instances would begin with the same PRNG state. 
Fortunately, some of the same solutions for backups also apply to multiple 
VM instances starting from the same state. 

The issues with backups and virtual machines deserve further study, but 
because they are highly platform-dependent, we do not give a general treat­
ment here. 

9.6.5 Atomicity of File System Updates 

Another important problem associated with the seed file is the atomicity of file 
system updates. On most operating systems, if you write a seed file, all that 
happens is that a few memory buffers get updated. The data is not actually 
written to disk until much later. Some file systems have a "flush" command 
that purports to write all data to disk. However, this can be an extremely slow 
operation, and we have seen cases where the hardware lied to the software 
and simply refused to implement the "flush" command properly. 

Whenever we reseed from our seed file, we must update it before allowing 
any user to ask for random data. In other words, we must be absolutely sure 
that the data has been modified. on the magnetic media. Things become even 
more complicated. when you consider that many file systems treat file data 
and file administration information separately. So rewriting the seed file might 
make the file administration data temporarily inconsistent. If the power fails 
during that time, we could get a corrupted seed file or even lose the seed file 
entirely-not a good idea for a security system. 

Some file systems use a journal to solve some of these problems. This is 
a technique originally developed for large database systems. The journal is 
a sequential list of all the updates that have been done to the file system. 
When properly used, a journal can ensure that updates are always consistent. 
Such a file system is always preferable from a reliability point of view. 
Unfortunately, some of the very common file systems only apply the journal 
to the administrative information, which isn't quite good enough for our 
goals. 

As long as the hardware and operating system do not support fully atomic 
and permanent file updates, we cannot create a perfect seed file solution. You 
will need to investigate the particular platform that you work on and do the 
best you can to reliably update the seed. file. 

9.6.6 First Boot 

When we start the PRNG for the very first time, there is no seed file to use for 
a reseed. Take, for example, a new PC that had its as installed in the factory. 
The as is now generating some administrative cryptographic keys for the 
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installation, for which it needs the PRNG. For ease of production, all machines 
are identical and loaded with identical data. There is no initial seed file, so we 
cannot use that. We could wait for enough random events to trigger one or 
more reseeds, but that takes a long time, and we'd never know when we had 
collected enough entropy to be able to generate good cryptographic keys. 

A good idea would be for the installation procedure to generate a random 
seed file for the PRNG during the configuration. It could, for example, use a 
PRNG on a separate computer to generate a new seed file for each machine. 
Or maybe the installation software could ask the tester to wiggle the mouse 
to collect some initial entropy. The choice of solution depends on the details 
of the environment, but somehow initial entropy has to be provided. Not 
providing initial entropy is not an option. The entropy accumulator can take 
quite a while to seed the PRNG properly, and it is quite likely that some very 
important cryptographic keys will be generated by the PRNG shortly after the 
installation of the machine. 

Keep in mind that the Fortuna accumulator will seed the generator as soon 
as it might have enough entropy to be really random. Depending on how 
much entropy the sources actually deliver-something that Fortuna has no 
knowledge about-it could take quite a while before enough entropy has 
been gathered to properly reseed the generator. Having an outside source of 
randomness to create the first seed file is probably the best solution. 

9.7 Choosing Random Elements 

Our PRNG produces sequences of random bytes. Sometimes this is exactly what 
you need. In other situations you try to pick a random element from a set. This 
requires some care to do right. 

Whenever we choose a random element, we implicitly assume that the 
element is chosen uniformly at random from the specified set (unless we specify 
another distribution). This means that each element should have exactly the 
same probability of being chosen.5 This is harder than one might think. 

Let n be the number of elements in the set we are choosing from. We will 
only discuss how to choose a random element from the set 0, 1, . . .  , n  - 1. Once 
you can do this, you can choose elements from any set of size n. 

If n = 0, there are no elements to choose from, so this is a simple error. If 
n = 1 you have no choice; again a simple case. If n = 2k, then you just get k 
bits of random data from the PRNG and interpret them as a number in the 
range 0, . . .  , n - 1 .  This number is uniformly random. (You might have to get 

5If we are designing for a 128-bit security level, we could afford a deviation from the uniform 
probability of 2-128, but it is easier to do it perfectly. 
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a whole number of bytes from the PRNG and throw away a few bits of the last 
byte until you're left with k bits, but this is easy.) 

What if n is not a power of two? Well, some programs choose a random 
32-bit integer and take it modulo n. But that algorithm introduces a bias in the 
resulting probability distribution. Let's take n = 5 as an example and define 
m := L232/5J . If we take a uniformly random 32-bit number and reduce it 
modulo 5, then the results 1, 2, 3, and 4 each occur with a probability of m/232, 
while the result 0 occurs with a probability of (m + 1)/232• The deviation in 
probability is small, but could very well be significant. It would certainly be 
easy to detect the deviation within the 2128 steps we allow the attacker. 

The proper way to select a random number in an arbitrary range is to use a 
trial-and-error approach. To generate a random value in the range 0, . . .  , 4, we 
first generate a random value in the range 0, . . .  , 7, which we can do since 8 is 
a power of 2. If the result is 5 or larger, we throw it away and choose a new 
random number in the range 0, . . .  , 7. We keep doing this until the result is 
in the desired range. In other words, we generate a random number with the 
right number of bits in it and throw away all the improper ones. 

Here is a more formal specification for how to choose a random number in 
the range 0, . . .  , n - 1 for n � 2. 

1 .  Let k be the smallest integer such that 2k � n. 

2. Use the PRNG to generate a k-bit random number K. This number will be 
in the range 0, . . .  , 2k - 1. You might have to generate a whole number of 
bytes and throw away part of the last byte, but that's easy. 

3. If K � n go back to step 2. 

4. The number K is the result. 

This can be a bit of a wasteful process. In the worst case, we throw away half 
our attempts on average. Here is an improvement. As 232 - 1 is a multiple of 
5, we could choose a random number in the range 0, . . .  , 232 - 2 and take the 
result modulo 5 for our answer. To choose a value in the range 0, . . .  , 232 - 2, we 
use the "inefficient" try-and-throw-away algorithm, but now the probability 
of having to throw the intermediate result away is very low. 

The general formulation is to choose a convenient k such that 2k � n. Define 
q := L2k /nJ . First choose a random number r in the range 0, . . .  , nq - 1 using 
the try-and-throw-away rules. Once a suitable r has been generated, the final 
result is given by (r mod n). 

We don't know of any way to generate uniformly random numbers on sizes 
that are not a power of two without having to throw away some random 
bits now and again. That is not a problem. Given a decent PRNG, there is no 
shortage of random bits. 
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9.8 Exercises 

Exercise 9.1 Investigate the random number generators built into three of 
your favorite programming languages. Would you use these random number 
generators for cryptographic purposes? 

Exercise 9.2 Using an existing cryptography library, write a short program 
that generates a 256-bit AES key using a cryptographic PRNG. 

Exercise 9.3 For your platform, language, and cryptography library of 
choice, summarize how the cryptographic PRNG works internally. Consider 
issues including but not limited to the following: how the entropy is collected, 
how reseeding occurs, and how the PRNG handles reboots. 

Exercise 9.4 What are the advantages of using a PRNG over an RNG? What 
are the advantages of using an RNG over a PRNG? 

Exercise 9.5 Using a cryptographic PRNG that outputs a stream of bits, 
implement a random number generator that outputs random integers in the 
set 0, 1, . . .  , n - 1 for any n between 1 and 232. 

Exercise 9.6 Implement a naive approach for generating random numbers 
in the set 0, 1, . . .  , 191. For this naive approach, generate a random 8-bit 
value, interpret that value as an integer, and reduce that value modulo 
192. Experimentally generate a large number of random numbers in the set 
0, 1, . . .  , 191 and report on the distribution of results. 

Exercise 9.7 Find a new product or system that uses (or should use) a 
cryptographic PRNG. This might be the same product or system you analyzed 
for Exercise 1 .8. Conduct a security review of that product or system as 
described in Section 1 .12, this time focusing on the issues surrounding the use 
of random numbers. 





HAPTER 

1 0  

Primes 

The following two chapters explain public-key cryptographic systems. This 
requires some mathematics to get started. It is always tempting to dispense 
with the understanding and only present the formulas and equations, but we 
feel very strongly that this is a dangerous thing to do. To use a tool, you should 
understand the properties of that tool. This is easy with something like a hash 
function. We have an "ideal" model of a hash function, and we desire the 
actual hash function to behave like the ideal model. This is not so easy to do 
with public-key systems because there are no "ideal" models to work with. In 
practice, you have to deal with the mathematical properties of the public-key 
systems, and to do that safely you must understand these properties. There is 
no shortcut here; you must understand the mathematics. Fortunately, the only 
background knowledge required is high school math. 

This chapter is about prime numbers. Prime numbers play an important 
role in mathematics, but we are interested in them because some of the most 
important public-key crypto systems are based on prime numbers. 

1 0.1 Divisibility and Primes 

A number a is a divisor of b (notation a I b, pronounced "a divides b") if you 
can divide b by a without leaving a remainder. For example, 7 is a divisor 
of 35 so we write 7 I 35. We call a number a prime number if it has exactly 
two positive divisors, namely 1 and itself. For example, 13 is a prime; the two 
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divisors are 1 and 13. The first few primes are easy to find: 2, 3, 5, 7, 1 1, 13, . . . .  

Any integer greater than 1 that is not prime is called a composite. The number 
1 is neither prime nor composite. 

We will use the proper mathematical notation and terminology in the 
chapters ahead. This will make it much easier to read other texts on this 
subject. The notation might look difficult and complicated at first, but this part 
of mathematics is really easy. 

Here is a simple lemma about divisibility: 

Lemma 1 Ifa I b and b I c then a I c. 

Proof [f a I b, then there is an integer s such that as = b. (After all, b is divisible 
by a so it must be a multiple of a.) And if b I c then there is an integer t such that 
bt = c. But this implies that c = bt = (as)t = a(st) and therefore a is a divisor of 
c. (To follow this argument, just verify that each of the equal signs is correct. 
The conclusion is that the first item c must be equal to the last item a(st).) 0 

The lemma is a statement of fact. The proof argues why the lemma is true. 
The little square box signals the end of the proof. Mathematicians love to use 
lots of symbols. 1 This is a very simple lemma, and the proof should be easy to 
follow, as long as you remember what the notation a I b means. 

Prime numbers have been studied by mathematicians throughout the ages. 
Even today, if you want to generate all primes below one million, you should 
use an algorithm developed just over 2000 years ago by Eratosthenes, a friend 
of Archimedes. (Eratosthenes was also the first person to accurately measure 
the diameter of the earth. A mere 1700 years later Columbus allegedly used a 
much smaller-and wrong-estimate for the size of the earth when he planned 
to sail to India by going due west.) Euclid, another great Greek mathematician, 
gave a beautiful proof that showed there are an infinite number of primes. 
This is such a beautiful proof that we'll include it here. Reading through it will 
help you reacquaint yourself with the math. 

Before we start with the real proof we will give a simple lemma. 

Lemma 2 Let n be a positive number greater than 1 .  Let d be the smallest divisor of 
n that is greater than 1 .  Then d is prime. 

Proof First of all, we have to check that d is well defined. (If there is a number 
n that has no smallest divisor, then d is not properly defined and the lemma is 
nonsensical.) We know that n is a divisor of n, and n > 1,  so there is at least 
one divisor of n that is greater than 1 .  Therefore, there must also be a smallest 
divisor greater than 1 .  

lUsing symbols has advantages and disadvantages. We'll use whatever we think is most 
appropriate for this book. 
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To prove that d is prime, we use a standard mathematician's trick called 
reductio ad absurdum or proof by contradiction. To prove a statement X, we 
first assume that X is not true and show that this assumption leads to a 
contradiction. If assuming that X is not true leads to a contradiction, then 
obviously X must be true. 

In our case, we will assume that d is not a prime. If d is not a prime, it 
has a divisor e such that 1 < e < d. But we know from Lemma 1 that if e I d 
and d i n  then e I n, so e is a divisor of n and is smaller than d. But this is a 
contradiction, because d was defined as the smallest divisor of n. Because a con­
tradiction cannot be true, our assumption must be false, and therefore d must 
be prime. D 

Don't worry if you find this type of proof a bit confusing; it takes some 
getting used to. 

We can now prove that there are an infinite number of primes. 

Theorem 3 (Euclid) There are an infinite number of primes. 

Proof We again assume the opposite of what we try to prove. Here we assume 
that the number of primes is finite, and therefore that the list of primes is finite. 
Let's call them PI, P2, P3, . . .  , Pkf where k is the number of primes. We define the 
number n := PIP2P3 . . .  Pk + 1,  which is the product of all our primes plus one. 

Consider the smallest divisor greater than 1 of n; we'll call it d again. Now 
d is prime (by Lemma 2) and d i n. But none of the primes in our finite list of 
primes is a divisor of n. After all, they are all divisors of n - 1, so if you divide 
n by one of the p/s in the list, you are always left with a remainder of 1 .  So d is 
a prime and it is not in the list. But this is a contradiction, as the list is defined 
to contain all the primes. Thus, assuming that the number of primes is finite 
leads to a contradiction. We are left to conclude that the number of primes is 
infinite. D 

This is basically the proof that Euclid gave over 2000 years ago. 
There are many more results on the distribution of primes, but interestingly 

enough, there is no easy formula for the exact number of primes in a specific 
interval. Primes seem to occur fairly randomly. There are even very simple 
conjectures that have never been proven. For example, the Goldbach conjecture 
is that every even number greater than 2 is the sum of two primes. This is easy to 
verify with a computer for relatively small even numbers, but mathematicians 
still don't know whether it is true for all even numbers. 

The fundamental theorem of arithmetic is also useful to know: any integer 
greater than 1 can be written in exactly one way as the product of primes 
(if you disregard the order in which you write the primes). For example, 
15 = 3 · 5; 255 = 3 . 5 . 17; and 60 = 2 . 2 . 3 . 5. We won't prove this here. Check 
any textbook on number theory if you want to know the details. 
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1 0.2 Generating Small Primes 

Sometimes it is useful to have a list of small primes, so here is the Sieve of 
Eratosthenes, which is still the best algorithm for generating small primes. The 
220 in the pseudocode below is a stand-in for any appropriate small constant. 

function SMALLPRIMELIST 
input: n Limit on primes to generate. Must satisfy 2 � n � 220• 
output: P List of all primes � n. 

Limit the size of n. If n is too large we run out of memory. 
assert 2 � n � 220 

Initialize a list of flags all set to one. 
(b2, b3, • • •  , bn) � (1, 1, . . .  , 1) 
i � 2 
while i2 � n do 

od 

We have found a prime i. Mark all multiples of i composite. 
forj E 2i, 3i, 4i, . . .  , LnjiJ i do 

bj � 0 
od 

Look for the next prime in our list. It can be shown that this loop never results 
in the condition i > n, which would access a nonexistent bi. 

repeat 
i � i +  1 

until bi = 1 

All our primes are now marked with a one. Collect them in a list. 
P � [ ] 
for k E 2, 3, 4, . . . , n do 

if bk = 1 then 
P � P ll k  

fi 
od 
retum P 

The algorithm is based on a simple idea. Any composite number c is divisible 
by a prime that is smaller than c. We keep a list of flags, one for each of the 
numbers up to n. Each flag indicates whether the corresponding number could 
be prime. Initially all numbers are marked as potential primes by setting the 
flag to 1 .  We start with i being the first prime 2. Of course, none of the multiples 
of i can be prime so we mark 2i, 3i, 4i, etc. as being composite by setting their 
flag to O. We then increment i until we have another candidate prime. Now 
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this candidate is not divisible by any smaller prime, or it would have been 
marked as a composite already. So the new i must be the next prime. We keep 
marking the composite numbers and finding the next prime until 1"2 > n. 

It is clear that no prime will ever be marked as a composite, since we only 
mark a number as a composite when we know a factor of it. (The loop that 
marks them as composite loops over 2i, 3i, . . . .  Each of these terms has a factor 
i and therefore cannot be prime.) 

Why can we stop when 1"2 > n? Well, suppose a number k is composite, and 
let p be its smallest divisor greater than 1 .  We already know that p is prime 
(see Lemma 2). Let q := kip. We now have p � q; otherwise, q would be a 
divisor of k smaller than p, which contradicts the definition of p. The crucial 
observation is that p � ,Jk, because if p were larger than ,Jk we would have 
k = P . q > ,Jk .  q � ,Jk . p > ,Jk .  ,Jk = k. This last inequality would show that 
k > k, which is an obvious fallacy. So p � ,Jk. 

We have shown that any composite k is divisible by a prime � ,Jk. So any 
composite � n is divisible by a prime � ..Jii. When e > n then i > ..Jii. But we 
have already marked the multiples of all the primes less than i as composite in 
the list, so every composite < n has already been marked as such. The numbers 
in the list that are still marked as primes are really prime. 

The final part of the algorithm simply collects them in a list to be returned. 
There are several optimizations you can make to this algorithm, but we have 

left them out to make things simpler. Properly implemented, this algorithm is 
very fast. 

You might wonder why we need the small primes. It turns out that small 
primes are useful to generate large primes with, something we will get 
to soon. 

1 0.3 Computations Modulo a Prime 

The main reason why primes are so useful in cryptography is that you can 
compute modulo a prime. 

Let p be a prime. When we compute modulo a prime we only use the 
numbers 0, 1, . . . , p  - 1 .  The basic rule for computations modulo a prime is 
to do the computations using the numbers as integers, just as you normally 
would, but every time you get a result r you take it modulo p. Taking a modulo 
is easy: just divide the result r by p, throw away the quotient, and keep the 
remainder as the answer. For example, if you take 25 modulo 7 you divide 
25 by 7, which gives us a quotient of 3 with a remainder of 4. The remainder 
is the answer, so (25 mod 7) = 4. The notation (a mod b) is used to denote an 
explicit modulo operation, but modulo computations are used very often, and 
there are several other notations in general use. Often the entire equation will 
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be written without any modulo operations, and then (mod p) will be added 
at the end of the equation to remind you that the whole thing is to be taken 
modulo p. When the situation is clear from the context, even this is left out, 
and you have to remember the modulo yourself. 

You don't need to write parentheses around a modulo computation. We 
could just as well have written a mod b, but as the modulo operator looks very 
much like normal text, this can be a bit confusing for people who are not used 
to it. To avoid confusion we tend to either put (a mod b) in parentheses or 
write a (mod b), depending on which is clearer in the relevant context. 

One word of warning: Any integer taken modulo p is always in the range 
0, . . .  , p  - I, even if the original integer is negative. Some programming lan­
guages have the (for mathematicians very irritating) property that they allow 
negative results from a modulo operation. If you want to take -1 modulo p, 
then the answer is p - 1 .  More generally: to compute (a mod p), find integers 
q and r such that a = qp + r and 0 � r < p. The value of (a mod p) is defined to 
be r. If you fill in a = -1 then you find that q = -1 and r = p - 1 .  

1 0.3.1 Addition and Subtraction 

Addition modulo p is easy. Just add the two numbers, and subtract p if the 
result is greater than or equal to p. As both inputs are in the range 0, . . .  , p - I, 
the sum cannot exceed 2p - 1, so you have to subtract p at most once to get the 
result back in the proper range. 

Subtraction is similar to addition. Subtract the numbers, and add p if the 
result is negative. 

These rules only work when the two inputs are both modulo p numbers 
already. If they are outside the range, you have to do a full reduction modulo p. 

It takes a while to get used to modulo computations. You get equations like 
5 + 3 = 1 (mod 7). This looks odd at first. You know that 5 plus 3 is not 1 .  But 
while 5 + 3 = 8 is true in the integer numbers, working modulo 7 we have 
8 mod 7 = 1, so 5 + 3 = 1 (mod 7). 

We use modulo arithmetic in real life quite often without realizing it. When 
computing the time of day, we take the hours modulo 12 (or modulo 24). A 
bus schedule might state that the bus leaves at 55 minutes past the hour and 
takes 15 minutes. To find out when the bus arrives, we compute 55 + 15 = 10 
(mod 60), and determine it arrives at 10 minutes past the hour. For now we will 
restrict ourselves to computing modulo a prime, but you can do computations 
modulo any number you like. 

One important thing to note is that if you have a long equation like 5 + 2 + 
5 + 4 + 6 (mod 7), you can take the modulo at any point in the computation. 
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For example, you could sum up 5 + 2 + 5 + 4 + 6 to get 22, and the compute 
22 (mod 7) to get 1 .  Alternately, you could compute 5 + 2 (mod 7) to get 0, 
then compute 0 + 5 (mod 7) to get 5, and then 5 + 4 (mod 7) to get 2, and then 
2 + 6 (mod 7) to get 1. 

1 0.3.2 Multiplication 
Multiplication is, as always, more work than addition. To compute (ab mod p) 
you first compute ab as an integer, and then take the result modulo p. Now 
ab can be as large as (p - I? = p2 

- 2p + 1. Here you have to perform a long 
division to find (q, r) such that ab = qp + r and 0 � r < p. Throw away the q; 
the r is the answer. 

Let's give you an example: Let p = 5. When we compute 3 · 4  (mod p) the 
result is 2. After all, 3 . 4 = 12, and (12 mod 5) = 2. So we get 3 · 4  = 2 (mod pl. 

As with addition, you can compute the modulus all at once or iteratively. 
For example, given a long equation 3 ·  4 . 2 . 3 (mod p), you can compute 
3 . 4 . 2 . 3 = 72 and then compute (72 mod 5) = 2. Or you could compute 
(3 · 4  mod 5) = 2, then (2 . 2  mod 5) = 4, and then (4 · 3  mod 5) = 2. 

1 0.3.3 Groups and Finite Fields 
Mathematicians call the set of numbers modulo a prime p a finite field and 
often refer to it as the "mod p" field, or simply "mod p." Here are some useful 
reminders about computations in a mod p field: 

- You can always add or subtract any multiple of p from your numbers 
without changing the result. 

- All results are always in the range 0, 1, . . .  , p - 1 .  

- You can think of it  as doing your entire computation in the integers and 
only taking the modulo at the very last moment. So all the algebraic rules 
you learned about the integers (such as a(b + c) = ab + ac) still apply. 

The finite field of the integers modulo p is referred to using different 
notations in different books. We will use the notation Zp to refer to the finite 
field modulo p. In other texts you might see GF(p) or even Z/pZ. 

We also have to introduce the concept of a group-another mathematical 
term, but a simple one. A group is simply a set of numbers together with an 
operation, such as addition or multiplication.2 The numbers in Zp form a group 
together with addition. You can add any two numbers and get a third number 

2There are a couple of further requirements, but they are all met by the groups we will be talking 
about. 
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in the group. If you want to use multiplication in a group you cannot use the O. 
(This has to do with the fact that multiplying by 0 is not very interesting, and 
that you cannot divide by 0.) However, the numbers 1, . . .  , p - 1 together with 
multiplication modulo p form a group. This group is called the multiplicative 
group modulo p and is written in various ways; we will use the notation Z;. A 
finite field consists of two groups: the addition group and the multiplication 
group. In the case of Zp the finite field consists of the addition group, defined 
by addition modulo p, and the multiplication group Z;. 

A group can contain a subgroup. A subgroup consists of some of the elements 
of the full group. If you apply the group operation to two elements of the 
subgroup, you again get an element of the subgroup. That sounds complicated, 
so here is an example. The numbers modulo 8 together with addition (modulo 
8) form a group. The numbers { 0, 2, 4, 6 } form a subgroup. You can add any 
two of these numbers modulo 8 and get another element of the subgroup. The 
same goes for multiplicative groups. The multiplicative subgroup modulo 7 
consists of the numbers 1, . . .  , 6, and the operation is multiplication modulo 7. 
The set { 1, 6 } forms a subgroup, as does the set { 1 , 2, 4 } . You can check that 
if you multiply any two elements from the same subgroup modulo 7, you get 
another element from that subgroup. 

We use subgroups to speed up certain cryptographic operations. They can 
also be used to attack systems, which is why you need to know about them. 

So far we've only talked about addition, subtraction, and multiplication 
modulo a prime. To fully define a multiplicative group you also need the 
inverse operation of multiplication: division. It turns out that you can define 
division on the numbers modulo p. The simple definition is that alb (mod p) is 
a number c such that c . b = a (mod p). You cannot divide by zero, but it turns 
out that the division alb (mod p) is always well defined as long as b =j:. O. 

So how do you compute the quotient of two numbers modulo p? This is 
more complicated, and it will take a few pages to explain. We first have to go 
back more than 2000 years to Euclid again, and to his algorithm for the ceo. 

1 0.3.4 The (ieD Algorithm 

Another high-school math refresher course: The greatest common divisor (or 
CeO) of two numbers a and b is the largest k such that k I a and k I b. In other 
words, gcd(a, b) is the largest number that divides both a and b. 

Euclid gave an algorithm for computing the ceo of two numbers that is 
still in use today, thousands of years later. For a detailed discussion of this 
algorithm, see Knuth [75]. 

function ceo 
input: a 

b 
Positive integer. 
Positive integer. 



output: k The greatest common divisor of a and b. 
assert a � 0 1\ b � 0 
while a #- O do 

(a, b) +- (b mod a, a) 
od 
return b 
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Why would this work? The first observation is that the assignment does not 
change the set of common divisors of a and b. After all, (b mod a) is just b - sa 
for some integer s. Any number k that divides both a and b will also divide 
both a and (b mod a). (The converse is also true.) And when a = 0, then b is 
a common divisor of a and b, and b is obviously the largest such common 
divisor. You can check for yourself that the loop must terminate because a and 
b keep getting smaller and smaller until they reach zero. 

Let's compute the CCO of 21 and 30 as an example. We start with (a, b) = 

(21, 30). In the first iteration we compute (30 mod 21) = 9, so we get (a, b) = 

(9, 21). In the next iteration we compute (21 mod 9) = 3, so we get (a, b) = (3, 9). 
In the final iteration we compute (9 mod 3) = 0 and get (a, b) = (0, 3). The algo­
rithm will return 3, which is indeed the greatest common divisor of 21 and 30. 

The CCO has a cousin: the LCM or least common multiple. The LCM of a and 
b is the smallest number that is both a multiple of a and a multiple of b. For 
example, lcm(6, 8) = 24. The CCO and LCM are tightly related by the equation 

ab 
lan(a, b) = 

d b) gc (a, 

which we won't prove here but just state as a fact. 

1 0.3.5 The Extended Euclidean Algorithm 

This still does not help us to compute division modulo p. For that, we need what 
is called the extended Euclidean algorithm. The idea is that while computing 
gcd(a, b) we can also find two integers u and v such that gcd(a, b) = ua + vb. 
This will allow us to compute alb (mod p). 

function EXTENDEDCCO 
input: a 

b 
output: k 

(u, v) 

Positive integer argument. 

Positive integer argument. 

The greatest common divisor of a and b. 
Integers such that ua + vb = k. 

assert a � 0 1\ b � 0 
(c, d) +- (a, b) 
(uo Vo Ud, Vd) +- (1, 0, 0, 1 )  
while c #- 0 do 
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Invariant: uca + vcb = c /\ Uda + Vdb = d 

q +- LdlcJ 

(c,d) +- (d - qc,c) 

(un VCf Ud, Vd) +- (Ud - qUCf Vd - qVCf Un Vc) 
od 
returnd,(Ud,Vd) 

This algorithm is very much like the CCO algorithm. We introduce new 
variables c and d instead of using a and b because we need to refer to the 
original a and b in our invariant. If you only look at c and d, this is exactly 
the CCO algorithm. (We've rewritten the d mod c formula slightly, but this 
gives the same result.) We have added four variables that maintain the given 
invariant; for each value of c or d that we generate, we keep track of how to 
express that value as a linear combination of a and b. For the initialization this 
is easy, as c is initialized to a and d to b. When we modify c and d in the loop it 
is not terribly difficult to update the U and v variables. 

Why bother with the extended Euclidean algorithm? Well, suppose we 
want to compute lib mod p where 1 .:::: b < p. We use the extended Euclidean 
algorithm to compute EXTENDEDCCO(b, p). Now, we know that the CCO of b 
and p is 1, because p is prime and it therefore has no other suitable divisors. 
But the EXTENDEDCCO function also provides two numbers U and v such 
that ub + vp = gcd(b,p) = 1. In other words, ub = 1 - vp or ub = 1 (mod p). 
This is the same as saying that u = lib (mod p), the inverse of b modulo p. 
The division alb can now be computed by multiplying a by u, so we get 
alb = au (mod p), and this last formula is something that we know how to 
compute. 

The extended Euclidean algorithm allows us to compute an inverse modulo 
a prime, which in turn allows us to compute a division modulo p. Together 
with the addition, subtraction, and multiplication modulo p, this allows us to 
compute all four elementary operations in the finite field modulo p. 

Note that u could be negative, so it is probably a good idea to reduce u 
modulo p before using it as the inverse of b. 

If you look carefully at the EXTENDEDCCO algorithm, you'll see that if you 
only want u as output, you can leave out the Vc and Vd variables, as they do not 
affect the computation of u. This slightly reduces the amount of work needed 
to compute a division modulo p. 

1 0.3.6 Working Modulo 2 

An interesting special case is computation modulo 2. After all, 2 is a prime, 
so we should be able to compute modulo it. If you've done any programming 
this might look familiar to you. The addition and multiplication tables modulo 
2 are shown in Figure 10.1. Addition modulo 2 is exactly the exclusive-or (XOR) 
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function you find in programming languages. Multiplication is just a simple 
AND operation. In the field modulo 2 there is only one inversion possible 
(1/1 = 1) so division is the same operation as multiplication. It shouldn't 
surprise you that the field Z2 is an important tool to analyze certain algorithms 
used by computers. 

+ 0 

0 0 

1 1 

1 

1 

0 

ffiBJo 1 

0 0 0  

1 0 1 

Figure 10.1: Addition and multiplication modulo 2 

10.4 Large Primes 

Several cryptographic primitives use very large primes, and we're talking 
about many hundreds of digits here. Don't worry, you won't have to compute 
with these primes by hand. That's what the computer is for. 

To do any computations at all with numbers this large, you need a mul­
tiprecision library. You cannot use floating-point numbers, because they do 
not have several hundred digits of precision. You cannot use normal integers, 
because in most programming languages they are limited to a dozen digits or 
so. Few programming languages provide native support for arbitrary preci­
sion integers. Writing routines to perform computations with large integers is 
faScinating. For a good overview, see Knuth [75, Section 4.3]. However, imple­
menting a multiprecision library is far more work than you might expect. Not 
only do you have to get the right answer, but you always strive to compute 
it as quickly as possible. There are quite a number of special situations you 
have to deal with carefully. Save your time for more important things, and 
download one of the many free libraries from the Internet, or use a language 
like Python that has built-in large integer support. 

For public-key cryptography, the primes we want to generate are 2000-4000 
bits long. The basic method of generating a prime that large is surprisingly 
simple: take a random number and check whether it is prime. There are very 
good algorithms to determine whether a large number is prime or not. There 
are also very many primes. In the neighborhood of a number n, approximately 
one in every In n numbers is prime. (The natural logarithm of n, or In n for 
short, is one of the standard functions on any scientific calculator. To give 
you an idea of how slowly the logarithm grows when applied to large inputs: 
the natural logarithm of 2k is slightly less than 0.7· k.) A number that is 
2000 bits long falls between 21999 and 22000. In that range, about one in every 
l386 of the numbers is prime. And this includes a lot of numbers that are 
trivially composite, such as the even numbers. 
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Generating a large prime looks something like this: 

function GENERATELARGEPRIME 
input: 1 Lower bound of range in which prime should lie. 

u Upper bound of range in which prime should lie. 
output: p A random prime in the interval I, ... , u 

Check for a sensible range. 
assert 2 < 1 :5 u 

Compute maximum number of attempts 
r +- 100(Llog2 uJ + 1) 
repeat 

r +- r - 1  
assert r > 0 
Choose n randomly in the right interval 
n En 1, ... , u 

Continue trying until we find a prime. 
until ISPRIME(n) 
return n 

We use the operator EJ? to indicate a random selection from a set. Of course, 
this requires some output from the PRNG. 

The algorithm is relatively straightforward. We first check that we get a 
sensible interval. The cases 1 :5 2 and 1 2: u are not useful and lead to problems. 
Note the boundary condition: the case I = 2 is not allowed.3 Next we compute 
how many attempts we are going to make to find a prime. There are intervals 
that do not contain a prime. For example, the interval 90, ... ,96 is prime-free. 
A proper program should never hang, independent of its inputs, so we limit 
the number of tries and generate a failure if we exceed this number. How 
many times should we try? As stated before, in the neighborhood of u about 
one in every 0.710gz u numbers is prime. (The function logz is the logarithm 
to the base 2. The simplest definition is that log2(x) := Inxjln 2). The number 
log2 u is difficult to compute but Llog2 uJ + 1 is much easier; it is the number 
of bits necessary to represent u as a binary number. So if u is an integer 
that is 2017 bits long, then Llog2 uJ + 1 = 2017. The factor 100 ensures that it is 
extremely unlikely tha t we will not find a prime. For large enough intervals, the 
probability of a failure due to bad luck is less than 2-1

2
8, so we can ignore this 

risk. At the same time, this limit does ensure that the GENERATELARGEPRIME 
function will terminate. We've been a bit sloppy in our use of an assertion to 

3The Rabin-Miller algorithm we use below does not work well when it gets 2 as an argument. 
That's okay, we already know that 2 is prime so we don't have to generate it here. 
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generate the failure; a proper implementation would generate an error with 
explanations of what went wrong. 

The main loop is simple. After the check that limits the number of tries, we 
choose a random number and check whether it is prime using the ISPRIME 
function. We will define this function shortly. 

Make sure that the number n you choose is uniformly random in the range 
I, ... , u. Also make sure that the range is not too small if you want your prime 
to be a secret. If the attacker knows the interval you use, and there are fewer 
than 2128 primes in that interval, the attacker could potentially try them all. 

If you wish, you can make sure the random number you generate is odd by 
setting the least significant bit just after you generate a candidate n. As 2 is not 
in your interval, this will not affect the probability distribution of primes you 
are choosing, and it will halve the number of attempts you have to make. But 
this is only safe if u is odd; otherwise, setting the least significant bit might 
bump n just outside the allowed range. Also, this will generate some small 
bias away from 1 if 1 is odd. 

The ISPRIME function is a two-step filter. The first phase is a simple test 
where we try to divide n by all the small primes. This will quickly weed out the 
great majority of numbers that are composite and divisible by a small prime. If 
we find no divisors, we employ a heavyweight test called the Rabin-Miller test. 

function [SPRIME 
input: n Integer 2: 3. 
output: b Boolean whether n is prime. 

assert n 2: 3 
for p E { all primes ::5 1000 } do 

if P is a divisor of n then 
return p = n 

fi 
od 
return RABIN-MILLER(n) 

If you are lazy and don't want to generate the small primes, you can cheat 
a bit. Instead of trying all the primes, you can try 2 and all odd numbers 
3, 5, 7, . . .  ,999, in that order. This sequence contains all the primes below 1000, 
but it also contains a lot of useless composite numbers. The order is important 
to ensure that a small composite number like 9 is properly detected as being 
composite. The bound of 1000 is arbitrary and can be chosen for optimal 
performance. 

All that remains to explain is the mysterious Rabin-Miller test that does the 
hard work. 
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1 0.4.1 Primality Testing 

It turns out to be remarkably easy to test whether a number is prime. At least, 
it is remarkably easy compared to factoring a number and finding its prime 
divisors. These easy tests are not perfect. They are all probabilistic. There is a 
certain chance they give the wrong answer. By repeatedly running the same 
test we can reduce the probability of error to an acceptable level. 

The primality test of choice is the Rabin-Miller test. The mathematical basis 
for this test is well beyond the scope of this book, although the outline is fairly 
Simple. The purpose of this test is to determine whether an odd integer n is 
prime. We choose a random value a less than n, called the basis, and check a 
certain property of a modulo n that always holds when n is prime. However, 
you can prove that when n is not a prime, this property holds for at most 25% 
of all possible basis values. By repeating this test for different random values 
of a, you build your confidence in the final result. [f n is a prime, it will always 
test as a prime. If n is not a prime, then at least 75% of the possible values for 
a will show so, and the chance that n will pass multiple tests can be made as 
small as you want. We limit the probability of a false result to 2-128 to achieve 
our required security level. 

Here is how it goes: 

function RABIN-MILLER 
input: n An odd number � 3. 
output: b Boolean indicating whether n is prime or not. 

assert n � 3 1\ n mod 2 = 1 

First we compute (s, t) such that s is odd and 21s = n - l .  
(s, t) +- (n -1, 0) 

, 

while s mod 2 = ° do 
(s, t) +- (s/2, t + 1) 

od 

We keep track of the probability of a false result in k. The probability is at most 
2-k• We loop until the probability of a false result is small enough. 

k +- O 
while k < 128 do 

Choose a random a such that 2 � a � n - 1. 
a En 2, . . .  , n - 1 

The expensive operation: a modular exponentiation. 
v +- as mod n 

When v = 1, the number n passes the test for basis a. 
if v =j:. 1 then 

The sequence v, v2, ••• , v2t must finish on the value 1, and the last value 
not equal to 1 must be n - 1 if n is a prime. 



od 

fi 

i+---O 
while v f. n - 1 do 

if i = t - 1 then 
return false 

else 
(v, i) +--- (v2 mod n, i + 1) 

fi 
od 
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When we get to this point, n has passed the primality test for the basis a. We 
have therefore reduced the probability of a false result by a factor of 
22, so we can add 2 to k .  

k+---k + 2  

return true 

This algorithm only works for an odd n greater or equal to 3, so we test 
that first. The ISPRIME function should only call this function with a suitable 
argument, but each function is responsible for checking its own inputs and 
outputs. You never know how the software will be changed in future. 

The basic idea behind the test is known as Fermat's little theorem.4 For 
any prime n and for alII.:::; a < n, the relation an-1 mod n = 1 holds. To fully 
understand the reasons for this requires more math than we will explain here. 
A simple test (also called the Fermat primality test) verifies this relation for a 
number of randomly chosen a values. Unfortunately, there are some obnoxious 
numbers called the Carmichael numbers. These are composite but they pass 
the Fermat test for (almost) all basis a. 

The Rabin-Miller test is a variation of the Fermat test. First we write n - 1 
as 21s, where s is an odd number. If you want to compute an-1 you can first 
compute as and then square the result t times to get as-2 1 

= an-l. Now if as = 1 
(mod n) then repeated squaring will not change the result so we have an-1 = 1 

(mod n). Has f. 1 (mod n), then we look at the numbers as, as-2, as-2 2 , as-i! , ... ,as-21 

(all modulo n, of course). If n is a prime, then we know that the last number 
must be 1. If n is a prime, then the only numbers that satisfy x2 = 1 (mod n) 
are 1 and n - 1.5 So if n is prime, then one of the numbers in the sequence 
must be n - 1, or we could never have the last number be equal to 1. This is 
really all the Rabin-Miller test checks. If any choice of a demonstrates that n is 
composite, we return immediately. If n continues to test as a prime, we repeat 
the test for different a values until the probability that we have generated a 

4There are several theorems named after Fermat. Fermat's last Theorem is the most famous one, 
involving the equation an + b" = c' and a proof too large to fit in the margin of the page. 
5It is easy to check that (n - 1)2 = 1 (mod n). 
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wrong answer and claimed that a composite number is actually prime is less 
than 2-128• 

If you apply this test to a random number, the probability of failure of this 
test is much, much smaller than the bound we use. For almost all composite 
numbers n, almost all basis values will show that n is composite. You will 
find a lot of libraries that depend on this and perform the test for only 5 or 10 
bases or so. This idea is fine, though we would have to investigate how many 
attempts are needed to reach an error level of 2-128 or less. But it only holds as 
long as you apply the ISPRIME test to randomly chosen numbers. Later on we 
will encounter situations where we apply the prirnality test to numbers that 
we received from someone else. These might be maliciously chosen, so the 
[SPRIME function must achieve a 2-128 error bound all by itself. 

Doing the full 64 Rabin-Miller tests is necessary when we receive the number 
to be tested from someone else. It is overkill when we try to generate a prime 
randomly. But when generating a prime, you spend most of your time rejecting 
composite numbers. (Almost all composite numbers are rejected by the very 
first Rabin-Miller test that you do.) As you might have to try hundreds of 
numbers before you find a prime, doing 64 tests on the final prime is only 
marginally slower than doing 10 of them. 

In an earlier version of this chapter, the Rabin-Miller routine had a second 
argument that could be used to select the maximum error probability. But it was 
a perfect example of a needless option, so we removed it. Always doing a good 
test to a 2-128 bound is Simpler, and much less likely to be improperly used. 

There is still a chance of 2-128 that our ISPRIME function will give you the 
wrong answer. To give you an idea of how small this chance actually is, the 
chance that you will be killed by a meteorite while you read this sentence is 
far larger. Still alive? Okay, so don't worry about it. 

1 0.4.2 Evaluating Powers 

The Rabin-Miller test spends most of its time computing as mod n. You cannot 
compute as first and then take it modulo n. No computer in the world has 
enough memory to even store as, much less the computing power to compute 
it; both a and s can be thousands of bits long. But we only need as mod n; we 
can apply the mod n to all the intermediate results, which stops the numbers 
from growing too large. 

There are several ways of computing as mod n, but here is a simple descrip­
tion. To compute as mod n, use the following rules: 

- If s = 0 the answer is 1. 

- If s > 0 and s is even, then first compute y := as/2 mod n using these very 
same rules. The answer is given by as mod n = y2 mod n. 
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- If s > 0 and s is odd, then first compute y := a(s-1)/2 mod n using these 
very same rules. The answer is given by as mod n = a . y2 mod n. 

This is a recursive formulation of the so-called binary algorithm. If you look 
at the operations performed, it builds up the desired exponent bit by bit from 
the most significant part of the exponent down to the least significant part. It 
is also possible to convert this from a recursive algorithm to a loop. 

How many multiplications are required to compute as mod n? Let k be the 
number of bits of s; i.e., 2k-1 � s < 2k. Then this algorithm requires at most 
2k multiplications modulo n. This is not too bad. If we are testing a 2000-bit 
number for primality, then s will also be about 2000 bits long, and we only 
need 4000 multiplications. That is still a lot of work, but certainly within the 
capabilities of most desktop computers. 

Many public-key cryptographic systems make use of modular exponentia­
tions like this. Any good multiprecision library will have an optimized routine 
for evaluating modular exponentiations. A speCial type of multiplication called 
Montgomery multiplication is well suited for this task. There are also ways of 
computing as using fewer multiplications [18]. Each of these tricks can save 
10%-30% of the time it takes to compute a modular exponentiation, so used 
in combination they can be important. 

Straightforward implementations of modular exponentiation are often vul­
nerable to timing attacks. See Section 15.3 for details and possible remedies. 

1 0.5 Exercises 

Exercise 10.1 Implement SMALLPRIMELIST. What is the worst-case per­
formance of SMALLPRIMELIST? Generate a graph of the timings for your 
implementation and n = 2,4,8, 16, . .. ,220• 

Exercise 10.2 Compute 13635 + 16060 + 8190 + 21363 (mod 29101) in two 
ways and verify the equivalence: by reducing modulo 29101 after each addition 
and by computing the entire sum first and then reducing modulo 29101. 

Exercise 10.3 Compute the result of 12358 ·1854·14303 (mod 29101) in 
two ways and verify the equivalence: by reducing modulo 29101 after each 
multiplication and by computing the entire product first and then reducing 
modulo 29101. 

Exercise 10.4 Is { 1,3,4 } a subgroup of the multiplicative group of integers 
modulo 7? 

Exercise 10.5 Use the GCD algorithm to compute the GCD of 91261 and 
117035. 
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Exercise 10.6 Use the EXTENDEDGCD algorithm to compute the inverse of 74 
modulo the prime 167. 

Exercise 10.7 Implement GENERATELARGEPRIME using a language or library 
that supports big integers. Generate a prime within the range I = 2255 and 
u = 2256 - 1. 

Exercise 10.8 Give pseudocode for the exponentiation routine described in 
Section 10.4.2. Your pseudocode should not be recursive but should instead 
use a loop. 

Exercise 10.9 Compute 2735 (mod 569) using the exponentiation routine 
described in Section 10.4.2. How many multiplications did you have to per­
form? 
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Diffie-Hellman 

For our discussion of public-key cryptography, we're going to follow the 
historical path. Public-key cryptography was really started by Whitfield Diffie 
and Martin Hellman when they published their article "New Directions in 
Cryptography" in 1976 [33]. 

So far in this book, we've only talked about encryption and authentication 
with shared secret keys. But where do we get those shared secret keys from? 
If you have 10 friends you want to communicate with, you can meet them all 
and exchange a secret key with each of these friends for future use. But like all 
keys, these keys should be refreshed regularly, so at some point you will have 
to meet and exchange keys all over again. A total of 45 keys are needed for a 
group of 10 friends. But as the group gets larger, the number of keys grows 
quadratically. For 100 people all communicating with each other, you need 
4950 keys. Specifically, in a group of N people, we would need N(N - 1)/2 
keys. This quickly becomes unmanageable. 

Diffie and Hellman posed the question of whether it would be possible to 
do this more efficiently. Suppose you have an encryption algorithm where 
the encryption and decryption keys are different. You could publish your 
encryption key and keep your decryption key secret. Anyone could then send 
you an encrypted message, and only you could decrypt it. This would solve 
the problem of having to distribute so many different keys. 

Diffie and Hellman posed the question, but they could only provide a 
partial answer. Their partial solution is today known as the Diffie-Hellman 
key exchange protocol, often shortened to DH protocol [33]. 

1 81 
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The DH protocol is a really nifty idea. It turns out that two people commu­
nicating over an insecure line can agree on a secret key in such a way that both 
of them end up with the same key, without divulging it to someone who is 
listening in on their conversation. 

1 1 . 1  Groups 

If you've read the last chapter, it won't surprise you that primes are involved. 
For the rest of this chapter, p is a large prime. Think of p as being 2000 to 
4000 bits long. Most of our computations in this chapter will be modulo p-in 
many places we will not specify this again explicitly. The DH protocol uses Z;, 
the multiplicative group modulo p that we discussed in Section 10.3.3. 

Choose any g in the group and consider the numbers 1,g,g2,g3, ... , all 
modulo p, of course. This is an infinite sequence of numbers, but there is 
only a finite set of numbers in Z;. (Remember, Z; is the numbers 1, ... , p - 1 
together with the operation of multiplication modulo p.) At some point, the 
numbers must start to repeat. Let us assume this happens at gi = gi with 
i < j. As we can do division modulo p, we can divide each side by gi and get 
1 = gj-i. In other words, there is a number q := j - i such that t' = 1 (mod p). 
We call the smallest positive value q for which t' = 1 (mod p) the order of g. 
(Unfortunately, there is quite a bit of terminology associated with this stuff. 
We feel it is better to use the standard terminology than invent our own words; 
this will avoid confusion when reading other books.) 

If we keep on multiplying gs, we can reach the numbers 1,g,g2, ... ,t'-l. 

After that, the sequence repeats as t' = 1. We say that g is a generator and that 
it generates the set 1,g,g2, . . .  ,t'-l. The number of elements that can be written 
as a power of g is exactly q, the order of g. 

One property of multiplication modulo p is that there is at least one g that 
generates the entire group. That is, there is at least one g value for which 
q = P - 1. So instead of thinking of Z; as the numbers 1, . . .  , p - 1, we can also 
think of them as 1, g, g2, ... , gP-2. A g that generates the entire group is called a 
primitive element of the group. 

Other values of g can generate smaller sets. Observe that if we multiply two 
numbers from the set generated by g, we get another power of g, and therefore 
another element from the set. If you go through all the math, it turns out that the 
set generated by g is another group. That is, you can multiply and divide in this 
group just as you can in the large group modulo p. These smaller groups are 
called subgroups (see Section 10.3.3). They will be important in various attacks. 

There is one last thing to explain. For any element g, the order of g is a 
divisor of p - 1. This isn't too hard to see. Choose g to be a primitive element. 
Let h be any other element. As g generates the whole group, there is an x such 
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that h = �. Now consider the elements generated by h. These are 1, h, h2, h3, • • .  

which are equal to 1, �,g2x, tx, .... (All our computations are still modulo p, 
of course.) The order of h is the smallest q at which hq = 1, which is the same 
as saying it is the smallest q such that �q = 1. For any t, t = 1 is the same as 
saying t = 0 (mod p - 1). So q is the smallest q such that xq = 0 (mod p - 1). 
This happens when q = (p - 1)/ gcd(x, p - 1). So q is obviously a factor of p - 1. 

Here's a simple example. Let's choose p = 7. If we choose g = 3 then g is 
a primitive element because 1,g,g2, ... ,gS = 1, 3, 2, 6, 4, 5. (Again, all computa­
tions are modulo p.) The element h = 2 generates the subgroup 1, h, h2 = 1, 2, 4  
because h3 = 23 mod 7 = 1 .  The element h = 6 generates the subgroup 1, 6. These 
subgroups have sizes 3 and 2 respectively, which are both divisors of p - 1. 

This also explains parts of the Fermat test we talked about in Section 10.4.1. 
Fermat's test is based on the fact that for any a we have aP-1 = 1. This is 
easy to check. Let g be a generator of Z;, and let x be such that � = a. As 
g is a generator of the entire group, there is always such an x. But now 
aP-1 = �(P-l) = (gp-l)x = IX = 1. 

1 1 .2 Basic DH 

For the original DH protocol, we first choose a large prime p, and a primitive 
element g that generates the whole group Z;. Both p and g are public constants 
in this protocol, and we assume that all parties, including the attackers, know 
them. The protocol is shown in Figure 11 .1. This is one of the usual ways in 
which we write cryptographic protocols. There are two parties involved: Alice 
and Bob. Time progresses from the top to the bottom. First Alice chooses a 
random x in Z;, which is the same as choosing a random number in 1, . . .  , p - 1 .  
She computes � mod p and sends the result to Bob. Bob in turn chooses a 
random y in Z;. He computes gY mod p and sends the result to Alice. The final 
result k is defined as �Y. Alice can compute this by raising the gY she got from 
Bob to the power x that she knows. (High-school math: (gYY = �Y.) Similarly, 
Bob can compute k as �)Y. They both end up with the same value k, which 
they can use as a secret key. 

But what about an attacker? The attacker gets to see � and gY, but not x or y. 
The problem of computing �Y given � and gY is known as the Diffie-Hellman 
problem, or DH problem for short. As long as p and g are chosen correctly, 
there is no known efficient algorithm to compute this. The best method known 
is to first compute x from �, after which the attacker can compute k as (gYy just 
like Alice did. In the real numbers, computing x from � is called the logarithm 
function, which you find on any scientific calculator. In the finite field Z;, it is 
called a discrete logarithm, and in general the problem of computing x from � 
in a finite group is known as the discrete logarithm problem, or DL problem. 
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Alice 
x En Z; 

Figure 11.1: The original Diffie-Hellman protocol. 

Bob 

yEn Z; 

The original DH protocol can be used in many ways. We've written it as an 
exchange of messages between two parties. Another way of using it is to let 
everybody choose a random x, and publish� (mod p) in the digital equivalent 
of a phone book. If Alice wants to communicate with Bob securely, she gets 
gY from the phone book, and using her x, computes gry. Bob can similarly 
compute �Y without any interaction with Alice. This makes the system usable 
in settings such as e-mail where there is no direct interaction. 

1 1 .3 Man in the Middle 

The one thing that DH does not protect against is the so-called man-in-the­
middle attack.1 Look back at the protocol. Alice knows she is communicating 
with somebody, but she does not know with whom she is communicating. 
Eve can sit in the middle of the protocol and pretend to be Bob when speaking 
to Alice, and pretend to be Alice when speaking to Bob. This is shown in 
Figure 11.2. To Alice, this protocol looks just like the original DH protocol. 
There is no way in which Alice can detect that she is talking to Eve, not Bob. 
The same holds for Bob. Eve can keep up these pretenses for as long as she 
likes. Suppose Alice and Bob start to communicate using the secret key they 
think they have set up. All Eve needs to do is forward all the communications 
between Alice and Bob. Of course, Eve has to decrypt all the data she gets 
from Alice that was encrypted with key k, and then encrypt it again with key 
k' to send to Bob. She has to do the same with the traffic in the other direction 
as well, but that is not a lot of work. 

With a digital phone book, this attack is harder. As long as the publisher of 
the book verifies the identity of everybody when they send in their �, Alice 
knows she is using Bob's �. We'll discuss other solutions when we talk about 
digital signatures and PKls later on in this book. 

IThe terminology may look similar, but a man-in-the-middle attack is different than a meet-in­
the-middle attack from Section 2.7.2. 
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Alice Eve Bob 
x En Z; 

� -------+ 

V En Z; 
gV 

-------+ 
yEn Z; 

gY 
+------

W En Z; 
gW 

+------

k � (gwy k � (g')W 
k' +--- (gYy k' +--- (gV)Y 

Figure 11.2: Diffie-Hellman protocol with Eve in the middle. 

There is at least one setting where the man-in-the-middle attack can be 
addressed without further infrastructure. If the key k is used to encrypt a 
phone conversation (or a video link), Alice can talk to Bob and recognize 
him by his voice. Let h be a hash function of some sort. If Bob reads the 
first few digits of h(k) to Alice, then Alice can verify that Bob is using the 
same key she is. Alice can read the next few digits of h(k) to Bob, to allow 
Bob to do the same verification. This works, but only in situations where 
you can tie knowledge of the key k to the actual person on the other side. 
In most computer communications, this solution is not possible. And if Eve 
ever succeeds in building a speech synthesizer that can emulate Bob, it all 
falls apart. Finally, the biggest problem with this solution is that it requires 
discipline from the users, which is risky since users regularly ignore security 
procedures. In general, it is much better to have technical mechanisms for 
thwarting man-in-the-middle attacks. 

1 1 .4 Pitfalls 

Implementing the DH protocol can be a bit tricky. For example, if Eve intercepts 
the communications and replaces both g" and gY with the number I, then both 
Alice and Bob will end up with k = 1. The result is a key negotiation protocol 
that looks as if it completed successfully, except that Eve knows the resulting 
key. That is bad, and we will have to prevent this attack in some way. 

A second problem is if the generator g is not a primitive element of Z; but 
rather generates only a small subgroup. Maybe g has an order of one million. 

1 85 
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In that case, the set { 1,g,i, . . . ,g'l-l } only contains a million elements. As 
k is in this set, Eve can easily search for the correct key. Obviously, one of 
the requirements is that g must have a high order. But who chooses p and g? 
All users are using the same values, so most of them get these values from 
someone else. To be safe, they have to verify that p and g are chosen properly. 
Alice and Bob should each check that p is prime, and that g is a primitive 
element modulo p. 

The subgroups modulo p form a separate problem. Eve's attack of replacing 
[f with the number 1 is easy to counter by having Bob check for this. But Eve 
could also replace [f with the number h, where h has a small order. The key 
that Bob derives now comes from the small set generated by h, and Eve can try 
all possible values to find k. (Of course, Eve can play the same attack against 
Alice.) What both Alice and Bob have to do is verify that the numbers they 
receive do not generate small subgroups. 

Let's have a look at the subgroups. Working modulo a prime, all (multiplica­
tive) subgroups can be generated from a single element. The entire group Z; 
consists of the elements 1, . .. , p  - 1 for a total of p - 1 elements. Each subgroup 
is of the form 1, h, h2, h3, • • •  , hq-1 for some h and where q is the order of h. As 
we discussed earlier, it turns out that q must be a divisor of p - 1. In other 
words: the size of any subgroup is a divisor of p - 1 .  The converse also holds: 
for any divisor d of p - 1 there is a single subgroup of size d. If we don't want 
any small subgroups, then we must avoid small divisors of p - 1. 

There is another reason for wanting large subgroups. It turns out that if the 
prime factorization of p - 1 is known, then computing the discrete log of [f 
can be broken down into a set of discrete log computations over subgroups. 

This is a problem. If p is a large prime, then p - 1 is always even, and 
therefore divisible by 2. Thus there is a subgroup with two elements; it consists 
of the elements 1 and p - 1. But apart from this subgroup that is always 
present, we can avoid other small subgroups by insisting that p - 1 have no 
other small factors. 

1 1 .5 Safe Primes 

One solution is to use a safe prime for p. A safe prime is a (large enough) prime 
p of the form 2q + 1 where q is also prime. The multiplicative group Z; now 
has the following subgroups: 

- The trivial subgroup consisting only of the number 1. 

- The subgroup of size 2, consisting of 1 and p - 1. 

- The subgroup of size q. 

- The full group of size 2q. 
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The first two are trivial to avoid. The third is the group we want to use. 
The full group has one remaining problem. Consider the set of all numbers 
modulo p that can be written as a square of some other number (modulo p, of 
course). It turns out that exactly half the numbers in 1, . . .  , p - 1 are squares, 
and the other half are non-squares. Any generator of the entire group is a 
non-square. (If it were a square, then raising it to some power could never 
generate a non-square, so it does not generate the whole group.) 

There is a mathematical function called the Legendre symbol that determines 
whether a number modulo p is a square or not, without ever needing to find 
the root. There are efficient algorithms for computing the Legendre symbol. 
So if g is a non-square and you send out gr, then any observer, such as Eve, 
can immediately determine whether x is even or odd. If x is even, then gr is a 
square. If x is odd, then gr is a non-square. As Eve can determine the square­
ness of a number using the Legendre symbol function, she can determine 
whether x is odd or even; Eve cannot learn the value x, except for the least 
significant bit. The solution for avoiding this problem is to use only squares 
modulo p. This is exactly the subgroup of order q. Another nice property is 
that q is prime, so there are no further subgroups we have to worry about. 

Here is how to use a safe prime. Choose (p,q) such that p = 2q + 1 and 
both p and q are prime. (You can use the ISPRIME function to do this on a 
trial-and-error basis.) Choose a random number a in the range 2, . . .  ,p - 2 
and set g = 0'2 (mod p). Check that g #- 1 and g #- p - 1 . (If g is one of these 
forbidden values, choose another a and try again.) The resulting parameter 
set (p, q,g) is suitable for use in the Diffie-Hellman protocol. 

Every time Alice (or Bob) receives a value that is supposed to be a power 
of g, she (or he) must check that the value received is indeed in the subgroup 
generated by g. When you use a safe prime as described above, you can use the 
Legendre symbol function to check for proper subgroup membership. There 
is also a simpler but slower method. A number r is a square if and only if 
rq = 1 (mod p). You also want to forbid the value 1, as its use always leads to 
problems. So the full test is: r #- 1 /\ rq mod p = 1. 

1 1 .6 Using a Smaller Subgroup 

The disadvantage of using the safe prime approach is that it is inefficient. If the 
prime p is n bits long, then q is n - 1 bits long and so all exponents are n - 1 
bits long. The average exponentiation will take about 3n/2 multiplications of 
numbers modulo p. For large primes p, this is quite a lot of work. 

The standard solution is to use a smaller subgroup. Here is how that is done. 
We start by choosing q as a 2S6-bit prime. (In other words: 2255 < q < 2256). 
Next we find a (much) larger prime p such that p = Nq + 1 for some arbitrary 
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value N. To do this, we choose N randomly in the suitable range, compute p 
as Nq + 1, and check whether p is prime. As p must be odd, it is easy to see 
that N must be even. The prime p will be thousands of bits long. 

Next, we have to find an element of order q. We do that in a similar fashion 
to the safe prime case. Choose a random a in Z; and set g:= aN. Now verify 
that g =1= 1 and t' = 1 .  (The case g = p - 1 is covered by the second test, as q is 
odd.) If g is not satisfactory, choose a different a and try again. The resulting 
parameter set (p, q,g) is suitable for use in the Diffie-Hellman protocol. 

When we use this smaller subgroup, the values that Alice and Bob will 
exchange are all in the subgroup generated by g. But Eve could interfere and 
substitute a completely different value. Therefore, every time Alice or Bob 
receives a value that is supposed to be in the subgroup generated by g, he or 
she should check that it actually is. This check is the same as in the safe prime 
case. A number r is in the proper subgroup if r =1= 1 /\ rq mod p = 1. Of course, 
they should also check that r is not outside the set of modulo-p numbers, so 
the full check becomes 1 < r < p /\ rq = 1. 

For all numbers r in the subgroup generated by g we have that rq = 1. So if 
you ever need to raise number r to a power e, you only have to compute rcmodq, 

which can be considerably less work than computing re directly if e is much 
larger than q. 

How much more efficient is the subgroup case? The large prime p is at 
least 2000 bits long. In the safe-prime situation, computing a general � takes 
about 3000 multiplications. In our subgroup case, � takes about 384 multiplies 
because x can be reduced modulo q and is therefore only 256 bits long. This is 
a savings of a factor of nearly eight. When p grows larger, the savings increase 
further. This is the reason that subgroups are widely used. 

1 1 .7 The Size of p 

Choosing the right sizes for the parameters of a DH system is difficult. Up to 
now, we have been using the requirement that an attacker must spend 2128 
steps to attack the system. That was an easy target for all the symmetric key 
primitives. Public-key operations like the DH system are far more expensive 
to start with, and the computational cost grows much more quickly with the 
desired security level. 

If we keep to our requirement of forcing the attacker to use 2128 steps to attack 
the system, the prime p should be about 6800 bits long. In practical systems 
today, that would be a real problem from a performance point of view. 

There is a big difference between key sizes for symmetric primitives and 
key sizes for public-key primitives like DH. Never, ever fall into the trap of 
comparing a symmetric key size (such as 128 or 256 bits) to the size of a public 
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key that can be thousands of bits. Public-key sizes are always much larger than 
symmetric-key sizes.2 

Public-key operations are far slower than the encryption and authentication 
functions we presented earlier. In most systems, the symmetric-key operations 
are insignificant, whereas the public-key operations can have a real effect on 
performance. We must therefore look much more closely at the performance 
aspects of public-key operations. 

Symmetric-key sizes are typically fixed in a system. Once you design your 
system to use a particular block cipher and hash function, you also fix the key 
size. That means that the symmetric key size is fixed for the life of the system. 
Public-key sizes, on the other hand, are almost always variable. This makes it 
much easier to change the key size. Our intent in this book is to design a system 
that will be used for 30 years, and the data must be kept secure for 20 years 
after it has first been processed. The symmetric key size must be chosen large 
enough to protect the data up to 50 years from now. But the variable-sized 
public keys only have to protect the data for the next 20 years. After all, all 
keys have a limited lifetime. A public key might be valid for one year, and 
should protect data for 20 more years. This means that the public key only 
needs to protect data 21 years, rather than the 50 years needed for symmetric 
keys. Each year, you generate a new public key, and you can choose larger 
public keys as computing technology progresses. 

The best estimates of how large your prime p needs to be can be found in 
[85]. A prime of 2048 bits can be expected to secure data until around 2022; 3072 
bits is secure until 2038; and 4096 bits until 2050. The 6800 bits we mentioned 
above is derived from the formulas in [85]. That is the size of p if you want to 
force the attacker to perform 2128 steps in an attack. 

Be very careful with these types of predictions. There is some reasonable 
basis for these numbers, but predicting the future is always dangerous. We 
might be able to make some sensible predictions about key sizes for the next 
10 years, but making predictions about what things will be like 50 years from 
now is really rather silly. Just compare the current state of the art in computers 
and cryptography with the situation 50 years ago. The predictions in [85] are 
by far the best estimates we have; nevertheless, treat them with caution. 

So what are we to do? As cryptographic designers, we have to choose a key 
size that will be secure for at least the next 20 years. Obviously 2048 bits is 
a lower bound. Larger is better, but larger keys have a significant extra cost. 
In the face of so much uncertainty, we would like to be conservative. So here 
is our advice: as of today, use 2048 bits as an absolute minimum. (And don't 
forget that as time passes this minimum will grow.) If at all possible from a 
performance point of view, use 4096 bits, or as close to 4096 bits as you can 

2This holds for the public-key schemes we discuss in this book. Other public-key schemes, such 
as those based on elliptic curves, can have completely different key size parameters. 
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afford. Furthermore, make absolutely sure that your system can handle sizes 
up to 8192 bits. This will save the day if there are unexpected developments in 
attacking public-key systems. Improvements in cryptanalysis will most likely 
lead to attacks on smaller key sizes. Switching to a very much larger key size 
can be done while the system is in the field. It will cost some performance, 
but the basic operation of the system will be preserved. This is far better than 
losing all security and having to reengineer the system, which is what you 
would have to do if the system could not use larger keys. 

Some applications require data to be kept secret for much longer than 
20 years. In these cases, you need to use the larger keys now. 

1 1 .8 Practical Rules 

Here are our practical rules for setting up a subgroup you can use for the DH 
protocol. 

Choose q as a 256-bit prime. (There are collision-style attacks on the exponent 
in DH, so all our exponents should be 256 bits long to force the attacker to 
use at least 2128 operations.) Choose p as a large prime of the form Nq + 1 for 
some integer N. (See Section 11.7 for a discussion of how large p should be. 
Computing the corresponding range for N is trivial.) Choose a random g such 
that g -=f=. 1 and gt = 1. (The easy way to do this is to choose a random a, set 
g = aN, and check g for sUitability. Try another a if g fails the criteria.) 

Any party receiving the subgroup description (p, q,g) should verify that: 

- Both p and q are prime, q is 256 bits long, and p is sufficiently large. (Don't 
trust keys that are too small.) 

- q is a divisor of (p - 1). 

- g -=f=. 1 and gt = 1. 

This should be done even if the description is provided by a trusted source. 
You would be amazed at how often systems fail in some interesting way, 
especially when they are under attack. Checking a set (p, q,g) takes a little time, 
but in most systems the same subgroup is used for a long time, so these checks 
need only be performed once. 

Any time a party receives a number r that is supposed to be in the subgroup, 
it should be verified that 1 < r < p and rq = 1. Note that r = 1 is not allowed. 

Using these rules, we get the version of the Diffie-Hellman protocol shown 
in Figure 11.3. Both parties start by checking the group parameters. Each of 
them only has to do this once at start-up, not every time they run a DH 
protocol. (They should do it after every reboot or reinitialization, however, 
because the parameters could have changed.) 



Alice 
known: (p, q,g) 
check (p, q,g) parameters 
x En { 1, . . .  , q - 1 } 

? ?  ? 
1 .<:: Y .<:: p ,  YQ = 1 
k +- (YY 

X := g' 

Y := gY 

Figure 11.]: Diffie-Hellman in a subgroup. 
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Bob 
known: (p, q,g) 

check (p, q,g) parameters 

? ?  ? 
I .<:: X .<:: p , XQ = 1  

Y En { 1, . . .  , q - 1 } 

k +- (X)Y 

The rest of the protocol is very much the same as the original DH protocol 
in Figure 11.1. Alice and Bob now use the subgroup, so the two exponents 
x and y are in the range 1, . . .  , q - 1. Both Alice and Bob check that the number 
they receive is in the proper subgroup to avoid any small-subgroup attacks by 
Eve. 

The notation we use for the checks is a relational operator (such as = or <) 
with a question mark above it. This means that Alice (or Bob) should check 
that the relation holds. If it does, then everything is all right. If the relation is 
not correct, then Alice has to assume that she is under attack. The standard 
behavior is to stop the execution of the protocol, not send any other messages, 
and destroy all protocol-specific data. For example, in this protocol Alice 
should destroy x and Y if the last set of checks fails. See Section 13.5.5 for a 

detailed discussion of how to handle these failures. 
This protocol describes a secure variant of DH, but it should not be used in 

exactly this form. The result k has to be hashed before it is used by the rest of 
the system. See Section 14.6 for a more detailed discussion. 

1 1 .9 What Can Go Wrong? 

Very few books or articles talk about the importance of checking that the 
numbers you receive are in the correct subgroup. Niels first found this 
problem in the Internet Key Exchange (IKE) protocol of IPsec [60]. Some of 
the IKE protocols include a DH exchange. As IKE has to operate in the real 
world, it has to deal with lost messages. So IKE specifies that if Bob receives 
no answer, he should resend his last message. IKE does not specify how Alice 
should process the message that Bob sent again. And it is easy for Alice to 
make a serious mistake. 
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For simplicity, let us suppose Alice and Bob use the DH protocol in the 
subgroup illustrated in Figure 11.3 without checking that X and Y are proper 
values. Furthermore, after this exchange Alice starts using the new key k 
to send an encrypted and authenticated message to Bob that contains some 
further protocol data. (This is a very common situation, and similar situations 
can occur in IKE.) 

Here is the dangerous behavior by Alice: when she receives a resend of the 
second message containing Y, she simply recomputes the key k and sends the 
appropriate reply to Bob. Sounds entirely harmless, right? But the attacker Eve 
can now start to play games. Let d be a small divisor of (p - 1). Eve can replace 
Y by an element of order d. Alice's key k is now limited to d possible values, 
and is completely determined by Y and (x mod d). Eve tries all possible values 
for (x mod d), computes the key k that Alice would have gotten, and tries to 
decrypt the next message that Alice sends. If Eve guesses (x mod d) correctly, 
this message will decrypt properly, and Eve has learned (x mod d). 

But what if p - 1 contains a number of small factors (d1, d2, • • •  , dk)? Then 
Eve can run this attack repeatedly for each of these factors and learn 
(x mod d1), • • •  , (x mod dk). Using the general form of the Chinese Remain­
der Theorem (see Section 12.2) she can combine this knowledge to obtain 
(x mod d1d2d3 • • •  dk). So if the product of all small divisors of p - 1 is large, Eve 
can get a significant amount of information about x. As x is supposed to be 
secret, this is always a bad development. In this particular case, Eve can finish 
by forwarding the original Y to Alice and letting Alice and Bob complete the 
protocol. But Eve has collected enough information about x that she can now 
find the key k that Alice and Bob use. 

To be quite clear: this is not an attack on IKE. It is an attack on an imple­
mentation of IKE that is allowed by the standard [60] . Still, in our opin­
ion the protocol should include enough information for a competent program­
mer to create a secure implementation. Leaving this type of information out is 
dangerous, as somebody somewhere will implement it the wrong way. (We 
have not verified whether this attack applies to newer versions of IKE.) 

For this attack to work, Eve has to be lucky enough to have a p - 1 with 
sufficient small divisors. We are designing against an adversary that can 
perform 2128 steps of computing. This allows Eve to take advantage of all 
divisors of p - 1 up to 2128 or so. We've never seen a good analysiS of the 
probabilities of how much information Eve could get, but a quick estimate 
indicates that on average Eve will be able to get approximately 128 bits of 
information about x from the factors smaller than 2128. She can then attack the 
unknown part of x using a collision-style attack, and as x is only 256 bits long, 
this leads to a real attack. At least, it would if we didn't check that X and Y 
were in the proper subgroup. 
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The attack becomes even easier if Eve was the person selecting the subgroup 
(p, q, g). She may have put the small divisors into p - 1 herself when she selected 
p in the first place. Or maybe she sat on the committee that recommended 
certain parameters for a standard. This isn't as crazy as it seems. The U.s. 
government, in the form of NIST, helpfully provides primes that can be used 
with DSA, a signature scheme that uses subgroups like this. Other parts of that 
same U.S. government (e.g., NSA, CIA, FBI) have a vested interest in being 
able tu break into private communications. We certainly don't want to imply 
that these primes are bad, but it is something that you would want to check 
before you use them. This is easy to do; in fact, NIST published an algorithm 
for choosing parameters that does not insert additional small factors, and you 
can check whether the algorithm was indeed followed. But few people ever do. 

In the end, the simplest solution is to check that every value you receive is 
in the proper subgroup. All other ways of stopping small subgroup attacks 
are much more complicated. You could try to detect the small factors of p - 1 
directly, but that is way too complicated. You could require the person who 
generated the parameter set to provide the factorization of p - I, but that adds 
a great deal of complexity to the whole system. Verifying that the received 
values are in the right subgroup is a bit of work, but it is by far the simplest 
and most robust solution. 

1 1 . 1  0 Exercises 

Exercise 11.1 Assume 200 people wish to communicate securely using 
symmetric keys, one symmetric key for each pair of people. How many 
symmetric keys would this system use in total? 

Exercise 11.2 What are the subgroups generated by 3, 7, and 10 in the 
multiplicative group of integers modulo p = II? 

Exercise 11.3 Why is a number r a square modulo p, p = 2q + 1 and p and q 
both prime, if and only if rq = 1 (mod p). 

Exercise 11.4 What problems, if any, could arise if Alice uses the same x and 
?: for all her communications with Bob, and Bob uses the same y and gY for all 
his communications with Alice? 

Exercise 11.5 Alice and Bob wish to agree on a 256-bit AES key. They are 
trying to decide between using 256-bit, 512-bit, or some other length DH public 
keys ?: and gY. What would be your recommendation to them? 



'\I 



H A P T E R  

1 2  

RSA 

The RSA system is probably the most widely used public-key cryptosystem 
in the world. It is certainly the best known. It provides both digital signatures 
and public-key encryption, which makes it a very versatile tool, and it is based 
on the difficulty of factoring large numbers, a problem that has fascinated 
many people over the last few millennia and has been studied extensively. 

1 2. 1  Introduction 

RSA is similar to, yet very different from, Diffie-Hellman (see Chapter 11). 
Diffie-Hellman (DH for short) is based on a one-way function: assuming p and 
g are publicly known, you can compute <:t mod p) from x, but you cannot 
compute x given � mod p. RSA is based on a trapdoor one-way function. 
Given the publicly known information n and e, it is easy to compute me mod n 
from m, but not the other way around. However, if you know the factorization 
of n, then it is easy to do the inverse computation. The factorization of n is the 
trapdoor information. If you know it, you can invert the function; if you do 
not know it, you cannot invert the function. This trapdoor functionality allows 
RSA to be used both for encryption and digital Signatures. RSA was invented 
by Ronald Rivest, Adi Shamir, and Leonard Adleman, and first published in 
1978 [105]. 

Throughout this chapter we will use the values p, q, and n. The values p and 
q are different large primes, each on the order of a thousand bits long or more. 
The value n is defined by n := pq. (An ordinary product, that is, not modulo 
something.) 

1 95 
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1 2.2 The Chinese Remainder Theorem 

Instead of doing computations modulo a prime p as in the DH system, we 
will be doing computations modulo the composite number n. To explain what 
is going on, we will need a little more number theory about computations 
modulo n. A very useful tool is the Chinese Remainder Theorem, or CRT. It is 
named so because the basic version was first stated by the first-century Chinese 
mathematician Sun Tzu. (Most of the math you need for DH and RSA dates 
back thousands of years, so it can't be too difficult, right?) 

The numbers modulo n are 0, I, . . .  , n - 1. These numbers do not form a 
finite field as they would if n were a prime. Mathematicians still write lEn 
for these numbers and call this a ring, but that is a term we won't need. 
For each x in lEn' we can compute the pair (x mod p, x mod q). The Chinese 
Remainder Theorem states that you can compute the inverse function: if you 
know (x mod p, x mod q), you can reconstruct x. 

For ease of notation, we will define (a, b) := (x mod p, x mod q). 
First, we show that reconstruction is possible, then we'll give an algorithm 

to compute the original x. To be able to compute x given (a, b), we must be sure 
there is not a second number x' in lEn such that x' mod p = a and x' mod q = b. 
If this were the case, both x' and x would result in the same (a, b) pair, and no 
algorithm could figure out which of these two numbers was the original input. 

Let d := x - x', the difference between the numbers that lead to the same (a, b) 
pair. We have (d mod p) = (x - x') mod p = (x mod p) - (x' mod p) = a - a = 

0; thus, d is a multiple of p. For much the same reason, d is a multiple of q. 
This implies that d is a multiple of km(p, q), because km is, after all, the least 
common multiple. As p and q are different primes, km(p, q) = pq = n, and thus 
x - x' is a multiple of n. But both x and x' are in the range 0, . . . , n - I, so x - x' 
must be a multiple of n in the range -n + I, . . . , n - 1.  The only valid solution 
is x - x' = 0, or x = x'. This proves that for any given pair (a, b), there is at most 
one solution for x. All we have to do now is find that solution. 

1 2.2.1 Garner's Formula 

The most practical way of computing the solution is Garner's formula. 

x = «(a - b)(q-l mod p» mod p) . q + b 

Here the (q-l mod p) term is a constant that depends only on p and q. Remember 
that we can divide modulo p, and therefore we can compute (1/ q mod p), which 
is just a different way of writing (q-l mod p). 

We don't need to understand Gamer's formula. All we need to do is prove 
that the result x is correct. 

First of all, we show that x is in the right range 0, . . . , n - 1. Obviously 
x � O. The part t := «(a - b)(q-l mod p» mod p) must be in the range 
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0, . . .  , p - 1 because it is a modulo p result. If t S P - 1, then tq S (p - l)q and 
x =  tq + b s (p - 1)q + (q - 1) = pq - 1  = n  - 1. This shows that x is in the range 
0, . . .  , n - 1. 

The result should also be correct modulo both p and q. 

x mod q = ««a - b)(q-l mod p» mod p) . q + b) mod q 
= (K . q + b) mod q for some K 
= b mod q 
= b  

The whole thing in front of the multiplication by q is some integer K, but any 
multiple of q is irrelevant when computing modulo q. Modulo p is a bit more 
complicated: 

x mod p = ««a - b)(q-l mod p» mod p) . q + b) mod p 
= «(a - b)q-l) . q + b) mod p 
= «a - b)(q-lq) + b) mod p 
= «a - b) + b) mod p 
= a  mod p 
= a  

In the first line, we simply expand (x mod p). In the next line, we eliminate 
a couple of redundant mod p operators. We then change the order of the 
multiplications, which does not change the result. (You might remember from 
school that multiplication is associative, so (ab)c = a(bc).) The next step is to 
observe that q-lq = 1 (mod p), so we can remove this term altogether. The rest 
is trivial. 

This derivation is a bit more complicated than the ones we have seen so far, 
especially as we use more of the algebraic properties. Don't worry if you can't 
follow it. 

We can conclude that Garner's formula gives a result x that is in the right 
range and for which (a, b) = (x mod p, x mod q). As we already know that 
there can only be one such solution, Garner's formula solves the CRT problem 
completely. 

In real systems, you typically precompute the value q-l mod p, so Garner's 
formula requires one subtraction modulo p, one multiplication modulo p, one 
full multiplication, and an addition. 

1 2.2.2 Generalizations 

The CRT also works when n is the product of multiple primes that are all 
different.1 Garner's formula can be generalized to these situations, but we 
won't need that in this book. 

1 There are versions that work when n is divisible by the square or higher power of some primes, 
but those are even more complicated. 



1 98 Part III • Key Negotiation 

1 2.2.3 Uses 

So what is the CRT good for? If you ever have to do a lot of computations 
modulo n, then using the CRT saves a lot of time. For a number 0 ::: x < 

n, we call the pair (x mod p, x mod q) the CRT representation of x. If we 
have x and y in CRT representation, then the CRT representation of x + y 
is «x + y) mod p, (x + y) mod q), which is easy to compute from the CRT 
representations of x and y. The first component (x + y) mod p can be computed 
as «x mod p) + (y mod p) mod p). This is just the sum (modulo p) of the first 
half of each of the CRT representations. The second component of the result 
can be computed in a similar manner. 

You can compute a multiplication in much the same way. The CRT rep­
resentation of xy is (xy mod p, xy mod q), which is easy to compute from the 
CRT representations. The first part (xy mod p) is computed by multiplying 
(x mod p) and (y mod p) and taking the result modulo p again. The second 
part is computed in the same manner modulo q. 

Let k be the number of bits of n. Each of the primes p and q is about 
k/2 bits long. One addition modulo n would require one k-bit addition, 
perhaps followed by a k-bit subtraction if the result exceeded n. In the CRT 
representation, you have to do two modulo additions on numbers half the 
size. This is approximately the same amount of work. 

For multiplication, the CRT saves a lot of time. Multiplying two k-bit numbers 
requires far more work than twice multiplying two k/2-bit numbers. For most 
implementations, CRT multiplication is twice as fast as a full multiplication. 
That is a significant savings. 

For exponentiations, the CRT sa ves even more. Suppose you have to compute 
x" mod n .  The exponent s can be up to k bits long. This requires about 3k/2 
multiplications modulo n. Using the CRT representation, each multiplication 
is less work, but there is also a second savings. We want to compute (x" mod 
p, xs mod q). When computing modulo p, we can reduce the exponents modulo 
(p - I), and similarly modulo q. So we only have to compute (xs mod(P-l) mod 
p, xsmod (q-l) mod q). Each of the exponents is only k/2 bits long and requires 
only 3k/4 multiplications. Instead of 3k/2 multiplications modulo n, we now 
do 2 . 3k/4 = 3k/2 multiplications modulo one of the primes. This saves a factor 
of 3-4 in computing time in a typical implementation. 

. 

The only costs of using the CRT are the additional software complexity and 
the necessary conversions. If you do more than a few multiplications in one 
computation, the overhead of these conversions is worthwhile. Most textbooks 
only talk about the CRT as an implementation technique for RSA. We find 
that the CRT representation makes it much easier to understand the RSA 
system. This is why we explained the CRT first. We'll soon use it to explain 
the behavior of the RSA system. 
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In conclusion: a number x modulo n can be represented as a pair (x mod 
p, x mod q) when n = pq. Conversion between the two representations is fairly 
straightforward. The CRT representation is useful if you have to do many 
multiplications modulo a composite number that you know the factorization 
of. (You cannot use it to speed up your computations if you don't know the 
factorization of n.) 

1 2.3 Multiplication Modulo n 

Before we delve into the details of RSA, we must look at how numbers modulo 
n behave under multiplication. This is somewhat different from the modulo p 
case we discussed before. 

For any prime p, we know that for all 0 < x < p the equation xp-1 = 1 
(mod p) holds. This is not true modulo a composite number n. For RSA to 
work, we need to find an exponent t such that x, = 1 mod n for (almost) all 
x. Most textbooks just give the answer, which does not help you understand 
why the answer is true. It is actually relatively easy to find the correct answer 
by using the CRT. 

We want a t such that, for almost all x, x, = 1 (mod n). This last equation 
implies that x, = 1 (mod p) and x, = 1 (mod q). As both p and q are prime, 
this only holds if p - 1 is a divisor of t, and q - 1 is a divisor of t. The 
smallest t that has this property is therefore lcm(p - 1, q - 1) = (p - l)(q -

1)/ gcd(p - I, q - 1). For the rest of this chapter, we will use the convention 
that t = lcm(p - 1, q - 1). 

The letters p, q, and n are used by everybody, although some use capital 
letters. Most books don't use our t, but instead use the Euler totient function 
¢(n). For an n of the form n = pq, the Euler totient function can be computed 
as ¢(n) = (p - 1)(q - 1), which is a multiple of our t. It is certainly true that 
y:¢(n) = I, and that using ¢(n) instead of t gives correct answers, but using t is 
more precise. 

We've skipped over one small issue in our discussion: x, mod p cannot be 
equal to 1 if x mod p = O. So the equation x, mod n = 1 cannot hold for all 
values x. There are not many numbers that suffer from this deficiency; there 
are q numbers with x mod p = 0 and p numbers with x mod q = 0, so the total 
number of values that have this problem is p + q. Or p + q - 1, to be more 
precise, because we counted the value 0 twice. This is an insignificant fraction 
of the total number of values n = pq. Even better, the actual property used 
by RSA is that Xt+l = x (mod n), and this still holds even for these special 
numbers. Again, this is easy to see when using the CRT representation. If x = 0 
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(mod p), then x+I = 0 = x (mod p), and similarly modulo q. The fundamental 
property x+I = x (mod n) is preserved, and holds for all numbers in Zn. 

1 2.4 RSA Defined 

We can now define the RSA system. Start by randomly choosing two different 
large primes p and q, and compute n = pq. The primes p and q should be 
of (almost) equal size, and the modulus n ends up being twice as long as p 
and q are. 

We use two different exponents, traditionally called e and d. The requirement 
for e and d is that ed = 1 (mod t) where t := lcm(p - I, q - 1) as before. Recall 
that many texts write ed = 1 (mod ¢(n» . We choose the public exponent 
e to be some small odd value and use the EXTENDEDGCD function from 
Section 10.3.5 to compute d as the inverse of e modulo t. This ensures that 
ed = 1 (mod t). 

To encrypt a message m, the sender computes the ciphertext e := me (mod n). 
To decrypt a ciphertext e, the receiver computes cd (mod n). This is equal to 
(me)d = med = mkt+I = (mt)k . m = (li . m = m (mod n), where k is some value 
that exists. So the receiver can decrypt the ciphertext me to get the plaintext m. 

The pair (n, e) forms the public key. These are typically distributed to many 
different parties. The values (p, q, t, d) are the private key and are kept secret 
by the person who generated the RSA key. 

For convenience, we often write elfe mod n instead of ed mod n. The expo­
nents of a modulo n computation are all taken modulo t, because Xl = 1 
(mod n), so multiples of t in the exponent do not affect the result. And we 
computed d as the inverse of e modulo t, so writing d as lie is natural. The 
notation el/e is often easier to follow, especially when multiple RSA keys are 
in use. That is why we also talk about taking the e'th root of a number. Just 
remember that computations of any roots modulo n require knowledge of the 
private key. 

1 2.4.1 Digital Signatures with RSA 

SO far, we've only talked about encrypting messages with RSA. One of the 
great advantages of RSA is that it can be used for both encrypting messages 
and signing messages. These two operations use the same computations. To 
sign a message m, the owner of the private key computes s := mIle mod n. 
The pair (m, s) is now a Signed message. To verify the signature, anyone who 
knows the public key can verify that s" = m (mod n). 

As with encryption, the security of the signature is based on the fact 
that the e'th root of m can only be computed by someone who knows the 
private key. 
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The procedure described so far has one problem. If e has a common factor 
with t = lcm(p - 1, q - 1), there is no solution for d. 50 we have to choose p, q, 
and e such that this situation does not occur. This is more of a nuisance than a 
problem, but it has to be dealt with. 

Choosing a short public exponent makes RSA more efficient, as fewer 
computations are needed to raise a number to the power e. We therefore try to 
choose a small value for e. In this book, we will choose a fixed value for e, and 
choose p and q to satisfy the conditions above. 

You have to be careful that the encryption functions and digital signature 
functions don't interact in undesirable ways. You don't want it to be possible 
for an attacker to decrypt a message c by convincing the owner of the private 
key to sign c. After all, signing the "message" c is the same operation as 
decrypting the ciphertext c. The encoding functions presented later in this 
book will prevent this. These encodings are remotely akin to block cipher 
modes of operation; you should not use the basic R5A operation directly. 
But even then, we still don't want to use the same RSA operation for both 
functions. We could use different RSA keys for encryption and authentication, 
but that would increase complexity and double the amount of key material. 

Another approach, which we use here, is to use two different public 
exponents on the same n. We will use e = 3 for signatures and e = 5 for 
encryption. This decouples the systems because cube roots and fifth roots 
modulo n are independent of each other. Knowing one does not help the 
attacker to compute the other [46]. 

Choosing fixed values for e simplifies the system and also gives predictable 
performance. It does impose a restriction on the primes that you can use, as 
both p - 1 and q - 1 cannot be multiples of 3 or 5. It is easy to check for this 
when you generate the primes in the first place. 

The rationale for using 3 and 5 is simple. These are the smallest suitable 
values.2 We choose the smaller public exponent for signatures, because sig­
natures are often verified multiple times, whereas any piece of data is only 
encrypted once. It therefore makes more sense to let the signature verification 
be the more efficient operation. 

Other common values used for e are 17 and 65537. We prefer the smaller 
values, as they are more efficient. There are some minor potential problems 
with the small public exponents, but we will eliminate them with our encoding 
functions further on. 

It would also be nice to have a small value for d, but we have to disappoint 
you here. Although it is possible to find a pair (e, d) with a small d, using a 

2you could in principle use e = 2, but that would introduce a lot of extra complexities. 
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small d is insecure [127]. So don't play any games by choosing a convenient 
value for d. 

1 2.4.3 The Private Key 

It is extremely difficult for the attacker to find any of the values of the private 
key p, q, t, or d if she knows only the public key (n, e). As long as n is large 
enough, there is no known algorithm that will do this in an acceptable time. 
The best solution we know of is to factor n into p and q, and then compute t 
and d from that. This is why you often hear about factoring being so important 
for cryptography. 

We've been talking about the private key consisting of the values p, q, t, 
and d. It turns out that knowledge of any one of these values is sufficient to 
compute all the other three. This is quite instructive to see. 

We assume that the attacker knows the public key (n, e), as that is typically 
public information. If she knows p or q, things are easy. Given p she can 
compute q = nip, and then she can compute t and d just as we did above. 

What if the attacker knows (n, e, t)? First of all, t = (p - 1)(q - 1)1 gcd(p -
1, q - 1), but as (p - 1)(q - 1) is very close to n, it is easy to find gcd(p - l, q - 1) 
as it is the closest integer to nit. (The value gcd(p - 1, q - 1) is never very large 
because it is very unlikely that two random numbers share a large factor.) 
This allows the attacker to compute (p - 1)(q - 1). She can also compute 
n - (p - 1)(q - 1) + 1 = pq - (pq - p - q + 1) + 1 = P + q. So now she has both 
n = pq and s := p + q. She can now derive the following equations: 

s = p + q  
s = p + nip 

ps = p2 + n 
O = p2 - ps + n  

The last is just a quadratic equation in p that she can solve with high-school 
math. Of course, once the attacker has p, she can compute all the other private 
key values as welL 

Something similar happens if the attacker knows d. In all our systems, e 
will be very small. As d < t, the number ed - 1 is only a small factor times t. 
The attacker can just guess this factor, compute t, and then try to find p and 
q as above. If she fails, she just tries the other possibilities. (There are faster 
techniques, but this one is easy to understand.) 

In short, knowing any one of the values p, q, t, or d lets the attacker compute 
all the others. It is therefore reasonable to assume that the owner of the private 
key has all four values. Implementations only need to store one of these 
values, but often store several of the values they need to perform the RSA 
decryption operation. This is implementation dependent, and is not relevant 
from a cryptographic point of view. 
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If Alice wants to decrypt or sign a message, she obviously must know d. 
As knowing d is equivalent to knowing p and q, we can safely assume that 
she knows the factors of n and can therefore use the CRT representation for 
her computations. This is nice, because raising a number to the power d is the 
most expensive operation in RSA, and using the CRT representation saves a 
factor of 3-4 work. 

1 2.4.4 The Size of n 

The modulus n should be the same size as the modulus p that you would use 
in the DH case. See Section 11.7 for the detailed discussion. To reiterate: the 
absolute minimum size for n is 2048 bits or so if you want to protect your data 
for 20 years. This minimum will slowly increase as computers get faster. If you 
can afford it in your application, let n be 4096 bits long, or as close to this size as 
you can manage. Furthermore, make sure that your software supports values 
of n up to 8192 bits long. You never know what the future will bring, and it 
could be a lifesaver if you can switch to using larger keys without replacing 
software or hardware. 

The two primes p and q should be of equal size. For a k-bit modulus n, you 
can just generate two random k/2-bit primes and multiply them. You might 
end up with a k - I-bit modulus n, but that doesn't matter much. 

1 2.4.5 Generating RSA Keys 

To pull everything together, we present two routines that generate RSA keys 
with the desired properties. The first one is a modification of the GENERATE­
LARGEPRIME function of Section 10.4. The only functional change is that we 
require that the prime satisfies p mod 3 =/=- I and p mod 5 =/=- I to ensure that we 
can use the public exponents 3 and 5. Of course, if you want to use a different 
fixed value for e, you have to modify this routine accordingly. 

function GENERATERSAPRIME 
input: k Size of the desired prime, in number of bits. 
output: p A random prime in the intervaI 2k-1, • • •  , 2k - I subject to p mod 

3 =/=- I A p mod 5 =/=- 1 . 

Check for a sensible range. 
assert 1024 ::s k ::s 4096 

Compute maximum number of attempts. 
r +-- lOOk 
repeat 

r +-- r - I  
assert r > 0 
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Choose n as a random k-bit number. 
n En 2k-l, . . .  , 2k - 1 

Keep on trying until we find a prime. 
until n mod 3 =I=- 1 /\  n mod 5 =I=- 1 /\ ISPRIME(n) 
return n 

Instead of specifying a full range in which the prime should fall, we only 
specify the size of the prime. This is a less-flexible definition, but somewhat 
simpler, and it is sufficient for RSA. The extra requirements are in the loop 
condition. A clever implementation will not even call ISPRIME(n) if n is 
not suitable modulo 3 or 5, as ISPRIME can take a significant amount of 
computations. 

So why do we still include the loop counter with the error condition? Surely, 
now that the range is large enough, we will always find a suitable prime? 
We'd hope so, but stranger things have happened. We are not worried about 
getting a range with no primes in it-we're worried about a broken PRNG that 
always returns the same composite result. This is, unfortunately, a common 
failure mode of random number generators, and this simple check makes 
GENERATERSAPRIME safe from misbehaving PRNGS. Another possible failure 
mode is a broken ISPRIME function that always claims that the number is 
composite. Of course, we have more serious problems to worry about if any 
of these functions is misbehaving. 

The next function generates all the key parameters. 

function GENERATERSAKEY 
input: k Size of the modulus, in number of bits. 
output: p, q Factors of the modulus. 

n Modulus of about k bits. 
d3 Signing exponent. 
ds Decryption exponent. 

Check for a sensible range. 
assert 2048 � k �  8192 

Generate the primes. 
p +- GENERATERSAPRIME( Lkj2J ) 
q +- GENERATERSAPRIME( Lkj2J ) 

A little test just in case our PRNG is bad . . . .  
assert p =I=- q 

Compute t as lcm(p - 1, q - 1). 
t +- (p - l)(q - l)jGCD(p - l, q - 1) 

Compute the secret exponents using the modular inversion feature of the extended 
GCD algorithm. 

g, (u, v) +- EXTENDEDGCD(3, t) 
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Check that the GCD is correct, or we don't get an inverse at all. 
assert g = 1 

Reduce u modulo t, as u could be negative and d3 shouldn't be. 
d3 +- u mod t 

And now for ds. 
g, (u, v) +- EXTENDEDGCD(5, t) 
assert g = 1 
ds +- u mod t 
return p, q, pq, d3, ds 

Note that we've used the fixed choices for the public exponents, and that 
we generate a key that can be used both for signing (e = 3) and for encryption 
(e = 5). 

1 2.5 Pitfalls Using RSA 

Using RSA as presented so far is very dangerous. The problem is the mathe­
matical structure. For example, if Alice digitally signs two messages m1 and 
m2, then Bob can compute Alice's signature on m3 := I1lj m2 mod n. After all, 
Alice has computed m�/e and m�/e and Bob can multiply the two results to get 
(mtm2)1/e. 

Another problem arises if Bob encrypts a very small message m with Alice's 
public key. If e = 5 and m < -lfii, then me = mS < n, so no modular reduction 
ever takes place. The attacker Eve can recover m by simply taking the fifth root 
of mS, which is easy to do because there are no modulo reductions involved. 
A typical situation in which this could go wrong is if Bob tries to send an AES 
key to Alice. If she just takes the 256-bit value as an integer, then the encrypted 
key is less than 2256-S = 21280, which is much smaller than our n. There is never 
a modulo reduction, and Eve can compute the key by simply computing the 
fifth root of the encrypted key value. 

One of the reasons we have explained the theory behind RSA in such detail 
is to teach you some of the mathematical structure that we encounter. This 
very same structure invites many types of attack. We've mentioned some 
simple ones in the previous paragraph. There are far more advanced attacks, 
based on techniques for solving polynomial equations modulo n. All of them 
come down to a single thing: it is very bad to have any kind of structure in the 
numbers that RSA operates on. 

The solution is to use a function that destroys any available structure. 
Sometimes this is called a padding function, but this is a misnomer. The word 
padding is normally used for adding additional bytes to get a result of the right 
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length. People have used various forms of padding for RSA encryption and 
signatures, and quite a few times this has resulted in attacks on their designs. 
What you need is a function that removes as much structure as possible. We'll 
call this the encoding function. 

There are standards for this, most notably PKCS #1 v2.1 [110] . As usual, this 
is not a single standard. There are two RSA encryption schemes and two RSA 
signature schemes, each of which can take a variety of hash functions. This 
is not necessarily bad, but from a pedagogical perspective we don't like the 
extra complexity. We'll therefore present some simpler methods, even though 
they might not have all the features of some of the PKCS methods. And, as 
we mentioned before in the case of AES, there are many advantages to using 
a standardized algorithm in practice. For example, for encryption you might 
use RSA-OAEP [9], and for signatures you might use RSA-PSS [8]. 

The PKCS #1 v2.1 standard also demonstrates a common problem in tech­
nical documentation: it mixes specification with implementation. The RSA 
decryption function is specified twice; once using the equation m = Cd mod n 

and once using the CRT equations. These two computations have the same 
result: one is merely an optimized implementation of the other. Such imple­
mentation descriptions should not be part of the standard, as they do not 
produce different behavior. They should be discussed separately. We don't 
want to criticize this PKCS standard in particular; it is a very widespread 
problem that you find throughout the computer industry. 

1 2.6 Encryption 

Encrypting a message is the canonical application of RSA, yet it is almost 
never used in practice. The reason is simple: the size of the message that can 
be encrypted using RSA is limited by the size of n. In real systems, you cannot 
even use all the bits, because the encoding function has an overhead. This 
limited message size is too impractical for most applications, and because the 
RSA operation is quite expensive in computational terms, you don't want to 
split a message into smaller blocks and encrypt each of them with a separate 
RSA operation. 

The solution used almost everywhere is to choose a random secret key K, 
and encrypt K with the RSA keys. The actual message m is then encrypted with 
key K using a block cipher or stream cipher. So instead of sending something 
like ERSA(m), you send ERSA(K), EK(m). The size of the message is no longer 
limited, and only a single RSA operation is required, even for large messages. 
You have to transmit a small amount of extra data, but this is usually a minor 
price to pay for the advantages you get. 

We will use an even simpler method of encryption. Instead of choosing a K 
and encrypting K, we choose a random r E Zn and define the bulk encryption 
key as K := h(r) for some hash function h. Encrypting r is done by simply raising 
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it to the fifth power modulo n. (Remember, we use e = 5 for encryption.) This 
solution is simple and secure. As r is chosen randomly, there is no structure 
in r that can be used to attack the RSA portion of the encryption. The hash 
function in turn ensures that no structure between different r's propagates to 
structure in the K's, except for the obvious requirement that equal inputs must 
yield equal outputs. 

For simplicity of implementation, we choose our r's in the range 0, . . .  , 2k - I, 
where k is the largest number such that 2k < n. It is easier to generate a random 
k-bit number than to generate a random number in Zn, and this small deviation 
from the uniform distribution is harmless in this situation. 

Here is a more formal definition: 

function ENCRYPTRANDOMKEyWITHRSA 
input: (n, e) RSA public key, in our case e = 5. 
output: K Symmetric key that was encrypted. 

c RSA ciphertext. 

Compute k. 
k +- Llog2 nJ 

Choose a random r such that 0 � r < 2k - 1. 
r En { 0, . . .  , 2k - 1 } 
K +- SHAt-256(r) 
c +- re mod n 
return (K, c) 

The receiver computes K = h(c1/e mod n) and gets the same key K. 

function DECRYPTRANDOMKEyWITHRSA 
input: (n, d) RSA private key with e = 5. 

c Ciphertext. 
output: K Symmetric key that was encrypted. 

assert 0 � c < n 

This is trivial. 
K +- SHAt-256(c1/e mod n) 
return K 

We previously dealt extensively with how to compute cl/e given the private 
key, so we won't discuss that here again. Just don't forget to use the CRT for a 
factor of 3-4 speed-up. 

Here is a good way to look at the security. Let's assume that Bob encrypts a 
key K for Alice, and Eve wants to know more about this key. Bob's message 
depends only on some random data and on Alice's public key. So at worst this 
message could leak data to Eve about K, but it cannot leak any data about any 
other secret, such as Alice's private key. The key K is computed using a hash 
function, and we can pretend that the hash function is a random mapping. 
(If we cannot treat the hash function as a random mapping, it doesn't satisfy 
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our security requirement for hash functions.) The only way to get information 
about the output of a hash function is to know most of the input. That means 
having information about r. But if RSA is secure-and we have to assume that 
since we have chosen to use it-then it is impossible to get any significant 
amount of information about a randomly chosen r given just (re mod n). This 
leaves the attacker with a lot of uncertainty about r, and consequently, no 
knowledge about K. 

Suppose the key K is later revealed to Eve, maybe due to a failure of another 
component of the system. Does this reveal anything about Alice's private key? 
No. K is the output of a hash function, and it is impossible for Eve to derive 
any information about the inputs to the hash function. So even if Eve chose 
e in some special way, the K she acquires does not reveal anything about r. 
Alice's private key was only used to compute r, so Eve cannot learn anything 
about Alice's private key either. 

This is one of the advantages of having a hash function in the DECRYPTRAN­
DOMKEyWITHRSA function. Suppose it just returned elfe mod n. This routine 
could then be used to play all kinds of games. Suppose some other part of 
the system had a weakness and Eve learned the least significant bit of the 
output. Eve could then send specially chosen values e1, e2, e3, . . .  to Alice and 
get the least significant bits of e�/e, e�/e, e�/e, . . . •  These answers have all kinds of 
algebraic properties, and it is quite conceivable that Eve could learn something 
useful from a situation like this. The hash function h in DECRYPTRANDOMKEY­
WITHRSA destroys all mathematical structure. Learning one bit from the 
output K gives Eve almost no information about el/e• Even the full result K 
divulges very little useful information; the hash function is not invertible. 
Adding the hash function here makes the RSA routines more secure against 
failures in the rest of the system. 

This is also the reason why DECRYPTRANDOMKEyWITHRSA does not check 
that the r we compute from e falls in the range 0, . . .  , 2k - 1 .  If we checked 
this condition, we would have to handle the error that could result. As error 
handling always leads to different behavior, it is quite probable that Eve could 
detect whether this error occurred. This would provide Eve with a function 
that reveals information: Eve could choose any value e and learn whether 
elfe mod n < 2k. Eve cannot compute this property without Alice's help, and we 
don't want to help Eve if we can avoid it. By not checking the condition, we at 
most generate a nonsense output, and that is something that can happen in any 
case, as e might have been corrupted without resulting in an invalid r value.3 

An aside: there is a big difference between revealing a random pair (e, e1Ie), 
and computing elfe for a e chosen by someone else. Anybody can produce pairs 

3Placing more restrictions on r does not stop the problem of nonsensical outputs. Eve can always 
use Alice's public key and a modified ENCRYPTRANDOMKEyWITHRSA function to send Alice 
encryptions of nonsensical keys. 
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of the form (e, elfe). All you do is choose a random r, compute the pair (re, r), 
and then set e := reo There is nothing secret about pairs like that. But if Alice 
is kind enough to compute elfe for a e she receives from Eve, Eve can choose 
e values with some special properties-something she can't do for the (e, elfe) 
pairs she generates herself. Don't provide this extra service for your attacker. 

1 2.7 Signatures 

For signatures, we have to do a bit more work. The problem is that the message 
m we want to sign can have a lot of structure to it, and we do not want any 
structure in the number we compute the RSA root on. We have to destroy the 
structure. 

The first step is to hash the message. So instead of a variable-length message 
m, we deal with a fixed-size value hem) where h is a hash function. If we use 
SHA.J-2S6, we get a 2S6-bit result. But n is much bigger than that, so we cannot 
use hem) directly. 

The simple solution is to use a pseudorandom mapping to expand hem) 
to a random number s in the range 0, . . .  , n - 1. The signature on m is then 
computed as sl/e (mod n). Mapping hem) to a modulo n value is a bit of work 
(see the discussion in Section 9.7). In this particular situation, we can safely 
simplify our problem by mapping hem) to a random element in the range 
0, . . .  , 2k - 1, where k is the largest number such that 2k < n. Numbers in the 
range 0, . . .  , 2k - 1 are easy to generate because we only need to generate k 
random bits. In this particular situation, this is a safe solution, but don't use 
it just anywhere. There are many situations in cryptography where this will 
break your entire system. 

We will use the generator from our Fortuna PRNG from Chapter 9. Many 
systems use the hash function h to build a special little random number 
generator for this purpose, but we've already defined a good one. Besides, you 
need the PRNG to choose the primes to generate the RSA keys, so you have the 
PRNG in the software already. 

This results in three functions-one to map the message to s, one to sign the 
message, and one to verify the signature. 

function MSGToRSANUMBER 
input: n RSA public key, modulus. 

m 

output: s 

Message to be converted to a value modulo n. 

A number modulo n. 

Create a new PRNG generator. 
9 +- [NITIALIZEGENERATORO 

Seed it with the hash of the message. 
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RESEED(g, SHAr2S6(m» 

Compute k. 
k +--- Liog2 n J 
x +--- PSEuDoRANDoMDATA(g, rkj81 ) 

As usuat we treat the byte-string x as an integer using the LSByte first convention. 
The modulo reduction can be implemented with a simple AND on the 
last byte of x. 

s +--- x mod 2k 
return s 

function SICNWITHRSA 
input: (n, d) RSA private key with e = 3. 

m Message to be signed. 
output: a Signature on m. 

s +--- MscToRSANuMBER(n, m) 
a +--- sIte mod n 

return a 

The letter a, or sigma, is often used for signatures because it is the Greek 
equivalent of our letter s. By now you should know how to compute sl/e mod n, 
given the private key. 

function VERIFYRSASICNATURE 
input: (n,e) RSA public key with e = 3. 

m Message that is supposed to be signed. 
a Signature on the message. 

s +--- MscToRSANuMBER(n, m) 
assert s = ae mod n 

Of course, in a real application there will be some action to take if the 
signature verification fails. We've just written an assertion here to indicate that 
normal operations should not proceed. A signature failure should be taken 
like any other failure in a cryptographic protocol: as a clear signal that you are 
under active attack. Don't send any replies unless you absolutely have to, and 
destroy all the material you are working on. The more information you send 
out, the more information you give the attacker. 

The security argument for our RSA signatures is similar to that of the 
RSA encryptions. If you ask Alice to sign a bunch of messages mI, m2, . . .  , mj, 
then you are getting pairs of the form (s, s1ft'), but the s values are effectively 
random. As long as the hash function is secure, you can only affect h(m) by 
trial and error. The random generator is again a random mapping. Anyone 
can create pairs of the form (s, sI/e) for random s values, so this provides no 
new information that helps the attacker forge a signature. However, for any 
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particular message m, only someone who knows the private key can compute 
the corresponding (s, s1/e) pair, because s must be computed from h(m), then 
s1/e must be computed from s. This requires the private key. Therefore, anyone 
who verifies the signature knows that Alice must have signed it. 

This brings us to the end of our treatment of RSA, and to the end of the 
math-heavy part of this book. We will be using DH and RSA for our key 
negotiation protocol and the PKI, but that only uses the math we have already 
explained. No new mathematics will be introduced. 

1 2.8 Exercises 

Exercise 12.1 Let p = 89, q = 107, n = pq, a = 3, and b = 5. Find x in Z" such 
that a = x (mod p) and b = x (mod q). 

Exercise 12.2 Let p = 89, q = 107, n = pq, x = 1796, and y = 8931. Compute 
x + y (mod n) directly. Compute x + y (mod n) using CRT representations. 

Exercise 12.3 Let p = 89, q = 107, n = pq, x = 1796, and y = 8931. Compute 
xy (mod n) directly. Compute xy (mod n) using CRT representations. 

Exercise 12.4 Let p = 83, q = 101, n = pq, and e = 3. Is (n, e) a valid RSA 
public key? If so, compute the corresponding private RSA key d. If not, why 
not? 

Exercise 12.5 Let p = 79, q = 89, n = pq, and e = 3. Is (n, e) a valid RSA public 
key? If so, compute the corresponding private RSA key d. If not, why not? 

Exercise 12.6 To speed up decryption, Alice has chosen to set her private 
key d = 3 and computes e as the inverse of d modulo t. Is this a good design 
decision? 

Exercise 12.7 Does a 256-bit RSA key (a key with a 256-bit modulus) provide 
strength similar to that of a 256-bit AES key? 

Exercise 12.8 Let p = 71, q = 89, n = pq, and e = 3. First find d. Then compute 
the signature on ml = 5416, m2 = 2397, and m3 = m1m2 (mod n) using thebasic 
RSA operation. Show that the third signature is equivalent to the product of 
the first two signatures. 





C H A P T 

1 3  

Introduction to Cryptographic 
Rrotocols 

Cryptographic protocols consist of an exchange of messages between partici­
pants. We've already seen a simple cryptographic protocol in Chapter II .  

Creating secure protocols is  challenging. The main problem is that as a 
designer or implementer, you are not in control. Up to now we have been 
designing a system, and have had control over the behavior of various parts. 
Once you start communicating with other parties, you have no control over 
their behavior. The other party has a different set of interests than you do, and 
he could deviate from the rules to try to get an advantage. When working on 
protocols, you must assume that you are dealing with the enemy. 

1 3. 1  Roles 

Protocols are typically described as being executed by Alice and Bob, or 
between a customer and a merchant. Names like " Alice," "Bob," "customer," 
and "merchant" are not really meant to identify a particular individual or 
organization. They identify a role within the protocol. If Mr. Smith wants 
to communicate with Mr. Jones, he might run a key agreement protocol. 
Mr. Smith could take the role of Alice, and Mr. Jones the role of Bob. The 
next day the roles might be reversed. It is important to keep in mind that 
a single entity can take on any of the roles.1 This is especially important to 
remember when you analyze the protocol for security. We've already seen the 

1 In protocols with three or more participants, it is even possible for a single person to take on 
more than one role at the same time. 

2 1 3  
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man-in-the-middle attack on the DH protocol. In that attack, Eve takes on the 
roles of both Alice and of Bob. (Of course, Eve is just another role, too.) 

1 3.2 Trust 

Trust is the ultimate basis for all dealings that we have with other people. 
If you don't trust anybody with anything at all, why bother interacting with 
them? For example, buying a candy bar requires a basic level of trust. The 
customer has to trust the merchant to provide the candy and give proper 
change. The merchant has to trust the customer to pay. Both have recourse if 
the other party misbehaves. Shoplifters are prosecuted. Cheating merchants 
risk bad publicity, lawsuits, and getting punched in the nose. 

There are several sources of trust: 

Ethics Ethics has a large influence in our society. Although very few, if any, 
people behave ethically all the time, most people behave ethically most 
of the time. Attackers are few. Most people pay for their purchases, even 
when it would be laughably easy to steal them. 

Reputation Having a "good name" is very important in our society. People 
and companies want to protect their reputation. Often the threat of bad 
publicity gives them an incentive to behave properly. 

Law In civilized societies, there is a legal infrastructure that supports lawsuits 
and prosecution of people who misbehave. This gives people an incentive 
to behave properly. 

Physical Threat Another incentive to behave properly is the fear of harm if 
you cheat and are caught. This is one of the sources of trust for drug 
deals and other illegal trades. 

MAD A Cold War term: Mutually Assured Destruction. In milder forms, 
it is the threat to do harm to both yourself and the other party. If 
you cheat your friend, she might break off the friendship, doing you 
both harm. Sometimes you see two companies in a MAD situation, 
especially when they file patent infringement lawsuits against each 
other. 

All of these sources are mechanisms whereby a party has an incentive not 
to cheat. The other party knows this incentive, and therefore feels he can trust 
his opponent to some extent. This is why these incentives all fail when you 
deal with completely irrational people: you can't trust them to act in their own 
best interest, which undermines all these mechanisms. 
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It is hard to develop trust over the Internet. Suppose Alice lives abroad and 
connects to the ACME website. ACME has almost no reason to trust Alice; of the 
mechanisms of trust we mentioned, only ethics remains. Legal recourse against 
private individuals abroad is almost impossible, and prohibitively expensive 
in most cases. You can't effectively harm their reputation or threaten them, 
even with MAD. 

There is nevertheless a basis of trust between Alice and ACME, because 
ACME has a reputation to protect. This is important to remember when you 
design a protocol for e-commerce. If there are any failure modes (and there 
always are), the failure should be to ACME's advantage, because ACME has an 
incentive to settle the matter properly by manual intervention.2 If the failure is 
to Alice's advantage, the issue is less likely to be settled properly. Furthermore, 
ACME will be vulnerable to attackers who try to induce the failure mode and 
then profit by it. 

Trust is not a black-and-white issue. It is not that you either trust someone 
or you don't trust him. You trust different people to different degrees. You 
might trust an acquaintance with $100 but not with your lottery ticket that 
just won a $5,000,000 prize. We trust the bank to keep our money safe, but we 
get receipts and copies of canceled checks because we don't fully trust their 
administration. The question liDo you trust him?" is incomplete. It should be 
"00 you trust him with X?" 

1 3.2. 1  Risk 
Trust is fundamental to business, but it is usually expressed as risk rather than 
trust. Risk can be seen as the converse of trust. Risks are evaluated, compared, 
and traded in many forms. 

When working on cryptographic protocols, it is easier to talk in terms of 
trust than in terms of risks. But a lack of trust is simply a risk, and that 
can sometimes be handled by standard risk-management techniques such as 
insurance. We talk about trust when we design protocols. Always keep in 
mind that business people think and talk in terms of risks. You'll have to 
convert between the two perspectives if you want to be able to talk to them. 

1 3.3 Incentive 

The incentive structure is another fundamental component of any analysis 
of a protocol. What are the goals of the different participants? What would 
they like to achieve? Even in real life, analyzing the incentive structure gives 
insightful conclusions. 

2 Almost all telephone, mail, and electronic commerce to individuals follows this rule by having 
the customer pay for the order before it is shipped. 
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Several times every week we get press reports that announce things like, 
"New research has shown that . . . .  " Our first reaction is always to ask: who 
paid for the research? Research whose results are advantageous to the party 
who paid for it is always suspect. Several factors are at play here. First, the 
researchers know what their customer wants to hear, and know they can 
get repeat contracts if they produce "good" results. This introduces a bias. 
Second, the sponsor of the research is not going to publish any negative 
reports. Publishing only the positive reports introduces another bias. Tobacco 
companies published "scientific" reports that nicotine was not addictive. 
Microsoft pays for research that "proves" that open source software is bad in 
some way. Don't ever trust research that supports the company that paid for it. 

The authors are personally quite familiar with these pressures. During our 
years as consultants, we performed many security evaluations for paying 
customers. We were often harsh-the average product we evaluated was 
quite bad -and our evaluations often had significantly negative components. 
That didn't always make us popular with our customers. One of them even 
called Bruce and said: "Stop your work and send me your bill. I've found 
someone who is cheaper and who writes better reports." Guess which meaning 
of "better" was intended here? 

We see exactly the same problem in other areas. As we wrote the first edition 
of this book, the press was filled with stories about the accounting and banking 
industries. Analysts and accountants were writing reports favorable for their 
clients rather than unbiased evaluations. We blame the incentive structure that 
gave these people a reason to bias their reports. Looking at the incentives is 
quite instructive, and something we've done for years. With a bit of practice, 
it is surprisingly easy, and it yields valuable insights. 

If you pay your management in stock options, you give them the following 
incentive structure: increase the share price over the next three years and make 
a fortune; decrease the share price, and get a golden handshake. It is a "Heads I 
win a Lot, tails I win a little" incentive, so guess what some managers do? They 
go for a high-risk, short-term strategy. If they get the opportunity to double 
the amount they gamble they will always take it, because they will only collect 
the winnings and never pay the loss. If they can inflate the share price for a 
few years with bookkeeping tricks, they will, because they can cash out before 
they are found out. Some of the gambles fail, but others pay the bills. 

A similar thing happened with the savings and loan industry in the United 
States in the 1980s. The federal government liberalized the rules, allowing 
S&Ls to invest their money more freely. At the same time, the government 
guaranteed the deposits. Now look at the incentive structure. If the investments 
pay off, the S&L makes a profit, and no doubt management gets a nice 
bonus. If the investments lose money, the federal government pays off the 
depositors. Not surprisingly, a bunch of S&Ls lost a lot of money on high-risk 
investments-and the federal government picked up the bilL 
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Fixing the incentive structure is often relatively easy. For example, instead 
of the company itself paying for the audit, the stock exchange can arrange and 
pay for the audit of the books. Give the auditors a significant bonus for every 
error they find and you'll get a much more accurate report. 

Examples of undesirable incentive structures abound. Divorce lawyers have 
an incentive to make the divorce very acrimonious, as they are paid for every 
hour spent fighting over the estate. It is a safe bet that they will advise you to 
settle as soon as the legal fees exceed the value of the estate. 

In American society, lawsuits are common. If an accident happens, every 
participant has a great incentive to hide, deny, or otherwise avoid the blame. 
Strict liability laws and huge damage awards might seem good for society at 
first, but it greatly hinders our ability to figure out why the accident happened, 
and how we can avoid it in future. Liability laws that are supposed to protect 
consumers make it all but impossible (as an example) for a company like 
Firestone to admit there is a problem with their product so we can all learn 
how to build better tires. 

Cryptographic protocols interact in two ways with incentive structures. 
First, they rely on incentive structures. Some electronic payment protocols do 
not stop the merchant from cheating the customer, but provide the customer 
with proof of the cheating. This works because it creates a cryptographic 
forensic trail. The merchant now has an incentive not to have people out there 
with proof they were cheated. The proof could be used either in a court case 
or just to damage the reputation of the merchant. 

Second, cryptographic protocols change the incentive structure. They make 
certain things impossible, removing them from the incentive structure. They 
can also open up new possibilities and new incentives. Once you have online 
banking, you create an incentive for a thief to break into your computer and 
steal your money by that method. 

At first, incentives look as if they are mostly materialistic, but that is only part 
of it. Many people have nonmaterialistic motives. In personal relationships, 
the most fundamental incentives have little to do with money. Keep an open 
mind, and try to understand what drives people. Then create your protocols 
accordingly. 

1 3.4 Trust in Cryptographic Protocols 

The function of cryptographic protocols is to minimize the amount of trust 
required. This is important enough to repeat. The function of cryptographic 
protocols is to minimize the amount of trust required. This means minimizing 
both the number of people who need to trust each other and the amount of 
trust they need to have. 
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One powerful tool for designing cryptographic protocols is the paranoia 
model. When Alice takes part in a protocol, she assumes that all other 
participants are conspiring together to cheat her. This is really the ultimate 
conspiracy theory. Of course, each of the other participants is making the same 
assumption. This is the default model in which all cryptographic protocols are 
designed. 

Any deviations from this default model must be explicitly documented. It 
is surprising how often this step is overlooked. We sometimes see protocols 
used in situations where the required trust is not present. For example, 
most secure websites use the SSL protocol. The SSL protocol requires trusted 
certificates. But a certificate is easy to get. The result is that the user is 
communicating securely with a website, but he doesn't know which website 
he is communicating with. Numerous phishing scams against PayPal users 
have exploited this vulnerability, for example. 

It is very tempting not to document the trust that is required for a particular 
protocol, as it is often II obvious." That might be true to the designer of the 
protocol, but like any module in the system, the protocol should have a clearly 
specified interface, for all the usual reasons. 

From a business point of view, the documented trust requirements also list 
the risks. Each point of required trust implies a risk that has to be dealt with. 

1 3.5 Messages and Steps 

A typical protocol description consists of a number of messages that are sent 
between the participants of the protocol and a description of the computations 
that each participant has to do. 

Almost all protocol descriptions are done at a very high level. Most of the 
details are not described. This allows you to focus on the core functionality of 
the protocol, but it creates a great danger. Without careful specifications of all 
the actions that each participant should take, it is extremely difficult to create 
a safe implementation of the protocol. 

Sometimes you see protocols specified with all the minor details and checks. 
Such specifications are often so complicated that nobody fully understands 
them. This might help an implementer, but anything that is too complicated 
cannot be secure. 

The solution is, as always, modularization. With cryptographic protocols, 
as with communication protocols, we can split the required functionality into 
several protocol layers. Each layer works on top of the previous layer. All 
the layers are important, but most of the layers are the same for all protocols. 
Only the topmost layer is highly variable, and that is the one you always find 
documented. 
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1 3.5.1 The Transport Layer 

Network specialists must forgive us for reusing one of their terms here. For 
cryptographers, the transport layer is the underlying communication system 
that allows parties to communicate. nus consists of sending strings of bytes 
from one participant to another. How this is done is irrelevant for our purposes. 
What we as cryptographers care about is that we can send a string of bytes 
from one participant to the other. You can use UDP packets, a TCP data stream, 
e-mail, or any other method. In many cases, the transport layer needs some 
additional encoding. For example, if a program executes multiple protocols 
simultaneously, the transport layer must deliver the message to the right 
protocol execution. nus might require an extra destination field of some sort. 
When using TCP, the length of the message needs to be included to provide 
message-oriented services over the stream-oriented TCP protocol. 

To be quite clear, we expect that transport layer to transmit arbitrary strings 
of bytes. Any byte value can occur in the message. The length of the string is 
variable. The string received should, of course, be identical to the string that 
was sent; deleting trailing zero bytes, or any other modification, is not allowed. 

Some transport layers include things like magic constants to provide an 
early detection of errors or to check the synchronization of the TCP stream. If 
the magic constant is not correct on a received message, the rest of the message 
should be discarded. 

There is one important special case. Sometimes we run a cryptographic 
protocol over a cryptographically secured channel like the one we designed in 
Chapter 7. In cases like that, the transport layer also provides confidentiality, 
authentication, and replay protection. That makes the protocol much easier to 
design, because there are far fewer types of attack to worry about. 

1 3.5.2 Protocol and Message Identity 

The next layer up provides protocol and message identifiers. When you receive 
a message, you want to know which protocol it belongs to and which message 
within that protocol it is. 

The protocol identifier typically contains two parts. The first part is the 
version information, which provides room for future upgrades. The second 
part identifies which particular cryptographic protocol the message belongs 
to. In an electronic payment system, there might be protocols for withdrawal, 
payment, deposit, refund, etc. The protocol identifier avoids confusion among 
messages of different protocols. 

The message identifier indicates which of the messages of the protocol in 
question this is. If there are four messages in a protocol, you don't want there 
to be any confusion about which message is which. 
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Why do we include so much identifying information? Can't an attacker forge 
all of this? Of course he can. This layer doesn't provide any protection against 
active forgery; rather, it detects accidental errors. It is important to have good 
detection of accidental errors. Suppose you are responsible for maintaining a 
system, and you suddenly get a large number of error messages. Differentiating 
between active attacks and accidental errors such as configuration and version 
problems is a valuable service. 

Protocol and message identifiers also make the message more self-contained, 
which makes much of the maintenance and debugging easier. Cars and air­
planes are designed to be easy to maintain. Software is even more complex -all 
the more reason why it should be designed for ease of maintenance. 

Probably the most important reason to include message identifying infor­
mation has to do with the Horton Principle. When we use authentication (or 
a digital signature) in a protocol, we typically authenticate several messages 
and data fields. By including the message identification information, we avoid 
the risk that a message will be interpreted in the wrong context. 

1 3.5.3 Message Encoding and Parsing 

The next layer is the encoding layer. Each data element of the message has to 
be converted to a sequence of bytes. This is a standard programming problem 
and we won't go into too much detail about that here. 

One very important point is the parsing. The receiver must be able to parse 
the message, which looks like a sequence of bytes, back into its constituent 
fields. This parsing must not depend on contextual information. 

A fixed-length field that is the same in all versions of the protocol is easy 
to parse. You know exactly how long it is. The problems begin when the size 
or meaning of a field depends on some context information, such as earlier 
messages in the protocoL This is an invitation to trouble. 

Many messages in cryptographic protocols end up being signed or otherwise 
authenticated. The authentication function authenticates a string of bytes, 
and usually it is simplest to authenticate the message at the level of the 
transport layer. If the interpretation of a message depends on some contextual 
information, the signature or authentication is ambiguous. We've broken 
several protocols based on this type of failure. 

A good way to encode fields is to use Tag-Length-Value or TLV encoding. 
Each field is encoded as three data elements. The tag identifies the field in 
question, the length is the length of the value encoding, and the value is the 
actual data to be encoded. The best-known TLV encoding is ASN.l [64], but it 
is incredibly complex and we shy away from it. A subset of ASN.l could be 
very usefuL 
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Another alternative is XML. Forget the XML hype; we're only using XML 
as a data encoding system. As long as you use a fixed Document Template 
Definition (DTD), the parsing is not context-dependent, and you won't have 
any problems. 

1 3.5.4 Protocol Execution States 

In many implementations, it is possible for a single computer to take part in 
several protocol executions at the same time. To keep track of all the protocols 
requires some form of protocol execution state. The state contains all the 
information necessary to complete the protocol. 

Implementing protocols requires some kind of event-driven programming, 
as the execution has to wait for external messages to arrive before it can 
proceed. This can be implemented in various ways, such as using one thread 
or process per protocol execution, or using some kind of event dispatch system. 

Given an infrastructure for event-driven programming, implementing a 
protocol is relatively straightforward. The protocol state contains a state 
machine that indicates the type of message expected next. As a general rule, 
no other type of message is acceptable. If the expected type of message arrives, 
it is parsed and processed according to the rules. 

1 3.5.5 Errors 

Protocols always contain a multitude of checks. These include verifying the 
protocol type and message type, checking that it is the expected type of 
message for the protocol execution state, parsing the message, and performing 
the cryptographic verifications specified. If any of these checks fail, we have 
encountered an error. 

Errors need very careful handling, as they are a potential avenue of attack. 
The safest procedure is not to send any reply to an error and immediately delete 
the protocol state. This minimizes the amount of information the attacker can 
get about the protocol. Unfortunately, it makes for an unfriendly system, as 
there is no indication of the error. 

To make systems usable, you often need to add error messages of some 
sort. If you can get away with it, don't send an error message to the other 
parties in the protocol. Log an error message on a secure log so the system 
administrator can diagnose the problem. If you must send an error message, 
make it as uninformative as possible. A simple "There was an error" message 
is often sufficient. 

One dangerous interaction is between errors and timing attacks. Eve can 
send a bogus message to Alice and wait for her error reply. The time it takes 
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Alice to detect the error and send the reply often provides detailed information 
about what was wrong and exactly where it went wrong. 

Here is a good illustration of the dangers of these interactions. Years ago, 
Niels worked with a commercially available smart card system. One of the 
features was a PIN code that was needed to enable the card. The four-digit PIN 
code was sent to the card, and the card responded with a message indicating 
whether the card was now enabled or not. Had this been implemented well, it 
would have taken 10,000 tries to exhaust all the pOSSible PIN codes. The smart 
card allowed five failed PIN attempts before it locked up, after which it would 
require speCial unlocking by other means. The idea was that an attacker who 
didn't know the PIN code could make five attempts to guess the four-digit 
PIN code, which gave her a 1 in 2000 probability of guessing the PIN code 
before the card locked up. 

The design was good, and similar designs are widely used today. A 1 in 
2000 chance is good enough for many applications. But unfortunately, the 
programmer of that particular smart card system made a problematic design 
decision. To verify the four-digit PIN code, the program first checked the first 
digit, then the second, etc. The card reported the PIN code failure as soon 
as it detected that one of the digits was wrong. The weakness was that the 
time it took the smart card to send the "wrong PIN" error depended on how 
many of the digits of the PIN were correct. A smart attacker could measure 
this time and learn a lot of information. In particular, the attacker could find 
out at which position the first wrong digit was. Armed with that knowledge, 
it would take the attacker only 40 attempts to exhaustively search the PIN 
space. (After 10 attempts the first digit would have to be right, after another 
10 attempts the second, etc.) After five tries, her chances of finding the correct 
PIN code rose to 1 in 143. That is much better for the attacker than the 1 in 
2000 chance she should have had. If she got 20 tries, her chances rose to 60%, 
which is a lot more than the 0.2% she should have had. 

Even worse, there are certain situations where having 20 or 40 tries is not 
infeasible. Smart cards that lock up after a number of failed PIN tries always 
reset the counter once the correct PIN has been used, so the user gets another 
five tries to type the correct PIN the next time. Suppose your roommate has 
a smart card like the one described above. If you can get at your roommate's 
smart card, you can run one or two tries before putting the smart card back. 
Wait for him to use the card for real somewhere, using the correct PIN and 
resetting the failed-PIN attempt counter in the smart card. Now you can do 
one or two more tries. Soon you'll have the whole PIN code because it takes at 
most 40 tries to find it. 

Error handling is too complex to give you a simple set of rules. This is 
something we as a community do not know enough about yet. At the moment, 
the best advice we can give is to be very careful and reveal as little information 
as possible. 
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1 3.5.6 Replay and Retries 

A replay attack occurs when the attacker records a message and then later 
resends that same message. Message replays have to be protected against. 
They can be a bit tricky to detect, as the message looks exactly like a proper 
one. After all, it is a proper one. 

Closely related to the replay attack is the retry. Suppose Alice is performing 
a protocol with Bob, and she doesn't get a response. There could be many 
reasons for this, but one common one is that Bob didn't receive Alice's last 
message and is still waiting for it. This happens in real life all the time, and we 
solve this by sending another letter or e-mail, or repeating our last remark. In 
automated systems this is called a retry. Alice retries her last message to Bob 
and again waits for a reply. 

So Bob can receive replays of messages sent by the attacker and retries sent 
by Alice. Somehow, Bob has to deal properly with them and ensure correct 
behavior without introducing a security weakness. 

Sending retries is relatively simple. Each participant has a protocol execution 
state of some form. All you need to do is keep a timer and send the last message 
again if you do not receive an answer within a reasonable time. The exact time 
limit depends on the underlying communication infrastructure. If you use 
UDP packets (a protocol that uses IP packets directly), there is a reasonable 
probability that the message will get lost, and you want a short retry time, on 
the order of a few seconds. If you send your messages over TCP, then TCP 
retries any data that was not received properly using its own timeouts. There is 
little reason to do a retry at the cryptographic protocol level, and most systems 
that use TCP do not do this. Nevertheless, for the rest of this discussion we 
are going to assume that retries are being used, as the general techniques of 
handling received retries also work even if you never send them. 

When you receive a message, you have to figure out what to do with it. We 
assume that each message is recognizable, so that you know which message 
in the protocol it is supposed to be. If it is the message you expect, there is 
nothing out of the ordinary and you just follow the protocol rules. Suppose it 
is a message from the "future" of the protocol; i.e., one that you only expect at 
a later point in time. This is easy; ignore it. Don't change your state, don't send 
a reply, just drop it and do nothing. It is probably part of an attack. Even in 
weird protocols where it could be part of a sequence of errors induced by lost 
messages, ignoring a message has the same effect as the message being lost in 
transit. As the protocol is supposed to recover from lost messages, ignoring a 
message is always a safe solution. 

That leaves the case of "old" messages: messages you already processed 
in the protocol you are running. There are three situations in which this 
could occur. In the first one, the message you receive has the same message 
identification as the previous one you responded to, and it is identical in 
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content to the message you responded to, too. In this case, the message is 
probably a retry, so you send exactly the same reply you sent the first time. 
Note that the reply should be the same. Don't recompute the reply with a 
different random value, and don't just assume that the message you get is 
identical to the first one you replied to. You have to check. 

The second case is when you receive a message that has the same message 
identification as the message you last responded to, but the message contents 
are different. For example, suppose in the DH protocol Bob receives the first 
message from Alice, and then later receives another message that claims to 
be the first message in the protocol, but which contains different data while 
still passing the relevant integrity checks. This situation is indicative of an 
attack. No retry would ever create this situation, as the resent message is never 
different from the first try. Either the message you just received is bogus, or 
the earlier one you responded to is bogus. The safe choice is to treat this as a 
protocol error, with all the consequences we discussed. (Ignoring the message 
you just received is safe, but it means that fewer forms of active attacks are 
detected as such. This has a detrimental effect on the detection and response 
parts of the security system.) 

The third case is when you receive a message that is even older than the 
previous message you responded to. There is not much you can do with this. 
If you still have a copy of the original message you received at that phase in 
the protocol, you can check if it is identical to that one. If it is, ignore it. If it is 
different, you have detected an attack and should treat it as a protocol error. 
Many implementations do not store all the messages that were received in a 
protocol execution, which makes it impossible to know whether the message 
you receive now is or is not identical to the one originally processed. The 
safe option is to ignore these messages. You'd be surprised how often this 
actually happens. Sometimes messages get delayed for a long time. Suppose 
Alice sends a message that is delayed. After a few seconds, she sends a retry 
that does arrive, and both Alice and Bob continue with the protocol. Half a 
minute later, Bob receives the original message. This is a situation in which 
Bob receives a copy of-in protocol terms-a very old message. 

Things get more complicated if you have a protocol in which there are more 
than two participants. These exist, but are beyond the scope of this book. If you 
ever work on a multiparty protocol, think carefully about replay and retries. 

One final comment: it is impossible to know whether the last message of a 
protocol arrived or not. If Alice sends the last message to Bob, then she will 
never get a confirmation that it arrived. If the communication link is broken 
and Bob never receives the last message, then Bob will retry the previous 
message but that will not reach Alice either. This is indistinguishable to Alice 
from the normal end of the protocol. You could add an acknowledgment from 
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Bob to Alice to the end of the protocol, but then this acknowledgment becomes 
the new last message and the same problem arises. Cryptographic protocols 
have to be designed in a way that this ambiguity does not lead to insecure 
behavior. 

1 3.6 Exercises 

Exercise 13.1 Describe a protocol you engage in on a regular basis. This 
might be ordering a drink at a local coffee shop or boarding an airplane. Who 
are the explicit actors directly involved in this protocol? Are there other actors 
involved peripherally in this protocol, such as during the setup phase? For 
simplicity, list at most 5 actors. Create a matrix, where each row is labeled by 
an actor and each column is labeled by an actor. For each cell, describe how 
the actor in the row trusts the actor in the column. 

Exercise 13.2 Consider the security of your personal computer. List the 
attackers who might break into your computer, their incentives, and the 
associated costs and risks to the attacker. 

Exercise 13.3 Repeat exercise 13.2, except for a bank instead of your personal 
computer. 

Exercise 13.4 Repeat exercise 13.2, except for a computer at the Pentagon 
instead of your personal computer. 

Exercise 13.5 Repeat exercise 13.2, except for a computer belonging to a 
criminal organization instead of your personal computer. 
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1 4  

Key Negotiation 

Finally, we are ready to tackle the key negotiation protocol. The purpose of 
this protocol is to derive a shared key that can then be used for the secure 
channel we defined in Chapter 7. 

Complete protocols get quite complicated, and it can be confusing to present 
the final protocol all at once. Instead, we will present a sequence of protocols, 
each of which adds a bit more functionality. Keep in mind that the intermediate 
protocols are not fully functional, and will have various weaknesses. 

There are different methods for designing key negotiation protocol, some 
with supporting proofs of security and some without. We designed our pro­
tocol from the ground up-not only because it leads to a cleaner explanation, 
but also because it allows us to highlight nuances and challenges at each stage 
of the protocol's design. 

1 4. 1  The Setting 

There are two parties in the protocol: Alice and Bob. Alice and Bob want to 
communicate securely. They will first conduct the key negotiation protocol to 
set up a secret session key k, and then use k for a secure channel to exchange 
the actual data. 

For a secure key negotiation, Alice and Bob must be able to identify each 
other. This basic authentication capability is the subject of the third part of 
this book. For now, we will just assume that Alice and Bob can authenticate 
messages to each other. This basic authentication can be done using RSA 
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signatures (if Alice and Bob know each other's keys or are using a PKI), or 
using a shared secret key and a MAC function. 

But wait! Why do a key negotiation if you already have a shared secret 
key? There are many reasons why you might want to do this. First of all, the 
key negotiation can decouple the session key from the existing (long-term) 
shared key. If the session key is compromised (e.g., because of a flawed secure 
channel implementation), the shared secret still remains safe. And if the shared 
secret key is compromised after the key negotiation protocol has been run, the 
attacker who learns the shared secret key still does not learn the session key 
negotiated by the protocoL So yesterday'S data is still protected if you lose 
your key today. These are important properties: they make the entire system 
more robust. 

There are also situations in which the shared secret key is a relatively weak 
one, like a password. Users don't like to memorize 30-letter passwords, and 
tend to choose much simpler ones. A standard attack is the dictionary attack, 
where a computer searches through a large number of simple passwords. 
Although we do not consider them here, some key negotiation protocols can 
turn a weak password into a strong key. 

1 4.2 A First Try 

There are standard protocols you might use to do key negotiation. A well­
known one based on the DH protocol is the Station-to-Station protocol [34] . 
Here we will walk you through the design of a different protocol for illustrative 
purposes. We'll start with the simplest design we can think of, shown in 
Figure 14.1 .  This is just the DH protocol in a subgroup with some added 
authentication. Alice and Bob perform the DH protocol using the first two 
messages. (We've left out some of the necessary checks, for simplicity.) Alice 
then computes an authentication on the session key k and sends it to Bob, who 
checks the authentication. Similarly, Bob sends an authentication of k to Alice. 

We don't know the exact form of the authentication at the moment. Remem­
ber, we said we assume that Alice and Bob can authenticate messages to each 
other. So Bob is able to check AUTHA(k) and Alice is able to check AUTHB(k). 
Whether this is done using digital signatures or using a MAC function is not 
our concern here. This protocol merely turns an authentication capability into 
a session key. 

There are some problems with this protocol: 

- The protocol is based on the assumption that (p, q,g) are known to both 
Alice and Bob. Choosing constants for these values is a bad idea. 

- It uses four messages, whereas it is possible to achieve the goal using 
only three. 



Alice 
Known: (p, q,g) 
x En { 1, . . .  , q - 1 ) 

check AUTHB(k) 

x := gx 

Y := gY 

AUTHB(k) 

Figure 1 4.1 : A first attempt at key negotiation. 

Chapter 1 4  • Key Negotiation 229 

Bob 
Known: (p, q,g) 

Y En { 1, . . .  , q - 1 ) 

- The session key is used as an input to the authentication function. This 
is not a problem if the authentication function is strong, but suppose 
the authentication function leaks a few bits about the session key. That 
would be bad. It certainly would require a new analysis of the entire 
protocol. A good rule of thumb is to use a secret only for a Single thing. 
Here k will be used as a session key, so we don't want to use it as an 
argument to the authentication function. 

- The two authentication messages are too similar. If, for example, the 
authentication function is a simple MAC using a secret key known 
to both Alice and Bob, then Bob could just send the authentication 
value he received from Alice, and he would not need the secret key to 
complete the protocol. Thus Alice would not be convinced by the last 
authentication message. 

- Implementations have to be careful not to use k until the authentication 
messages have been exchanged. This is not a major issue and is a rather 
simple requirement, but you wouldn't believe what sometimes happens 
when people try to optimize a program. 

We will fix all of these problems over the course of this chapter. 

1 4.3 Protocols Live Forever 

We've emphasized the importance of designing systems to withstand the 
future. This is even more important for protocols. If you limit the size of 
database fields to 2000 bytes, it might be a problem for some users, but you 
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can remove the limit in the next version. Not so for protocols. Protocols 
are run between different participants, and every new version needs to be 
interoperable with the old version. Modifying a protocol and still keeping it 
compatible with older versions is rather complicated. Before you know it, you 
have to implement several versions of the protocol, with a system to decide 
which version to use. 

The protocol version switch becomes a point of attack, of course. If an older 
protocol is less secure, an attacker has an incentive to force you to use that 
older protocoL You'd be surprised at how many systems we've seen that suffer 
from what's known as a version-rollback attack. 

It is of course impossible to know all the future requirements, so it might 
be necessary to define a second version of a protocol at some point. However, 
the cost of having several protocol versions is high, especially in overall 
complexity. 

Successful protocols live almost forever (we don't care about unsuccessful 
ones). It is extremely difficult to completely remove a protocol from the world. 
So it is even more important to design protocols to be future-proof. This is why 
we can't specify a fixed set of DH parameters for our key negotiation protocoL 
Even if we chose them to be very large, there is always a danger that future 
cryptanalytical improvements might force us to change them. 

1 4.4 An Authentication Convention 

Before we go on, we will introduce an authentication convention. Protocols 
often have many different data elements, and it can be hard to figure out exactly 
which data elements need to be authenticated. Some protocols break because 
they neglect to authenticate certain data fields. We use a simple convention to 
solve these problems. 

In our protocols, every time a party sends an authentication, the authentica­
tion data consists of all the data exchanged so far: all the previous messages, 
and all the data fields that precede the authentication in the authenticator's 
message. The authenticator will also cover (be computed over) the identities of 
the communicants. In the protocol shown in Figure 14.1, Alice's authenticator 
would not be on k, but on Alice's identifier, Bob's identifier, X, and Y. Bob's 
authenticator would cover Alice's identifier, Bob's identifier, X, Y, and AUTHA. 

This convention removes many avenues of attack. It also costs very little. 
Cryptographic protocols don't exchange that much data, and authentication 
computations almost always start by hashing the input string. Hash functions 
are so fast that the extra cost is insignificant. 

This convention also allows us to shorten the notation. Instead of writ­
ing something like AUTHA(X, Y) we simply write AUTHA. As the data to 
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be authenticated is specified by the convention, we no longer need to 
write it down explicitly. All further protocols in this book will use this 
convention. 

Just as a reminder: authentication functions only authenticate a string 
of bytes. Each string of bytes to be authenticated must start with a unique 
identifier that identifies the exact point in the protocol where this authenticator 
is used. Also, the encoding of the previous messages and the data fields 
into this string of bytes must be such that the messages and fields can 
be recovered from the string without further context information. We've 
already talked about this in detail, but it is an important point that is easily 
overlooked. 

1 4.5 A Second Attempt 

How do we fix the problems of the previous protocol? We don't want to use a 
constant DH parameter set, so we'll let Alice choose it and send it to Bob. We'll 
also collapse the four messages into two, as shown in Figure 14.2. Alice starts 
by choosing DH parameters and her DH contribution, and sends it all to Bob 
with an authentication. Bob has to check that the DH parameters are properly 
chosen and that X is valid. (See Chapter 11 for details of these checks.) The rest 
of the protocol is similar to the previous version. Alice receives Y and AUTRB, 
checks them, and computes the DH result. 

Alice 
Choose suitable (p, q,g) 
x En { 1, . . .  , q - 1 } 

Check Y, AUTRB 
k +- yx 

(p, q,g), X := g<, 
AUTRA 

Y := gY, AUTRB 
( 

Figure 14.2: A second attempt at key negotiation. 

Bob 

Check (p, q,g), X, AUTRA 
Y En { 1, . . .  , q - 1 } 

We no longer have fixed DH parameters. We use only two messages, we 
don't use the authentication key directly in any way, and our authentication 
convention ensures that the strings being authenticated are not similar. 
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But now we have some new problems: 

- What do we do if Bob wants a larger DH prime than Alice? Perhaps Bob 
has stricter security policies and thinks the DH prime chosen by Alice 
isn't secure enough. Bob will have to abort the protocoL Maybe he could 
send an error message along the lines of "Require DH prime to be at least 
k bits long," but that gets messy and complicated. Alice would have to 
restart the protocol with new parameters. 

- There is a problem with the authentication. Bob isn't sure he is talking to 
Alice at all. Anybody can record the first message that Alice sends and 
then later send it to Bob. Bob thinks the message comes from Alice (after 
all, the authentication checked), and finishes the protocol, thinking he 
shares a key k with Alice. The attacker doesn't learn k, as he doesn't know 
x, and without k the attacker cannot break into the rest of the system that 
uses k. But Bob's logs will show a completed authenticated protocol with 
Alice, and that is a problem by itself, as it provides erroneous information 
to investigating administrators. 

Bob's problem is called a lack of "liveness." He isn't sure that Alice is 
"alive," and that he's not talking to a replaying ghost. The traditional way to 
solve this is to make sure that Alice's authenticator covers a random element 
chosen by Bob. 

1 4.6 A Third Attempt 

We will fix these problems with a few more changes. Instead of Alice choosing 
the DH parameters, she will simply send her minimal requirements to Bob, and 
Bob will choose the parameters. This does increase the number of messages 
to three. (It turns out that most interesting cryptographic protocols require at 
least three messages. We don't know why, they just do.) Bob only sends a 
single message: the second one. This message will contain his authenticator, 
so Alice should send a randomly chosen element in the first message. We use 
a random nonce for this. 

This leads to the protocol shown in Figure 14.3. Alice starts by choosing 5, 

the minimal size of the prime p she wants to use. She also chooses a random 
256-bit string as nonce Na and sends them both to Bob. Bob chooses a suitable 
DH parameter set and his random exponent, and sends the parameters, his DH 
contribution, and his authenticator to Alice. Alice completes the DH protocol 
as usual with the added authenticator. 

There is one more problem to be solved. The fina] result k is a variable-sized 
number. Other parts of the system might find this difficult to work with. 
Furthermore, k is computed using algebraic relations, and leaving algebraic 
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structure in a cryptographic system always scares us. There are a few places 
where you absolutely need such structure, but we avoid it wherever possible. 
The danger of algebraic structure is that an attacker might find some way 
of exploiting it. Mathematics can be an extremely powerful tool. Over the 
past few decades, we have seen many new proposals for public-key systems, 
almost all of which have been broken-mostly due to the algebraic structure 
they contained. Always remove any algebraic structure that you can. 

Alice 
s +- min P size 
Na En 0, . . .  , 2'l56 - 1  

Check (p, q,g), X, AUTHB 
Y En { 1, . . .  , q - 1 } 

(p, q,g), X := �, 
AUTHB 

Figure 14.3: A third attempt at key negotiation. 

Bob 

Choose (p, q,g) 
x En { 1, . . .  , q - 1 } 

Check Y, AUTHA 
k +- yx 

The obvious solution is to hash the final key. This reduces it to a fixed size, 
and also destroys any remaining algebraic structure. 

1 4.7 The Final Protocol 

The final protocol is shown in short form in Figure 14.4. This is the form that is 
easiest to read and understand. However, we've left a lot of verification steps 
out of the protocol to make it easy to read and to focus on the key properties. 
We simply write "Check {p, q,g)," which stands for several verifications. To 
show you all the required cryptographic checks, the long form of the protocol 
is given in Figure 14.5. 

Bob needs to choose a suitable size for p. This depends on the minimum 
size required by Alice and his own required minimum size. Of course, Bob 
should ensure that the value of s is reasonable. We don't want Bob to be 
required to start generating 100,000-bit primes just because he received an 
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unauthenticated message with a large value for s in it. Similarly, Alice should 
not have to start checking very large primes just because Bob sent them. 
Therefore, both Alice and Bob limit the size of p. Using a fixed maximum 
limits flexibility; if cryptanalytical progress suddenly forces you to use larger 
primes, then a fixed maximum is going to be a real problem. A configurable 
maximum brings with it all the problems of a configuration parameter that 
almost nobody understands. We've chosen to use a dynamic maximum. Both 
Alice and Bob refuse to use a prime that is more than twice as long as the prime 
they would prefer to use. A dynamic maximum provides a nice upgrade path 
and avoids excessively large primes. You can argue about whether the choice 
of the factor two is best. Maybe you should use three; it doesn't matter much. 

Alice 
s +--- min p size 
Na En 0, . . .  , 2256 _ 1  

Check (p, q,g), X, AUTRB 
Y En { 1, . . . , q - 1 } 

k +--- SHJ\t-2S6(xY) 

(p, q,g), X := �, 
AUTRB 

Figure 14.4: The final protocol in short form. 

Bob 

Choose (p, q,g) 
x En { 1, . . .  , q - 1 } 

Check Y, AUTRA 
k +--- SHAr2S6(YX) 

The rest of the protocol is just an expansion of the earlier short form. If Bob 
and Alice are smart, they'll both use caches of suitable DH parameters. This 
saves Bob from having to generate new DH parameters every time, and it 
saves Alice having to check them every time. Applications can even use a fixed 
set of DH parameters, or encode them as defaults in a configuration file, in 
which case you don't have to send them explicitly. A single DH parameter set 
identifier would be enough. But be careful when optimizing. Optimizations 
can end up modifying the protocol enough to break it. There are no simple 
rules we can give you to check if an optimization breaks a protocol or not. 
Protocol design is still more an art than a science, and there are no hard rules 
to live by. 



Alice 
Sa � min p size 
Na En 0, . . .  , 2256 _ 1 

Check AUTHB 
? ? 

Sa - 1 � log2 P � 2 . Sa 
? ? 

255 � log2 q � 256 
Check p, q both prime 

q i (p - 1) /\ g 1= 1 /\ g'I ,J" 1 
X I= l /\ XQ ,J" 1  
Y En { 1, . . .  , q  - 1 } 

k +- SHA.J-256()('J) 
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Bob 

Sb � min p size 
S +- max(sa, Sb) 

? 
S � 2 ·  Sb 

Choose (p, q,g) with log2 P :::: s - l  
x En { 1, . . .  , q - 1 } 

(p, q,g), X := K, 
AUTHB 

Check AUTHA 

Y 1= 1 /\ yq ,J" 1 
k � SHA.t-256(YX) 

Figure 14.5: The final protocol in long form. 

1 4.8 Different Views of the Protocol 

There are a number of instructive ways to look at a protocol like this. There 
are a few properties that the protocol should have, and we can look at why the 
protocol provides them all. 

1 4.8.1 Alice's View 

Let's look at the protocol from Alice's point of view. She receives a single mes­
sage from Bob. She's sure this message is from Bob because it is authenticated, 
and the authentication includes her random nonce Na• There is no way anyone 
could forge this message or replay an old message. 
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Alice checks that the DH parameters are properly chosen, showing that 
the DH protocol has all its expected properties. So when she keeps y secret 
and sends out Y, she knows that only persons who know an x such that 
� = X can compute the resulting key k. This is the basic DH protocol prop­
erty. Bob authenticated X, and Alice trusts Bob to only do this when he is 
following the protocol. Thus, Bob knows the appropriate x, and is keeping it 
secret. Therefore, Alice is sure that only Bob knows the final key k that she 
derives. 

So Alice is convinced she is really talking to Bob, and that the key she derives 
can be known only to her and Bob. 

1 4.8.2 Bob's View 

Now let's look at Bob's side. The first message he receives gives him almost 
no useful information; it basically states that someone out there has chosen a 
value Sa and some random bits Na• 

The third message (the second one Bob receives) is different. This is a 
message that definitely came from Alice, because Alice authenticated it, and 
we assumed at the outset that Bob can verify an authentication by Alice. The 
authentication includes X, a random value chosen by Bob, so the third message 
is not a replay but has been authenticated by Alice specifically for this protocol 
run. Also, Alice's authentication covers the first message that Bob received, so 
now he knows that the first message was proper, too. 

Bob knows the DH parameters are safe; after all, he chose them. So just 
like Alice, he knows that only someone who knows a y such that gY = Y can 
compute the final key k. But Alice authenticated the Y she sent, and Bob trusts 
Alice, so she is the only person who knows the corresponding y. This convinces 
Bob that Alice is the only other person who can compute k. 

1 4.8.3 Attacker's View 

Finally, we look at the protocol from the viewpoint of an attacker. If we just 
listen in on the communications, we see all the messages that Alice and Bob 
exchange. But the key k is computed using the DH protocol, so as long as 
the DH parameters are safe, a passive attack like this is not going to reveal 
anything about k. In other words: we'll have to try an active attack. 

One instructive exercise is to look at each data element and try to change 
it. Here we are quickly stopped by the two authentications. Alice's final 
authentication covers all the data that was exchanged between Alice and Bob. 
That means we can't change any data elements, other than to try a replay 
attack of a prerecorded protocol run. But the nonce and the random X value 
stop any replay attempts. 



Chapter 1 4  • Key Negotiation 237 

That doesn't mean we can't try to play around. We could, for example, 
change Sa to a larger value. As long as this larger value is acceptable to 
Bob, most of the protocol would complete normally. There are just three 
problems. First of all, increasing So isn't an attack because it only makes the 
DH prime larger, and therefore the DH parameters stronger. The second and 
third problems are the two authentications, which will both fail. 

There are some other things that might look like attacks at first. For example, 
suppose Alice sends Bob So and No. Bob sends Sa and No to Charlie. Charlie 
replies to Bob with (p, q,g), X, and AUTRe. Bob now turns this around and 
forwards (p, q,g) and X to Alice, along with a new authenticator AUTHB that 
he computes. Alice replies to Bob with Y and AUTHA. Bob then sends Y and a 
new authenticator AUTHB that he computes to Charlie. What's the result of all 
this? Alice thinks she's sharing a key k with Bob when in fact she's sharing it 
with Charlie. And Charlie thinks he's sharing a key with Bob when he's in fact 
sharing it with Alice. Is this an attack? Not really. Notice that Bob could just 
do the normal key negotiation with both Alice and Charlie, and then forward 
all the messages on the secure channel (decrypting each message he receives 
from Alice and re-encrypting it to Charlie, and vice-versa). This has the same 
effect; Alice thinks she is communicating with Bob, and Charlie thinks he is 
communicating with Bob, but they are sending messages to each other instead. 
And in this scenario Bob knows more (and can do more) than if he ran the 
"attack." It is true that Alice might send a message to Charlie that makes 
Charlie believe that Bob agreed to something, but that can only be to Bob's 
detriment. And an attack that harms the attacker is not one we worry about. 

In the real world, you will find many protocols where there are unauthen­
ticated data elements. Most designers wouldn't bother authenticating Sa in 
our protocol, because changing it would not lead to an attack. (Both Alice 
and Bob independently verify that the size of p is large enough for them.) 
Allowing attackers to play around is always a bad idea. We don't want to give 
them any more tools than necessary. And we can certainly imagine a situation 
where not authenticating Sa could be dangerous. For example, assume that 
Bob prefers to usc DH parameters from a list built into the program, and only 
generates new parameters when necessary. As long as Alice and Bob choose 
to use DH prime sizes that are still in the list, Bob never generates a new 
parameter set. But this also means that Bob's parameter generation code and 
Alice's parameter verification code are never used and therefore unlikely to 
be properly tested. A bug in the parameter generation and testing code could 
remain hidden until an attacker increases Sa. Yes, this is an unlikely scenario, 
but there are thousands of unlikely scenarios that are all bad for security. And 
thousands of low-probability risks add up to a high-probability risk. This is 
why we are so paranoid about stopping any type of attack anytime we can. 
It gives us defense in depth. 
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1 4.8.4 Key Compromise 
So what happens if some other part of the system is compromised? Let's have 
a look. 

If Alice merely loses her authentication key without it becoming known 
to an attacker, she simply loses the ability to run this protocol. She can still 
use session keys that were already established. This is very much how you'd 
expect the protocol to behave. The same holds for Bob if he loses his key. 

If Alice loses the session key, without it becoming known to an attacker, she 
will have to run the key negotiation protocol again with Bob to establish a new 
session key. 

Things get worse if an attacker manages to learn a key. If Alice's authen­
tication key is compromised, the attacker can impersonate Alice from that 
moment on until the time that Bob is informed and stops accepting Alice's 
authentications. This is an unavoidable consequence. If you lose your car keys, 
anyone who finds them can use the car. That is one of the main functions of 
keys: they allow access to certain functions. This protocol does have the desir­
able property that past communications between Alice and Bob still remain 
secret. Even knowing Alice's authentication key doesn't let the attacker find 
the session key k for a protocol that has already finished, even if the attacker 
recorded all the messages. This is called forward secrecy.1 The same properties 
hold with regard to Bob's authentication key. 

Finally, we consider the situation where the session key is compromised. 
The key k is the hash of gxy, where both x and y are randomly chosen. 
This provides no information about any other key. It certainly provides no 
information about Alice's or Bob's authentication keys. The value of k in one 
protocol run is completely independent of the k in another protocol run (at 
least, it is if we assume that Alice and Bob use a good PRNG). 

Our protocol offers the best possible protection against key compromises. 

1 4.9 Computational Complexity of the Protocol 

Let's have a look at the computational complexity of our solution. We'll assume 
that the DH parameter selection and verification are all cached, so we don't 
count them in the workload of a single protocol run. That leaves the following 
computations, which Alice and Bob must each perform: 

- Three exponentiations in the DH subgroup. 

- One authentication generation. 

1 You sometimes see the term perfect forward secrecy, or PFS, but we don't use words like "perfect" 
because it never is. 
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- Various relatively efficient operations, such as random number genera-
tion, comparisons, and hash functions. 

If symmetric-key authentication is used, the run time of the protocol is 
dominated by the DH exponentiations. Let's look at how much work that is. 
Bob and Alice each have to do three modular exponentiations with a 256-bit 
exponent. This requires about 1150 modular multiplications.2 To get an idea 
of how much work this really is, we'll compare this to the computational 
cost of an RSA signature where the RSA modulus and the DH prime are 
the same size. For an s-bit modulus, the signature algorithm requires 3s/2 
multiplications if you do not use the CRT (Chinese Remainder Theorem). 
Using the CRT representation saves a factor of four, so the cost of an RSA 
signature on s-bit numbers is similar to the cost of doing 3s/8 multiplications. 
This leads us to an interesting conclusion: RSA signatures are relatively slower 
than DH computations when the moduli are large, and relatively faster when 
the moduli are small. The break-even point is around 3000 bits. This is because 
DH always uses 256-bit exponents, and for RSA the exponent grows with the 
modulus size. 

We conclude that for the public-key sizes we use, the DH computations cost 
roughly the same as an RSA signature computation. The DH operations are 
still the dominant factors in the computations for the protocol, but the cost is 
quite reasonable. 

If RSA signatures are used for the authentication, the computational load 
more or less doubles. (We can ignore RSA verifications as they are very 
fast.) This still isn't excessive. CPU speeds are rapidly increasing, and in 
most practical implementations you'll see that communications delays rtnd 
overhead take up more time than the computations. 

1 4.9.1 Optimization Tricks 
There are a few optimizations that can be applied to the DH operations. 
Using addition chain heuristics, each exponentiation can be done using fewer 
multiplications. Furthermore, Alice computes both xq and XY. You can use 
addition sequence heuristics to compute these two results simultaneously and 
save about 250 multiplications. See Bos [18] for a detailed discussion. 

There are also various tricks that make it faster to generate a random y and 
compute gY, but these tricks require so much extra system complexity that 
we'd rather not use them. 

2This is for the simple binary exponentiation algorithm. A better-optimized algorithm reduces 
this to less than 1000 multiplications. 
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1 4. 1 0 Protocol Complexity 

This protocol is also an excellent example of why protocol design is so 
hideously difficult. Even a simple protocol like this quickly expands to a full 
page, and we didn't even include all the rules for DH parameter generation or 
the checks for the authentication scheme that are unknown at our abstraction 
level. Yet it is already difficult to keep track of everything that goes on. More 
complicated protocols get much larger. One particular smart card payment 
system that Niels worked on had a dozen or so protocols specified in 50 pages 
of symbols and protocol specifications, and that was using a proprietary, 
highly compact notation! There were 50 more densely written pages needed 
to cover the security-critical implementation issues. 

Full documentation of a set of cryptographic protocols can run into hundreds 
of pages. Protocols quickly get too complicated to keep in your head, and that 
is dangerous. Once you don't understand it all, it is almost inevitable that a 
weakness slips in. The above-mentioned project was probably too complex to 
be fully understood, even by the designers. 

A few years later Niels worked with another, commercially available smart 
card system. This was a well-known and established system that was widely 
used for many different smart card applications. One day Marius Schilder, 
a colleague, showed up with a question-or rather, with a large hole in the 
system. It turns out that two of the protocols had a destructive interference 
with each other. One protocol computed a session key from a long-term card 
key, a bit like the key negotiation protocol of this chapter. A second protocol 
computed an authentication value from the long-term card key. With a bit of 
tweaking, you could use the second protocol to let the smart card compute 
the session key, and then send half of the bits to you. With half of the key bits 
known, breaking the rest of the system was trivial. Oops! This bug was fixed in 
the next version, but it is a good illustration of the problems of large protocol 
specifications. 

Real-world systems always have very large protocol specifications. Com­
municating is very complex, and adding cryptographic functions and dis­
trust makes things even harder. Our advice: be very careful with protocol 
complexity. 

One of the fundamental problems in this area is that there are no good 
modularization notations for protocols, so everything ends up being mixed 
together. We've already seen that here in this chapter: the DH parameter size 
negotiation, DH key exchange, and authentication are all merged together. 
This is not just a combination of loose parts; the specification and imple­
mentation mash them all together. It is rather like a really bad and complex 
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computer program without any modularization. We all know what that leads 
to, but we've developed modularization techniques to deal with program 
complexity. Unfortunately, we lack modularization techniques for protocols, 
and developing such modularization techniques may not be an easy task. 

1 4. 1 1 A Gentle Warning 

We've tried to make the design of the protocol look as easy as possible. Please 
don't be fooled by this. Protocol design is fiendishly difficult, and requires a lot 
of experience. Even with lots of experience, it is very easy to get wrong. Though 
we've tried very hard to get everything right in this book, there is always a 
possibility that the key negotiation protocol we designed here is wrong. It is 
important to have professional paranoia and treat all protocols with skepticism. 

1 4. 1 2 Key Negotiation from a Password 

So far, we've assumed there is an authentication system to base the key 
negotiation on. In many situations, all you have is a password. You could 
just use a MAC keyed with the password to run this protocol, but there is a 
problem: given a transcript from this protocol (acquired by eavesdropping on 
the communications), you can test for any particular password. Just compute 
the authentication value and see whether it is correct. 

The problem with passwords is that people don't choose them from a very 
large set. There are programs that search through all likely passwords. Ideally 
we'd like a key negotiation protocol where an eavesdropper cannot perform 
an offline dictionary attack. 

Such protocols exist; probably the best-known example is SRP [129]. They 
provide a significant security improvement. We do not describe password­
based key negotiation protocols here. If you are interested in using a password­
based key negotiation protocol, you should also be aware of the fact that there 
are multiple patents in this area. 

1 4. 1 3 Exercises 

Exercise 14.1 In Section 14.5, we stated that a property of the protocol could 
result in providing erroneous information to investigating administrators. 
Give a concrete scenario where this could be a problem. 
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Exercise 14.2 Suppose Alice and Bob implement the final protocol in 
Section 14.7. Could an attacker exploit a property of this protocol to mount a 
denial-of-service attack against Alice? Against Bob? 

Exercise 14.3 Find a new product or system that uses (or should use) a 
key negotiation protocol. This might be the same product or system you 
analyzed for Exercise 1 .8. Conduct a security review of that product or system 
as described in Section 1.12, this time focusing on the security and privacy 
issues surrounding the key negotiation protocol. 



H A P T E R  

1 5  

Implementation Issues (I I) 

The key negotiation protocol we designed leads to some new implementation 
issues. 

1 5. 1  Large Integer Arithmetic 

The public-key computations all depend on large integer arithmetic. As 
we already mentioned, it is not easy to implement large integer arithmetic 
properly. 

Large integer routines are almost always platform-specific in one way or 
another. The efficiencies that can be gained by using platform-specific features 
are just too great to pass up. For example, most CPUs have an add-with-carry 
operation to implement addition of multiword values. But in C or almost any 
other higher-level language, you cannot access this instruction. Doing large 
integer arithmetic in a higher-level language is typically severa] times slower 
than an optimized implementation for the platform. And these computations 
also form the bottleneck in public-key performance, so the gain is too important 
to ignore. 

We won't go into the details of how to implement large integer arithmetic. 
There are other books for that. Knuth [75] is a good start, as is Chapter 14 of 
the Handbook of Applied Cryptography [90]. To us, the real question is how to test 
large integer arithmetic. 

In cryptography, we have different goals from those of most implementers. 
We consider a failure rate of 2-64 (about one in 18 million trillion) unaccept­
able, whereas most engineers would be very happy to achieve this. Many 

]43 
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programmers seem to think that a failure rate of 2-20 (about one in a million) is 
acceptable, or even good. We have to do much better, because we're working 
in an adversarial setting. 

Most block ciphers and hash functions are comparatively easy to test.1 Very 
few implementation bugs lead to errors that are hard to find. If you make a 
mistake in the S-box table of AES, it will be detected by testing a few AES 
encryptions. Simple, random testing exercises all the data paths in a block 
cipher or hash function and quickly finds all systematic problems. The code 
path taken does not depend on the data provided, or only in a very limited 
way. Any decent test set for a symmetric primitive will exercise all the possible 
flows of control in the implementation. 

Large integer arithmetic is different. The major difference is that in most 
implementations, the code path depends on the data. Code that propagates the 
last carry is used only rarely. Division routines often contain a piece of code 
that is used only once every 232 divisions or even once every 264 divisions. A 
bug in this part of the code will not be found by random testing. This problem 
gets worse as we use larger CPUs. On a 32-bit CPU, you could still run 240 
random test cases and expect that each 32-bit word value had occurred in 
each part of the data path. But this type of testing simply does not work for 
64-bit CPUs. 

The consequence is that you have to do extremely careful testing of your large 
integer arithmetic routines. You have to verify that every code path is in fact 
taken during the tests. To achieve this, you have to carefully craft test vectors: 
something that takes some care and precision. Not only do you have to use 
every code path, but you also need to run through all the boundary conditions. 
If there is a test with a < b, then you should test this for a = b - 1, a = b, and 
a = b + 1, but of course only as far as these conditions are possible to achieve. 

Optimization makes this already bad situation even worse. As these routines 
are part of a performance bottleneck, the code tends to be highly optimized. 
This in turn leads to more special cases, more code path, etc., all of which make 
the testing even harder. 

A simple arithmetic error can have catastrophic security effects. Here is an 
example. While Alice is computing an RSA signature, there is a small error in 
the exponentiation modulo p but not modulo q. (She is using the CRT to speed 
up her signature.) Instead of the proper signature a, she sends out a + kq for 
some value of k. (The result Alice gets is correct modulo q but wrong modulo 
p, so it must be of the form a + kq.) The attacker knows a3 mod n, which is the 
number Alice is computing a root of, and which only depends on the message. 
But (a + kq)3 - a3 is a multiple of q, and taking the greatest common divisor 
of this number and n will reveal q and thus the factorization of n. Disaster! 

1 Two notable exceptions are IDEA and MARS, which often use separate code for special cases. 
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So what are we to do? First of all, don't implement your own large integer 
routines. Get an existing library. If you want to spend any time on it, spend 
your time understanding and testing the existing library. Second, run really 
good tests on your library. Make sure you test every possible code path. 
Third, insert additional tests in the application. There are several techniques 
you can use. 

By the way, we've discussed the testing problem in terms of different code 
paths. Of course, to avoid side-channel attacks (see Sections 8.5 and 15.3), the 
library should be written in such a way that the code path doesn't change 
depending on the data. Most of the code path differences that occur in large 
integer arithmetic can be replaced by masking operations (where you compute 
a mask from the "if" condition and use that to select the right result). This 
addresses the side-channel problem, but it has the same effect on testing. To 
test a masked computation, you have to test both conditions, so you have 
to generate test cases that achieve both conditions. This is exactly the testing 
problem we mentioned. We merely explained it in terms of code paths, as that 
seems to be easier to understand. 

1 5. 1 . 1 Wooping 

The technique we describe in this section has the rather unusual name of 
wooping. During an intense discussion between David Chaum and Jurjen Bos, 
there was a sudden need to give a special verification value a name. In the 
heat of the moment, one of them suggested the name "woop," and afterward 
the name stuck to the entire technique. Bos later described the details of 
this technique in his PhD thesis [18, ch. 6], but dropped the name as being 
insufficiently academic. 

The basic idea behind wooping is to verify a computation modulo a ran­
domly chosen small prime. Think of it as a cryptographic problem. We have a 
large integer library that tries to cheat and give us the wrong results. Our task 
is to check whether we get the right results. Just checking the results with the 
same library is not a good idea, as the library might make consistent errors. 
Using the wooping technique, we can verify the library computations, as long 
as we assume that the library is not actually malicious in the sense that it tries 
very hard to corrupt our verification computations. 

First, we generate a relatively small random prime t, on the order of 64-128 
bits long. The value of t should not be fixed or predictable, but that is what 
we have a PRNG for. The value of t is kept secret from all other parties. 
Then, for every large integer x that occurs in the computations, we also keep 
oX := (x mod t). The oX value is called the woop of x. The woop values have a 
fixed size, and are generally much smaller than the large integers. Computing 
the woop values is therefore not a great extra cost. 
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So now we have to keep woop values with every integer. For any input 
x to our algorithm, we compute x directly as x mod t. For all our internal 
computations, we shadow the large integer computations in the woop values 
to compute the woop of the result without computing it from the large integer 
result. 

A normal addition computes c := a + b. We can compute c using c = a + b 
(mod t). Multiplication can be handled in the same way. We could verify 
the correctness of c after every addition or multiplication by checking that 
c mod t = c, but it is more efficient to do all of the checks at the very end. 

Modular addition is only slightly more difficult. Instead of just writing 
c = (a + b) mod n, we write c = a + b + k . n where k is chosen such that the 
result c is in the range 0, . . .  , n - 1 .  This is just another way to write the modulo 
reduction. In this case, k is either 0 or -1, assuming both a and b are in the 
range 0, . . .  , n - 1. The woop version is c = (a + b + k . ii) mod t. Somewhere 
inside the modulo addition routine, the value of k is known. All we have to do 
is convince the library to provide us with k, so we can compute k. 

Modular multiplication is somewhat more difficult to do. Again we have 
to write c = a . b + k . n; and to compute c = a . b + k . ii (mod t), we need a, b, 
ii, and k. The first three are readily available, but k will have to be teased out of 
the modular multiplication routine in some way. That can be done when you 
create the library, but it is very hard to retrofit to an existing library. A generic 
method is to first compute a . b, and then divide that by n using a long division. 
The quotient of the division is the k we need for the woop computation. The 
remainder is the result c. The disadvantage of this generic method is that it is 
significantly slower. 

Once you can keep the woop value with modular multiplications, it is easy 
to do so with the modular exponentiation as well. Modular exponentiation 
routines simply construct the modular exponentiation from modular multi­
plications. (Some use a separate modular squaring routine, but that can be 
extended with a woop value just like the modular multiplication routine.) Just 
keep a woop value with every large integer, and have every multiplication 
compute the woop of the result from the woops of the inputs. 

The woop-extended algorithms compute the woop value of the results based 
on the woop values of the inputs: if one or more of the woop inputs is wrong, 
the woop output is almost certainly wrong, too. So once a woop value is 
wrong, the error propagates to the final result. 

We check the woop values at the end of our computation. If the result is x, 
all you have to do is check that (x mod t) = x. If the library made any mistakes, 
the woop values will not match. We assume the library doesn't carefully craft 
its mistakes in a way that depends on the value t that we chose. After all, the 
library code was fixed long before we chose t, and the library code is not under 
control of the attacker. It is easy to show that any error the library might make 
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will be caught by the overwhelming majority of t values. So adding a woop 
verification to an existing library gives us an extremely good verification of 
the computations. 

What we really want is a large integer library that has a built-in woop 
verification system. But we don't know of one. 

How large should your woop values be? That depends on many factors. 
For random errors, the probability of the woop value not detecting the error 
is about l/t. But nothing is ever random in our world. Suppose there is a 
software error in our library. We've got to assume that the attacker knows 
this. She can choose the inputs to our computation, and not only trigger the 
error but also choose the difference that the error induces. This is why t must 
be a random, secret number; without knowing t, the attacker cannot target the 
error in the final result to a difference that won't be caught by our wooping. 

So what would you do if you were an attacker? You would try to trigger 
the error, of course, but you would also try to force the difference to be zero 
modulo as many t's as you can. The simplest countermeasure is to require that 
t be a prime. If the attacker wants to cheat modulo 16 different 64-bit primes, 
then she will need to carefully select at least 16 . 64 = 1024 bits of the input. As 
most computations have a limited number of input bits that can be chosen by 
an attacker, this limits the probability of success of the attack. 

Larger values for t are better. There are so many more primes of larger sizes 
that the probability of success rapidly disappears for the attacker. If we were 
to keep to our original goal of 128-bit security, we would need a 128-bit t, or 
something in that region. 

Woop values are not the primary security of the system; they are only a 
backup. If a woop verification ever fails, we know we have a bug in our 
software that needs to be fixed. The program should abort whatever it is doing 
and report a fatal error. This also makes it much harder for an attacker to 
perform repeated attacks on the system. Therefore, we suggest using a 64-bit 
random prime for t. This will reduce the overhead significantly, compared to 
using a 128-bit prime, and in practice, it is good enough. If you cannot afford 
the 64-bit woop, a 32-bit woop is better than nothing. Especially on most 32-bit 
CPUs, a 32-bit woop can be computed very efficiently, as there are direct 
multiplication and division instructions available. 

If you ever have a computation where the attacker could provide a large 
amount of data, you should check the intermediate woop values as well. Each 

? 
check is simple: (x mod t) == x. By checking intermediate values that depend 
on only a limited number of bits from the attacker, you make it harder for her 
to cheat the woop system. 

Using a large integer library with woop verifications is our strong preference. 
It is a relatively simple method of avoiding a large number of potential security 
problems. And we believe it is less work to add woop verification to the library 
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once than to add application-specific verifications to each of the applications 
that uses the library. 

1 5.1 .2 Checking DH Computations 

If you don't have a woop-enabled library, you will have to work without 
one. The DH protocol we described already contains a number of checks; 
namely, that the result should not be 1 and that the order of the result should 
be q. Unfortunately, the checks are not performed by the party doing the 
computation, but by the party receiving the result of the computation. In 
general, you don't want to send out any erroneous results, because they could 
leak information, but in this particular case it doesn't seem to do much harm. If 
the result is erroneous, the protocol will fail in one way or another, so the error 
will be noticed. The protocol safety only breaks down when your arithmetic 
library returns x when asked to compute gr, but that is a type of error that 
normal testing is very likely to find. 

Where needed, we would probably run DH on a library without woop­
verification. The type of very rare arithmetical errors that we worry about 
here are unlikely to reveal x from a gr computation. Any other mistake seems 
harmless, especially since DH computations have no long-term secrets. Still, 
we prefer to use a woo ping library wherever possible, just to feel safe. 

1 5.1 .3 Checking RSA Encryption 

RSA encryption is more vulnerable and needs extra checks. If something 
goes wrong, you might leak the secret that you are encrypting, or even your 
secret key. 

. 

If woop-verification is not available, there are two other methods to check 
the RSA encryption. Suppose the actual RSA encryption consists of computing 
e = m5 mod n, where m is the message and e the ciphertext. To verify this, we 
could compute e1/5 mod n and compare it to m. The disadvantages are that this 
is a very slow verification of a relatively fast computation, and that it requires 
knowledge of the private key, which is typically not available when we do 
RSA encryption. 

Probably a better method is to choose a random value z and check that 
e . Z5 = (m . Z)5 mod n. Here we have three computations of fifth powers: the 
e = m5; the computation ofz5; and then finally the check that (mz)5 matches e · Z5. 
Random arithmetical errors are highly likely to be caught by this verification. 
By choosing a random value z, we make it impossible for any attacker to target 
the error-producing values. In our designs, we only use RSA encryption to 
encrypt random values, so the attacker cannot do any targeting at alL 
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1 5.1 .4 Checking RSA Signatures 

RSA signatures are really easy to check. The signer only has to run the signature 
verification algorithm. This is a relatively fast verification, and arithmetical 
errors are highly likely to be caught. Every RSA signature computation should 
verify the results by checking the signature just produced. There is no excuse 
not to do this. 

1 5.1 .5 Conclusion 

Let us make something quite clear. The checks we have been talking about 
are in addition to the normal testing of the large integer libraries. They do 
not replace the normal testing that any piece of software, especially security 
software, should undergo. 

If any of these checks ever fail, you know that your software just failed. 
There is not much you can do in that situation. Continuing with the work you 
are doing is unsafe; you have no idea what type of software error you have. 
The only thing you can really do is log the error and abort the program. 

1 5.2 Faster Multiplication 

There are a lot of ways in which you can do a modulo multiplication faster 
than a full multiply followed by a long division. If you have to do a lot of 
multiplications, then Montgomery's method [93] is the most widely used one; 
see [39] for a readable description. 

The basic idea behind Montgomery's method is a technique to compute 
(x mod n) for some x much larger than n. The traditional "long division" 
method is to subtract suitable multiples of n from x. Montgomery's idea is 
simpler: divide x repeatedly by 2. If x is even, we divide x by two by shifting 
the binary representation one bit to the right. If x is odd, we first add n (which 
does not change the value modulo n, of course) and then divide the even result 
by 2. (This technique only works if n is odd, which is always the case in our 
systems. There is a simple generalization for even values of n.) If n is k bits 
long, and x is not more than (n - If, we perform a total of k divisions by 2. 
The result will always be in the interval 0, . . .  , 2n - 1, which is an almost fully 
reduced result modulo n .  

But wait! We've been dividing by 2, so this gives us the wrong answer. 
Montgomery's reduction does not actually give you (x mod n), but rather 
x/2k mod n for some suitable k. The reduction is faster, but you get an extra 
factor of 2-k• There are various tricks to deal with this extra factor. 
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One bad idea is to simply redefine your protocol to include an extra factor 2-k 
in the computations. This is bad because it mixes different levels. It modifies 
the cryptographic protocol specification to favor a particular implementation 
technique. Perhaps you'll want to implement the protocol on another platform 
later, where you'll find that you don't want to use Montgomery multiplication 
at all. (Maybe that platform is slow but has a large integer coprocessor that 
performs modular multiplication directly.) In that case, the 2-k factors in the 
protocol become a real hindrance. 

The standard technique is to change your number representation. A number 
x is represented internally by x ·  2k. If you want to multiply x and y, you do 
a Montgomery multiplication on their respective representations. You get x . 

2k . Y . 2k, but you also get the extra 2-k factor from the Montgomery reduction, 
so the final result is x . Y . 2k mod n, which is exactly the representation of 
xy. The overhead cost of using Montgomery reduction therefore consists of 
the cost of converting the input numbers into the internal representation 
(multiplication by 2k) and the cost of converting the output back to the real 
result (division by 2k). The first conversion can be done by performing a 
Montgomery multiplication of x and (22k mod n) . The second conversion can 
be done by simply running the Montgomery reduction for another k bits, as 
that divides by 2k. The final result of a Montgomery reduction is not guaranteed 
to be less than n, but in most cases it can be shown to be less than 2n - 1. In 
those situations, a simple test and an optional subtraction of n will give the 
final correct result. 

In real implementations, the Montgomery reduction is never done on a 
bit-by-bit basis, but per word. Suppose the CPU uses w-bit words. Given a 
value x, find a small integer z such that the least significant word of x + zn 
is all zero. You can show that z will be one word, and can be computed by 
multiplying the least significant word of x with a single word constant factor 
that only depends on n. Once the least significant word of x + zn is zero, you 
divide by 2W by shifting the value a whole word to the right. This is much 
faster than a bit-by-bit implementation. 

1 5.3 Side-Channel Attacks 

We discussed timing attacks and other side-channel attacks briefly back in 
Section 8.5. The main reason we were brief there is not because these attacks 
are benign. It is, rather, that timing attacks are also useful against public-key 
computations and we now consider both. 

Some ciphers invite implementations that use different code paths to handle 
special situations. IDEA [84, 83] and MARS [22] are two examples. Other 
ciphers use CPU operations whose timing varies depending on the data they 
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process. On some CPUs, multiplication (used by RC6 [108] and MARS) or 
data-dependent rotation (used by RC6 and RCS [107]) has an execution time 
that depends on the input data. This can enable timing attacks. The primitives 
we have been using in this book do not use these types of operations. AES 
is, however, vulnerable to cache timing attacks [12], or attacks that exploit the 
difference in the amount of time it takes to retrieve data from cache rather than 
main memory. 

Public-key cryptography is also vulnerable to timing attacks. Public-key 
operations often have a code path that depends on the data. This almost always 
leads to different processing times for different data. Timing information, in 
turn, can lead to attacks. Imagine a secure Web server for e-commerce. As part 
of the SSL negotiations, the server has to decrypt an RSA message chosen by 
the client The attacker can therefore connect to the server, ask it to decrypt 
a chosen RSA value, and wait for the response. The exact time it takes the 
server to respond can give the attacker important information. Often it turns 
out that if some bit of the key is one, inputs from set A are slightly faster than 
inputs from set B, and if the key bit is zero, there is no difference. The attacker 
can use this difference to attack the system. She generates millions of queries 
from both sets A and B, and tries to find a statistical difference in the response 
times to the two groups. There might be many other factors that influence the 
exact response time, but she can average those out by using enough queries. 
Eventually she will gather enough data to measure whether the response times 
for A and B are different This gives the attacker one bit of information about 
the key, after which the attack can proceed with the next bit. 

This all sounds far-fetched, but it has been done in the laboratory, and could 
very well be done in practice [21, 78]. 

1 5.3.1 Countermeasures 
There are several ways to protect yourself against timing attacks. The most 
obvious one is to ensure that every computation takes a fixed amount of 
time. But this requires the entire library be designed with this goal in mind. 
Furthermore, there are sources of timing differences that are almost impossible 
to controL Some CPUs have a multiplication instruction that is faster for some 
values than for others. Many CPUs have complicated cache systems, so as soon 
as your memory access pattern depends on nonpublic data, the cache delays 
might introduce a timing difference. It is almost impossible to rid operations 
of all timing differences. We therefore need other solutions. 

An obvious idea is to add a random delay at the end of each computation. 
But this does not eliminate the timing difference. It just hides it in the noise of 
the delay. An attacker who can take more samples (Le., get your machine to 
do more computations) can average the results and hope to average out the 
random delay that was added. The exact number of tries the attacker needs 



252 Part III • Key Negotiation 

depends on the magnitude of the timing difference the attacker is looking for, 
and the magnitude of the random delay that is added. In real timing attacks, 
there is almost always a lot of noise, so any attacker who tries a timing attack 
is already doing the averaging. The only question is the ratio of the signal to 
the noise. 

A third method is to make an operation constant-time by forcing it to last 
a standardized amount of time. During development, you choose a duration 
d that is longer than the computation will ever take. You then mark the time 
t at which the computation started, and after the computation you wait until 
time t + d. This is slightly wasteful, but it is not too bad. We like this solution, 
but it only provides protection against pure timing attacks. If the attacker 
can listen in on the RF radiation that your machine emits or measure the 
power consumption, the difference between the computation and the delay 
is probably detectable, which in turn allows timing attacks as well as other 
attacks. Still, an RF-based attack requires the attacker to be physically close to 
the machine. That enormously reduces the threat, compared to timing attacks 
that can be done over the Internet. 

You can also use techniques that are derived from blind signatures [78]. For 
some types of computations they can hide (almost) all of the timing variations. 

There is no perfect solution to the problem of timing attacks. It is simply not 
possible to secure the computers you can buy against a really sophisticated 
attack such as an RF-based one. But although you can't create a perfect solution, 
you can get a reasonably good one. Just be really careful with the timing of 
your public-key operations. An even better solution than just making your 
public-key operations fixed-time is to make the entire transaction fixed-time, 
using the technique mentioned above. That is, you not only make the public­
key operation fixed-time, but you also fix the time between when the request 
comes in and the response goes out. If the request comes in at a time t, you 
send the response at time t + C for some constant C. But to make sure you 
never leak any timing information, you had better be sure that the response 
will be ready at time t + c. To guarantee this, you will probably have to limit 
the frequency at which you accept incoming requests to some fixed upper 
bound. 

1 5.4 Protocols 

Implementing cryptographic protocols is not that different from implementing 
communication protocols. The simplest method is to maintain the state in the 
program counter, and simply perform each of the steps of the protocol in 
turn. Unless you use multithreading, this stops everything else in the program 
while you wait for an answer. As the answer might not be forthcoming, this is 
often a bad idea. 



Chapter 1 5  • Implementation Issues (II) 253 

A better solution is to keep an explicit protocol state, and update the state 
each time a message arrives. This message-driven approach is slightly more 
work to implement, but it provides much more flexibility. 

1 5.4. 1 Protocols Over a Secure Channel 

Most cryptographic protocols are executed over insecure channels, but some­
times you run a cryptographic protocol over a secure channel.  This makes 
sense in some situations. For example, each user has a secure channel to a 
key distribution center; the key distribution center uses a simple protocol to 
distribute keys to the users to allow them to communicate to each other. (The 
Kerberos protocol does something like this.) If you are running a cryptographic 
protocol with a party you have already exchanged a key with, you should 
use the full secure channel functionality. In particular, you should implement 
replay protection. This is very easy to do, and it prevents a large number of 
attacks on the cryptographic protocol. 

Sometimes the secure channel allows the protocol to use shortcuts. For 
example, if the secure channel provides replay protection, the protocol itself 
does not have to. Still, the old modularization rule states that the protocol 
should minimize its dependency on the secure channel. 

For the rest of our protocol implementation discussion, we are going to 
assume that the protocol runs over an insecure channel. Some of the discussion 
does not quite apply to the secure channel case, but the solutions can never 
hurt. 

1 5.4.2 Receiving a Message 

When a protocol state receives a message, there are several checks that have 
to be made. The first is to see if the message belongs to the protocol at all. Each 
message should start with the following fields: 

Protocol identifier. Identifies exactly which protocol and protocol version this 
is. Version identifiers are important. 

Protocol instance identifier. Identifies which instance of the protocol this mes­
sage belongs to. Perhaps Alice and Bob are running two key negotiation 
protocols simultaneously, and we don't want to confuse the two runs. 

Message identifier. Identifies the message within the protocol. The easiest 
method is to simply number them. 

Depending on the situation, some of these identifiers can be implicit. For 
example, for protocols that run over their own TCP connection, the port 
number and its associated socket uniquely identify the protocol instance on 
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the local machine. The protocol identifier and version information only need 
to be exchanged once. Note that it is important to exchange them at least once 
to make sure they get included in any authentication or signature used in the 
protocol. 

After checking the protocol identifier and instance identifier, we know which 
protocol state to send the message to. Let us assume that the protocol state has 
just received message n - 1 and is expecting to receive message n. 

If the received message is indeed message n, things are easy. Just process it 
as the protocol rules specify. But what if it has a different number? 

If the number is larger than n or less than n - 1, something very weird is 
going on. Such a message should not have been generated, and therefore must 
be a forgery of some kind. You must ignore the contents of the forged message. 

If the received message is message n - 1, the reply message you sent might 
not have arrived. At least, this could happen if you are running the protocol 
over an unreliable transport system. As we want to minimize dependencies 
on other parts of the system, this is exactly what we will assume. 

First of all, check that the newly received message n - 1 is absolutely 
identical to the previous message with number n - 1 that you received. If they 
are different, you must ignore the new message. Sending a second answer will 
break the security of many protocols. If the messages are identical, just resend 
your reply. Of course, the version that you resend must be identical to the 
previous reply that you sent. 

If you ignored the received message due to any of these rules, you have a 
second decision to make. Should you abort the protocol? The answer depends 
to some extent on the application and situation. If you have been running a 
protocol over a secure channel, something is very wrong. Either the secure 
channel is compromised, or the party you are talking to is misbehaving. In 
either case, you should abort the protocol and the channel. Simply delete the 
protocol state and the channel state, including the channel key. 

If you're running the protocol over an insecure channel, then any of the 
ignored messages could be from an attacker trying to interfere with the 
protocol. Ideally, you would ignore the attacker's messages and just complete 
the protocol. This is, of course, not always possible. For example, if the 
attacker's forged message n - 1  reaches you first, you will send a reply. If you 
later receive the "real" message n - 1, you are forced to ignore it. There is no 
recovery from this situation, as you cannot safely send a second reply. But you 
have no idea which of the two messages n - 1 you received was the real one, 
so in order to have the best chance of completing the protocol successfully, 
you should just log the second message n - 1 as an error and continue as 
usual. If the message you replied to came from the attacker, the protocol will 
fail eventually because cryptographic protocols are specifically designed to 
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prevent attackers from successfully completing the protocol with one of the 
participants. 

1 5.4.3 Timeouts 

Any protocol run includes timeouts. If you don't get a response to a message 
within a reasonable time, you can resend your last message. After a few 
resends, you have to give up. There is no point continuing with a protocol 
when you cannot communicate with the other party. 

The easiest way to implement timeouts is to send timing messages to the 
protocol state. You can use timers explicitly set by the protocol, or use timing 
messages that are sent every few seconds or so. 

One well-known attack is to send lots of "start-of-protocol" messages to a 
particular machine. Each time you receive a start-of-protocol message, you 
initialize a new protocol execution state. After receiving a few million of these, 
the machine runs out of memory, and everything stops. A good example is the 
SYN flood attack. There is no easy method to protect yourself against these 
flooding attacks in general, especially in the age of botnets and distributed 
attacks, but they do show that it is important to delete old protocol states. If a 
protocol is stalled for too long, you should delete it. 

The proper timing for resends is debatable. In our experience, a packet on 
the Internet either arrives within a second or so, or is lost forever. Resending a 
message if you haven't received a reply within five seconds seems reasonable. 
Three retries should be enough; if the message loss rate is so high that you 
lose four consecutive messages spread out over 15 seconds, you're not going 
to get a whole lot done over that connection. We prefer to inform the user of a 
problem after 20 seconds, rather than require the user to sit there and wait for 
a minute or two. 

1 5.5 Exercises 

Exercise 15.1 Consider all the operations a computer might perform with a 
cryptographic key. Which ones might have timing characteristics that could 
leak information about the key? 

Exercise 15.2 Find a new product or system that manipulates secret data. This 
might be the same product or system you analyzed for Exercise 1.8. Conduct 
a security review of that product or system as described in Section 1.12, this 
time focusing on issues surrounding side-channel attacks. 
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The Clock 

Before we begin the detailed discussion of key management in the next 
chapter, we need to discuss one more primitive function: the clock. At first 
glance, this is a decidedly un-cryptographic primitive, but because the current 
time is often used in cryptographic systems, we need a reliable clock. 

1 6. 1  Uses for a Clock 

There are several cryptographic uses for a clock. Key management functions 
are often linked to deadlines. The current time can provide both a unique 
value and a complete ordering of events. We will discuss each of these uses in 
more detail. 

1 6. 1 . 1  Expiration 

In many situations, we want to limit the validity period of a document. In 
the real world, we often see limited validity periods too. Checks, open airline 
tickets, vouchers, coupons, and even copyrights all have limited validity 
periods. The standard way to limit the validity period of a digital document is 
to include the expiration time in the document itself. But to check whether a 
document has expired, we need to know the current time. Hence, the need for 
a clock. 

259 
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1 6.1 .2 Unique Value 

Another useful function of a clock-if its resolution is high enough-is to 
provide a unique value for a single machine. We've been using nonces in 
several places. The important property of a nonce is that any single value is 
never used twice, at least within some defined scope. Sometimes the scope is 
limited, such as the nonce we use in the secure channel, and the nonce can 
be generated using a counter. In other situations, the nonce has to be unique 
across reboots of the computer. There are two generic ways of generating 
nonce values. The first is to use the current time of the clock with some 
mechanism to ensure you never use the same time code twice. The second is to 
use a PRNG, which we discussed in some detail in Chapter 9. The disadvantage 
of using a random nonce is that it needs to be rather large. To achieve a 
security level of 128 bits, we would need to use a 256-bit random nonce. Not all 
primitives support such a large nonce. Furthermore, a PRNG can be very hard 
to implement on certain platforms. A reliable clock is an attractive alternative 
way to generate nonces. 

1 6. 1 .3 Monotonicity 

One of the useful properties of time is that it always keeps going forward. 
It never stops or reverses. There are cryptographic protocols that use this 
property. Including the time in a cryptographic protocol prevents an attacker 
from trying to pass off old messages as ones that belong to the current protocol. 
After all, the time encoded in those messages is not within the time-span of 
the current protocol. 

Another really important application of the clock is auditing and logging. 
In any kind of transaction system, it is very important to keep a log of what 
happened. If there is ever a dispute, the audit logs provide the necessary data 
to trace the exact sequence of events. Including the time in each logging event 
is important; without a time stamp, it is very hard to know which events 
belong to the same transaction, and in which order the events occurred. As 
well-synchronized clocks do not deviate significantly from each other, the 
time stamps allow events from different logs on different machines to be 
correlated. 

1 6.1 .4 Real-Time Transactions 

Our next example comes from Niels's work on electronic payment systems. 
To support real-time payments, the bank needs to run a real-time financial 
transaction system. To allow an audit to be performed, there should be a clear 
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sequence of transactions. Given two transactions A and B, it is important to 
know which of the two was performed first, because the result of one of them 
could depend on whether the other one has been performed yet or not. The 
simplest way to record this sequence is to give a time stamp to each transaction. 
This only works if you have a reliable clock. 

An unreliable clock might give the wrong time. There is little harm done 
if the clock accidentally moves backward: it is easy to check that the current 
time is greater than the time stamp of the last transaction performed. There is 
a problem, however, if the clock moves forward. Suppose half an hour's worth 
of transactions were done with the clock set in 2020. You can't just change 
the time stamps of those transactions; it is not acceptable to modify financial 
records by hand. You can't perform any new transactions with a time stamp 
before 2020 because that would upset the order of the transactions, which 
is determined by the time stamp. There are solutions to this problem, but a 
reliable clock is certainly preferable. 

1 6.2 Using the Real-Time Clock Chip 

Most desktop computers contain a real-time clock chip and a small battery. 
This is really a small digital watch built into your machine. This is how your 
computer knows what time it is when you start it up in the morning. Why not 
simply use this clock time? 

The real-time clock chip is adequate for normal use, but in a security system 
we have to impose higher standards. As part of the security system, the clock 
should give the correct time even if an enemy tries to manipulate the clock. A 
second reason is the consequences of a failed clock. For normal uses, a clock 
that shows the wrong time is irritating but not dangerous. If the clock is part 
of the security system, clock failures can result in much greater damage. 

The real-time clocks in typical hardware are not as reliable and secure as 
we need. We have personally experienced several real-time clock chip failures 
in the last decade. Moreover, those failures were spontaneous, without a 
malicious attacker trying to corrupt the clock. Most failures are simple. On an 
old machine, the battery runs low and the clock stops or resets to 1980. Or one 
day you start the machine and the clock has been set to some date in 2028. 
Sometimes a clock just gradually drifts faster or slower than the real time. 

Apart from accidental errors in real-time clocks, we have to consider active 
attacks. Someone might try to manipulate the clock in some way. Depending 
on the details of the computer, changing the clock time can be easy or hard. 
On some systems, you need special administrator access to change the clock; 
others have clocks that can be changed by anyone. 
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1 6.3 Security Dangers 

There are several types of attack that can be mounted against a system with a 
clock. 

1 6.3. 1 Setting the Clock Back 

Suppose the attacker can set the clock to some arbitrary time in the past. This 
might allow all kinds of mischief. The machine mistakenly believes it lives in 
the past. Maybe an attacker once had access to some data because he was a 
temporary employee, but that access has now expired. With the wrong time 
on the clock, a computer might now allow this ex-employee access to the 
sensitive data. This problem has the potential of occurring every time some 
access is revoked from a user. Setting the clock back might restore his access, 
depending on how the rest of the system was designed. 

Another interesting avenue of attack is automated tasks. Suppose an HR 
computer makes salary payments automatically at the end of the month, using 
direct deposit. Automated tasks like this are initiated by a program that checks 
the time and has a list of tasks to perform. Repeatedly setting the clock back 
can trigger the tasks repeatedly. If the task is set to start at midnight, the 
attacker sets the clock to 23:55 (11:55 pm), and waits for the task to be started. 
After the task finishes, the attacker sets the clock back again. He can repeat 
this until the bank balance of the company is exhausted. 

Another problem occurs in financial systems. It is important to get the 
time of a transaction right because interest computations give different results 
depending on when a transaction was performed. If you carry a large balance 
on your credit card, it would be very advantageous to convince your bank's 
computer that the online payment you just made actually happened six months 
ago, and avoid paying six months of interest. 

1 6.3.2 Stopping the Clock 

Every designer lives with the instinctive understanding that time does not 
stand still. It is an unspoken assumption, too obvious to even document. 
The systems they design rely on time behaving normally. But if the clock is 
stopped, time appears to stand still. Things might not get done. And many 
systems behave in unpredictable ways. 

The simple problems are things like getting the wrong time on audit logs and 
reports. The exact time of a transaction can have large financial consequences, 
and sending out formal paperwork with the wrong date and time on it can 
lead to serious complications. 
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Other problems might occur with real-time displays. Maybe the CUI pro­
grammer uses a simple system to display the current situation at the real-time 
broker. Every ten seconds, he refreshes the display with the latest data. But 
not all reports of financial transactions arrive with the same speed, due to 
various delays. Just reporting the latest data that was received is going to give 
an inconsistent view of the financial situation. Maybe one part of a transaction 
has already been reported, but the other half has not. The money could show 
up on the bank balance before the shares move from the stock holdings. 
Accountants do not like to get reports where the numbers do not add up. 

So the programmer does something clever. Each report of a financial 
transaction is time-stamped and stored in a local database. To display a 
consistent report, he takes a particular point in time and reports the financial 
situation at that point in time. For example, if the slowest system has a five­
second delay in reporting, he displays the financial situation of seven seconds 
ago. It increases the display delay a bit, but it guarantees a consistent report. 
That is, until the clock is stopped. Suddenly, the display reports the same 
situation over and over again: the situation of seven seconds ago relative to 
the (failed) clock. Oops! 

1 6.3.3 Setting the Clock Forward 

Setting the clock forward makes the computer think it lives in the future. This 
leads to simple denial-of-service attacks. With the clock set four years in the 
future, all credit card transactions are suddenly refused because all the cards 
have expired. You cannot book online airline tickets either, because there is no 
airline schedule out yet for those dates. 

Substantial bidding at eBay auctions happens in the last seconds. If you 
can move eBay's clock forward just a little bit, you cut out many of the other 
bidders and can obtain the item at a cheaper price. 

A friend of ours had a problem of this nature with his billing system. Due to 
a software error, the clock jumped ahead by about 30 years. The billing system 
started to bill all his customers for 30 years of unpaid bills. In this case, it didn't 
result in a direct financial loss, but it could have been different if he had been 
using automatic debits from bank accounts or credit cards. It certainly wasn't 
good customer relations. 

There are also direct security risks involved with clocks set to a future time. 
There are many situations in which certain data is to be kept secret until a 
specific time, and made public after that time. In an automated system, setting 
the clock forward provides access to the data. If this is a profit warning for a 
publicly traded company, quite a bit of profit can be made from accessing this 
data prematurely. 
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1 6.4 Creating a Reliable Clock 

We don't have a simple solution to the clock problem. We can suggest some 
ideas and techniques, but the details depend too much on the exact working 
environment and the risk analysis for us to be able to give universal answers. 
Our goal here is therefore multifold. We wish to increase understanding, 
encourage minimal reliance on a clock, identify key issues to consider, and 
provide an example for how to think about building a reliable clock 

Most computers have, or can implement, a counter of some sort that starts 
when the computer is booted. This might be a count of the number of CPU 
clock cycles, a refresh counter, or something similar. This counter can be used 
to keep track of the time since the last reboot. It is not a clock, as it provides 
no information about what the actual time is, but it can be used to measure 
elapsed time between events as long as both events happened since the last 
reboot. 

The main use for this type of counter, at least in relation to our clock problem, 
is to check for accidental errors in the real-time clock If the real-time clock 
doesn't run properly, it will show discrepancies with the clock counter. This 
is simple to test for, and provides some warning for certain error modes of 
the clock chip. Note that the correspondence between clock time and counter 
value has to be modified if the clock time is changed by an authorized user. 

A second simple check is to keep track of the time of the last shutdown, or 
the last time data was written to disk The clock should not jump backwards. 
If your machine suddenly boots in the year 1980, it is obvious that something 
is wrong. It is also possible to stop the clock jumping forward too much. Most 
computers are booted at least once a week Perhaps you should get the user 
to confirm the correct date if the machine hasn't been booted for a weekI 
That would catch the case of the clock jumping more than a week forward. Of 
course, we're assuming here that the user is not the adversary. 

There are other methods of checking the time. You could ask a time server 
on the Internet or an intranet. There are widely used time synchronization 
protocols such as NTP [92] or SNTP [91]. Some of these protocols even provide 
for authentication of the time data so an attacker cannot spoof the machine. 
Of course, the authentication requires some kind of keying infrastructure. The 
shared key with the time server could be a manually configured symmetric 
key, but manually configuring keys is a hassle. It can also be done using a PKI, 
but as we will see in Chapter 18, most PKI systems need a clock, which results 
in a chicken-and-egg problem. Be careful if you rely on the cryptographic 
protection offered by a clock synchronization protocol. The security of your 
entire system could hinge on the security of the protocol. 

I As most users will hit the OK button without bothering to look at the message, it is probably 
better to ask the user to enter the current date, withuut shuwing him what the clock-date is. 
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This brings us to a serious problem that you find on some hardware platforms. 
We're talking here about small embedded computers-something like a door 
lock or a remote smart card reader. These typically consist of a small CPU, a 
small amount of RAM, nonvolatile memory (e.g., flash) to store the program, 
some communication channels, and further task-specific hardware. 

You will notice that a real-time clock is often not included. Adding a real­
time clock requires an extra chip, an oscillator crystal, and most importantly, a 
battery. Apart from the extra cost, adding a battery complicates the device. You 
now have to worry about the battery running out. Batteries can be sensitive to 
temperature fluctuations, and the toxic chemicals in some batteries can even 
lead to problems with shipping the hardware. For all of these reasons, many 
small computers do not have a real-time clock. 

Every time such a small computer is booted, it starts in exactly the same state. 
It reads the same program from the same nonvolatile memory, initializes the 
hardware, and starts operations. As this is a book about cryptography, we will 
assume that some kind of cryptographic protocol is used in the communication 
with other pieces of the system. But here is the problem: without a clock or 
hardware random number generator, the embedded system will always repeat 
the exact same behavior. Suppose the attacker waits until the gate computer 
needs to open the gate because a truck needs to pass through. She reboots 
the gate computer just before the gate needs to open (e.g., by interrupting 
the power supply momentarily). After some initialization procedures, the 
central system will command the gate computer to open the gate via the 
communication channel. The next day, the attacker reboots the gate computer 
again, and sends exactly the same messages as were sent the first time. As the 
gate computer starts in the same state and sees the same inputs, it behaves the 
same and opens the gate. This is bad. Note that it doesn't matter if the gate 
computer uses a time synchronization protocol. The protocol messages can be 
replayed from yesterday, and the gate computer has no way of detecting this. 
The same-state problem is not solved by any protocol. 

A real-time clock chip solves this problem. The small embedded computer 
can encrypt the current time with a fixed secret key to generate highly random 
data. This data can in turn be used as a nonce in a cryptographic protocol. As 
the real-time clock never repeats its state, the embedded computer can avoid 
falling into the same-state trap. 

A hardware random number generator has the same effect. It allows the 
embedded computer to behave differently each time it is rebooted. 

But if you don't have a real-time clock or a random number generator, you 
have a big problem. Sometimes you can fudge a bit and try to extract random­
ness from the clock skew between the local clock oscillator and the network 
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timing or another oscillator, but it is very hard to extract enough entropy from 
this within a short time. Taking 10 minutes to reboot an embedded computer 
is simply unacceptable. 

We've seen the same-state problem come up again and again. The upshot 
is that the hardware has to change before you can do useful cryptography 
on such small computers. This is hard to sell to managers, especially since 
the hardware is often already in the field and they don't want to hear that 
something cannot be done. But there is no magic security sauce that you can 
pour over an existing insecure system to make it secure. If you don't design 
the security into the system from the very start, you almost never get good 
security. 

There is one more possible solution, though it rarely works in practice. 
Sometimes you can keep a reboot counter in the nonvolatile memory. Each 
time the CPU reboots, it increments a counter in nonvolatile memory. This 
solution is fraught with problems. Some nonvolatile memories can only be 
updated a few thousand times, which makes the machine wear out if you keep 
updating the counter. Some nonvolatile technologies require an additional 
power voltage to be programmable, which is often not available in the field. 
In some designs, you can only set bits in nonvolatile memory, or wipe all of 
the nonvolatile memory. The latter option is not viable, as you'd lose the main 
program of the machine. Even if all these problems are overcome, it is very 
difficult to modify nonvolatile memory in such a way that the counter always 
reliably increases even if the power supply to the machine can be interrupted 
at arbitrary points in time. This nonvolatile counter option is only viable in 
a minority of the cases we've seen. When it is feasible, such a counter could 
be used as part of a PRNG. For example, the counter could be used with CTR 
mode and an AES key to generate a stream of pseudorandom bits. 

1 6.6 Time 

While we're discussing clocks, we have a few short comments on which time 
base to choose. Stay away from local time. Local time is the time we use on our 
watches and other clocks. The problem is, local time changes with daylight 
saving time and time zone. These changes pose problems: some time values 
are repeated each year when clocks are set back an hour in the fall, which 
means that the time is no longer unique or monotonic. Some time values are 
impossible when clocks are set forward an hour in the spring. Furthermore, 
the exact date on which daylight saving time starts and stops is different in 
different countries. In some countries, the rules change every few years, and 
you don't want to have to update your software for that. And people who 
travel with laptops might change the time on their laptops to the local time, 
which just makes these problems worse. 
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The obvious choice is to use UTC time. This is an international time standard 
based on atomic clocks, and is widely used throughout the world. Any single 
computer can keep track of the offset of local time with regard to UTC and use 
this knowledge in interactions with the user. 

There is one problem with UTC: the leap seconds. To keep UTC synchronized 
with the Earth's rotation, there is a leap second once every few years or so. So 
far, all leap seconds have been extra seconds; there is a particular minute that 
gets 61 seconds. It is also theoretically possible to have a missing second. It all 
depends on the rotation of the Earth. The problem for computers is that the 
leap seconds are unpredictable. Ignoring leap seconds leads to inaccuracies in 
measuring time intervals across a leap second. This is not really a cryptographic 
problem, but if you want to make a good clock, you might as well do it right. 
All computer software always assumes that each minute has 60 seconds. If 
you synchronize directly to a real UTC clock, the insertion of a leap second can 
lead to problems. Most likely this results in your internal clock repeating itself 
for one second. It is a minor problem, but again, it destroys the uniqueness 
and mono tonicity of time values. 

For most applications, the exact synchronization of the clock is less 
important than the monotonicity and uniqueness of the time stamps. As 
long as you make sure the clock never jumps backwards at a leap second, it 
doesn't matter how you solve this problem. 

1 6.7 Closing Recommendations 

Unfortunately, we have no ideal solution for you. Creating a reliable clock is 
very tricky, especially in a cryptographic setting where you assume there are 
malicious attackers. The best solution depends on your local situation. Our 
recommendations, therefore, are to be aware there are potential security issues 
associated with the use of a clock, minimize reliance on the clock whenever 
possible, and be cautious. And again, the most important thing is generally 
the monotonicity and uniqueness of the time stamps. 

1 6.8 Exercises 

Exercise 16.1 Some computers use NTP at boot, or at regular intervals. Tum 
off NTP for one week on your computer. Write a program that at regular 
intervals (at least once every two hours) records both the true time and the 
time reported by your computer. Let to be the initial true time at the start of 
your experiment. For each time measurement pair, plot the true time minus to 
on the horizontal axis of a graph and plot your computer's time minus true 
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time on the vertical axis. How different is your computer's clock from true 
time after one week? Does your graph tell you anything else? 

Exercise 16.2 Repeat exercise 16.1, but this time for a collection of five 
different computers. 

Exercise 16.3 Find a new product or system that uses (or should use) a clock. 
This might be the same product or system you analyzed for Exercise 1.8. Con­
duct a security review of that product or system as described in Section 1 .12, 
this time focusing on the security and privacy issues surrounding the clock. 
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1 7  

Key Servers 

At last we turn to key management. This is, without a doubt, the most difficult 
issue in cryptographic systems, which is why we left it to near the end. We've 
discussed how to encrypt and authenticate data, and how to negotiate a shared 
secret key between two participants. Now we need to find a way for Alice 
and Bob to recognize each other over the Internet. As you will see, this gets 
very complex very quickly. Key management is especially difficult because 
it involves people instead of mathematics, and people are much harder to 
understand and predict. Key management is in many ways a capstone to all 
we have discussed so far. Much of the benefit of cryptography is defeated if 
key management is done poorly. 

Before we start, let us make one thing clear. We talk only about the 
cryptographic aspects of key management, not the organizational aspects. The 
organizational aspects include things like a policy covering whom to issue keys 
to, which keys get access to which resources, how to verify the identity of the 
people who get keys, policies on the security of the stored keys, mechanisms 
for verifying that these policies are being adhered to, etc. Every organization 
will implement these differently, depending on their requirements and their 
existing organizational infrastructure. We focus only on parts that directly 
affect the cryptographic system. 

One way to handle key management is to have a trusted entity to hand out 
all the keys. We'll call this entity the key server. 
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1 7. 1  Basics 

The basic idea is simple. We assume that everybody sets up a shared secret 
key with the key server. For example, Alice sets up a key KA that is known 
only to her and to the key server. Bob sets up a key KB that is known only to 
him and to the key server. Other parties set up keys in the same fashion. 

Now suppose Alice wants to communicate with Bob. She has no key she can 
use to communicate with Bob, but she can communicate securely with the key 
server. The key server, in turn, can communicate securely with Bob. We could 
simply send all the traffic to the key server and let the key server act as a giant 
post office. But that is a bit hard on the key server, as it would have to handle 
enormous amounts of traffic. A better solution is to let the key server set up a 
key KAB that is shared by Alice and Bob. 

1 7.2 Kerberos 

This is the basic idea behind Kerberos, a widely used key management system 
[79]. Kerberos is based on the Needham-Schroeder protocol [102]. 

At a very basic level, here is how it works. When Alice wants to talk to Bob, 
she first contacts the key server. The key server sends Alice a new secret key 
KAB plus the key KAB encrypted with Bob's key KB. Both these messages are 
encrypted with KA, so only Alice can read them. Alice sends the message that 
is encrypted with Bob's key, called the ticket, to Bob. Bob decrypts it and gets 
KAB, which is now a session key known only to Alice and Bob-and to the key 
server, of course. 

One of the features of Kerberos is that the key server, called the KDC in 
Kerberos terminology, does not have to update its state very often. Of course, 
the key server has to remember the key that it shares with each user. But when 
Alice asks the KDC to set up a key between her and Bob, the KDC performs 
the function and then forgets all about it. It does not keep track of which keys 
between users have been set up. This is a nice property because it allows a 
heavily loaded key server to be distributed over several machines in a simple 
manner. As there is no state to be updated, Alice can talk to one copy of the 
key server one moment and to another copy the next moment. 

It turns out that the cryptographic protocols needed for a Kerberos-style 
system are very complicated. Initially, designing such protocols looks quite 
easy to do, but even experienced cryptographers have published proposals, 
only to have them broken later on. The flaws that creep in are very subtle. 
We're not going to explain these protocols here; they are too dangerous to 
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experiment with and modify by hand. Even we shy away from designing this 
type of protocol anew. If you want to use a protocol of this sort, use the latest 
version of Kerberos. Kerberos has been around for quite a while, and many 
competent people have looked at it. 

1 7.3 Simpler Solutions 

Sometimes it is not possible to use Kerberos. The protocol is far from simple, 
and it imposes some restrictions. Servers have to memorize all tickets that they 
have accepted, and every partiCipant needs a reliable dock. There are several 
situations in which these requirements cannot be met. Further, we find it more 
informative to study a simpler design. 

We can create a simpler and more robust solution if we don't put so much 
emphasis on efficiency. It turns out to be especially useful to allow the key 
server to maintain state. Modem computers are far more powerful than they 
were in the days when Kerberos was first designed, and they should not have 
any trouble maintaining state for tens of thousands of participants. Even a very 
large system with 100,000 participants is not a problem: if each participant 
requires a 1 kilobyte state in the key server, storing all states requires only 100 
megabytes of memory. The key server still needs to be fast enough to set up 
all the requested keys, but that too is much less of a problem with modem, 
fast computers. 

We will only discuss the situation in which there is a single key server. 
There are techniques that you can use to distribute the key server state over 
several computers, but we won't go into the details, because you really don't 
want to have a key server for tens of thousands of participants; it's too risky. 
The danger of large key servers is that all the keys are in a single place. That 
makes the key server a very attractive target for attack. The key server must 
also be online at all times, which means an attacker can always communicate 
with the key server at will. The current state of the art does not protect 
computers from network attacks very well, and putting all your keys in a 
single place is an invitation to disaster. For smaller systems, the total "value" 
of the keys kept by the key server is smaller, so this threat is reduced.l In 
the next few chapters we will explore a solution to the key management 
system that is better suited to very large systems. We will restrict our dis­
cussion of key servers to fairly small systems-up to a few thousand partici­
pants or so. 

lWe don't like to leave any unaddressed threat in the system, but in key management, you 
always end up with a compromise solution. 
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1 7.3. 1  Secure Connection 

Here is a brief description of a simpler solution. First, we assume that Alice 
and the key server share a key KA• Instead of using this key directly, they use 
it to run a key negotiation protocol, like the ones we discussed in Chapter 14. 
(If KA is a password, you'd really prefer to use one of the protocols suitable 
for low-entropy passwords that we discussed in Section 14.12, assuming the 
patent issues are not a problem for you.) The key negotiation protocol sets up 
a fresh key K� between the key server and Alice. All other participants also 
perform the same protocol with the key server, and they all set up fresh keys. 

Alice and the key server use K� to create a secure communication channel (see 
Chapter 7 for details). Using the secure channel, Alice and the key server can 
communicate securely. Confidentiality, authentication, and replay protection 
are all provided by the secure channel. All further communications happen 
over this secure channel. All other participants create a similar secure channel 
with the key server. 

1 7.3.2 Setting Up a Key 

It is now much easier to design a protocol that sets up a key between Alice 
and Bob. We only need to consider the case where messages get lost, delayed, 
or deleted by the attacker, because the secure channel protects us from all 
other types of manipulation. The protocol can now be something fairly simple. 
Alice asks the key server to set up a key between her and Bob. The key server 
responds by sending a new key KAB to both Alice and Bob. The key server 
can even send the message to Bob through Alice, so that it does not need to 
communicate with Bob directly. If this happens, Alice simply becomes the 
equivalent of a network router transiting a secure channel between the key 
server and Bob. 

This does pose one limitation on the system: Bob must run the key negoti­
ation protocol with the key server before Alice asks the key server to set up a 
shared key with Bob. Whether this turns out to be a problem depends on the 
exact circumstances, as do the possible solutions to this limitation. 

1 7.3.3 Rekeying 

Like all keys, the K� key must have a limited lifetime. This is easy to arrange, 
as Alice can always rerun the key negotiation protocol (using the original key 
KA for authentication) to set up a fresh K� key. A key lifetime of a few hours 
seems reasonable for most situations. 

Because we can always rekey, the key server does not have to store the secure 
channel state in a reliable manner. Suppose the key server crashes and loses 
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all state information. As long as it remembers KA (and the corresponding keys 
for the other participants), there is no problem. All we have to do to recover is 
run the key negotiation protocol between the key server and every participant 
again. So although the key server is not stateless, it does not have to modify its 
long-term state-the part that is stored on nonvolatile media-when running 
the protocols. 

1 7.3.4 Other Properties 

Perhaps our solution is not simpler than Kerberos from an implementation 
point of view, but it is simpler from a conceptual point of view. The secure 
channel makes it much easier to oversee the possible lines of attack against 
the protocol. Using the key negotiation protocol and the secure channel we 
already designed is a good example of how modularization can help in the 
design of cryptographic protocols. 

Using the key negotiation protocol to set up the secure channel has another 
advantage: we get forward secrecy. If Alice's key KA is compromised today, 
her old secure channel keys K� are not revealed, and therefore all her old 
communications are still secure. 

In the earlier parts of the book, we gave a detailed example design of the 
cryptographic function we discussed. We won't do that here, nor will we for 
the rest of the book. The cryptography is fairly straightforward, and we could 
certainly have described a key server system, but it would not be very useful. 
Designing key management systems is more a problem of collecting a suitable 
set of requirements for the particular application and getting the user interface 
right than a problem of cryptography. To be able to explain the design choices 
for a concrete example here, we would have to invent and document the entire 
surrounding social and organizational structure, the threat environment, and 
the application that needs the key management. 

1 7.4 What to Choose 

If you want to implement a central key server, you should use Kerberos if 
possible. It is widely available and widely used. 

In those situations where Kerberos is not suitable, you will have to design 
and build something like the solution we described, but that will be a major 
operation. For the most common type of cryptographic applications we have 
seen, you should count on spending as much time on the key server system as 
you did on the entire application. Our discussion here should help guide your 
thinking. 
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1 7.5 Exercises 

Exercise 17.1 For the protocol in Section 17.3, what is a reasonable lifetime 
to use for the keys K� ? Why? What bad things could happen if the lifetime is 
longer? What bad things could happen if the lifetime is shorter? 

Exercise 17.2 For the protocol in Section 17.3, how might an attacker be able 
to learn K� before it times out? What bad things would the attacker be able to 
do with that knowledge? What bad things would the attacker not be able to 
do with that knowledge? 

Exercise 17.3 For the protocol in Section 17.3, how might an attacker be able 
to learn K� after it times out? What bad things would the attacker be able to do 
with that knowledge? What bad things would the attacker not be able to do 
with that knowledge? 

Exercise 17.4 For the protocol in Section 17.3, consider an attacker who inter­
cepts all communications. Can the attacker retroactively read data between 
Alice and Bob if KA and KB are both later exposed? 

Exercise 17.5 For the protocol in Section 17.3, could an attacker gain any 
advantage in breaking the protocol by forcibly rebooting the key server? 

Exercise 17.6 For the protocol in Section 17.3, could an attacker mount a 
denial-of-service attack against two parties wishing to communicate, and if so, 
how? 

Exercise 17.7 For the protocol in Section 17.3, are there policy or legal risks 
with having the key server generate KAB? Are there things Alice and Bob would 
not say in a situation where the key server generates KAB that they would say 
if the key were known only to them? 
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The Dream of PKI 

In this chapter we will give the standard presentation of what a PKI is, and 
how it solves the key management problem. It is important to understand 
this first. In the next chapter we'll talk about the challenges with PKIs in 
practice, but for this chapter we'll visit the perfect world where a PKI solves 
all your problems. 

1 8. 1  A Very Short PKI Overview 

A PKI is a Public-Key Infrastructure. It is an infrastructure that allows you to 
recognize which public key belongs to whom. The classical description is as 
follows. 

There is a central authority that is called the Certificate Authority, or CA 
for short. The CA has a public/private key pair (e.g., an RSA key pair) and 
publishes the public key. We will assume that everybody knows the CA's 
public key. As this key remains the same over long periods of time, this is easy 
to accomplish. 

To join the PKI, Alice generates her own public/private key pair. She keeps 
the private key secret, and takes the public key PKA to the CA and says: "Hi, 
I'm Alice and PKA is my public key." The CA verifies that Alice is who she 
says she is and then signs a digital statement that states something like "Key 
PKA belongs to Alice." This signed statement is called the certificate. It certifies 
that the key belongs to Alice. 

If Alice now wants to communicate with Bob, she can send him her public 
key and the certificate. Bob has the CA's public key, so he can verify the 
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signature on the certificate. As long as Bob trusts the CA, he also trusts that 
PKA actually belongs to Alice. 

Using the same procedures, Bob gets his public key certified by the CA, 
and sends his public key and certificate to Alice. They now know each other's 
public key. These keys in tum can be used to run the key negotiation protocol 
to establish a �e�sion key for secure communications. 

What is required is a central CA that everybody trusts. Each participant 
needs to get his or her public key certified, and each participant needs to know 
the CA's public key. After that, everybody can securely communicate with 
everybody else. 

That sounds simple enough. 

1 8.2 PKI Examples 

To make the re�t of this chapter easier to understand, we'll first give some 
examples of how PKIs can be implemented and used. 

1 8.2.1  The Universal PKI 
The ultimate dream is a universal PKI. A large organization, like the post 
office, certifies everybody's public key. The beauty of this is that every person 
only needs to get a single key certified, as the same key can be used for 
every application. Because everybody trusts the post office, or whatever other 
organization becomes the universal CA, everybody can communicate securely 
with everybody else, and they all live happily ever after. 

If our description sounds a bit like a fairy tale, that is because it is. There is 
no universal PKI, and there never will be. 

1 8.2.2 VPN Access 
A more realistic example would be a company that has a VPN (Virtual Private 
Network) to allow its employees to access the corporate network from home 
or from their hotel room when they are traveling. The VPN access points must 
be able to recognize the people who have access and exactly what level of 
access they have. The IT department of the company acts as the CA and gives 
every employee a certificate that allows the VPN access points to recognize 
the employee. 

1 8.2.3 Electronic Banking 
A bank wants to allow its customers to perform financial transactions on the 
bank's website. Properly identifying the customer is vital in this application, 
as is the ability to produce proof acceptable in court. The bank itself can act as 
the CA and certify the public keys of its customers. 
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A refinery complex is very large. Spread out between miles of pipes and access 
roads are hundreds of sensors that measure things like temperature, flow rate, 
and pressure. Spoofing sensor data is a very serious attack on the refinery. It 
might not be too difficult to send false sensor data to the control room, tricking 
the operators into taking actions that lead to a large explosion. Therefore, it 
is imperative that the control room get the proper sensor readings. We can 
use standard authentication techniques to ensure that the sensor data has not 
been tampered with, but to be sure that the data actually comes from the 
sensor, some kind of key infrastructure is needed. The company can act as a 
CA and build a PKI for all the sensors so each sensor can be recognized by the 
control room. 

1 8.2.5 Credit Card Organization 

A credit card organization is a cooperative venture between a few thousand 
banks spread out all over the world. All of these banks must be able to 
exchange payments. After all, a user who has a credit card from bank A must 
be able to pay the merchant that banks with bank B. Bank A will need to settle 
with bank B in some way, and that requires secure communications. A PKI 
allows all banks to identify each other and perform secure transactions. In this 
situation, the credit card organization can act as the CA that certifies the keys 
of each bank. 

1 8.3 Additional Details 

In real life, things become somewhat more complicated, so various extensions 
to the simple PKI scheme are often used. 

1 8.3. 1 Multilevel Certificates 

In many situations, the CA is split into multiple pieces. For example, the central 
credit card organization is not going to certify each bank directly. Instead, they 
will have regional offices to deal with the individual banks. You then get a 
two-level certificate structure. The central CA signs a certificate on the regional 
CA's public key that says something like: "Key PKx belongs to regional office 
X and is allowed to certify other keys." Each regional office can then certify 
individual bank keys. The certificate on the bank's key consists of two signed 
messages: the central CA's delegation message that authorizes the regional 
office's key, and the regional office's certification of the bank's key. This is 
called the certificate chain, and such a chain can be extended to any number 
of levels. 
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Such multilevel certificate structures can be very useful. They basically 
allow the CA functionality to be split into a hierarchy, which is easy to handle 
for most organizations. Almost all PKI systems have a multilevel structure. 
One disadvantage of this structure is that the certificates grow larger and 
require more computations to verify, but this is a relatively small cost in most 
situations. Another disadvantage is that each extra CA that you add to the 
system provides another point of attack, and thereby reduces overall system 
security. 

One way to reduce the disadvantage of the large multilevel certificates that 
we have not seen in practice would be to collapse the certificate hierarchy. To 
continue with this example, once the bank has its two-level certificate, it could 
send it to the central CA. The centra] CA verifies the two-level certificate and 
replies with a single certificate on the bank's key, using the master CA key. 
Once the key hierarchy is collapsed like this, the performance cost of adding 
extra levels to the hierarchy becomes very small. But then again, adding extra 
layers might not be such a good idea; many-layered hierarchical structures are 
rarely effective. 

You have to be careful when chaining certificates together like this. They 
add more complexity, and complexity is in general risky. Here is an example. 
Secure sites on the Internet use a PKI system to allow browsers to identify 
the correct website. In practice, this system isn't very secure, if only because 
most users don't verify the name of the website they are using. But a while 
back, a fatal bug showed up in a library that validates certificates on all 
Microsoft operating systems. Each element of the certificate chain contains a 
flag that specifies whether the key it certifies is a CA key or not. CA keys are 
allowed to certify other keys. Non-CA keys are not allowed to certify other 
keys. This is an important difference. Unfortunately, the library in question 
didn't check this flag. So an attacker could buy a certificate for the domain 
nastyattacker . com and use it to sign a certificate for amazon . com. Microsoft 
Internet Explorer used the faulty library. It would accept nas tyat tacker . com

'
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certification of a fake Amazon key and show the fake website as the real 
Amazon website. Thus, a worldwide security system that cost a fortune to 
build was completely outflanked by a simple little bug in a single library. Once 
the bug was published, a patch was released (it took several tries to fix all the 
problems), but this remains a good example of a minor bug destroying the 
security of an entire system. 

1 8.3.2 Expiration 

No cryptographic key should be used indefinitely; there is always a risk 
that the key will be compromised. Regular key changes let you recover from 
compromise, albeit slowly. A certificate should not be valid forever, either, 
because both the CA's key and the public key that is being certified expire. 
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Apart from these cryptographic reasons, expiration is important in keeping 
information up-to-date. When a certificate expires, a new one will have to 
be reissued, and this creates an opportunity to update the information in the 
certificate. A typical expiration interval is somewhere between a few months 
and a few years. 

Almost all certificate systems include an expiration date and time. Nobody 
should accept the certificate after this date and time. This is why participants 
in a PKI need a clock. 

Many designs include other data in the certificate. Often certificates have a 
not-valid-before time, in addition to the expiration time. There can be different 
classes of certificates, certificate serial numbers, date and time of issue, etc. 
Some of this data is useful, some useless. 

The most commonly used format for certificates is X.509 v3, which is overly 
complicated. See Peter Gutmann's style guide [58] for a discussion of X.509. 
If you work on a system that doesn't have to be interoperable with other 
systems, you might strongly consider forgetting about X.509. Of course, X.509 
is standardized, and it's hard to fault you for using a standard. 

1 8.3.3 Separate Registration Authority 

Sometimes you will see a system with a separate registration authority. The 
problem is a political one. It is the HR department of a company that decides 
who is an employee. But the IT department has to run the CA; that is a technical 
job that they are not going to allow the HR department to do. 

There are two good solutions to this. The first one is to use a multilevel 
certificate structure and let the HR department be its own sub-CA. This 
automatically provides the necessary flexibility to support multiple sites. The 
second solution is much like the first one, except that once a user has a two­
level certificate, he exchanges it for a one-level certificate at the central CA. 
This eliminates the overhead of checking a two-level certificate each time it is 
used, at the cost of adding a simple two-message protocol to the system. 

The really bad solution is to add a third party to the cryptographic pro­
tocol. The project specifications will talk about the CA and another party 
that might be called something like the RA (Registration Authority). The CA 
and RA are treated as completely separate entities, which can add more than 
100 pages of documentation to the system. That is bad in itself. Then there 
is the need to specify the RA-CA interaction. We've even seen three-party 
protocols in which the RA authorizes the CA to issue a certificate. This is a 
good example of the problem of imposing user requirements on a technical 
solution. User requirements only specify the outside behavior of a system. 
The company needs to have separate functionality for the HR and IT depart­
ments. But that does not mean the software has to have different code for 
the HR and IT departments. In many situations, and certainly in this one, the 
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two departments can use much of the same functionality, and thus much of 
the same code. Using a single set of certificate functions leads to a design 
that is simpler, cheaper, more powerful, and more flexible than one based 
directly on the original requirements that included both a CA and an RA 
entity. A two-level CA scheme allows HR and IT to share most of the code 
and protocols. The differences, in this case, are mostly in the user interface and 
should be easy to implement. That translates to maybe a few hundred lines of 
extra code, not a few hundred extra pages of spedfications that tum into tens 
of thousands of lines of code. 

1 8.4 Summary 

What we have described is a dream, but a very important dream. PKI is the 
first and last word on key management for most of our industry. People have 
been brought up on this dream and see it as something so obvious that it 
doesn't need stating. To be able to understand them, you must understand the 
PKI dream, because a lot of what they say is within the context of the dream. 
And it feels so good to think that you have a solution to the key management 
problem . . . .  

1 8.5 Exercises 

Exercise 18.1 Suppose a CA is malidous. What bad things could the CA 
accomplish? 

Exercise 18.2 Assume a universal PKI. Can any security problems arise 
because of the use of this single PKI across multiple applications? 

Exercise 18.3 What policy or organizational challenges might impede or 
prevent the deployment of a worldwide universal PKI? 

Exercise 18.4 In addition to the examples in Sections 18.2.2-18.2.5, give three 
example scenarios for which a PKI might be viable. 



PKI Reality 

While very useful, there are some fundamental problems with the basic idea 
of a PKI. Not in theory, but then, theory is something very different from 
practice. PKIs simply don't work in the real world the way they do in the ideal 
scenario discussed in Chapter 18. This is why much of the PKI hype has never 
matched the reality. 

When talking about PKIs, our view is much broader than just e-mail and the 
Web. We also consider the role of PKls in authorization and other systems. 

1 9. 1  Names 

We'll start with a relatively simple problem: the concept of a name. The PKI 
ties Alice's public key to her name. What is a name? 

Let's begin in a simple setting. In a small village, everybody knows every­
body else by sight. Everybody has a name, and the name is either unique or 
will be made unique. If there are two Johns, they will quickly come to be called 
something like Big John and Little John. For each name there is one person, but 
one person might have several names; Big John might also be called Sheriff or 
Mr. Smith. 

The name we are talking about here is not the name that appears on legal 
documents. It is the name that people use to refer to you. A name is really 
any kind of signifier that is used to refer to a person, or more generally, to an 
entity. Your "official" name is just one of many names, and for many people 
it is one that is rarely used. 

181 
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As the village grows into a town, the number of people increases until you 
no longer know them all. Names start losing their immediate association with 
a person. There might only be a single J. Smith in town, but you might not 
know him. Names now start to lead a life of their own, divorced from the 
actual person. You start talking about people you have never actually met. 
Maybe you end up talking in the bar about the rich Mr. Smith who just moved 
here and who is going to sponsor the high school football team next year. Two 
weeks later, you find out that this is the same person who joined your baseball 
team two months ago, and whom you know by now as John. People still have 
multiple names, after all. It just isn't obvious which names belong together, 
and which person they refer to. 

As the town grows into a city, this changes even more. Soon you will only 
know a very small subset of the people. What is more, names are no longer 
unique. It doesn't really help to know that you are looking for a John Smith 
if there are a hundred of them in the city. The meaning of a name starts 
to depend on the context. Alice might know three Johns, but at work when 
she talks about "John," it is clear from the context that she means John who 
works upstairs in sales. Later at home, it might mean John the neighbor's kid. 
The relationship between a name and a person becomes even fuzzier. 

Now consider the Internet. Over a billion people are online. What does 
the name "John Smith" mean there? Almost nothing: there are too many of 
them. So instead of more traditional names we use e-mail addresses. You now 
communicate with j smi th5 3 3 @yahoo . com. That is certainly a unique name, but 
in practice it does not link to a person in the sense of someone you will ever 
meet. Even if you could find out information such as his address and phone 
number, he is just as likely to live on the other side of the world. You are never 
going to meet him in person unless you really set out to do so. Not surpri­
singly, it is not uncommon for people to take on different online personalities. 
And as always, each person has multiple names. Most users acquire multiple 
e-mail addresses after a while. (We have more than a dozen among us.) But 
it is extremely difficult to find out whether two e-mail addresses refer to the 
same person. And to make things more complicated, there are people who 
share an e-mail address, so that "name" refers to them both. 

There are large organizations that try to assign names to everybody. The 
best-known ones are governments. Most countries require each person to 
have a single official name, which is then used on passports and other official 
documents. The name itself is not unique-there are many people with the 
same name-so in practice it is often extended with things like address, 
driver's license number, and date of birth. This still does not guarantee a 
unique identifier for a person, however.1 Also, several of these identifiers 
can change over the course of a person's life. People change their addresses, 

1 Driver's license numbers are unique, but not everybody has one. 
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driver's license numbers, names, and even gender. Just about the only thing 
that doesn't change is the date of birth, but this is compensated for by the fact 
that plenty of people lie about their date of birth, in effect changing it. 

Just in case you thought that each person has a single government-sanc­
tioned official name, this isn't true, either. Some people are stateless and 
have no papers at all. Others have dual nationalities, with two governments 
each trying to establish an official name-and for various reasons, they may 
not agree on what the official name should be. The two governments might 
use different alphabets, in which case the names cannot be the same. Some 
countries require a name that fits the national language and will modify foreign 
names to a similar "proper" name in their own language. 

To avoid confusion, many countries assign unique numbers to individuals, 
like the Social Security number (SSN) in the United States or the SoFi number 
in the Netherlands. The whole point of this number is to provide a unique and 
fixed name for an individual, so his actions can be tracked and linked together. 
To a large degree these numbering schemes are successful, but they also have 
their weaknesses. The link between the actual human and the assigned number 
is not very tight, and false numbers are used on a large scale in certain sectors 
of the economy. And as these numbering schemes work on a per-country 
basis, they do not provide global coverage, nor do the numbers themselves 
provide global uniqueness. 

One additional aspect of names deserves mention. In Europe, there are 
privacy laws that restrict what kind of information an organization can store 
about people. For example, a supermarket is not allowed to ask for, store, 
or otherwise process an SSN or SoFi number for its loyalty program. This 
restricts the reuse of government-imposed naming schemes. 

So what name should you use in a PKI? Because many people have many 
different names, this becomes a problem. Maybe Alice wants to have two 
keys, one for her business and one for her private correspondence. But she 
might use her maiden name for her business and her married name for her 
private correspondence. Things like this quickly lead to serious problems if 
you try to build a universal PKI. This is one of the reasons why smaller 
application-specific PKIs work much better than a single large one. 

1 9.2 Authority 

Who is this CA that claims authority to assign keys to names? What makes 
that CA authoritative with respect to these names? Who decides whether 
Alice is an employee who gets VPN access or a customer of the bank with 
restricted access? 

For most of our examples, this is a question that is simple to answer. The 
employer knows who is an employee and who isn't; the bank knows who is 
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a customer. This gives us our first indication of which organization should be 
the CA. Unfortunately, there doesn't seem to be an authoritative source for the 
universal PKI. This is one of the reasons why a universal PKI cannot work. 

Whenever you are planning a PKI, you have to think about who is autho­
rized to issue the certificates. For example, it is easy for a company to be 
authoritative with regard to its employees. The company doesn't decide what 
the employee's name is, but it does know what name the employee is known 
by within the company. If "Fred Smith" is officially called Alfred, this does not 
matter. The name "Fred Smith" is a perfectly good name within the context of 
the employees of the company. 

1 9.3 Trust 

Key management is the most difficult problem in cryptography, and a PKI 
system is one of the best tools that we have to solve it with. But everything 
depends on the security of the PKI, and therefore on the trustworthiness 
of the CA. Think about the damage that can be done if the CA starts to 
forge certificates. The CA can impersonate anyone in the system, and security 
completely breaks down. 

A universal PKI is very tempting, but trust is really the area where it fails. 
If you are a bank and you need to communicate with your customers, would 
you trust some dot-com on the other side of the world? Or even your local 
government bureaucracy? What is the total amount of money you could lose if 
the CA does something horribly wrong? How much liability is the CA willing 
to take on? Will your local banking regulations allow you to use a foreign CA? 
These are all enormous problems. Just imagine the damage that can occur if 
the CA's private key is published on a website. 

Think of it in traditional terms. The CA is the organization that hands out 
the keys to the buildings. Most large office buildings have guards, and most 
guards are hired from an outside security service. The guards verify that the 
rules are being obeyed: a rather straightforward job. But deciding who gets 
which keys is not something that you typically outsource to another company, 
because it is a fundamental part of the security policy. For the same reason, 
the CA functionality should not be outsourced. 

No organization in the world is trusted by everybody. There isn't even one 
that is trusted by most people. Therefore, there will never be a universal PKI. 
The logical conclusion is that we will have to use lots of small PKIs. And this 
is exactly the solution we suggest for our examples. The bank can be its own 
CA; after all, the bank trusts itself, and all the customers already trust the bank 
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with their money. A company can be its own CA for the VPN, and the credit 
card organization can also run its own CA. 

An interesting observation here is that the trust relationships used by the 
CA are ones that already exist and are based on contractual relationships. This 
is always the case when you design cryptographic systems: the basic trust 
relationships you build on are all based on contractual relationships. 

1 9.4 Indirect Authorization 

Now we come to a big problem with the classic PKI dream. Consider autho­
rization systems. The PKI ties keys to names, but most systems are not 
interested in the name of the person. The banking system wants to know 
which transactions to authorize. The VPN wants to know which directories to 
allow access to. None of these systems cares who the key belongs to, only what 
the keyholder is authorized to do. 

To this end, most systems use some kind of access control list, or ACL. 
This is just a database of who is authorized to do what. Sometimes it is 
sorted by user (e.g., Bob is allowed the following things: access files in the 
directory /homes/bob, use of the office printer, access to the file server), but 
most systems keep the database indexed by action (e.g., charges to this account 
must be authorized by Bob or Betty). Often there are ways to create groups of 
people to make the ACLs simpler, but the basic functionality remains the same. 

So now we have three different objects: a key, a name, and permission to 
do something. What the system wants to know is which key authorizes which 
action, or in other words, whether a particular key has a particular permission. 
The classic PKI solves this by tying keys to names and using an ACL to tie 
names to permissions. This is a roundabout method that introduces additional 
points of attack [45]. 

The first point of attack is the name-key certificate provided by the PKI. The 
second point of attack is the ACL database that ties names to permissions. The 
third point of attack is name confusion: with names being such fuzzy things, 
how do you compare whether the name in the ACL is the same as the name in 
the PKI certificate? And how do you avoid giving two people the same name? 

If you analyze this situation, you will clearly see that the technical design 
has followed the naive formulation of the requirements. People think of 
the problem in terms of identifying the key holder and who should have 
access-that is how a security guard would approach the problem. Automated 
systems can use a much more direct approach. A door lock doesn't care who 
is holding the key, but allows access to anyone with the key. 
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1 9.5 Direct Authorization 

A much better solution is generally to directly tie the permissions to the key, 
using the PKI. The certificate no longer links the key to a name; it links the key 
to a set of permissions [45]. 

All systems that use the PKI certificates can now decide directly whether to 
allow access or not. They just look at the certificate provided and see if the key 
has the appropriate permissions. It is direct and simple. 

Direct authorization removes the ACL and the names from the authorization 
process, thereby eliminating these points of attack. Some of the problems will, 
of course, reappear at the point where certificates are issued. Someone must 
decide who is allowed to do what, and ensure that this decision is encoded 
in the certificates properly. The database of all these decisions becomes the 
equivalent of the ACL database, but this database is less easy to attack. It is 
easy to distribute to the people making the decisions, removing the central 
ACL database and its associated vulnerabilities. Decision makers can just 
issue the appropriate certificate to the user without further security-critical 
infrastructure. This also removes much of the reliance on names, because the 
decision makers are much further down in the hierarchy and have a much 
smaller set of people to deal with. They often know the users personally, or at 
least by sight, which helps a great deal in avoiding name confusion problems. 

So can we just get rid of the names in the certificates, then? 
Well, no. Though the names will not be used during normal operations, 

we do need to provide logging data for audits and such. Suppose the bank 
just processed a salary payment authorized by one of the four keys that has 
payment authority for that account. Three days later, the CFO calls the bank 
and asks why the payment was made. The bank knows the payment was 
authorized, but it has to provide more information to the CFO than just a few 
thousand random-looking bits of public-key data. This is why we still include 
a name in every certificate. The bank can now tell the CFO that the key used to 
authorize the payment belonged to "J. Smith," which is enough for the CFO 
to figure out what happened. But the important thing here is that the names 
only need to be meaningful to humans. The computer never tries to figure 
out whether two names are the same, or which person the name belongs to. 
Humans are much better at dealing with the fuzzy names, whereas computers 
like simple and well-specified things such as sets of permissions. 

1 9.6 Credential Systems 

If you push this principle further, you get a full-fledged credential system. 
This is the cryptographer's super-PKI. Basically, it requires that you need a 
credential in the form of a signed certificate for every action you perform. 
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If Alice has a credential that lets her read and write a particular file, she 
can delegate some or all of her authority to Bob. For example, she could 
sign a certificate on Bob's public key that reads something like "Key PKBob is 
authorized to read file X by delegated authority of key PKAlice." If Bob wants 
to read file X, he has to present this certificate and a certificate proof that Alice 
has read access to file X. 

A credential system can add additional features. Alice could limit the time 
validity of the delegation by including the validity period in the certificate. 
Alice might also limit Bob's ability to delegate the authority to read file X.2 

In theory, a credential system is extremely powerful and flexible. In practice, 
they are rarely used. There are several reasons for this. 

First of all, credential systems are quite complex and can impose a noticeable 
overhead. Your authority to access a resource might depend on a chain of 
half-a-dozen certificates, each of which has to be transmitted and checked. 

The second problem is that credential systems invite a micromanagement 
of access. It is so easy to split authorities into smaller and smaller pieces that 
users end up spending entirely too much time deciding exactly how much 
authority to delegate to a colleague. This time is often wasted, but a bigger 
problem is the loss of the colleague's time when it turns out he doesn't have 
enough access to do his job. Maybe this micromanagement problem can be 
solved with better user education and better user interfaces, but that seems 
to be an open problem. Some users avoid the micromanagement problem by 
delegating (almost) all their authority to anyone who needs any kind of access, 
effectively undermining the entire security system. 

The third problem is that you need to develop a credential and delegation 
language. The delegation messages need to be written in some sort of logical 
language that computers can understand. This language needs to be powerful 
enough to express all the desired functionality, yet simple enough to allow 
fast chaining of conclusions. It also has to be future-proof. Once a credential 
system is deployed, every program will need to include code to interpret the 
delegation language. Upgrading to a new version of the delegation language 
can be very difficult, especially since security functionality spreads into every 
piece of a system. Yet it is effectively impossible to design a delegation 
language that is general enough to satisfy all future requirements, since we 
never know what the future will bring. This remains an area of research. 

The fourth problem with credential systems is probably insurmountable. 
Detailed delegation of authority is simply too complex a concept for the 
average user. There doesn't seem to be a way of presenting access rules to 

2This is an often-requested feature, but we believe it may not always be a good one. Limiting 
Bob's ability to delegate his authority just invites him to run a proxy program so that other 
people can use his credential to access a resource. Such proxy programs undermine the security 
infrastructure and should be banned, but this is only tenable if there are no operational reasons to 
run a proxy. And there are always operational reasons why someone needs to delegate authority. 
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users in a manner they can understand. Asking users to make decisions about 
which authorities to delegate is bound to fail. We see that in the real world 
already. In some student houses it is customary for one person to go to the 
ATM and get cash for several people. The other students lend him their ATM 
card and PIN code. This is an eminently risky thing to do, yet it is done by some 
of the supposedly more well-educated people in our society. As consultants, 
we've visited many companies and sometimes had work-related reasons to 
have access to the local network. It is amazing how much access we got. We've 
had system administrators give us unrestricted access to the research data, 
when all we needed to do was look at a file or two. If system administrators 
have a hard time getting this right, ordinary users certainly will, too. 

As cryptographers, we'd love the idea of a credential system if only the users 
were able to manage the complexity. There is undoubtedly a lot of interesting 
research to do on human interactions with security systems. 

There is, however, one area where credentials are very useful and should be 
mandatory. If you use a hierarchical CA structure, the central CA signs certifi­
cates on the keys of the sub-CAs. If these certificates do not include any kind of 
restriction, then each sub-CA has unlimited power. This is problematic; we've 
just multiplied the number of places where system-critical keys are stored. 

In a hierarchical CA structure, the power of a sub-CA should be limited by 
including restrictions in the certificate on its key. This requires a credential-like 
delegation language for CA operations. Exactly what type of restrictions you'd 
want to impose depends on the application. Just think about what type of 
sub-CAs you want to create and how their power should be limited. 

1 9.7 The Modified Dream 

Let's summarize all the criticism of PKIs we've presented so far and present 
a modified dream. This is a more realistic representation of what a PKI 
should be. 

First of all, each application has its own PKI with its own CA. The world 
consists of a large number of small PKls. Each user is a member of many 
different PKIs at the same time. 

The user must use different keys for each PKI, as he cannot use the same 
key in different systems without careful coordination in the design of the two 
systems. The user's key store will therefore contain dozens of keys, requiring 
tens of kilobytes of storage space. 

The PKI's main purpose is to tie a credential to the key. The bank's PKI 
ties Alice's key to the credential that allows access to Alice's account. Or the 
company's PKI ties Alice's key to a credential that allows access to the VPN. 
Significant changes to a user's credentials require a new certificate to be issued. 
Certificates still contain the user's name, but this is mainly for management 
and auditing purposes. 
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This modified dream is far more realistic. It is also more powerful, more 
flexible, and more secure than the original dream. It is very tempting to believe 
that this modified dream will solve your key management problems. But in 
the next section, we will encounter the hardest problem of all-one that will 
never be solved fully and will always require compromises. 

1 9.8 Revocation 

The hardest problem to solve in a PKI is revocation. Sometimes a certificate has 
to be withdrawn. Maybe Bob's computer was hacked and his private key was 
compromised. Maybe Alice was transferred to a different department or even 
fired from the company. You can think of all kinds of situations where you 
want to revoke a certificate. 

The problem is that a certificate is just a bunch of bits. These bits have been 
used in many places and are stored in many places. You can't make the world 
forget the certificate, however hard you try. Bruce lost a PCP key more than a 
decade ago; he still gets e-mail encrypted with the corresponding certificate.3 
Even trying to make the world forget the certificate is unrealistic. If a thief 
breaks into Bob's computer and steals his private key, you can be certain he 
also made a copy of the certificate on the corresponding public key. 

Each system has its own requirements, but in general, revocation require­
ments differ in four variables: 

- Speed of revocation. What is the maximum amount of time allowed between 
the revocation command and the last use of the certificate? 

- Reliability of revocation. Is it acceptable that under some circumstances 
revocation isn't fully effective? What residual risk is acceptable? 

- Number of revocations. How many revocations should the revocation 
system handle at a time? 

• Connectivity. Is the party checking the certificates online at the time of 
certificate verification? 

There are three workable solutions to the revocation problem: revocation 
lists, fast expiration, and online certificate verification. 

1 9.8.1 Revocation List 
A certificate revocation list, or CRL, is a database that contains a list of revoked 
certificates. Everybody who wants to verify a certificate must check the CRL 
database to see if the certificate has been revoked. 

3PGP has its own strange PKI-like structure called the web of trust. Those interested in PGP's web 
of trust should read [130]. 
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A central CRL database has attractive properties. Revocation is almost 
instantaneous. Once a certificate has been added to the CRL, no further 
transactions will be authorized. Revocation is also very reliable, and there is 
no direct upper limit on how many certificates can be revoked. 

The central CRL database also has significant disadvantages. Everybody 
must be online all the time to be able to check the CRL database. The CRL 
database also introduces a single point of failure: if it is not available, no 
actions can be performed. If you try to solve this by authorizing parties to 
proceed whenever the CRL is unavailable, attackers will use denial-of-service 
attacks to disable the CRL database and destroy the revocation capability of 
the system. 

An alternative is to have a distributed CRL database. You could make a 
redundant mirrored database using a dozen servers spread out over the world 
and hope it is reliable enough. But such redundant databases are expensive 
to build and maintain and are normally not an option. Don't forget, people 
rarely want to spend money on security. 

Some systems simply send copies of the entire CRL database to every device 
in the system. The U.S. military STU-III encrypted telephone works in this 
manner. This is similar to the little booklets of stolen credit card numbers that 
used to be sent to each merchant. It is relatively easy to do. You can just let 
every device download the updated CRL from a Web server every half hour 
or so, at the cost of increasing the revocation time. However, this solution 
restricts the size of the CRL database. Most of the time you can't afford to copy 
hundreds of thousands of CRL entries to every device in the system. We've 
seen systems where the requirements state that every device must be capable 
of storing a list of 50 CRL entries, which can be problematic. 

In our experience, CRL systems are expensive to implement and maintain. 
They require their own infrastructure, management, communication paths, 
and so on. A considerable amount of extra functionality is required just to 
handle the comparatively rarely used functionality of revocation. 

1 9.8.2 Fast Expiration 

Instead of revocation lists, you can use fast expiration. This makes use of the 
already existing expiration mechanism. The CA simply issues certificates with 
a very short expiration time, ranging anywhere from 10 minutes to 24 hours. 
Each time Alice wants to use her certificate, she gets a new one from the CA. 
She can then use it for as long as it remains valid. The exact expiration speed 
can be tuned to the requirements of the application, but a certificate validity 
period of less than 10 minutes does not seem to be very practical. 

The major advantage of this scheme is that it uses the already available 
certificate issuing mechanism. No separate CRL is required, which significantly 
reduces the overall system complexity. All you need to do to revoke a 
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permission is inform the CA of the new access rules. Of course, everybody still 
needs to be online all the time to get the certificates reissued. 

Simplicity is one of our main design criteria, so we prefer fast expiration to a 
CRL database. Whether fast expiration is possible depends mostly on whether 
the application demands instantaneous revocation, or whether a delay is 
acceptable. 

1 9.8.3 Online Certificate Verification 

Another alternative is online certificate verification. This approach, which is 
embodied in the Online Certificate Status Protocol (OCSP), has seen a lot of 
headway in some domains, such as Web browsers. 

To verify a certificate, Alice queries a trusted party-such as the CA or a 
delegated party-with the serial number of the certificate in question. The 
trusted party looks up the status of the certificate in its own database, and 
then sends a signed response to Alice. Alice knows the trusted party's public 
key and can verify the signature on the response. If the trusted party says the 
certificate is valid, Alice knows that the certificate has not been revoked. 

Online certificate verification has a number of attractive properties. As with 
CRLs, revocation is almost instantaneous. Revocation is also very reliable. 
Online certificate verification also shares some disadvantages with CRLs. 
Alice must be online to verify a certificate, and the trusted party becomes a 
point of failure. 

In general, we prefer online certificate verification to CRLs. Online certificate 
verification avoids the problem of massively distributing the CRLs and avoids 
the need to parse and verify the CRLs on the client. The design of online 
certificate verification protocols can therefore be made cleaner, simpler, and 
more scalable than CRLs. 

In most situations online certificate verification is inferior to fast expiration, 
however. With online certificate verification, you can't trust the key without a 
trusted party's signature. If you view that signature as a new certificate on the 
key, you have a fast-expiration system with very short expiration times. The 
disadvantage of online certificate verification is that every verifier has to query 
the trusted party, whereas for fast expiration the prover can use the same CA 
signature for many verifiers. 

1 9.8.4 Revocation Is Required 

Because revocation can be hard to implement, it becomes very tempting not to 
implement it at all. Some PKI proposals make no mention of revocation. Others 
list the CRL as a future extension possibility. In reality, a PKI without some 
form of revocation is pretty useless. Real-life circumstances mean that keys do 
get compromised, and access has to be revoked. Operating a PKI without a 
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working revocation system is somewhat like operating a ship without a bilge 
pump. In theory, the ship should be watertight and it shouldn't need a bilge 
pump. In practice, there is always water collecting in the bottom of the ship, 
and if you don't get rid of it, the ship eventually sinks. 

1 9.9 So What Is a PKI Good For? 

At the very beginning of our PKI discussion, we stated that the purpose of 
having a PKI is to allow Alice and Bob to generate a shared secret key, which 
they use to create a secure channel, which they in tum use to communicate 
securely with each other. Alice wants to authenticate Bob (and vice versa) 
without talking to a third party. The PKI is supposed to make this possible. 

But it doesn't. 
There is no revocation system that works entirely offline. It is easy to see why. 

If neither Alice nor Bob contacts any outside party, neither of them can ever 
be informed that one of their keys has been revoked. So the revocation checks 
force them to go online. Our revocation solutions require online connections. 

But if we are online, we don't need a big complex PKL We can achieve our 
desired level of security by simply setting up a central key server, such as 
those described in Chapter 17. 

Let's compare the advantages of a PKI over a key server system: 

- A key server requires everybody to be online in real time. If you can't 
reach the key server, you can't do anything at all. There is no way Alice 
and Bob can recognize each other. A PKI gives you some advantages. 
If you use expiration for revocation, you only need to contact the 
central server once in a while; for applications that use certificates with 
validity periods of hours, the requirement for real-time online access 
and processing is significantly relaxed. This is useful for non-interactive 
applications like e-mail. This is also useful for certain authorization 
systems, or cases where communications are expensive. Even if you use 
a CRL database, you might have rules on how to proceed if the CRL 
database cannot be reached. Credit card systems have rules like this. If 
you can't get automatic authorization, any transaction up to a certain 
amount is okay. These rules would have to be based on a risk analysis, 
including the risk of a denial-of-service attack on the CRL system, but at 
least you get the option of proceeding; the key server solution provides 
no alternatives. 

- The key server is a single point of failure. Distributing the key server 
is difficult, since it contains all the keys in the system. You really don't 
want to start spreading your secret keys throughout the world. The 
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CRL database, in contrast, is much less security-critical and is easier to 
distribute. The fast-expiration solution makes the CA a point of failure. 
But large systems almost always have a hierarchical CA, which means 
that the CA is already distributed, and failures affect only a small part of 
the system. 

- In theory, a PKI should provide you with nonrepudiation. Once Alice 
has signed a message with her key, she should not be able to later deny 
that she signed the message. A key server system can never provide this; 
the central server has access to the same key that Alice uses and can 
therefore forge an arbitrary message to make it look as if Alice sent it. 
In real life, nonrepudiation doesn't work because people cannot store 
their secret keys sufficiently well. If Alice wants to deny that she signed 
a message, she is simply going to claim that a virus infected her machine 
and stole her private key. 

- The most important key of a PKI is the CA root key. This key does not 
have to be stored in a computer that is online. Rather, it can be stored 
securely and only loaded into an offline computer when needed. The root 
key is only used to sign the certificates of the sub-CAs, and this is done 
only rarely. In contrast, the key server system has the master key material 
in an online computer. Computers that are offline are much harder to 
attack than those that are online, so this makes a PKI potentially more 
secure. 

So there are a few advantages to PKIs. They are nice to have, but none 
of them gives you a really critical advantage in some environments. These 
advantages only come at a stiff price. A PKI is much more complex than 
a key server system, and the public-key computations require a lot more 
computational power. 

1 9. 1 0 What to Choose 

So how should you set up your key management system? Should you use a 
key server-type scheme or a PKI-type scheme? As always, this depends on 
your exact requirements, the size of your system, your target application, and 
so on. 

For small systems, the extra complexity of a PKI is in general not warranted. 
We think it is easier to use the key server approach. This is mainly because the 
advantages of a PKI over the key server approach are more relevant for large 
installations than for small ones. 

For large systems, the additional flexibility of a PKI is still attractive. A PKI 
can be a more distributed system. Credential-style extensions allow the central 
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CA to limit the authority of the sub-CAs. This in turn makes it easy to set 
up small sub-CAs that cover a particular area of operations. As the sub-CA 
is limited in the certificates it can issue by the certificate on its own key, the 
sub-CA cannot pose a risk to the system as a whole. For large systems, such 
flexibility and risk limitation are important. 

If you are building a large system, we would advise you to look very 
seriously at a PKI solution, but do compare it to a key server solution. You'll 
have to see if the PKI advantages outweigh its extra cost and complexity. One 
problem might be that you really want to use credential-style limitations for 
your sub-CAs. To do this, you must be able to express the limitations in a 
logical framework. There is no generic framework in which this can be done, 
so this ends up being a customer-specific part of the design. It probably also 
means that you cannot use an off-the-shelf product for your PKI, as they are 
unlikely to have appropriate certificate restriction language. 

1 9. 1 1 Exercises 

Exercise 19.1 What bad things could happen if Alice uses the same keys 
with multiple PKIs? 

Exercise 19.2 Suppose a system employs devices that are each capable of 
storing a list of 50 CRL entries. How can this design decision lead to security 
problems? 

Exercise 19.3 Suppose a system uses a PKI with a CRL. A device in that 
system is asked to verify a certificate but cannot access the CRL database 
because of a denial-of-service attack. What are the possible courses of action 
for the device, and what are the advantages and disadvantages of each course 
of action? 

Exercise 19.4 Compare and contrast the advantages and disadvantages of 
PKIs and key servers. Describe one example application for which you would 
use a PKI. Describe one example application for which you would use a key 
server. Justify each of your decisions. 

Exercise 19.5 Compare and contrast the advantages and disadvantages of 
CRLs, fast revocation, and online certificate verification. Describe one example 
application for which you would use a CRL. Describe one example application 
for which you would use fast revocation. Describe one example application 
for which you would use online certificate verification. Justify each of your 
decisions. 
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20 

PKI Practicalities 

In practice, if  you need a PKI, you will have to decide whether to buy it or 
build it. We'll now discuss some of the practical considerations that occur 
when designing a PKI system. 

20. 1 Certificate Format 

A certificate is just a data type with multiple required and optional fields. It is 
important that the encoding of a particular data structure be unique, because in 
cryptography we often hash a data structure to sign it or compare it. A format 
like XML, which allows several representations of the same data structure, 
requires extra care to ensure that signatures and hashes always work as they 
should. Although we dislike their complexity, X.509 certificates are another 
alternative. 

20.1 .1  Permission Language 

For all but the simplest of PKI systems, you really want to be able to restrict the 
certificates that a sub-CA can issue. To do that, you need to encode a restriction 
into the sub-CA's certificate, which in turn requires a language in which to 
express the key's permissions. This is probably the hardest point of the PKI 
design. The restrictions you are going to need depend on your application. If 
you can't find sensible restrictions, you should rethink your decision to use 
a PKI. Without restrictions in the certificates, every sub-CA effectively has a 
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master key-and that is a bad security design. You could restrict yourself to 
a single CA, but then you would lose many of the advantages of a PKI over a 
key server system. 

20.1 .2 The Root Key 
To do anything, the CA must have a public/private key pair. Generating 
this pair is straightforward. The public key needs to be distributed to every 
participant, together with some extra data, such as the validity period of 
this key. To simplify the system, this is normally done using a self-certifying 
certificate, which is a rather odd construction. The CA signs a certificate on 
its own public key. Although it is called self-certifying, it is nothing of the 
sort. The name self-certification is a historical misnomer that we are stuck 
with. The certificate doesn't certify the key at all, and it proves nothing about 
the security properties of the key, because anyone can create a public key 
and self-certify it. What the self-certification does is tie additional data to the 
public key. The permission list, validity period, human contact data, etc., are 
all included in the self-certificate. The self-certificate uses the same data format 
as all other certificates in the system, and all participants can reuse the existing 
code to check this additional data. The self-certificate is called the root certificate 
of the PKI. 

The next step is to distribute the root certificate to all the system's partici­
pants in a secure manner. Everybody must know the root certificate, and 
everybody must have the right root certificate. 

The first time a computer joins the PKI, it will have to be given the root 
certificate in a secure manner. This can be as simple as pointing the computer 
at a local file or a file on a trusted Web server, and telling the machine that this 
is the root certificate for the PKI in question. Cryptography cannot help with 
this initial distribution of the root certificate, because there are no keys that can 
be used to provide the authentication. The same situation occurs if the private 
key of the CA is ever compromised. Once the root key is no longer secure, an 
entirely new PKI structure will have to be initialized, and this involves giving 
every participant the root certificate in a secure manner. This should provide 
a good motivation for keeping the root key secure. 

The root key expires after a while, and the central CA will have to issue a 
new key. Distributing the new root certificate is easier. The new root certificate 
can be signed with the old root key. Participants can download the new root 
certificate from an insecure source. As it is signed with the old root key, it 
cannot be modified. The only possible problem is if a participant does not get 
the new root certificate. Most systems overlap the validity of the root keys by 
a few months to allow sufficient time for switching to the new root key. 

There is a small implementation issue here. The new CA root certificate 
should probably have two signatures-one with the old root key so users can 
recognize the new root certificate, and one (self-certifying) signature with the 
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new root key to be used by new devices that are introduced after the old key 
expires. You can do this either by including support for multiple signatures in 
your certificate format, or by simply issuing two separate certificates for the 
same new root key. 

20.2 The Life of a Key 

Let's consider the lifetime of a single key. This can be the CA's root key or any 
other public key. A key goes through several phases in its life. Not all keys 
require all phases, depending on the application. As an example, we'll use 
Alice's public key. 

Creation The first step in the life of a key is creation. Alice creates a pub­
lic/private key pair and stores the private part in a secure manner. 

Certification The next step is certification. Alice takes her public key to the 
CA or the sub-CA and has it certify her key. This is the point where the 
CA decides which permissions to give to Alice's public key. 

Distribution Depending on the application, Alice might have to distribute 
her certified public key before she can use it. If, for example, Alice uses 
her key for signatures, each party that could potentially receive Alice's 
signature should have her public key first. The best way to do this is to 
distribute the key for a while before Alice uses it the first time. This is 
especially important for a new root certificate. When the CA switches 
to a new root key, for example, everybody should be given the chance 
to learn the new root certificate before being presented with a certificate 
signed with the new key. 

Whether you need a separate distribution phase depends on your appli­
cation. If you can avoid it, do so. A separate distribution phase has to be 
explained to the users and becomes visible in the user interface. That, in 
turn, creates lots of extra work, because many users won't understand 
what it means and will not use the system properly. 

Active use The next phase is when Alice uses her key actively for transactions. 
This is the normal situation for a key. 

Passive use After the active use phase, there must be a period of time where 
Alice no longer uses her key for new transactions, but everybody still 
accepts the key. Transactions are not instantaneous; sometimes they get 
delayed. A signed e-mail could very well take a day or two to reach 
its destination. Alice should stop using her key actively and allow a 
reasonable period for all pending transactions to be completed before the 
key expires. 

Expired Finally, the key expires and it is not considered to be valid anymore. 
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How are the key phases defined? The most common solution is to include 
explicit times for each phase transition in the certificate. The certificate contains 
the start of the distribution phase, the start of the active use phase, the start of 
the inactive use phase, and the expiration time. Unfortunately, all of these times 
have to be presented to the user, because they affect the way the certificate 
works, and this is probably too complicated for ordinary users to handle. 

A more flexible scheme is to have a central database that contains the phase 
of each key, but this introduces a whole new raft of security issues, which 
we'd rather not do. And if you have a CRL, it can override the chosen phase 
periods and expire a key immediately. 

Things become even more complicated if Alice wants to use the same 
key in several different PKIs. In general, we think this is a bad idea, but 
sometimes it cannot be avoided. But extra precautions need to be taken if it 
cannot be avoided. Suppose Alice uses a small tamper-resistant module that 
she carries with her. This module contains her private keys and performs the 
necessary computations for a digital signature. Such modules have a limited 
storage capacity. Alice's certificates on her public key can be stored on the 
corporate intranet without size limitations, but the small module cannot store 
an unlimited number of private keys. In situations like this, Alice ends up 
using the same key for multiple PKIs. It also implies that the key lifetime 
schedule should be similar for all the PKIs Alice uses. This might be difficult 
to coordinate. 

If you ever work on a system like this, make sure that a signature used in 
one PKI cannot be used in another PKI. You should always use a single digital 
signature scheme, such as the one explained in Section 12.7. The signed string 
of bytes should not be the same in two different PKI systems or in two different 
applications. The simplest solution is to include data in the string to be signed 
that uniquely identifies the application and the PKL 

20.3 Why Keys Wear Out 

We've mentioned several times that keys have to be replaced regularly, but 
why is this? 

In a perfect world, a key could be used for a very long time. An attacker 
who has no system weaknesses to work with is reduced to doing exhaus­
tive searches. In theory, that reduces our problem to one of choosing large 
enough keys. 

The real world isn't perfect. There are always threats to the secrecy of a 
key. The key must be stored somewhere, and an attacker might try to get at 
it. The key must also be used, and any use poses another threat. The key has 
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to be transported from the storage location to the point where the relevant 
computations are done. This will often be within a single piece of equipment, 
but it opens up a new avenue of attack. If the attacker can eavesdrop on the 
communication channel used for this transport, then she gets a copy of the 
key. Then there is the cryptographic operation that is done with the key. There 
are no useful cryptographic functions that have a full proof of security. At 
their core, they are all based on arguments along the lines of: "Well, none of 
us has found a way to attack this function, so it looks pretty safe."l And as we 
have already discussed, side-channels can leak information about keys. 

The longer you keep a key, and the more you use it, the higher the chance 
an attacker might manage to get your key. If you want to limit the chance of 
the attacker knowing your key, you have to limit the lifetime of the key. In 
effect, a key wears out. 

There is another reason to limit the lifetime of a key. Suppose something 
untoward happens and the attacker gets the key. This breaks the security of 
the system and causes damage of some form. (Revocation is only effective if 
you find out the attacker has the key; a clever attacker would try to avoid 
detection.) This damage lasts until the key is replaced with a new key, and even 
then, data previously encrypted under the old key will remain compromised. 
By limiting the lifetime of a single key, we limit the window of exposure to an 

attacker who has been successful. 
There are thus two advantages to short key lives. They reduce the chance 

that an attacker gets a key, and they limit the damage that is done if he 
nevertheless succeeds. 

So what is a reasonable lifetime? That depends on the situation. There is a 
cost to changing keys, so you don't want to change them too often. On the 
other hand, if you only change them once a decade, you cannot be sure that the 
change-to-a-new-key function will work at the end of the decade. As a general 
rule, a function or procedure that is rarely used or tested is more likely to fail.2 

Probably the biggest danger in having long-term keys is that the change-key 
function is never used, and therefore will not work well when it is needed. A 
key lifetime of one year is probably a reasonable maximum. 

Key changes in which the user has to be involved are relatively expensive, 
so they should be done infrequently. Reasonable key lifetimes are from one 
month and upwards. Keys with shorter lifetimes will have to be managed 
automatically. 

1 What is often called a "proof of security" for cryptographic functions is actually not a complete 
proof. These proofs are generally reductions: if you can break function A, you can also break 
function B. They are valuable in allowing you to reduce the number of primitive operations you 
have to assume are secure, but they do not provide a complete proof of security. 
2This is a generally applicable truism and is the main reason you should always test emergency 
procedures, such as fire drills. 
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20.4 Going Further 

Key management is not just a cryptographic problem. It is a problem of 
interfacing with the real world. The specific choice of which PKI to use, along 
with how the PKI is configured, will depend on the specifics of the application 
and the environment in which it is supposed to be deployed. We have outlined 
the key issues to consider. 

20.5 Exercises 

Exercise 20.1 What fields do you think should appear in a certificate, and 
why? 

Exercise 20.2 What are the root SSL keys hard-coded within your Web 
browser of choice? When were these keys created? When do they expire? 

Exercise 20.3 Suppose you have deployed a PKI, and that the PKI uses 
certificates in a certain fixed format. You need to update your system. Your 
updated system needs to be backward compatible with the original version of 
the PKI and its certificates. But the updated system also needs certificates with 
extra fields. What problems could arise with this transition? What steps could 
you have taken when originally designing your system to best prepare for an 
eventual transition to a new certificate format? 

Exercise 20.4 Create a self-signed certificate using the cryptography packages 
or libraries on your machine. 

Exercise 20.5 Find a new product or system that uses a PKI. This might 
be the same product or system that you analyzed for Exercise 1 .8. Conduct a 

security review of that product or system as described in Section 1 .12, this time 
focusing on the security and privacy issues surrounding the use of the PKI. 
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2 1  

Storing Secrets 

We discussed the problem of storing transient secrets, such as session keys, 
back in Section 8.3. But how do we store long-term secrets, such as passwords 
and private keys? We have two opposing requirements. First of all, the secret 
should be kept secret. Second, the risk of losing the secret altogether (i.e., not 
being able to find the secret again) should be minimal. 

2 1 . 1  Disk 

One of the obvious ideas is to store the secret on the hard drive in the 
computer or on some other permanent storage medium. This works, but only 
if the computer is kept secure. If Alice stores her keys (without encryption) on 
her pc, then anyone who uses her PC can use her keys. Most PCs are used by 
other people, at least occasionally. Alice won't mind letting someone else use 
her PC, but she certainly doesn't want to grant access to her bank account at 
the same time! Another problem is that Alice probably uses several computers. 
If her keys are stored on her PC at home, she cannot use them while at work 
or while traveling. And should she store her keys on her desktop machine at 
home or on her laptop? We really don't want her to copy the keys to multiple 
places; that only weakens the system further. 

A better solution would be for Alice to store her keys on her PDA or smart 
phone. Such a device is less likely to be lent out, and it is something that she 
takes with her everywhere she goes. But small devices such as these can also 
easily be lost or stolen, and we don't want someone later in possession of the 
device to have access to the secret keys. 
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You'd think that security would improve if we encrypt the secrets. Sure, 
but with what? We need a master key to encrypt the secrets with, and that 
master key needs to be stored somewhere. Storing it next to the encrypted 
secrets doesn't give you any advantage. This is a good technique to reduce 
the number and size of secrets though, and it is widely used in combination 
with other techniques. For example, a private RSA key is several thousand bits 
long, but by encrypting and authenticating it with a symmetric key, we can 
reduce the size of the required secure storage by a significant factor. 

2 1 .2 Human Memory 

The next idea is to store the key in Alice's brain. We get her to memorize 
a password and encrypt all the other key material with this password. The 
encrypted key material can be stored anywhere-maybe on a disk, but it can 
also be stored on a Web server where Alice can download it to whatever 
computer she is using at the moment. 

Humans are notoriously bad at memorizing passwords. If you choose very 
simple passwords, you don't get any security. There are simply not enough 
simple passwords for them to be really secret: the attacker can just try them all. 
Using your mother's maiden name doesn't work very well; her name is quite 
often public knowledge-and even if it isn't, there are probably only a few 
hundred thousand surnames that the attacker has to try to find the right one. 

A good password must be unpredictable. In other words, it must contain 
a lot of entropy. Normal words, such as passwords, do not contain much 
entropy. There are about half a million English words-and that is counting 
all the very long and obscure words in an unabridged dictionary-so a single 
word as password provides at most 19 bits of entropy. Estimates of the amount 
of entropy per character in English text vary a bit, but are in the neighborhood 
of 1.5-2 bits per letter. 

We've been using 256-bit secret keys throughout our systems to achieve 
128 bits of security. In most places, using a 256-bit key has very little additional 
cost. However, in this situation the user has to memorize the password (or 
key), and the additional cost of larger keys is high. Trying to use passwords 
with 256 bits of entropy is too cumbersome; therefore, we will restrict ourselves 
to passwords with only 128 bits of entropy.1 

Using the optimistic estimate of 2 bits per character, we'd need a password 
of 64 characters to get 128 bits of entropy. That is unacceptable. Users will 
simply refuse to use such long passwords. 

IFor the mathematicians: passwords chosen from a probability distribution with 128 bits of 
entropy. 
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What if we compromise and accept 64 bits of security? That is already very 
marginal. At 2 bits of entropy per character, we need the password to be at 
least 32 characters long. Even that is too long for users to deal with. Don't 
forget, most real-world passwords are only 6-8 letters long. 

You could try to use assigned passwords, but have you ever tried to use a 
system where you are told that your password is "7193275827429946905186"? 
Or how about "aoekjk3ncmakwe"? Humans simply can't remember such 
passwords, so this solution doesn't work. (In practice, users will write the 
password down, but we'll discuss that in the next section.) 

A much better solution is to use a passphrase. This is similar to a password. 
In fact, they are so similar that we consider them equivalent. The difference is 
merely one of emphasis: a passphrase is much longer than a password. 

Perhaps Alice could use the passphrase, "Pink curtains meander across the 
ocean." That is nonsensical, but fairly easy to remember. It is also 38 characters 
long, so it probably contains about 57-76 bits of entropy. If Alice expands it to 
"Pink dotty curtains meander over seas of Xmas wishes," she gets 52 characters 
for a very reasonable key of 78-104 bits of entropy. Given a keyboard, Alice 
can type this passphrase in a few seconds, which is certainly much faster than 
she can type a string of random digits. We rely on the fact that a passphrase 
is much easier to memorize than random data. Many mnemonic techniques 
are based on the idea of converting random data to things much closer to our 
passphrases. 

Some users don't like to do a lot of typing, so they choose their passphrases 
slightly differently. How about "Wtnitmtstsaaoof,ottaaasot,aboet"? This looks 
like total nonsense; that is, until you think of it as the first letters of the words 
of a sentence. In this case we used a sentence from Shakespeare: "Whether 'tis 
nobler in the mind to suffer the slings and arrows of outrageous fortune, or 
to take arms against a sea of troubles, and by opposing end them." Of course, 
Alice should not use a sentence from literature; literary texts are too accessible 
for an attacker, and how many suitable sentences would there be in the books 
on Alice's bookshelf? Instead, she should invent her own sentence, one that 
nobody else could possibly think of. 

Compared to using a full passphrase, the initial-leUers-from-each-word 
technique requires a longer sentence, but it requires less typing for good 
security because the keystrokes are more random than consecutive letters in a 
sentence. We don't know of any estimate for the number of bits of entropy per 
character for this technique. 

Passphrases are certainly the best way of storing a secret in a human brain. 
Unfortunately, many users still find it difficult to use them correctly. And 
even with passphrases, it is extremely difficult to get 128 bits of entropy in the 
human brain. 
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2 1 .2.1 Salting and Stretching 

To squeeze the most security out of a limited-entropy password or passphrase, 
we can use two techniques that sound as if they come from a medieval torture 
chamber. These are so simple and obvious that they should be used in every 
password system. There is really no excuse not to use them. 

The first is to add a saIto This is simply a random number that is stored 
alongside the data that was encrypted with the password. If you can, use a 
256-bit salt. 

The next step is to stretch the password. Stretching is essentially a very long 
computation. Let p be the password and s be the salt. Using any cryptographi­
cally strong hash function h, we compute 

Xo := 0 
Xi := h(Xi-l II p II s) for i = 1, . . .  , r  
K := xr 

and use K as the key to actually encrypt the data. The parameter r is the 
number of iterations in the computation and should be as large as practical. (It 
goes without saying that Xi and K should be 256 bits long.) 

Let's look at this from an attacker's point of view. Given the salt s and some 
data that is encrypted with K, you try to find K by trying different passwords. 
Choose a particular password P, compute the corresponding K, decrypt the 
data and check whether it makes sense and passes the associated integrity 
checks. If it doesn't, then p must have been false. To check a single value for p, 
you have to do r different hash computations. The larger r is, the more work 
the attacker has to do. 

It is sometimes useful to be able to check whether the derived key is correct 
before decrypting the data. When this is helpful, a key check value can be 
computed. For example, the key check value could be h(O II Xr-l II p II s), which 
because of the properties of hash functions is independent from K. This key 
check value would be stored alongside the salt and could be used to check the 
password before decrypting the data with K. 

In normal use, the stretching computation has to be done every time a 
password is used. But remember, this is at a point in time where the user has 
just entered a password. It has probably taken several seconds to enter the 
password, so using 200 ms for password processing is quite acceptable. Here is 
our rule to choose r: choose r such that computing K from (s, p) takes 200-1000 
ms on the user's equipment. Computers get faster over time, so r should be 
increasing over time as well. Ideally, you determine r experimentally when 
the user first sets the password and store r alongside s. (Do make sure that r is 
a reasonable value, not too small or too large.) 
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How much have we gained? If r = 220 (just over a million), the attacker has 
to do 220 hash computations for each password she tries. Trying 260 passwords 
would take 280 hash computations, so effectively using r = 220 makes the 
effective key size of the password 20 bits longer. The larger r you choose, the 
larger the gain. 

Look at it another way. What r does is stop the attacker from benefiting from 
faster and faster computers, because the faster computers get, the larger r gets, 
too. It is a kind of Moore's law compensator, but only in the long run. Ten 
years from now, the attacker can use the next decade's technology to attack 
the password you are using today. So you still need a decent security margin 
and as much entropy in the password as you can get. 

This is another reason to use a key negotiation protocol with forward secrecy. 
Whatever the application, it is quite likely that Alice's private keys end up 
being protected by a password. Ten years from now, the attacker will be able 
to search for Alice's password and find it. But if the key that is encrypted with 
the password was only used to run a key negotiation protocol with forward 
secrecy, the attacker will find nothing of value. Alice's key is no longer valid 
(it has expired), and knowing her old private key does not reveal the session 
keys used ten years ago. 

The salt stops the attacker from taking advantage of an economy of scale 
when she is attacking a large number of passwords simultaneously. Suppose 
there are a million users in the system, and each user stores an encrypted 
file that contains her keys. Each file is encrypted with the user's stretched 
password. If we did not use a salt, the attacker could attack as follows: guess 
a password p, compute the stretched key K, and try to decrypt each of the key 
files using K. The stretch function only needs to be computed once for every 
password, and the resulting stretched key can be used in an attempt to decrypt 
each of the files. 

This is no longer possible when we add the salt to the stretching function. 
All the salts are random values, so each user will use a different salt value. 
The attacker now has to compute the stretching function once for each 
password/ file combination, rather than once for each password. This is a 
lot more work for the attacker, and it comes at a very small price for the 
users of the system. Since bits are cheap, for simplicity we suggest using a 
256-bi t salt. 

By the way, do take care when you do this. We once saw a system that 
implemented all this perfectly, but then some programmer wanted to improve 
the user interface by giving the user a faster response as to whether the 
password he had typed was correct or not. So he stored a checksum on the 
password, which defeated the entire salting and stretching procedure. If the 
response time is too slow, you can reduce r, but make sure there is no way to 
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recognize whether a password is correct or not without doing at least r hash 
computations. 

2 1 .3 Portable Storage 

The next idea is to store key material outside the computer. The simplest form 
of storage is a piece of paper with passwords written on it. Most people have 
that in one form or another, even for noncryptographic systems like websites. 
Most users have at least half a dozen passwords to remember, and that is 
simply too much, especially for systems where you use your password only 
rarely. So to remember passwords, users write them down. The limitation to 
this solution is that the password still has to be processed by the user's eyes, 
brain, and fingers every time it is used. To keep user irritation and mistakes 
within reasonable bounds, this technique can only be used with relatively 
low-entropy passwords and passphrases. 

As a designer, you don't have to design or implement anything to use this 
storage method. Users will use it for their passwords, no matter what rules 
you make and however you create your password system. 

A more advanced form of storage would be portable memory of some form. 
This could be a memory-chip card, a magnetic stripe card, a USB stick, or any 
other kind of digital storage. Digital storage systems are always large enough 
to store at least a 2S6-bit secret key, so we can eliminate the low-entropy 
password. The portable memory becomes very much like a key. Whoever 
holds the key has access, so this memory needs to be held securely. 

2 1 .4 Secure Token 

A better-and more expensive-solution is to use something we call a secure 
token. This is a small computer that Alice can carry around. The external shape 
of tokens can differ widely, ranging from a smart card (which looks just like 
a credit card), to an iButton, USB dongle, or PC Card. The main properties 
are nonvolatile memory (i.e., a memory that retains its data when power is 
removed) and a Cpu. 

The secure token works primarily as a portable storage device, but with a 

few security enhancements. First of all, access to the stored key material can 
be limited by a password or something similar. Before the secure token will 
let you use the key, you have to send it the proper password. The tuken can 
protect itself against attackers who try a brute-force search for the password 
by disabling access after three or five failed attempts. Of course, some users 
mistype their password too often, and then their token has to be resuscitated, 
but you can use longer, higher-entropy passphrases or keys that are far more 
secure for the resuscitation. 
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This provides a multilevel defense. Alice protects the physical token; for 
example, by keeping it in her wallet or on her key chain. An attacker has to 
steal the token to get anywhere, or at least get access to it in some way. Then the 
attacker needs to either physically break open the token and extract the data, 
or find the password to unlock the token. Tokens are often tamper-resistant to 
make a physical attack more difficult.2 

Secure tokens are currently one of the best and most practical methods of 
storing secret keys. They can be relatively inexpensive and small enough to be 
carried around conveniently. 

One problem in practical use is the behavior of the users. They'll leave 
their secure token plugged into their computer when going to lunch or to a 
meeting. As users don't want to be prompted for their password every time, 
the system will be set to allow hours of access from the last time the password 
was entered. So all an attacker has to do is walk in and start using the secret 
keys stored in the token. 

You can try to solve this through training. There's the "corporate security 
in the office" video presentations, the embarrassingly bad "take your token 
to lunch" poster that isn't funny at all, and the "if I ever again find your 
token plugged in unattended, you are going to get another speech like this" 
speeches. But you can also use other means. Make sure the token is not only 
the key to access digital data, but also the lock to the office doors, so users 
have to take their token to get back into their office. Fix the coffee machine 
to only give coffee after being presented with a token. These sorts of tactics 
motivate employees to bring their token to the coffee machine and not leave it 
plugged into their computer while they are away. Sometimes security consists 
of silly measures like these, but they work far better than trying to enforce 
take-your-token-with-you rules by other means. 

2 1 .5 Secure UI 

The secure token still has a significant weakness. The password that Alice uses 
has to be entered on the PC or some other device. As long as we trust the PC, 
this is not a problem, but we all know PCs are not terribly secure, to say the 
least. In fact, the whole reason for not storing Alice's keys on the PC is because 
we don't trust it enough. We can achieve a much better security if the token 
itself has a secure built-in VI. Think of a secure token with a built-in keyboard 
and display. Now the password, or more likely a PIN, can be entered directly 
into the token without the need to trust an outside device. 

2They are tamper-resistant, not tamper-proof; tamper-resistance merely makes tampering more 
expensive. Tamper-responding devices may detect tampering and self-destruct. 
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Having a keyboard on the token protects the PIN from compromise. Of 
course, once the PIN has been typed, the PC still gets the key, and then it can 
do anything at all with that key. So we are still limited by the security of the 
whole Pc. 

To stop this, we have to put the cryptographic processes that involve the key 
into the token. This requires application-specific code in the token. The token 
is quickly growing into a full-fledged computer, but now a trusted computer 
that the user carries around. The trusted computer can implement the security­
critical part of each application on the token itself. The display now becomes 
crucial, since it is used to show the user what action he is authorizing by 
typing his PIN. In a typical design, the user uses the PC's keyboard and mouse 
to operate the application. When, fur example, a bank payment has to be 
authorized, the PC sends the data to the token. The token displays the amount 
and a few other transaction details, and the user authorizes the transaction 
by typing her PIN. The token then signs the transaction details, and the PC 
completes the rest of the transaction. 

At present, tokens with a secure VI are too expensive for most applications. 
Maybe the closest thing we have is a PDA or smart phone. However, people 
download programs onto their PDAs and phones, and these devices are not 
designed from the start as secure units, so perhaps these devices are not 
significantly more secure than a Pc. We hope that tokens with secure VIs 
become more prevalent in the future. 

2 1 .6 Biometrics 

If we want to get really fancy, we can add biometrics to the mix. You could 
build something like a fingerprint or iris scanner into the secure token. At the 
moment, biometric devices are not very useful. Fingerprint scanners can be 
made for a reasonable price, but the security they provide is generally not very 
good. In 2002, cryptographer Tsutomu Matsumoto, together with three of his 
students, showed how he was able to consistently fool all the commerCially 
available fingerprint scanners he could buy, using only household and hobby 
materials [87]. Even making a fake finger from a latent fingerprint (i.e., the 
type you leave on every shiny surface) is nothing more than a hobby project 
for a clever high-school student. 

The real shock to us wasn't that the fingerprint readers could be fooled. It 
was that fooling them was so incredibly simple and cheap. What's worse, the 
biometrics industry has been telling us how secure biometric identification 
is. They never told us that forging fingerprints was this easy. Then suddenly 
a mathematician (not even a biometrics expert) comes along and blows the 
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whole process out of the water. A recent 2009 paper shows that these issues 
are still a problem [3]. 

Still, even though they are easy to fool, fingerprint scanners can be very 
useful. Suppose you have a secure token with a small display, a small keyboard, 
and a fingerprint scanner. To get at the key, you need to get physical control 
of the token, get the PIN, and forge the fingerprint. That is more work for the 
attacker than any of our previous solutions. It is probably the best practical 
key storage scheme that we can currently make. On the other hand, this secure 
token is going to be rather expensive, so it won't be used by many people. 

Fingerprint scanners could also be used on the low-security side rather than 
the high-security side. Touching a finger to a scanner can be done very quickly, 
and it is quite feasible to ask the user to do that relatively often. A fingerprint 
scanner could thus be used to increase the confidence that the proper person 
is in fact authorizing the actions the computer is taking. This makes it more 
difficult for employees to lend their passwords to a colleague. Rather than 
trying to stop sophisticated attackers, the fingerprint scanner could be used 
to stop casual breaches of the security rules. This might be a more important 
contribution to security than trying to use the scanner as a high-security 
device. 

2 1 .7 Single Sign-On 

Because the average user has so many passwords, it becomes very appealing 
to create a single sign-on system. The idea is to give Alice a single master 
password, which in tum is used to encrypt all the different passwords from 
her different applications. 

To do this well, all the applications must talk to the single sign-on system. 
Any time an application requires a password, it should not ask the user, but 
rather the single sign-on program, for it. There are numerous challenges for 
making this a reality on a wide scale. Just think of all the different applications 
that would have to be changed to automatically get their passwords from the 
single sign-on system. 

A simpler idea is to have a small program that stores the passwords in a 

text file. Alice types her master password and then uses the copy and paste 
functionality to copy the passwords from the single sign-on program to the 
application. Bruce designed a free program called Password Safe to do exactly 
this. But it's just an encrypted digital version of the piece of paper that Alice 
writes her passwords on. It is useful, and an improvement on the piece of 
paper if you always use the same computer, but not the ultimate solution that 
the single sign-on idea would really like to be. 
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2 1 .8 Risk of Loss 

But what if the secure token breaks? Or the piece of paper with the passwords 
is left in a pocket and run through the washing machine? Losing secret keys 
is always a bad thing. The cost can vary from having to reregister for each 
application to get a new key, to permanently losing access to important data. 
If you encrypt the PhD thesis you have been working on for five years with 
a secret key and then lose the key, you no longer have a PhD thesis. You just 
have a file of random-looking bits. Ouch! 

It is hard to make a key storage system both easy to use and highly reliable. 
A good rule of thumb, therefore, is to split these functions. Keep two copies of 
the key-one that is easy to use, and another one that is very reliable. If the 
easy-to-use system ever forgets the key, you can recover it from the reliable 
storage system. The reliable system could be very simple. How about a piece 
of paper in a bank vault? 

Of course, you want to be careful with your reliable storage system. By 
design, it will quickly be used to store all of your keys, and that would make 
it a very tempting target for an attacker. You'll have to do a risk analysis to 
determine whether it is better to have a number of smaller reliable key storage 
places or a single large one. 

21 .9 Secret Sharing 

There are some keys that you need to store super-securely-for example, 
the private root key of your CA. As we have seen, storing a secret in a 
secure manner can be difficult. Storing it securely and reliably is even more 
difficult. 

There is one cryptographic solution that can help in storing secret keys. It 
is called secret sharing [117], which is a bit of a misnomer because it implies 
that you share the secret with several people. You don't. The idea is to take 
the secret and split it into several different shares. It is possible to do this 
in such a way that, for example, three out of the five shares are needed to 
recover the secret. You then give one share to each of the senior people in the 
IT department. Any three of them can recover the secret. The real trick is to 
do it in a manner such that any two people together know absolutely nothing 
about the key. 

Secret sharing systems are very tempting from an academic point of view. 
Each of the shares is stored using one of the techniques we talked about before. 
A k-out-of-n rule combines high security (at least k people are necessary to 
retrieve the key) with high reliability (n - k of the shares may be lost without 
detrimental effect). There are even fancier secret sharing schemes that allow 
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more complex access rules, along the lines of (Alice and Bob) or (Alice and 
Carol and David). 

In real life, secret sharing schemes are rarely used because they are too 
complex. They are complex to implement, but more importantly, they are 
complex to administrate and operate. Most companies do not have a group 
of highly responsible people who distrust each other. Try telling the board 
members that they will each be given a secure token with a key share, and 
that they will have to show up at 3 a.m. on a Sunday in an emergency. Oh yes, 
and they are not to trust each other, but to keep their own shares secure even 
from other board members. They will also need to come down to the secure 
key-management room to get a new key share every time someone joins or 
leaves the board. In practice, this means that using the board members is out. 
The CEO isn't very useful for holding a share either, because the CEO tends 
to travel quite a bit. Before you know it, you are down to the two or three 
senior IT management people. They could use a secret sharing scheme, but the 
expense and complexity make this unattractive. Why not use something much 
simpler, such as a safe? Physical solutions such as safes or bank vaults have 
several advantages. Everybody understands how they work, so you don't 
need extensive training. They have already been tested extensively, whereas 
the secret-reconstruction process is hard to test because it requires such a large 
number of user interactions-and you really don't want to have a bug in the 
secret-reconstruction process that results in you losing the root key of your CA 

21 .1 0  Wiping Secrets 

Any long-term secret that we store eventually has to be wiped. As soon as 
a secret is no longer needed, its storage location should be wiped to avoid 
any future compromise. We discussed the problems of wiping memory in 
Section 8.3. Wiping long-term secrets from permanent storage is much harder. 

The schemes for storing long-term secrets that we discussed in this chapter 
use a variety of data storage technologies, ranging from paper to hard disks 
to USB sticks. None of these storage technologies comes with a documented 
wiping functionality that guarantees the data it stored is no longer recoverable. 

2 1 .1 0. 1 Paper 

Destroying a password written down on paper is typically done by destroying 
the paper itself. One possible method is to bum the paper, and then grind the 
ashes into a fine powder, or mix the ashes into a pulp with just a little bit of 
water. Shredding is also an option, although many shredders leave the paper 
in large enough pieces that reconstructing a page is relatively easy. 
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2 1 .1 0.2 Magnetic Storage 

Magnetic media are very hard to wipe. There is surprisingly little literature 
about how to do this; the best paper we know of is by Peter Gutmann [57], 
although the technical details of that paper are probably outdated now. 

Magnetic media store data in tiny magnetic domains; the direction of mag­
netization of a domain determines the data it encodes. When the data is 
overwritten, the magnetization directions are changed to reflect the new data. 
But there are several mechanisms that prevent the old data from being com­
pletely lost. The read/write head that tries to overwrite old data is never exactly 
aligned and will tend to leave some parts of the old data untouched. Overwrit­
ing does not completely destroy old data. You can think of it as repainting a wall 
with a single coat of paint. You can still vaguely see the old coat of paint under 
it. The magnetic domains can also migrate away from the read/write head 
either to the side of the track or deeper down into the magnetic material, where 
they can linger for a long time. Overwritten data is typically not recoverable 
with the normal read / write head, but an attacker who takes apart a disk drive 
and uses specialized equipment might be able to retrieve some or all of the 
old data. 

In practice, repeatedly overwriting a secret with random data is probably 
the best option. There are a few points to keep in mind: 

- Each overwrite should use fresh random data. Some researchers have 
developed particular data patterns that are supposed to be better at wip­
ing old data, but the choice of patterns depends on the exact details of 
the disk drive. Random data might require more overwriting passes 
for the same effect, but it works in all situations and is therefore 
safer. 

- Overwrite the actual location that stored the secret. If you just change a 
file by writing new data to it, the file system might decide to store the 
new data in a different location, which would leave the original data 
intact. 

- Make sure that each overwrite pass is actually written to disk and not 
just to one of the disk caches. Disk drives that have their own write-cache 
are a particular danger, as they might cache the new data and optimize 
the multiple overwrite operations into a single write. 

- It is probably a good idea to wipe an area that begins well before the 
secret data and that ends well after it. Bt!Cause the rotational speed of 
a disk drive is never perfectly constant, the new data will not align 
perfectly with the old data. 
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As far as we know, there i s  no  reliable information on how many overwrite 
passes are required, but there is no reason to choose a small number. You only 
have to wipe a single key. (If you have a large amount of secret data, store that 
data encrypted under a key, and only wipe the key.) We consider 50 or 100 
overwrites with random data perfectly reasonable. 

It is theoretically possible to erase a tape or disk using a degaussing machine. 
However, modern high-density magnetic storage media resist degaussing to 
such an extent that this is not a reliable wiping method. In practice, users do 
not have access to degaussing machines, so this is a nonissue. 

Even with extensive overwriting, you should expect that a highly specialized 
and well-funded attacker could still recover the secret from the magnetic 
medium. To completely destroy the data, you will probably have to destroy 
the medium itself. If the magnetic layer is bonded to plastic (floppy disk, tape), 
you can consider shredding and then burning the media. For a hard disk, you 
can use a belt sander to remove the magnetic layer from the platters, or use 
a blowtorch to melt the disk platters down to liquid metal. In practice, you 
are unlikely to convince users to take such extreme measures, so repeated 
overwriting is the best practical solution. 

2 1 . 1  0.3 Solid-State Storage 

Wiping nonvolatile memory, such as EPROM, EEPROM, and flash, poses 
similar problems. Overwriting old data does not remove all traces, and 
the data retention mechanisms we discussed in Section 8.3.4 are also at work. 
Again, repeatedly overwriting the secret with random data is the only practical 
solution, but it is by no means perfect. As soon as the solid-state device is no 
longer needed, it should be destroyed. 

2 1 . 1 1 Exercises 

Exercise 21.1 Investigate how login passwords are stored on your machine. 
Write a program that, given a stored (encrypted or hashed) password, exhaus­
tively searches for the real password. How long would it take your program 
to exhaustively search through the top one million passwords? 

Exercise 21.2 Investigate how private keys are stored with GNU Privacy 
Guard (GPG). Write a program that, given a stored encrypted GPG private 
key, exhaustively searches for the password and recovers the private key. How 
long would it take your program to exhaustively search through the top one 
million passwords? 
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Exercise 21.3 Consider a 24-bit salt. Given a group of 64 users, would you 
expect two users to have the same salt? 1024 users? 4096 users? 16,777,216 
users? 

Exercise 21.4 Find a new product or system that maintains long-term secrets. 
This might be the same product or system you analyzed for Exercise 1.8. 
Conduct a security review of that product or system as described in 
Section 1.12, this time focusing on issues surrounding how the system might 
store these secrets. 
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22 

Standards and �atents 

Aside from cryptography itself, there are two things you really should know 
about: standards and patents. We offer our perspectives on both here. 

22.1 Standards 

Standards are a double-edged sword. On one hand, no one will fault you 
for using a standard. We said this in the context of AES. On the other hand, 
many security standards don't work. This is a conundrum. We focus on 
the engineering aspects of cryptography in this book. But if you do any 
cryptographic engineering, you are going to encounter standards. So you need 
to know a bit about them, and we consider them now. 

22.1 .1  The Standards Process 

For those who have not been involved in the standards development process, 
we'll first describe how many standards are made. It starts out with some 
standardization body, such as the Internet Engineering Task Force (IETF), 
the Institute of Electrical and Electronics Engineers (IEEE), the International 
Organization for Standardization (ISO), or the European Committee for Stan­
dardization (CEN). This standardization body sets up a committee in response 
to some perceived need for a new or improved standard. The committee 
goes by different names: working group, task group, or whatever. Sometimes 
there are hierarchical structures of committees, but the basic idea remains the 
same. Committee membership is typically voluntary. People apply to join, and 
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pretty much anyone is accepted. Often there are some procedural hoops to 
jump through, but there is no significant selection of members. These com­
mittees vary in size up to several hundred members, but big committees split 
themselves into smaller subcommittees (called task groups, study groups, or 
whatever). Most work is done in a committee of up to a few dozen people. 

Standardization committees have regular meetings, once every few months. 
All members travel to a city and meet in a hotel for a few days. In the months 
between meetings, members of the committee will do some work, create 
proposals and presentations, etc. At the meetings, the committee decides 
which way to proceed. Usually there is a single editor who gets the job of 
putting all the proposals together into a single standards document. Creating 
a standard is a slow process and often takes many years. 

So who turns up to join these committees? Well, being a member is expensive. 
Apart from the time it takes, the travel and hotels are not cheap. So everybody 
there is sent by their company. Companies have several motivations to be 
represented. Sometimes they want to sell products that must interoperate with 
products from other companies. This requires standards, and the best way to 
keep track of the standardization process is to be there. Companies also want to 
keep an eye on their competitors. You don't want to let your competitor write 
the standards, because they will do something to put you at a competitive 
disadvantage-perhaps skew it toward their own technology or requirements 
or include techniques for which they themselves hold a patent. Sometimes 
companies don't want a standard, so they show up at the committee meetings 
to try to slow the process down to allow their proprietary solution time to 
capture the market. In real life, all these motivations, plus several more, are 
all mixed together in varying proportions to create a very complex political 
environment. 

Not surprisingly, quite a number of standardization committees fail. They 
never produce anything, or produce something atrociously bad, or end up 
being deadlocked and overtaken by the market, and then define whatever 
system captured the market. Successful committees manage to produce a 
standards document after a few years. 

Once the standard has been written, everybody goes and implements it. This, 
of course, leads to systems that do not interoperate, so there is a secondary 
process where interoperability is tested and the different manufacturers adapt 
their implementations to work together. 

There are many problems with this process. The political structure of the 
committee puts very little emphasis on creating a good technical standard. 
The most important thing is to reach consensus. The standard is finished when 
everybody is equally unhappy with the result. To pacify the different factions, 
standards have many options, extended functionalities, useless alternatives, 
etc. And as each faction has its own ideas, opinions, and focus points, the best 
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compromise is often contradictory. Many standards are internally inconsistent, 
or even contradict themselves. 

This whole process is made even more complex by the fact that companies 
are creating implementations while the standardization process is still going 
on, based on drafts of the standard. This makes it even harder to change 
something, because somebody has already implemented it and doesn't want 
to do it again. Of course, different companies will implement things in different 
ways and then fight in the committee to get the standard adjusted to fit their 
implementation. Sometimes the only compromise is to choose something that 
no company has implemented, just to ensure that they are all equally unhappy. 
Technical merit does not really feature in this type of discussion. 

22. ,. ,. , The Standard 
One of the results is that most standards are extremely difficult to read. The 
standards document is a design by committee, and there is little pressure 
within the process to make the document clear, concise, accurate, or readable. 
In fact, a highly unreadable document is easier to work with, because only a 
few of the committee members will understand it, and they can work on it 
without being bothered by the other members. Digging through hundreds of 
pages of badly written documentation is no fun, so most committee members 
end up not reading the full draft and only checking the limited portions of the 
standard they are interested in. 

22. ,. '.2 Functionality 
As we already mentioned, interoperability testing is always required. And 
of course, different companies implement different things. Quite often, what 
ends up being implemented is subtly different from what the standard defines, 
and as each company is already marketing its products, it is sometimes too 
late to change things. We've seen products of brand A that recognize the 
implementations of brand B by their deviations from the standard, and then 
adjust their own behavior to make things work. 

Standards often include a very large number of options, but the actual imple­
mentations will only use a particular set of options, with a few restrictions 
and extensions, of course, because the standards document itself describes 
something that doesn't work. And the difference between the actual imple­
mentations and the standard are, of course, not documented. 

Overall, the entire process works-kind of-but only for central func­
tionality. A wireless network will allow you to connect, but management 
functionality is unlikely to work across products from different vendors. Sim­
ple HTML pages will display correctly on all browsers, but more advanced 
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layout features give different results on different browsers. We've all become 
so used to this that we hardly notice it. 

This situation is unfortunate. As an industry, we s��m unable to create 
standards that are even readable or correct, let alone provide interoperability 
of different products for all but the most basic functionality. 

22. 1. 1.3 Security 
These failings mean that the typical method of producing standards simply 
doesn't work for security purposes. In security, we have an active attacker who 
will seek out the most remote corner of the standard. Security also depends on 
the weakest link: any single mistake can be fatal. 

We've already hammered on the importance of simplicity. Standards are 
anything but simple. The committee process precludes simplicity and invari­
ably produces something that is more complex than anyone in the committee 
can fully understand. For that reason alone, the result can never be secur�. 

When we've spoken to some standardization people about this problem, 
we often get responses along the lines of: "Well, the techies always want to 
make a perfect standard." . . .  "Political realities are that we have to make a 
compromise." . . .  "That is just how the system works." . . .  "Look at what 
we have achieved." . . .  "Things are working pretty well." In security, that 
is not good enough. The very fact that interoperability testing is required 
after the standard has been set demonstrates that committee standards don't 
work in security. If the functional part of the standard (i.e., the easy part) 
isn't good enough to result in interoperable systems without testing, then 
the security part cannot possibly achieve security without testing. And as we 
know, it isn't possible to test for security. Sure, it might be possible to create 
an implementation that includes a subset of the functionality of the standard 
that is also secure, but that is not sufficient for a security standard. A security 
standard claims that if you adhere to it, you will achieve a certain level of 
security. Security is simply too difficult to leave to a committee. So whenever 
someone suggests using a committee-written cryptography standard, we are 
always extremely reluctant to do so. 

There are a few useful standards in this field, none of which was written 
by a committ�e. Sometimes you get just a small group of people who create 
a single coherent design. And sometimes the result is adopted as a standard 
without a lot of political compromises. These standards can be quite good. 
We'll discuss the most important two below. 

22.1 .2 SSL 
SSL is the security protocol used by Web browsers to connect securely to Web 
servers. The first widely used version was SSL 2, which contained several 
security flaws. The improved version is known as SSL 3 [53]. It was designed 
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by three people without any further committee process. SSL 3 has been widely 
used and is generally acknowledged as a good protocol. 

A warning: SSL is a good protocol, but that does not mean that any system 
that uses SSL is secure. SSL relies on a PKI to authenticate the server, and the 
PKI client embedded in most browsers is so permissive that the overall security 
level is rather low. One of our browsers has approximately 150 different root 
certificates from 70 different CAs. So even before we start looking at active 
attacks, there are 35 different organizations spread throughout the world that 
we have to trust with all of our Web information. 

SSL was never really standardized. It was simply implemented by Netscape, 
and became a de facto standard. Standardization and further development of 
SSL is being done under the name TLS by an IETF working group. The changes 
between SSL and TLS seem fairly minor, and we have no reason to believe that 
TLS is not as good as SSL 3. But given the IETF's recent record with designing 
security protocols such as IPsec [51], there is a danger of the committee effect 
once again asserting itself and unnecessarily complicating a good standard. 

22.1 .3 AES: Standardization by Competition 

To us, AES is the shining example of how to standardize security systems. 
AES is not a design by committee, but rather a design by competition. The 
new SHA-3 standardization process is proving to be very similar. The process 
is rather simple. First you specify what the system is supposed to achieve. 
Developing the specifications can be done in a reasonably small group with 
inputs from many different sources. 

The next step is a call for proposals. You ask experts to develop complete 
solutions that satisfy the given requirements. Once the proposals are in, all 
that remains is to choose among the proposals. This is a straightforward 
competition in which you judge them by a variety of criteria. As long as you 
make security the primary criterion, the submitters have a vested interest in 
finding security weaknesses in their competitors' proposals. With a bit of luck, 
this will lead to useful feedback. In other situations, you might have to pay to 
get security evaluations done by outside experts. 

In the end, if things go right, you will be able to select a single proposal, 
either unchanged or with minor changes. This is not the time to make 
an amalgamation of the different proposals; that will just lead to another 
committee design. If none of the proposals satisfies the requirements, and it 
seems possible to create something better, you should probably ask for new 
proposals. 

This is exactly how NIST ran the AES competition, and it worked incredibly 
well. The 15 original proposals were evaluated in a first round and reduced to 
five finalists. A second round of evaluations on the finalists led to the selection 
of the winner. Amazingly enough, any one of the five finalists would have 
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been a good standard, and certainly a better standard than any committee 
design. Our main concern is that the AES standardization process may have 
been just a little too quick, and there might not have been enough time to 
thoroughly analyze all the finalists. But still the process was very good. 

The competition model of standardization only works if you have enough 
experts to create at least a few competing designs. But in our opinion, if you 
don't have enough experts to generate several proposals, you should not be 
standardizing any security systems. For reasons of simplicity and consistency, 
which are crucial to the overall security, a security system must be designed 
by a small group of experts. Then you need other experts to analyze the 
proposal and attack it, looking for flaws. To have any hope of getting a good 
result-whatever process you use-you need enough experts to form at least 
three proposal groups. If you have that many experts, you should use the 
competition model, as it is a model that has demonstrated it can produce good 
security standards. 

22.2 Patents 

We had a long discussion about the role of patents in cryptography in the 
first edition of this book. The ecosystem surrounding patents has changed 
somewhat since then, and we've also learned more. In this book, we're going 
to refrain from offering specific advice about patents. But we do want to make 
you aware of the fact that patents play a role in cryptography. Patents may 
affect which cryptographic protocols you choose to use or not use. We suggest 
you contact your lawyer for specific advice regarding patents. 
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Involving Experts 

There is something strange about cryptography: everybody thinks they know 
enough about it to design and build their own system. We never ask a second­
year physics student to design a nuclear power plant. We wouldn't let a 
trainee nurse who claims to have found a revolutionary method for heart 
surgery operate on us. Yet people who have read a book or two think they can 
design their own cryptographic system. Worse still, they are sometimes able 
to convince management. venture capitalists, and even some customers that 
their design is the neatest thing since sliced bread. 

Among cryptographers, Bruce's first book, Applied Cryptography [111, 112], 
is both famous and notorious. It is famous for bringing cryptography to the 
attention of tens of thousands of people. It is notorious for the systems that 
these people then designed and implemented on their own. 

A recent example is 802.11, the wireless network standard. The initial design 
included a secure channel called wired equivalent privacy (WEP) to encrypt 
and authenticate wireless communications. The standard was designed by 
a committee without any cryptographers. The results were horrible from a 
security perspective. The decision to use the RC4 encryption algorithm was 
not the best one, but not a fatal flaw in and of itself. However, RC4 is a 

stream cipher and needs a unique nonce. WEP didn't allocate enough bits 
for the nonce, with the result that the same nonce value had to be reused, 
which in turn resulted in many packets being encrypted with the same key 
stream. That defeated the encryption properties of the RC4 stream cipher 
and allowed a smart attacker to break the encryption. A more subtle flaw 
was not hashing the secret key and nonce together before using it as the 

]1] 
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RC4 key, which eventually led to key-recovery attacks [52}. A CRC checksum 
was used for authentication, but since CRC computations are linear, it was 
trivial (using some linear algebra) to modify any packet without any chance of 
detection. A single shared key was used for all users in a network, making key 
updates much more difficult to do. The network password was used directly 
as the encryption key for all communications, without using any kind of key 
negotiation protocol. And finally, encryption was turned off by default, which 
meant that most implementations never bothered turning encryption on in the 
first place. WEP wasn't just broken; it was robustly broken. 

Designing a replacement for WEP was not easy, because it had to be 
retrofitted to existing hardware. But there was no choice; the security of the 
original standard was abysmal. The replacement became WP A. 

The WEP story is not exceptional. It got more press than most bad cryp­
tographic designs because 802.11  is such a successful product, but we have 
seen many similar situations in other systems. As a colleague once told Bruce: 
"The world is full of bad security systems designed by people who have read 
Applied Cryptography." 

Cryptography Engineering could have the same effect. 
That makes this a very dangerous book. Some people will read this book, 

and then turn around and design a cryptographic algorithm or protocol. When 
they're finished, they'll have something that looks good to them, and maybe 
even works, but will it be secure? Maybe they'll get 70% right. If they're very 
lucky, they may get 90% right. But there is no prize for being almost right in 
cryptography. A security system is only as strong as its weakest link; to be 
secure, everything must be right. And that is something you simply can't learn 
from reading books. 

So why did we write this book if there's a chance it will lead to bad systems? 
We wrote it because people who want to learn how to design cryptographic 
systems must learn it somewhere, and we didn't know of any other suitable 
books. Consider this book as an introduction to the field, even though it is 
not a manual. We also wrote it for the other engineers involved in a project. 
Every part of a security system is of critical importance, and everybody who 
works on a project has to have a basic understanding of the security issues 
and techniques involved. This includes the programmers, testers, technical 
writers, management, and even salespeople. Each person needs to understand 
enough about security issues to do his or her work properly. We hope this 
book provides an adequate background to the practical side of cryptography. 

We also hope we've instilled in you a sense of professional paranoia. If 
you've learned that, then you've learned a lot. You can apply professional 
paranoia to all aspects of your work. You will be extremely skeptical when 
you design your own protocol or look at someone else's, and that can only 
help improve security. 
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If we can leave you with one piece of advice, it is to use cryptographic experts 
if at all possible. If your project involves cryptography, you will benefit greatly 
from the insights of an experienced cryptographic designer. Involve one in 
your project at the beginning. The earlier you consult a cryptographic expert, 
the cheaper and easier it will be in the long run. Many a time we've been called 
to projects well underway, only to poke holes in parts that had long since been 
designed or implemented. The end result is always expensive, either in terms 
of effort, project schedule, and cost, or in terms of the security for the user of 
the end product. 

Cryptography is fiendishly difficult to do right. Even the systems designed 
by experts fail regularly. It doesn't matter how clever you are, or how 
much experience you have in other fields. Designing and implementing 
cryptographic systems requires specialized knowledge and experience, and 
the only way to get experience is to do it over and over again. And that, 
of course, also involves making mistakes. So why get an expert if he makes 
mistakes as well? For the same reason you get a qualified surgeon to operate 
on you. It is not that they don't make mistakes; it is that they make a lot fewer 
and less serious mistakes. And they work in a conservative manner so that 
the small mistakes do not lead to catastrophic results; they know enough to 
fail well. 

Implementing cryptographic systems is almost as much a specialty as 
designing them is. Cryptographic designers are available for hire. Crypto­
graphic implementers are much harder to come by, in part because you 
need more of them. A single designer can create work for ten to twenty 
implementers. Most people don't think of cryptographic implementation as a 
specialty. Programmers will move from database programming to GUI work 
to cryptographic implementations. It's true that database programming and 
GUI work are also specialties, but an experienced programmer can, with a bit 
of study, get reasonable results. This does not hold for implementing cryptog­
raphy, where everything must be right, and there's an attacker trying to make 
it wrong. 

The best way we know to implement cryptographic systems is to take 
competent programmers and train them for this task. This book might be part 
of their training, but mostly it requires experience and the right professional 
paranoia mindset. And just like any other specialized IT skill, it takes years 
before someone is truly good at it. Given the long time it takes to gather this 
experience, you must be able to retain these people once they achieve it. That's 
another problem, and one we will gladly leave to others to solve. 

Maybe even more important than this book, or any other, is the project 
culture. "Security first" should not just be a slogan; it has to be woven into the 
very fabric of the project and the project team. Everybody has to live, breathe, 
talk, and think security all the time. This is incredibly hard to achieve, but it can 
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be done. DigiCash had a team like that in the 1990s. The aviation industry has 
a similarly pervasive safety culture. This is something that cannot be achieved 
in the short term, but it is certainly something that you can strive toward. This 
book is merely a primer on the most important security issues intended for the 
more technical people on the team. 

As Bruce wrote in Secrets and Lies: "Security is a process, not a product." In 
addition to the security culture, you also need a security process. The aviation 
industry has an extensive safety process. Most of the IT industry doesn't even 
have a process for producing software, let alone a process for high-quality 
software, much less a process for security software. Writing good security 
software is largely beyond the current state of the art in our industry. That 
does not mean we should give up, though, and there has been some progress 
lately. As information technology becomes more and more critical to our 
infrastructure, our freedom, and our safety, we must continue to improve the 
security of our systems. We have to do the best we can. 

We hope this book can contribute somewhat to the improvement of our 
security systems by teaching those who are working on security systems the 
basics of practical cryptography. 
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