Reverse Engineering for Beginners

Dennis Yurichev
<dennis@yurichev.com>

@O®SO
(©2013-2014, Dennis Yurichev.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/3.0/.

Text version (March 17, 2014).

There is probably a newer version of this text, and also Russian language version also accessible at
http://yurichev.com/RE-book.html
You may also subscribe to my twitter, to get information about updates of this text, etc: @yurichev, or
to subscribe to mailing list.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://yurichev.com/RE-book.html
https://twitter.com/yurichev
http://yurichev.com/mailing_lists.html

Please donate!

| worked more than year on this book, here are more than 600 pages, and it’s free.
Same level books has price tag from $20 to $50.

More about it: 0.1.

CONTENTS CONTENTS

Contents

0.1 Preface . . . o o e e e Xiv

I Code patterns 1
1 Shortintroduction to the CPU 3
2 Hello, world! 4
200 X6 L e e e e e e e e e e e 4
200 MSVC—X86 . . o o i e e e e e e e e e e e e 4

202 GCC—X86 . . v o v e e e e e e e e e e e e e e e e 5

203 GCCATET SYNtaxX . . . v o e 6

2.2 X86-64 . . . L e e e e e e e e e e e 7
221 MSVC—X86-64 o o e e e e e e e 7

222 GCC—X86-64 i e e e e e e e e e 8

2.3 ARM e e e e e e e 9
2.31 Non-optimizingKeil+ ARMmode e 9

2.3.2 Non-optimizing Keil: thumbmode 10

2.3.3 OptimizingXcode (LLVM)+ ARMmode o i e e 1

2.3.4 Optimizing Xcode (LLVM) +thumb-2mode L 1

3 Function prologue and epilogue 13
4 Stack 14
41 Whystack grows backward? e 14

42 Whatisthestackusedfor? e 15
4.21 Savethereturn address where a function must return control afterexecution 15

4.2.2 Passingfunctionarguments L e e e e e e e e e 16

4.2.3 Localvariablestorage e 17

4.2.4 x86:alloca() function e e e e e 17

425 (WIindows) SEH L e e 19

4.2.6 Bufferoverflow protection e e e 19

4.3 Typicalstacklayout e e e e e 19

5 printf () with several arguments 20
51 x86:3argUments L e e e e e e e 20
501 MSVC . o e e e e e e e e 20

512 MSVCandOlyDDg v v vt 21

50.3 GCC . o e e e e e e e e e e e 23

51.4 GCCandGDB e e e e 24

52 x64:8argUmeNnts L e e e e e e 26
521 MSVC . . e e e e e e e e 26

522 GCC . . ot e 27

523 GCCHGDB . . . i e e e e e e e e e e e e 27

5.3 ARM:3arguments e e e e e e e e 29
5.3.1 Non-optimizing Keil+ ARMmode e e e e 30

5.3.2 OptimizingKeil+ ARMmode e e e e e 30

5.3.3 Optimizing Keil+thumbmode e 30

5.4 ARM:8arguments e e e e e e 30
541 OptimizingKeil: ARMmode e e e e e 31

5.4.2 Optimizing Keil: thumbmode 32

ii

CONTENTS

7

10

5.4.3
5.4.4

scanf()

6.1
6.2

6.3

6.4

6.5

6.6

About pointers

x86
6.2.1
6.2.2

6.4.1

6.5.1

6.5.2
6.5.3
6.5.4
6.5.5

6.6.1

6.6.2
6.6.3
6.6.4
6.6.5
6.6.6
6.6.7

Optimizing Xcode (LLVM):ARMmode
Optimizing Xcode (LLVM): thumb-2mode
5.5 Bythe way

MSVC . .

GCC . L e

Optimizing Keil +thumbmode
Global variables

Accessing passed arguments

7.1

7.2

7.3

x86

711

71.2
713
x64

7.2.1
7.2.2
7.2.3
ARM
7.3.1
73.2
733

MSVC . .

GCC . o e

GCC . e

Non-optimizing Keil+ ARMmode
Optimizing Keil+ ARMmode
Optimizing Keil+thumbmode

One more word about results returning.

Pointers

9.1

Globa

[variablesexample
9.2 Localvariables example
9.3 Conclusion

Conditional jumps

10.1

10.2

x86
10.1.1
10.1.2
10.1.3
10.1.4
10.1.5
ARM
10.2.1
10.2.2

X86+MSVC . . . e e
x86+MSVC+OIllyDbg
X86+MSVC+Hiew e
Non-optimizing GCC
Optimizing GCC e
Optimizing Keil+ ARMmode
Optimizing Keil +thumbmode

iii

MSVC:iX86 . . o v s e e e e e e e
MSVC:x86+OllyDbg
GCCiX86 . v v o i e e e
MSVC:X64 e e e e e e e e e
ARM: Optimizing Keil +thumbmode
scanf() result checking
MSVC:iX86 . . v v e e e e e e e e e e
MSVC:x86: IDA e e e
MSVC:x86+OllyDbg
MSVC:x86+Hiew e e e
GCCiXB6 & v v v e e e e e
MSVC:X64 . . o e e e e e e e e
ARM: Optimizing Keil + thumbmode

CONTENTS

11 switch()/case/default

11.1 Few number of cases
X86 . e e e
ARM: Optimizing Keil +t ARMmode
ARM: Optimizing Keil +thumbmode
11.2 Alot of cases
X86 . e e e e e e e
ARM: Optimizing Keil+ ARMmode
ARM: Optimizing Keil+thumbmode

11.1.1
11.1.2
1M.1.3

11.2.1
11.2.2
11.2.3

12 Loops

12.1 x86
1211
12.1.2

12.2 ARM
12.2.1
12.2.2
12.2.3

13 strlen()
13.1 x86
13.2 ARM

13.2.1
13.2.2
13.2.3

OllyDbg o e
TraCer .« o o e e
Non-optimizing Keil+ ARMmode L.
Optimizing Keil +thumbmode
Optimizing Xcode (LLVM) +thumb-2mode
12.3 One more thing

Non-optimizing Xcode (LLVM)+ARMmode
Optimizing Xcode (LLVM) +thumbmode
Optimizing Keil+ ARMmode

14 Division by 9

14.1 x86

14.2 ARM
14.2.1
14.2.2
14.2.3

14.4.1
14.4.2

Optimizing Xcode (LLVM)+ARMmode
Optimizing Xcode (LLVM) + thumb-2mode
Non-optimizing Xcode (LLVM) and Keil
14.3 How it works

14.4 Getting divisor
Variant#1 o e e e e e e e e e e e
Variant#2 . . . o L e e

15 Working with FPU

15.1 Simple example
X86 . e e
ARM: Optimizing Xcode (LLVM)+ARMmode
ARM: Optimizing Keil +thumbmode
15.2 Passing floating point number via arguments
X86 . e e
ARM + Non-optimizing Xcode (LLVM) + thumb-2mode
ARM + Non-optimizing Keil+ ARMmode
15.3 Comparison example
X86 o e e e e e

15.1.1
15.1.2
15.1.3

15.2.1
15.2.2
15.2.3

15.3.1
15.3.2
15.3.3
15.3.4
15.3.5
15.3.6
15.3.7
15.3.8
15.4 x64

Now let’s compile it with MSVC 2010 with optimization option /0x

GCCAAT . o e
GCC 4.4.1 with -03 optimizationturnedon
ARM + Optimizing Xcode (LLVWM)+ARMmode
ARM + Optimizing Xcode (LLVM) +thumb-2mode
ARM + Non-optimizing Xcode (LLVM)+ARMmode
ARM + Optimizing Keil + thumbmode

iv

CONTENTS

16 Arrays 122
16.1 Simpleexample L e e e e 122
16.1.0 0 X86 . o o e e e e e e e e e e e e e e e 122

16.1.2 ARM+ Non-optimizing Keil+ ARMmode e 124

16.1.3 ARM+Optimizing Keil+thumbmode 125

16.2 Bufferoverflow o e 126
16.3 Buffer overflow protectionmethods e 129
16.3.1 Optimizing Xcode (LLVM) +thumb-2mode o 131

16.4 Onemoreword aboutarrays e e e e e e e e 133
16.5 Multidimensionalarrays e e e e e e e e e 133
16.5.1 X8O . . e e e e e e e e e e e e e e e 134

16.5.2 ARM + Non-optimizing Xcode (LLVM) +thumbmode, 135

16.5.3 ARM +Optimizing Xcode (LLVM) +thumbmode 135

17 Bit fields 137
171 Specificbitchecking o e 137
1700 X86 . o o e e e e e e e e e e e e e e 137

17.0.2 ARM L e e e e e e e e e e e e e 139

17.2 Specificbit setting/clearing L e 141
1721 X8O . o e e e e e e e e e e e e e e e e e 141

17.2.2 ARM+Optimizing Keil+ ARMmode e 143

17.2.3 ARM +Optimizing Keil +thumbmode 143

17.2.4 ARM + Optimizing Xcode (LLVM)+ARMmode o i i e 143

17.3 Shifts . . . e e e e e e 143
1731 X8O o o e 144

17.3.2 ARM +Optimizing Xcode (LLVM)+ARMmode o i i e 146

17.3.3 ARM +Optimizing Xcode (LLVM) +thumb-2mode 146

17.4 CRC32calculationexample o . e e e e 146

18 Structures 150
18.1 SYSTEMTIME example e e e e e e e e e e e e e 150
18.2 Let’s allocate space for structureusingmalloc() e 152
18.3 structtm . . . o e e e e e 154
18.3.1 LiNUX . o o o e e e e e e e e e e e e e e e 154

18.3.2 ARM+Optimizing Keil +thumbmode 157

18.3.3 ARM +Optimizing Xcode (LLVM) +thumb-2mode 158

18.4 Fields packinginstructure L e e e e e 159
18.4.1 X86 . o o o e e e e e e e e e e e 159

18.4.2 ARM+Optimizing Keil+thumbmode 161

18.4.3 ARM + Optimizing Xcode (LLVM) +thumb-2mode 162

18.5 Nested structures o o o e e e e e e 162
18.6 Bitfieldsinstructure e e 163
18.6.1 CPUID example i e e e e e e e e e 163

18.6.2 Working with the float typeaswithastructure 166

19 Unions 170
19.1 Pseudo-random number generatorexample Lo L e 170

20 Pointers to functions 173
201 GCC . o e e e e e e e e e e 175

21 64-bit values in 32-bit environment 177
211 Arguments passing, addition, subtraction L e 177
21.2 Multiplication, division L e e e e e e e e e 178
21.3 Shiftingright e e e e e e 180
21.4 Converting of 32-bitvalueinto 64-bitone e 181

22 SIMD 183
22.1 Vectorization e e e e e e e 183
2210 Intel G+ L e e 184

22.1.2 GCC . . e e e e e e e e e e e e e e 187

22.2 SIMD strlen() implementation L L L e 189

CONTENTS

23

24

25

26

27

28

29

30

31

64 bits

230 X86-64 . . . L e e e e e e e e e e e
232 ARM . o e
23.3 Floatpointnumbers e e e e e e e

Working with float point numbers using SIMD in x64

240 Simpleexample e e e e e
24.2 Passing floating point numberviaarguments L L e e e
24.3 Comparison example L e e e e e e
244 SUMMANY .« .t v i e

Temperature converting

251 Integervalues o o o e e e e e
2510 MSVC2012X86 /OX « v v v v e
25.0.2 MSVC2012X64 /OX . . v v v v o e e e e e e e e e e e e e e e

25.2 Floatpointvalues. e e e e e e e e

C99 restrict
Inline functions

Incorrectly disassembled code

28.1 Disassembling started incorrectly (x86) e e

28.2 How random noise looks disassembled? e

28.3 Information entropy of averagecode L L e e
28.3.1 X8 .. e
28.3.2 ARM (Thumb) e
28.3.3 ARM(ARMMOAE) e e e
28.3.4 MIPS (littleendian) e e e e

Obfuscation

290 TextStriNgS . . . o o i i e e e e e e e e e e

29.2 Executablecode e e
29.2.1 Insertinggarbage e e e e e
29.2.2 Replacinginstructions to bloated equivalents o
29.2.3 Always executed/neverexecutedcode e e e
29.2.4 Makingalotofmess e e e e e
29.2.5 Usingindirect pointers. L e e e

29.3 Virtual machine /pseudo-code e e

29.4 Otherthingtomention e e

Windows 16-bit
301 EXamplefl . . . e e e e e
30.2 Example 2 . . . e e e e e
30.3 EXample #3 . . . e e e e e e e e
30.4 Example#4 . . . e e e e e e e
30.5 Example#5 . . L o e e e e e
30.6 EXample#6 e e e e
30.6.1 Globalvariables e e e e

C++

Classes

311 Simpleexample e e e e e e e
BT MSVC—X86 . . o o ot e e e e e e e e e e e e e e e e
3112 MSVC—X86-64 o e e e e e e e e e e e e e e e e
3113 GCC—X86 . . o o o e e e e e e e e e e
3104 GCC—X86-64 . . . o o e e e e e e e e e e e e e e

31.2 Classinheritance e e

31.3 Encapsulation e e e e

31.4 Multipleinheritance e e

vi

193

201
201
202
203
204

205
205
205
207
207

210

213

CONTENTS

31.5 Virtualmethods.

32 ostream

33 References

34 STL

340 stdustring . . . L L L e e e e
3410 Internals e e
341.2 Morecomplexexample
3413 stdustringasaglobalvariable.o oo oL

34.2 stdulist .. L.
3421 GCC . . . e e e
34.22 MSVC . . . o e e e e e
34.2.3 C+Hlistdaforward_list oo Lo oo

343 stduvector. e e e

34.4 stdumapandstduset L.
34.40 MSVC . . . L e e e e
34.42 GCC . . . o o e e e
34.4.3 Rebalancingdemo (GCC) i

Il Important fundamentals

35 Signed number representations

35.1 Integeroverflow

36 Endianness

36.1 Big-endian
36.2 Little-endian e
36.3 Bi-endian e e e
36.4 Convertingdata e

IV Finding important/interesting stuff in the code

37 Identification of executable files

37.1 MicrosoftVisualC++ Lo o
3710 Namemangling e
372 GCC . o o e e
3720 Namemangling e e e e e
3722 Cygwin . . .o e e e
37.2.3 MIinGW . L e e e e e e
37.3 Intel FORTRAN o o e e e e
37.4 Watcom,OpenWatcom o i i e e e e
3741 Namemangling e e
37.5 Borland e e
3751 Delphi. . . .o
37.6 OtherknownDLLS ittt et

38 Communication with the outer world (win32)

38.1 Oftenused functionsin Windows APl
38.2 tracer: Intercepting all functions in specificmodule

39 Strings

390 Textstringso
3900 Unicode. . . . o oo i e e e e
39.2 Error/debugmessages

40 Calls to assert()

vii

309

................. 309

310

................. 310
................. 310
................. 310
................. 310

CONTENTS

41 Constants

411 Magicnumbers e e e e e
4100 DHCP « o o e e e e
41.2 Constantsearching e

42 Finding the right instructions

43 Suspicious code patterns

431 XORinstructions e
43.2 Hand-writtenassemblycode

44 Using magic numbers while tracing
45 Other things

46 Old-school techniques, nevertheless, interesting to know

46.1 Memory “snapshots” comparingo e

V 0S-specific
47 Thread Local Storage

48 System calls (syscall-s)

481 LINUX v v v o e e e e e e e e e e e e
48.2 WIiNdOWS o e e e e

49 Linux

49.1 Position-independentcode
49101 WIindoWs e e e e e e
49.2 LD PRELOAD hackinLinux v v i v e s e e e e e e e e e

50 Windows NT

50.1 CRT(WIN32) . . . o i e e e e e e e e e e
50.2 WIin32 PE e e e e e e e e
50.201 Terminology e e e
50.2.2 Baseaddress e
50.2.3 Subsystem
50.2.4 OSVErsion e e e e e
50.2.5 Sections e e e e
50.2.6 Relocations(relocs) e e
50.2.7 Exportsandimports e
50.2.8 ReSOUICES i e e e e e e e e e e e
50.2.9 NET o o e e e e e e e e
50.2.00 TLS . . . o o e e e e e e e e e e e e e e
50.201 ToOlS . . . v o o e e e e e
50.2.12 Furtherreading. e
50.3 Windows SEH L e e e e e
50.3.1 Let’sforgetaboutMSVC
50.3.2 Nowlet’'sgetbacktoMSVC
50.3.3 WIindOWSX64 o i e e e e e e e e
50.3.4 ReadmoreaboutSEH,
50.4 Windows NT: Criticalsection.

VI Tools

51 Disassembler

SIT IDA . o e

52 Debugger

viii

323

................. 323

325

327

................. 327
................. 327

329

330

333

334

................. 334
................. 335

336

................. 336
................. 338
................. 338

CONTENTS

53 System calls tracing

53.0.1 strace/dtruss e

54 Other tools

VIl More examples

55 Dongles

55.1 Example #1: MacOS Classicand PowerPC
55.2 Example #2: SCOOpenServer v v v i i ittt e e e e e

55.2.1 Decrypting €rrormessages vt i v it e e
55.3 Example#3: MS-DOS e

56 “QR9”: Rubik’s cube inspired amateur crypto-algorithm

57 SAP

57.1 About SAP client network traffic compression
57.2 SAP 6.0 password checkingfunctions

58 Oracle RDBMS

58.1 V$VERSION tableintheOracleRDBMS
58.2 X$KSMLRU tableinOracleRDBMS i
58.3 V$TIMER tableinOracleRDBMS

59 Handwritten assembly code

59.1 EICARtestfile @ . e

60 Demos

60.1 10 PRINT CHR$(205.5+RND(1));: GOTO 10 . « « v v v v v e e e e e e e e
60.1.1 Trixter's42 byteversion

60.1.2 My attempt to reduce Trixter’s version: 27 bytes

60.1.3 Take a random memory garbage as a source of randomness
60.1.4 Conclusion e

VIll Other things

61 npad

62 Compiler intrinsic

63 Compiler’s anomalies

64 OpenMP

64.1 MSVC e
64.2 GCCo e

65 Itanium
66 8086 memory model

67 Basic blocks reordering

67.1 Profile-guided optimization o L

IX Books/blogs worth reading

68 Books

68.1 WINdOWS o e e e e e e
68.2 C/CHt . i e e
68.3 XB6 /X86-64 e e e e e
68.4 ARM . . . L e e e e e e e e e e

ix

380

381

382

383

................. 383
................. 391
................. 400
................. 402

409

440

................. 440
................. 451

455

................. 455
................. 463
................. 465

469

................. 469

an

................. 47
................. 47
................. 472
....................... 472
................. 473

474
475
477
478

479

................. 481
................. 483

485

488

489

................. 489

CONTENTS

Blogs 493
69.1 WINAOWS o o e e e e e e e e e 493
Other 494
Exercises 495
Level1 497
TIT EXerCise 1l o o o e e e e e e e e e e e e e 497
TIAT MSVC20I2X64+ /0K o v v v v o e 497
7102 KeilL(ARM) .« o o e e e e 497
T1.1.3 Keil (thumb) . . o o 497

TL2 EXErCise 1.2 . o i v e e e e e e e e e e e e e e e 497
T1.3 EXErCise 1.3 . o it e e e e e e e e e e e 497
Level 2 498
T2.0 EXErCise 2.l . o o i e e e e e e e e e e e e e e e e e e 498
7201 MSVC 2010 . . o o e e e e e e e e e e e e e e e 498
7212 GCC 44T+ -03 . . o e e e e e e e e e e e 498
7203 Kl (ARM) + =03 . o o o e e e e e e 499
72.1.4 Keil (thumb)+-03 o e 499

T2.2 EXErCiSE 2.2 . o o i i e e e e e e e e e e e e e e e e 499
7221 MSVC 2010+ /0% + v v v o e 499
72.2.2 GCCA.AT . . o e e e 500
7223 Kl (ARM) + =03 .« o o e e e e e e e 502
72.2.4 Keil (thumb)+-03 e 502

T2.3 EXErCiSe 2.3 . . o i i e e e e e e e e e e e e e e e 503
7231 MSVC 2010+ /0% + v v v o e 503
72.3.2 GCCA.AT o o e e e e e e e e e e 504
7233 Kl (ARM) + =03 . o o o e e e e e e 504
72.3.4 Keil (thumb)+-03 . . . o o e, 505

T2.4 EXErCISE 2.4 . o o i i e e e e e e e e e e e e e e e 505
7241 MSVC 2010+ /0% & v v v o e 505
T2.4.2 GCCA.AT o e e e e e e e e e e e 506
7243 Keil (ARM)+-03 e e 507
7244 Keil ((humb)+-03 o 508

T2.5 EXErCise 2.5 . . o i i e e e e e e e e e e e e 509
72.51 MSVC 2010+ /0% & v v v i e 509

T2.6 EXErCiSE 2.6 . . o o v it e e e e e e e e e e e e e e e e e 509
72.6.1 MSVC 2010+ /0% + v v v o e 509
72.6.2 Kl (ARM) + =03 . o o o e e e e e e 511
72.6.3 Keil (thumb)+-03 e e e e e e 511

T2.7 EXErCiSe 2.7 . o o i e e e e e e e e e e e e e e e e e 512
7270 MSVC 2010+ /0% & v v v o e 512
7272 Keil (ARM)+-03 e e 513
7273 Keil (thumb) +-03 e 515

T2.8 EXErCiSe 2.8 i e e e e e e e e 516
72.8.1 MSVC20T0+ /01 . . o i e 516
72.8.2 Keil (ARM)+-03 e e e 517
72.8.3 Keil (thumb)+-03 e e e 517

T2.9 EXErCise 2.9 . . . v i it e e e e e e e e e 518
7291 MSVC20T0+ /01 . . o i e e e e e e e e e e e e e e e e e 518
72.9.2 Keil (ARM)+ =03 .« o o e e e e e e e, 519
72.9.3 Keil (thumb)+-03 e e 519
T2I0EXercise 2.10 . . . o e e e e e e e e e e e e e e e e e e 520
T2.01 EXercise 2,01 . o o o e e e e e e e e e e e e e e e e e 521
T2I2EXErCiSE 212 . o o o e e e e e e e e e e e e 521
72020 MSVC20T2X64+ /0K o v v v v o e 521
72022 KEil (ARM) . . o o o e e e 522
72.12.3 Keil (thumb) . . . o e e 523

CONTENTS

73

74

Xl

75

76

77

T2I3EXercise 2.13 e e e e e e e e e e e e
720301 MSVC2012+ /0% . v v o e e e e e e e e e e e e e e e e e
72132 Keil (ARM) o o e e e
72133 Keil (thumb) e

T2I4EXercise 2.14 . . . o e e e e e e e e e
72141 MSVC 2012 e e e e e e e e e e e e
72142 Keil ARMmode) e e
72.14.3 GCC 4.6.3 for Raspberry Pi(ARMmode)

T2I5EXercise 2.15 . . . L e e e e e e e e e e e
72150 MSVC2012X64 /OX . v v v v o e e e e e e e e e e e e e e
7215.2 GCC4.4.6-03X64 i i e e e e e e e
72153 GCC4.81-03X86. . . . o v v v i e e e e e e e e e e e e
72.15.4 Keil (ARM mode): Cortex-R4F CPU astarget

T2I6EXercise2.16 . . . o e e e e e e e e e e e e e
72161 MSVC2012X64 /OX .« v v v v e e e e e e e e e e e e e e e e e
72162 Keil (ARM) <03+« o v v e e e e e
72.16.3 Keil (thumb)-03

T2AT EXercise 207 . . . o o e e e e e e e e e e e e e e e e e e e

Level 3

T30 EXercise 3.1 e e e e e e e e e
T73.2 EXErCise3.2 . . o i i e e e e e e e e e e e
T73.3 EXercise 3.3 o e e e e e e e e e e
T3.4 EXercise3.4 . . o i i i e e e e e e e e e e e e e
T3.5 EXErcise 3.5 i i e e e e e e e
T73.6 EXErCise3.6 v i i e e e e e e e e e e
T3.7 EXercise 3.7 v e e e e e e e e e e e

crackme [keygenme

Exercise solutions

Level1

T5.1 Exercise 1.1 o o e e e e e e e e e e e e

Level 2

T6.1 EXercise 2.l i e e e e e e e e e e e
T6.2 EXErCise 2.2 . . v v v it e e e e e e e e e e e e e e e e e
T6.3 EXErCise 2.3 . . o o i it e e e e e e e
T6.4 EXErCise 2.4 . . o . v i i e e e e e e e e e e e
T6.5 EXErcise 2.5 v i e e e e e e e e e
T6.6 EXErCise2.6 v i v i e e e e e e e e e e
T6.7T EXErCise 2.7 . . v i i i e e e e e e e e e e e e e e
T6.8 EXErCise 2.8 . . . v i i e e e e e e e e e e e
T76.9 EXercise2.9 e e e e e e
T6I0EXercise 2.11 o o e e e e e e e e e e e
T6.11 EXercise 2.12 . . . o o e e e e e e e e e e e e e e
T6I2 EXercise 2.13 & . . o e e e e e e e e e e e e e
T6I3EXercise 2.14 . . o . e e e e e e e e e e e e
T6I4EXercise 2,05 . . . o e e e e e e e e e
T6I5EXercise2.16 e e e e e e e e e
T6I6 EXercise 217 . . . o o o e e e e e e e e e e e e e

Level 3

TT0 EXercise 3.1 o e e e e e e e e
TT.2 EXErCise3.2 . . o i i e e e e e e e e e e e e e e e
T7.3 EXercise3.3 . . . o i e e e e e e e e e
TT.4 EXErcise3.4 . . o v it e e e e e e e e e e e e e e
TT.5 EXErcise 3.5 . . o o v it e e e e e e e e
TT.6 EXErCise3.6 v i i it e e e e e e e e e e e e e e e

xi

CONTENTS

Afterword 555
78 Questions? 555
Xl Appendix 556
79 Common terminology 557
80 x86 558
80.1 Terminology o o i e e e e e e e e e e e 558
80.2 General purpose registers L L e e e e e e e e e 558
80.2.1 RAX/EAX/AX/IAL . . . o e e e e 558

80.2.2 RBX/EBX/BX/BL . . o o o e e e 558

80.2.3 ROX/ECX/CX/CL .« v v v v e e e e e e e e e e e 559

80.2.4 RDX/EDX/DX/DL . . . o o o e e e e e e e e e e e 559

80.2.5 RSIJESI/SI/SIL o o o o e e e e e e e e 559

80.2.6 RDI/EDI/DI/DIL . . . o v i e e e e e e e e e e e e e e e 559

80.2.7 R8/R8D/RBW/RBL o et e e e e e 559

80.2.8 RI/RID/RIW/RIL . . . o o e e e e e e e e e e 559

80.2.9 RIO/RIOD/RIOW/RIOL o o o i e e e e e e e e e e e e e e e e e e e 559

80.2.10 R1T/RIID/RNW/RTIL o o o e 560

80.2.11 R12/R1I2D/RI2ZW/RTI2L o o o e 560

80.2.12 R13/RI3D/RIBW/RIBL . . . o o o e o e e e e e e e e e e e e e e 560

80.2.13 R14/RTAD/RIAW/RIAL o o o e e e e e e e e e e e e e e 560

80.2.14 R15/R15D/RISW/RIEL o o o e e e e e e e e e 560

80.2.05 RSP/ESP/SP/SPL o o e e e e 560

80.2.16 RBP/EBP/BP/BPL o o e e e e e e e e e 560

80217 RIPJEIP/IP . o o o o e e e e e e e e e e e 561

80.2.18 CS/DS/ES/SS/FS/GS . o o o o e e e e e 561

80.2.19 Flagsregister e e e 561

80.3 FPU-registers o e e e e e e e e e 562
80.3.1 ControlWord e e e e e e e 562

80.3.2 StatusWord L e e e e e e 562

80.3.3 TagWord o e e e e e 563

80.4 SIMD-registers i i e e e e e e e e e e e e e e e 563
80.4.1 MMX-registers i i e e e e e e e e e e e e e 563

80.4.2 SSE and AVX-registers o o i i e e e e e e e e 563

80.5 Debuggingregisters e e e e e e 563
80.5.1 DROB . . . e e 563

80.5.2 DRT . . . o e e 564

80.6 INSLrUCLIONS o e e e e e e e e e e 564
80.6.1 Prefixes e e e 565

80.6.2 Mostfrequently usedinstructions. 565

80.6.3 Lessfrequently usedinstructions e 569

80.6.4 FPUINSLIUCLIONS o o e e e e e e e e e e e e e 573

80.6.5 SIMDINStructions o e e e e e e e e e e 575

80.6.6 Instructions having printable ASCllopcode e 575

81 ARM 577
81.1 General purpose registers L e e e e e e e e e e e e e e e 577
81.2 Current Program Status Register (CPSR) o i i e e e e 578
81.3 VFP (floating point) and NEON registers v v i i i e e e e e e e e e e e e 578

82 Some GCC library functions 579
83 Some MSVC library functions 580
Acronyms used 582
Bibliography 586

xii

CONTENTS
Glossary 588

Index 590

xiii

0.1. PREFACE CONTENTS
0.1 Preface

Here are some of my notes about reverse engineering in English language for those beginners who would like to learn to
understand x86 (which accounts for almost all executable software in the world) and ARM code created by C/C++ compilers.

There are several popular meanings of the term “reverse engineering”: 1) reverse engineering of software: researching of
compiled programs; 2) 3D model scanning and reworking in order to make a copy of it; 3) recreating DBMS' structure. These
notes are related to the first meaning.

Topics discussed
x86, ARM.

Topics touched

Oracle RDBMS (58), Itanium (65), copy-protection dongles (55), LD_PRELOAD (49.2), stack overflow, ELF?, win32 PE file for-
mat (50.2), x86-64 (23.1), critical sections (50.4), syscalls (48), TLS?, position-independent code (PIC*) (49.1), profile-guided
optimization (67.1), C++ STL (34), OpenMP (64), SEH ().

T—
Mini-FAQ

e Q: Should one learn to understand assembly language these days?
A: Yes: in order to have deeper understanding of the internals and to debug your software better and faster.

e Q: Should one learn to write in assembly language these days?
A: Unless one writes low-level 0S® code, probably no.

e Q: But what about writing highly optimized routines?
A: No, modern C/C++ compilers do this job better.

e Q:Should I learn microprocessor internals?
A:Modern CPU'-s are very complex. If you do not plan to write highly optimized code or if you do not work on compiler’s
code generator then you may still learn internals in bare outlines. 8. At the same time, in order to understand and
analyze compiled code it is enough to know only ISA?, register’s descriptions, i.e., the “outside” part of a CPU that is
available to an application programmer.

e Q: So why should | learn assembly language anyway?
A: Mostly to better understand what is going on while debugging and for reverse engineering without source code,
including, but not limited to, malware.

e Q: How would I search for a reverse engineering job?
A: There are hiring threads that appear from time to time on reddit devoted to RE' (2013 Q3, 2014). Try to take a look
there.

About the author

Dennis Yurichev is an experienced reverse engineer and programmer. Also available as a freelance teacher of assembly
language, reverse engineering, C/C++. Can teach remotely via E-Mail, Skype, any other messengers, or personally in Kiev,
Ukraine. His CV is available here.

'Database management systems

2Executable file format widely used in *NIX system including Linux
3Thread Local Storage

4Position Independent Code: 49.1

SFrequently Asked Questions

60perating System

"Central processing unit

8Very good text about it: [10]

9lnstruction Set Architecture
Onttp://www.reddit.com/r/ReverseEngineering/

Xiv

http://www.reddit.com/r/ReverseEngineering/comments/1hywvr/rreverseengineerings_q3_2013_hiring_thread/
http://www.reddit.com/r/ReverseEngineering/comments/1vui22/rreverseengineerings_2014_hiring_thread/
http://yurichev.com/Dennis_Yurichev.pdf
http://www.reddit.com/r/ReverseEngineering/

0.1. PREFACE CONTENTS
Thanks

Andrey “herm1t” Baranovich, Slava ”Avid” Kazakov, Stanislav "Beaver” Bobrytskyy, Alexander Lysenko, Alexander ”Lstar”
Chernenkiy, Andrew Zubinski, Vladimir Botov, Mark “Logxen” Cooper, Shell Rocket, Arnaud Patard (rtp on #debian-arm IRC),
and all the folks on github.com who have contributed notes and corrections.

A lot of BTEX packages were used: | would thank their authors as well.

Praise for Reverse Engineering for Beginners
e “It’s very well done .. and for free .. amazing.”"" Daniel Bilar, Siege Technologies, LLC.
e “.excellent and free”' Pete Finnigan, Oracle RDBMS security guru.

e “.. book is interesting, great job!” Michael Sikorski, author of Practical Malware Analysis: The Hands-On Guide to Dis-
secting Malicious Software.

e “.. my compliments for the very nice tutorial!” Herbert Bos, full professor at the Vrije Universiteit Amsterdam.

e “.. Itis amazing and unbelievable.” Luis Rocha, CISSP / ISSAP, Technical Manager, Network & Information Security at
Verizon Business.

Donate

As it turns out, (technical) writing takes a lot of effort and work.

This book is free, available freely and available in source code form '3 (LaTeX), and it will be so forever.

My current plan for this book is to add lots of information about: PLANS.

If you want me to continue writing on all these topics you may consider donating.

I worked more than year on this book ', there are more than 500 pages. There are ~ 300 TgX-files, ~ 90 C/C++ source
codes, = 350 various listings.

Price of other books on the same subject varies between $20 and $50 on amazon.com.

Ways to donate are available on the page: http://yurichev.com/donate.html

Every donor’s name will be included in the book! Donors also have a right to ask me to rearrange items in my writing plan.

Why not try to publish? Because it’s technical literature which, as | believe, cannot be finished or frozen in paper state.
Such technical references akin to Wikipedia or MSDN'™ library. They can evolve and grow indefinitely. Someone can sit down
and write everything from the begin to the end, publish it and forget about it. As it turns out, it’s not me. | have everyday
thoughts like “that was written badly and can be rewritten better”, “that was a bad example, | know a better one”, “that is
also a thing | can explain better and shorter”, etc. As you may see in commit history of this book’s source code, | make a lot of
small changes almost every day: https://github.com/dennis714/RE-for-beginners/commits/master.

So the book will probably be a “rolling release” as they say about Linux distros like Gentoo. No fixed releases (and dead-
lines) at all, but continuous development. | don’t know how long it will take to write all | know. Maybe 10 years or more. Of
course, it is not very convenient for readers who want something stable, but all | can offer is a ChangeLog file serving as a
“what’s new” section. Those who are interested may check it from time to time, or my blog/twitter '° .

Donors

6 * anonymous, Oleg Vygovsky, Daniel Bilar, James Truscott, Luis Rocha.

About illustrations

Those readers who are used to read a lot in the Internet, expects seeing illustrations at the places where they should be. It’s
because there are no pages at all, only single one. It’s not possible to place illustrations in the book at the suitable context.
So, in this book, illustrations can be at the end of section, and a referenceses in the text may be present, like “fig.1.1”.

Thttps://twitter.com/daniel_bilar/status/436578617221742593

Zhttps://twitter.com/petefinnigan/status/400551705797869568

https://github.com/dennis714/RE-for-beginners

4|nitial git commit from March 2013:
https://github.com/dennis714/RE-for-beginners/tree/1e57e£f540d827c7f7a92fcb3ad626af3e13c7eed

>Microsoft Developer Network

®http://blog.yurichev.com/ https://twitter.com/yurichev

XV

https://github.com/dennis714/RE-for-beginners/blob/master/PLANS
http://yurichev.com/donate.html
https://github.com/dennis714/RE-for-beginners/commits/master
https://github.com/dennis714/RE-for-beginners/blob/master/ChangeLog
https://twitter.com/daniel_bilar/status/436578617221742593
https://twitter.com/petefinnigan/status/400551705797869568
https://github.com/dennis714/RE-for-beginners
https://github.com/dennis714/RE-for-beginners/tree/1e57ef540d827c7f7a92fcb3a4626af3e13c7ee4
http://blog.yurichev.com/
https://twitter.com/yurichev

Part |

Code patterns

When | first learned C and then C++, | wrote small pieces of code, compiled them, and saw what was produced in the
assembly language. This was easy for me. | did it many times and the relation between the C/C++ code and what the compiler
produced was imprinted in my mind so deep that | can quickly understand what was in the original C code when | look at
produced x86 code. Perhaps this technique may be helpful for someone else so | will try to describe some examples here.

CHAPTER 1. SHORT INTRODUCTION TO THE CPU

Chapter1

Short introduction to the CPU

The CPU is the unit which executes all of the programs.
Short glossary:

Instruction : a primitive command to the CPU. Simplest examples: moving data between registers, working with memory,
arithmetic primitives. As a rule, each CPU has its own instruction set architecture (ISA).

Machine code : code for the CPU. Each instruction is usually encoded by several bytes.

Assembly language : mnemonic code and some extensions like macros which are intended to make a programmer’s life
easier.

CPU register : Each CPU has a fixed set of general purpose registers (GPR'). ~ 8 in x86, ~ 16 in x86-64, ~ 16 in ARM. The
easiest way to understand a register is to think of it as an untyped temporary variable. Imagine you are working with a
high-level PL? and you have only 8 32-bit variables. A lot of things can be done using only these!

What is the difference between machine code and a PL? It is much easier for humans to use a high-level PL like C/C++,
Java, Python, etc., but it is easier for a CPU to use a much lower level of abstraction. Perhaps, it would be possible to invent
a CPU which can execute high-level PL code, but it would be much more complex. On the contrary, it is very inconvenient for
humans to use assembly language due to its low-levelness. Besides, it is very hard to do it without making a huge amount of
annoying mistakes. The program which converts high-level PL code into assembly is called a compiler.

General Purpose Registers
2Programming language

CHAPTER 2. HELLO, WORLD!

Chapter 2

Hello, world!

Let’s start with the famous example from the book “The C programming Language” [17]:

#include <stdio.h>

int main()

{
printf("hello, world");
return 0;

}s

2.1 x86

2.1.1 MSVC—x86
Let’s compile itin MSVC 2010:

cl 1.cpp /Fal.asm

(/Fa option means generate assembly listing file)

Listing 2.1: MSVC 2010

CONST SEGMENT

$SG3830 DB ’hello, world’, OOH
CONST ENDS

PUBLIC _main

EXTRN _printf:PROC

; Function compile flags: /0dtp
_TEXT SEGMENT

_main PROC
push ebp
mov ebp, esp
push OFFSET $SG3830
call _printf
add esp, 4
xor eax, eax
pop ebp
ret 0

_main ENDP

_TEXT ENDS

MSVC produces assembly listings in Intel-syntax. The difference between Intel-syntax and AT&T-syntax will be discussed
hereafter.

The compiler generated 1. obj file will be linked into 1. exe.

In our case, the file contain two segments: CONST (for data constants) and _TEXT (for code).

The string “hello, world’’in C/C++hastype const char*, however it does not have its own name.

The compiler needs to deal with the string somehow so it defines the internal name $3G3830 for it.

So the example may be rewritten as:

2.1. X86 CHAPTER 2. HELLO, WORLD!

#include <stdio.h>
const char *$SG3830="hello, world";

int main()

{
printf ($SG3830) ;
return O;

};

Let’s back to the assembly listing. As we can see, the string is terminated by a zero byte which is standard for C/C++ strings.
More about C strings: 39.1.

In the code segment, _TEXT, there is only one function so far: main().

The functionmain () starts with prologue code and ends with epilogue code (like almost any function) .

After the function prologue we see the call to the printf () function: CALL _printf.

Before the call the string address (or a pointer to it) containing our greeting is placed on the stack with the help of the
PUSH instruction.

When the printf () function returns flow control to the main () function, string address (or pointer to it) is still in stack.

Since we do not need it anymore the stack pointer (the ESP register) needs to be corrected.

ADD ESP, 4 means add 4 to the value in the ESP register.

Why 47 Since it is 32-bit code we need exactly 4 bytes for address passing through the stack. It is 8 bytes in x64-code.

“ADD ESP, 4’’is effectively equivalent to “POP register’’ but without using any register?.

Some compilers (like Intel C++ Compiler) in the same situation may emit POP ECX instead of ADD (e.g. such a pattern can
be observed in the Oracle RDBMS code as it is compiled by Intel C++ compiler). This instruction has almost the same effect
but the ECX register contents will be rewritten.

The Intel C++ compiler probably uses POP ECX since this instruction’s opcode is shorter then ADD ESP, x (1 byte against
3).

Read more about the stack in section (4).

After the call to printf (), in the original C/C++ code was return 0 —return 0 as the result of themain () function.

In the generated code this is implemented by instruction XOR EAX, EAX

XORisin fact, just “eXclusive OR” 3 but compilers often use it instead of MOV EAX, 0—again because itis a slightly shorter
opcode (2 bytes against 5).

Some compilers emit SUB EAX, EAX, which means SUBtract the value in the EAX from the value in EAX, which in any case
will result zero.

The last instruction RET returns control flow to the caller. Usually, it is C/C++ CRT* code which in turn returns control to
the OS.

2.1.2 GCC—x86

Now let’s try to compile the same C/C++ code in the GCC 4.4.1 compilerin Linux: gcc 1.c -0 1
After, with the assistance of the IDA® disassembler, let’s see how the main () function was created.
(IDA, like MSVC, shows code in Intel-syntax).
N.B. We could also have GCC produce assembly listings in Intel-syntax by applying the options -S -masm=intel

Listing 2.2: GCC

main proc near
var_10 = dword ptr -10h
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 10h
mov eax, offset aHelloWorld ; "hello, world"
mov [esp+10h+var_10], eax
call _printf

'Read more about it in section about function prolog and epilog (3).
2CPU flags, however, are modified
Shttp://en.wikipedia.org/wiki/Exclusive_or

4C runtime library: sec:CRT

SInteractive Disassembler

http://en.wikipedia.org/wiki/Exclusive_or

2.1. X86 CHAPTER 2. HELLO, WORLD!

mov eax, O
leave
retn

main endp

The result is almost the same. The address of the “hello, world” string (stored in the data segment) is saved in the EAX
register first and then it is stored on the stack. Also in the function prologue we see AND ESP, OFFFFFFFOh —thisinstruction
aligns the value in the ESP register on a 16-byte boundary. This results in all values in the stack being aligned. (The CPU
performs better if the values it is dealing with are located in memory at addresses aligned on a 4- or 16-byte boundary)®.

SUB ESP, 10h allocates 16 bytes on the stack. Although, as we can see hereafter, only 4 are necessary here.

This is because the size of the allocated stack is also aligned on a 16-byte boundary.

The string address (or a pointer to the string) is then written directly onto the stack space without using the PUSH instruc-
tion. var_10 —is a local variable and is also an argument for printf (). Read about it below.

Then the printf () function is called.

Unlike MSVC, when GCC is compiling without optimization turned on, it emits MOV EAX, O instead of a shorter opcode.

The last instruction, LEAVE —is the equivalent of the MOV ESP, EBP and POP EBP instruction pair —in other words, this
instruction sets the stack pointer (ESP) back and restores the EBP register to its initial state.

This is necessary since we modified these register values (ESP and EBP) at the beginning of the function (executing MOV
EBP, ESP/AND ESP, ...).

2.1.3 GCC: AT&T syntax

Let’s see how this can be represented in the AT&T syntax of assembly language. This syntax is much more popular in the
UNIX-world.

Listing 2.3: let’s compile in GCC 4.7.3

gcec -S 1_1.c
We get this:
Listing 2.4: GCC 4.7.3
.file "1_1.c"
.section .rodata
.LCO:
.string "hello, world"
.text
.globl main
.type main, @function
main:
.LFBO:
.cfi_startproc
pushl Yebp
.cfi_def_cfa_offset 8
.cfi_offset 5, -8
movl %hesp, %ebp
.cfi_def_cfa_register 5
andl $-16, %esp
subl $16, Yesp
movl $.1LCO, (Y%esp)
call printf
movl $0, %eax
leave
.cfi_restore 5
.cfi_def_cfa 4, 4
ret
.cfi_endproc
.LFEO:
.size main, .-main
.ident "GCC: (Ubuntu/Linaro 4.7.3-1ubuntul) 4.7.3"
.section .note.GNU-stack,"",@progbits

SWikipedia: Data structure alighment

http://en.wikipedia.org/wiki/Data_structure_alignment

2.2. X86-64

CHAPTER 2. HELLO, WORLD!

There are a lot of macros (beginning with dot). These are not very interesting to us so far. For now, for the sake of sim-
plification, we can ignore them (except the .string macro which encodes a null-terminated character sequence just like a
C-string). Then we’ll see this '

Listing 2.5: GCC 4.7.3

.LCO:

.string "hello, world"

main:

pushl
movl
andl
subl
movl
call
movl
leave
ret

%ebp

%hesp, %ebp
$-16, %esp
$16, Yesp
$.LCO, Chesp)
printf

$0, Y%eax

Some of the major differences between Intel and AT&T syntax are:

e Operands are written backwards.

In Intel-syntax: <instruction> <destination operand> <source operand>.

In AT&T syntax: <instruction> <source operand> <destination operand>.

Here is a way to think about them: when you deal with Intel-syntax, you can put in equality sign (=) in your mind
between operands and when you deal with AT&T-syntax put in a right arrow (—) 8.

e AT&T: Before register names a percent sign must be written (%) and before numbers a dollar sign ($). Parentheses are
used instead of brackets.

e AT&T: Aspecial symbolis to be added to each instruction defining the type of data:

- |—long (32 bits)
- w — word (16 bits)
- b — byte (8 bits)

Let’s go back to the compiled result: it is identical to what we saw in IDA. With one subtle difference: OFFFFFFFOh is
written as $-16. It is the same: 16 in the decimal system is 0x10 in hexadecimal. -0x10 is equal to OxFFFFFFFO (for a 32-bit

data type).

One more thing: the return value is to be set to 0 by using usual MOV, not XOR. MOV just loads value to a register. Its name
is not felicitous (data are not moved), this instruction in other architectures has name “load” or something like that.

2.2 x86-64

2.2.1 MSVC—x86-64
Let’s also try 64-bit MSVC:

Listing 2.6: MSVC 2012 x64

$SG2989 DB

main PROC
sub
lea
call
Xor
add
ret

main ENDP

’hello, world’, OOH

rsp, 40

rcx, OFFSET FLAT:$SG2923
printf

eax, eax

rsp, 40

0

"This GCC option can be used to eliminate “unnecessary” macros: -fno-asynchronous-unwind-tables
8 By the way, in some C standard functions (e.g., memcpy(), strcpy()) arguments are listed in the same way as in Intel-syntax: pointer to destination
memory block at the beginning and then pointer to source memory block.

2.2. X86-64 CHAPTER 2. HELLO, WORLD!

As of x86-64, all registers were extended to 64-bit and now have R- prefix. In order to use stack not that often (in other
words, to access external memory not that often), there exist a popular way to pass function arguments via registers (fastcall:
??). lLe., one part of function arguments are passed in registers, other part—via stack. In Win64, 4 function arguments are
passed in RCX, RDX, R8, R9 registers. That is what we see here: a pointer to the string for printf () is now passed not in stack,
but in RCX register.

Pointers are 64-bit now, so they are passed in 64-bit part of registers (which have R- prefix). But for the backward com-
patibility, it is still possible to access 32-bit parts, using E- prefix.

That is how RAX/EAX/AX/AL looks like in 64-bit x86-compatible CPUs:

7th (bytenumben) T 6th [5th | 4th | 3rd | 2nd [1st | Oth
RAxx64

\ EAX

AX
AH | AL

main() function returns int-typed value, which is, in C PL, for the better backward compatibility and portability, is still
32-bit, so that is why EAX register is cleared at the function end (i.e., 32-bit part of register) instead of RAX.

2.2.2 GCC—x86-64
Let’s also try GCC in 64-bit Linux:

Listing 2.7: GCC 4.4.6 x64

.string "hello, world"

main:
sub rsp, 8
mov edi, OFFSET FLAT:.LCO ; "hello, world"
xor eax, eax ; number of vector registers passed
call printf
xor eax, eax
add rsp, 8
ret

A method to pass function arguments in registers are also used in Linux, *BSD and MacOSX [21]. 6 first arguments are
passed in RDI, RST, RDX, RCX, R8, RO registers, and others—via stack.

So the pointer to the string is passed in EDI (32-bit part of register). But why not to use 64-bit part, RDI?

It is important to keep in mind that all MOV instructions in 64-bit mode writing something into lower 32-bit register part,
clearing higher 32-bits [14]. l.e., the MOV EAX, 011223344h will write a value correctly into RAX, higher bits will be cleared.

If to open compiled object file (.0), we will also see all instruction’s opcodes °:

Listing 2.8: GCC 4.4.6 x64

.text :00000000004004D0 main proc near

.text:00000000004004D0 48 83 EC 08 sub rsp, 8

.text :00000000004004D4 BF E8 05 40 00 mov edi, offset format ; "hello, world"
.text:00000000004004D9 31 CO Xor eax, eax

.text:00000000004004DB E8 D8 FE FF FF call _printf

.text :00000000004004E0 31 CO xor eax, eax

.text:00000000004004E2 48 83 C4 08 add rsp, 8

.text:00000000004004E6 C3 retn

.text:00000000004004E6 main endp

As we can see, the instruction writing into EDI at 0x4004D4 occupies 5 bytes. The same instruction, writing 32-bit value
into RDI will occupy 7 bytes. Apparently, GCC tries to save some space. Besides, it can be sure that the data segment con-
taining the string will not be allocated at the addresses higher than 4GiB.

We also see EAX register clearance before printf () function call. This is done because a number of used vector registers
is passed in EAX by standard: “with variable arguments passes information about the number of vector registers used” [21].

9This should be enabled in Options — Disassembly — Number of opcode bytes

2.3. ARM CHAPTER 2. HELLO, WORLD!
2.3 ARM

For my experiments with ARM processors | chose two compilers: popular in the embedded area Keil Release 6/2013 and Ap-
ple Xcode 4.6.3 IDE (with LLVM-GCC 4.2 compiler), which produces code for ARM-compatible processors and SOC'? in iPod/i-
Phone/iPad, Windows 8 and Window RT tables' and also such devices as Raspberry Pi.

32-bit ARM code is used in all cases in this book, if not mentioned otherwise.

2.3.1 Non-optimizing Keil + ARM mode

Let’s start by compiling our example in Keil:

armcc.exe --arm --c90 -00 1.c

The armcc compiler produces assembly listings in Intel-syntax but it has high-level ARM-processor related macros'?, but
itis more important for us to see the instructions “as is” so let’s see the compiled result in IDA.

Listing 2.9: Non-optimizing Keil + ARM mode + IDA

.text :00000000 main

.text:00000000 10 40 2D E9 STMFD SP!, {R4,LR}

.text:00000004 1E OE 8F E2 ADR RO, aHelloWorld ; "hello, world"
.text:00000008 15 19 00 EB BL __2printf

.text:0000000C 00 00 AO E3 MOV RO, #0

.text:00000010 10 80 BD E8 LDMFD Sp!, {R4,PC}

.text :000001EC 68 65 6C 6C+aHelloWorld DCB "hello, world",O ; DATA XREF: main+4

Here are a couple of ARM-related facts that we should know in order to proceed. An ARM processor has at least two major
modes: ARM mode and thumb mode. In the first (ARM) mode, all instructions are enabled and each is 32 bits (4 bytes) in
size. In the second (thumb) mode each instruction is 16 bits (2 bytes) in size . Thumb mode may look attractive because
programs that use it may 1) be compact and 2) execute faster on microcontrollers having a 16-bit memory datapath. Nothing
comes for free. Inthumb mode, thereis areduced instruction set, only 8 registers are accessible and one needs several thumb
instructions for doing some operations when you only need one in ARM mode.

Starting at ARMvT the thumb-2 instruction set is also present. This is an extended thumb which supports a much larger
instruction set. There is a common misconception that thumb-2 is a mix of ARM and thumb. This is not correct. Rather,
thumb-2 was extended to fully support processor features so it could compete with ARM mode. A program for the ARM pro-
cessor may be a mix of procedures compiled for both modes. The majority of iPod/iPhone/iPad applications are compiled
for the thumb-2 instruction set because Xcode does this by default.

In the example we can easily see each instruction has a size of 4 bytes. Indeed, we compiled our code for ARM mode, not
for thumb.

The very firstinstruction, <STMFD SP!, {R4,LR}’’' works asanx86 PUSH instruction, writing the values of two registers
(R4 and LR") into the stack. Indeed, in the output listing from the armcc compiler, for the sake of simplification, actually
shows the ¢“PUSH {r4,1r}’’instruction. But it is not quite correct. PUSH instruction are only available in thumb mode. So,
to make things less messy, | offered to work in IDA.

This instruction writes the values of the R4 and LR registers at the address in memory to which SP'®'" is pointing, then it
decrements SP so it will point to the place in the stack that is free for new entries.

This instruction (like the PUSH instruction in thumb mode) is able to save several register values at once and this may be
useful. By the way, there is no such thing in x86. It can also be noted that the STMFD instruction is a generalization of the PUSH
instruction (extending its features), since it can work with any register, not just with SP, and this can be very useful.

The ‘ADR RO, aHelloWorld’’instruction adds the value in the PC'® register to the offset where the “hello, world” string
is located. How is the PC register used here, one might ask? This is so-called “position-independent code”. '° It is intended to
be executed at a non-fixed address in memory. In the opcode of the ADR instruction, the difference between the address of
this instruction and the place where the string is located is encoded. The difference will always be the same, independent of

10system on Chip

"http://en.wikipedia.org/wiki/List_of _Windows_8_and_RT_tablet_devices

2e.g. ARM mode lacks PUSH/POP instructions

13By the way, fixed-length instructions are handy in a way that one can calculate the next (or previous) instruction’s address without effort. This feature
will be discussed in switch() (11.2.2) section.

14Store Multiple Full Descending

SLink Register

16Stack Pointer

TESP, RSP in x86

8program Counter

19Read more about it in relevant section (49.1)

http://en.wikipedia.org/wiki/List_of_Windows_8_and_RT_tablet_devices

2.3. ARM CHAPTER 2. HELLO, WORLD!
the address where the code is loaded by the OS. That’s why all we need is to add the address of the current instruction (from
PC) in order to get the absolute address of our C-string in memory.

“BL __2printf? instruction calls the printf () function. Here’s how this instruction works:

e write the address following the BL instruction (0xC) into the LR;
e then pass control flow into printf () by writing its address into the PC? register.

When printf () finishes its work it must have information about where it must return control. That’s why each function
passes control to the address stored in the LR register.

That is the difference between “pure” RISC?2-processors like ARM and CISC%-processors like x86, where the return ad-
dress is stored on the stack?*.

By the way, an absolute 32-bit address or offset cannot be encoded in the 32-bit BL instruction because it only has space
for 24 bits. It is also worth noting all ARM-mode instructions have a size of 4 bytes (32 bits). Hence they can only be located
on 4-byte boundary addresses. This means the the last 2 bits of the instruction address (which are always zero bits) may be
omitted. In summary, we have 26 bits for offset encoding. This is enough to represent offset + ~ 32M.

Next, the “MOV RO, #0>’? instruction just writes 0 into the RO register. That’s because our C-function returns 0 and the
return value is to be placed in the RO register.

The last instruction ¢LDMFD SP!, R4,PC’*?®isan inverse instruction of STMFD. It loads values from the stack in order to
save them into R4 and PC, and increments the stack pointer SP. It can be said that it is similar to POP. N.B. The very first
instruction STMFD saves the R4 and LR registers pair on the stack, but R4 and PC are restored during execution of LDMFD.

As | wrote before, the address of the place to where each function must return control is usually saved in the LR register.
The very first function saves its value in the stack because ourmain () function will use the register in order to call printf ().
In the function end this value can be written to the PC register, thus passing control to where our function was called. Since
ourmain() function is usually the primary function in C/C++, control will be returned to the OS loader or to a point in CRT,
or something like that.

DCB —assembly language directive defining an array of bytes or ASCII strings, akin to the DB directive in x86-assembly
language.

2.3.2 Non-optimizing Keil: thumb mode

Let’s compile the same example using Keil in thumb mode:

armcc.exe --thumb --c90 -00 1.c

We will get (in IDA):

Listing 2.10: Non-optimizing Keil + thumb mode + IDA

.text :00000000 main

.text:00000000 10 B5 PUSH {R4,LR}

.text:00000002 CO AO ADR RO, aHelloWorld ; "hello, world"
.text:00000004 06 FO 2E F9 BL __2printf

.text:00000008 00 20 MOVS RO, #0

.text:0000000A 10 BD POP {R4,PC}

.text:00000304 68 65 6C 6C+aHelloWorld DCB "hello, world",O ; DATA XREF: main+2

We can easily spot the 2-byte (16-bit) opcodes. This is, as | mentioned, thumb. The BL instruction however consists of
two 16-bit instructions. This is because it is impossible to load an offset for the printf () function into PC while using the
small space in one 16-bit opcode. That’s why the first 16-bit instruction loads the higher 10 bits of the offset and the second
instruction loads the lower 11 bits of the offset. As | mentioned, all instructions in thumb mode have a size of 2 bytes (or 16
bits). This meanitisimpossible for athumb-instruction to be at an odd address whatsoever. Given the above, the last address
bit may be omitted while encoding instructions. Summarizing, in the BL thumb-instruction 4+ = 2M can be encoded as the
offset from the current address.

As for the other instructions in the function: PUSH and POP work just like the described STMFD/LDMFD but the SP register
is not mentioned explicitly here. ADR works just like in previous example. MOVS writes 0 into the RO register in order to return
zero.

20Branch with Link

2IEIP, RIP in x86

22Reduced instruction set computing

2 Complex instruction set computing
24Read more about this in next section (4)
25MOVe

26| oad Multiple Full Descending

10

2.3. ARM CHAPTER 2. HELLO, WORLD!
2.3.3 Optimizing Xcode (LLVM) + ARM mode

Xcode 4.6.3 without optimization turned on produces a lot of redundant code so we’ll study the version where the instruction
count is as small as possible: -03.

Listing 2.11: Optimizing Xcode (LLVM) + ARM mode

__text:000028C4 _hello_world

__text:000028C4 80 40 2D E9 STMFD sp!, {R7,LR}
__text:000028C8 86 06 01 E3 MOV RO, #0x1686
__text:000028CC 0D 70 AO E1 MOV R7, SP
__text:000028D0 00 00 40 E3 MOVT RO, #0
__text:000028D4 00 00 8F EO ADD RO, PC, RO
__text:000028D8 C3 05 00 EB BL _puts
__text:000028DC 00 00 AO E3 MOV RO, #0
__text:000028E0 80 80 BD E8 LDMFD sp!, {R7,PC}

__cstring:00003F62 48 65 6C 6C+aHelloWorld_O DCB "Hello world!",0

The instructions STMFD and LDMFD are familiar to us.

The MOV instruction just writes the number 0x1686 into the RO register. This is the offset pointing to the “Hello world!”
string.

The R7 register as it is standardized in [2] is a frame pointer. More on it below.

TheMOVT RO, #O instruction writes 0 into higher 16 bits of the register. The issue here is that the generic MOV instruction
in ARM mode may write only the lower 16 bits of the register. Remember, all instruction opcodes in ARM mode are limited
in size to 32 bits. Of course, this limitation is not related to moving between registers. That’s why an additional instruction
MOVT exists for writing into the higher bits (from 16 to 31 inclusive). However, its usage here is redundant because the MOV
RO, #0x1686"’ instruction above cleared the higher part of the register. This is probably a shortcoming of the compiler.

The“‘ADD RO, PC, RO’ instruction adds the value in the PC to the value in the RO, to calculate absolute address of the
“Hello world!” string. As we already know, it is “position-independent code” so this correction is essential here.

The BL instruction calls the puts () function instead of printf ().

GCCreplaced thefirstprintf () callwithputs (). Indeed: printf () with asole argumentis almost analogoustoputs).

Almost because we need to be sure the string will not contain printf-control statements starting with %: then the effect of
these two functions would be different %'.

Why did the compiler replace the printf () with puts () ? Because puts () is faster 25

puts () works faster because it just passes characters to stdout without comparing each to the % symbol.

Next, we see the familiar MOV RO, #0’instruction intended to set the RO register to 0.

2.3.4 Optimizing Xcode (LLVM) + thumb-2 mode

By default Xcode 4.6.3 generates code for thumb-2 in this manner:

Listing 2.12: Optimizing Xcode (LLVM) + thumb-2 mode

__text:00002B6C _hello_world

__text:00002B6C 80 B5 PUSH {R7,LR}
__text:00002B6E 41 F2 D8 30 MOVW RO, #0x13D8
__text:00002B72 6F 46 MOV R7, SP
__text:00002B74 CO F2 00 00 MOVT.W RO, #0
__text:00002B78 78 44 ADD RO, PC
__text:00002B7A 01 FO 38 EA BLX _puts
__text:00002B7E 00 20 MOVS RO, #0
__text:00002B80 80 BD POP {R7,PC}
__cstring:00003E70 48 65 6C 6C 6F 20+aHelloWorld DCB "Hello world!",0xA,0

The BL and BLX instructions in thumb mode, as we recall, are encoded as a pair of 16-bit instructions. In thumb-2 these
surrogate opcodes are extended in such a way so that new instructions may be encoded here as 32-bit instructions. That’s
easily observable —opcodes of thumb-2 instructions also begin with 0xFx or 0xEx. But in the IDA listings two opcode bytes

1t should also be noted the puts () does not require a’\n’ new line symbol at the end of a string, so we do not see it here.
2nttp://www.ciselant.de/projects/gec_printf/gec_printf.html

11

http://www.ciselant.de/projects/gcc_printf/gcc_printf.html

2.3. ARM CHAPTER 2. HELLO, WORLD!

are swapped (for thumb and thumb-2 modes). Forinstructions in ARM mode, the order is the fourth byte, then the third, then
the second and finally the first (due to different endianness). So as we can see, the MOVW, MOVT . W and BLX instructions begin
with 0xFx.
One of the thumb-2 instructions is ““MOVW RO, #0x13D8’’ —it writes a 16-bit value into the lower part of the RO register.
Also, ““MOVT.W RO, #0’’—thisinstruction works just like MOVT from the previous example but it works in thumb-2.
Among other differences, here BLX instruction is used instead of BL. The difference is that, besides saving the RA? in the
LR register and passing control to the puts () function, the processor is also switching from thumb mode to ARM (or back).
This instruction is placed here since the instruction to which control is passed looks like (it is encoded in ARM mode):

__symbolstubl:00003FEC _puts ; CODE XREF: _hello_world+E
__symbolstubl:00003FEC 44 FO 9F E5 LDR PC, =__imp__puts

So, the observant reader may ask: why not call puts () right at the point in the code where it needed?

Because it is not very space-efficient.

Almost any program uses external dynamic libraries (like DLL in Windows, .so in *NIX or .dylib in Mac OS X). Often used
library functions are stored in dynamic libraries, including the standard C-function puts Q).

In an executable binary file (Windows PE .exe, ELF or Mach-0O) an import section is present. This is a list of symbols (func-
tions or global variables) being imported from external modules along with the names of these modules.

The OS loader loads all modules it needs and, while enumerating import symbols in the primary module, determines the
correct addresses of each symbol.

Inourcase,__imp__putsisa32-bitvariable where the OS loader will write the correct address of the function in an external
library. Then the LDR instruction just takes the 32-bit value from this variable and writes it into the PC register, passing control
toit.

So, in order to reduce the time that an OS loader needs for doing this procedure, it is good idea for it to write the address
of each symbol only once to a specially-allocated place just for it.

Besides, as we have already figured out, it is impossible to load a 32-bit value into a register while using only one instruc-
tion without a memory access. So, it is optimal to allocate a separate function working in ARM mode with only one goal —to
pass control to the dynamic library and then to jump to this short one-instruction function (the so-called thunk function)
from thumb-code.

By the way, in the previous example (compiled for ARM mode) control passed by the BL instruction goes to the same thunk
function. However the processor mode is not switched (hence the absence of an “X” in the instruction mnemonic).

29Return Address

12

CHAPTER 3. FUNCTION PROLOGUE AND EPILOGUE

Chapter 3

Function prologue and epilogue

Function prologue is instructions at function start. It is often something like the following code fragment:

push ebp
mov ebp, esp
sub esp, X

What these instruction do: saves the value in the EBP register, set value of the EBP register to the value of the ESP and
then allocates space on the stack for local variables.

Value in the EBP is fixed over a period of function execution and it is to be used for local variables and arguments access.
One can use ESP, but it changing over time and it is not convenient.

Function epilogue annulled allocated space in stack, returns value in the EBP register back to initial state and returns flow
control to callee:

mov esp, ebp
pop ebp
ret 0

Epilogue and prologue can make recursion performance worse.

For example, once upon a time | wrote a function to seek right node in binary tree. As a recursive function it would look
stylish but since an additional time is to be spend at each function call for prologue/epilogue, it was working couple of times
slower than iterative (recursion-free) implementation.

By the way, that is the reason of tail call existence.

13

CHAPTER 4. STACK

Chapter 4

Stack

A stack is one of the most fundamental data structures in computer science'.

Technically, it is just a block of memory in process memory along with the ESP or RSP register in x86 or x64, or the SP
register in ARM, as a pointer within the block.

The most frequently used stack access instructions are PUSH and POP (in both x86 and ARM thumb-mode). PUSH subtracts
4in 32-bitmode (or 8 in 64-bit mode) from ESP/RSP/SP and then writes the contents of its sole operand to the memory address
pointed to by ESP/RSP/SP.

POP is the reverse operation: get the data from memory pointed to by SP, put it in the operand (often a register) and then
add 4 (or 8) to the stack pointer.

After stack allocation the stack pointer points to the end of stack. PUSH increases the stack pointer and POP decreases it.
The end of the stack is actually at the beginning of the memory allocated for the stack block. It seems strange, but it is so.

Nevertheless ARM has not only instructions supporting ascending stacks but also descending stacks.

For example the STMFD2/LDMFD3, STMED*/LDMED?® instructions are intended to deal with a descending stack. The
STMFA®/LMDFA’, STMEA®/LDMEA? instructions are intended to deal with an ascending stack.

4.1 Why stack grows backward?
Intuitively, we might think that, like any other data structure, the stack may grow upward, i.e., towards higher addresses.
The reason the stack grows backward is probably historical. When computers were big and occupied a whole room, it

was easy to divide memory into two parts, one for the heap and one for the stack. Of course, it was unknown how big the
heap and the stack would be during program execution, so this solution was simplest possible.

Start of heap Start of stack

Heap — «— Stack

In [26] we can read:

The user-core part of an image is divided into three logical segments. The program text segment begins
at location 0 in the virtual address space. During execution, this segment is write-protected and a single
copy of it is shared among all processes executing the same program. At the first 8K byte boundary above
the program text segment in the virtual address space begins a nonshared, writable data segment, the size

Thttp://en.wikipedia.org/wiki/Call_stack
2Store Multiple Full Descending

3Load Multiple Full Descending

4Store Multiple Empty Descending

5Load Multiple Empty Descending

6Store Multiple Full Ascending

"Load Multiple Full Ascending

8Store Multiple Empty Ascending

9Load Multiple Empty Ascending

14

http://en.wikipedia.org/wiki/Call_stack

4.2. WHAT IS THE STACK USED FOR? CHAPTER 4. STACK

of which may be extended by a system call. Starting at the highest address in the virtual address space is a
stack segment, which automatically grows downward as the hardware’s stack pointer fluctuates.

4.2 Whatis the stack used for?

4.2.1 Save the return address where a function must return control after execution
x86

While calling another function with a CALL instruction the address of the point exactly after the CALL instruction is saved to
the stack and then an unconditional jump to the address in the CALL operand is executed.
The CALL instruction is equivalent to a PUSH address_after_call / JMP operand instruction pair.
RET fetches a value from the stack and jumps to it —it is equivalentto a POP tmp / JMP tmp instruction pair.
Overflowing the stack is straightforward. Just run eternal recursion:

void £()
{

£0O;
}s

MSVC 2008 reports the problem:

c:\tmp6>cl ss.cpp /Fass.asm
Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 15.00.21022.08 for 80x86
Copyright (C) Microsoft Corporation. All rights reserved.

Ss.cpp
c:\tmp6\ss.cpp(4) : warning C4717: ’f’ : recursive on all control paths, function will cause

runtime stack overflow

...but generates the right code anyway:

7f@QYAXXZ PROC ; f
; File c:\tmp6\ss.cpp
; Line 2

push ebp

mov ebp, esp
; Line 3

call 7fQQYAXXZ ; £
; Line 4

pop ebp

ret 0
7f@QYAXXZ ENDP ; f

...Also if we turn on optimization (/0x option) the optimized code will not overflow the stack but will work correctly':

?7fQQYAXXZ PROC ; T
; File c:\tmp6\ss.cpp
; Line 2
$LL3ef:
; Line 3
Jjmp SHORT $LL3@f
?fQQYAXXZ ENDP ; T

GCC 4.4.1 generates likewise code in both cases, although without issuing any warning about the problem.

Ojrony here

15

4.2. WHAT IS THE STACK USED FOR? CHAPTER 4. STACK
ARM

ARM programs also use the stack for saving return addresses, but differently. As it was mentioned in “Hello, world!” (2.3), the
RA is saved to the LR (link register). However, if one needs to call another function and use the LR register one more time its
value should be saved. Usually it is saved in the function prologue. Often, we see instructions like <“PUSH R4-R7,LR’’along
with this instruction in epilogue <“POP R4-R7,PC’’ —thus register values to be used in the function are saved in the stack,
including LR.

Nevertheless, if a function never calls any other function, in ARM terminology it is called a leaf function". As a conse-
quence, leaf functions do not use the LR register. If this function is small and uses a small number of registers, it may not
use the stack at all. Thus, it is possible to call leaf functions without using the stack. This can be faster than on x86 because
external RAM is not used for the stack ™. It can be useful for such situations when memory for the stack is not yet allocated
or not available.

4.2.2 Passing function arguments

The most popular way to pass parameters in x86 is called “cdecl”:

push arg3
push arg?2
push argil
call £

add esp, 4%*3

Callee functions get their arguments via the stack pointer.
Consequently, thisis how values will be located in the stack before execution of the very first instruction of the f() function:

ESP return address

ESP+4 argument#1, marked in IDA as arg_0
ESP+8 argument#2, marked in IDA as arg_4
ESP+0xC | argument#3, marked in IDA as arg_8

See also the section about other calling conventions (2?). It is worth noting that nothing obliges programmers to pass
arguments through the stack. It is not a requirement. One could implement any other method without using the stack at all.

Forexample, itis possible to allocate a space for arguments in the heap, fill it and pass it to a function via a pointer to this
block in the EAX register. This will work. . However, it is convenient tradition in x86 and ARM to use the stack for this.

By the way, the callee function does not have any information about how many arguments were passed. Functions with a
variable number of arguments (like printf ()) determine the number by specifiers (which begin with a % sign) in the format
string. If we write something like

printf ("%d %d %d", 1234);

printf () willdump 1234, and then also two random numbers, which were laying near it in the stack, by chance.
That’s why it is not very important how we declare the main() function: asmain(), main(int argc, char *argv[]) or
main(int argc, char *argv[], char *envp[]).

In fact, CRT-code is callingmain () roughly as:

push envp
push argv
push argc
call main

If you’ll declare main () asmain() without arguments, they are, nevertheless, still present in the stack, but not used. If
you declaremain() asmain(int argc, char *argv[]),you will use two arguments, and third will remain “invisible” for
your function. Even more than that, it is possible to declaremain(int argc), and it will work.

"http://infocenter.arm.com/help/index. jsp?topic=/com.arm.doc.faqs/ka13785.html

2Some time ago, on PDP-11 and VAX, CALL instruction (calling other functions) was expensive, up to 50% of execution time might be spent on it, so it was
common sense that big number of small function is anti-pattern [25, Chapter 4, Part I].

3For example, in the “The Art of Computer Programming” book by Donald Knuth, in section 1.4.1 dedicated to subroutines [18, section 1.4.1], we can read
about one way to supply arguments to subroutine is simply to list them after the JMP instruction passing control to subroutine. Knuth writes this method
was particularly convenient on System/360.

16

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka13785.html

4.2. WHAT IS THE STACK USED FOR? CHAPTER 4. STACK
4.2.3 Local variable storage

A function could allocate space in the stack for its local variables just by shifting the stack pointer towards the stack bottom.
Itis also not a requirement. You could store local variables wherever you like, but traditionally this is how it’s done.

4.2.4 x86: alloca() function

It is worth noting the alloca () function.'.

This function works likemalloc () but allocates memory just on the stack.

The allocated memory chunk does not need to be freed via a free () function call since the function epilogue (3) will
return ESP back to its initial state and the allocated memory will be just annulled.

It is worth noting how alloca() isimplemented.

This function, if to simplify, just shifts ESP downwards toward the stack bottom by the number of bytes you need and sets
ESP as a pointer to the allocated block. Let’s try:

#include <malloc.h>
#include <stdio.h>

void f£()
{
char *buf=(char*)alloca (600);
_snprintf (buf, 600, "hi! %d, %d, %d\n", 1, 2, 3);

puts (buf);
s

(_snprintf () function works just like printf (), but instead of dumping the result into stdout (e.g., to terminal or con-
sole), it writes to the buf buffer. puts () copies buf contents to stdout. Of course, these two function calls might be replaced
by one printf () call, but | would like to illustrate small buffer usage.)

MSVC
Let’s compile (MSVC 2010):

Listing 4.1: MSVC 2010

mov eax, 600 ; 00000258H
call __alloca_probe_16

mov esi, esp

push 3

push 2

push 1

push OFFSET $SG2672

push 600 ; 00000258H
push esi

call __snprintf

push esi
call _puts
add esp, 28 ; 0000001cH

The sole alloca() argument passed via EAX (instead of pushing into stack) . After the alloca () call, ESP points to the
block of 600 bytes and we can use it as memory for the buf array.

4In MSVC, the function implementation can be found in allocal6.asmand chkstk.asmin C: \Program Files (x86)\Microsoft Visual Studio
10.0\VC\crt\src\intel

St is because alloca() is rather compiler intrinsic (22?) than usual function.

One of the reason there is a separate function instead of couple instructions just in the code, because MSVC'® implementation of the alloca() function also
has a code which reads from the memory just allocated, in order to let OS to map physical memory to this VM'” region.

17

4.2. WHAT IS THE STACK USED FOR? CHAPTER 4. STACK
GCC + Intel syntax

GCC 4.4.1 can do the same without calling external functions:

Listing 4.2: GCC 4.7.3

.LCO:
.string "hi! %d, %d, %d\n"
it g
push ebp
mov ebp, esp
push ebx
sub esp, 660
lea ebx, [esp+39]
and ebx, -16 ; align pointer by 16-bit border
mov DWORD PTR [esp], ebx ; S
mov DWORD PTR [esp+20], 3
mov DWORD PTR [esp+16], 2
mov DWORD PTR [esp+12], 1
mov DWORD PTR [esp+8], OFFSET FLAT:.LCO ; "hi! %d, %d, %d\n"
mov DWORD PTR [esp+4], 600 ; maxlen
call _snprintf
mov DWORD PTR [esp], ebx ; S
call puts
mov ebx, DWORD PTR [ebp-4]
leave
ret
GCC + AT&T syntax

Let’s see the same code, but in AT&T syntax:

Listing 4.3: GCC 4.7.3

.LCO:
.string "hi! %d, %d, %d\n"

pushl Yebp

movl %hesp, %ebp
pushl Yebx

subl $660, %esp
leal 39 (%esp), %ebx
andl $-16, %ebx
movl %ebx, (%esp)
movl $3, 20(%esp)
movl $2, 16(%esp)
movl $1, 12(%esp)
movl $.LCO, 8(%esp)
movl $600, 4 (%esp)
call _snprintf

movl %ebx, (%esp)
call puts

movl -4 (%ebp), %ebx
leave

ret

The code is the same as in the previous listing.
N.B.E.g. movl $3, 20(%esp) isanalogoustomov DWORD PTR [esp+20], 3inIntel-syntax—when addressing memory
in form register+offset, it is written in AT&T syntax as of fset (%register).

18

4.3. TYPICAL STACK LAYOUT

CHAPTER 4. STACK

4.2.5 (Windows) SEH

SEH'® records are also stored on the stack (if they present)..

Read more about it: (50.3).

4.2.6 Buffer overflow protection
More about it here (16.2).

4.3 Typical stack layout

A very typical stack layout in a 32-bit environment at the start of a function:

ESP-0xC

local variable #2, marked in IDA as var_8

ESP-8

local variable #1, marked in IDA as var_4

ESP-4

saved value of EBP

ESP

return address

ESP+4

argument#1, marked in IDA as arg_0

ESP+8

argument#2, marked in IDA as arg_4

ESP+0xC

argument#3, marked in IDA as arg_8

18Structured Exception Handling: 50.3

19

CHAPTER 5. PRINTF () WITH SEVERAL ARGUMENTS

Chapter 5

printf () with several arguments

Now let’s extend the Hello, world! (2) example, replacing printf () in themain() function body by this:

#include <stdio.h>

int main()

{
printf("a=%d; b=ld; c=%d", 1, 2, 3);
return 0O;

};

5.1 x86: 3 arguments

5.1.1 MSVC
Let’s compile it by MSVC 2010 Express and we got:
$SG3830 DB ’a=%d; b=¥d; c=%d’, OOH
push 3
push 2
push 1
push OFFSET $SG3830
call _printf
add esp, 16 ; 00000010H

Almost the same, but now we can see the printf () arguments are pushed onto the stack in reverse order. The first
argument is pushed last.

By the way, variables of int type in 32-bit environment have 32-bit width, that is 4 bytes.

So, we have here 4 arguments. 4 x 4 = 16 —they occupy exactly 16 bytes in the stack: a 32-bit pointer to a string and 3
numbers of type int.

When the stack pointer (ESP register) is corrected by *“ADD ESP, X’’instruction after a function call, often, the number
of function arguments can be deduced here: just divide X by 4.

Of course, this is related only to cdecl calling convention.

See also the section about calling conventions (2?).

It is also possible for the compiler to merge several ““ADD ESP, X’’instructions into one, after the last call:

push al
push a2
call ...
push al
call ...
push al

20

5.1. X86: 3ARGUMENTS CHAPTER 5. PRINTF () WITH SEVERAL ARGUMENTS
push a2

push a3

call ...

add esp, 24

5.1.2 MSVC and OllyDbg

Now let’s try to load this example in OllyDbg. It is one of the most popular user-land win32 debugger. We can try to compile
our example in MSVC 2012 with /MD option, meaning, to link against MSVCR*.DLL, so we will able to see imported functions
clearly in debugger.

Then load executable in OllyDbg. The very first breakpoint is in ntd11.d11, press F9 (run). The second breakpoint is in
CRT-code. Now we should find main () function.

Find this code by scrolling the code to the very bottom (MSVC allocatesmain () function at the very beginning of the code
section): fig.5.3.

Click on PUSH EBP instruction, press F2 (set breakpoint) and press F9 (run). We need to do these manupulations in order
to skip CRT-code, because, we don’t really interesting in it yet.

Press F8 (step over) 6 times, i.e., skip 6 instructions: fig.5.4.

Now the PC points to the CALL printf instruction. OllyDbg, like other debuggers, highlights value of registers which
were changed. So each time you press F8, EIP is changing and its value looking red. ESP is changing as well, because values
are pushed into the stack.

Where are the values in the stack? Take a look into right/bottom window of debugger:

BRZ1FE4A| EDS48E24|MSUCR11e. 0248584

BEZIFE44| BEZIFEES

HASIFE4S| B1281127|1.81281127

BEZIFE4C| @lz225148| OFFSET 1. arac

HASIFECA] Lot 144 QOFFSET 1, g0gu
12858EE][FTornat = "Ma=Hd; b=Hd; c=Hd™
HASIFESS| BEEaEaal || <kd -
HEZIFEEC| B@@aaaaz| | < kd:-
FEZIFECE] ARRRRRR 2 ad

HEZIFECS | raasIFERY
BEZIFESS|] B1281248) RETURH to 1.81281248 from 1.012231665

-

Figure 5.1: OllyDbg: stack after values pushed (I made round red mark here in graphics editor)

So we can see there 3 columns: address in the stack, value in the stack and some additional OllyDbg comments. OllyDbg
understands printf ()-like strings, so it reports the string here and 3 values attached to it.

Itis possible to right-click on the format string, click on “Follow in dump”, and the format string will appear in the window
at the left-bottom part, where some memory partis always seen. These memory values can be edited. Itis possible to change
the format string, and then the result of our example will be different. It is probably not very useful now, but it’s very good
idea for doing it as exercise, to get feeling how everything is works here.

Press F8 (step over).

In the console we’ll see the output:

[c:\Polygon\ollydbg\l.exe

a=1l; b=2; c=

Figure 5.2: printf () function executed

Let’s see how registers and stack state are changed: fig.5.5.

EAX register now contains 0xD (13). That’s correct, printf () returns number of characters printed. EIP value is changed:
indeed, now there is address of the instruction after CALL printf. ECX and EDX values are changed as well. Apparently,
printf () function’s hidden machinery used them for its own needs.

A very important thing is that ESP value is not changed. And stack state too! We clearly see that format string and cor-
responding 3 values are still there. Indeed, that’s cdecl calling convention, calling function doesn’t clear arguments in stack.
It’s caller’s duty to do so.

Press F8 again to execute ADD ESP, 10 instruction: fig.5.6.

ESP is changed, but values are still in the stack! Yes, of course, no one needs to fill these values by zero or something like
that. Because, everything above stack pointer (SP) is noise or garbage, it has no value at all. It would be time consuming to
clear unused stack entries, besides, no one really needs to.

21

5.1. X86: 3ARGUMENTS

CHAPTER 5. PRINTF () WITH SEVERAL ARGUMENTS

OllyDbg - 1.exe

File View Debug Plugine Optons Window Help

(Bl x| wn| w4 #1 o] »f| L|E|M[T|W|H|c|/|K[B|R|..|5] iF

am
[E cru - main thread, module 1

7]

Figure 5.3: OllyDbg: the very start of themain () function

Hlz2281860 cC IMTZ Registers [FFLUI
SistioE EOEEEESH OFFSET MSULRILG. _
> corgic:
I BRBHEGGE
| | = BOS1FEGE
p1zz1e17|| - 2@z 1FERY
a1za1a19|| POSH 1. 61205000 format = "azHd; b=Rds c=Rd" SR
g1zz1e1E|| | CALL DWORD FTR DS:[<&MSUCR11B.printf>1 |bprintf ,
g1ze1ez4|| - ADD ESF, 1@ EIF 81281816 1.main
e | o KOR EFX, EAX C @ ES @32E 22bit @(FFFFFFFF)
EEEEEECE I For EEF F1 £S5 @623 22hit G(FFFFFFFF]
] o A @ 55 PAZE 42hit @(FFFFFFFF)
e o Z 1 DS G826 22bit @iFFFFFFFF]
e S @ FS BBESE 22bit PEFOOBEELFF
EREET AL T8 G5 B62E 22bit GIFFFFFFFF)
EH RIS D8 LszoErr ERROR_SUCCESS (@
91221030
8122131 INTZ EFL B8@AE24 (MO,ME, E, BE, NS, FE
B1281832| .—FF25 JMP DWORD PTR DS:[<&MSUCR118.printf>1 | MSUCR11B.printf 2TA empty 0.0
G1221622| . BE 405A0EG0 | MOV EQX, SA40) e B2
91221920| . E6:2985 @EEEZ{ CHP WORD PTR DS:[12268881,A% S5 e B2
81221644 JE_SHORT 1.8128164A 2lg Smoty 2.2
B1Z51046 , EA 5Td empty @.8
B1221645 SHORT 1.0128107E S e B2
81 EC, DWORD PTR DS:[122682C] S8 e B2
] OWORD PTR DS: [ECk+ 12800861, 4550 215 nmt BB
SHORT 1.B128 W osae =
N E?-EEE}B?EERO Eﬁﬁnlggn O el goEmio] [TYFST 683G Cond @ @ @ @ Err @ i
EEF=GOSIFERd FCUl B27F Prec MEAR,52 Mask
Jump from B12816885
1.c:4.
Fiddress |Hew dump ASCII BIZ01290] RETURM to 1.B1251248 from
BlzoonEm| 61 SO 25 &4) 56 &8 62 S0| a=Rd; b= gggi;ggg SSEEEEE&,
B12250GE| 25 64 3B 20| 63 30 25 64| Xd; c=xd DoSIFETD| GochAsra
P1225010| 00 00 0F 50 Gl 00 00 26|0... BaSlFEsd| poeROLES
B1225012| 00 9O 06 OO OB G0 B0 86| JoEeTE) [Mereaee
B1285820| FE FF FF FF|FF FF FF FF|m CEEE REEE
B1225022| 28 61 37 DB| 7F 9E CB 24| Az7THeN=s pasiFEse) oomoanoo
B1225050| 00 00 06 00| B0 G0 00 58| pacifEed) JeFDEoes
B1225032| 00 0O 06 OO 6D G0 B8 86|
F1725A40| 08 68 00 PO AE GO 68 G8[........ GEZLIFESC| QASLIFETS
f17eCrdn| AR AR AR GR| DGR GR GR R BEZIFESE| GaEEE284

OllyDbg - 1.exe

File View Debug Plugine Optons Window Help

Bl x| wn| w4 d1 A »f| L|E|M[T|W|H|c|/|K[B|R|..|5] 5|7

[E cru - main thread, module 1

Figure 5.4: OllyDbg: before printf () execution

22

g1z281a60 CC INT3 a| Registers (FFLD
SistioE —{EAY 6DSECES4 OFFSET MSUCRILE. initen:
B1251810 FUSH_EEP —HECr ZoenOiES
B1251011 MOU EEP, ESP e R
B12516135 FUSH 3 cndy = B S Ea
B1251615 PUSH = dudy = 2 e B
B12E1017 PUSH 1 $Hdb = 1 oD EhREn
1A PUSH 1.m1z850800 format = Maz¥d; bzid; czid” Eoh e
G1E CALL GWORD FTR OS:C<&HSUCRI1E. printf>1 |Lpeintf
Bloolnzd ADD ESP, 1@ EIF ©123161F 1.G125101E
glzs1dzs R ER, ERR C B ES BB2E S2bit BIFFFFFFFF)
o151 ac RETH R & o Bast osbie GUFFFEFEFE)
L
pizeiozel Lk e £ 1 DS @B2E 3zbit BLFFFFFFFF]
o S S B FS 9ESZ S2bit CEFODBEELFFF)
ey [il T8 G5 8625 32biv BOFFFRFFFF)
plzsiocrl EE e w0 @ LaztEcr ERROR_SUCCESS |O@G@E&EE)
O5: [B12861F 51=E005EDFS (MSUCRL1G. printf) S, EHEHEED QTG (HEp o ES e M EHD, L
STE empty B.8
. 3 3 3 STl empty 8.8
laERE, rintfl"™a=Xd; b=xdz c=x¢d", 1. 2, 31: ST2 epotg G0
Addresz |Hen dump ASCIT HASIFEZC| B1283164| OFFSET 1.pocppinit
Blz050e0| 61 o0 25 64) 58 20 62 o0|| a—md: b= ppslFESn) oooaman
P120cmRs| 25 54 3B 20 63 o0 25 &£4||Hd: oc=¢d EnEIn
B125CH10| 68 BB GF B0 01 B0 G5 08|H... EEEbIEeEE]| ks
e skl Gls) (o) Bl Gl (609 G 2}]| aooomo00 BEZLFE4D| 60E48554| MSUCR] 16, S0S48554
@1255628| FE FF FF FF| FF FF FF FF .
P1Z0SHZE| 98 51 37 DB 7F 9E OB 24|| navmen=s AN KRR 11201127
B125CHo0| B8 OO OF D0 BF B0 G5 50|
B1Z55A35| 0P PO 0P PO GOP PO OB BG | @A31FE4C| @1285148) OFFSET 1. arge
B1Z55040| 68 B0 0P OO 02 B0 GF B0 | SASLEESAl @1235 44| OFFSET 1. arqu . .
P1ZCH4E| 0D DD DD DO 0P DO 05 DO glzashEn | fornat = Masidy bSdp o=Rd”
B1205ACH| AE G0 GG G| G5 GG GO GG | SSE{EEEE el B
B1Z55ASS| 0P PO 0P PO OP PO OB OG- DOSIFESC| poopagoz|| <kdr = 2
B1Z550E0| 00 B0 0P OO 02 B0 08 B0 | DpslfEen) 2paaamas =
PI1ZOCHES| 0D DD OF DO 0P DO 05 B0 el ESmm———
RIPEEATAIAAR AR AR AARIAA AR AR ARl ..o | ee31FESE|] B128124€ o 1.81281248 from 1.81231

5.1. X86: 3ARGUMENTS

OllyDbg - 1.exe

File View Debug Plugine Optons Window Help

CHAPTER 5. PRINTF () WITH SEVERAL ARGUMENTS

(Bl x| wn| w4 #1 o] »f| L|E|M[T|W|H|c|/|K[B|R|..|5] iF

;;j

7]

Figure 5.5: OllyDbg: after printf () execution

[E cru - main thread, module 1
8%%3%385 -svgg EEEEEEE] %mai.main — 1 ilregizters tFr;v
—{En+ GopoEaeED
oigmoEEl e _lEcH EDSSEESS MSUCR11G. EDSSEESS
Bisgi@s0|| Co IHTS Eg§ gggggggg
Rl | ThiIS ESF ©oaiFES4
Bizzi@eF|| CC INTZ EEF oeirEse
T TR
RG] | IS USH 5 <ndy = 3 EDI @acasaan
8%%3%3%? . gg S? EH%H % E?gi = f EIF @1281624 1.81281024
gizz11a|| - s PUSH 1.81255000 fornat = "a=Hd; beRdi o=Hd" B3 e
Biz2101E|| . FFIE Foeizomi|CACL OWORD PTR OS:[<&MSUCR11A.printf>] |Lprintf L5 35 BeSE S50IT AIFFFFFFEF)
] pi24 | IR AOD ESF, 1@ !
e WOR ERcEQN £ 1 DS B@ZE 2Ebit BIFFFFFFFF)
216 * g FoP Eme S B FS 9EEZ ZEbit TEFDDEBGIFFF)
aizeiasall. 22 RETH 5 8 G5 BAZE 32bit BIFFFFFFFF)
pizeiozel Lk e 0 & LastErr ERROR_SUCCESS (@oom:
ESr—OES1FECSH EFL @EBEE245 (MO, NE, E, BE, NS, PE, G
STE empty B.8
A g . . STl empty G.8
laERE, rintfl"™a=Xd; b=xdz c=x¢d", 1. 2, 31: STZ ety G, 6
Add Hew d B1ZECEER] ASCI] "a—nd; bond: oond”
BIEQEZEB ET”QD“SE GEZ1FEST| GEEGEEE]L
H1ZR5AER| 25 &4 2E HEZIFERC| BEREEEEaZ2
Gi2acEiE| 66 66 86 HEZIFESCH| B880EEE3
Fi7RSA1E| A6 GO GOE HEZ1FEAY | raa31FEAY
Bisccnza| FE FE EF . ae21FEES|| B12281248| RETURN to 1.81221248 from 1.
BiZ2Em=2| 28 61 27 DB|7F SE CS 24|| RavEonss Ssghﬁggg Ssggggga
B1555650| 8 B8 B0 96| BE B8 G5 G8[| QoZiEERS| | BachRcEa
Fi725A35| 08 68 0P PO|AE GO BB GE[|, .. BEZ1FET4|| BBEADLES

OllyDbg - 1.exe

File Wiew Debug Plugins Optons Window Help

Bldx| wlu] wifs ¥4 | + L|E[m[T|wn[c|/|K|B|R|..|5| iE|IE]?]

& cPU - main thread, module 1

H1ZE106E | F5-ED BEE0E0EG JMP 1. main a |Reaisters (FPL) |
EC S —JEn" GoooEaE0
mes |__BEcH 5DI9EESS MSUCR116. EDSSEESS
e EDY BRESAAT3A
mre EEY GRE0EGEH
T ESF BEZ1FER4
, A~ EEF GA31FEs4
i - ES] GROAPOE1
: PUSH 3 (ndy = 3 EDI Bmooanag
. PUSH 2 dady = 2 EIF B1281827 1.81281827
: FUSH 1.@1285000 _ format = "a=Hdi beRdi o=Hd” E 5 EZ DOEE ZebiT BIEREERRRE
. CRLL DUORD FTR DS: [<6NSuCR118. prineé>] |Lerine R & St ook sohit OFFFFFEFE)
. B00 ESt ilen Z 8 OS5 BA2E 22bit @LFFFFFFFF]
AECIE |- 32 BOBNERS: S @ F5 BASE 4zbit 7EFODBEBLFFF)
aieioenll: =B Hua. T 2 GBS 2 32bit BIFFFFFRRF)
Blogloch oo mes «|0 & LastErr ERROR_SUCCESS (G@@@aass)
e EEeEEE EFL B@8aP282 (HO,NB,ME,A, NS, PO, GE, G)
STH empty H.8
STl empty B.8
l.ci6. retucn H; ST2 empty G0 ,
Address |Hex dump ASCIT a fll 9E21FES4| G1295860| ASCIT "a=Xd; b=Xd; c=Hd"
Bloooooa| 61 o0 25 69) 9B 28 62 0| a=wd; b= ooZIFESS| oomanol
B1285863| 25 64 3B 20| 63 30 25 64| Rd; c=md DOSIFESC| Boopaoor
B1Z25010| 00 0O BE B0 GL GO OF B6||....0... el
et B 8 BEE B T el soounaes BEDIFEGE| | G121 248| RETURN to 1.B1281248 from 1.81281
B1255023| 58 61 57 DB 7F 9E OB 24| AavmeK=s et] e
B1Z25A50| 00 0O BE B0 G0 GO OF BO|| DEsLEETA| pocnsEn
P1225022| 00 00 BE 06| 00 G0 B8 BE|| ..., ..., ShEnE| | ERi s
B1225040(00 B0 06 06| 60 GO G5 BE||, BESIEECE|| DEacsred
B1Z55A42(00 0O BE DO 0D 6B OB BO|| e | I
B1Z25ACH| 00 0O BE DO G0 GO OB B8 pozifEes|| aaapaaes
P1225052(00 00 BE 06| 00 G0 B8 0G| ..., ..., hEnE || A
B1225050(00 B0 06 06| 60 68 BF BE||, A e
B1Z55A6E(00 0O BE DO 0D OB OB BO|| BostEESC | BstrErS
B1Z25A70| 00 0O BE B0 00 GO OB B8 DosiFESa| | namazad
P1Z0CHFE| 0D DD OF DO 0D DO 05 B0 oilnter to nent SEH record
Eric (£ B B Bl B el R ez 1FE2e|| e1251759(SE handier
eaziFEsc|| ba1Fz102
B1Z55A52(00 0O BE DO 0D OB OB BO||
eaz1FEQG|| erasneaa
B1Z25A00| 00 0O BE DO 00 GO OB B8 | L
PI1ZESHOC| 0D DD OF DO 0D DO 05 BO|........ SEZLIFERY| sEEZLEERD
A 2acmnmEl Gm Gmm e Sl an AR aE mm HE31FERS vE94335A| RETURH to kernel32.7694336A
Figure 5.6: OllyDbg: after ADD ESP, 10 instruction execution
5.1.3 GCC

Now let’s compile the same program in Linux using GCC 4.4.1 and take a look in IDA what we got:

main

proc near

23

5.1. X86: 3ARGUMENTS CHAPTER 5. PRINTF () WITH SEVERAL ARGUMENTS

var_10 = dword ptr -10h
var_C dword ptr -0Ch

var_8 = dword ptr -8

var_4 = dword ptr -4
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 10h
mov eax, offset aADBDCD ; "a=%d; b=%d; c=%d"
mov [esp+10Oh+var_4], 3
mov [esp+10h+var_8], 2
mov [esp+10h+var_C], 1
mov [esp+10h+var_10], eax
call _printf
mov eax, O
leave
retn

main endp

It can be said that the difference between code from MSVC and code from GCC is only in the method of placing arguments
on the stack. Here GCC is working directly with the stack without PUSH/POP.

5.1.4 GCCand GDB

Let’s try this example also in GDB' in Linux.
-g mean produce debug information into executable file.

$ gcc 1.c -g -0 1

$ gdb 1

GNU gdb (GDB) 7.6.1-ubuntu

Copyright (C) 2013 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "i686-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>. ..

Reading symbols from /home/dennis/polygon/1...done.

Listing 5.1: let’s set breakpoint on printf ()

(gdb) b printf
Breakpoint 1 at 0x80482f0

Run. There are no printf () function source code here, so GDB can’t show its source, but may do so.

(gdb) run
Starting program: /home/dennis/polygon/1

Breakpoint 1, __printf (format=0x80484f0 "a=J)d; b=Jd; c=d") at printf.c:29
29 printf.c: No such file or directory.

Print 10 stack elements. Left column is an address in stack.

(gdb) x/10w $esp

Oxbffffllc: 0x0804844a 0x080484£0 0x00000001 0x00000002
Oxbffff12c: 0x00000003 0x08048460 0x00000000 0x00000000
Oxbffff13c: 0xb7e29905 0x00000001

TGNU debugger

24

5.1. X86: 3ARGUMENTS CHAPTER 5. PRINTF () WITH SEVERAL ARGUMENTS
The very first element is RA (0x0804844a). We can be sure in it by disassembling the memory at this address:

(gdb) x/5i 0x0804844a
0x804844a <main+45>: mov
0x804844f <main+50>: leave
0x8048450 <main+b51>: ret
0x8048451: xchg ‘hax,%ax
0x8048453: xchg ‘%ax,%ax

$0x0, heax

Two XCHG instructions, apparently, is some random garbage, which we can ignore so far.
The second element (0x080484£0) is an address of format string:

(gdb) x/s 0x080484f0
0x80484f0: "a=Y%d; b=%d; c=%d"

Other 3 elements (1, 2, 3) are printf () arguments. Other elements may be just “garbage” present in stack, but also may
be values from other functions, their local variables, etc. We can ignore it yet.
Execute “finish”. This mean, execute till function end. Here it means: execute till the finish of printf ().

(gdb) finish

Run till exit from #O
main () at 1.c:6

6 return O;
Value returned is $2 = 13

__printf (format=0x80484f0 "a=%d; b=%d; c=/4d") at printf.c:29

GDB shows what printf () returned in EAX (13). This is number of characters printed, just like in the example with Olly-
Dbg.

We also see “return 0;” and the information that this expressionisin the 1. cfile at the line 6. Indeed, the 1. c file is located
in the current directory, and GDB finds the string there. How GDB knows, which C-code line is being executed now? This is
related to the fact that compiler, while generating debugging information, also saves a table of relations between source
code line numbers and instruction addresses. GDB is source-level debugger, after all.

Let’s examine registers. 13 in EAX:

(gdb) info registers

eax Oxd 13

ecx 0x0 0

edx 0x0 0

ebx 0xb7£c0000 -1208221696

esp Oxbff££120 Oxbff££120

ebp Oxbffff138 Oxbfff£f138

esi 0x0 0

edi 0x0 0

eip 0x804844a 0x804844a <maint+45>

Let’s disassemble current instructions. Arrow points to the instruction being executed next.

(gdb) disas

Dump of assembler code for function main:

0x0804841d <+0>: push %ebp
0x0804841e <+1>: mov %esp, hebp
0x08048420 <+3>: and $0xff££F££0, Y%esp
0x08048423 <+6>: sub $0x10, %esp
0x08048426 <+9>: movl $0x3,0xc (%esp)
0x0804842e <+17>: movl $0x2,0x8(%esp)
0x08048436 <+25>: movl $0x1,0x4 (%esp)
0x0804843e <+33>: movl $0x80484£0, (%esp)
0x08048445 <+40>: call 0x80482f0 <printf@plt>
=> 0x0804844a <+45>: mov $0x0, feax
0x0804844f <+50>: leave
0x08048450 <+51>: ret

End of assembler dump.

GDB shows disassembly in AT&T syntax by default. It’s possible to switch to Intel syntax:

25

5.2. X64: 8 ARGUMENTS CHAPTER 5. PRINTF () WITH SEVERAL ARGUMENTS

(gdb) set disassembly-flavor intel
(gdb) disas
Dump of assembler code for function main:

0x0804841d <+0>: push ebp

0x0804841e <+1>: mov ebp,esp

0x08048420 <+3>: and esp,Oxffffff£0

0x08048423 <+6>: sub esp,0x10

0x08048426 <+9>: mov DWORD PTR [esp+0xc],0x3

0x0804842e <+17>: mov DWORD PTR [esp+0x8],0x2

0x08048436 <+25>: mov DWORD PTR [esp+0x4],0x1

0x0804843e <+33>: mov DWORD PTR [esp],0x80484f0

0x08048445 <+40>: call 0x80482f0 <printf@plt>
=> 0x0804844a <+45>: mov eax,0x0

0x0804844f <+50>: leave

0x08048450 <+51>: ret

End of assembler dump.

Execute next instruction. GDB shows ending bracket, meaning, this is ending block of function.

(gdb) step
7 }s

Let’s see registers after MOV EAX, O instruction execution. EAX here is zero indeed.

(gdb) info registers

eax 0x0 0

ecx 0x0 0

edx 0x0 0

ebx 0xb7£c0000 -1208221696

esp Oxbff££120 Oxbf££f£f120

ebp Oxbffff138 Oxbfff£f138

esi 0x0 0

edi 0x0 0

eip 0x804844f 0x804844f <main+50>

5.2 x64: 8 arguments

To see how other arguments will be passed via the stack, let’s change our example again by increasing the number of argu-
ments to be passed to 9 (printf () format string + 8 int variables):

#include <stdio.h>

int main()

{
printf ("a=%d; b=V%d; c=%d; d=¥%d; e=)d; f=lkd; g=%d; h=)d\n", 1, 2, 3, 4, 5, 6, 7, 8);
return O;

g

5.2.1 MSVC

As we saw before, the first 4 arguments are passed in the RCX, RDX, R8, R9 registers in Win64, while all the rest—via the stack.
That is what we see here. However, the MOV instruction, instead of PUSH, is used for preparing the stack, so the values are
written to the stack in a straightforward manner.

Listing 5.2: MSVC 2012 x64

$SG2923 DB Ya=%d; b=d; c=%d; d=¥d; e=ld; f=V%d; g=)d; h=%d’, OaH, OOH

main PROC
sub rsp, 88

26

5.2. X64: 8 ARGUMENTS CHAPTER 5. PRINTF () WITH SEVERAL ARGUMENTS

mov DWORD PTR [rsp+64], 8
mov DWORD PTR [rsp+56], 7
mov DWORD PTR [rsp+48], 6
mov DWORD PTR [rsp+40], 5
mov DWORD PTR [rsp+32], 4
mov r9d, 3

mov r8d, 2

mov edx, 1

lea rcx, OFFSET FLAT:$SG2923

call printf

; return O
x0T eax, eax
add rsp, 88
ret 0

main ENDP

_TEXT ENDS

END

5.2.2 GCC

In *NIX OS-es, it’s the same story for x86-64, except that the first 6 arguments are passed in the RDI, RSI, RDX, RCX, R8, R9
registers. All the rest—via the stack. GCC generates the code writing string pointer into EDI instead if RDI—we saw this thing

before: 2.2.2.
We also saw before the EAX register being cleared before a printf () call: 2.2.2.

Listing 5.3: GCC 4.4.6 -03 x64

.LCO:

.string "a=Jd; b=kd; c=d; d=¥d; e=kd; f=ld; g=%d; h=Vd\n"
main:

sub rsp, 40

mov r9d, 5

mov r8d, 4

mov ecx, 3

mov edx, 2

mov esi, 1

mov edi, OFFSET FLAT:.LCO

Xor eax, eax ; number of vector registers passed

mov DWORD PTR [rsp+16], 8

mov DWORD PTR [rsp+8], 7

mov DWORD PTR [rspl, 6

call printf

; return O

Xor eax, eax
add rsp, 40
ret

5.2.3 GCC+GDB
Let’s try this example in GDB.

$ gcc -g 2.¢c -0 2

27

5.2. X64: 8 ARGUMENTS CHAPTER 5. PRINTF () WITH SEVERAL ARGUMENTS

$ gdb 2

GNU gdb (GDB) 7.6.1-ubuntu

Copyright (C) 2013 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>. ..

Reading symbols from /home/dennis/polygon/2...done.

Listing 5.4: let’s set breakpoint to printf (), and run

(gdb) b printf

Breakpoint 1 at 0x400410

(gdb) run

Starting program: /home/dennis/polygon/2

Breakpoint 1, __printf (format=0x400628 "a=Jd; b=%d; c=%d; d=%d; e=%d; f=/d; g=lkd; h=/d\n") at
printf.c:29
29 printf.c: No such file or directory.

Registers RSI/RDX/RCX/R8/RI has the values which are should be there. RIP has an address of the very first instruction of
the printf () function.

(gdb) info registers

rax 0x0 0
rbx 0x0 0
rcx 0x3 3
rdx 0x2 2
rsi 0x1 1
rdi 0x400628 4195880
rbp 0x7fffffffdf60 Ox7fffffffdf60
rsp Ox7ffff£f££fdf38 Ox7fffff££df38
r8 0x4 4
r9 0x5 5
rl0 0x7fffffffdce0 140737488346336
ril 0x7ff££f7a65f60 140737348263776
ri2 0x400440 4195392
ri3 0x7fffffffe040 140737488347200
ri4 0x0 0
rib5 0x0 0
rip 0x7fff£f7a65f60 Ox7ffff7a65f60 <__printf>
Listing 5.5: let’s inspect format string
(gdb) x/s $rdi
0x400628: "a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=)d\n"

Let’s dump stack with x/g command this time—g means giant words, i.e., 64-bit words.

(gdb) x/10g $rsp

Ox7fffff£f£d£38: 0x0000000000400576 0x0000000000000006
Ox7fffff£f£df48: 0x0000000000000007 0x00007£££00000008
Ox7f££ff££df58: 0x0000000000000000 0x0000000000000000
Ox7fffffffdf68: 0x00007ffff7a33deb 0x0000000000000000
Ox7ff££££Ffdf78: 0x00007fffffffe048 0x0000000100000000

The very first stack element, just like in previous case, is RA. 3 values are also passed in stack: 6, 7, 8. We also see that 8
is passed with high 32-bits not cleared: 0x00007£££00000008. That’s OK, because, values has int type, which is 32-bit type.
So, high register or stack element part may contain “random garbage”.

28

5.3. ARM: 3ARGUMENTS CHAPTER 5. PRINTF () WITH SEVERAL ARGUMENTS
If to take a look, where control flow will return after printf () execution, GDB will show the whole main () function:

(gdb) set disassembly-flavor intel
(gdb) disas 0x0000000000400576
Dump of assembler code for function main:

0x000000000040052d <+0>: push rbp

0x000000000040052e <+1>: mov rbp,rsp
0x0000000000400531 <+4>: sub rsp,0x20
0x0000000000400535 <+8>: mov DWORD PTR [rsp+0x10],0x8
0x000000000040053d <+16>: mov DWORD PTR [rsp+0x8],0x7
0x0000000000400545 <+24>: mov DWORD PTR [rsp]l,0x6
0x000000000040054c <+31>: mov r9d, 0x5
0x0000000000400552 <+37>: mov r8d,0x4
0x0000000000400558 <+43>: mov ecx,0x3
0x000000000040055d <+48>: mov edx,0x2
0x0000000000400562 <+53>: mov esi,Ox1
0x0000000000400567 <+58>: mov edi,0x400628
0x000000000040056¢c <+63>: mov eax,0x0
0x0000000000400571 <+68>: call 0x400410 <printf@plt>
0x0000000000400576 <+73>: mov eax,0x0
0x000000000040057b <+78>: leave

0x000000000040057¢c <+79>: ret

End of assembler dump.

Let’s finish printf () execution, execute the instruction zeroing EAX, take a notice that EAX register has exactly zero. RIP
now points to the LEAVE instruction, i.e., penultimate in main () function.

(gdb) finish

Run till exit from #0 __printf (format=0x400628 "a=%d; b='d; c=%d; d=%d; e=%d; f=d; g='id; h='d\
n") at printf.c:29

a=1; b=2; c=3; d=4; e=5; f=6; g=7; h=8

main () at 2.c:6

6 return 0O;

Value returned is $1 = 39

(gdb) next

7 8

(gdb) info registers

rax 0x0 0

rbx 0x0 0

rcx 0x26 38

rdx Ox7££££7dd59f0 140737351866864
rsi Ox7f£f££f£d9 2147483609

rdi 0x0 0

rbp Ox7ffff£££fdf60 Ox7ffff£££df60

rsp Ox7fffff£fdf40 Ox7fffff££fdf40

r8 Ox7ff££7dd26a0 140737351853728
r9 Ox7ff££f7a60134 140737348239668
ril0 Ox7f£f£f£££d5b0 140737488344496
rii 0x7f£££7a95900 140737348458752
rl2 0x400440 4195392

rl3 Ox7fffffffe040 140737488347200
ri4d 0x0 0

rib 0x0 0

rip 0x40057b 0x40057b <main+78>

5.3 ARM: 3 arguments

Traditionally, ARM’s scheme for passing arguments (calling convention) is as follows: the first 4 arguments are passed in the
RO-R3 registers; the remaining arguments, via the stack. This resembles the arguments passing scheme in fastcall (??) or

win64 (22).

29

5.4. ARM: 8 ARGUMENTS CHAPTER 5. PRINTF () WITH SEVERAL ARGUMENTS
5.3.1 Non-optimizing Keil + ARM mode

Listing 5.6: Non-optimizing Keil + ARM mode

.text:00000014 printf_mainil

.text:00000014 10 40 2D E9 STMFD SP!, {R4,LR}

.text:00000018 03 30 A0 E3 MoV R3, #3

.text:0000001C 02 20 AO E3 Mov R2, #2

.text:00000020 01 10 AO E3 MoV R1, #1

.text:00000024 1D OE 8F E2 ADR RO, aADBDCD ; "a=kd; b=Yd; c=/d\n"
.text:00000028 OD 19 00 EB BL __2printf

.text:0000002C 10 80 BD E8 LDMFD SP!, {R4,PC}

So, the first 4 arguments are passed via the RO-R3 registers in this order: a pointer to the printf () format string in RO,
then1linR1,2inR2and 3inR3.
There is nothing unusual so far.

5.3.2 Optimizing Keil + ARM mode

Listing 5.7: Optimizing Keil + ARM mode

.text:00000014 EXPORT printf_mainl

.text:00000014 printf_mainl

.text:00000014 03 30 AO E3 MoV R3, #3

.text:00000018 02 20 AO E3 MOV R2, #2

.text:0000001C 01 10 AO E3 MOV R1, #1

.text:00000020 1E OE 8F E2 ADR RO, aADBDCD ; "a=%d; b=%d; c=%d\n"
.text:00000024 CB 18 00 EA B __2printf

This is optimized (-03) version for ARM mode and here we see B as the last instruction instead of the familiar BL. Another
difference between this optimized version and the previous one (compiled without optimization) is also in the fact that there
is no function prologue and epilogue (instructions that save RO and LR registers values). The B instruction just jumps to
another address, without any manipulation of the LR register, that is, it is analogous to JMP in x86. Why does it work? Because
this code is, in fact, effectively equivalent to the previous. There are two main reasons: 1) neither the stack nor SP, the stack
pointer, is modified; 2) the call to printf () is the last instruction, so there is nothing going on after it. After finishing, the
printf () function will just return control to the address stored in LR. But the address of the point from where our function
was called is now in LR! Consequently, control from printf () will be returned to that point. As a consequence, we do not
need to save LR since we do not need to modify LR. We do not need to modify LR since there are no other function calls except
printf (). Furthermore, after this call we do not to do anything! That’s why this optimization is possible.

Another similar example was described in “switch()/case/default” section, here (11.1.1).

5.3.3 Optimizing Keil + thumb mode

Listing 5.8: Optimizing Keil + thumb mode

.text:0000000C printf_mainl

.text:0000000C 10 B5 PUSH {R4,LR}

.text :0000000E 03 23 MOVS R3, #3

.text:00000010 02 22 MOVS R2, #2

.text:00000012 01 21 MOVS R1, #1

.text:00000014 A4 AO ADR RO, aADBDCD ; "a=kd; b=ld; c=%d\n"
.text:00000016 06 FO EB F8 BL __2printf

.text:0000001A 10 BD POP {R4,PC}

There is no significant difference from the non-optimized code for ARM mode.

5.4 ARM: 8 arguments

Let’s use again the example with 9 arguments from the previous section: 5.2.

30

5.4. ARM: 8 ARGUMENTS CHAPTER 5. PRINTF () WITH SEVERAL ARGUMENTS

void printf_main2()

{
printf ("a=%d; b=%d; c=%d; d=¥%d; e=)d; f=kd; g=%d; h=)d\n", 1, 2, 3, 4, 5, 6, 7, 8);
}s

5.4.1 Optimizing Keil: ARM mode

.text:00000028 printf_main2

.text:00000028

.text:00000028 var_18 = -0x18

.text:00000028 var_14 = -0x14

.text:00000028 var_4 = -4

.text:00000028

.text:00000028 04 EO 2D Eb5 STR LR, [SP,#var_4]!

.text:0000002C 14 DO 4D E2 SUB SP, SP, #0x14

.text:00000030 08 30 AO E3 MOV R3, #8

.text:00000034 07 20 AO E3 MOV R2, #7

.text:00000038 06 10 A0 E3 MOV R1, #6

.text:0000003C 05 00 AO E3 MOV RO, #5

.text:00000040 04 CO 8D E2 ADD R12, SP, #0x18+var_14

.text:00000044 OF 00 8C E8 STMIA R12, {RO-R3}

.text:00000048 04 00 AO E3 MOV RO, #4

.text:0000004C 00 00 8D Eb5 STR RO, [SP,#0x18+var_18]

.text:00000050 03 30 AO E3 MOV R3, #3

.text:00000054 02 20 A0 E3 MOV R2, #2

.text:00000058 01 10 AO E3 MOV R1, #1

.text:0000005C 6E OF 8F E2 ADR RO, aADBDCDDDEDFDGD ; "a=%d; b=%d; c=%d; d=%d;
e=Y%d; f=4d; g=h"...

.text:00000060 BC 18 00 EB BL __2printf

.text:00000064 14 DO 8D E2 ADD SP, SP, #0x14

.text:00000068 04 FO 9D E4 LDR PC, [SP+4+var_4],#4

This code can be divided into several parts:

e Function prologue:

The very first ¢““STR LR, [SP,#var_4]!”’ instruction saves LR on the stack, because we will use this register for the
printf () call.

The second ¢‘SUB SP, SP, #0x14’’ instruction decreases SP, the stack pointer, in order to allocate 0x14 (20) bytes
on the stack. Indeed, we need to pass 5 32-bit values via the stack to the printf () function, and each one occupies 4
bytes, that is 5 x 4 = 20 —exactly. The other 4 32-bit values will be passed in registers.

e Passing5, 6,7 and 8 via stack:

Then, the values 5, 6, 7 and 8 are written to the RO, R1, R2 and R3 registers respectively. Then, the <“ADD R12, SP,
#0x18+var_14"’ instruction writes an address of the point in the stack, where these 4 variables will be written, into the
R12 register. var_14 is an assembly macro, equal to —0x14, such macros are created by IDA to succinctly denote code
accessing the stack. var_? macros created by IDA reflecting local variables in the stack. So, SP + 4 will be written into
theR12 register. The next ‘“‘STMIA R12, RO-R3’’instruction writes RO-R3 registers contents at the pointin memory to
which R12 pointing. STMIA instruction meaning Store Multiple Increment After. Increment After means that R12 will be
increased by 4 after each register value is written.

e Passing4viastack: 4 is stored in RO and then, this value, with the help of *“STR RO, [SP,#0x18+var_18]"’instruction,
is saved on the stack. var_18is —0x18, offset will be 0, so, the value from the RO register (4) will be written to the point
where SP is pointing to.

e Passing 1,2 and 3 via registers:

Values of the first 3 numbers (a, b, ¢) (1, 2, 3 respectively) are passed in the R1, R2 and R3 registers right before the
printf () call, and the other 5 values are passed via the stack:

e printf () call:

31

5.4. ARM: 8 ARGUMENTS

CHAPTER 5. PRINTF () WITH SEVERAL ARGUMENTS

e Function epilogue:

The “ADD SP, SP, #0x14’’instruction returns the SP pointer back to its former point, thus cleaning the stack. Of
course, what was written on the stack will stay there, but it all will be rewritten during the execution of subsequent

functions.

The“LDR PC, [SP+4+var_4],#4’’instruction loadsthe saved LR value from the stack into the PC register, thus caus-

ing the function to exit.

5.4.2 Optimizing Keil: thumb mode

.text:0000001C printf_main2

.text:0000001C

.text:0000001C var_18 = -0x18

.text:0000001C var_14 = -0x14

.text:0000001C var_8 = -8

.text:0000001C

.text:0000001C 00 B5 PUSH {LR}

.text:0000001E 08 23 MOVS R3, #8

.text:00000020 85 BO SUB SP, SP, #0x14

.text:00000022 04 93 STR R3, [SP,#0x18+var_8]

.text:00000024 07 22 MOVS R2, #7

.text:00000026 06 21 MOVS R1, #6

.text:00000028 05 20 MOVS RO, #5

.text:0000002A 01 AB ADD R3, SP, #0x18+var_14

.text:0000002C 07 C3 STMIA R3!, {RO-R2}

.text:0000002E 04 20 MOVS RO, #4

.text:00000030 00 90 STR RO, [SP,#0x18+var_18]

.text:00000032 03 23 MOVS R3, #3

.text:00000034 02 22 MOVS R2, #2

.text:00000036 01 21 MOVS R1, #1

.text:00000038 A0 AO ADR RO, aADBDCDDDEDFDGD ; "a=%d; b=%d; c=Jd; d=%d;
e=Y%d; f=4d; g=h"...

.text:0000003A 06 FO D9 F8 BL __2printf

.text :0000003E

.text :0000003E loc_3E ; CODE XREF: examplel3_f+16

.text:0000003E 05 BO ADD SP, SP, #0x14

.text:00000040 00 BD POP {PC}

Almost same as in previous example, however, this is thumb code and values are packed into stack differently: 8 for the
first time, then 5, 6, 7 for the second and 4 for the third.

5.4.3 Optimizing Xcode (LLVM): ARM mode

0000290C
0000290C
0000290C
0000290C
0000290C
0000290C
00002910
00002914
00002918
0000291C
00002920
00002924
00002928
0000292C
00002930
00002934
00002938

__text:
_text:
__text:
__text:
__text:
__text:
_text:
__text:
__text:
__text:
__text:
_text:
__text:
__text:
__text:
__text:
_text:

_printf_main2
var_1C
var_C

80
0D
14
70
07
00
04
00
06
05
00
0A

40
70
DO
05
Cco
00
20
00
30
10
20
10

2D
AO
4D
01
AO
40
AO
8F
AO
AO
8D
8D

E9
E1l
E2
E3
E3
E3
E3
EO
E3
E3
E5
E9

-0x1C
-0xC

STMFD
MOV
SUB
MOV
MOV
MOVT
MOV
ADD
MOV
MOV
STR
STMFA

32

Sp!, {R7,LR}
R7, SP

SP, SP, #0x14
RO, #0x1570
R12, #7

RO, #0

R2, #4

RO, PC, RO

R3, #6

R1, #5

R2, [SP,#0x1C+var_1C]
SP, {R1,R3,R12}

5.5. BY THE WAY CHAPTER 5. PRINTF () WITH SEVERAL ARGUMENTS

__text:0000293C 08 90 AO E3 MOV RO, #8
__text:00002940 01 10 AO E3 MOV R1, #1
__text:00002944 02 20 AO E3 MOV R2, #2
__text:00002948 03 30 AO E3 MOV R3, #3
__text:0000294C 10 90 8D E5 STR R9, [SP,#0x1C+var_C]
__text:00002950 A4 05 00 EB BL _printf
__text:00002954 07 DO A0 E1 MOV SP, R7
__text:00002958 80 80 BD E8 LDMFD SpP!, {R7,PC}

Almost the same what we already figured out, with the exception of STMFA (Store Multiple Full Ascending) instruction, it
is synonym to STMIB (Store Multiple Increment Before) instruction. This instruction increasing value in the SP register and
only then writing next register value into memory, but not vice versa.

Another thing we easily spot is the instructions are ostensibly located randomly. For instance, value in the RO register is
prepared in three places, at addresses 0x2918, 0x2920 and 0x2928, when it would be possible to do it in one single point.
However, optimizing compiler has its own reasons about how to place instructions better. Usually, processor attempts to
simultaneously execute instructions located side-by-side. For example, instructions like “MOVT RO, #0’’and‘‘ADD RO, PC,
RO’ cannot be executed simultaneously since they both modifying the RO register. On the other hand, ¢“MOVT RO, #0’’and
“MOV R2, #4 instructions can be executed simultaneously since effects of their execution are not conflicting with each
other. Presumably, compiler tries to generate code in such a way, where it is possible, of course.

5.4.4 Optimizing Xcode (LLVM): thumb-2 mode

__text:00002BA0 _printf_main2

__text:00002BA0O

__text:00002BA0O var_1C = -0x1C

__text:00002BA0O var_18 = -0x18

__text:00002BA0O var_C = -0xC

__text:00002BA0O

__text:00002BA0 80 B5 PUSH {R7,LR}
__text:00002BA2 6F 46 MOV R7, SP
__text:00002BA4 85 BO SUB SP, SP, #0x14
__text:00002BA6 41 F2 D8 20 MOVW RO, #0x12D8
__text:00002BAA 4F FO 07 OC MOV.W R12, #7
__text:00002BAE CO F2 00 00 MOVT.W RO, #0
__text:00002BB2 04 22 MOVS R2, #4
__text:00002BB4 78 44 ADD RO, PC ; char *
__text:00002BB6 06 23 MOVS R3, #6
__text:00002BB8 05 21 MOVS R1, #5
__text:00002BBA 0D F1 04 OE ADD.W LR, SP, #0x1C+var_18
__text:00002BBE 00 92 STR R2, [SP,#0x1C+var_1C]
__text:00002BCO 4F FO 08 09 MOV.W R9, #8
__text:00002BC4 8E E8 0A 10 STMIA.W LR, {R1,R3,R12}
__text:00002BC8 01 21 MOVS R1, #1
__text:00002BCA 02 22 MOVS R2, #2
__text:00002BCC 03 23 MOVS R3, #3
__text:00002BCE CD F8 10 90 STR.W R9, [SP,#0x1C+var_C]
__text:00002BD2 01 FO OA EA BLX _printf
__text:00002BD6 05 BO ADD SP, SP, #0x14
__text:00002BD8 80 BD POP {R7,PC}

Almost the same as in previous example, with the exception the thumb-instructions are used here instead.

5.5 Bytheway
By the way, this difference between passing arguments in x86, x64, fastcalland ARM is a good illustration the CPU is not aware

of how arguments is passed to functions. It is also possible to create hypothetical compiler which is able to pass arguments
via a special structure not using stack at all.

33

CHAPTER 6. SCANF()

Chapter 6

scanf()

Now let’s use scanf().

#include <stdio.h>

int main()

{
int x;
printf ("Enter X:\n");
scanf ("%d", &x);
printf ("You entered %d...\n", x);
return O;
}s

OK, I agree, it is not clever to use scanf () today. But | wanted to illustrate passing pointer to int.

6.1 About pointers

It is one of the most fundamental things in computer science. Often, large array, structure or object, it is too costly to pass
to other function, while passing its address is much easier. More than that: if calling function must modify something in the
large array or structure, to return it as a whole is absurdly as well. So the simplest thing to do is to pass an address of array
or structure to function, and let it change what must be changed.

In C/C++itis just an address of some point in memory.

In x86, address is represented as 32-bit number (i.e., occupying 4 bytes), while in x86-64 it is 64-bit number (occupying
8 bytes). By the way, that is the reason of some people’s indignation related to switching to x86-64 —all pointers on x64-
architecture will require twice as more space.

With some effort, it is possible to work only with untyped pointers; e.g. standard C function memcpy (), copying a block
from one place in memory to another, takes 2 pointers of void* type on input, since itis impossible to predict block type you
would like to copy. And it is not even important to know, only block size is important.

Also pointers are widely used when function needs to return more than one value (we will back to this in future (9)). scanf()
is just that case. In addition to the function’s need to show how many values were read successfully, it also should return all
these values.

In C/C++ pointer type is needed only for type checking on compiling stage. Internally, in compiled code, there is no infor-
mation about pointers types.

6.2 x86

6.2.1 MSVC
What we got after compiling in MSVC 2010:

CONST SEGMENT
$3G3831 DB ’Enter X:’, OaH, OOH
$3G3832 DB >%d’, OOH

34

6.2. X86 CHAPTER 6. SCANF()

$SG3833 DB ’You entered Yd...’, OaH, OOH
CONST ENDS

PUBLIC _main
EXTRN _scanf : PROC
EXTRN _printf:PROC

; Function compile flags: /0dtp
_TEXT SEGMENT

x$ = -4 ; size = 4
_main PROC

push ebp

mov ebp, esp

push ecx

push OFFSET $SG3831 ; ’Enter X:’
call _printf

add esp, 4

lea eax, DWORD PTR _x$[ebp]
push eax

push OFFSET $SG3832 ; ’%d’

call _scanf

add esp, 8

mov ecx, DWORD PTR _x$[ebp]
push ecx

push OFFSET $SG3833 ; ’You entered %d...’
call _printf

add esp, 8

; return O

xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP

_TEXT ENDS

Variable x is local.

C/C++ standard tell us it must be visible only in this function and not from any other point. Traditionally, local variables
are placed in the stack. Probably, there could be other ways, but in x86 it is so.

Next instruction after function prologue, PUSH ECX, has not a goal to save ECX state (notice absence of corresponding
POP ECX at the function end).

In fact, this instruction just allocates 4 bytes on the stack for x variable storage.

x will be accessed with the assistance of the _x$ macro (it equals to -4) and the EBP register pointing to current frame.

Over a span of function execution, EBP is pointing to current stack frame and it is possible to have an access to local
variables and function arguments via EBP+offset.

It is also possible to use ESP, but it is often changing and not very convenient. So it can be said, the value of the EBP is
frozen state of the value of the ESP at the moment of function execution start.

Avery typical stack frame layout in 32-bit environment is:

EBP-8 local variable #2, marked in IDA as var_8

EBP-4 local variable #1, marked in IDA as var_4
EBP saved value of EBP

EBP+4 return address

EBP+8 argument#1, marked in IDA as arg_0

EBP+OxC | argument#2, marked in IDA as arg_4
EBP+0x10 | argument#3, marked in IDA as arg_8

Function scanf () in our example has two arguments.

First is pointer to the string containing ‘“%d’’ and second —address of variable x.

First of all, address of the x variable is placed into the EAX register by 1ea eax, DWORD PTR _x$[ebp] instruction
LEA meaning load effective address but over a time it changed its primary application (80.6.2).

35

6.2. X86 CHAPTER 6. SCANF()

It can be said, LEA here just stores sum of the value in the EBP register and _x$ macro to the EAX register.

Itisthe same aslea eax, [ebp-4].

So, 4 subtracting from value in the EBP register and result is placed to the EAX register. And then value in the EAX register
is pushing into stack and scanf () is called.

After that, printf () is called. First argument is pointer to string: *‘You entered %d...\n”’.

Second argument is prepared as: mov ecx, [ebp-41],thisinstruction placestothe ECX not address of the x variable, but
its contents.

After, value in the ECX is placed on the stack and the last printf () called.

6.2.2 MSVC +OllyDbg

Let’s try this example in OllyDbg. Let’s load, press F8 (step over) until we get into our executable file instead of ntd11.d11.
Scrollup untilmain () appears. Let’s click on the first instruction (PUSH EBP), press F2, then F9 (Run) and breakpoint triggers
on themain() begin.

Let’s trace to the place where the address of x variable is prepared: fig.6.2.

Itis possible to right-click on EAX in registers window and then “Follow in stack”. This address will appear in stack window.
Look, thisis a variable in the local stack. | drawed a red arrow there. And there are some garbage (0x77D478). Now address of
the stack element, with the help of PUSH, will be written to the same stack, nearly. Let’s trace by F8 until scanf () execution
finished. During the moment of scanf () execution, we enter, for example, 123, in the console window:

[® C:\rolygon\ollydbg\exl.exe

Figure 6.1: Console output

scanf () executed here: fig.6.3. scanf () returns 1 in EAX, which means, it have read one value successfully. The element
of stack of our attention now contain 0x7B (123).
Further, this value is copied from the stack to the ECX register and passed into printf (): fig.6.4.

& CPU - main thread, module ex1
8332%385 EE m¥§ & | Registers (FPU)
—| Ef (BE=SkETC
EEEEEEERY] . = s M ECH ECAZEESS MEUCR116.ECAZEES:
BE3e1613(| - 51 PUSH ECH ED porionne
BoZe1n1d|| - &2 pEEGZeEm | FUSH enl.m@sccoem format = "Enter Hif@" Eoh RRZoRETE
gaselptsl| . FRIS CALL _DWORD PTR DS: [C&MSUCRI1@.printf>] |Lerines EEF RRaSFome
azeinzz|] - LER EAX,OUORD PTR S5t [EEF-41 Bl oooonont
£ | I FUSH EA%
B251826(| . 60 BCEESAAR [PUSH exl.BR3CEHAC format = "ud” EIF BE361B25 eul.B0361625
eodetaze| - CALL DWORD PTR DS: [<AMSUCRL19. soanf>] |Lscant C B ES @028 32bit BiFFFFFFFE;
eaze1aad|| - MOU ECH,OWORD PTR S5:[EBF-41 PO L e s RlAdaiAra
pazelaar)| . ol PUSH ECH et Z @ DOS BOZE 22bit GIFFFFFFFF
Bo3e163s(| - 8 iPcEscmn | FUSH exi.nBScER1e) [fomat = "vou entered 3 & £ P2 BEEE S50IT PEFRbacn:Fi
go3s1asn|| . 625600| CALL DUORD PTR DS: [<4MSUCR1LE.printé>] |Lprintf T8 GS A Jaic DIFFFRRTTE.
. .

el I A0 Eanc B <f0 @ LastErr ERROR_SUCCESS (@
ngcégggks?cc SO Coot EFL @E@Eazaz (MO, HE,ME, A, M3, P

ST8 empty 8.0

STl empty B.0
gul.c:B. scanf ("Hd™, &x); i G Gh(
Rddress [Hex dump ASCIT AR08
Rl [T o R e e ey) BT 2k Bharocd || BBSE1508 RETURT T5 eul.Bo361278 £
BA3SFSS4| 7E 12 36 90|01 08 6P B0[pde.a... anzarans | | ABEBEERT ooER L &
BOIIFSEC| 68 AA 77 00 78 Dd 77 BO| kw.w fu errnincts] || EeieEREN
BEZEFE94|FF 2B 29 12/ 06 90 88 58| ;At.... it | e
BEIIFSOC| 65 GO GF GO B3 EQ FO PE|..... = et || SR
BO3EFEA4| 05 BB 6P GO 94 Fa 33 BO| .. lPeE. SIEEIARER] | | HEEEE S

Figure 6.2: OllyDbg: address of the local variable is computed

36

6.2. X86

n thread, module ex1

CHAPTER 6. SCANFQ

Figure 6.3: OllyDbg: scanf () executed

, module ex1

HEZE 1HEE & || Registers [FFL)
gggg%g?g —|EA+ DEo@EnE1
EEEE |__lEcH eCOZFLE? MSUCR118.SCAZFIET
BEZE1013 FUSH ECH Epn garrtosn
AE351614 PUSH ex1.B0365080 Formet = "Enter HiET Eon Aaaarasd
AE361619 CALL DWORD PTR D3S:[<&MSUCR118.printf>1 |Lprintf el EhEEE
BEIE1E1F AOD ESF, 4 S BEEE
QE26 1622 LEA ER:,DWORD PTR S5: [EEP-41 B Ehaas
BE351625 FUSH EAS
AE361626 FUSH e:1.B0365008C format = "Hd” EIF 88361631 exl.08361031
1a CALL DUOFD PTR DS: [CWSUCRILE.scané>] L zcanf C o ES D028 3zbiv OUFEFEEFER)
Lt
e QBEHECH BUORD PTR S5+ LEBP—43 . A6 %55 GEZE SEbit @(FFFFFFFF]
BE3E 1630 FUSH exl.00365010 [Furmat = "vou entered : |5 B DS DEEE SZbir DIFFFFPFEE).
QB2 1620 CALL DWORD PTR OS: [<&MSUCR118.printf>1 |Lprintf B B R el L
AE351643 AOD ESP, 2 ba
gggg%gjg ﬁgﬁ Egﬁ-ggﬁ <0 @ LsstErr ERROR_SUCCESS (@A
EEE‘%S&Emm pre coo' EFL G@@AEZEE (MO, NE, ME, A, NS, FE,
STE empty B.8
STl empty 8.8
exl.czf. scand ["Rd™, &ul; STe empty 0.0
Address |Hex dump ASCII BEIBSEEC] ASCTT "Hd™
BESSFETC| 7B B0 PO OB|CH FB 55 06| L... 9. posshors| passrert
GEZZFER4| 78 12 36 00|61 0P BO G6| 0. E.. . e T
QEZZFSSC| 6@ AN 77 00|72 04 77 98| k.o Fu. LR MR e
GE33FE94|FF 3B 99 15|69 03 8@ 6d| ;0t.... o =i1.88361270 fro
ARZEFESC| AR AR RR AR| AR FR FNTEL L. Ba33Fass) | BE60E61

SS%E{SSE %H¥§ a | Registers (FPL)
BEZE1E1E FLISH_EEF T
BESE1a1 1 MU EEF, ESF —VE aerrrace
BEZE 11 FLSH ECH EEY HRGEGEEE
BE3G1a14 55 QESASEOE | PUSH EHI BEZEEA0E format = "Enter H:iE@™ ESP GRISFOTC
easaiels|| | FFIE GReZSemal CALL DWORD FTR OS:[<4HSUCRL1B.printf>] |Lprintf EEF Goaorace
aazsialF|| . ADD ESF, 4 ES] GEARAGRAL
BEZE 1EE2 LER ERX,DWORD FTR S5:[EEF-41 ERI RAnRmanE
B35 1E2E FLSH EAf
eeseieze|| | &2 BroRsesn PUSH exl.BRScSEEC format = "Hd” EIF BE351637 =xl.B0361037
op361028) [. FFIS Foel3nog| CALL DUORD PTR DS: [<nSUCR11e. soanf>] |Lscant C @ ES Ba2E 32bit O(FFFFFF
1 Hau EI:K BUORD PTR S5: [EEP-43 £l L8 e foonh leeaans
Sl = ret UEER) 2 @ OS5 GBBZE 3Fhit BIFFFFFF
[CEECEEE] PLISH exl BEZEEA]E [Fc\rnat = "oy entered S @ FS BESE Z2hit TEFOD&GEG
da3e 1830 CALL DWORD PTR DSz [<nsUCRL18.printf>] |Lprintf T8 % BESE Sohit MIFFFFER
A635 1845 KOR ERX, EAX B8 LastErr ERROR_SUCCESS
BESE 1G4S HOU ESF, EEF -
EEE‘%S%E&B?B o pOD GO EFL BE@EEZEE (N0, HE, HE, A, HS
S5TA empty B.8
ST1 empty 8.8
exl.cz 1@ printf [("™You entered Hd...~n"™, =): ST2 empty B.9
Address |Hex dump ASCII BEEEEETE v..__-
RAZEFECC| 76 OO G GE A FE G5 66| 1... 0. AT [TTe
BOS3FoLd| TR 12 6 0 51 be 0B 68| pEe D, oEZaFEsd || BESE1276| RETURN to ewl.BB361270
BRZZFESC| 68 AR 77 99| 7S D4 77 BB Kw.s SECE || R
BE33FE34|FF 2B 99 1398 89 a8 83| ;At.... PR || el
BESEFESC| BB BB G5 BE|GE EG FO TE|..... Pt R nsEd] | | SaRRart
Figure 6.4: OllyDbg: preparing the value for passing into printf ()
6.2.3 GCC

Let’s try to compile this code in GCC 4.4.1 under Linux:

main proc near

var_20 = dword ptr -20h

var_1C = dword ptr -1Ch

var_4 = dword ptr -4
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 20h
mov [esp+20h+var_20], offset aEnterX ;
call _puts
mov eax, offset aD El®
lea edx, [esp+20h+var_4]
mov [esp+20h+var_1C], edx
mov [esp+20h+var_20], eax

37

"Enter X:"

6.3. X64

CHAPTER 6. SCANF()

call ___1is0c99_scanf
mov edx, [esp+20h+var_4]
mov eax, offset aYouEnteredD___ ; "You entered %d...\n"
mov [esp+20h+var_1C], edx
mov [esp+20h+var_20], eax
call _printf
mov eax, O
leave
retn
main endp

GCC replaced first the printf () call to the puts (), it was already described (2.3.3) why it was done.

As before —arguments are placed on the stack by MOV instruction.

6.3 x64

All the same, but registers are used instead of stack for arguments passing.

6.3.1 MSVC
Listing 6.1: MSVC 2012 x64
_DATA SEGMENT
$SG1289 DB ’Enter X:’, OaH, OOH
$SG1291 DB >%d’, OOH
$SG1292 DB ’You entered %d...’, OaH, OOH
_DATA ENDS
_TEXT SEGMENT
x$ = 32
main PROC
$LN3:
sub rsp, 56
lea rcx, OFFSET FLAT:$SG1289 ; ’Enter X:’
call printf
lea rdx, QWORD PTR x$[rsp]
lea rcx, OFFSET FLAT:$SG1291 ; ’%d’
call scanf
mov edx, DWORD PTR x$[rsp]
lea rcx, OFFSET FLAT:$SG1292 ; ’You entered %d...°
call printf
; return O
xor eax, eax
add rsp, 56
ret 0
main ENDP
_TEXT ENDS
6.3.2 GCC
Listing 6.2: GCC 4.4.6 -O3 x64
.LCO:
.string "Enter X:"
.LC1:
.string "%d"
.LC2:

. \Il"

.string "You entered %d..

38

6.4. ARM CHAPTER 6. SCANF()

main:
sub rsp, 24
mov edi, OFFSET FLAT:.LCO ; "Enter X:"
call puts
lea rsi, [rsp+12]
mov edi, OFFSET FLAT:.LC1 ; "%d"
xor eax, eax
call __is0c99_scanf
mov esi, DWORD PTR [rsp+12]
mov edi, OFFSET FLAT:.LC2 ; "You entered %d...\n"
xor eax, eax
call printf
; return O
Xor eax, eax
add rsp, 24
ret
6.4 ARM

6.4.1 Optimizing Keil + thumb mode

.text:00000042 scanf_main

.text:00000042

.text:00000042 var_8 = -8

.text:00000042

.text:00000042 08 B5 PUSH {R3,LR}

.text:00000044 A9 AO ADR RO, aEnterX ; "Enter X:\n"
.text:00000046 06 FO D3 F8 BL __2printf

.text:0000004A 69 46 MOV R1, SP

.text :0000004C AA AO ADR RO, aD YA

.text :0000004E 06 FO CD F8 BL __Oscanf

.text:00000052 00 99 LDR R1, [SP,#8+var_8]
.text:00000054 A9 AO ADR RO, aYouEnteredD___ ; "You entered %d...\n"
.text:00000056 06 FO CB F8 BL __2printf

.text:0000005A 00 20 MOVS RO, #0

.text:0000005C 08 BD POP {R3,PC}

A pointer to a int-typed variable must be passed to a scanf () so it can return value via it. int is 32-bit value, so we need
4 bytes for storing it somewhere in memory, and it fits exactly in 32-bit register. A place for the local variable x is allocated in
the stack and IDA named it var_8, however, it is not necessary to allocate it since SP stack pointer is already pointing to the
space may be used instantly. So, SP stack pointer value is copied to the R1 register and, together with format-string, passed
into scanf (). Later, with the help of the LDR instruction, this value is moved from stack into the R1 register in order to be
passed into printf ().

Examples compiled for ARM-mode and also examples compiled with Xcode LLVM are not differ significantly from what we
saw here, so they are omitted.

6.5 Global variables

What if x variable from previous example will not be local but global variable? Then it will be accessible from any point, not
only from function body. Global variables are considered as anti-pattern, but for the sake of experiment we could do this.

#include <stdio.h>

int x;

int main()

{

39

6.5. GLOBAL VARIABLES

CHAPTER 6. SCANF()

printf ("Enter X:\n");
scanf ("%d", &x);
printf ("You entered %d...\n", x);

return 0;

};

6.5.1 MSVC: x86

_DATA SEGMENT

COMM _x:DWORD

$3G2456 DB Enter X:’, OaH, OOH

$3G2457 DB >%d?, OOH

$5G2458 DB ’You entered %d...’°, OaH, OOH
_DATA ENDS

PUBLIC _main

EXTRN _scanf : PROC

EXTRN _printf:PROC

; Function compile flags: /0dtp
_TEXT SEGMENT
_main PROC
push ebp
mov ebp, esp
push OFFSET $SG2456
call _printf
add esp, 4
push OFFSET _x
push OFFSET $SG2457
call _scanf
add esp, 8
mov eax, DWORD PTR _x
push eax
push OFFSET $5G2458
call _printf
add esp, 8
xor eax, eax
pop ebp
ret 0
_main ENDP
_TEXT ENDS

Now x variable is defined in the _DATA segment. Memory in local stack is not allocated anymore. All accesses to it are not
via stack but directly to process memory. Not initialized global variables takes no place in the executable file (indeed, why
we should allocate a place in the executable file for initially zeroed variables?), but when someone will access this place in

memory, OS will allocate a block of zeroes there'.
Now let’s assign value to variable explicitly:

int x=10; // default value

We got:

_DATA SEGMENT
X DD OaH

Here we see value 0xA of DWORD type (DD meaning DWORD = 32 bit).

'That is how VM behaves

40

6.5. GLOBAL VARIABLES CHAPTER 6. SCANF()
If you will open compiled .exe in IDA, you will see the x variable placed at the beginning of the _DATA segment, and after
you’ll see text strings.
If you will open compiled .exe in IDA from previous example where x value is not defined, you’ll see something like this:

.data:0040FA80 _x dd 7 ; DATA XREF: _main+10
.data:0040FA80 ; _main+22

.data:0040FA84 dword_40FA84 dd 7 ; DATA XREF: _memset+1E
.data:0040FA84 ; unknown_libname_1+28
.data:0040FA88 dword_40FA88 dd ? ; DATA XREF: ___sbh_find_block+h
.data:0040FA88 ; ___sbh_free_block+2BC
.data:0040FA8C ; LPVOID lpMem

.data:0040FA8C 1lpMem dd ? ; DATA XREF: ___sbh_find_block+B
.data:0040FA8C ; ___sbh_free_block+2CA
.data:0040FA90 dword_40FA90 dd ? ; DATA XREF: _V6_HeapAlloc+13
.data:0040FA90 ; —_calloc_impl+72
.data:0040FA94 dword_40FA94 dd 7 ; DATA XREF: ___sbh_free_block+2FE

_xmarked as ? among other variables not required to be initialized. This means that after loading .exe to memory, a space
for all these variables will be allocated and a random garbage will be here. But in an .exe file these not initialized variables
are not occupy anything. E.g. it is suitable for large arrays.

6.5.2 MSVC: x86 + OllyDbg

Things are even simpler here: fig.6.5. Variable is located in the data segment. By the way, after PUSH instruction, pushing
address, is executed, the address will appear in stack, and it is possible to right-click on that element and select “Follow in
dump”. And the variable will appear in the memory window at left.

After we enter 123 in the console, 0x7B will appear here.

But why the very first byte is 7B? Thinking logically,a 00 00 00 7B should be there. This is what called endianness, and
little-endian is used in x86. This mean that lowest byte is written first, and highest written last. More about it: 36.

Some time after, 32-bit value from this place of memory is loaded into EAX and passed into printf ().

x variable address in the memory is 0xDC3390. In OllyDbg we can see process memory map (Alt-M) and we will see that
this address is inside of . data PE-segment of our program: fig.6.6.

[E cPu - main thread, module ex2

BEOCIGEE| [55 FUSH_EEF i
BE0C 1 EEL (| - MOl EEF, ESF AfReaizters (PR
Be0C 160z | o &8 GRIEOCEE | PUSH exb.o00C306E format = "Enter XeE" By Y.
BE0C 1 aas|| - CALL DWORD FTR DS:[<8MSVCR118.printf>] |Lprintf — ECp eandriEs
BE0C 1 BEE (| - AOO ESF, 4 EEpadaacy
BEOCIALL|| o &8 SB3S0CEE | PUSH exf.BEOCEE9E e e
Be0Ciaie|| o &8 BCGDCEE | PUSH e z.B00CS0GC Format = "Rd" ESF phaerian

: CRLL_DUOED PTR DS: [<ontoCR118. soanf>] | Lscant Sl e
& | HOU Ef, DWORD FTR DS: [OC33981 H0 (A
ea0C1aza|| - FUSH EAY cxd> = TB (123.) EIF BBOCLEZ1 exE.BEOC
HEOCIEZA] « &2 18280CHE PUSH en2.BE0C3H1E [Fnrmat = ™Yoy entered C B ES BO2E 22bit @(
e0c i azF (| - CALL DWORD PTR DS:[<&MSUCR118.printf3] |Lorints Do B LR oot
BE0C 1 Ees|| - ADD ESF, & £ EE e B
Ba0C1as|| - XOR ERX, EAX 8 S RS Eaal O
Babciaop|L: 23 RETH g9 FSoBss sabit E
oo i p— 38 ¢ oeveer coronct
BEOC1B48| w7d . JE SHORT en2.GAOCIG4E — |00 Lesdss EREREL
It ata Br il S Il =Bl =l w LI =ln V) EFL BE@@Ez@s (MO, ME, H

ESFP=BE42F34C STH empty H.A

STl empty B0
ST2 empty B0

Add. atdy ASCIL ASCTT "ad™
TR e] @adFasa Lazoale: 2. BEDC350
aancaagsﬁaz-aa—aa:ggj D CB BA &el@...ltif e |]

prdrecs| | BE0C1230| RETURM to en2. Bol

BEOCI3AE[20 CA BA o6 BB BE 28 68l -t f....
BAOCIZAS| 08 06 BE 08 B @A B8 @8)

BEDCIZEE B8 BB 88 &6 BB QE 88 &8l
aanreonel ar Gn Ge o6l e 66 Ge GE

BE42FIEC| | BREEEEE]
BE42F2cE| | BETIAACE
BE42F2c4 || BEFI04 72

Figure 6.5: OllyDbg: after scanf () execution

41

6.5. GLOBAL VARIABLES

CHAPTER 6. SCANF()

%1 Memory map 10| =|
RAddress |Size Owner Section |Contains Type|Access |Initial|Mapped as -
BEE1EAEEE | BEE 1 EEEE Map | RN Rl
BEEZEEEE | BEE 18888 Hap | EW Ell
BEA486608 | BAEE1 888 Imag| R RWE
BRASAREE | BaaR @88 Map |R R
BEASEEEE | BEEE1BEE Fr-ivw| B Ell
BEETEREE | BERGTEEE Map R [~Oewvice~HarddiskWolumel~Min:
081496608 | AAEETA8EA Priv| Bl Gual R
BR42CE0E | BaaE1a8E8 Priv| Rl Gua RW
BE420EEE | BEREZARR stack of ma|Priv| R Guaj Rl
BESHBEEE | BEREIEEE Pr-ivw| B Ell
BETIEEEE | AAEEEAREA Priw| Rl Rl
BA0CAREE | BARE1a88| ex2 FE header Imaa| R RIWE
BEDC1EEE | BEEEL AR =x 2 hEH code Imaa| R RIE
BEOC2EEE | BAEE]BEE) en 2 .rdata imports Imaa| R RIWE
BE0C3E60E | AAEE1 888 ex2 .data data Imag R EWE
BEOCAAEE | BRRELAER| X2 reloc relocations| Imag| R RIE
SAP0BEEGE | BAEE1EEE) MSUCR118 FE header Imaa| R EIWE
SAY01E6E | BEECSEEE) MSUCR118| . teut code, export) Imaa| B RIWE
SAASTEEAE | BRBBSAEE| MSUCR118| . data data Imag| R RWE
SARS0BERE | BAREZEaE| MSUCR118| . idata imports Imaa| R RIWE
SHAPFEEE | BEEE]BEE| MSUCR11G| W rsoc CESOUrCEs Imaa| R RIE
SARABEEE | BEEEGEEE| MSUCR118| . reloc relocations| Imaa| R RIWE
T4FEBBEE | AAEESA8E8 Imag| R RWE
T4FFEaEaa | aaascaan Imaa| R RIWE
TEESEBEE | AR AEE Imaa| R EIWE
TEIZEEEE | AR 10888 kerne |32 FE header Imaa| R RIWE
TEIGEEAD | AAACIAEA| kerne 32| . text code, import] Imag| R RWE
TEAL1BE0E | BAREZEEEA| kerne 32| .data data Imaa| R RIWE
TEHZEEEE | BEEE]1BEA | kerne 122| W rs0c CESOULCEs Imaa| R RIE
TEAZEEEE | BEEEEEEE| kerne 132 e loc relocat ions| Imaa| R RIWE
TrAcEE0E | Baaa1 888 KERHELEA FE header Imag| R RWE
TrE&1a68 | Baa4aa88 KERMELEA| . teut code, import) Imag| R RIWE
TTEALEEE | BAREZERR| KERMELEA | . data data Imaa| R EIWE
TTEASEEE | BaGE] a8 KERMELEBA | . rsrc CESONrCEs Imaa| R RIWE
Trafdann | aaaasaaa| KERHELER| « re loc relocations| Imag| R RWE
Tr4E8E6E | B8l1A%a88 Imaa| R RIWE
TTESEEEE | BEABE1EAEEA| ntdl L FE header Imaa| R EIWE
TTEHEEEE | BEEDEEEE| ntdl L Lhent code, edport) Imaa| R E RIWE
Trroaa6Ea | Beaa1a8a| ntdl L RT Imag| R E RWE
TrrI8a6a | aaaa3aaa ntdl L .data data Imaa| R RIWE .:J
FZFOARAR | AARC7AAA| n+ AL ez e S S Trzml B (=111 =8

Figure 6.6: OllyDbg: process memory map

6.5.3 GCC: x86

Itisalmost the samein Linux, except segment names and properties: notinitialized variables are located in the _bss segment.

In ELF file format this segment has such attributes:

; Segment type: Uninitialized
; Segment permissions: Read/Write

If to statically assign a value to variable, e.g. 10, it will be placed in the _data segment, this is segment with the following

attributes:

; Segment type: Pure data
; Segment permissions: Read/Write

6.5.4 MSVC: x64

Listing 6.3: MSVC 2012 x64

_DATA SEGMENT
COMM x:DWORD

$3G2924 DB ’Enter X:’, OaH, OOH

$SG2925 DB >%d’, OOH

$SG2926 DB ’You entered %d...’, OaH, OOH
_DATA ENDS

_TEXT SEGMENT
main PROC

$LN3:
sub rsp, 40
lea rcx, OFFSET FLAT:$SG2924 ; ’Enter X:’
call printf
lea rdx, OFFSET FLAT:x
lea rcx, OFFSET FLAT:$SG2925 ; ’%d’
call scanf
mov edx, DWORD PTR x

42

6.5. GLOBAL VARIABLES

CHAPTER 6. SCANF()

main
_TEXT

rcx, OFFSET FLAT:$SG2926 ;

lea

call printf

; return O

xor eax, eax
add rsp, 40
ret 0

ENDP

ENDS

’You entered %d...°

Almost the same code as in x86. Take a notice that « variable address is passed to scanf () using LEA instruction, while
the value of variable is passed to the second printf () using MOV instruction. “‘DWORD PTR’’—is a part of assembly language
(no related to machine codes), showing that the variable data type is 32-bit and the MOV instruction should be encoded ac-

cordingly.

6.5.5 ARM: Optimizing Keil + thumb mode

.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
NexitE
.text:
.text:
.text:
.text:
StexitE
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.data:
.data:
.data:
.data:
.data:

.data:
.data:

00000000 ; Segment type: Pure code

00000000 AREA .text, CODE

00000000 main

00000000 PUSH {R4,LR}

00000002 ADR RO, aEnterX ; "Enter X:\n"
00000004 BL __2printf

00000008 LDR R1, =x

0000000A ADR RO, aD 3 "%d"

0000000C BL __Oscanf

00000010 LDR RO, =x

00000012 LDR R1, [RO]

00000014 ADR RO, aYouEnteredD___ ; "You entered %d...\n"
00000016 BL __2printf

0000001A MOVS RO, #0

0000001C POP {R4,PC}

00000020 aEnterX DCB "Enter X:",0xA,0 ; DATA XREF: main+2
0000002A DCB 0

0000002B DCB 0

0000002C off_2C DCD x ; DATA XREF: main+8
0000002C ; main+10

00000030 aD DCB "%d",0 ; DATA XREF: maint+A
00000033 DCB 0

00000034 aYouEnteredD___ DCB "You entered %d...",0xA,0 ; DATA XREF: main+14
00000047 DCB 0

00000047 ; .text ends

00000047

00000048 ; Segment type: Pure data

00000048 AREA .data, DATA

00000048 ; ORG 0x48

00000048 EXPORT x

00000048 x DCD 0OxA ; DATA XREF: main+8
00000048 ; main+10

00000048 ; .data ends

So, x variable is now global and somehow, it is now located in another segment, namely data segment (.data). One
could ask, why text strings are located in code segment (.text) and x can be located right here? Since this is variable, and

by its definition, it can be changed. And probably, can be changed very often.

Segment of code not infrequently can be

located in microcontroller ROM (remember, we now deal with embedded microelectronics, and memory scarcity is common
here), and changeable variables —in RAM?. Itis not very economically to store constant variables in RAM when one have ROM.

2Random-access memory

43

6.6. SCANF() RESULT CHECKING CHAPTER 6. SCANF()
Furthermore, data segment with constants in RAM must be initialized before, since after RAM turning on, obviously, it contain
random information.

Onwards, we see, in code segment, a pointer to the x (off_2C) variable, and all operations with variable occurred via
this pointer. This is because x variable can be located somewhere far from this code fragment, so its address must be saved
somewhere in close proximity to the code. LDR instruction in thumb mode can address only variable in range of 1020 bytes
from the point it is located. Same instruction in ARM-mode —variables in range 44095 bytes, this, address of the x variable
must be located somewhere in close proximity, because, there is no guarantee the linker will able to place this variable near
the code, it could be even in external memory chip!

One more thing: if variable will be declared as const, Keil compiler shall allocate it in the . constdata segment. Perhaps,
thereafter, linker will able to place this segment in ROM too, along with code segment.

6.6 scanf() result checking

As | noticed before, it is slightly old-fashioned to use scanf () today. But if we have to, we need at least check if scanf ()
finished correctly without error.

#include <stdio.h>

int main()

{
int x;
printf ("Enter X:\n");
if (scanf ("%d", &x)==1)
printf ("You entered %d...\n", x);
else
printf ("What you entered? Huh?\n");
return 0;
};

By standard, scanf ()* function returns number of fields it successfully read.

In our case, if everything went fine and user entered a number, scanf () will return 1 or 0 or EOF in case of error.
I added C code for scanf () result checking and printing error message in case of error.

This works predictably:

C:\...>ex3.exe
Enter X:

123

You entered 123...

C:\...>ex3.exe

Enter X:

ouch

What you entered? Huh?

6.6.1 MSVC: x86
What we got in assembly language (MSVC 2010):

lea eax, DWORD PTR _x$[ebp]
push eax

push OFFSET $SG3833 ; ’%d’, OOH
call _scanf

add esp, 8

cmp eax, 1

jne SHORT $LN2@main

mov ecx, DWORD PTR _x$[ebp]
push ecx

3MSDN: scanf, wscanf

44

http://msdn.microsoft.com/en-us/library/9y6s16x1(VS.71).aspx

6.6. SCANF() RESULT CHECKING CHAPTER 6. SCANF()
push OFFSET $SG3834 ; ’You entered %d...’, OaH, OOH

call _printf
add esp, 8
jmp SHORT $LN1@main
$LN2C@main:
push OFFSET $SG3836 ; ’What you entered? Huh?’, OaH, OOH
call _printf
add esp, 4
$LN1G@main:
Xor eax, eax

Caller function (main ()) must have access to the result of callee function (scanf ()), so callee leaves this value in the EAX
register.

After, we check it with the help of instruction CMP EAX, 1 (CoMPare), in other words, we compare value in the EAX register
with 1.

JNE conditional jump follows CMP instruction. JNE means Jump if Not Equal.

So, if value in the EAX register not equals to 1, then the processor will pass execution to the address mentioned in operand
of JNE, in our case it is $LN2@main. Passing control to this address, CPU will execute function printf () with argument
‘“What you entered? Huh?”’. Butif everythingis fine, conditional jump will not be taken, and another printf () call will
be executed, with two arguments: *You entered %d. ..’ and value of variable x.

Since second subsequent printf () not needed to be executed, there is JMP after (unconditional jump), it will pass control
to the point after second printf () and before XOR EAX, EAXinstruction, which implementreturn 0.

So, it can be said that comparing a value with another is usually implemented by CMP/Jcc instructions pair, where cc is
condition code. CMP comparing two values and set processor flags*. Jcc check flags needed to be checked and pass control
to mentioned address (or not pass).

But in fact, this could be perceived paradoxical, but CMP instruction is in fact SUB (subtract). All arithmetic instructions
set processor flags too, not only CMP. If we compare 1and 1,1 — 1 will be 0 in result, ZF flag will be set (meaning the last result
was 0). There is no any other circumstances when it is possible except when operands are equal. JNE checks only ZF flag
and jumpingonly if itis not set. JNEis in fact a synonym of JNZ (Jump if Not Zero) instruction. Assembler translating both JNE
and JNZ instructions into one single opcode. So, CMP instruction can be replaced to SUB instruction and almost everything
will be fine, but the difference is in the SUB alter the value of the first operand. CMP is “SUB without saving result”.

6.6.2 MSVC: x86: IDA

It’s time to run IDA and try to do something in it. By the way, it is good idea to use /MD option in MSVC for beginners: this
mean that all these standard functions will not be linked with executable file, but will be imported from the MSVCR* . DLL file
instead. Thus it will be easier to see which standard function used and where.

While analysing code in IDA, it is very advisable to do notes for oneself (and others). For example, analysing this example,
we see that JNZ will be triggered in case of error. So it’s possible to move cursor to the label, press “n” and rename it to “error”.
Another label—into “exit”. What I've got:

.text:00401000 _main proc near
.text:00401000
.text:00401000 var_4 = dword ptr -4

.text:00401000 argc
.text:00401000 argv
.text:00401000 envp
.text:00401000

dword ptr 8
dword ptr OCh
dword ptr 10h

.text:00401000 push ebp

.text:00401001 mov ebp, esp
.text:00401003 push ecx

.text:00401004 push offset Format ; "Enter X:\n"
.text:00401009 call ds:printf
.text:0040100F add esp, 4

.text:00401012 lea eax, [ebptvar_4]
.text:00401015 push eax

.text:00401016 push offset aD A
.text:0040101B call ds:scanf
.text:00401021 add esp, 8

.text:00401024 cmp eax, 1

4About x86 flags, see also: http://en.wikipedia.org/wiki/FLAGS _register_(computing).

45

http://en.wikipedia.org/wiki/FLAGS_register_(computing)

6.6. SCANF() RESULT CHECKING

CHAPTER 6. SCANF()

.text:
.text:
.text:
StexitE
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
:0040104B
.text:
.text:
.text:
.text:
:00401050

.text

.text

00401027
00401029
0040102C
0040102D
00401032
00401038
0040103B

0040103D ;

0040103D
0040103D
0040103D
00401042
00401048
0040104B

0040104B
0040104D
0040104F
00401050

B

error:

exit:

_main

push
call
add

xor
mov
pop
retn
endp

short error
ecx, [ebptvar_4]
ecx

offset aYou
ds:printf

esp, 8

short exit

offset aWhat
ds:printf
esp, 4

eax, eax
esp, ebp
ebp

; "You entered %d...\n"

; CODE XREF: _main+27
; "What you entered? Huh?\n"

; CODE XREF: _main+3B

Now it’s slightly easier to understand the code. However, it’s not good idea to comment every instruction excessively.

A part of function can also be hidden in IDA: a block should be marked, then

be entered.

I’'ve hide two parts and gave names to them:

« »

on numerical pad is pressed and text to

.text:
Stexitr
.text:
.text:
.text:
.text:
.text:
: 00401029

.text

.text:
:0040103D

.text

.text:
:0040103D
NtextE
100401042

.text

.text

.text:
.text:
.text:
:0040104B
.text:
.text:
.text:
.text:

.text

00401000
00401000
00401000
00401000
00401012
00401024
00401027

0040103B
0040103D
0040103D
00401048
0040104B
0040104B
0040104D
0040104F

00401050
00401050

_text

; ask for X
; get X

; print result

exit:

_main

segment para public ’CODE’ use32
assume cs:_text
;org 401000h

push
call
add

xor
mov
pop
retn
endp

eax, 1
short error

short exit

offset aWhat
ds:printf
esp, 4

eax, eax
esp, ebp
ebp

; CODE XREF: _main+27
; "What you entered? Huh?\n"

; CODE XREF: _main+3B

To unhide these parts, “+” on numerical pad can be used.
By pressing “space”, we can see how IDA can represent a function as a graph: fig. 6.7. There are two arrows after each
conditional jump: green and red. Green arrow pointing to the block which will be executed if jump is triggered, and red if
otherwise.
It is possible to fold nodes is this mode and give them names as well (“group nodes”). | did it for 3 blocks: fig. 6.8.
It’s very useful. It can be said, a very important part of reverse engineer’s job is to reduce information he/she have.

46

6.6. SCANF() RESULT CHECKING

CHAPTER 6. SCANF()

What you entered? Huh?yn*

; int __cdecl main()
_main proc near
var_4% duword ptr -4
argc= dword ptr 8
argu= dword ptr ACh
envp= dword ptr 16h
push ebp
mou ebp, esp
push ecx
push offset Format ; "Enter X:\n"
call ds:printf
add esp, 4
lea eax, [ebp+var_4]
push eax
push offset ab H
call ds:scanf
add esp, 8
cmp eax, 1
jnz short error
¥
=
mov ecx, [ebpsvar_Uu]
push eCcx ErFror: HE
push offset aYou ; “You entered %d...%n"| [push offset aWhat
call ds:printf call ds:printf
add esp, 8 add esp, 4
jmp short exit
LA ;
=
exit:
Hor eax, eax
mov esp, ebp
pop ebp
retn
_main endp

Figure 6.7: Graph mode in IDA

47

6.6. SCANF() RESULT CHECKING

_main proc near

var_4= dword ptr
argc= dword ptr
argu= dword ptr
enup= dword ptr

push ebp
mou ebp, esp
push ecx

;: int _ _cdecl main(}

-4
8
BCh
16h

push offset Format ; "Enter X¥:wn"
call ds:zprintf

CHAPTER 6. SCANF()

add esp, 4
lea eax, [ebptvar_i]
push eax
push offset aD ; ed”
call dszscanf
add esp, 8
cmp eax, 1
jnz short error
1
v v
HNu e HHN 5
print error message| print X
| !
LA ;
HNwW 5
return @

Figure 6.8: Graph mode in IDA with 3 nodes folded

6.6.3 MSVC: x86 + OllyDbg

Let’s try to hack our program in OllyDbg, forcing it to think scanf () working always without error.

When address of local variable is passed into scanf (), initially this variable contain some random garbage, thatis 0x4CD478

in case: fig.6.10.

When scanf () is executing, | enter in the console something definitely not a number, like “asdasd”. scanf () finishing
with 0 in EAX, which mean, an error occurred: fig.6.11.
We can also see to the local variable in the stack and notice that it’s not changed. Indeed, what scanf () would write
there? It just did nothing except returning zero.
Now let’s try to “hack” our program. Let’s right-click on EAX, there will also be “Set to 1” among other options. This is what

we need.

1now in EAX, so the following check will executed as we need, and printf () will print value of variable in the stack.
Let’s run (F9) and we will see this in console window:

Indeed, 5035128 is a decimal representation of the number in stack (0x4CD478)!

[N c:\Polygon\ollydbg\ex3.exe

as d
You entered 5035

Figure 6.9: console window

48

6.6. SCANF() RESULT CHECKING

CHAPTER 6. SCAI\L{)

EHcocu-m , module ex3
GGG | BEE PUSH _EEFP « |Regizters (FPU)
ooaeiaEl —{ EF: BE2EFEER
BBOS L BE PUSH £:3. 0033008 format = "Enter wa@e —y ERi SHOSEESE MSUERILA. SRSSEL
QEES 1 BET CALL DWORD PTR D%:[<&MSUCRL18.printf>] |Lpcintf T A
BEES 1 BEF ADD ESF,4 Eor ARSSFReR
ARAS 1612 LEA EQX,DWORD FTR 55: [EBF-41 T, BEEREERS
Flish En — ES] BE@@@aG L
BEES A1 USH enZ. BBEIS format = "Hd Eoilbaae
AEAS1A1E FALL EWRRD PTR DS: [<EMSUCR1A. scant] | Looant
s {02 EHE EEE 5 EIP @BBS1A1S =x3, 00831015
C @ ES @92 3Zbit @iFFFFFF
gaas 1827 SHORT ex 2. BOES10 F 1 C5 0822 22bit BIFFFFFF
BRES 162D ol ECH, DWORD PTR A8 CEBP—41 . A1 S5 RASE Sobit AFFFFFFI
aoasiezt) |, PUSH ECX i . |z & D% BAZE 3Ehit AIFFFFFFE
aEa2iazn)] . 8 lezaasnn | PUSH ox2. BaB226168 format = "oy entered S @ FS @BESE Z2hit TEFOD&GEG
popziezz|| - FF1E 2428@2ma| CALL DWORD PTR DS: C<&MSUCRL18.printf>] |Lpcintf 28 s Eh ey
Baon o) | ven B - FHE SHORT o, AREE1E4E oDe
P EH S
eeeziezn|| & 68 FUSH 43, BR@Eo02G [formas = "What you entiw DB Losisw Bl EIiEas |
GURAET G Eo1C oasmmomal ol ooen DTD Doy TAo Mo D 1@ e in bl] oot L EFL G@aaaazle (HO,HE,HME,RA,HS,
EQr—BnzzF 5o
5TE empty B.08
STl empty H.A@
5T2 empty @.8
BOZCr 0o8] FEFEFFEE
hddress_{He: dump S=tll 2l fe55FEc4| eRsEEESS|MsUCRI 16, eResEESS
BEESS00G| 45 6E 74 65| rZ 20 55 5A|Enter H:
! QEZZFSE| GEOS106F|eu3. 000 16EF
GEGSI0GS| 0A 00 B0 08|25 64 0@ oa| Hd.. BBZSFEEC| MERSSRRE| HSCIT MEnter HiE”
BEES2E18| 59 6F 7E 2@ 65 EE 74 EE|You ente ABacmaTa A=Y G
BOAS301S| 72 65 64 20|25 &4 ZE 2E|red Hd.. _
AERZ3E20| 2E BA BB PO 57 68 61 74|What ABZZF 854 | FARZZFEAd
BOBo0Z8| 26 73 EF 75|26 to SE 4| nen mot eazzFoes|| eees1252| RETURN to ex3.Bees1252
RARSZAZA| G5 72 AR R4l 2F 2R 48 7Rl pred? Hu aazaFecc]| poopapal

Figure 6.10: OllyDbg: passing variable address into scanf ()

>

]

Figure 6.11: OllyDbg: scanf () returning error

6.6.4 MSVC: x86 + Hiew

BODE 1660 FUSH EEF Regizters (FPU)
oo Tl B e
BEES1 604 PUSH e13, aagaaag format = "Enter wi@» —JEED EREEFIES MSUCRLIA.EREEFIES
BODE 1663 CALL DWORD FTR DS:[<&MSUCR11B.printf>1 |bprintf S e
BEOE 1GEF AOD ESF,d SEF e
BEEZ1A12 LEA ERX,DWORD PTR SS: [EBP-41 P Gl
BERZ1a15 FUSH EAY EoT AAGSRERT
BOES1A1E PUSH eu3.0002308C format = "Ed™ EEh
BEEE 1A 1E CALL DWORD FTR DS:C[<&MSUCR118.scanf>] |Lzcanf
[E AOO ESF, 2 EIF BBB21021 =x3.868651821
& CHP ER, 1 -
BEEE 27 Nz SHORT ex3. BOES1E3D EYOED BEEE ZEbiT BIERCEERER
BEEE 1629 MOU ECX,DWORD PTR S5t [EEP-41 P B BEER EEEND Hhaanasda
BE0z 1820 PUSH ECX iy g @ DS DBE2E 32bit BIFFFFFFFE)
HREZ1GEZ0 PUSH ex3.BHES361A [Format = "You entered S B FS @ESS Sobit PEFOOGGELEFEF
BOES 1632 CALL DWORD FTR DS:[<&MSUCR118.printf>1 |bprintf 2 15 EEas ERat ot
BEOE 1635 AOD ESF, B U
BEEZ103E JMP SHORT euZ.E082164E
BEEE1650 FUSH e, BBGESG24 [fornat = "hat you entewf 7 D2ZtErs EFADRSUECESE [HAA
Itetrieetll Coll Ouneh DTE O Crobel e 40 PN | - EFL @asasazas (Mo, ME,.ME,R,HS,.FE,!
ESP=obzer 650

STA empty @.8

STl empty B.8

SIE erpty B8
Address |Hen dump ASCII BEES2AAC] ASCIT "id™
BO0Zo0E0| 45 GE 74 65| r2 28 &9 o0 Enter s i SSEEEE%E
BERZI0GS| 6N B0 BE 00 25 &4 B8 86|Hd.. et L v e
goags01153 SF 7o 23155 BB 74 85[You ente Bazoracs| | Bame | 2oe| RETURN to ex3. 00031252 from
PEEZIRZ0| 2E OO B9 B8 57 &2 &1 74|Uhat |
BEEZ3A23(28 79 6F 75 28 65 &E 74| wou ent
mAReSAoAl £ 72 £C £4l 20 2@ Ao wol ADoAe o BEZZFE74 || BadC0d7a

This can be also a simple example of executable file patching. We may try to patch executable, so the program will always
print numbers, no matter what we entered.

Assuming the executable compiled against external MSVCR* . DLL (i.e., with /MD option)®, we may find main () function at
the very beginning of . text section. Let’s open executable in Hiew, find the very beginning of . text section (Enter, F8, F6,

Enter, Enter).

We will see this: fig.6.12.
Hiew finds ASCIIZ® strings and displays them, as well as imported function names.
Move cursor to the address .00401027 (with the JNZ instruction we should bypass), press F3, and then type “9090”
(meaning two NOP-s): fig.6.13.
Then F9 (update). Now the executable saved to disk. It will behave as we wanted.
Two NOP-s are probably not quite aesthetically as it could be. Other way to patch this instruction is to write just 0 to the
second opcode byte (jump offset), so that JNZ will always jump to the next instruction.

Sthat’s what also called “dynamic linking”
6ASCII Zero (null-terminated ASCII string)

"No OPeration

49

6.6. SCANF() RESULT CHECKING CHAPTER 6. SCANF()

We can do the opposite: replace first byte to EB while not touching the second byte (jump offset). We’ll got here always
triggered unconditional jump. The error message will be printed always, no matter what number was entered.

Bhiewecee JRI=TES
C:\Polygon‘\ollydbg'ex3. exe a32 PE .604010008 | Hiew 8.82 (c)SEN

1-

printf
esp

1(-4]
; "You entered %d..." --E
printf
esp,

; 'What you entered? Huh?' --E

printf

esp

pop

mon

2FilBlk 3 5 : 7 9 leleave 11

Figure 6.12: Hiew: main () function

a0

6.6. SCANF() RESULT CHECKING CHAPTER 6. SCANF()

_iix

EFWO EDITMODE a32 PE 09@pa429 |Hiew 8.82 (c)SEN

push
push
call
add
lea
push
push
call
add
cmp
nop
nop
mons
push
push
call
add
jmps
push
call

Figure 6.13: Hiew: replacing JNZ by two NOP-s

6.6.5 GCC: x86

Code generated by GCC 4.4.1in Linux is almost the same, except differences we already considered.

6.6.6 MSVC: x64

Since we work here with int-typed variables, which are still 32-bit in x86-64, we see how 32-bit part of registers (prefixed with
E-) are used here as well. While working with pointers, however, 64-bit register parts are used, prefied with R-.

Listing 6.4: MSVC 2012 x64

_DATA SEGMENT

$SG2924 DB ’Enter X:’, OaH, OOH

$3G2926 DB >%d’, OOH

$3G2927 DB ’You entered %d...°, OaH, OO0H
$3G2929 DB ’What you entered? Huh?’, OaH, OOH
_DATA ENDS

_TEXT SEGMENT

x$ = 32
main PROC
$LN5:
sub rsp, 56
lea rcx, OFFSET FLAT:$SG2924 ; ’Enter X:’
call printf
lea rdx, QWORD PTR x$[rsp]
lea rcx, OFFSET FLAT:$SG2926 ; ’%d’
call scanf

ol

6.6. SCANF() RESULT CHECKING CHAPTER 6. SCANF()

cmp eax, 1
jne SHORT $LN2@main
mov edx, DWORD PTR x$[rsp]
lea rcx, OFFSET FLAT:$SG2927 ; ’You entered %d...°
call printf
jmp SHORT $LN1@main
$LN2C@main:
lea rcx, OFFSET FLAT:$SG2929 ; ’What you entered? Huh?’
call printf
$LN1@main:
; return O
xor eax, eax
add rsp, 56
ret 0
main ENDP
_TEXT ENDS

END

6.6.7 ARM: Optimizing Keil + thumb mode

Listing 6.5: Optimizing Keil + thumb mode

var_38 = -8

PUSH {R3,LR}

ADR RO, aEnterX ; "Enter X:\n"
BL __2printf
MOV R1, SP
ADR RO, aD 3 "hd"
BL __Oscanf
CMP RO, #1
BEQ loc_1E
ADR RO, aWhatYouEntered ; "What you entered? Huh?\n"
BL __2printf
loc_1A ; CODE XREF: main+26
MOVS RO, #0
POP {R3,PC}
loc_1E ; CODE XREF: main+12
LDR R1, [SP,#8+var_8]
ADR RO, aYouEnteredD___ ; "You entered %d...\n"
BL __2printf
B loc_1A

New instructions here are CMP and BEQ2.

CMP is akin to the x86 instruction bearing the same name, it subtracts one argument from another and saves flags.

BEQ is jumping to another address if operands while comparing were equal to each other, or, if result of last computation
was 0, orif Z flag is 1. Same thing as JZ in x86.

Everything else is simple: execution flow is forking into two branches, then the branches are converging at the point where
0 is written into the RO, as a value returned from the function, and then function finishing.

8(PowerPC, ARM) Branch if Equal

92

CHAPTER 7. ACCESSING PASSED ARGUMENTS

Chapter 7

Accessing passed arguments

Now we figured out the caller function passing arguments to the callee via stack. But how callee access them?

Listing 7.1: simple example

#include <stdio.h>

int f (int a, int b, int c)

{
return axb+c;

}s

int main()

{
printf ("%d\n", £(1, 2, 3));
return 0O;

g

71 x86

711 MSVC

What we have after compilation (MSVC 2010 Express):

Listing 7.2: MSVC 2010 Express

_TEXT SEGMENT

_a$ =8 ; size = 4
_b$ = 12 ; size = 4
—c$ = 16 ; size = 4
_f PROC

push ebp

mov ebp, esp

mov eax, DWORD PTR _a$[ebp]

imul eax, DWORD PTR _Db$[ebp]

add eax, DWORD PTR _c$[ebp]

pop ebp

ret 0
_f ENDP
_main PROC

push ebp

mov ebp, esp

push 3 ; 3rd argument
push 2 ; 2nd argument
push 1 ; 1st argument
call £

add esp, 12

93

7.1. X86 CHAPTER 7. ACCESSING PASSED ARGUMENTS

push eax
push OFFSET $SG2463 ; ’%d’, OaH, OOH
call _printf
add esp, 8
; return O
Xor eax, eax
pop ebp
ret 0
_main ENDP

What we see is the 3 numbers are pushing to stack in function main() and f (int, int, int) is called then. Argument
access inside £ () is organized with the help of macros like: _a$ = 8, in the same way as local variables accessed, but the
difference in that these offsets are positive (addressed with plus sign). So, adding _a$ macro to the value in the EBP register,
outer side of stack frame is addressed.

Then a value is stored into EAX. After IMUL instruction execution, value in the EAX is a product'of value in EAX and what
is stored in _b. After IMUL execution, ADD is summing value in EAX and what is stored in _c. Value in the EAX is not needed
to be moved: it is already in place it must be. Now return to caller —it will take value from the EAX and used it as printf ()
argument.

7.1.2 MSVC + OllyDbg

Let’sillustrate this in OllyDbg. When we trace until the very first instruction in £ () that uses one of the arguments (first one),
we see that EBP is pointing to the stack frame, | marked its begin with red arrow. The first element of stack frame is saved
EBP value, second is RA, third is first function argument, then second argument and third one. To access the first function
argument, one need to add exactly 8 (2 32-bit words) to EBP.

[E cru in thread, module ex

- 5 55 PUSH_EEF 4| Registers (FFU)
aEsElaal | | HOU EEF, ESF e e
: MOU ERi, DWORD PTR $S: [EBF+21 SE e me e WARSEY DSREREL T
BESE 1 BEE| | - IMUL_ERAS, DWORD PTR S5 LEEF+C] —b ECn pmzsnene
eacEleen|| - 6345 1e AOD EAX,DWORD PTR S5: [EBF+187 S EEERE
eEsEipen|| - S FOF EEF Bt el
aEsElaeE| L RETH EElE EeaaE
e i o
BESE1a1L || . MOl EEF, ESF (H; (Elelzlelalelel
oesELnis| - A fr3 = ooononas EIF BE9E1PBS e« .DESE160S

. a2 =)
pesElaic(] . &R &1 PUSH 1 [n 31 = GREEEEAL EY EE EEEE 3sbit BIEEFEEERE)
eesE1a15|| - ES EZFFFFFF | CALL ew.@@9Ei00@ e . AAGE 1 ABD Bl EE BEeD ZEbiT BIERCEERERY
SS;E}S;E . ESC4 ac EBEHEEEQBC T Z 1 DS @B2B 32bit BiFFFFFFFF)

.] I S 6 FS 0BS5S S2bit FEFDOGEELFFF]
HASEL1BZ22 . B8 E_B_S_B_EEE_E FPUSH ex.B889E3608 format = d!ﬂ Ta 55 BE2B 32bit BI(FFFFFFFF)
posElnzr|| | FF1S sathogen| CACL BUDRD PTR DS:[<anSUCR118.printf>] |Lprines =
DESE LA e S e T 06 LastErr ERROF_SUCCESS (o@@E;
ERH=£CO52634 (MSUCRL1B._ initenw) EFL BE@EGE246 [NO,NE,E,EE, M5, FE, Gt

SI? empty @.8

a | PBZ2F02C| BEZ2ZFDeE
BEZZFO4E| AESEL12S en. BESELLRS
BEZ2FO4d | BEOEIRZS| on . BEAEIGZD
FEE22FDEC #

BEZZFO4C] | @EPELGLE| RET to en.BE9ELIBIE from =
BEZZFOSE | | BEEEEEE]
GEZZFOS4 | | Ba@aaaa2
HEZZFOS2| | BEEEEaEE2
BEZZFOSC | sBE22F09C

BEZZFOGE || BESEL235| RETURH to ex.BE9EL1Z3E from e
GEzzFOS | | BEaaEEE]
GEZ2FOe2| | BE29A920
BEZZFOGC) | aE2303AE
BEZ2FO7E| | E9EFEEFY
GEZZFO74| | BE@aaaE6
BEZZFO7E] | BEEEEaEEE

Address | Hex dump ASCII
BESE3EEE| 25 &4 BA BE[A1 66 a8 66 kd..6...
BEIEIAES| B8 BB 88 0B @88 08 88 98(........
HEYEZE1A|FE FF FF FF|FF FF FF FF|m
BESEIAIS(6B A2 90 E9| 94 EC &2 16
BESESAZA| B8 BR A8 O6| A8 08 a8 G8(..
BEIEIEZE(A1 BB 88 0@ 28 A2 22 08
BEIEIEZA| A D2 29 06|88 68 a8 a8
BEIEIAIS B8 BB 88 0688 00 a8 0a(. ..
BESESA4E| BE BE B8 G6| A8 B8 88 08(...
BEIESA4E| B8 0B 88 06|88 08 88 Qa8
HEIESHEA| B8 BE AR OB A8 08 a8 88
BEIEIECE B8 0B 88 06|88 08 a8 a8
BESESACE| B8 R A8 08|88 68 B8 @8

BEIEZRCE B8 0B 88 00| 88 08 B Q8
aRaraa7Rl G R Ge o6l e 66 Ge GE

Figure 7.1: OllyDbg: inside of f() function

71.3 GCC

Let’s compile the same in GCC 4.4.1 and let’s see results in IDA:

Listing 7.3: GCC 4.4.1

public £
£ proc near
arg_0 = dword ptr 8

Tresult of multiplication

54

7.2. X64

CHAPTER 7. ACCESSING PASSED ARGUMENTS

arg_4 = dword ptr OCh
arg_8 = dword ptr 10h
push ebp
mov ebp, esp
mov eax, [ebptarg 0] ; 1lst argument
imul eax, [ebptarg_4] ; 2nd argument
add eax, [ebptarg_8] ; 3rd argument
pop ebp
retn
£ endp
public main
main proc near
var_10 = dword ptr -10h
var_C = dword ptr -0Ch
var_8 = dword ptr -8
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 10h
mov [esp+10h+var_8], 3 ; 3rd argument
mov [esp+10h+var_C], 2 ; 2nd argument
mov [esp+10h+var_10], 1 ; 1st argument
call f
mov edx, offset aD ; "%d\n"
mov [esp+t10h+var_C], eax
mov [esp+10h+var_10], edx
call _printf
mov eax, O
leave
retn
main endp

Almost the same result.

The stack pointer is not returning back after both function exeuction, because penultimate LEAVE (80.6.2) instruction will

do this, at the end.

7.2 x64

The story is a bit different in x86-64, function arguments (4 or 6) are passed in registers, and a callee reading them from there

instead of stack accessing.

7.2.1 MSVC
Optimizing MSVC:

Listing 7.4: MSVC 2012 /Ox x64

$SG2997 DB

main PROC

>%d’, OaH, OOH

sub rsp, 40

mov edx, 2

lea r8d, QWORD PTR [rdx+1] ; R8D=3
lea ecx, QWORD PTR [rdx-1] ; ECX=1
call f

lea rcx, OFFSET FLAT:$SG2997 ; °%d’
mov edx, eax

%)

7.2. X64 CHAPTER 7. ACCESSING PASSED ARGUMENTS
call printf

xXor eax, eax
add rsp, 40
ret 0

main ENDP

f PROC
; ECX - 1st argument
; EDX - 2nd argument
; R8D - 3rd argument

imul ecx, edx
lea eax, DWORD PTR [r8+rcx]
ret 0

f ENDP

As we can see, very compact £ () function takes arguments right from the registers. LEA instruction is used here for addi-
tion, apparently, compiler considered this instruction here faster then ADD. LEA is also used inmain () for the first and third
arguments preparing, apparently, compiler thinks that it will work faster than usual value loading to the register using MOV
instruction.

Let’s try to take a look on output of non-optimizing MSVC:

Listing 7.5: MSVC 2012 x64

f proc near

; shadow space:
arg_0 = dword ptr 8

arg_8 = dword ptr 10h
arg_10 = dword ptr 18h
; ECX - 1st argument
; EDX - 2nd argument
; R8D - 3rd argument
mov [rsptarg_10], r8d
mov [rsptarg_8], edx
mov [rsptarg_0], ecx
mov eax, [rsp+arg_ 0]
imul eax, [rsptarg_8]
add eax, [rsptarg_10]
retn
£ endp
main proc near
sub rsp, 28h
mov r8d, 3 ; 3rd argument
mov edx, 2 ; 2nd argument
mov ecx, 1 ; 1st argument
call f
mov edx, eax
lea rcx, $SG2931 5 "%d\n"
call printf
; return O
xor eax, eax
add rsp, 28h
retn
main endp

Somewhat puzzling: all 3 arguments from registers are saved to the stack for some reason. This is called “shadow space”
2: every Win64 may (but not required to) save all 4 register values there. This is done by two reasons: 1) it is too lavish to

2http://msdn.microsoft.com/en-us/library/zthk2dkh(v=vs.80) .aspx

96

http://msdn.microsoft.com/en-us/library/zthk2dkh(v=vs.80).aspx

7.2. X64 CHAPTER 7. ACCESSING PASSED ARGUMENTS

allocate the whole register (or even 4 registers) for the input argument, so it will be accessed via stack; 2) debugger is always
aware where to find function arguments at a break 3.
Itis duty of caller to allocate “shadow space” in stack.

7.2.2 GCC
Optimizing GCC does more or less understanable code:

Listing 7.6: GCC 4.4.6 -O3 x64

f:
; EDI - 1st argument
; ESI - 2nd argument
; EDX - 3rd argument
imul esi, edi
lea eax, [rdx+rsi]
ret
main:
sub rsp, 8
mov edx, 3
mov esi, 2
mov edi, 1
call f
mov edi, OFFSET FLAT:.LCO ; "%d\n"
mov esi, eax
xor eax, eax ; number of vector registers passed
call printf
x0T eax, eax
add rsp, 8
ret
Non-optimizing GCC:
Listing 7.7: GCC 4.4.6 x64
f:
; EDI - 1st argument
; ESI - 2nd argument
; EDX - 3rd argument
push rbp
mov rbp, rsp
mov DWORD PTR [rbp-4], edi
mov DWORD PTR [rbp-8], esi
mov DWORD PTR [rbp-12], edx
mov eax, DWORD PTR [rbp-4]
imul eax, DWORD PTR [rbp-8]
add eax, DWORD PTR [rbp-12]
leave
ret
main:
push rbp
mov rbp, rsp
mov edx, 3
mov esi, 2
mov edi, 1
call f
mov edx, eax
mov eax, OFFSET FLAT:.LCO ; "%d\n"
mov esi, edx
mov rdi, rax
mov eax, 0 ; number of vector registers passed

3http://msdn.microsoft.com/en-us/library/ew5tede? (v=VS.90) .aspx

o7

http://msdn.microsoft.com/en-us/library/ew5tede7(v=VS.90).aspx

7.3. ARM CHAPTER 7. ACCESSING PASSED ARGUMENTS
call printf
mov eax, O
leave
ret

There are no “shadow space” requirement in System V *NIX [21], but callee may need to save arguments somewhere,
because, again, it may be regsiters shortage.
7.2.3 GCC: uint64_t instead int

Our example worked with 32-bit int, that is why 32-bit register parts were used (prefixed by E-).
It can be altered slightly in order to use 64-bit values:

#include <stdio.h>
#include <stdint.h>

uint64_t f (uint64_t a, uint64_t b, uint64_t c)

{
return a*b+c;
};
int main()
{
printf ("%11d\n", f(0x1122334455667788,
0x1111111122222222
0x3333333344444444)) ;
return 0;
}s
Listing 7.8: GCC 4.4.6 -O3 x64
£ proc near
imul rsi, rdi
lea rax, [rdx+rsil
retn
f endp
main proc near
sub rsp, 8
mov rdx, 3333333344444444h ; 3rd argument
mov rsi, 1111111122222222h ; 2nd argument
mov rdi, 1122334455667788h ; 1st argument
call f
mov edi, offset format ; "%1ld\n"
mov rsi, rax
xor eax, eax ; number of vector registers passed
call _printf
xXor eax, eax
add rsp, 8
retn
main endp
The code is very same, but registers (prefixed by R-) are used as a whole.
7.3 ARM

7.3.1 Non-optimizing Keil + ARM mode

.text:000000A4 00 30 AO E1 MOV R3, RO
.text:000000A8 93 21 20 EO MLA RO, R3, R1, R2
.text:000000AC 1E FF 2F E1 BX LR

98

7.3. ARM CHAPTER 7. ACCESSING PASSED ARGUMENTS

.text:000000BO main

.text:000000BO 10 40 2D E9 STMFD SP!, {R4,LR}
.text:000000B4 03 20 AO E3 MOV R2, #3
.text:000000B8 02 10 AO E3 MOV R1, #2
.text:000000BC 01 00 AO E3 MOV RO, #1
.text:000000C0 F7 FF FF EB BL £
.text:000000C4 00 40 AO E1 MOV R4, RO
.text:000000C8 04 10 AO E1 MOV R1, R4
.text:000000CC 5A OF 8F E2 ADR RO, aD_0 3 "%hd\n"
.text:000000D0 E3 18 00 EB BL __2printf
.text:000000D4 00 00 AO E3 MOV RO, #0
.text:000000D8 10 80 BD E8 LDMFD SP!, {R4,PC}

Inmain () function, two other functions are simply called, and three values are passed to the first one (f).

As | mentioned before, in ARM, first 4 values are usually passed in first 4 registers (RO-R3).

ffunction, as it seems, use first 3 registers (R0-R2) as arguments.

MLA (Multiply Accumulate) instruction multiplicates two first operands (R3 and R1), adds third operand (R2) to product
and places result into zeroth operand (RO), via which, by standard, values are returned from functions.

Multiplication and addition at once* (Fused multiply-add) is very useful operation, by the way, there is no such instruction
in x86, if not to count new FMA-instruction® in SIMD.

The very first MOV R3, RO, instruction, apparently, redundant (single MLA instruction could be used here instead), com-
piler was not optimized it, since this is non-optimizing compilation.

BX instruction returns control to the address stored in the LR register and, if it is necessary, switches processor mode from
thumb to ARM or vice versa. This can be necessary since, as we can see, f function is not aware, from which code it may be
called, from ARM or thumb. This, if it will be called from thumb code, BX will not only return control to the calling function,
but also will switch processor mode to thumb mode. Or not switch, if the function was called from ARM code.

7.3.2 Optimizing Keil + ARM mode

.text:00000098 £
.text:00000098 91 20 20 EO MLA RO, R1, RO, R2
.text:0000009C 1E FF 2F E1l BX LR

And here is £ function compiled by Keil compiler in full optimization mode (-03). MOV instruction was optimized (or re-
duced) and now MLA uses all input registers and also places result right into RO, exactly where calling function will read it and
use.

7.3.3 Optimizing Keil + thumb mode

.text:0000005E 48 43 MULS RO, R1
.text:00000060 80 18 ADDS RO, RO, R2
.text:00000062 70 47 BX LR

MLA instruction is not available in thumb mode, so, compiler generates the code doing these two operations separately.
First MULS instruction multiply RO by R1 leaving result in the R1 register. Second (ADDS) instruction adds result and R2 leaving
result in the RO register.

4wikipedia: Multiply-accumulate operation
Shttps://en.wikipedia.org/wiki/FMA_instruction_set

99

http://en.wikipedia.org/wiki/Multiply%E2%80%93accumulate_operation
https://en.wikipedia.org/wiki/FMA_instruction_set

CHAPTER 8. ONE MORE WORD ABOUT RESULTS RETURNING.

Chapter 8

One more word about results returning.

As of x86, function execution result is usually returned’ in the EAX register. If it is byte type or character (char) —then in the
lowest register EAX part —AL. If function returns float number, the FPU register ST(0) is to be used instead. In ARM, result is
usually returned in the RO register.

By the way, what if returning value of the main () function will be declared not as int but as void?
so-called startup-code is calling main () roughly as:

push envp
push argv
push argc
call main
push eax

call exit

In other words:

exit (main(argc,argv,envp));

If you declare main () as void and nothing will be returned explicitly (by return statement), then something random, that
was stored in the EAX register at the moment of the main () finish, will come into the sole exit() function argument. Most
likely, there will be a random value, leaved from your function execution. So, exit code of program will be pseudorandom.

I canillustrate this fact. Please notice, the main () function has void type:

#include <stdio.h>

void main()

{
printf ("Hello, world!\n");

};

Let’s compile itin Linux.

GCC 4.8.1replaced printf () to puts() (we saw this before: 2.3.3), but that’s OK, since puts () returns number of char-
acters printed, just like printf (). Please notice that EAX is not zeroed before main () finish. This means, EAX value at the
main() finish will contain what puts () leaved there.

Listing 8.1: GCC 4.8.1

.LCO:
.string "Hello, world!"
main:
push ebp
mov ebp, esp
and esp, -16
sub esp, 16
mov DWORD PTR [esp], OFFSET FLAT:.LCO

call puts

See also: MSDN: Return Values (C++)

60

http://msdn.microsoft.com/en-us/library/7572ztz4.aspx

CHAPTER 8. ONE MORE WORD ABOUT RESULTS RETURNING.

leave
ret

Let’ s write bash script, showing exit status:

Listing 8.2: tst.sh

#!/bin/sh
./hello_world
echo $7

And run it:

$ tst.sh
Hello, world!
14

14 is a number of characters printed.

Let’s back to the fact the returning value is leaved in the EAX register. That is why old C compilers cannot create functions
capable of returning something not fitting in one register (usually type int) but if one needs it, one should return information
via pointers passed in function arguments. Now it is possible, to return, let’s say, whole structure, but still it is not very pop-
ular. If function must return a large structure, caller must allocate it and pass pointer to it via first argument, transparently
for programmer. That is almost the same as to pass pointer in first argument manually, but compiler hide this.

Small example:

struct s
{
int a;
int b;
int c;
5
struct s get_some_values (int a)
{
struct s rt;
rt.a=a+l;
rt.b=a+t2;
rt.c=at3;
return rt;
5
...what we got (MSVC 2010 /0x):
$T3853 = 8 ; size = 4
_a$ = 12 ; size = 4
?get_some_values@@YA7AUsQ@HQ@Z PROC ; get_some_values
mov ecx, DWORD PTR _a$[esp-4]
mov eax, DWORD PTR $T3853[esp-4]
lea edx, DWORD PTR [ecx+1]
mov DWORD PTR [eax], edx
lea edx, DWORD PTR [ecx+2]
add ecx, 3
mov DWORD PTR [eax+4], edx
mov DWORD PTR [eax+8], ecx
ret 0
?get_some_values@@YA7AUsQQ@HQ@Z ENDP ; get_some_values
Macro name for internal variable passing pointer to structure is $T3853 here.
This example can be rewritten using C99 language extensions:
struct s
{

61

CHAPTER 8. ONE MORE WORD ABOUT RESULTS RETURNING.

int a;
int b;
int c;
Jg
struct s get_some_values (int a)
{
return (struct s){.a=a+1, .b=a+2, .c=a+3};
Jg

Listing 8.3: GCC 4.8.1

_get_some_values proc near

ptr_to_struct = dword ptr 4

a = dword ptr 8
mov edx, [esp+al
mov eax, [esp+ptr_to_struct]
lea ecx, [edx+1]
mov [eax], ecx
lea ecx, [edx+2]
add edx, 3
mov [eax+4], ecx
mov [eax+8], edx
retn

_get_some_values endp

As we may see, the function is just filling fields in the structure, allocated by caller function. So there are no performance
drawbacks.

62

CHAPTER 9. POINTERS

Chapter 9

Pointers

Pointers are often used to return values from function (recall scanf () case (6)). For example, when function should return

two values.

9.1 Global variables example

#include <stdio.h>

void f1 (int x, int y, int *sum, int *product)
{

*SUM=Xx+y ;

*product=x*y;

}s
int sum, product;

void main()

{
£1(123, 456, &sum, &product);
printf ("sum=%d, product=Jd\n", sum, product);
}s
This compiling into:
Listing 9.1: Optimizing MSVC 2010 (/Ox /Ob0)
COMM _product : DWORD
COMM _sum:DWORD
$3G2803 DB ’sum=%d, product=%d’, OaH, OOH
_x$ =8 ; size = 4
_y$ = 12 ; size = 4
_sum$ = 16 ; size = 4
_product$ = 20 ; size = 4
_f1 PROC
mov ecx, DWORD PTR _y$[esp-4]
mov eax, DWORD PTR _x$[esp-4]
lea edx, DWORD PTR [eax+ecx]
imul eax, ecx
mov ecx, DWORD PTR _product$[esp-4]
push esi
mov esi, DWORD PTR _sum$[esp]
mov DWORD PTR [esi], edx
mov DWORD PTR [ecx], eax
pop esi
ret 0
_f1 ENDP

63

9.1. GLOBAL VARIABLES EXAMPLE

CHAPTER 9. POINTERS

PROC
push
push
push
push
call
mov
mov
push
push
push
call
add
xor
ret
ENDP

_main

_main

OFFSET _product

OFFSET _sum

456

123

_f1

eax, DWORD PTR _product
ecx, DWORD PTR _sum

eax

ecx

OFFSET $SG2803

DWORD PTR __imp__printf
esp, 28

eax, eax
0

; 000001c8H
; 0000007bH

; 0000001cH

Let’s see thisin OllyDbg: fig.9.1. Atfirst, global variables addresses are passed into £1 (). We can click “Follow in dump” on
the stack element, and we will see a place in data segment allocated for two variables. These variables are cleared, because
non-initialized data (BSS') are cleared before execution begin. They are residing in data segment, we can be sure it is so, by
pressing Alt-M and seeing memory map: fig.9.5.

Let’s trace (F7) until execution of £1 () fig.9.2. Two values are seen in the stack 456 (0x1C8) and 123 (0x7B), and two global
variables addresses as well.

Let’s trace until the end of £1 (). At the window at left we see how calculation results are appeared in the gloval variables

fig.9.3.

Now values of global variables are loaded into registers for passing into printf (): fig.9.4.

- 2EV424 18
2916 HMOL DWORD PTR
MO OWORD FTR

-

BE4E2518

CPU - main thread, module ptrs_and

MOU ESI, DWORD PTR SS: [ESP+18]
DSz CESIT.EDR
O5: [ECK], ER

Registers [(FPLI

GEF 12224 B8 BE B8 00 88 00 88 00,
BEF1Z3EC| B2 DB B3 08 B3 08 B8 88 0......
HEF12294| @2 BE1 2R ES| A2 B1 2A ES| e e
GEF1220C| 88 BB 88 00 88 08 B o8
HEF L2204 88 0B 88 00 88 00 88 00,
BEF1IZZAC| B8 B8 B3 08 B3 08 B8 88,
HEF1SSE4| B8 BE B8 GE| 88 6B @8 66(.......

Anriaane] Gm As An Aa an As e ae

BE24FA44
Ba34FR42
BE34FA4C
BE24FASE
BE24FACS
BEI4FASE
BE34FASC
BE24FACE

EFGF4714 OFFSET HSU
BEHHEEEHE
BEEEEERE
BE34FO4E
Bonooo0T
[Ee s BEF13398 ptrs_and.d
. G B4ZSFIA0 ptr=_and. BEF 13354 P EEIED
A . £S5 CBA1E66E ics @EF1182A ptrs_and.@
@EF 11G2F || . &R TE FUSH 7E
BeF11621(| - ES CAFFFFFF |CALL ptrs_snd.EBF 11068 ETOED IEEE i mIEE
eaFiiaze|| . A1 8823166 | MOU ERN,DWORD PTR OS: [F1338S8] R B 55 ARSE Sobit AIFF
@5F 1 136 HOL ECi, DWORD FTR OS2 [F13384] g B B RS EEobe Ehia
E05F 1161 FUSH EAX cud> =» e £ o Ff goes ZEDIT SLTT
BIEF 11642 PLSH ECH fadr =r 1 1T @ GBS BEZE 32bit BIFF
QEF11a43() . 65 BEIAF188 | PUSH ptrs_and. BEF 13880) format = oo
@eF11643|| - FF15 AsGEiee| CALL OWORD FTR 0S: [<&hsucRisa.printf>1 [Loeintf ~ w05 5 | sorece ErRoR_suCe
EFL GBBEE246 (NI, NE,E,E
STO empty B.0
STl empty 8.4
Address |Hex dump ASCIT BEF12384 | ptrs_and. BEF 13284

BOF12222 ptres_and. BEF12222
BEF111C1 | RETURM to ptrs_and.
BEEREAE]

BE4A1 222
BE4A2216
G2ESA3ER
EEEEEREE
BEEEEEEG

Figure 9.1: OllyDbg: global variables addresses are passing into £1 ()

'Block Started by Symbol

64

9.1. GLOBAL VARIABLES EXAMPLE CHAPTER 9. POINTERS
CPU - mail

TOL ECHK, DWORD FTR S5: LESF+2]
GIGF 1 16164 HOU EAX, DWORD PTR S5: [ESF+4] TR

LEA EDX, DWORD FTR DSz [EAH+ECK] SERF4214 OFFSET MS
IMUL ERX,ECH AERGARHE
HOY ECH, DNORD PTR S8: [ESF+18] ARREREED
PLZH EST . BE34FA34
HOU EST, DMORD FTR SS: [ESF+18] AESaFAaD
PGU CWORD FTR OS:CESII, EON AEREREE1
Moy DWORD PTR DS:CECK], EAX AEF 15099

BEF1 1868

ptrs_and.
ptrs_and.

C @ ES GEZE 32bit GIF
F 1 CS BB22 32bit BIF
BEF 11628 rs ptre_and. BEF 13388 sl bl es pees 2o one i
eaF1iezs|| - e2 243EFiem Dt re_and. BEF 12384 -1 1
per1iezn|] - e2 Coelo@ns 1ce -y e
ear1iezr|] - en 7B 7B &
oA S NS R R RRE R R [E AT e =t an el HR e . *§0 @ LastErr ERROR_SUC
Stack Go: LABSAT AL] —HHAEa] o
ECHoEFEFArid (MSUCRIDE. initenul 3L GRS G, R
Local call from @8F11831 5T8 empty B.0
STl empty 8.4
Add H d ASCII BaF1 1836 RETURH to ptrs_an
aaFl;;;;et BEHBBUEE 0| BE BE BE EHE Huzabhos | BEEaEn e
ROO00O00 AEZ4FRSC| GBEEA1CS

BEF133EC| B2 08 B3 08 B8 88 88 88 0.
HEF12294(B2 E1 2R ES| A2 B1 20 ES| et e
BEFL1220C 88 G0 88 0088 00 88 06(,,
GEF 12204 88 00 88 0088 00 88 06(,.......
BEF1Z3AC| B8 08 B3 08 B8 88 B8 88
BEF123E4] B8 BB 88 GEl 88 66 a8 6@l

BE34FAdE
BEZ4FAdd
BEZ4FA4E
BE34FO4E
Gl)

BEF133584 | ptrs_and. BAF 13354
BEF13382| ptrs_and. BAF133283
BEF111C1| RETURM to ptrs_and
BEEEEEE1
aeaace

Figure 9.2: OllyDbg: £1 ()is started

CPU - main thread, module ptrs_and

HOF11EEE| s SEdCZd 6 TIOU ECH, OWORD FTR S5: LESF+E] « |Regizters (FPLD
GarFi1aad|] | ER, OWORD PTR S5: [ESP+4] e
aaFi1ees|| . LEA ED,DWORD FTR DS: [EAM+ECH] Ere BB EoEe ntre and.B@aFigass
aaF11eee|| . IHUL ER%, ECH ==\ CGv Gmpaoean © oot
GeF11EeE|| . MO ECH, DWORD FTR S5: [ESP+181 EBY BRanEeEn
GaFiietz|] . s& PUSH ESI EoP BRS4EASA
aaF11a1s|] . 18 MO ESI,DWORD FTR 55:[ESF+1A1 EiP Dosdrnos
aaF11aiz|] . MOU OWORD PTR DS:[ESII,EDX ESI BOF19384 prre_and. BEF1555d
GaF11E19)] . MOU OWORD PTR 05 [ECH], ERX EOI BOF1559% prreand. BEF1soae
GEF1161E | B FOP ESI ptrs_and =EEL
BEF11E1C L. EIP @@F1101E ptrs_and.38F1161E
SSEHS%E C ® ES BEZE 22bit @(FFFFFFFF)
BoF 1 101F R & S5 GBoE a1t GUFEFFFEFE)
BEF11626|FS &2 SS23F10A ptrs_and. BOF13358 S EERR EEENY EHnanannas,
eaF11ezs|| . 62 2423F10A |PUSH ptrs_and. BOF13224 S & Fa oocs Sohit PEFROAGE.FF
eaFiiezAl| . 62 CeBigE@d |PUSH 102 T8 Gt G55 55Bit WIFFFFEFEF)
GaFilesr|| . &R 7E PUSH 7E o f
el | o B CHPARARE ||SElL mire emeb (e A S TH0 6 LastEcr ERROR_SUCCESS (GE
Stack [OOSAF oD] =D OBDHEE T EFL G@BEEZEE | MO, ME, ME, A, HS, PE
ESI=BEF13354 [ptrs_and, BEF13354)

STE empty B.8

ST1 emptw A.8
Address 1
SRR GHZ4F 24| @BF11826| RETURN to phrs_and.@8F116
EEiC e GES4FASE| DOBE0ETE
ERAEHEEEG GEZ4FREC| BERER1CS
oo GEZ4FR4E| @EF13324| ptre_and, BBF 13254
o GE34FA44| @BF13292| ptrs_and.BBF13288

BEZ4FA45| @BF1I11C1| RETURN o ptrs_and.@8F1111

2aF1S3AC AEZAFA4C| BEEBREE1
BEF 13264
TR GEZ4FASA| BE4A1Z228
AAF1 230 BE24FRSY | BE4RZI10

Figure 9.3: OllyDbg: £1 () finishes

65

9.2. LOCAL VARIABLES EXAMPLE

CPU - m thread, module ptrs_and

BEF11E10
BEF1181E

CHAPTER 9. POINTERS

A | Registers [FFLI

e
@EF 1 1628|rs ptre_and. GEF 12383 RN
oeF1iezs|] - B2 2422F1Em ptre_and. BOF 12224 EEREE
aariiozp|] - 62 Coeleema 12 FEEELREY
eeFiiazr|| - en 7B 7E FEEEE
eaFiiezi|] - E2 coFFFFFF LL ptrc_and.@6F 11668 EERATRE
oeF1ieze|| - AL 22zeF1ee |MoU ERX,OWORD PTR OS:[Fl23es] BBE19958 ptre_and.BEFL
FliG2E|| . GEe0 2433Fima| MO ECH, DWARD PTR DS: CF133247 =k
_»a»a : 58 EHEE EE§ Gy = ol EIP BBF11841 ptrs_and.@EF1
oeF11a43|| - 63 H ptre_and. BEF [Fnrmat =i | @ E3DpzB Sabir BIFFRFF
aar1ia4s|] - FF1S FALL EMORT PTR D&+ L 2HSUCR18E. pr int 3] | Lpsinef B & E EEEr EEehe Biddads
eeFiieaE|] - s3ca 1 ADD ESP, 1C 1) B R ERat ERannan
oaFiiest|| - z=ce XOR EAX,EAX 2 BR BEES EEEhE Ehaaday
FErEa (oo B REATH T @ G5 BB2E 3Zbit BIFFFFF
GEF11A54| . 68 2@14F1mA |PUSH ptrs_and.@BF11428 &
e | o 30 BRIt || e e o]0 @ LastErr ERROR_SUCCESS
ER=000a0E15 EFL GEGEEZEE (MO, ME,ME, A, M
5T8 empty B.0
STl empty B.A8
Addre=s |Hex dump ASCIT BEAGEETE
BEF 12204| 42 B2 60 00] 12 OB 99 o8 Ca. . .. Al W IR
BEF1Z3EC| B2 00 B0 0B| BE B8 B2 08| 8....... AAF1555% | ot o ARF 1 S5ae
BAF 13294 @3 B1 20 ES| A3 B1 20 ES| it AAF111C1| BETURN o
GEF1320C| 00 06 B0 0|60 06 @6 68| o prrs_and.5d
GEF12204| 00 06 60 60|60 06 @8 o8| e
GEF1Z2AC| B0 66 60 G| 6o 06 G5 oa| s lecs
BEF133E4 66 66 6o Galee 6o ee eal .. o..o.2] [9834FAS4| B04Rz2318

Figure 9.4: OllyDbg: global variables addresses are passed into printf ()

X1 Memory map o] 4
FAddress |Size Owner Section |Contains Tupe| Access | Initial| Happed as
BEE1ER6E | BEE1BEEGE Map | Bl [0

BRE2E066 | BEA1A8EE Map | RW Rl

GR84ER5E | BERE 1886 Imaa| R RUWE

BEESEREE | AERE4E8EE Map | R R

BEBSER0E | AERGE 1 BEE Priw| Bl Rl

BAEASREA | AERETEEE FPriw BW Guaj Rl

GRBEERG5E | BEAEI88E Priv| Rl Rl

BE12EREE | AERECHEE Friw| Bl Rl

BE2408606 | AEEGE 1 BEE Privw| B Guaj Bl

HES4ERLHR | BHEEZHEE stack of ma|Priv| R Guaj Rl

CRIE0R0E| BORGETORE Map |R R ~Oewice~HarddiskUolumel-lindows-Suste
BE4AEREE | AERESEEE Friw| Bl Rl

BEF 18R66 | BERGE 1886 | ptrs_and FE header Imza| R RWE

BAF 11868 BEAE1E86 | ptrs_and| . text code Imag| R RIE

CEF 1 2000 BOEEL6E6| ptes_and| . rdata imports Imaa| R RIE

BEF 12000 B0A016R6 | otrs_and| . data data Imaa R RUE

BEF 14066 AERE1E8AE| ptrs_and| . reloc relocat ions| Imaa| R RIWE

EFE4B066| AEAE 18868 MSUCR1 66 FE header Imag| R RWE

EFB4 1060 BEREZEEGE | MSUCR18E8) . reut code, import) Imag| R RIWE

EFEF3REE| BERBEERE | MSUCR18E| . data data Imaa| R RIWE

SFBF9RGEE| BERE 18R | MSUCR1BE| . rerc CESOUTCES Imza| R RWE

&FEFABAA| BEAESEEA | MSUCR1688| . reloc relocations| Imag| R RIE

T4FEBREE| AEREZ88E Imza| R RUWE

Figure 9.5: OllyDbg: memory map

9.2 Localvariables example

Let’s rework our example slightly:

Listing 9.2: now variables are local

void main()

{

int sum, product; // now variables are here

£1(123, 456, &sum, &product);

printf ("sum=Yd, product=/d\n",

sum, product);

£1 () function code will not changed. Only main () code will:

Listing 9.3: Optimizing MSVC 2010 (/Ox /Ob0)

_product$
_sum$ = -4
_main PROC
; Line 10

sub
; Line 13

esp,

8

; size =
; size

66

9.2. LOCAL VARIABLES EXAMPLE CHAPTER 9. POINTERS

lea eax, DWORD PTR _product$[esp+8]
push eax
lea ecx, DWORD PTR _sum$[esp+12]
push ecx
push 456 ; 000001c8H
push 123 ; 0000007bH
call _f1
; Line 14
mov edx, DWORD PTR _product$[esp+24]
mov eax, DWORD PTR _sum$[esp+24]
push edx
push eax
push OFFSET $SG2803
call DWORD PTR __imp__printf
; Line 15
xor eax, eax
add esp, 36 ; 00000024H
ret 0

Let’s again take a look into OllyDbg. Local variable addresses in the stack are 0x35FCF4 and 0x35FCF8. We see how these
are pushed into the stack: fig.9.6.

f1()is started. Random garbage are at 0x35FCF4 and 0x35FCF8 so far fig.9.7.

£1 ()finished. There are 0xDB18 and 0x243 now at 0x35FCF4 and 0x35FCF8 addresses, these values are £1 () function
result.

E CPU - main thread, module ptrs_and

BEFS1E19][- 2981 MOU OWORD PTR 05t [ECRI, ERR Registers [FFUI
earaiaib|| . SE POP ESI ’ -
sarsiaic| Ll c3 RETH | Ect Gazsrcrs
BAFSimi0| CC INTZ b BARARERS
BEFS1AIE| CC INTZ EBY BRARGGRG
BEFE1AIF| CC INTZ Eoh BRSSELEA
BAFS1AZE| s S3EC B8 SUB ESF, 3 Bl EetEnans
aorsiozs| . 00424 LER EA, DUORD FTR S5: (ESP] S BRI
7l . Gp4ces e [LEA ECH, DWORD PTR SS5: [ESP+G] S EEAEEES EER G EHAEEEE
LBl FLSH ECH EIP BBFS1AZE ptrs_and.BEFS1GZE
B c(| - £2 CoplpERE |PUSH iC3
C @ ES BA2E 22bit @FFFFFFFF]
goFzl@si|) . £ 7B FUSH 7B F B Cf 922 2Ebit BIFFFFFFEEF)
paraimss|| - E= COFFFEFF | CALL prrs_and. BeFeicen R & S5 BASH Sobit ArFFFFFFFE)
parsin3s|| o sEs4z4 1e HOU E0%, DORD FTR 552 [ESP+1@] o H R EEES EEhs Eyinnandgacy
porzimac|| o cEd4za4 14 MOU ERX, OWORD FTR S52[ESP+14] BB D e s st
goFzladal) . 2 PUSH EDx T B &5 BE2E 2Ebit BIFFFFFFFF)
parainai|| - Sa PLSH ER ba
BEFS1a42)) . £8 B ag | PUSH ptre_and. BBF33680 . SMTH0 B LastErr ERROR_SUCCESS (BESEE
ECA=BBS5FCFE EFL BR@BEZBZ (MO, NE, ME, A, NS, PO, GE

STE empty 8.8
STl empty 8.8

Add Hex d ASCIT BEZCFCES| GOF SoRS0] ptrs_and. DOF SoRS0
T E R R R VR A —A BecErCES| BEFS2E34|ptrc_and. BEFEER24

caseriod ol 22 %8 20 02 42 L2 Il g oo
PRLS b
GEZCFDLG| 60 DO GO 60| BE PO OO 68) BESSFCF4| &FBS263D) RETURN to MSUCR1G0E. eFESZESD

2 BEZSECRS| QEREEEE L
SEeELe i S Bl R A 20 B 0BT aoor GEIEFCFC| BBFS1ICH|RETURN to otrs_and.BEFS11CH f
""" : BOZ5F006| BEPREEEL
BO3SFDZS(48 C2 DS FD|78 FO 35 BO| Fy puss.
BO35F004| BA1E1225
BO3SFO36| @S 1e FS Bo| 17 02 28 19 ..
BEZSFO0E| BE1E2S1E
e in e
J9%y, g
BESEFO4E| 88 FD 35 BB| T2 S5F &0 77| M. TALw Ay |

@ETCEnd Al AEARRGARR

Figure 9.6: OllyDbg: addresses of local variables are pushed into the stack

67

9.3. CONCLUSION

n

n thread, module ptrs_and

CHAPTER 9. POINTERS

Figure 9.7: OllyDbg: £1 () starting

n thread, module ptrs_and

F% CEdLzd o TIOL ECA, DWORD PTR
aorcioas|| . SE4424 B4 HMOL EAX, DWNORD PTR ESP RN
]| LEA E0X.DWORD FTR D5z CEAX+ECH] RN
ears1aeE|| - IHUL EA%, ECH RN
eeFe1meE|| . MOU ECA,DNORD PTR S5: [ESP+181 i
earsiaiz(] . PUSH ESI ARACFCER
ears1e13|] - HOU ESI,DNORD FTR 55:[ESP+1@] AEEESEER
earz1a17|| - MOl DWORD PTR DS:CESII, EDX GtiaanEal
S o 2 (Dl U (00 ol Aks BEFEZE8E ptrs_and.BE
aarsiaic| L. BEFS1E8E ptrs_and. BE
@EFE1810 -
C @ ES @826 32bit GIFFF

e F 8 CS BE22 22bit GIFFF
ey P I — A @ S5 BBZE SZhit BIFFF

. Z @ D05 6626 37bit GiFFF
aarziazz|| L sDedze LEA EAX.DWORD FTR $5:[ESF] BB s s Gl
perz1eze|] - e PUSH _ER%) I8 GBS BESC 3500t BLFFF
porcinze (| . 2D4ce4 ms LEA ECH,DWORD PTR S55:[ESP+S] oA
QEFS1azE|] . 51 L FUSH ECH T80 @ LastErr ERROR_SUCCE
Stack So: LOBIGF CED1=H00Ba LS EFL @BGBEZH2 (MO, ME,ME,F
ECH=BAEEFCFS
Local call from GEFS1EEE g;? :mgg: g-g
Addrezs |Hex dump ASCIT BEFS1E32 RETURN to ptrs_and.!
BETLFCEE| 01 OB 60 GO] 8 11 F2 O8] 6... 40, eaE e
QEZSFO0A(A1 G Ba GA| 22 12 15 oA|@, .. (4. ERESAE) dasaing
GRSSFOGS| 16 23 15 68| 15 DE ES 19| MiE. It e HoaAn
e ARl | (2 () () (39 (U8 (1) @] ogggoooo BEZEFCF4| EFBEZE30| RETURN to MSUCRLGE.:
Ry R B

RN
BESEFOES| 45 CF OS FD| 76 FO S5 68| fr o, DDSSFLEL| orslito RETURN to ptrs_and.!
@AZSFO0ZE| @3 16 F2 08|17 62 25 19]..°.4804 SEESATE B

Figure 9.8: OllyDbg: £1 () finished

9.3 Conclusion

HEF 21 EEE 2B4C24 B2 MOL EC:H, DWORD PTR S ESF+21] a | Registers (FPUI
BEF21864 B4 MOU ER, OWORD PTR S5: CESP+41] =—¥FER+ BoEE0E1S
BEFE1 BES LEA ECi, DWORD FTR DS: [EAX+ECK] (o RS
BEFS180E IMUL ERX, ECH T | E0y GEEEEZ42
HEF 21 HEE MOY ECH, DWORD PTR SS5: [ESP+16] EEY HEREESEE
BEF21a12 PUSH ESI ESF [BE3SFCOC
AEFE1E13 MOU ES1,DMORD PTR S5: [ESP+1@] S e
BEFE1817 MOU DWORD PTR DS:CESIT,EDX S REEEREE
El ggg EE?RD PTR DS: [ECH1,.ERA EDI BEFE3328 ptrs_anc
BEFS1A1C EIF BBFE161B ptrs_anc
|aFz1ain ;
C B8 ES BB2B 3z2bit Gl
SSEE%S%E P 1 CS 88223 22bit 81
AAFR1 A H B8 55 882E 32bit &l
; £ B D05 BEZE 32bit Gl
wEFsiEzz| | . Shadzd LEA ERx,OWORD PTR S5:[ESF] S @ FS BESS 22bit TE
BEFZ21E2e(] « 58 PUSH EHX TH GES BEZE 22bit G
GEFziaz7|] - eD4C24 B2 LEA ECH,DWORD PTR S5: CESP+21]]
aEFE1E2E|] . 51 . FUSH ECH Td0 & LastErr ERROR_SL
Stack [BASSFCOC1=0O0EEEEE] EFL @@@@@azas (MO, ME,. P
ESI=HASEFCFS
STO empty B.0
STl empty 8.8
BEARAREA]
Elelslizas Ilite Shis BECIL BESLFCER| GEFSLEZE| RETURN to prrs_a
HEZEFCFE] 42 B2 BE BE|CE 11 F2 BE| Ca, . 42,
BESSFCES| BOPBEETE
BEISFOEE(a1 BB 88 G@(22 12 15 O06(6... 045,
HESEFCES| GOEOEE]CE
HASEFOES| 18 29 15 @A) 153 DE EE 19| KIS0 a4 BESEFCEC| BESSFCFS
BEZEFO18] B8 B8 88 B8 88 B8 88 Bal........ BESSFCEE
HEZEFO12| B8 EA FD FE| B8 B8 B8 BE| ,pHE BOSSFCES | B =
e e - sl
S
areEErEal @3 16 B2 GRl 17 62 28 14 HT\P:E:NFJ. s RETURM to ptrs_a

£1 () can return results to any place in memory, located anywhere. This is essence and usefulness of pointers.
By the way, C++ references works just in the same way. Read more about them: (33).

68

CHAPTER 10. CONDITIONAL JUMPS

Chapter 10

Conditional jumps

Now about conditional jumps.

#include <stdio.h>

void f_signed (int a, int b)

{
if (a>b)
printf ("a>b\n");
if (a==b)
printf ("a==b\n");
if (a<b)
printf ("a<b\n");
Jg
void f_unsigned (unsigned int a, unsigned int b)
{
if (a>b)
printf ("a>b\n");
if (a==b)
printf ("a==b\n");
if (a<b)
printf ("a<b\n");
75
int main()
{
f_signed(1, 2);
f_unsigned(1, 2);
return O;
};
10.1 x86

10.1.1 x86 + MSVC

What we have in the £ _signed () function:

Listing 10.1: Non-optimizing MSVC 2010

_a$ =8

_b$ = 12

_f_signed PROC
push ebp
mov ebp, esp

mov eax, DWORD PTR _a$[ebp]
cmp eax, DWORD PTR _Db$[ebp]

69

10.1. X86 CHAPTER 10. CONDITIONAL JUMPS
jle SHORT $LN3@f_signed
push OFFSET $SG737 ; 2a>b?
call _printf
add esp, 4
$LN3@f _signed:
mov ecx, DWORD PTR _a$[ebp]
cmp ecx, DWORD PTR _b$[ebp]
jne SHORT $LN20@f_signed
push OFFSET $SG739 ; ’a==b’
call _printf
add esp, 4
$LN2@f _signed:
mov edx, DWORD PTR _a$[ebp]
cmp edx, DWORD PTR _b$[ebp]
jge SHORT $LN4@f_signed
push OFFSET $SG741 ; 2a<b?
call _printf
add esp, 4
$LN40Qf_signed:
pop ebp
ret 0
_f_signed ENDP

First instruction JLE means Jump if Less or Equal. In other words, if second operand is larger than first or equal, control
flow will be passed to address or label mentioned in instruction. But if this condition will not trigger (second operand less
than first), control flow will not be altered and first printf () will be called. The second check is JNE: Jump if Not Equal.
Control flow will not altered if operands are equals to each other. The third check is JGE: Jump if Greater or Equal—jump if
the first operand is larger than the second or if they are equals to each other. By the way, if all three conditional jumps are
triggered, no printf () will be called whatsoever. But, without special intervention, it is nearly impossible.

f_unsigned() functionis likewise, with the exception the JBE and JAE instructions are used here instead of JLE and JGE,
see below about it:

Now let’s take a look to the £f_unsigned () function

Listing 10.2: GCC

_a$ =8 ; size = 4
_b$ = 12 ; size = 4
_f_unsigned PROC
push ebp
mov ebp, esp
mov eax, DWORD PTR _a$[ebp]
cmp eax, DWORD PTR _b$[ebp]
jbe SHORT $LN3Qf_unsigned
push OFFSET $SG2761 ; ’a>b’
call _printf
add esp, 4
$LN3@f _unsigned:
mov ecx, DWORD PTR _a$[ebp]
cmp ecx, DWORD PTR _Db$[ebp]
jne SHORT $LN2@f_unsigned
push OFFSET $SG2763 ; ’a==b’
call _printf
add esp, 4
$LN2@f _unsigned:
mov edx, DWORD PTR _a$[ebp]
cmp edx, DWORD PTR _b$[ebp]
jae SHORT $LN4Q@f_unsigned
push OFFSET $SG2765 ; ’a<b’
call _printf
add esp, 4
$LN40Qf _unsigned:
pop ebp

70

10.1. X86

CHAPTER 10. CONDITIONAL JUMPS

ret

0

_f_unsigned ENDP

Almost the same, with exception of instructions: JBE—Jump if Below or Equal and JAE—Jump if Above or Equal. These
instructions (JA/JAE/JBE/JBE) are distinct from JG/JGE/JL/JLE in that way, they works with unsigned numbers.

See also section about signed number representations (35). So, where we see usage of JG/JL instead of JA/JBE or other-
wise, we can almost be sure about signed or unsigned type of variable.

Here is alsomain () function, where nothing much new to us:

Listing 10.3: main ()

PROC
push
mov
push
push
call
add
push
push
call
add
xor
pop
ret
ENDP

_main

_main

_f_unsigned

esp, 8
eax, eax
ebp

0

10.1.2 x86 + MSVC + OllyDbg

We can see how flags are set by running this example in OllyDbg. Let’s begin with £ _unsigned () function, which works with
unsigned number. CMP executed thrice here, but for the same arguments, so flags will be the same each time.
First comparison results: fig.10.1. So, the flags are: C=1, P=1, A=1, Z=0, S=1, T=0, D=0, 0=0. Flags are named by one charac-
ters in OllyDbg for brevity.
OllyDbg gives a hint that (JBE) jump will be triggered. Indeed, if to take a look into [14], we will read there that JBE will

trigger if CF=1 or ZF=1. Condition is true here, so jump is triggered.

The next conditional jump:fig.10.2. OllyDbg gives a hint that JNZ will trigger. Indeed, JNZ will trigger if ZF=0 (zero flag).
The third conditional jump JNB: fig.10.3. In [14] we may find that JNB will trigger if CF=0 (carry flag). It’s not true in our
case, so the third printf () will execute.

CPU - main thread, module 7_1

Registers [FPLUI

H13B1ESE

r: BB

FLUSH EEF

Y

@izeieci|] . SEBEC MO EEBF,ESP =

@izelesz|]l . SE4E G2 MOW ER, DWORD PTR SS: CEEF+2]

A13B1AGE]] . 3B45 BC CHP EAs, DWORD PTR S5: [EEP+C] o
=] JEE SHORT 7_1.@13B16&2

@izBlecE|] - &2 1oBG2ER] (PUSH 7_1.G0i12BEBG12 ASCIT "axb@™

@izBleced|] « EZ2 _EABOEAEE | CALL 7 _1.812B10EF

B13e18cs] » S3C4 B4 AOO ESF. 4

AizB1E5E|] > SE40 B2 MOW EC, DWORD PTR 55: CEEF+3]

@izelesE|] . 2B4D BC CHMP EC¥,DWORD PTR SS:[EEP+C]

@izeleeE(]l .75 8D JME SHORT v_1.812B16870

@izE167E|) . 68 z@BE3BEl (PUSH 7 _1.813BBB28 RSCII "a==HE"

B12B167VE|] - ES 450BE@RR |CALL 7_1.613B1G6EF

@izelavA|l . S3C4 B4 HOD ESF, 4

@izelayOl]l » SEEE G2 MOW ED, DWORD PTR SS: CEEF+2]

B}SE}BEB . EBESHBE qmg ERKAEMQR? PTRngS:EEBP+E]

ﬁiagié§§=?_1.aiaaiasa

Moo Do

BEEEEEEE L
B1ZB11E2
BEEFEADS
YEFDEEEEG
BEZ 1FaEc
BEZLF6E0
BEEHEEEE
EEEEEEEE

BizBlEca

F_l.B12B11E2

T_l.@i1zBlaca

32bit BIFFFFFFFF)
S2bit BIFFFFFFFF]
22bit B{FFFFFFFF]
22bit BLFFFFFEFE)
32bit FEFDDEEE(FFF)
S2bit BIFFFFFFFFI

ERROF_SUCCESS (BE0E
MO B HE BE. S PE.|

71

Figure 10.1: OllyDbg: £ _unsigned (): first conditional jump

10.1. X86

H12E185R

H13EB16851
H13E1853
B13E1856
H13E18E9
H13E165E
H13E186A
B13E1B8EE
H13E18E2

i

aizeieyg
B12B167E
B13E1E87A
B13B1670
aizelieze

G oo

1gEaSEAL
. E2 SRAEAEEER
. 2204 B4
» 2B40 G2
. SB4D BC

75 B0
. B2 ZEEASEA1
« EB_4LB0BRER
. 93C4 B84

» BBES &2
. Z2BEC BC

T

FUSH EEF

MoW EBP.ESP

MOU ERX, DWORD PTR 55: CEEF+31]

CHP ERX,DWORD PTR SS:[EEP+C]

JEE SHORT v_l.812B1062

P _1.613EBR1S
_1.813E18BF

F, 4
MOW ECi, DWORD FTR S5:[EBF+2]
CHP ECH,DWORD PTR S5: [EBP+C]
JHZ SHORT 7_1.813B1670

PUSH 7_1.B13EE020

CALL 7_1.B13B10EF

AO0 ESF, 4

HOU EDOX,DWORD FTR S5: [EBF+2]
CHP ED¥, DWORD PTR S5:[EEF+C]

Lun ConnT

RASCIT "axb@™

ASCIT "a==b@"™

CHAPTER 10. CONDITIONAL JUMPS

ters [FFLUI

EEEEEEEN
EEEEEEE
BEEFEADS
YEFDEBGE
BE21F36C
EEZ 1F2E0
EEGEREEE
BEEEEREEE

Bi3B186E 7_1.813B106E

H1ZB1EEE
Bi1zBlBes
B1Z2B16EE
B13E186E
B13B1GETE
aizelavs
a1ze167Aa
B13E1870
H13B1AS6

B1z2B1E2E
B13E182R
H13B1GEEF
aizeiEoz

=r_1.813EB187D

DO — Do

ES @8z 22bit BIFFFFF
22bit BLFFFFF
Z2bit BIFFFFF
S2bit BLFFFFF
22bit TEFDDEE
22bit BIFFFFF

ERROF_SLICCESS

Figure 10.2: OllyDbg: £ _unsigned (): second conditional jump

thread, module 7_1

. B3C4 &4

» 2B4D B2

. 2B4D BC
a0

o

. 65 ZOBASEAL
. EB 4EBoobanm
204 G4

. &5 Z22EOSEEL
ES_SHBRaREE
. 93C4 B4
ED

HOO ESF, 4

MO EC, DWORD PTR SS:[EEF+2]
CMP EC¥,DWORD PTR =53 LEEP+C]
JME SHORT 7_1.@813B18v0

FUSH ¥_1.813EEA2A

CALL 7_1.812B18BF

AOD ESF,. 4

HMOW EDW, DWORD PTR S5: [EEP+3]
CHMP ED, DWORD PTR 55: CEEP+C]
JME SHORT v_1.@812B16892

PUSH 7_1.812BEG22

CALL 7— 1 B13B18BF

ASCII "a==HE"

ASCIT "ask@™

Y

Registers [FPLUI

ai1ze1E92|k. C3
B}SE}B?ﬂ CC
Jump 1S MOT take

=r_1. a3z

EIEEEEEE
EECEEER L
BEEHEEE 1
YEFDEEEEG
BEZ 1FaEc
BEZLF6E0
BEEHEEEE
EEEEEEEE

@izeless F_l.@lzEBlo

32bit BIFFI
S2bit B(FFI
22bit B(FFI
22bit BCFFI
Z2bit FEFDI
S2bit BIFFI

LastErr ERROR_ZUCCI

ARRARSY THN.R.HF . R

Figure 10.3: OllyDbg: £ _unsigned (): third conditional jump

Now we can try in OllyDbg the £ _signed () function working with signed values.

Flags are set in the same way: C=1, P=1, A=1, Z=0, S=1, T=0, D=0, 0=0.

The first conditional jump JLE will trigger. fig.10.4. In [14] we may find that this instruction is triggering if ZF=1 or SF=£OF.
SF=£OF in our case, so jump is triggering.
The next JNZ conditional jump will trigger: it does if ZF=0 (zero flag): fig.10.5.
The third conditional jump JGE will not trigger because it will only if SF=OF, and that is not true in our case: fig.10.6.

thread, module

BilZEiE@E|rs 55 FUSH EBFP i
jheaisvers PPOL
g1ze1661 (] . sEEC roy EEF,ESP EEXLEESE;BEEPU]
aizEieas|| . 9845 83 HMOW ERX,OWORD PTR S5: [EEP+81 ECH DRBEEERL
a1sE1665]] o SE4E B CHP EAX, DWORD PTR 55: [EBF+C] —N Er RARFEADS
~TE B0 JLE SHORT 7_1.013E1618 EE" TEFDEAGE
61361668 S BEEAZEEl | PUSH 7_1.013EEGEQ ASCII "a>b@" ESF hEeiEann
a1zgiaia|] . EB HHBBBBBB 7_1.013B18EF EEF DB21Foa0
H13E1RH1E
ES1 BE@EEEEA
Gicinic||3 Be4n o HOU ECH,DWORD PTR SS5:[EBF+3] ERT GRammang
H1ZELIE1E|] .« 2E4D0 8C CHMP ECH,DWORD PTR S5: CEEBP+C]
aizE181E|l 75 80 JHZ SHORT 7_1.@13B1620 EIF O123B1609 7_1.@12E1
AiZE1626(| . 68 BEEGSEAL | FUSH 7_1.015EE6ES ASCIT "a==tE" £S5 BE2B S2hit AiF
GizEi6zc|| - ER SEmBEBEE | CALL 7_1.013B18EF 05 BEZs S=hit BIF
B13E162A 3Cd B4 ADD ESF, 4 S BEeE Sobit BIF
81351820 HOW ED¥,OWORD PTR S5: [EEP+21 S GAZE 32bit ALF
B}SQ}BSB - 3BES qME EHXAENDRQ PTRngSi[EBP+C] il S EESS 37hit FEF
-&ﬁﬁﬂﬁ% 55 @EZE ZZbit BIF
S o 1815
- ! LastErr ERROR_SUC
FFl ARAARSSZ [M. F. HE

Figure 10.4: OllyDbg: £ _unsigned (): first conditional jump

72

10.1. X86

a1zBlong
B13E1861
B13B16GA3
aizelens
a1zelEng
B13E1686E
B13B1G1G
@izeieic|] . S83C4 B4
aizelaig|] > SE4D G2
A13E1EIE]] . 3B4D BC

éE =]

a1zBlE25

B13E182A
B13B1620
aizeliezm

Lo D

L 5BSS @3
. BEES BC

D oo

« 65 BEEASRAL
. E2 ARGAEEEE

. &5 BSEOSES]
. EE SEBREEEE
S3C4 64

FUSH EEF
MoW EBP.ESP
MOU ERX, DWORD PTR 55: CEEF+31]
CHMP EFX,DWORD PTR SS:[EEP+C]
JLE SHORT v_l.B12B1812
PUSH 7_1.913EE0GG
_1.813E18BF

AOO ESF, 4

MOW EC, DWORD PTR SS: [CEEF+2]
CHMP ECH,DWORD PTR S5: [EEP+C]
JHZ SHORT v_1l.815E1820
FUSH ¥_1.812EEG82
CALL 7_1.812B18EBF

AOO ESF. 4

MOU ED, DWORD PTR 55: CEEF+3]
CHP ED:, DMDRD PTR SS EEBP+C]

[Ty =i = W=t

RASCIT "axb@™

ASCIT "a==b@"™

CHAPTER 10. CONDITIONAL JUMPS

CPU - main thread, module 7_1 |

4 |Registers [(FFLUI
BEEEEEE 1
BEEAAEE 1
BEEFESDS
FEFDEBER
BE21F29EC
BEZ1F2EC
[s]s]s]s =T 5]5]
BEEEEEEE

B13B181E 7_1.813E

ES BazB 22bit &
CS BEz22 22bit &l
S5 O82E 32bit Al
O35 BEZE 32bit @i
FS @Ec2 22bit 7E

Jump is taken
= 12E1820

G5 BEZE 22bit 80

LastErr ERROR_SL
a7 (HO.R.HF

Figure 10.5: OllyDbg: £ _unsigned(): second conditional jump

. 2204 B4
» 2B40 G2
B13E1 . SBE4D BC
a@izB1@1iE(] .~-75 8D
aizelezo|]l . &2 B2EAZEE]
@izelezc|] « EZ SEHREEER
B13E182A(] » S3C4 B4
@izBiEz0|] > SEEE B2
E 1 . ZBEC BC
70 B0
GiZEIEZE]] « &8 18BASBA]1
A12B1E3A|] - ES SREAEEEER
aizeliesF 22C4 B4
aizeled4z{]l > 5D

B13E1843| W, C3
G13616844 CC

thread, module 7_1

HOD ESF, 4

MOW EC, DWORD PTR SS: [CEEF+2]
CHMP ECH,DWORD PTR_S5: [EEP+C]
JME SHORT v_1.@13B1620

FUSH 7¥_1.812EEG82

CALL 7_1.812B18EBF

AOO ESF. 4

MOU ED, DWORD PTR 55: CEEF+3]
CHP EDY, DWORD PTR SS: CEEP+C]
JEE SHORT v_l.@12B16842

PUSH v_ 1 81388818

CALL 7_1.813E18BF

ASCII "a==b@"™

RASCIT "aib@™

ry

Registers (FPLUI

EQ BEEEEEE]
ECH BEEEEEE 1
ELCi BEEEEEE 1
EEY VEFDE@@Ea
ESP BE21F2Ec
EEF @@z 1F2ac
EST BEEEEEEE
EDI @a@@aaa:a

EIF 8121822 7_l.812B1822

ES BAZE 32bit BIFFFF
CS @az3 22bit BIFFFF
S2 EEzE 22bit BLFFFF
DS @82E 32bit BIFFFF
FS BASS 32bit FEFOOG

dumE iz HOT taken R

G5 B8zE 22bit BIFFFF
LastErr ERROR_SUCCES

FFl AARARAST (HN.R.HF.RF.

Figure 10.6: OllyDbg: £ _unsigned (): third conditional jump

10.1.3 x86 + MSVC + Hiew

We can try patch executable file in that way, that £ _unsigned () function will always print “a==b”, for any input values.
Here is how it looks in Hiew: fig.10.7.

Essentially, we’ve got three tasks:

e force first jump to be always triggered;

e force second jump to be never triggered;

e force third jump to be always triggered.

Thus we can point code flow into the second printf (), and it always print “a==b".
Three instructions (or bytes) should be patched:

e The first jump will now be JMP, but jump offset will be same.

e Thesecond jump may be triggered sometimes, but in any case it will jump to the next instruction, because, we set jump
offset to 0. Jump offset is just to be added to the address of the next instruction in these instructions. So if offset is 0,
jump will be done to the next instruction.

e The third jump we convert into JMP just as the first one, so it will be triggered always.

That’s what we do: fig.10.8.

If we could forget about any of these jumps, then several printf () calls may execute, but this behaviour is not we’re

need.

73

10.1. X86 CHAPTER 10. CONDITIONAL JUMPS

-ii x|

\Polygon\ollydbg\7 1.exe a32 PE .P0401008 |Hiew 8.82 (c)SEN

2Fi1B1k 3CryBlk 4 5 6 9 ldleawve (11

Figure 10.7: Hiew: f _unsigned () function

74

10.1. X86 CHAPTER 10. CONDITIONAL JUMPS

-ii x|

EFWO EDITMODE a32 PE 09@pa434 | Hiew 8.82 (c)SEN

mons
cmp
jmps
push
call
add

jmps
push
call
add

pop

int
int
int
int
int

Figure 10.8: Hiew: let’s modify f _unsigned () function

10.1.4 Non-optimizing GCC

Non-optimizing GCC 4.4.1 produce almost the same code, but with puts () (2.3.3) instead of printf ().

10.1.5 Optimizing GCC

Observant reader may ask, why to execute CMP so many times, if flags are same all the time? Perhaps, optimizing MSVC can’t
do this, but optimizing GCC 4.8.1 can do deep optimization:

Listing 10.4: GCC 4.8.1f_signed()

f_signed:
mov eax, DWORD PTR [esp+8]
cmp DWORD PTR [esp+4], eax
jg .L6
je L7
jge .L1
mov DWORD PTR [esp+4], OFFSET FLAT:.LC2 ; "a<b"
jmp puts
.L6:
mov DWORD PTR [esp+4], OFFSET FLAT:.LCO ; "a>b"
Jjmp puts
Sl 8
rep ret
L7:
mov DWORD PTR [esp+4], OFFSET FLAT:.LC1 ; "a==b"
Jjmp puts

(0]

10.2. ARM CHAPTER 10. CONDITIONAL JUMPS

We also see JMP puts here instead of CALL puts / RETN. This kind of trick will be described later: 11.1.1.

Needless to say, that type of x86 code is rare. MSVC 2012, as it seems, can’t do that. On the other case, assembly language
programmers are fully aware of the fact that Jcc instructions can be stacked. So if you see it somewhere, it may be a good
probability that the code is hand-written.

f_unsigned () function is not that aesthetically short:

Listing 10.5: GCC 4.8.1 f_unsigned()

f_unsigned:

push esi
push ebx
sub esp, 20
mov esi, DWORD PTR [esp+32]
mov ebx, DWORD PTR [esp+36]
cmp esi, ebx
ja .L13
cmp esi, ebx ; instruction may be removed
je .L14
.L10:
jb .L15
add esp, 20
pop ebx
pop esi
ret
.L15:
mov DWORD PTR [esp+32], OFFSET FLAT:.LC2 ; "a<b"
add esp, 20
pop ebx
pop esi
jmp puts
.L13:
mov DWORD PTR [esp], OFFSET FLAT:.LCO ; "a>b"
call puts
cmp esi, ebx
jne .L10
.L14:
mov DWORD PTR [esp+32], OFFSET FLAT:.LC1 ; "a==b"
add esp, 20
pop ebx
pop esi
Jjmp puts

So, optimization algorithms of GCC 4.8.1 are probably not always perfect yet.

10.2 ARM

10.2.1 Optimizing Keil + ARM mode

Listing 10.6: Optimizing Keil + ARM mode

.text :000000B8 EXPORT f_signed

.text :000000B8 f_signed ; CODE XREF: main+C
.text:000000B8 70 40 2D E9 STMFD SP!, {R4-R6,LR}
.text:000000BC 01 40 AO E1 MOV R4, R1

.text:000000CO 04 00 50 E1 CMP RO, R4

.text:000000C4 00 50 AO E1 MOV R5, RO

.text:000000C8 1A OE 8F C2 ADRGT RO, aAB ; "a>b\n"
.text:000000CC A1 18 00 CB BLGT __2printf

.text:000000D0 04 00 55 E1l CMP R5, R4

.text:000000D4 67 OF 8F 02 ADREQ RO, aAB_O ; "a==b\n"
.text:000000D8 9E 18 00 OB BLEQ __2printf

.text:000000DC 04 00 55 E1 CMP R5, R4

76

10.2. ARM CHAPTER 10. CONDITIONAL JUMPS

.text :000000E0 70 80 BD A8 LDMGEFD SP!, {R4-R6,PC}

.text :000000E4 70 40 BD E8 LDMFD SP!, {R4-R6,LR}
.text:000000E8 19 OE 8F E2 ADR RO, aAB_1 ; "a<b\n"
.text:000000EC 99 18 00 EA B __2printf

.text :000000EC ; End of function f_signed

A lot of instructions in ARM mode can be executed only when specific flags are set. E.g. this is often used while numbers
comparing.

For instance, ADD instruction is ADDAL internally in fact, where AL meaning Always, i.e., execute always. Predicates are
encoded in 4 high bits of 32-bit ARM instructions (condition field). B instruction of unconditional jump is in fact conditional
and encoded just like any other conditional jumps, but has AL in the condition field, and what it means, executing always,
ignoring flags.

ADRGT instructions works just like ADR but will execute only in the case when previous CMP instruction, while comparing
two numbers, found one number greater than another (Greater Than).

The next BLGT instruction behaves exactly as BL and will be triggered only if result of comparison was the same (Greater
Than). ADRGT writes a pointer to the string ““a>b\n’’, into RO and BLGT calls printf (). Consequently, these instructions with
-GT suffix, will be executed only in the case when value in the RO (a is there) was bigger than value in the R4 (b is there).

Then we see ADREQ and BLEQ instructions. They behave just like ADR and BL but is to be executed only in the case when
operands were equal to each other while comparison. Another CMP is before them (since printf () call may tamper state of
flags).

Then we see LDMGEFD, this instruction works just like LDMFD', but will be triggered only in the case when one value was
greater or equal to another while comparison (Greater or Equal).

The sense of “LDMGEFD SP!, {R4-R6,PC} instruction is that is like function epilogue, but it will be triggered only if
a >= b, only then function execution will be finished. But if it is not true, i.e., a < b, then control flow come to next <‘LDMFD
SP!, {R4-R6,LR}’’ instruction, this is one more function epilogue, this instruction restores R4-R6 registers state, but also
LR instead of PC, thus, it does not returns from function. Last two instructions calls printf () with the string «a<b\n» as
sole argument. Unconditional jump to the printf () function instead of function return, is what we already examined in
«printf () with several arguments» section, here (5.3.2).

f_unsigned is likewise, but ADRHI, BLHI, and LDMCSFD instructions are used there, these predicates (H/ = Unsigned
higher, CS = Carry Set (greater than or equal)) are analogical to those examined before, but serving for unsigned values.

There is not much new in the main () function for us:

Listing 10.7: main ()

.text:00000128 EXPORT main
.text:00000128 main

.text:00000128 10 40 2D E9 STMFD SP!, {R4,LR}
.text:0000012C 02 10 AO E3 MOV R1, #2
.text:00000130 01 00 AO E3 MOV RO, #1
.text:00000134 DF FF FF EB BL f_signed
.text:00000138 02 10 AO E3 MOV R1, #2
.text:0000013C 01 00 AO E3 MOV RO, #1
.text:00000140 EA FF FF EB BL f_unsigned
.text:00000144 00 00 AO E3 MOV RO, #0
.text:00000148 10 80 BD E8 LDMFD SP!, {R4,PC}
.text:00000148 ; End of function main

That’s how to get rid of conditional jumps in ARM mode.

Why it is so good? Since ARM is RISC-processor with pipeline for instructions executing. In short, pipelined processor is
not very good on jumps at all, so that is why branch predictor units are critical here. It is very good if the program has as few
jumps as possible, conditional and unconditional, so that is why, predicated instructions can help in reducing conditional
jumps count.

There is no such feature in x86, if not to count CMOVcc instruction, it is the same as MOV, but triggered only when specific
flags are set, usually set while value comparison by CMP.

10.2.2 Optimizing Keil + thumb mode

Listing 10.8: Optimizing Keil + thumb mode

.text:00000072 f_signed ; CODE XREF: main+6
.text:00000072 70 B5 PUSH {R4-R6,LR}

Load Multiple Full Descending

7

10.2. ARM CHAPTER 10. CONDITIONAL JUMPS
.text:00000074 0C 00 MOVS R4, R1

.text:00000076 05 00 MOVS R5, RO

.text:00000078 A0 42 CMP RO, R4

.text:0000007A 02 DD BLE loc_82

.text:0000007C A4 AO ADR RO, aAB "a>b\n"

.text :0000007E 06 FO B7 F8 BL __2printf

.text :00000082

.text:00000082 loc_82 ; CODE XREF: f_signed+8
.text:00000082 A5 42 CMP R5, R4

.text:00000084 02 D1 BNE loc_8C

.text:00000086 A4 AO ADR RO, aAB_0 "a==b\n"
.text:00000088 06 FO B2 F8 BL __2printf

.text :0000008C

.text :0000008C loc_8C ; CODE XREF: f_signed+12
.text:0000008C A5 42 CMP R5, R4

.text :0000008E 02 DA BGE locret_96

.text:00000090 A3 AO ADR RO, aAB_1 "a<b\n"

.text:00000092 06 FO AD F8 BL __2printf

.text :00000096

.text:00000096 locret_96 ; CODE XREF: f_signed+1C
.text:00000096 70 BD POP {R4-R6,PC}

.text :00000096 ; End of function f_signed

Only B instructions in thumb mode may be supplemented by condition codes, so the thumb code looks more ordinary.

BLE is usual conditional jump Less than or Equal, BNE—Not Equal, BGE—Greater than or Equal.

f_unsigned function is just likewise, but other instructions are used while dealing with unsigned values:BLS (Unsigned
lower or same) and BCS (Carry Set (Greater than or equal)).

78

CHAPTER 11. SWITCH()/CASE/DEFAULT

Chapter 11

switch()/case/default

11.1 Few number of cases

void £ (int a)

{
switch (a)
{
case 0: printf ("zero\n"); break;
case 1: printf ("one\n"); break;
case 2: printf ("two\n"); break;
default: printf ("something unknown\n"); break;
}s
}s
11.1.1 x86

Result (MSVC 2010):
Listing 11.1: MSVC 2010

tved = -4 ; size = 4
_a$ =8 ; size = 4
_f PROC

push ebp

mov ebp, esp

push ecx

mov eax, DWORD PTR _a$[ebp]
mov DWORD PTR tv64[ebp], eax
cmp DWORD PTR tv64[ebp], O

je SHORT $LN4@f
cmp DWORD PTR tv64[ebpl, 1
je SHORT $LN3ef
cmp DWORD PTR tv64[ebp]l, 2
je SHORT $LN20f
jmp SHORT $LN1@f

$LN4Qf :

push OFFSET $SG739 ; ’zero’, OaH, OOH
call _printf
add esp, 4
jmp SHORT $LN7Qf
$LN3ef :
push OFFSET $SG741 ; ’one’, OaH, OOH
call _printf
add esp, 4
jmp SHORT $LN7@f
$LN2ef :
push OFFSET $SG743 ; ’two’, OaH, OOH

79

11.1. FEW NUMBER OF CASES CHAPTER 11. SWITCH()/CASE/DEFAULT
call _printf
add esp, 4
jmp SHORT $LN7@f
$LN1@f:
push OFFSET $SG745 ; ’something unknown’, OaH, OOH
call _printf
add esp, 4

$LN7Qf :
mov esp, ebp
pop ebp
ret 0

f ENDP

Out function with a few cases in switch(), in fact, is analogous to this construction:

void f (int a)
{
if (a==0)
printf ("zero\n");
else if (a==1)
printf ("one\n");
else if (a==2)
printf ("two\n");
else
printf ("something unknown\n");

};

When few cases in switch(), and we see such code, it is impossible to say with certainty, was it switch() in source code, or
just pack of if(). This means, switch() is syntactic sugar for large number of nested checks constructed using if().

Nothing especially new to us in generated code, with the exception the compiler moving input variable a to temporary
local variable tv64.

If to compile the same in GCC 4.4.1, we’ll get almost the same, even with maximal optimization turned on (-03 option).

Now let’s turn on optimization in MSVC (/0x): c1 1.c /Fal.asm /0x

Listing 11.2: MSVC

_a$ =8 ; size = 4
_f PROC
mov eax, DWORD PTR _a$[esp-4]
sub eax, O
je SHORT $LN4ef
sub eax, 1
je SHORT $LN3@f
sub eax, 1
je SHORT $LN2e@f
mov DWORD PTR _a$[esp-4], OFFSET $SG791 ; ’something unknown’, OaH, OOH
jmp _printf
$LN20f :
mov DWORD PTR _a$[esp-4], OFFSET $SG789 ; ’two’, OaH, OOH
jmp _printf
$LN3Of :
mov DWORD PTR _a$[esp-4], OFFSET $SG787 ; ’one’, OaH, OOH
jmp _printf
$LN4QT :
mov DWORD PTR _a$[esp-4], OFFSET $SG785 ; ’zero’, OaH, OOH
jmp _printf
f ENDP

Here we can see even dirty hacks.

First: the value of the a variable is placed into EAX and 0 subtracted from it. Sounds absurdly, but it may needs to check
if 0 was in the EAX register before? If yes, flag ZF will be set (this also means that subtracting from 0 is 0) and first conditional
jump JE (Jump if Equal or synonym JZ —Jump if Zero) will be triggered and control flow passed to the $LN4@f label, where
’zero’ message is begin printed. If first jump was not triggered, 1 subtracted from the input value and if at some stage 0 will
be resulted, corresponding jump will be triggered.

80

11.1. FEW NUMBER OF CASES CHAPTER 11. SWITCH()/CASE/DEFAULT

And if no jJump triggered at all, control flow passed to the printf () with argument ’something unknown’.

Second: we see unusual thing for us: string pointer is placed into the a variable, and then printf () is called not via
CALL, but via JMP. This could be explained simply. Caller pushing to stack a value and calling our function via CALL. CALL
itself pushing returning address to stack and do unconditional jump to our function address. Our function at any point of
execution (since it do not contain any instruction moving stack pointer) has the following stack layout:

e ESP—pointing to RA
e ESP+4—pointing to the a variable

On the other side, when we need to call printf () here, we need exactly the same stack layout, except of first printf ()
argument pointing to string. And that is what our code does.

It replaces function’s first argument to different and jumping to the printf (), asif not our function £ () was called firstly,
butimmediately printf (). printf () printing a string to stdout and then execute RET instruction, which POPping RA from
stack and control flow is returned not to £ () but to the £ ()’s callee, escaping £ ().

All this is possible since printf () is called right at the end of the £ () function in any case. In some way, it is all similar to
the Longjmp () function. And of course, it is all done for the sake of speed.

Similar case with ARM compiler described in “printf () with several arguments”, section, here (5.3.2).

11.1.2 ARM: Optimizing Keil + ARM mode

.text:0000014C f1

.text:0000014C 00 00 50 E3 CMP RO, #0

.text:00000150 13 OE 8F 02 ADREQ RO, aZero ; "zero\n"
.text:00000154 05 00 00 OA BEQ loc_170

.text:00000158 01 00 50 E3 CMP RO, #1

.text:0000015C 4B OF 8F 02 ADREQ RO, aOne ; "one\n"
.text:00000160 02 00 00 0OA BEQ loc_170

.text:00000164 02 00 50 E3 CMP RO, #2

.text:00000168 4A OF 8F 12 ADRNE RO, aSomethingUnkno ; "something unknown\n"
.text:0000016C 4E OF 8F 02 ADREQ RO, aTwo ; "two\n"
.text:00000170

.text:00000170 loc_170 ; CODE XREF: f1+8
.text:00000170 ; f1+14
.text:00000170 78 18 00 EA B __2printf

Again, by investigating this code, we cannot say, was it switch() in the original source code, or pack of if() statements.

Anyway, we see here predicated instructions again (like ADREQ (Equal)) which will be triggered only in R0 = 0 case, and
the, address of the «zero\n» string will be loaded into the RO. The next instruction BEQ will redirect control flow to 1oc_170,
if RO = 0. By the way, astute reader may ask, will BEQ triggered right since ADREQ before it is already filled the RO register
with another value. Yes, it will since BEQ checking flags set by CMP instruction, and ADREQ not modifying flags at all.

By the way, there is -S suffix for some instructions in ARM, indicating the instruction will set the flags according to the
result, and without it —the flags will not be touched. For example ADD unlike ADDS will add two numbers, but flags will not
be touched. Such instructions are convenient to use between CMP where flags are set and, e.g. conditional jumps, where
flags are used.

Other instructions are already familiar to us. There isonly one call to printf (), at the end, and we already examined this
trick here (5.3.2). There are three paths to printf () at the end.

Also pay attention to what is going on if a = 2 and if a is not in range of constants it is comparing against. “CMP RO,
#2°’ instruction is needed here to know, if a = 2 or not. If itis not true, then ADRNE will load pointer to the string «<something
unknown \n» into RO since a was already checked before to be equal to 0 or 1, so we can be assured the a variable is not equal
to these numbers at this point. And if RO = 2, a pointer to string «two\n» will be loaded by ADREQ into RO.

11.1.3 ARM: Optimizing Keil + thumb mode

.text:000000D4 f1

.text:000000D4 10 B5 PUSH {R4,LR}
.text:000000D6 00 28 CMP RO, #0
.text:000000D8 05 DO BEQ zero_case
.text:000000DA 01 28 CMP RO, #1

Thttp://en.wikipedia.org/wiki/Setjmp.h

81

http://en.wikipedia.org/wiki/Setjmp.h

11.2. ALOT OF CASES CHAPTER 11. SWITCH()/CASE/DEFAULT

.text:000000DC 05 DO BEQ one_case

.text:000000DE 02 28 CMP RO, #2

.text:000000E0 05 DO BEQ two_case

.text:000000E2 91 AO ADR RO, aSomethingUnkno ; "something unknown\n"
.text:000000E4 04 EO B default_case

.text:000000E6 ;

.text :000000E6 zero_case ; CODE XREF: f1+4
.text:000000E6 95 AO ADR RO, aZero ; "zero\n"

.text :000000E8 02 EO B default_case

.text :000000EA ;

.text:000000EA one_case ; CODE XREF: £1+8
.text :000000EA 96 AO ADR RO, aOne ; "one\n"
.text:000000EC 00 EO B default_case

.text:000000EE ;

.text :000000EE two_case ; CODE XREF: f1+C
.text :000000EE 97 AO ADR RO, aTwo ; "two\n"

.text :000000F0 default_case ; CODE XREF: f1+10
.text :000000F0 ; f1+14
.text:000000F0 06 FO 7E F8 BL __2printf

.text:000000F4 10 BD POP {R4,PC}

.text :000000F4 ; End of function f1

As | already mentioned, there is no feature of connecting predicates to majority of instructions in thumb mode, so the
thumb-code here is somewhat similar to the easily understandable x86 CISC-code

11.2 A lot of cases

If switch() statement contain a lot of case’s, it is not very convenient for compiler to emit too large code with a lot JE/JNE
instructions.

void £ (int a)

{
switch (a)
{
case 0: printf ("zero\n"); break;
case 1: printf ("one\n"); break;
case 2: printf ("two\n"); break;
case 3: printf ("three\n"); break;
case 4: printf ("four\n"); break;
default: printf ("something unknown\n"); break;
}s
}s
11.2.1 x86
We got (MSVC 2010):
Listing 11.3: MSVC 2010
tved = -4 ; size = 4
_a$ =8 ; size = 4
_f PROC
push ebp
mov ebp, esp

push ecx

mov eax, DWORD PTR _a$[ebp]
mov DWORD PTR tv64[ebp]l, eax
cmp DWORD PTR tv64[ebp]l, 4

82

11.2. ALOT OF CASES CHAPTER 11. SWITCH()/CASE/DEFAULT

ja SHORT $LN1@f
mov ecx, DWORD PTR tv64 [ebp]
jmp DWORD PTR $LN11@f [ecx*4]
$LN6Of :
push OFFSET $SG739 ; ’zero’, 0OaH, OOH
call _printf
add esp, 4
jmp SHORT $LN9@f
$LN5OF :
push OFFSET $SG741 ; ’one’, 0OaH, OOH
call _printf
add esp, 4
jmp SHORT $LN9ef
$LNAOT :
push OFFSET $SG743 ; ’two’, OaH, OOH
call _printf
add esp, 4
jmp SHORT $LN9@f
$LN30Of :
push OFFSET $SG745 ; ’three’, 0OaH, OOH
call _printf
add esp, 4
jmp SHORT $LN9Qf
$LN20f :
push OFFSET $SG747 ; ’four’, OaH, OOH
call _printf
add esp, 4
jmp SHORT $LN9@f
$LN1@f:
push OFFSET $SG749 ; ’something unknown’, OaH, OOH
call _printf
add esp, 4

$LNOOf :
mov esp, ebp
pop ebp
ret 0
npad 2
$LN11Qf:

DD $LN6OE ;

DD $LN5Qf ;

DD $LN4Of ;

DD $LN3ef ;

DD $LN20f ;
_f ENDP

> W N - O

OK, what we see here is: there is a set of the printf () calls with various arguments. All they has not only addresses
in process memory, but also internal symbolic labels assigned by compiler. Besides, all these labels are also places into
$LN11@f internal table.

At the function beginning, if a is greater than 4, control flow is passed to label $LN1@f, where printf () with argument
’something unknown’ is called.

And if avalueis less or equals to 4, let’s multiply it by 4 and add $LN1@f table address. That is how address inside of table
is constructed, pointing exactly to the element we need. For example, let’s say a is equal to 2. 2 x 4 = 8 (all table elements
are addresses within 32-bit process that is why all elements contain 4 bytes). Address of the $LN11@f table + 8 —it will be
table element where $LN4@f label is stored. JMP fetches $LN4@f address from the table and jump to it.

This table called sometimes jumptable.

Then corresponding printf () is called with argument >two’. Literally, jmp DWORD PTR $LN11@f [ecx*4] instruction
means jump to DWORD, which is stored at address $LN11@f + ecx * 4.

npad (61) is assembly language macro, aligning next label so that it will be stored at address aligned on a 4 byte (or 16
byte) border. Thisis very suitable for processor since it is able to fetch 32-bit values from memory through memory bus, cache
memory, etc, in much effective way if it is aligned.

Let’s see what GCC 4.4.1 generates:

83

11.2. ALOT OF CASES CHAPTER 11. SWITCH()/CASE/DEFAULT
Listing 11.4: GCC 4.4.1

public f
f proc near ; CODE XREF: main+10
var_18 = dword ptr -18h
arg_0 = dword ptr 8
push ebp
mov ebp, esp
sub esp, 18h ; char =*
cmp [ebptarg_0], 4
ja short loc_8048444
mov eax, [ebptarg_0]
shl eax, 2
mov eax, ds:off_804855C[eax]
jmp eax
loc_80483FE: ; DATA XREF: .rodata:off_804855C
mov [esp+18h+var_18], offset aZero ; "zero"
call _puts
jmp short locret_8048450
loc_804840C: ; DATA XREF: .rodata:08048560
mov [esp+t18h+var_18], offset alne ; "one"
call _puts
jmp short locret_8048450
loc_804841A: ; DATA XREF: .rodata:08048564
mov [esp+t18h+var_18], offset aTwo ; "two"
call _puts
jmp short locret_8048450
loc_8048428: ; DATA XREF: .rodata:08048568
mov [esp+18h+var_18], offset aThree ; "three"
call _puts
jmp short locret_8048450
loc_8048436: ; DATA XREF: .rodata:0804856C
mov [esp+18h+var_18], offset aFour ; "four"
call _puts
jmp short locret_8048450
loc_8048444: ; CODE XREF: f+A
mov [esp+18h+var_18], offset aSomethingUnkno ; "something unknown"
call _puts
locret_8048450: ; CODE XREF: f+26
; £+434...
leave
retn
f endp
off_804855C dd offset loc_80483FE ; DATA XREF: f+12

dd offset loc_804840C
dd offset loc_804841A
dd offset loc_8048428
dd offset loc_8048436

Itis almost the same, except little nuance: argument arg_0 is multiplied by 4 with by shifting it to left by 2 bits (it is almost
the same as multiplication by 4) (17.3.1). Then label address is taken from of £ _804855C array, address calculated and stored
into EAX, then ““JMP EAX’’do actual jump.

84

11.2. ALOT OF CASES CHAPTER 11. SWITCH()/CASE/DEFAULT
11.2.2 ARM: Optimizing Keil + ARM mode

00000174 £2

00000174 05 00 50 E3 CMP RO, #5 ; switch 5 cases

00000178 00 F1 8F 30 ADDCC PC, PC, RO,LSL#2 ; switch jump

0000017C OE 00 00 EA B default_case ; jumptable 00000178 default case
00000180 it e e LR
00000180

00000180 loc_180 ; CODE XREF: f2+4

00000180 03 00 00 EA B zero_case ; jumptable 00000178 case O

00000184 I et e R e L L e
00000184

00000184 loc_184 ; CODE XREF: f2+4

00000184 04 00 00 EA B one_case ; jumptable 00000178 case 1

00000188 I et et et et
00000188

00000188 loc_188 ; CODE XREF: f2+4

00000188 05 00 00 EA B two_case ; jumptable 00000178 case 2

0000018C I ettt ittt e e e
0000018C

0000018C loc_18C ; CODE XREF: f2+4

0000018C 06 00 00 EA B three_case ; jumptable 00000178 case 3

00000190 it et e e e
00000190

00000190 loc_190 ; CODE XREF: f2+4

00000190 07 00 00 EA B four_case ; jumptable 00000178 case 4

00000194 I et et ittt
00000194

00000194 zero_case ; CODE XREF: f2+4

00000194 ; £2:10c_180

00000194 EC 00 8F E2 ADR RO, aZero ; jumptable 00000178 case 0

00000198 06 00 00 EA B loc_1B8

0000019C it it et L e
0000019C

0000019C one_case ; CODE XREF: f2+4

0000019C ; £2:1oc_184

0000019C EC 00 8F E2 ADR RO, aOne ; jumptable 00000178 case 1

000001A0 04 00 00 EA B loc_1B8

000001A4 it e et
000001A4

000001A4 two_case ; CODE XREF: f2+4

000001A4 ; £2:10c_188

000001A4 01 OC 8F E2 ADR RO, aTwo ; jumptable 00000178 case 2

000001A8 02 00 00 EA B loc_1B8

000001AC it et e e e e T
000001AC

000001AC three_case ; CODE XREF: f2+4

000001AC ; £2:1o0c_18C

000001AC 01 OC 8F E2 ADR RO, aThree ; jumptable 00000178 case 3

000001BO 00 00 00 EA B loc_1B8

000001B4 I ettt it e
000001B4

000001B4 four_case ; CODE XREF: f2+4

000001B4 ; £2:10c_190

000001B4 01 OC 8F E2 ADR RO, aFour ; jumptable 00000178 case 4

000001B8

000001B8 loc_1B8 ; CODE XREF: f2+24

000001B8 ; £2+2C

000001B8 66 18 00 EA B __2printf

000001BC ittt et ettt e
000001BC

85

11.2. ALOT OF CASES CHAPTER 11. SWITCH()/CASE/DEFAULT

000001BC default_case ; CODE XREF: f2+4

000001BC ; £2+8

000001BC D4 00 8F E2 ADR RO, aSomethingUnkno ; jumptable 00000178 default case
000001CO FC FF FF EA B loc_1B8

000001CO ; End of function f2

This code makes use of the ARM feature in which all instructions in the ARM mode has size of 4 bytes.

Let’s keep in mind the maximum value for a is 4 and any greater value must cause «something unknown\n» string printing.

The very first “CMP RO, #5°’instruction compares a input value with 5.

The next ““ADDCC PC, PC, RO,LSL#2’’?2 instruction will execute only if R0 < 5 (CC=Carry clear / Less than). Conse-
quently, if ADDCC will not trigger (itis a RO > 5 case), a jump to default_caselabel will be occurred.

But if RO < 5 and ADDCC will trigger, following events will happen:

Value in the RO is multiplied by 4. In fact, LSL#2 at the instruction’s ending means “shift left by 2 bits”. But as we will see
later (17.3.1) in “Shifts” section, shift left by 2 bits is just equivalently to multiplying by 4.

Then, RO * 4 value we got, is added to current value in the PC, thus jumping to one of B (Branch) instructions located
below.

At the moment of ADDCC execution, value in the PC is 8 bytes ahead (0x180) than address at which ADDCC instruction is
located (0x178), or, in other words, 2 instructions ahead.

Thisis how ARM processor pipeline works: when ADDCC instruction is executed, the processor at the moment is beginning
to process instruction after the next one, so that is why PC pointing there.

If a = 0, then nothing will be added to the value in the PC, and actual value in the PC is to be written into the PC (which
is 8 bytes ahead) and jump to the label loc_180 will happen, this is 8 bytes ahead of the point where ADDCC instruction is.

Incaseofa =1,then PC+8+a*x4 = PC +8+1x4 = PC + 16 = 0x184will be written to the PC, this is the address
of the loc_184 label.

With every 1 added to a, resulting PC increasing by 4. 4 is also instruction length in ARM mode and also, length of each B
instruction length, there are 5 of them in row.

Each of these five B instructions passing control further, where something is going on, what was programmed in switch().
Pointer loading to corresponding string occurring there, etc.

11.2.3 ARM: Optimizing Keil + thumb mode

000000F6 EXPORT £2

000000F6 £2

000000F6 10 B5 PUSH {R4,LR}

000000F8 03 00 MOVS R3, RO

000000OFA 06 FO 69 F8 BL __ARM_common_switch8_thumb ; switch 6 cases

000000FA ;

000000FE 05 DCB 5

O0O0O0OOOFF 04 06 08 OA OC 10 DCB 4, 6, 8, OxA, 0xC, 0x10 ; jump table for switch
statement

00000105 00 ALIGN 2

00000106

00000106 zero_case ; CODE XREF: f2+4

00000106 8D AO ADR RO, aZero ; jumptable OOOOOOFA case O

00000108 06 EO B loc_118

0000010A ;

0000010A

0000010A one_case ; CODE XREF: f2+4

0000010A 8E AO ADR RO, aOne ; jumptable O0O0000FA case 1

0000010C 04 EO B loc_118

0000010E ;

0000010E

0000010E two_case ; CODE XREF: f2+4

0000010E 8F A0 ADR RO, aTwo ; jumptable O0OOOOOFA case 2

00000110 02 EO B loc_118

2ADD—addition

86

11.2. ALOT OF CASES CHAPTER 11. SWITCH()/CASE/DEFAULT
00000112 3

00000112

00000112 three_case ; CODE XREF: f2+4

00000112 90 AO ADR RO, aThree ; jumptable OO0O0000FA case 3

00000114 00 EO B loc_118

00000116 ;

00000116

00000116 four_case ; CODE XREF: f2+4

00000116 91 AO ADR RO, aFour ; jumptable OO0O0000FA case 4

00000118

00000118 loc_118 ; CODE XREF: f2+12

00000118 ; £2+16

00000118 06 FO 6A F8 BL __2printf

0000011C 10 BD POP {R4,PC}

0000011E ;

0000011E

0000011E default_case ; CODE XREF: f2+4

O000011E 82 AO ADR RO, aSomethingUnkno ; jumptable 0O0OOOOOFA default
case

00000120 FA E7 B loc_118

000061D0O EXPORT __ARM_common_switch8_thumb

000061D0 __ARM_common_switch8_thumb ; CODE XREF: example6_f2+4

000061D0 78 47 BX PC

000061D0O 5

000061D2 00 00 ALIGN 4

000061D2 ; End of function __ARM_common_switch8_thumb

000061D2

000061D4 CODE32

000061D4

000061D4 ; S============== SUBROUTTINE

000061D4

000061D4

000061D4 __32__ARM_common_switch8_thumb ; CODE XREF:

__ARM_common_switch8_thumb

000061D4 01 CO 5E E5 LDRB R12, [LR,#-1]

000061D8 0C 00 53 E1 CMP R3, R12

000061DC 0OC 30 DE 27 LDRCSB R3, [LR,R12]

000061E0 03 30 DE 37 LDRCCB R3, [LR,R3]

000061E4 83 CO 8E EO ADD R12, LR, R3,LSL#1

000061E8 1C FF 2F E1 BX R12

000061E8 ; End of function __32__ARM_common_switch8_thumb

One cannot be sure all instructions in thumb and thumb-2 modes will have same size. It is even can be said that in these
modes instructions has variable length, just like in x86.

So there is a special table added, containing information about how much cases are there, not including default-case,
and offset, for each, each encoding a label, to which control must be passed in corresponding case.

A special function here present in order to deal with the table and pass control, named
__ARM_common_switch8_thumb. It is beginning with ““BX PC’’ instruction, which function is to switch processor to ARM-
mode. Then you may see the function for table processing. It is too complex for describing it here now, so | will omit elabo-
rations.

But it is interesting to note the function uses LR register as a pointer to the table. Indeed, after this function calling, LR
will contain address after
“BL __ARM_common_switch8_thumb’’ instruction, and the table is beginning right there.

87

11.2. ALOT OF CASES CHAPTER 11. SWITCH()/CASE/DEFAULT
Itis also worth noting the code is generated as a separate function in order to reuse it, in similar places, in similar cases,
for switch() processing, so compiler will not generate same code at each point.
IDA successfully perceived it as a service function and table, automatically, and added commentaries to labels like jumptable
OO0OOOQOFA case 0.

88

CHAPTER 12. LOOPS

Chapter 12

Loops

12.1 x86

There is a special LOOP instruction in x86 instruction set, it is checking value in the ECX register and if it is not 0, do ECX decre-
ment and pass control flow to the label mentioned in the LOOP operand. Probably, this instruction is not very convenient,
so, | did not ever see any modern compiler emit it automatically. So, if you see the instruction somewhere in code, it is most
likely this is manually written piece of assembly code.

By the way, as home exercise, you could try to explain, why this instruction is not very convenient.
In C/C++ loops are constructed using for (), while (), do/while() statements.

Let’s start with for ().
This statement defines loop initialization (set loop counter to initial value), loop condition (is counter is bigger than a

limit?), what is done at each iteration (increment/decrement) and of course loop body.

for (initialization; condition; at each iteration)

{
loop_body;
}
So, generated code will be consisted of four parts too.
Let’s start with simple example:
#include <stdio.h>
void f(int i)
{
printf ("f(dD\n", i);
};
int main()
{
int i;
for (i=2; i<10; i++)
£(1);
return 0O;
};
Result (MSVC 2010):
Listing 12.1: MSVC 2010
_i$ = -4
_main PROC
push ebp
mov ebp, esp
push ecx
mov DWORD PTR _i$[ebp]l, 2 ; loop initialization
jmp SHORT $LN3@main

89

12.1. X86 CHAPTER 12. LOOPS

$LN2@main:
mov eax, DWORD PTR _i$[ebp] ; here is what we do after each iteration:
add eax, 1 ; add 1 to i value
mov DWORD PTR _i$[ebp], eax
$LN3Cmain:
cmp DWORD PTR _i$[ebp]l, 10 ; this condition is checked *before* each iteration
jge SHORT $LN1@main ; 1f 1 is biggest or equals to 10, let’s finish loop

mov ecx, DWORD PTR _i$[ebp] ; loop body: call £(i)
push ecx

call _f

add esp, 4

jmp SHORT $LN2@main ; jump to loop begin
$LN1@main: ; loop end

xor eax, eax

mov esp, ebp

pop ebp

ret 0

_main ENDP

Nothing very special, as we see.
GCC 4.4.1 emits almost the same code, with one subtle difference:

Listing 12.2: GCC 4.4.1

main proc near ; DATA XREF: _start+17
var_20 = dword ptr -20h
var_4 = dword ptr -4
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 20h
mov [esp+20h+var_4], 2 ; i initializing
jmp short loc_8048476
loc_8048465:
mov eax, [esp+20h+var_4]
mov [esp+20h+var_20], eax
call f
add [esp+20h+var_4], 1 ; i increment
loc_8048476:
cmp [esp+20h+var_4], 9
jle short loc_8048465 ; 1f i<=9, continue loop
mov eax, O
leave
retn
main endp

Now let’s see what we will get if optimization is turned on (/0x):

Listing 12.3: Optimizing MSVC

_main PROC
push esi

mov esi, 2
$LL3Cmain:
push esi
call _f
inc esi
add esp, 4
cmp esi, 10 ; 0000000aH
jl SHORT $LL3@main

90

12.1. X86 CHAPTER 12. LOOPS

xor eax, eax
pop esi
ret 0

_main ENDP

What is going on here is: space for the i variable is not allocated in local stack anymore, but even individual register: the
ESI. Thisis possible in such small functions where not so many local variables are present.

One very important property is the £ () function must not change the value in the ESI. Our compiler is sure here. And if
compiler decided to use the ESI registerin £ () too, its value would be saved then at the £ () function’s prologue and restored
at the £ () function’s epilogue. Almost like in our listing: please note PUSH ESI/POP ESI at the function begin and end.

Let’s try GCC 4.4.1 with maximal optimization turned on (-03 option):

Listing 12.4: Optimizing GCC 4.4.1

main proc near

var_10 = dword ptr -10h
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 10h
mov [esp+10h+var_10], 2
call f
mov [esp+10h+var_10], 3
call £
mov [esp+10h+var_10], 4
call £
mov [esp+10h+var_10], 5
call f
mov [esp+10h+var_10], 6
call £
mov [esp+10h+var_10], 7
call f
mov [esp+10h+var_10], 8
call f
mov [esp+10h+var_10], 9
call f
xor eax, eax
leave
retn

main endp

Huh, GCC just unwind our loop.

Loop unwinding has advantage in these cases when there is not so much iterations and we could economy some execution
speed by removing all loop supporting instructions. On the other side, resulting code is obviously larger.

OK, let’s increase maximal value of the i variable to 100 and try again. GCC resulting:

Listing 12.5: GCC

public main

main proc near

var_20 = dword ptr -20h
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
push ebx
mov ebx, 2 ; i=2
sub esp, 1Ch

nop ; aligning label 1loc_80484D0 (loop body begin) by 16-byte border
loc_80484D0:

91

12.1. X86 CHAPTER 12. LOOPS
mov [esp+20h+var_20], ebx ; pass i as first argument to £()
add ebx, 1 ; i+t
call £
cmp ebx, 64h ; i==1007
jnz short 1loc_80484D0 ; if not, continue
add esp, 1Ch
xor eax, eax ; return O
pop ebx
mov esp, ebp
pop ebp
retn

main endp

It is quite similar to what MSVC 2010 with optimization (/0x) produce. With the exception the EBX register will be fixed
to the i variable. GCC is sure this register will not be modified inside of the £ () function, and if it will, it will be saved at the

function prologue and restored at epilogue, just like here in the main () function.

12.1.1 OllyDbg

Let’s compile our example in MSVC 2010 with /0x and /0b0 options and load it into OllyDbg.
It seems, OllyDbg is able to detect simple loops and show them in square brackets, for convenience: fig.12.1.
By tracing (F8 (step over)) we see how ESI incrementing. Here, for instance, EST =i=6: fig.12.2.
9is a last loop value. That’s why JL will not trigger after increment, and function finishing: fig.12.3.

CPU - main thread, module loops_2
EEEERTIN tC THTS 7
Wil Lo ol it)
pEIz1eln| cco INTZ = EEXLSEEES[FPU]
BA32101E CE IHTS ECH EFBF4714 OFFSET ME
BBBSIBIF CC IHNTS E0 BEEEEEEE
2] PUSH_ESI EEX BOBEHHEE
93331@21 BE BZBEEEEAR MO ESI, 2 ESF BEZ4F0LS
eaziinze|| » 56 PUSH ESI EEF GEZ4FOSE
BASE10Z7 ES D4FFFFFF CALL loops_2.BASS1660 ES BRAGERET
BEszl@ac)) . 46 IHC ESI EDT BAZIEETE loops 2.6
FAz216E20)| .« 2504 B4 ADO ESF, 4
Paaatag|| ~oe E4™ i 2, BA331626 R i
o oops_2.
@a321035|| . S3CE ®OR EAX, EAR E ? Eg SS%E 225{5 SEE
BE221827(] « EE POP ESI A B S5 @E2E 32bit A@0F
8323}323 . gg ﬁﬁgn 0 71 DOF 8028 32bit @ifF
1633 . &8 oeldasmn SHlioop=S=JRASSIRng 05 6 FS GoSs Sohit TEF
AR E S G% BEZE ZZbit @IF
Lacal call EE3511A1
oeat catt from 0 B LastErr ERROR_SUC
FFl ARAARRDS THOLHE.F

Figure 12.1: OllyDbg: main () begin

thread, module loops_2

Ba331alc
aa3z1ain
Ba3z1a81E
HE32181F
Ha331828
BaR331821
BR321826
HE321827
oot
BBSSIBSB
HE3218233
BE331835
ER331837
aR3z1833
HEZ21829

Lol oo

&
E p20npo5e
§ DAFFFFFF

)

- B3C4 B4
S2FE B8R
70 F1
. 23CA
- EE

< BA
JL SHORT loops_2. 882216026
HOR ERH.ERKX
FOF ESI
RETH
PUSH lnnps 2 BE221 406

G oo

L

Registers (FFLI
BREAERES
EFBASE1T MSUCRL
HEEAEZ12
BESEEREE
Ba24F018
BA24F0SS
[[5[]s]s]s]5T)
BRI

BEZ21AZ0

loops_
loops_

22bit
Z2bit
SEbit
2EZbit
22bit

ESP=@az4FD1a

Figure 12.2: OllyDbg: loop body just executed with i=6

92

32bit

12.1. X86 CHAPTER 12. LOOPS

CPU - main thread, module loops_2
EEETT B TNTZ ~|Reaisters (FPU)
e =—TEN: DEDEEEES
R |__NEck eFamselr Msuck
et & EDY BRBOEZ1S

EEY BRG0EEEE
pezz10z1|| . BE Peoe@EEE e R
BE321626 & EEF BE24FOSE
eoazioar|| . ES D4rFFRFF || CALL Loops 2. 88331000 e At
pazzioz0|| o s3ce oe ADD ESF, 4 30 GEEEERRE laeEg
po3dtan|| L G3FE oA CiP_ES1.00 I EIF BESZLEZE loops

o2 oopE_z. CB ES BO2E S2bit

5 05 e 1 G el B
BE321635 RETH bk
pa3siass| o & PUSH loops_2. BE331406 B
T T G5 0028 3abit

0 8 LastErr ERROF

EFl ARAARASS THOL

Figure 12.3: OllyDbg: EST =10, loop end

12.1.2 tracer

As we might see, it is not very convenient to trace in debugger manually. That’s one of the reasons | write tracer for myself.
| open compiled example in IDA, | find the address of the instruction PUSH ESI (passing sole argument into £ ()) and this

is 0x401026 for me and | run tracer:

tracer.exe -l:loops_2.exe bpx=loops_2.exe!0x00401026

BPX just sets breakpoint at address and then will print registers state.
Inthe tracer.log | see after running:

PID=12884|New process loops_2.
(0) loops_2.exe!0x401026
EAX=0x00a328c8 EBX=0x00000000
ESI=0x00000002 EDI=0x00333378
EIP=0x00331026

FLAGS=PF ZF IF

(0) loops_2.exe!0x401026
EAX=0x00000005 EBX=0x00000000
ESI=0x00000003 EDI=0x00333378
EIP=0x00331026

FLAGS=CF PF AF SF IF

(0) loops_2.exe!0x401026
EAX=0x00000005 EBX=0x00000000
ESI=0x00000004 EDI=0x00333378
EIP=0x00331026

FLAGS=CF PF AF SF IF

(0) loops_2.exe!0x401026
EAX=0x00000005 EBX=0x00000000
ESI=0x00000005 EDI=0x00333378
EIP=0x00331026

FLAGS=CF AF SF IF

(0) loops_2.exe!0x401026
EAX=0x00000005 EBX=0x00000000
ESI=0x00000006 EDI=0x00333378
EIP=0x00331026

FLAGS=CF PF AF SF IF

(0) loops_2.exe!0x401026
EAX=0x00000005 EBX=0x00000000
ESI=0x00000007 EDI=0x00333378
EIP=0x00331026

FLAGS=CF AF SF IF

(0) loops_2.exe!0x401026
EAX=0x00000005 EBX=0x00000000
ESI=0x00000008 EDI=0x00333378
EIP=0x00331026

FLAGS=CF AF SF IF

exe

ECX=0x6£0£4714
EBP=0x0024fbfc

ECX=0x6£0a5617
EBP=0x0024fbfc

ECX=0x6f0a5617
EBP=0x0024fbfc

ECX=0x6f0a5617
EBP=0x0024fbfc

ECX=0x6f0a5617
EBP=0x0024fbfc

ECX=0x6f0a5617
EBP=0x0024fbfc

ECX=0x6f0a5617
EBP=0x0024fbfc

EDX=0x00000000
ESP=0x0024fbb8

EDX=0x000ee188
ESP=0x0024£fbb8

EDX=0x000ee188
ESP=0x0024fbb8

EDX=0x000ee188
ESP=0x0024fbb8

EDX=0x000ee188
ESP=0x0024£fbb8

EDX=0x000ee188
ESP=0x0024£fbb8

EDX=0x000ee188
ESP=0x0024£fbb8

93

12.1. X86 CHAPTER 12. LOOPS
(0) loops_2.exe!0x401026

EAX=0x00000005 EBX=0x00000000 ECX=0x6f£0a5617 EDX=0x000ee188

ESI=0x00000009 EDI=0x00333378 EBP=0x0024fbfc ESP=0x0024fbb8

EIP=0x00331026

FLAGS=CF PF AF SF IF

PID=12884|Process loops_2.exe exited. ExitCode=0 (0x0)

We see how value of EST register is changed from 2 to 9.

Even more than that, tracer can collect register values on all addresses within function. This is called trace there. Each
instruction is being traced, all interesting register values are noticed and collected. .idc-script for IDA is then generated. So,
in the IDA I've learned that main () function address is 0x00401020 and | run:

tracer.exe -l:loops_2.exe bpf=loops_2.exe!0x00401020,trace:cc

BPF mean set breakpoint on function.

As aresult, | have got loops_2.exe.idc and loops_2.exe_clear.idc scripts. I’'m loading loops_2.exe.idc into IDA
and | see: fig.12.4

We see that EST can be from 2 to 9 at the begin of loop body, but from 3 to 0xA (10) after increment. We can also see that
main() is finishing with 0 in EAX.

tracer also generates loops_2.exe. txt, containing information about how many times each instruction was executed
and register values:

Listing 12.6: loops_2.exe.txt

0x401020 (.text+0x20), e= 1 [PUSH ESI] ESI=1

0x401021 (.text+0x21), e= 1 [MOV ESI, 2]

0x401026 (.text+0x26), e= 8 [PUSH ESI] ESI=2..9

0x401027 (.text+0x27), e= 8 [CALL 8D1000h] tracing nested maximum level (1) reached,
skipping this CALL 8D1000h=0x8d41000

0x40102¢c (.text+0x2c), e= 8 [INC ESI] ESI=2..9

0x40102d (.text+0x2d), e= [ADD ESP, 4] ESP=0x38fcbc

0x401030 (.text+0x30), e=
0x401033 (.text+0x33), e=

(
([CMP ESI, OAh] ESI=3..0xa
(
0x401035 (.text+0x35), e=
(
(

[JL 8D1026h] SF=false,true OF=false
[XOR EAX, EAX]

[POP ESI]

[RETN] EAX=0

0x401037 (.text+0x37), e=
0x401038 (.text+0x38), e=

= = = 00 00 0

grep can be used here.

text:00481628
.text: 00481020 ; =============== S UB R 0 U T I N E ====s================c=co=c==oooooooao-
text:00481628

text:00481628

.text:@04018208 ; int _ cdecl main{int argc, const char =*argv, const char ==enup)
.text:@0401020 _main proc near ; CODE XREF: __ tmainCRTStartup+11D}p
text:00481628
-text:0040810820 argc
-text:0040108208 argv
-text: 0040810820 envp
text:00481628
text:00481628 push esi : ESI=1
text:004010821 moy esi, 2
text:a0481826

-text: 00401026 loc_401026:

dword ptr &
dword ptr 8
dword ptr 6Ch

CODE XREF: _main+13]j

-text:o0481026 push esi : E5I=2..9

.text:@ou01827 call sub_L@1088 ; tracing nested maximum level (1) reached,
.text:00408182C inc esi : ESI=2..9

-text:oaue1 02D add esp, 4 : ESP=8x38fchbc

-text:o84010308 cmp esi, BAh : ESI=3..8x%a

-text:00481033 jl short loc_4@81826 ; SF=false,true OF=false

.text:B0401835 xor eax, eax

.text:peue1837 pop esi

-text:00481038 retn : EAk=8

.text:pe481038 _main endp

Figure 12.4: IDA with .idc-script loaded

94

12.2. ARM CHAPTER 12. LOOPS
12.2 ARM

12.2.1 Non-optimizing Keil + ARM mode

main
STMFD SP!, {R4,LR}
MOV R4, #2
B loc_368
loc_35C ; CODE XREF: main+1C
MOV RO, R4
BL f
ADD R4, R4, #1
loc_368 ; CODE XREF: main+8
CMP R4, #O0xA
BLT loc_35C
MOV RO, #0

LDMFD SP!, {R4,PC}

Iteration counter i is to be stored in the R4 register.

“MOV R4, #2’instruction justinitializingi.

“MOV RO, R4’’and*‘BL f’’instructionsare compose loop body, the firstinstruction preparing argument for £ () function
and the second is calling it.

‘“ADD R4, R4, #1”’instruction isjustadding 1 to thevariable during each iteration.

“‘CMP R4, #0xA’’ comparing i with 0xA (10). Next instruction BLT (Branch Less Than) will jump if i is less than 10.

Otherwise, 0 will be written into RO (since our function returns 0) and function execution ended.

12.2.2 Optimizing Keil + thumb mode

_main
PUSH {R4,LR}
MOVS R4, #2
loc_132 ; CODE XREF: _main+E
MOVS RO, R4
BL example7_f
ADDS R4, R4, #1
CMP R4, #O0xA
BLT loc_132
MOVS RO, #0
POP {R4,PC}

Practically, the same.

12.2.3 Optimizing Xcode (LLVM) + thumb-2 mode

_main

PUSH {R4,R7,LR}
MOVW R4, #0x1124 ; "%d\n"
MOVS R1, #2
MOVT.W R4, #0

ADD R7, SP, #4
ADD R4, PC

MOV RO, R4

BLX _printf
MOV RO, R4
MOVS R1, #3

BLX _printf

95

12.3. ONE MORE THING CHAPTER 12. LOOPS

MOV RO, R4
MOVS R1, #4
BLX _printf
MOV RO, R4
MOVS R1, #5
BLX _printf
MOV RO, R4
MOVS R1, #6
BLX _printf
MOV RO, R4
MOVS R1, #7
BLX _printf
MOV RO, R4
MOVS R1, #8
BLX _printf
MOV RO, R4
MOVS R1, #9
BLX _printf
MOVS RO, #0
POP {R4,R7,PC}

In fact, this was in my £ () function:

void f(int i)
{
// do something here
printf ("%d\n", 1i);
s

So, LLVM not just unrolled the loop, but also represented my very simple function £ () as inlined, and inserted its body
8 times instead of loop. This is possible when function is so primitive (like mine) and when it is called not many times (like
here).

12.3 One more thing

On the code generated we can see: after jinitialization, loop body will not be executed, but i condition checked first, and only
after loop body is to be executed. And that is correct. Because, if loop condition is not met at the beginning, loop body must
not be executed. For example, this is possible in the following case:

for (i=0; i<total_entries_to_process; i++)
loop_body;

If total_entries_to_process equals to 0, loop body must not be executed whatsoever. So that is why condition checked
before loop body execution.

However, optimizing compiler may swap condition check and loop body, if it sure that the situation described here is not
possible (like in case of our very simple example and Keil, Xcode (LLVM), MSVC in optimization mode).

96

CHAPTER 13. STRLEN()

Chapter 13

strlen()

Now let’s talk about loops one more time. Often, strlen() function'isimplemented using while () statement. Here is how
itis done in MSVC standard libraries:

int strlen (const char * str)

{
const char *eos = str;
while(*eos++) ;
return(eos - str - 1);
3
13.1 x86
Let’s compile:
_eos$ = -4 ; size = 4
_str$ = 8 ; size = 4
_strlen PROC
push ebp
mov ebp, esp
push ecx
mov eax, DWORD PTR _str$[ebp] ; place pointer to string from str
mov DWORD PTR _eos$[ebp]l, eax ; place it to local varuable eos
$LN20strlen_:
mov ecx, DWORD PTR _eos$[ebp] ; ECX=eos

; take 8-bit byte from address in ECX and place it as 32-bit value to EDX with sign extension

movsx edx, BYTE PTR [ecx]

mov eax, DWORD PTR _eos$[ebp] ; EAX=eos

add eax, 1 ; increment EAX

mov DWORD PTR _eos$[ebp]l, eax ; place EAX back to eos

test edx, edx ; EDX is zero?

je SHORT $LN1@strlen_ ; yes, then finish loop

jmp SHORT $LN2@strlen_ ; continue loop
$LN1@strlen_:

; here we calculate the difference between two pointers

mov eax, DWORD PTR _eos$[ebp]

sub eax, DWORD PTR _str$[ebp]

sub eax, 1 ; subtract 1 and return result
mov esp, ebp

Tcounting characters in string in C language

97

13.1. X86 CHAPTER 13. STRLEN()

pop ebp
ret 0
strlen ENDP

Two new instructions here: MOVSX (13.1) and TEST.

About first: MOVSX (13.1) is intended to take byte from a point in memory and store value in a 32-bit register. MOVSX (13.1)
meaning MOV with Sign-Extent. Rest bits starting at 8th till 31th MOVSX (13.1) will set to 1 if source byte in memory has minus
sign or to 0 if plus.

And here is why all this.

C/C++ standard defines char type as signed. If we have two values, one is char and another is int, (int is signed too), and
if first value contain —2 (it is coded as 0xFE) and we just copying this byte into int container, there will be 0x000000FE, and
this, from the point of signed int view is 254, but not —2. In signed int, —2 is coded as OxFFFFFFFE. So if we need to transfer
OxFE value from variable of char type to int, we need to identify its sign and extend it. That is what MOVSX (13.1) does.

See also in section “Signed number representations” (35).

I’m not sure if the compiler needs to store char variable in the EDX, it could take 8-bit register part (let’s say DL). Apparently,
compiler’s register allocator works like that.

Then we see TEST EDX, EDX.About TEST instruction, read more in section about bit fields (17). But here, this instruction
just checking value in the EDX, if it is equals to 0.

Let’s try GCC 4.4.1:

public strlen

strlen proc near

eos = dword ptr -4

arg_0 = dword ptr 8
push ebp
mov ebp, esp
sub esp, 10h
mov eax, [ebp+arg_ 0]
mov [ebpteos], eax

loc_80483FO0:
mov eax, [ebp+teos]
movzx eax, byte ptr [eax]
test al, al
setnz al

add [ebp+eos], 1
test al, al
jnz short loc_80483F0
mov edx, [ebp+eos]
mov eax, [ebp+arg_0]
mov ecx, edx
sub ecx, eax
mov eax, ecx
sub eax, 1
leave
retn

strlen endp

The result almost the same as MSVC did, but here we see MOVZX instead of MOVSX (13.1). MOVZX means MOV with Zero-
Extent. This instruction copies 8-bit or 16-bit value into 32-bit register and sets the rest bits to 0. In fact, this instruction is
convenient only since it enable us to replace two instructions at once: xor eax, eax / mov al, [...].

On the other hand, it is obvious to us the compiler could produce the code: mov al, byte ptr [eax] / test al,
al —it is almost the same, however, the highest EAX register bits will contain random noise. But let’s think it is compiler’s
drawback —it cannot produce more understandable code. Strictly speaking, compiler is not obliged to emit understandable
(to humans) code at all.

Next new instruction for us is SETNZ. Here, if AL contain not zero, test al, alwillset0to the ZF flag, but SETNZ, if ZF==0
(NZ means not zero) will set 1 to the AL. Speaking in natural language, if AL is not zero, let’s jump to loc_80483F0. Compiler
emitted slightly redundant code, but let’s not forget the optimization is turned off.

Now let’s compile all this in MSVC 2010, with optimization turned on (/0x):

98

13.1. X86 CHAPTER 13. STRLEN()
_str$ = 8 ; size = 4
_strlen PROC

mov ecx, DWORD PTR _str$[esp-4] ; ECX -> pointer to the string

mov eax, ecx ; move to EAX
$LL20@strlen_:
mov dl, BYTE PTR [eax] ; DL = *xEAX
inc eax ; EAX++
test dl, dl ; DL==07
jne SHORT $LL2@strlen_ ; no, continue loop
sub eax, ecx ; calculate pointers difference
dec eax ; decrement EAX
ret 0

strlen ENDP

Now it is all simpler. But it is needless to say the compiler could use registers such efficiently only in small functions with
small number of local variables.

INC/DEC—are increment/decrement instruction, in other words: add 1to variable or subtract.

Let’s check GCC 4.4.1 with optimization turned on (-03 key):

public strlen

strlen proc near
arg_0 = dword ptr 8
push ebp
mov ebp, esp
mov ecx, [ebp+arg_ 0]
mov eax, ecx

loc_8048418:
movzx edx, byte ptr [eax]

add eax, 1
test dl, dl
jnz short loc_8048418
not ecx
add eax, ecx
pop ebp
retn
strlen endp

Here GCC is almost the same as MSVC, except of MOVZX presence.

However, MOVZX could be replaced here tomov d1, byte ptr [eax].

Probably, itis simpler for GCC compiler’s code generator to remember the whole register is allocated for char variable and
it can be sure the highest bits will not contain any noise at any point.

After, we also see new instruction NOT. This instruction inverts all bits in operand. It can be said, it is synonym to the XOR
ECX, Offffffffhinstruction. NOT and following ADD calculating pointer difference and subtracting 1. At the beginning ECX,
where pointer to str is stored, inverted and 1is subtracted from it.

See also: “Signed number representations” (35).

In other words, at the end of function, just after loop body, these operations are executed:

ecx=str;
eax=eos;
ecx=(-ecx)-1;
eax=eaxtecx
return eax

...and this is effectively equivalent to:

ecx=str;
eax=eos;
eax=eax-ecxXx;
eax=eax-1;
return eax

99

13.2. ARM CHAPTER 13. STRLEN()

Why GCC decided it would be better? | cannot be sure. ButI’m sure the both variants are effectively equivalent in efficiency
sense.

13.2 ARM

13.2.1 Non-optimizing Xcode (LLVM) + ARM mode

Listing 13.1: Non-optimizing Xcode (LLVM) + ARM mode

_strlen
eos = -8
str = -4
SUB SP, SP, #8 ; allocate 8 bytes for local variables
STR RO, [SP,#8+strl
LDR RO, [SP,#8+str]
STR RO, [SP,#8+eos]
loc_2CB8 ; CODE XREF: _strlen+28
LDR RO, [SP,#8+eos]
ADD R1, RO, #1
STR R1, [SP,#8+eos]
LDRSB RO, [RO]
CMP RO, #0
BEQ loc_2CD4
B loc_2CB8
loc_2CD4 ; CODE XREF: _strlen+24
LDR RO, [SP,#8+eos]
LDR R1, [SP,#8+str]
SUB RO, RO, R1 ; RO=eos-str
SUB RO, RO, #1 ; RO=RO-1
ADD SP, SP, #8 ; deallocate 8 bytes for local variables
BX LR

Non-optimizing LLVM generates too much code, however, here we can see how function works with local variables in the
stack. There are only two local variables in our function, eos and str.

In this listing, generated by IDA, | renamed var_8 and var_4 into eos and str manually.

So, first instructions are just saves input value in str and eos.

Loop body is beginning at loc_2CB8 label.

First three instruction in loop body (LDR, ADD, STR) loads eos value into RO, then value is incremented and it is saved back
into eos local variable located in the stack.

The next ““LDRSB RO, [RO0]’’(Load Register Signed Byte) instruction loading byte from memory at RO address and sign-
extends it to 32-bit. This is similar to MOVSX (13.1) instruction in x86. The compiler treating this byte as signed since char type
in C standard is signed. | already wrote about it (13.1) in this section, but related to x86.

Itisshould be noted, itisimpossible in ARM to use 8-bit part or 16-bit part of 32-bit register separately of the whole register,
as it is in x86. Apparently, it is because x86 has a huge history of compatibility with its ancestors like 16-bit 8086 and even
8-bit 8080, but ARM was developed from scratch as 32-bit RISC-processor. Consequently, in order to process separate bytes
in ARM, one have to use 32-bit registers anyway.

So, LDRSB loads symbol from string into RO, one by one. Next CMP and BEQ instructions checks, if loaded symbol is 0. If
not 0, control passing to loop body begin. And if 0, loop is finishing.

At the end of function, a difference between eos and str is calculated, 1is also subtracting, and resulting value is returned
viaRO.

N.B. Registers was not saved in this function. That’s because by ARM calling convention, RO-R3 registers are “scratch
registers”, they are intended for arguments passing, its values may not be restored upon function exit since calling function
will not use them anymore. Consequently, they may be used for anything we want. Other registers are not used here, so that
is why we have nothing to save on the stack. Thus, control may be returned back to calling function by simple jump (BX), to
address in the LR register.

100

13.2. ARM CHAPTER 13. STRLEN()
13.2.2 Optimizing Xcode (LLVM) + thumb mode

Listing 13.2: Optimizing Xcode (LLVM) + thumb mode

_strlen
MOV R1, RO
loc_2DF6 ; CODE XREF: _strlen+8
LDRB.W R2, [R1],#1
CMP R2, #0
BNE loc_2DF6
MVNS RO, RO
ADD RO, R1
BX LR

As optimizing LLVM concludes, space on the stack for eos and str may not be allocated, and these variables may always
be stored right in registers. Before loop body beginning, str will always be in RO, and eos—in R1.

“LDRB.W R2, [R1],#1”’instruction loads byte from memory at the addressR1 into R2, sign-extending it to 32-bit value,
but not only that. #1 at the instruction’s end calling “Post-indexed addressing”, this means, 1 is to be added to the R1 after
byte load. That’s convenient when accessing arrays.

Thereis no such addressing mode in x86, but it is present in some other processors, even on PDP-11. There is a legend the
pre-increment, post-increment, pre-decrement and post-decrement modes in PDP-11, were “guilty” in appearance such C
language (which developed on PDP-11) constructs as *ptr++, *++ptr, *ptr--, *--ptr. By the way, this is one of hard to memorize
C feature. This is how it is:

Cterm ARM term Cstatement | how it works
Post-increment | post-indexed addressing | *ptr++ use *ptr value,

then increment ptr pointer
Post-decrement | post-indexed addressing | *ptr-- use *ptr value,

then decrement ptr pointer
Pre-increment pre-indexed addressing | *++ptr increment ptr pointer,

then use *ptr value
Pre-decrement | post-indexed addressing | *--ptr decrement ptr pointer,

then use *ptr value

Dennis Ritchie (one of C language creators) mentioned that it is, probably, was invented by Ken Thompson (another C
creator) because this processor feature was present in PDP-7 [28] [29]. Thus, C language compilers may use it, if it is present
in target processor.

Then one may spot CMP and BNE? in loop body, these instructions continue operation until 0 will be met in string.

MVNS? (inverting all bits, NOT in x86 analogue) instructions and ADD computes eos — str — 1. In fact, these two instructions
computes R0 = str + eos, which is effectively equivalent to what was in source code, and why it is so, | already described
here (13.1).

Apparently, LLVM, just like GCC, concludes this code will be shorter, or faster.

13.2.3 Optimizing Keil + ARM mode

Listing 13.3: Optimizing Keil + ARM mode

_strlen
MOV R1, RO

loc_2C8 ; CODE XREF: _strlent+14
LDRB R2, [R1],#1
CMP R2, #0

SUBEQ RO, R1, RO
SUBEQ RO, RO, #1
BNE loc_2C8
BX LR

2(PowerPC, ARM) Branch if Not Equal
3MoVe Not

101

13.2. ARM CHAPTER 13. STRLEN()

Almost the same what we saw before, with the exception the str — eos — 1 expression may be computed not at the
function’s end, but right in loop body. -EQsuffix, as we may recall, means the instruction will be executed only if operands in
executed before CMP were equal to each other. Thus, if 0 will be in the RO register, both SUBEQ instructions are to be executed
and result is leaving in the RO register.

102

CHAPTER 14. DIVISION BY 9

Chapter 14

Division by 9

Very simple function:

int f(int a)

{

return a/9;
}s
14.1 x86

...iscompiled in a very predictable way:

Listing 14.1: MSVC

_a$ =8

_f PROC
push
mov
mov
cdq
mov
idiv
pop
ret

f ENDP

ebp
ebp,
eax,

ecx,
ecx
ebp
0

; size = 4

esp
DWORD PTR _a$[ebp]

; sign extend EAX to EDX:EAX
9

IDIV divides 64-bit number stored in the EDX : EAX register pair by value in the ECX register. As a result, EAX will contain
quotient', and EDX —remainder. Result is returning from the £ () function in the EAX register, so, the value is not moved
anymore after division operation, it is in right place already. Since IDIV requires value in the EDX:EAX register pair, CDQ
instruction (before IDIV) extending value in the EAX to 64-bit value taking value sign into account, just as MOVSX (13.1) does.
If we turn optimization on (/0x), we got:

Listing 14.2: Optimizing MSVC

_a$ = 8

_f PROC
mov
mov
imul
sar
mov
shr
add
ret

f ENDP

ecx,
eax,
ecx

edx,
eax,
eax,
eax,

; size = 4

DWORD PTR _a$[esp-4]
954437177 ; 38e38e39H

edx
31 ; 0000001fH
edx

Tresult of division

103

14.2. ARM CHAPTER 14. DIVISION BY 9
This is —division by multiplication. Multiplication operation works much faster. And it is possible to use the trick ? to
produce a code which is effectively equivalent and faster.
This is also called “strength reduction” in compiler optimization.
GCC 4.4.1 even without optimization turned on, generates almost the same code as MSVC with optimization turned on:

Listing 14.3: Non-optimizing GCC 4.4.1

public £
f proc near

arg_0 = dword ptr 8

push ebp
mov ebp, esp
mov ecx, [ebptarg_0]
mov edx, 954437177 ; 38E38E3%h
mov eax, ecx
imul edx
sar edx, 1
mov eax, ecx
sar eax, 1Fh
mov ecx, edx
sub ecx, eax
mov eax, ecx
pop ebp
retn
f endp
14.2 ARM

ARM processor, just like in any other ”"pure” RISC-processors, lacks division instruction It lacks also a single instruction for
multiplication by 32-bit constant. By taking advantage of the one clever trick (or hack), it is possible to do division using only
three instructions: addition, subtraction and bit shifts (17).

Here is an example of 32-bit number division by 10 from [20, 3.3 Division by a Constant]. Quotient and remainder on
output.

; takes argument in al
; returns quotient in al, remainder in a2
; cycles could be saved if only divide or remainder is required
SUB a2, al, #10 ; keep (x-10) for later
SUB al, al, al, lsr #2
ADD al, al, al, 1lsr #4
ADD al, al, al, 1lsr #8
ADD al, al, al, lsr #16
MOV al, al, 1lsr #3
ADD a3, al, al, asl #2

SUBS a2, a2, a3, asl #1 ; calc (x-10) - (x/10)*10
ADDPL al, al, #1 ; fix-up quotient
ADDMI a2, a2, #10 ; fix-up remainder

MOV pc, 1r

14.2.1 Optimizing Xcode (LLVM) + ARM mode

__text:00002C58 39 1E 08 E3 E3 18 43 E3 MOV R1, O0x38E38E39
__text:00002C60 10 F1 50 E7 SMMUL RO, RO, R1
__text:00002C64 CO 10 AO E1 MOV R1, RO,ASR#1
__text:00002C68 AO OF 81 EO ADD RO, R1, RO,LSR#31
__text:00002C6C 1E FF 2F E1 BX LR

2Read more about division by multiplication in [35, 10-3]

104

14.3. HOW IT WORKS CHAPTER 14. DIVISION BY 9

This code is mostly the same to what was generated by optimizing MSVC and GCC. Apparently, LLVM use the same algo-
rithm for constants generating.

Observant reader may ask, how MOV writes 32-bit value in register, while this is not possible in ARM mode. it is impossible
indeed, but, as we see, there are 8 bytes perinstruction instead of standard 4, in fact, there are two instructions. Firstinstruc-
tion loading 0x8E39 value into low 16 bit of register and second instruction is in fact MOVT, it loading 0x383E into high 16-bit
of register. IDA is aware of such sequences, and for the sake of compactness, reduced it to one single “pseudo-instruction”.

SMMUL (Signed Most Significant Word Multiply) instruction multiply numbers treating them as signed numbers, and leaving
high 32-bit part of result in the RO register, dropping low 32-bit part of result.

“MOV R1, RO,ASR#1’’instruction is arithmetic shift right by one bit.

““ADD RO, R1, RO,LSR#31’’is RO = R1+ RO >> 31

As a matter of fact, there is no separate shifting instruction in ARM mode. Instead, an instructions like (MOV, ADD, SUB, RSB)®
may be supplied by option, is the second operand must be shifted, if yes, by what value and how. ASR meaning Arithmetic
Shift Right, LSR—Logican Shift Right.

14.2.2 Optimizing Xcode (LLVM) + thumb-2 mode

MOV R1, Ox38E38E39
SMMUL . W RO, RO, R1

ASRS R1, RO, #1

ADD.W RO, R1, RO,LSR#31
BX LR

There are separate instructions for shifting in thumb mode, and one of them is used here—ASRS (arithmetic shift right).

14.2.3 Non-optimizing Xcode (LLVM) and Keil

Non-optimizing LLVM does not generate code we saw before in this section, but inserts a call to library function ___divsi3
instead.
What about Keil: it inserts call to library function __aeabi_idivmod in all cases.

14.3 How it works

That’s how division can be replaced by multiplication and division by 2™ numbers:

. . 2 .
result — input ::znput-aagag ::znput~AJ
divisor 2n 2n
Where M is magic-coefficient.
That’s how M can be computed:
2TL
M =
divisor
So these code snippets are usually have this form:
nput - M
result = ———
277,

n can be arbitrary number, it may be 32 (then high part of multiplication result is taked from EDX or RDX register), or 31
(then high part of multiplication result is shifted right additionally).

n is choosen in order to minimize error.

When doing signed division, sign of multiplication result also added to the output result.

Take a look at the difference:

int £3_32_signed(int a)
{

return a/3;

};

unsigned int £3_32_unsigned(unsigned int a)

{

return a/3;

3These instructions are also called “data processing instructions”

105

14.4. GETTING DIVISOR

CHAPTER 14. DIVISION BY 9

};

In the unsigned version of function, magic-coefficient is 0xAAAAAAAB and multiplication result is divided by 233.
In the signed version of function, magic-coefficient is 0x55555556 and multiplication result is divided by 232. Sign also
taken from multiplication result: high 32 bits of result is shifted by 31 (leaving sign in least significant bit of EAX). 1 is added

to the final result if sign is negative.

Listing 14.4: MSVC 2012 /Ox

_£3_32_unsigned PROC

mov eax, -1431655765 ; aaaaaaabH
mul DWORD PTR _a$[esp-4] ; unsigned multiply

shr edx, 1

mov eax, edx

ret 0

_f3_32_unsigned ENDP

_f3_32_signed PROC

mov eax, 1431655766 ; 55555556H
imul DWORD PTR _a$[esp-4] ; signed multiply

mov eax, edx

shr eax, 31 ; 0000001fH
add eax, edx ; add 1 if sign is negative

ret 0

_£3_32_signed ENDP

Read more about itin [35,10-3].

14.4 Getting divisor

14.4.1 Variant #1

Often, the code has a form of:

mov eax, MAGICAL CONSTANT

imul input value

sar edx, SHIFTING COEFFICIENT ; signed division by 2°x using arithmetic shift right
mov eax, edx

shr eax, 31

add eax, edx

Let’s denote 32-bit magic-coefficient as M, shifting coefficient by C and divisor by D.
The divisor we need to get is:

932+C
D =
M
For example:
Listing 14.5: Optimizing MSVC 2012
mov eax, 2021161081 ; 78787879H
imul DWORD PTR _a$[esp-4]
sar edx, 3
mov eax, edx
shr eax, 31 ; 0000001fH
add eax, edx
This is:
932+3
~ 2021161081

Numbers are larger than 32-bit ones, so | use Wolfram Mathematica for convenience:

106

14.4. GETTING DIVISOR

CHAPTER 14. DIVISION BY 9

Listing 14.6: Wolfram Mathematica

In[1]:=N[2"(32+3)/2021161081]
Out[1] :=17.

So the divisor from the code | used for example is 17.
As of x64 division, things are the same, but 264 should be used instead of 232

uint64_t f1234(uint64_t a)

{
return a/1234;
I8
Listing 14.7: MSVC 2012 x64 /Ox
£1234 PROC
mov rax, 7653754429286296943 ; 6a37991a23aead6fH
mul rcx
shr rdx, 9
mov rax, rdx
ret 0
£1234 ENDP

Listing 14.8: Wolfram Mathematica

In[1]:=N[2~(64+9)/16~~6a37991a23aecad6f]
Out[1] :=1234.

14.4.2 \Variant #2

A variant with omitted arithmetic shift is also exist:

mov eax, 55555556h ; 1431655766
imul ecx

mov eax, edx

shr eax, 1Fh

The method of getting divisor is simplified:
232
D="—
M
As of my example, this is:
232
D=——"——
1431655766
And again | use Wolfram Mathematica:

Listing 14.9: Wolfram Mathematica

In[1]:=N[2~32/16~"55555556]
OQut[1]:=3.

The divisor is 3.

107

CHAPTER 15. WORKING WITH FPU

Chapter 15

Working with FPU

FPU'—is a device within main CPU specially designed to deal with floating point numbers.
It was called coprocessor in past. It stay aside of the main CPU and looks like programmable calculator in some way and.
It is worth to study stack machines? before FPU studying, or learn Forth language basics®.

It is interesting to know that in past (before 80486 CPU) coprocessor was a separate chip and it was not always settled
on motherboard. It was possible to buy it separately and install *.

Starting at 80486 DX CPU, FPU is always presentin it.

FWAIT instruction may remind us that fact—it switches CPU to waiting state, so it can wait until FPU finishes its work. An-
other rudiment is the fact that FPU-instruction opcodes are started with so called “escape”-opcodes (D8. .DF), i.e., opcodes
passed into FPU.

FPU has a stack capable to hold 8 80-bit registers, each register can hold a number in IEEE 754°format.

C/C++ language offer at least two floating number types, float (single-precision®, 32 bits) 7 and double (double-precision®,
64 bits).

GCC also supports long double type (extended precision®, 80 bit) but MSVC is not.

float type requires the same number of bits as int type in 32-bit environment, but number representation is completely dif-
ferent.

Number consisting of sign, significand (also called fraction) and exponent.

Function having float or double among argument list is getting the value via stack. If function returns float or double value, it
leaves the value in the ST (0) register —at top of FPU stack.

15.1 Simple example

Let’s consider simple example:

double f (double a, double b)

{
return a/3.14 + b*x4.1;

'Floating-point unit

Znttp://en.wikipedia.org/wiki/Stack_machine

3http://en.wikipedia.org/wiki/Forth_(programming_language)

“For example, John Carmack used fixed-point arithmetic values in his Doom video game, stored in 32-bit GPR registers (16 bit for intergral part and
another 16 bit for fractional part), so the Doom could work on 32-bit computer without FPU, i.e., 80386 and 80486 SX

Shttp://en.wikipedia.org/wiki/IEEE_754-2008

Shttp://en.wikipedia.org/wiki/Single-precision_floating-point_format

Tsingle precision float numbers format is also addressed in the Working with the float type as with a structure (18.6.2) section

8http://en.wikipedia.org/wiki/Double-precision_floating-point_format

Shttp://en.wikipedia.org/wiki/Extended_precision

108

http://en.wikipedia.org/wiki/Stack_machine
http://en.wikipedia.org/wiki/Forth_(programming_language)
http://en.wikipedia.org/wiki/IEEE_754-2008
http://en.wikipedia.org/wiki/Single-precision_floating-point_format
http://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/wiki/Extended_precision

15.1. SIMPLE EXAMPLE CHAPTER 15. WORKING WITH FPU
};

15.1.1 x86
Compile itin MSVC 2010:

Listing 15.1: MSVC 2010

CONST SEGMENT

__real@4010666666666666 D) 04010666666666666r ; 4.1
CONST ENDS

CONST SEGMENT

__real@40091eb851eb851f DQ 040091eb851eb851fr ; 3.14
CONST ENDS

_TEXT SEGMENT

_a$ =8 ; size = 8
_b$ = 16 ; size = 8
_f PROC

push ebp

mov ebp, esp

f1d QWORD PTR _a$[ebp]
; current stack state: ST(0) = _a
fdiv QWORD PTR __real@40091eb851eb851f
; current stack state: ST(0) = result of _a divided by 3.13
f1d QWORD PTR _b$[ebp]
; current stack state: ST(0) = _b; ST(1) = result of _a divided by 3.13

fmul QWORD PTR __real@4010666666666666

; current stack state: ST(0) result of _b * 4.1; ST(1) = result of _a divided by 3.13

faddp ST(1), ST(0)

; current stack state: ST(0) result of addition

pop ebp
ret 0
_f ENDP

FLD takes 8 bytes from stack and load the number into the ST (0) register, automatically converting it into internal 80-bit
format extended precision).

FDIV divides valueinthe ST(0) register by number storing at address __real@40091eb851eb851f —3.14 value is coded
there. Assembler syntax missing floating point numbers, so, what we see here is hexadecimal representation of 3.74 number
in 64-bit IEEE 754 encoded.

After FDIV execution, ST(0) will hold quotient'®.

By the way, there is also FDIVP instruction, which divides ST (1) by ST(0), popping both these values from stack and
then pushing result. If you know Forth language", you will quickly understand that this is stack machine'.

Next FLD instruction pushing b value into stack.

After that, quotient is placed to the ST (1) register, and the ST(0) will hold b value.

Next FMUL instruction do multiplication: b from the ST (0) register by value at __real@4010666666666666 (4.1 number
is there) and leaves result in the ST (0) register.

Very last FADDP instruction adds two values at top of stack, storing result to the ST (1) register and then popping value
at ST(1), hereby leaving result at top of stack in the ST(0).

result of division
"http://en.wikipedia.org/wiki/Forth_(programming_language)
Zhttp://en.wikipedia.org/wiki/Stack_machine

109

http://en.wikipedia.org/wiki/Forth_(programming_language)
http://en.wikipedia.org/wiki/Stack_machine

15.1. SIMPLE EXAMPLE CHAPTER 15. WORKING WITH FPU
The function must return result in the ST (0) register, so, after FADDP there are no any other instructions except of function
epilogue.
GCC 4.4.1 (with -03 option) emits the same code, however, slightly different:

Listing 15.2: Optimizing GCC 4.4.1

public f
f proc near
arg_0 = qword ptr 8
arg_8 = gword ptr 10h
push ebp
fld ds:db1_8048608 ; 3.14

; stack state now: ST(0) = 3.13

mov ebp, esp
fdivr [ebp+arg_0]

; stack state now: ST(0) = result of division
f1d ds:dbl_8048610 ; 4.1
; stack state now: ST(0) = 4.1, ST(1) = result of division
fmul [ebp+arg_8]
; stack state now: ST(0) = result of multiplication, ST(1) = result of division

pop ebp
faddp st(1), st

; stack state now: ST(0) = result of addition

retn
f endp

The difference is that, first of all, 3.14 is pushed to stack (into ST(0)), and then value in arg_0 is divided by value in the
ST(0) register.

FDIVR meaning Reverse Divide —to divide with divisor and dividend swapped with each other. There is no likewise in-
struction for multiplication since multiplication is commutative operation, so we have just FMUL without its -R counterpart.

FADDP adding two values but also popping one value from stack. After that operation, ST(0) holds the sum.

This fragment of disassembled code was produced using IDA which named the ST (0) register as ST for short.

15.1.2 ARM: Optimizing Xcode (LLVM) + ARM mode

Until ARM has floating standardized point support, several processor manufacturers may add their own instructions exten-
sions. Then, VFP (Vector Floating Point) was standardized.

One important difference from x86, there you working with FPU-stack, but here, in ARM, there are no any stack, you work
just with registers.

f
VLDR D16, =3.14
VMOV D17, RO, R1 ; load a
VMOV D18, R2, R3 ; load b
VDIV.F64 D16, D17, D16 ; a/3.14
VLDR D17, =4.1
VMUL.F64 D17, D18, D17 ; bx*4.1
VADD.F64 D16, D17, D16 ; +
VMOV RO, R1, D16
BX LR

110

15.1. SIMPLE EXAMPLE CHAPTER 15. WORKING WITH FPU

dbl_2C98 DCFD 3.14 ; DATA XREF: f
dbl_2CAO DCFD 4.1 ; DATA XREF: £+10

So, we see here new registers used, with D prefix. These are 64-bit registers, there are 32 of them, and these can be used
both for floating-point numbers (double) but also for SIMD (it is called NEON here in ARM).

There are also 32 32-bit S-registers, they are intended to be used for single precision floating pointer numbers (float).

It is easy to remember: D-registers are intended for double precision numbers, while S-registers —for single precision
numbers.

Both (3.14 and 4.1) constants are stored in memory in IEEE 754 form.

VLDR and VMQV instructions, as it can be easily deduced, are analogous to the LDR and MOV instructions, but they works
with D-registers. It should be noted that these instructions, just like D-registers, are intended not only for floating point
numbers, but can be also used for SIMD (NEON) operations and this will also be revealed soon.

Arguments are passed to function in common way, via R-registers, however, each number having double precision has
size 64-bits, so, for passing each, two R-registers are needed.

‘“YMOV D17, RO, R1’’attheverybeginning, composingtwo 32-bitvalues from RO and R1 into one 64-bit value and saves
ittoD17.

“YMOV RO, R1, D16’’isinverse operation, what was in D16 leaving in two RO and R1 registers, since double-precision
number, needing 64 bits for storage, is returning in the RO and R1 registers pair.

VDIV, VMUL and VADD, are instruction for floating point numbers processing, computing, quotient', product'and sum'®,
respectively.

The code for thumb-2 is same.

15.1.3 ARM: Optimizing Keil + thumb mode

£

PUSH {R3-R7,LR}

MOVS R7, R2

MOVS R4, R3

MOVS R5, RO

MOVS R6, R1

LDR R2, =0x66666666

LDR R3, =0x40106666

MOVS RO, R7

MOVS R1, R4

BL __aeabi_dmul

MOVS R7, RO

MOVS R4, R1

LDR R2, =0x51EB851F

LDR R3, =0x40091EB8

MOVS RO, R5

MOVS R1, R6

BL __aeabi_ddiv

MOVS R2, R7

MOVS R3, R4

BL __aeabi_dadd

POP {R3-R7,PC}
dword_364 DCD 0x66666666 ; DATA XREF: f+A
dword_368 DCD 0x40106666 ; DATA XREF: f+C
dword_36C DCD 0x51EB851F ; DATA XREF: f+1A
dword_370 DCD 0x40091EBS8 ; DATA XREF: f+1C

Keil generates for processors not supporting FPU or NEON. So, double-precision floating numbers are passed via generic
R-registers, and instead of FPU-instructions, service library functions are called (like __aeabi_dmul, __aeabi_ddiv,__aeabi_dadd
) which emulates multiplication, division and addition floating-point numbers. Of course, that is slower than FPU-coprocessor,
but it is better than nothing.

By the way, similar FPU-emulating libraries were very popular in x86 world when coprocessors were rare and expensive,
and were installed only on expensive computers.

) ——

Bresult of division
result of multiplication
Sresult of addition

111

15.2. PASSING FLOATING POINT NUMBER VIAARGUMENTS CHAPTER 15. WORKING WITH FPU

FPU-coprocessor emulating called soft float or armelin ARM world, while using coprocessor’s FPU-instructions called hard
float or armhf.

For example, Linux kernel for Raspberry Pi is compiled in two variants. In soft float case, arguments will be passed via
R-registers, and in hard float case —via D-registers.

And that is what do not let you use e.g. armhf-libraries from armel-code or vice versa, so that is why all code in Linux
distribution must be compiled according to the chosen calling convention.

15.2 Passing floating point number via arguments

#include <math.h>
#include <stdio.h>

int main ()

{
printf ("32.01 ~ 1.54 = Y1f\n", pow (32.01,1.54));
return 0;

}

15.2.1 x86

Let’s see what we got in (MSVC 2010):

Listing 15.3: MSVC 2010

CONST SEGMENT

__real@40400147ae147ael DQ 040400147aeld7aelr ; 32.01
__real@3ff8a3d70a3d70ad4 DQ 03ff8a3d70a3d70adr ; 1.54
CONST ENDS

_main PROC

push ebp
mov ebp, esp
sub esp, 8 ; allocate place for the first variable

fld QWORD PTR __real@3ff8a3d70a3d70a4d

fstp QWORD PTR [esp]

sub esp, 8 ; allocate place for the second variable
fld QWORD PTR __real@40400147ael47ael

fstp QWORD PTR [esp]

call _pow

add esp, 8 ; "return back" place of one variable.

; in local stack here 8 bytes still reserved for us.
; result now in ST(O)

fstp QWORD PTR [esp] ; move result from ST(0) to local stack for printf()
push OFFSET $SG2651

call _printf

add esp, 12

Xor eax, eax
pop ebp
ret 0

_main ENDP

FLD and FSTP are moving variables from/to data segment to FPU stack. pow()'® taking both values from FPU-stack and
returns result in the ST(0) register. printf () takes 8 bytes from local stack and interpret them as double type variable.

'6standard C function, raises a number to the given power

112

15.2. PASSING FLOATING POINT NUMBER VIA ARGUMENTS

CHAPTER 15. WORKING WITH FPU

15.2.2 ARM + Non-optimizing Xcode (LLVM) + thumb-2 mode

_main

var_C

dbl_2F90
dbl_2F98

= -0xC

PUSH
MOV
SUB
VLDR
VMOV
VLDR
VMOV
BLX
VMoV
MoV
ADD
VMOV
BLX
MOVS
STR
MOV
ADD
POP

DCFD 32.01
DCFD 1.54

"32.01 ~ 1.54 = jlf\n"

XREF: _main+6

{R7,LR}
R7, SP
SP, SP, #4
D16, =32.01
RO, R1, D16
D16, =1.54
R2, R3, D16
_pow
D16, RO, R1
RO, OxFC1 ;
RO, PC
R1, R2, D16
_printf
R1, O
RO, [SP,#0xC+var_C]
RO, R1
SP, SP, #4
{R7,PC}
; DATA
; DATA

XREF: _main+tE

Aslwrote before, 64-bit floating pointer numbers passing in R-registers pairs. Thisis codeisredundant for a little (certainly
because optimization is turned off), because, it is actually possible to load values into R-registers straightforwardly without
touching D-registers.

So, as we see, _pow function receiving first argument in RO and R1, and the second one in R2 and R3. Function leaves
resultin RO and R1. Result of _pow is moved into D16, then in R1 and R2 pair, from where printf () will take this number.

15.2.3 ARM + Non-optimizing Keil + ARM mode

_main

y
dword_520

; double x
X

dword_528
a32_011_5b4Lf

STMFD SP!, {R4-R6,LR}

LDR R2, =0xA3D70A4 ; y
LDR R3, =0x3FF8A3D7

LDR RO, =0xAE147AE1 ; x
LDR R1, =0x40400147

BL pow

MOV R4, RO

MOV R2, R4

MOV R3, R1

ADR RO, a32_011_54Lf ; "32
BL __2printf

MOV RO, #0

LDMFD SP!, {R4-R6,PC}

DCD 0xA3D70A4 ; DATA
DCD 0x3FF8A3D7 ; DATA
DCD 0xAE147AE1 ; DATA
DCD 0x40400147 ; DATA

DCB "32.01 ~ 1.54 = J1f",0xA,0

; DATA

.01 ~ 1.54 = Y1lf\n"

XREF: _maint+4
XREF: _main+t+8
XREF: _main+C
XREF: _main+10
XREF: _maint+24

D-registers are not used here, only R-register pairs are used.

113

15.3. COMPARISON EXAMPLE

CHAPTER 15. WORKING WITH FPU

15.3 Comparison example

Let’s try this:

double d_max (double a, double b)

{
if (a>b)
return a;
return b;
};
15.3.1 x86
Despite simplicity of the function, it will be harder to understand how it works.
MSVC 2010 generated:
Listing 15.4: MSVC 2010
PUBLIC _d_max
_TEXT SEGMENT
_a$ =8 ; size = 8
_b$ = 16 ; size = 8
_d_max PROC
push ebp
mov ebp, esp
f1d QWORD PTR _b$[ebp]
; current stack state: ST(0) = _b

; compare _b (ST(0)) and _a, and pop register
fcomp QWORD PTR _a$[ebp]
; stack is empty here
fnstsw ax
test ah, 5
jip SHORT $LN1@d_max

; we are here only if a>b

fld QWORD PTR _a$[ebp]
jmp SHORT $LN2@d_max

$LN1@d_max:

f1d QWORD PTR _b$[ebp]
$LN2@d_max:

pop ebp

ret 0
_d_max ENDP

So, FLD loading _b into the ST (0) register.

FCOMP compares the value in the ST (0) register with whatisin _a value and set C3/C2/C0 bits in FPU status word register.

This is 16-bit register reflecting current state of FPU.

For now C3/C2/CO bits are set, but unfortunately, CPU before Intel P6 ' has not any conditional jumps instructions which
are checking these bits. Probably, it is a matter of history (remember: FPU was separate chip in past). Modern CPU starting
at Intel P6 has FCOMI/FCOMIP/FUCOMI/FUCOMIP instructions —which does the same, but modifies CPU flags ZF/PF/CF.

After bits are set, the FCOMP instruction popping one variable from stack. This is what distinguish it from FCOM, which is

just comparing values, leaving the stack at the same state.

FNSTSW copies FPU status word register to the AX. Bits C3/C2/CO0 are placed at positions 14/10/8, they will be at the same

positions in the AX register and all they are placed in high part of the AX —AH.

ntel P6 is Pentium Pro, Pentium |1, etc

114

15.3. COMPARISON EXAMPLE CHAPTER 15. WORKING WITH FPU
e If b>ain our example, then C3/C2/CO bits will be set as following: 0, 0, 0.

e If a>b, then bits will be set: 0, 0, 1.
e If a=b, then bits will be set: 1,0, 0.

After test ah, 5 execution, bits C3 and C1 will be set to 0, but at positions 0 and 2 (in the AH registers) CO and C2 bits

will be leaved.
Now let’s talk about parity flag. Another notable epoch rudiment:

One common reason to test the parity flag actually has nothing to do with parity. The FPU has four
condition flags (CO to C3), but they can not be tested directly, and must instead be first copied to the flags
register. When this happens, CO is placed in the carry flag, C2 in the parity flag and C3 in the zero flag. The
C2 flagis set when e.g. incomparable floating point values (NaN or unsupported format) are compared with
the FUCOM instructions.’®

This flag is to be set to 1 if ones number is even. And to 0 if odd.

Thus, PF flag will be set to 1if both CO and C2 are set to 0 or both are 1. And then following JP (jump if PF==1) will be trig-
gered. If we recall values of the C3/C2/CO for various cases, we will see the conditional jump JP will be triggered in two cases:
if b>a or a==b (C3 bit is already not considering here since it was cleared while execution of the test ah, 5 instruction).

Itis all simple thereafter. If conditional jump was triggered, FLD will load the _b value to the ST (0) register, and if it is not
triggered, the value of the _a variable will be loaded.

But it is not over yet!

15.3.2 Now let’s compile it with MSVC 2010 with optimization option /0x

Listing 15.5: Optimizing MSVC 2010

_a$ =8 ; size = 8
_b$ = 16 ; size = 8
_d_max PROC
fld QWORD PTR _b$[esp-4]
fld QWORD PTR _a$[esp-4]

; current stack state: ST(0) = _a, ST(1) = _b
fcom ST(1) ; compare _a and ST(1) = (_b)
fnstsw ax
test ah, 65 ; 00000041H

jne SHORT $LN5@d_max
fstp ST(1) ; copy ST(0) to ST(1) and pop register, leave (_a) on top

; current stack state: ST(0) = _a
ret 0
$LN5@d_max:

fstp ST(0) ; copy ST(0) to ST(0) and pop register, leave (_b) on top
; current stack state: ST(0) = _b

ret 0
_d_max ENDP

FCOMis distinguished from FCOMP in that sense that it just comparing values and leaves FPU stack in the same state. Unlike
previous example, operands here in reversed order. And that is why result of comparison in the C3/C2/C0 will be different:

e If a>b in our example, then C3/C2/CO bits will be set as: 0, 0, 0.
e If b>a, then bits will be set as: 0, 0, 1.

e If a=b, then bits will be set as: 1,0, 0.

115

15.3. COMPARISON EXAMPLE CHAPTER 15. WORKING WITH FPU

It can be said, test ah, 65 instruction just leaves two bits —C3 and CO. Both will be zeroes if a>b: in that case JNE jump
will not be triggered. Then FSTP ST (1) is following —this instruction copies value in the ST(0) into operand and popping
one value from FPU stack. In other words, the instruction copies ST(0) (where _a value is now) into the ST(1). After that,
two values of the _a are at the top of stack now. After that, one value is popping. After that, ST (0) will contain _a and function
is finished.

Conditional jump JNE is triggered in two cases: of b>a or a==b. ST(0) into ST(0) will be copied, it is just like idle (NOP)
operation, then one value is popping from stack and top of stack (ST(0)) will contain what was in the ST(1) before (that is
_b). Then function finishes. The instruction used here probably since FPU has no instruction to pop value from stack and not
to store it anywhere.

Well, but it is still not over.

15.3.3 GCC4.4.1

Listing 15.6: GCC 4.4.1

d_max proc near

b = gword ptr -10h
a = qword ptr -8
a_first_half = dword ptr 8
a_second_half = dword ptr OCh
b_first_half = dword ptr 10h

b_second_half dword ptr 14h

push ebp
mov ebp, esp
sub esp, 10h

; put a and b to local stack:

mov eax, [ebpta_first_half]
mov dword ptr [ebpt+al], eax
mov eax, [ebpta_second_half]
mov dword ptr [ebp+a+4], eax
mov eax, [ebp+b_first_half]
mov dword ptr [ebp+b], eax
mov eax, [ebptb_second_half]
mov dword ptr [ebp+b+4], eax

; load a and b to FPU stack:

f1d [ebp+al
fld [ebp+b]

; current stack state: ST(0) - b; ST(1) - a
fxch st(1) ; this instruction swapping ST(1) and ST(O)

; current stack state: ST(0) - a; ST(1) - b

fucompp ; compare a and b and pop two values from stack, i.e., a and b
fnstsw ax ; store FPU status to AX

sahf ; load SF, ZF, AF, PF, and CF flags state from AH

setnbe al ; store 1 to AL if CF=0 and ZF=0

test al, al ; AL==0 7

jz short loc_8048453 ; yes

f1ld [ebp+al

jmp short locret_8048456

loc_8048453:
f1d [ebp+b]

116

15.3. COMPARISON EXAMPLE CHAPTER 15. WORKING WITH FPU

locret_8048456:
leave
retn

d_max endp

FUCOMPP —is almost like FCOM, but popping both values from stack and handling “not-a-numbers” differently.

More about not-a-numbers:

FPU is able to deal with a special values which are not-a-numbers or NaNs'. These are infinity, result of dividing by 0, etc.
Not-a-numbers can be “quiet” and “signaling”. It is possible to continue to work with “quiet” NaNs, but if one try to do any
operation with “signaling” NaNs —an exception will be raised.

FCOM will raise exception if any operand —NaN. FUCOM will raise exception only if any operand —signaling NaN (SNaN).

The following instruction is SAHF —this is rare instruction in the code which is not use FPU. 8 bits from AH is movinto into
lower 8 bits of CPU flags in the following order: SF:ZF: - : AF: - :PF:-:CF <- AH.

Let’s remember the FNSTSW is moving interesting for us bits C3/C2/C0 into the AH and they will be in positions 6,2, 0 in
the AH register.

In other words, fnstsw ax / sahf instruction pair is moving C3/C2/C0 into ZF, PF, CF CPU flags.

Now let’s also recall, what values of the C3/C2/C0 bits will be set:

e If ais greater than b in our example, then C3/C2/CO bits will be set as: 0, 0, 0.

e ifaislessthan b, then bits will be setas: 0,0, 1.

e If a=b, then bits will be set: 1,0, 0.

In other words, after FUCOMPP/FNSTSW/SAHF instructions, we will have these CPU flags states:
e If a>b, CPU flags will be set as: ZF=0, PF=0, CF=0.

e If a<b, then CPU flags will be set as: ZF=0, PF=0, CF=1.

e If a=b, then CPU flags will be set as: ZF=1, PF=0, CF=0.

How SETNBE instruction will store 1 or 0 to AL: it is depends of CPU flags. It is almost JNBE instruction counterpart, with
the exception the SETcc? is storing 1 or 0 to the AL, but Jcc do actual jump or not. SETNBE store 1 only if CF=0 and ZF=0. If
itis not true, O will be stored into AL.

Both CF is 0 and ZF is 0 simultaneously only in one case: if a>b.

Then one will be stored to the AL and the following JZ will not be triggered and function will return _a. In all other cases,
_bwill be returned.

But it is still not over.

15.3.4 GCC 4.4.1 with -03 optimization turned on

Listing 15.7: Optimizing GCC 4.4.1

public d_max

d_max proc near
arg_0 = qword ptr 8
arg_8 = qword ptr 10h
push ebp
mov ebp, esp
fld [ebptarg_0] ; _a
f1d [ebp+arg_8] ; _b
; stack state now: ST(0) = _b, ST(1) = _a
fxch st (1)
; stack state now: ST(0) = _a, ST(1) = _b

fucom st(1) ; compare _a and _b

Yhttp://en.wikipedia.org/wiki/NaN
20¢c is condition code

117

http://en.wikipedia.org/wiki/NaN

15.3. COMPARISON EXAMPLE CHAPTER 15. WORKING WITH FPU
fnstsw ax
sahf
ja short loc_8048448

; store ST(0) to ST(0) (idle operation), pop value at top of stack, leave _b at top
fstp st
jmp short loc_804844A

loc_8048448:
; store _a to ST(0), pop value at top of stack, leave _a at top
fstp st (1)

loc_804844A:
pop ebp
retn

d_max endp

It is almost the same except one: JA usage instead of SAHF. Actually, conditional jump instructions checking “larger”,
“lesser” or “equal” for unsigned number comparison (JA, JAE, JBE, JBE, JE/JZ, JNA, JNAE, JNB, JNBE, JNE/JNZ) are checking
only CF and ZF flags. And C3/C2/CO bits after comparison are moving into these flags exactly in the same fashion so condi-
tional jumps will work here. JA will work if both CF are ZF zero.

Thereby, conditional jumps instructions listed here can be used after FNSTSW/SAHF instructions pair.

It seems, FPU C3/C2/CO status bits was placed there intentionally so to map them to base CPU flags without additional
permutations.

15.3.5 ARM + Optimizing Xcode (LLVM) + ARM mode

Listing 15.8: Optimizing Xcode (LLVM) + ARM mode

VMOV D16, R2, R3 ; b

VMOV D17, RO, Rl ; a
VCMPE.F64 D17, D16

VMRS APSR_nzcv, FPSCR

VMOVGT .F64 D16, D17 ; copy b to D16
VMoV RO, R1, D16

BX LR

A very simple case. Input values are placed into the D17 and D16 registers and then compared with the help of VCMPE
instruction. Just like in x86 coprocessor, ARM coprocessor has its own status and flags register, (FPSCR), since there is a need
to store coprocessor-specific flags.

And just like in x86, there are no conditional jump instruction in ARM, checking bits in coprocessor status register, so there
is VMRS instruction, copying 4 bits (N, Z, C, V) from the coprocessor status word into bits of general status (APSR register).

VMOVGT is analogue of MOVGT, instruction, to be executed if one operand is greater than other while comparing (GT—
Greater Than).

If it will be executed, b value will be written into D16, stored at the momentin D17.

And if it will not be triggered, then a value will stay in the D16 register.

Penultimate instruction VMOV will prepare value in the D16 register for returning via RO and R1 registers pair.

15.3.6 ARM + Optimizing Xcode (LLVM) + thumb-2 mode

Listing 15.9: Optimizing Xcode (LLVM) + thumb-2 mode

VMOV D16, R2, R3 ; b

VMOV D17, RO, R1 ; a

VCMPE.F64 D17, D16

VMRS APSR_nzcv, FPSCR
IT GT

VMOVGT .F64 D16, D17

VMOV RO, R1, D16

BX LR

118

15.3. COMPARISON EXAMPLE CHAPTER 15. WORKING WITH FPU

Almost the same as in previous example, howeverm slightly different. As a matter of fact, many instructions in ARM mode
can be supplied by condition predicate, and the instruction is to be executed if condition is true.

But there is no such thing in thumb mode. There is no place in 16-bit instructions for spare 4 bits where condition can be
encoded.

However, thumb-2 was extended to make possible to specify predicates to old thumb instructions.

Here, is the IDA-generated listing, we see VMOVGT instruction, the same as in previous example.

But in fact, usual VMOV is encoded there, but IDA added -GT suffix to it, since there is ¢“IT GT*’instruction placed right
before.

IT instruction defines so-called if-then block. After the instruction, it is possible to place up to 4 instructions, to which
predicate suffix will be added. In our example, *‘IT GT’’ meaning, the next instruction will be executed, if GT (Greater Than)
condition is true.

Now more complex code fragment, by the way, from “Angry Birds” (for iOS):

Listing 15.10: Angry Birds Classic

ITE NE
VMOVNE R2, R3, D16
VMOVEQ R2, R3, D17

ITE meaningif-then-else and it encode suffixes for two nextinstructions. Firstinstruction will execute if condition encoded
in ITE (NE, not equal) will be true at the moment, and the second —if the condition will not be true. (Inverse condition of NE
is EQ (equal)).

Slightly harder, and this fragment from “Angry Birds” as well:

Listing 15.11: Angry Birds Classic

ITTTT EQ

MOVEQ RO, R4

ADDEQ SP, SP, #0x20
POPEQ.W {R8,R10}
POPEQ {R4-R7,PC}

4 “T” symbols in instruction mnemonic means the 4 next instructions will be executed if condition is true. That’s why IDA
added -EQ suffix to each 4 instructions.
And if there will be e.g. ITEEE EQ (if-then-else-else-else), then suffixes will be set as follows:

-EQ
-NE
-NE
-NE

Another fragment from “Angry Birds”:

Listing 15.12: Angry Birds Classic

CMP.W RO, #O0xFFFFFFFF
ITTE LE

SUBLE.W R10, RO, #1
NEGLE RO, RO

MOVGT R10, RO

ITTE (if-then-then-else) means the 1st and 2nd instructions will be executed, if LE (Less or Equal) condition is true, and
3rd—if inverse condition (GT—Greater Than) is true.

Compilers usually are not generating all possible combinations. For example, it mentioned “Angry Birds” game (classic
version for iOS) only these cases of IT instruction are used: IT, ITE, ITT, ITTE, ITTT, ITTTT. How | learnt this? In IDA it is
possible to produce listing files, so | did it, but | also set in options to show 4 bytes of each opcodes . Then, knowing the high
part of 16-bit opcode IT is 0xBF, | did this with grep:

cat AngryBirdsClassic.lst | grep " BF" | grep "IT" > results.lst

By the way, if to program in ARM assembly language manually for thumb-2 mode, with adding conditional suffixes, as-
sembler will add IT instructions automatically, with respectable flags, where it is necessary.

119

15.3. COMPARISON EXAMPLE

CHAPTER 15. WORKING WITH FPU

15.3.7 ARM + Non-optimizing Xcode (LLVM) + ARM mode

Listing 15.13: Non-optimizing Xcode (LLVM) + ARM mode

b = -0x20
a = -0x18
val_to_return = -0x10
saved_R7 = -4
STR R7, [SP,#saved_R7]!
MOV R7, SP
SUB SP, SP, #0x1C
BIC SP, SP, #7
VMOV D16, R2, R3
VMOV D17, RO, R1
VSTR D17, [SP,#0x20+a]
VSTR D16, [SP,#0x20+b]
VLDR D16, [SP,#0x20+a]
VLDR D17, [SP,#0x20+b]
VCMPE.F64 D16, D17
VMRS APSR_nzcv, FPSCR
BLE loc_2E08
VLDR D16, [SP,#0x20+a]
VSTR D16, [SP,#0x20+val_to_return]
B loc_2E10
loc_2E08
VLDR D16, [SP,#0x20+b]
VSTR D16, [SP,#0x20+val_to_return]
loc_2E10
VLDR D16, [SP,#0x20+val_to_return]
VMOV RO, R1, D16
MOV SP, R7
LDR R7, [SP+0x20+Db],#4
BX LR

Almost the same we already saw, but too much redundant code because of a and b variables storage in local stack, as

well as returning value.

15.3.8 ARM + Optimizing Keil + thumb mode

Listing 15.14: Optimizing Keil + thumb mode

PUSH {R3-R7,LR}

MOVS R4, R2

MOVS R5, R3

MOVS R6, RO

MOVS R7, R1

BL __aeabi_cdrcmple
BCS loc_1CO

MOVS RO, R6

MOVS R1, R7

POP {R3-R7,PC}

loc_1CO
MOVS RO, R4
MOVS R1, R5
POP {R3-R7,PC}

Keil not generates special instruction for float numbers comparing since it cannot rely it will be supported on the target
CPU, and it cannot be done by straightforward bitwise comparing. So there is called external library function for comparing:

120

15.4. X64 CHAPTER 15. WORKING WITH FPU

__aeabi_cdrcmple. N.B. Comparison result is to be leaved in flags, so the following BCS (Carry set - Greater than or equal)
instruction may work without any additional code.

15.4 x64

Read more here24 about how float point numbers are processed in x86-64.

121

CHAPTER 16. ARRAYS

Chapter 16

Arrays

Array is just a set of variables in memory, always lying next to each other, always has same type .

16.1 Simple example

#include <s

int main()

{

tdio.h>

int a[20];
int i;
for (i=0; i<20; i++)
ali]l=i*2;
for (i=0; i<20; i++)
printf ("al[ldl=Vd\n", i, alil);
return O;
}s
16.1.1 x86

Let’s compile:

Listing 16.1: MSVC

_TEXT SE
_i$ = -84
_a$ = -80
_main
push
mov
sub
mov
jmp
$LN5C@main:
mov
add
mov
$LN6Cmain:
cmp
jge
mov

GMENT
; size = 4
; size = 80

PROC

ebp

ebp, esp

esp, 84 ; 00000054H

DWORD PTR _i$[ebpl, O

SHORT $LN6@main

eax, DWORD PTR _i$[ebp]

eax, 1

DWORD PTR _i$[ebp], eax

DWORD PTR _i$[ebpl, 20 ; 00000014H

SHORT $LN4@main
ecx, DWORD PTR _i$[ebp]

TAKA? “homogeneous container”

122

16.1. SIMPLE EXAMPLE CHAPTER 16. ARRAYS
shl ecx, 1
mov edx, DWORD PTR _i$[ebp]
mov DWORD PTR _a$[ebp+edx*4], ecx
jmp SHORT $LN5@main
$LN4Cmain:
mov DWORD PTR _i$[ebpl, O
jmp SHORT $LN3@main

$LN2@main:
mov eax, DWORD PTR _i$[ebp]
add eax, 1
mov DWORD PTR _i$[ebpl, eax
$LN3C@main:
cmp DWORD PTR _i$[ebpl, 20 ; 00000014H

jge SHORT $LN1@main

mov ecx, DWORD PTR _i$[ebp]

mov edx, DWORD PTR _a$[ebptecx*4]
push edx

mov eax, DWORD PTR _i$[ebp]

push eax

push OFFSET $SG2463

call _printf

add esp, 12 ; 0000000cH
jmp SHORT $LN2@main
$LN1@main:
xor eax, eax
mov esp, ebp
pop ebp
ret 0
_main ENDP

Nothing very special, just two loops: first is filling loop and second is printing loop. shl ecx, 1 instruction is used for
value multiplication by 2 in the ECX, more about below 17.3.1.

80 bytes are allocated on the stack for array, that is 20 elements of 4 bytes.

Here is what GCC 4.4.1 does:

Listing 16.2: GCC 4.4.1

public main

main proc near ; DATA XREF: _start+17
var_70 = dword ptr -70h
var_6C = dword ptr -6Ch

var_68
i_2

dword ptr -68h
dword ptr -54h
dword ptr -4

[
1

push ebp

mov ebp, esp

and esp, OFFFFFFFOh

sub esp, 70h

mov [esp+70n+i], O ; i=0

jmp short loc_804840A
loc_80483F7:

mov eax, [esp+70h+i]

mov edx, [esp+70h+i]

add edx, edx ; edx=ix2

mov [espteax*4+70h+i_2], edx

add [esp+70h+i], 1 s i+t
loc_804840A:

cmp [esp+70h+i], 13h

123

16.1. SIMPLE EXAMPLE

CHAPTER 16. ARRAYS

jle
mov
jmp

loc_804841B:
mov
mov
mov
mov
mov
mov
mov
call
add

loc_8048441:
cmp
jle
mov
leave
retn

main endp

short loc_80483F7
[esp+70h+i], O
short loc_8048441

eax, [esp+70h+i]

edx, [espteax*4+70h+i
eax, offset aADD ;
[esp+70h+var_68], edx
edx, [esp+70h+i]
[esp+70h+var_6C], edx
[esp+70h+var_70], eax
_printf

[esp+70h+i], 1

[esp+70h+i], 13h
short loc_804841B
eax, O

_2]

"a[%d]=%d\n"

By the way, a variable has int* type (the pointer to int) —you can try to pass a pointer to array to another function, but it
much correctly to say the pointer to the first array element is passed (addresses of another element’s places are calculated
in obvious way). If to index this pointer as afidx], idx just to be added to the pointer and the element placed there (to which
calculated pointer is pointing) returned.

An interesting example: string of characters like “string” is array of characters and it has const char* type.Index can be
applied to this pointer. And that is why it is possible to write like ‘‘string’’[i] —this is correct C/C++ expression!

16.1.2 ARM + Non-optimizing Keil + ARM mode

EXPORT _main

_main
STMFD
SUB

; first loop
MOV

loc_494
MOV
STR
ADD

loc_4A0
CMP
BLT

; second loop
MOV

loc_4BO
LDR
SP+R4%4))
MOV
ADR
BL
ADD

Sp!, {R4,LR}
SP, SP, #0x50 ;

R4, #0 R
loc_4A0

RO, R4,LSL#1 >
RO, [SP,R4,LSL#2] ;
R4, R4, #1 H

R4, #20 ;
loc_494 ;

R4, #0 3
loc_4C4

R2, [SP,R4,LSL#2] ;
R1, R4 3
RO, aADD 5

__2printf
R4, R4, #1 ;

allocate place for 20 int variables

RO=R4x*2
store RO to SP+R4<<2 (same as SP+R4x4)
i=i+1

i<207
yes, run loop body again

(second printf argument) R2=x(SP+R4<<4) (same as *(

(first printf argument) R1=i
"a[%d]=Vkd\n"

i=i+l

124

16.1. SIMPLE EXAMPLE CHAPTER 16. ARRAYS

loc_4C4
CMP R4, #20 ; 1<207
BLT loc_4BO ; yes, run loop body again
MOV RO, #0 ; value to return
ADD SP, SP, #0x50 ; deallocate place, allocated for 20 int variables

LDMFD SP!, {R4,PC}

int type requires 32 bits for storage, or 4 bytes, so for storage of 20 int variables, 80 (0x50) bytes are needed, so that is why
““SUB SP, SP, #0x50’’instruction in function epilogue allocates exactly this amount of space in local stack.

In both first and second loops, i loop iterator will be placed in the R4 register.

A number to be written into array, is calculating as i * 2 which is effectively equivalent to shifting left by one bit, so ¢MOV
RO, R4,LSL#1”’instruction do this.

““STR RO, [SP,R4,LSL#2]’’writes RO contentsinto array. Here is how a pointer to array element is to be calculated: SP
pointing to array begin, R4 is i. So shift i left by 2 bits, that is effectively equivalent to multiplication by 4 (since each array
element has size of 4 bytes) and add it to address of array begin.

The second loop hasinverse‘“LDR R2, [SP,R4,LSL#2]”’,instruction, itloadsfrom array value we need, and the pointer
to it is calculated likewise.

16.1.3 ARM + Optimizing Keil + thumb mode

_main
PUSH {R4,R5,LR}
; allocate place for 20 int variables + one more variable

SUB SP, SP, #0x54
; first loop
MOVS RO, #0 8 i
MOV R5, SP ; pointer to first array element
loc_1CE
LSLS R1, RO, #1 ; R1=i<<1 (same as ix*2)
LSLS R2, RO, #2 ; R2=1<<2 (same as ix*4)
ADDS RO, RO, #1 s di=i+l
CMP RO, #20 ; 1<207
STR R1, [R5,R2] ; store R1 to *(R5+R2) (same R5+ix*4)
BLT loc_1CE ; yes, i1<20, run loop body again
; second loop
MOVS R4, #0 ; 1=0
loc_1DC
LSLS RO, R4, #2 ; R0O=1<<2 (same as ix*4)
LDR R2, [R5,R0] ; load from *(R5+R0) (same as R5+ix*4)
MOVS R1, R4
ADR RO, aADD ; "al[%d]=Vd\n"
BL __2printf
ADDS R4, R4, #1 ; i=i+l
CMP R4, #20 ; 1<207
BLT loc_1DC ; yes, i<20, run loop body again
MOVS RO, #0 ; value to return
; deallocate place, allocated for 20 int variables + one more variable
ADD SP, SP, #0xb4
POP {R4,R5,PC}

Thumb code is very similar. Thumb mode has special instructions for bit shifting (like LSLS), which calculates value to be
written into array and address of each element in array as well.
Compiler allocates slightly more space in local stack, however, last 4 bytes are not used.

125

16.2. BUFFER OVERFLOW CHAPTER 16. ARRAYS
16.2 Buffer overflow

So, array indexing is just array[index]. If you study generated code closely, you’ll probably note missing index bounds check-
ing, which could check index, if it is less than 20. What if index will be greater than 20? That’s the one C/C++ feature it is often
blamed for.

Here is a code successfully compiling and working:

#include <stdio.h>

int main()

{
int a[20];
int i;
for (i=0; i<20; i++)
alil=i*2;
printf ("a[100]=%d\n", a[100]);
return O;
}s

Compilation results (MSVC 2010):

_TEXT SEGMENT

_i$ = -84 ; size = 4
_a$ = -80 ; size = 80
_main PROC

push ebp

mov ebp, esp

sub esp, 84 ; 00000054H

mov DWORD PTR _i$[ebpl, O
jmp SHORT $LN3@main

$LN2C@main:
mov eax, DWORD PTR _i$[ebp]
add eax, 1
mov DWORD PTR _i$[ebp], eax
$LN3Cmain:

cmp DWORD PTR _i$[ebp]l, 20 ; 00000014H
jge SHORT $LN1Gmain
mov ecx, DWORD PTR _i$[ebp]
shl ecx, 1
mov edx, DWORD PTR _i$[ebp]
mov DWORD PTR _a$[ebp+edx*4], ecx
jmp SHORT $LN2@main
$LN1@main:
mov eax, DWORD PTR _a$[ebp+400]
push eax
push OFFSET $SG2460
call _printf
add esp, 8

xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP

I’m running it, and | got:

a[100]=760826203

It is just something, occasionally lying in the stack near to array, 400 bytes from its first element.

126

16.2. BUFFER OVERFLOW CHAPTER 16. ARRAYS
Indeed, how it could be done differently? Compiler may generate some additional code for checking index value to be
always in array’s bound (like in higher-level programming languages®) but this makes running code slower.
OK, we read some values from the stack illegally but what if we could write something to it?
Here is what we will write:

#include <stdio.h>

int main()

{
int a[20];
int i;
for (i=0; i<30; i++)
alil=i;
return O;
Irg

And what we’ve got:

_TEXT SEGMENT

_i$ = -84 ; size = 4

_a$ = -80 ; size = 80

_main PROC

push ebp

mov ebp, esp

sub esp, 84 ; 00000054H

mov DWORD PTR _i$[ebpl, O
jmp SHORT $LN3@main

$LN2@main:

mov eax, DWORD PTR _i$[ebp]

add eax, 1

mov DWORD PTR _i$[ebp]l, eax

$LN3Cmain:

cmp DWORD PTR _i$[ebp]l, 30 ; 0000001eH

jge SHORT $LN1@main

mov ecx, DWORD PTR _i$[ebp]

mov edx, DWORD PTR _i$[ebp] ; that instruction is obviously redundant

mov DWORD PTR _a$[ebptecx*4], edx ; ECX could be used as second operand here instead
jmp SHORT $LN2@main

$LN1@main:

xor eax, eax
mov esp, ebp
pop ebp

ret 0

_main ENDP

Run compiled program and its crashing. No wonder. Let’s see, where exactly it is crashing.

I’m not using debugger anymore since | tried to run it each time, move mouse, etc, when | need just to spot a register’s
state at the specific point. That’s why | wrote very minimalistic tool for myself, tracer, which is enough for my tasks.

I can also use it just to see, where debuggee is crashed. So let’s see:

generic tracer 0.4 (WIN32), http://conus.info/gt

New process: C:\PRJ\...\l.exe, PID=7988

EXCEPTION_ACCESS_VIOLATION: 0x15 (<symbol (0x15) is in unknown module>), ExceptionInformation
[0]=8

EAX=0x00000000 EBX=0x7EFDEO00 ECX=0x0000001D EDX=0x0000001D

ESI=0x00000000 EDI=0x00000000 EBP=0x00000014 ESP=0x0018FF48

EIP=0x00000015

FLAGS=PF ZF IF RF

PID=7988|Process exit, return code -1073740791

3Java, Python, etc

127

16.2. BUFFER OVERFLOW CHAPTER 16. ARRAYS

Now please keep your eyes on registers.

Exception occurred at address 0x15. It is not legal address for code —at least for win32 code! We trapped there somehow
against our will. It is also interesting fact the EBP register contain 0x14, ECX and EDX —O0x1D.

Let’s study stack layout more.

After control flow was passed into main(), the value in the EBP register was saved on the stack. Then, 84 bytes was
allocated for array and i variable. That’s (20+1) *sizeof (int). The ESP pointing now to the _i variable in the local stack
and after execution of next PUSH something, something will be appeared next to _i.

That’s stack layout while control is inside main ():

ESP 4 bytes fori

ESP+4 | 80 bytesfora[20] array
ESP+84 | saved EBP value

ESP+88 | returning address

Instruction a[19]=something writes last int in array bounds (in bounds so far!)

Instruction a[20]=something writes something to the place where value from the EBP is saved.

Please take a look at registers state at the crash moment. In our case, number 20 was written to 20th element. By the
function ending, function epilogue restores original EBP value. (20 in decimal system is 0x14 in hexadecimal). Then, RET
instruction was executed, which is effectively equivalent to POP EIP instruction.

RET instruction taking returning address from the stack (that is the address inside of CRT), which was called main ()), and
21 was stored there (0x15 in hexadecimal). The CPU trapped at the address 0x15, but there is no executable code, so exception
was raised.

Welcome! Itis called buffer overflow*.

Replace int array by string (char array), create a long string deliberately, and pass it to the program, to the function which
is not checking string length and copies it to short buffer, and you’ll able to point to a program an address to which it must
jump. Not that simple in reality, but that is how it was emerged °

Let’s try the same code in GCC 4.4.1. We got:

public main
main proc near

= dword ptr -54h

i = dword ptr -4

push ebp

mov ebp, esp

sub esp, 60h

mov [ebp+il, O

jmp short loc_80483D1
loc_80483C3:

mov eax, [ebp+il

mov edx, [ebp+il

mov [ebpteax*4+a], edx

add [ebp+i], 1
loc_80483D1:

cmp [ebp+i], 1Dh

jle short loc_80483C3

mov eax, O

leave

retn
main endp

Running this in Linux will produce: Segmentation fault.
If we run this in GDB debugger, we getting this:

(gdb) r
Starting program: /home/dennis/RE/1

Program received signal SIGSEGV, Segmentation fault.
0x00000016 in 77 ()

“http://en.wikipedia.org/wiki/Stack_buffer_overflow
5Classic article about it: [22].

128

http://en.wikipedia.org/wiki/Stack_buffer_overflow

16.3. BUFFER OVERFLOW PROTECTION METHODS CHAPTER 16. ARRAYS

(gdb) info registers

eax 0x0 0

ecx 0xd2£96388 -755407992
edx Ox1d 29

ebx 0x26eff4 2551796

esp Oxbff££4b0 0xbff££4b0
ebp 0x15 0x15

esi 0x0 0

edi 0x0 0

eip 0x16 0x16

eflags 0x10202 [IF RF]

cs 0x73 115

ss 0x7b 123

ds 0x7b 123

es 0x7b 123

fs 0x0 0

gs 0x33 51

(gdb)

Register values are slightly different then in win32 example since stack layout is slightly different too.

16.3 Buffer overflow protection methods

There are several methods to protect against it, regardless of C/C++ programmers’ negligence. MSVC has options like®:

/RTICs Stack Frame runtime checking
/GZ Enable stack checks (/RTCs)

One of the methodsis to write random value among local variables to stack at function prologue and to check it in function
epilogue before function exiting. And if value is not the same, do not execute last instruction RET, but halt (or hang). Process
will hang, but that is much better then remote attack to your host.

This random value is called “canary” sometimes, it is related to miner’s canary’, they were used by miners in these days,
in order to detect poisonous gases quickly. Canaries are very sensetive to mine gases, they become very agitated in case of
danger, or even dead.

If to compile our very simple array example (16.1) in MSVC with RTC1and RTCs option, you will see callto @_RTC_CheckStackVars@8
function at the function end, checking “canary” correctness.

Let’s see how GCC handles this. Let’s take alloca() (4.2.4) example:

#include <malloc.h>
#include <stdio.h>

void £()
{
char *buf=(char*)alloca (600);
_snprintf (buf, 600, "hi! %d, %d, %d\n", 1, 2, 3);

puts (buf);

Ig
By default, without any additional options, GCC 4.7.3 will insert “canary” check into code:
Listing 16.3: GCC 4.7.3

.LCO:
.string "hi! %d, %d, %d\n"

it g
push ebp
mov ebp, esp
push ebx
sub esp, 676

SWikipedia: compiler-side buffer overflow protection methods
"Wikipedia: Miner’s canary

129

http://en.wikipedia.org/wiki/Buffer_overflow_protection
http://en.wikipedia.org/wiki/Domestic_Canary#Miner.27s_canary

16.3. BUFFER OVERFLOW PROTECTION METHODS

CHAPTER 16. ARRAYS

lea ebx, [esp+39]
and ebx, -16
mov DWORD PTR [esp+20], 3
mov DWORD PTR [esp+16], 2
mov DWORD PTR [esp+12], 1
mov DWORD PTR [esp+8], OFFSET FLAT:.LCO ; "hi! %d, %d, %d\n"
mov DWORD PTR [esp+4], 600
mov DWORD PTR [espl, ebx
mov eax, DWORD PTR gs:20 ; canary
mov DWORD PTR [ebp-12], eax
xor eax, eax
call _snprintf
mov DWORD PTR [esp], ebx
call puts
mov eax, DWORD PTR [ebp-12]
xor eax, DWORD PTR gs:20 ; canary
jne .L5
mov ebx, DWORD PTR [ebp-4]
leave
ret
SIEDE:
call _stack_chk_fail

Random value is located in gs:20. It is to be written on the stack and then, at the function end, value in the stack is

compared with correct “canary” in gs: 20. If values are not equal to each other
and we will see something like that in console (Ubuntu 13.04 x86):

stack_chk_fail function will be called

x*x buffer overflow detected *: ./2_1 terminated

======= Backtrace: =========
/1ib/i386-1linux-gnu/libc.so
/1ib/i386-1linux-gnu/libc.so
/1ib/i386-1linux-gnu/libc.so
/1ib/i386-1linux-gnu/libc.so
/1ib/i386-1linux-gnu/libc.so
/1ib/i386-1linux-gnu/libc.so
/1ib/i386-1linux-gnu/libc.so
./2_1[0x8048404]

/1ib/i386-1linux-gnu/libc.so

08048000-08049000 r-xp 00000
08049000-0804a000 r--p 00000
0804a000-0804b000 rw-p 00001
094d1000-094£2000 rw-p 00000
b7560000-b757b000 r-xp 00000
b757b000-b757c000 r--p 0001a
b757c000-b757d000 rw-p 0001b
b7592000-b7593000 rw-p 00000
b7593000-b7740000 r-xp 00000
b7740000-b7742000 r--p 00lad
b7742000-b7743000 rw-p O0Olaf
b7743000-b7746000 rw-p 00000
b775a000-b775d000 rw-p 00000
b775d000-b775e000 r-xp 00000
b775e000-b777e000 r-xp 00000
b777e000-b777£000 r--p 0001f
b777£000-b7780000 rw-p 00020
bf£35000-b£f£56000 rw-p 00000
Aborted (core dumped)

.6(__fortify_fail+0x63) [0xb7699bc3]
.6(+0x10593a) [0xb769893a]

.6(+0x105008) [0xb7698008]
.6(_I0_default_xsputn+0x8c) [0xb7606e5c]
.6(_I0_vfprintf+0x165) [0xb75d7a45]
.6(__vsprintf_chk+0xc9) [0xb7698049]
.6(__sprintf_chk+0x2f) [0xb7697fef]

.6(__libc_start_main+0xf5) [0xb75ac935]

000 08:01 2097586 /home/dennis/2_1

000 08:01 2097586 /home/dennis/2_1

000 08:01 2097586 /home/dennis/2_1

000 00:00 O [heap]

000 08:01 1048602 /1ib/1386-1linux-gnu/libgcc_s.so.1
000 08:01 1048602 /1ib/i386-1linux-gnu/libgcc_s.so.1
000 08:01 1048602 /1ib/i386-1linux-gnu/libgcc_s.so.1
000 00:00 O

000 08:01 1050781 /1ib/i386-1linux-gnu/libc-2.17.s0
000 08:01 1050781 /1ib/i386-1linux-gnu/libc-2.17.s0
000 08:01 1050781 /1ib/i386-1linux-gnu/libc-2.17.s0
000 00:00 O

000 00:00 O

000 00:00 O [vdsol

000 08:01 1050794 /1ib/i1386-1linux-gnu/1d-2.17.s0
000 08:01 1050794 /1ib/i386-1linux-gnu/1d-2.17.s0
000 08:01 1050794 /1ib/i386-1linux-gnu/1d-2.17.so0
000 00:00 O [stack]

gs—is so-called segment register, these registers were used widely in MS-DOS and DOS-extenders times. Today, its func-
tion is different. If to say briefly, the gs register in Linux is always pointing to the TLS (47) —various information specific to

130

16.3. BUFFER OVERFLOW PROTECTION METHODS CHAPTER 16. ARRAYS
thread is stored there (by the way, in win32 environment, the s register plays the same role, it pointing to TIB® 9).

More information can be found in Linux source codes (at least in 3.11 version), in arch/x86/include/asm/stackprotector.h
file this variable is described in comments.

16.3.1 Optimizing Xcode (LLVM) + thumb-2 mode

Let’s back to our simple array example (16.1), again, now we can see how LLVM will check “canary” correctness:

_main

var_64 = -0x64

var_60 = -0x60

var_5C = -0x5C

var_5b8 = -0x58

var_b4 = -0xb4

var_50 = -0x50

var_4C = -0x4C

var_48 = -0x48

var_44 = -0x44

var_40 = -0x40

var_3C = -0x3C

var_38 = -0x38

var_34 = -0x34

var_30 = -0x30

var_2C = -0x2C

var_28 = -0x28

var_24 = -0x24

var_20 = -0x20

var_1C = -0x1C

var_18 = -0x18

canary = -0x14

var_10 = -0x10
PUSH {R4-R7,LR}
ADD R7, SP, #0xC
STR.W R8, [SP,#0xC+var_10]!
SUB SP, SP, #0x54
MOVW RO, #aObjc_methtype ; "objc_methtype"
MOVS R2, #0
MOVT.W RO, #0
MOVS R5, #0
ADD RO, PC
LDR.W R8, [RO]
LDR.W RO, [R8]
STR RO, [SP,#0x64+canary]
MOVS RO, #2
STR R2, [SP,#0x64+var_64]
STR RO, [SP,#0x64+var_60]
MOVS RO, #4
STR RO, [SP,#0x64+var_5C]
MOVS RO, #6
STR RO, [SP,#0x64+var_58]
MOVS RO, #8
STR RO, [SP,#0x64+var_54]
MOVS RO, #0xA
STR RO, [SP,#0x64+var_50]
MOVS RO, #0xC
STR RO, [SP,#0x64+var_4C]
MOVS RO, #OxE

8Thread Information Block
Shttps://en.wikipedia.org/wiki/Win32_Thread_Information_Block

131

https://en.wikipedia.org/wiki/Win32_Thread_Information_Block

16.3. BUFFER OVERFLOW PROTECTION METHODS

CHAPTER 16. ARRAYS

STR RO, [SP,#0x64+var_48]
MOVS RO, #0x10

STR RO, [SP,#0x64+var_44]
MOVS RO, #0x12

STR RO, [SP,#0x64+var_40]
MOVS RO, #0x14

STR RO, [SP,#0x64+var_3C]
MOVS RO, #0x16

STR RO, [SP,#0x64+var_38]
MOVS RO, #0x18

STR RO, [SP,#0x64+var_34]
MOVS RO, #0x1A

STR RO, [SP,#0x64+var_30]
MOVS RO, #0x1C

STR RO, [SP,#0x64+var_2C]
MOVS RO, #Ox1E

STR RO, [SP,#0x64+var_28]
MOVS RO, #0x20

STR RO, [SP,#0x64+var_24]
MOVS RO, #0x22

STR RO, [SP,#0x64+var_20]
MOVS RO, #0x24

STR RO, [SP,#0x64+var_1C]
MOVS RO, #0x26

STR RO, [SP,#0x64+var_18]
MOV R4, OxFDA ; "a[%d]l=%d\n"
MOV RO, SP

ADDS R6, RO, #4

ADD R4, PC

B loc_2F1C

; second loop begin

loc_2F14
ADDS RO, R5, #1
LDR.W R2, [R6,R5,LSL#2]
MOV R5, RO
loc_2F1C
MOV RO, R4
MOV R1, R5
BLX _printf
CMP R5, #0x13
BNE loc_2F14
LDR.W RO, [R8]
LDR R1, [SP,#0x64+canary]
CMP RO, R1
ITTTT EQ ; canary still correct?
MOVEQ RO, #0
ADDEQ SP, SP, #0x54
LDREQ.W R8, [SP+0x64+var_64],#4
POPEQ {R4-R7,PC}
BLX __stack_chk_fail

First of all, as we see, LLVM made loop “unrolled” and all values are written into array one-by-one, already calculated
since LLVM concluded it will be faster. By the way, ARM mode instructions may help to do this even faster, and finding this

way could be your homework.

At the function end wee see “canaries” comparison —that laying in local stack and correct one, to which the R8 register
pointing. If they are equal to each other, 4-instruction block is triggered by ““ITTTT EQ’’, it is writing 0 into RO, function
epilogue and exit. If “canaries” are not equal, block will not be triggered, and jump to ___stack_chk_fail function will be

occurred, which, as | suppose, will halt execution.

132

16.4. ONE MORE WORD ABOUT ARRAYS CHAPTER 16. ARRAYS
16.4 One more word about arrays

Now we understand, why it is impossible to write something like that in C/C++ code '°:

void f(int size)
{

int al[sizel;

};

That’s just because compiler must know exact array size to allocate space for it in local stack layout or in data segment
(in case of global variable) on compiling stage.

If you need array of arbitrary size, allocate it by malloc (), then access allocated memory block as array of variables of
type you need. Or use C99 standard feature [15, 6.7.5/2], but it will be looks like alloca() (4.2.4) internally.

16.5 Multidimensional arrays

Internally, multidimensional array is essentially the same thing as linear array.

Since computer memory in linear, it is one-dimensional array. But this one-dimensional array can be easily represented
as multidimensional for convenience.

For example, that is how a[3][4] array elements will be placed in one-dimensional array of 12 cells:

That is how two-dimensional array with one-dimensional (memory) array index numbers can be represented:

oj112 |3
4156 |7
89|10 |1

So, in order to address elements we need, first multiply first index by 4 (matrix width) and then add second index. That’s
called row-major order, and this method of arrays and matrices representation is used in at least in C/C++, Python. row-major
order term in plain English language means: “first, write elements of first row, then second row ... and finally elements of last
row”.

Another method of representation called column-major order (array indices used in reverse order) and it is used at least in
FORTRAN, MATLAB, R. column-major order term in plain English language means: “first, write elements of first column, then
second column ...and finally elements of last column”.

Same thing about multidimensional arrays.

Let’s see:

Listing 16.4: simple example

#include <stdio.h>
int a[10] [20] [30];

void insert(int x, int y, int z, int value)
{

a[x] [y] [z]=value;
e

1%However, it is possible in C99 standard [15, 6.7.5/2]: GCC is actually do this by allocating array dynammically on the stack (like alloca() (4.2.4))

133

16.5. MULTIDIMENSIONAL ARRAYS

CHAPTER 16. ARRAYS

16.5.1 x86
We got (MSVC 2010):

Listing 16.5: MSVC 2010

_DATA SEGMENT

COMM _a:DWORD:01770H
_DATA ENDS
PUBLIC _insert
_TEXT SEGMENT
_x$ =8 2
_y$ =12 5
_z$ = 16 g
_value$ = 20 ;
_insert PROC

push ebp

mov ebp, esp

mov eax, DWORD PTR
imul eax, 2400

mov ecx, DWORD PTR
imul ecx, 120

lea edx, DWORD PTR
mov eax, DWORD PTR
mov ecx, DWORD PTR

size =
size =
size =

NN

size =

_x$ [ebp]
_y$[ebp]
_aleax+ecx] g

_z$ [ebp]
_value$ [ebp]

mov DWORD PTR [edx+eax*4], ecx g

pop ebp

ret 0
_insert ENDP
_TEXT ENDS

eax=600%*4*x

ecx=30*4xy
edx=a + 600*4*x + 30*4xy

* (edx+z*4)=value

Nothing special. Forindex calculation, three input arguments are multiplying by formula address = 600-4-2+30-4-y+4z
to represent array as multidimensional. Do not forget the int type is 32-bit (4 bytes), so all coefficients must be multiplied by

4
Listing 16.6: GCC 4.4.1
public insert
insert proc near
X = dword ptr 8
y = dword ptr OCh
z = dword ptr 10h
value = dword ptr 14h
push ebp
mov ebp, esp
push ebx
mov ebx, [ebp+x]
mov eax, [ebp+y]
mov ecx, [ebp+z]
lea edx, [eax+eax] ; edx=y*2
mov eax, edx ; eax=y*2
shl eax, 4 ; eax=(y*2)<<4 = yx2%16 = y*32
sub eax, edx ; eax=y*32 - y*x2=y*30
imul edx, ebx, 600 ; edx=x*600
add eax, edx ; eax=eax+edx=y*30 + x*600
lea edx, [eax+ecx] ; edx=y*30 + x*600 + z
mov eax, [ebp+value]
mov dword ptr ds:aledx*4], eax ; *(atedx*4)=value
pop ebx
pop ebp
retn
insert endp

134

16.5. MULTIDIMENSIONAL ARRAYS CHAPTER 16. ARRAYS

GCC compiler does it differently. For one of operations calculating (30y), GCC produced a code without multiplication
instruction. Thisis howitdone: (y +y) < 4 — (y+y) = 2y) < 4 —2y =2-16 - y — 2y = 32y — 2y = 30y. Thus, for 30y
calculation, only one addition operation used, one bitwise shift operation and one subtraction operation. That works faster.

16.5.2 ARM + Non-optimizing Xcode (LLVM) + thumb mode

Listing 16.7: Non-optimizing Xcode (LLVM) + thumb mode

_insert

value = -0x10
z = -0xC
y = -8
X = -4

; allocate place in local stack for 4 values of int type

SUB SP, SP, #0x10

MOV R9, OxFC2 ; a

ADD R9, PC

LDR.W R9, [R9]

STR RO, [SP,#0x10+x]

STR R1, [SP,#0x10+y]

STR R2, [SP,#0x10+z]

STR R3, [SP,#0x10+value]
LDR RO, [SP,#0x10+value]
LDR R1, [SP,#0x10+z]

LDR R2, [SP,#0x10+y]

LDR R3, [SP,#0x10+x]

MOV R12, 2400

MUL.W R3, R3, R12

ADD R3, RO

MOV R9, 120

MUL.W R2, R2, R9

ADD R2, R3

LSLS R1, R1, #2 ; R1=R1<<2
ADD R1, R2

STR RO, [R1] ; Rl - address of array element
; deallocate place in local stack, allocated for 4 values of int type
ADD SP, SP, #0x10

BX LR

Non-optimizing LLVM saves all variables in local stack, however, it is redundant. Address of array element is calculated
by formula we already figured out.

16.5.3 ARM + Optimizing Xcode (LLVM) + thumb mode

Listing 16.8: Optimizing Xcode (LLVM) + thumb mode

_insert

MOVW R9, #0x10FC

MOV.W R12, #2400

MOVT.W R9, #0

RSB.W R1, R1, R1,LSL#4 ; Rl - y. Rl=y<<4 - y = y*16 - y = y*15

ADD R9, PC ; R9 = pointer to a array

LDR.W R9, [R9]

MLA.W RO, RO, R12, R9 ; RO - x, R12 - 2400, R9 - pointer to a. RO=x*2400 + ptr to a

ADD.W RO, RO, R1,LSL#3 ; RO = RO+R1<<3 = RO+R1*8 = x*2400 + ptr to a + y*15*8 =
; ptr to a + y*30%4 + x*x600%4

STR.W R3, [RO,R2,LSL#2] ; R2 - z, R3 - value. address=RO+z*4 =
; ptr to a + y*30*%4 + x*x600%4 + z*4

BX LR

135

16.5. MULTIDIMENSIONAL ARRAYS CHAPTER 16. ARRAYS

Here is used tricks for replacing multiplication by shift, addition and subtraction we already considered.

Here we also see new instruction for us: RSB (Reverse Subtract). It works just as SUB, but swapping operands with each
other. Why? SUB, RSB, are those instructions, to the second operand of which shift coefficient may be applied: (LSL#4). But
this coefficient may be applied only to second operand. That’s fine for commutative operations like addition or multiplication,
operands may be swapped there without result affecting. But subtraction is non-commutative operation, so, for these cases,
RSB exist.

“LDR.W R9, [R9]’’ works like LEA (80.6.2) in x86, but here it does nothing, it is redundant. Apparently, compiler not
optimized it.

136

CHAPTER 17. BIT FIELDS

Chapter 17

Bit fields

A lot of functions defining input flags in arguments using bit fields. Of course, it could be substituted by bool-typed variables
set, but it is not frugally.

17.1 Specific bit checking

17.1.1 x86
Win32 APl example:

HANDLE fh;

fh=CreateFile ("file", GENERIC_WRITE | GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_ALWAYS,
FILE_ATTRIBUTE_NORMAL, NULL);

We got (MSVC 2010):

Listing 17.1: MSVC 2010

push 0
push 128 ; 00000080H
push 4
push 0
push 1
push -1073741824 ; c0O000000H

push OFFSET $SG78813
call DWORD PTR __imp__CreateFileA@28
mov DWORD PTR _fh$[ebp], eax

Let’s take a look into WinNT.h:

Listing 17.2: WinNT.h

#define GENERIC_READ (0x80000000L)
#define GENERIC_WRITE (0x40000000L)
#define GENERIC_EXECUTE (0x20000000L)
#define GENERIC_ALL (0x10000000L)

Everythingis clear, GENERIC_READ | GENERIC_WRITE = 0x80000000 | 0x40000000 = 0xC0000000,andthatisvalue
is used as the second argument for CreateFile ()’ function.

How CreateFile () will check flags?

Let’stake alookinto KERNEL32.DLL in Windows XP SP3 x86 and we’ll find this fragment of code in the function CreateFileW:

Listing 17.3: KERNEL32.DLL (Windows XP SP3 x86)

.text:7C83D429 test byte ptr [ebp+dwDesiredAccess+3], 40h
.text:7C83D42D mov [ebp+var_8], 1

.text:7C83D434 jz short loc_7C83D417

.text :7C83D436 jmp loc_7C810817

TMSDN: CreateFile function

137

http://msdn.microsoft.com/en-us/library/aa363858(VS.85).aspx

17.1. SPECIFIC BIT CHECKING CHAPTER 17. BIT FIELDS

Here we see TEST instruction, it takes, however, not the whole second argument, but only most significant byte (ebp+dwDesiredAcc

and checks it for 0x40 flag (meaning GENERIC_WRITE flag here)

TEST is merely the same instruction as AND, but without result saving (recall the fact CMP instruction is merely the same
as SUB, but without result saving (6.6.1)).

This fragment of code logic is as follows:

if ((dwDesiredAccess&0x40000000) == 0) goto loc_7C83D417

If AND instruction leaving this bit, ZF flag is to be cleared and JZ conditional jump will not be triggered. Conditional jump
will be triggered only if 0x40000000 bit is absent in the dwDesiredAccess variable —then AND result will be 0, ZF flag will be
set and conditional jump is to be triggered.

Let’s try GCC 4.4.1 and Linux:

#include <stdio.h>
#include <fcntl.h>

void main()

{
int handle;
handle=open ("file", O_RDWR | O_CREAT);
};
We got:
Listing 17.4: GCC 4.4.1
public main
main proc near
var_20 = dword ptr -20h
var_1C = dword ptr -1Ch
var_4 = dword ptr -4
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 20h
mov [esp+20h+var_1C], 42h
mov [esp+20h+var_20], offset aFile ; "file"
call _open
mov [esp+20h+var_4], eax
leave
retn
main endp
Let’s take a look into open () function in the Libc. so. 6 library, but there is only syscall calling:
Listing 17.5: open() (libc.s0.6)
.text :000BE69B mov edx, [esp+4+mode] ; mode
.text : 000BE6IF mov ecx, [esptd4+flags] ; flags
.text:000BE6GA3 mov ebx, [espt4+filename] ; filename
.text :000BE6A7 mov eax, 5
.text :000BE6AC int 80h ; LINUX - sys_open

So, open () bit fields apparently checked somewhere in Linux kernel.

Of course, it is easily to download both Glibc and Linux kernel source code, but we are interesting to understand the
matter without it.

So, as of Linux 2.6, when sys_open syscall is called, control eventually passed into do_sys_open kernel function. From
there —to the do_filp_open() function (this function located in kernel source tree in the file fs/namei . c).

N.B. Aside from common passing arguments via stack, there is also a method of passing some of them via registers. This
is also called fastcall (2?). This works faster since CPU not needed to access a stack in memory to read argument values. GCC
has option regparm?, and it is possible to set a number of arguments which might be passed via registers.

’http://ohse.de/uwe/articles/gcc-attributes.html#func-regparm

138

http://ohse.de/uwe/articles/gcc-attributes.html#func-regparm

17.1. SPECIFIC BIT CHECKING

CHAPTER 17. BIT FIELDS

Linux 2.6 kernel compiled with -mregparm=3 option 3 4.

What it means to us, the first 3 arguments will be passed via EAX, EDX and ECX registers, the rest ones via stack. Of course,

if arguments number is less than 3, only part of registers are to be used.

So, let’s download Linux Kernel 2.6.31, compile it in Ubuntu: make vmlinux, open itin IDA, find the do_filp_open()

function. At the beginning, we will see (comments are mine):

Listing 17.6: do_filp_open() (linux kernel 2.6.31)

do_filp_open proc near
push ebp
mov ebp, esp
push edi
push esi
push ebx
mov ebx, ecx
add ebx, 1
sub esp, 98h
mov esi, [ebptarg_4] ; acc_mode (5th arg)
test bl, 3
mov [ebptvar_80], eax ; dfd (1th arg)
mov [ebp+var_7C], edx ; pathname (2th arg)
mov [ebptvar_78], ecx ; open_flag (3th arg)
jnz short loc_CO1EF684
mov ebx, ecx ; ebx <- open_flag

GCC saves first 3 arguments values in local stack. Otherwise, if compiler would not touch these registers, it would be too

tight environment for compiler’s register allocator.
Let’s find this fragment of code:

Listing 17.7: do_filp_open() (linux kernel 2.6.31)

loc_CO1EF6B4: ; CODE XREF: do_filp_open+4F
test bl, 40h ; O_CREAT
jnz loc_CO1EF810
mov edi, ebx
shr edi, 11ih
Xor edi, 1
and edi, 1
test ebx, 10000h
jz short loc_CO1EF6D3
or edi, 2

0x40 —iswhat 0_CREAT macro equalsto. open_£flag checked for 0x40 bit presence, and if this bitis 1, next JNZ instruction

is triggered.

171.2 ARM
0_CREAT bit is checked differently in Linux kernel 3.8.0.

Listing 17.8: linux kernel 3.8.0

struct file *do_filp_open(int dfd, struct filename *pathname,
const struct open_flags *op)

{

filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);

static struct file *path_openat(int dfd, struct filename *pathname,

struct nameidata *nd, const struct open_flags *op, int flags)

3http://kernelnewbies.org/Linux_2_6_20#head-042c62f290834eb1fe0al942bbf5bb9adaccbc8f

4See also arch\x86\include\asm\calling.h file in kernel tree

139

http://kernelnewbies.org/Linux_2_6_20#head-042c62f290834eb1fe0a1942bbf5bb9a4accbc8f

17.1. SPECIFIC BIT CHECKING CHAPTER 17. BIT FIELDS

{

error = do_last(nd, &path, file, op, &opened, pathname);

static int do_last(struct nameidata *nd, struct path *path,
struct file *file, const struct open_flags *op,
int *opened, struct filename *name)

{
if (!(open_flag & O_CREAT)) {
error = lookup_fast(nd, path, &inode);
} else {
error = complete_walk(nd);
}
}
Here is how kernel compiled for ARM mode looks like in IDA:
Listing 17.9: do_last() (vmlinux)
.text:CO169EA8 MoV R9, R3 ; R3 - (4th argument) open_flag
.text:C0169ED4 LDR R6, [R9] ; R6 - open_flag
.text:CO169F68 TST R6, #0x40 ; jumptable CO169F00 default case
.text:CO0169F6C BNE loc_CO016A128
.text:CO0169F70 LDR R2, [R4,#0x10]
.text:CO0169F74 ADD R12, R4, #8
.text:CO169F78 LDR R3, [R4,#0xC]
.text:CO169F7C MOV RO, R4
.text:C0169F80 STR R12, [R11,#var_50]
.text:C0169F84 LDRB R3, [R2,R3]
.text:C0169F88 MOV R2, R8
.text:C0169F8C CMP R3, #0
.text :C0169F90 ORRNE R1, R1, #3
.text:C0169F94 STRNE R1, [R4,#0x24]
.text:C0169F98 ANDS R3, R6, #0x200000
.text:C0169F9C MOV R1, R12
.text:CO0169FAO LDRNE R3, [R4,#0x24]
.text:C0169FA4 ANDNE R3, R3, #1
.text:CO169FA8 EORNE R3, R3, #1
.text:CO0169FAC STR R3, [R11,#var_54]
.text :C0169FBO SUB R3, R11, #-var_38
.text:C0169FB4 BL lookup_fast
.text:C016A128 loc_C016A128 ; CODE XREF: do_last.isra.14+DC
.text:C016A128 MOV RO, R4
.text:C016A12C BL complete_walk

TST is analogical to a TEST instruction in x86.

We can “spot” visually this code fragment by the fact the Lookup_fast () will be executed in one case and the complete_walk()
in another case. This is corresponding to the do_last () function source code.

0_CREAT macro is equals to 0x40 here too.

140

17.2. SPECIFIC BIT SETTING/CLEARING CHAPTER 17. BIT FIELDS

17.2 Specific bit setting/clearing

For example:

#define IS_SET(flag, bit) ((flag) & (bit))
#define SET_BIT(var, bit) ((var) |= (bit))
#define REMOVE_BIT(var, bit) ((var) &= ~(bit))

int f£(int a)

{
int rt=a;
SET_BIT (rt, 0x4000);
REMOVE_BIT (rt, 0x200);
return rt;
}s
17.2.1 x86
We got (MSVC 2010):
Listing 17.10: MSVC 2010
_rt$ = -4 ; size = 4
_a$ =8 ; size = 4
_f PROC
push ebp
mov ebp, esp
push ecx
mov eax, DWORD PTR _a$[ebp]
mov DWORD PTR _rt$[ebpl, eax
mov ecx, DWORD PTR _rt$[ebp]
or ecx, 16384 ; 00004000H
mov DWORD PTR _rt$[ebpl, ecx
mov edx, DWORD PTR _rt$[ebp]
and edx, -513 ; fffffdffH
mov DWORD PTR _rt$[ebpl, edx
mov eax, DWORD PTR _rt$[ebp]
mov esp, ebp
pop ebp
ret 0
f ENDP

OR instruction adds one more bit to value while ignoring the rest ones.

AND resetting one bit. It can be said, AND just copies all bits except one. Indeed, in the second AND operand only those
bits are set, which are needed to be saved, except one bit we would not like to copy (which is 0 in bitmask). It is easier way to
memorize the logic.

If we compile it in MSVC with optimization turned on (/0x), the code will be even shorter:

Listing 17.11: Optimizing MSVC

_a$ =8 ; size = 4
_f PROC
mov eax, DWORD PTR _a$[esp-4]
and eax, -513 ; TffffdffH
or eax, 16384 ; 00004000H
ret 0
f ENDP

Let’s try GCC 4.4.1 without optimization:

Listing 17.12: Non-optimizing GCC

141

17.2. SPECIFIC BIT SETTING/CLEARING

CHAPTER 17. BIT FIELDS

public £

£ proc near

var_4 = dword ptr -4

arg_0 = dword ptr 8
push ebp
mov ebp, esp
sub esp, 10h
mov eax, [ebptarg_0]
mov [ebptvar_4], eax
or [ebptvar_4], 4000h
and [ebptvar_4], OFFFFFDFFh
mov eax, [ebp+var_4]
leave
retn

f endp

There is a redundant code present, however, it is shorter then MSVC version without optimization.
Now let’s try GCC with optimization turned on -03:

Listing 17.13: Optimizing GCC

public f

f proc near

arg_0 = dword ptr 8
push ebp
mov ebp, esp
mov eax, [ebp+arg_0]
pop ebp
or ah, 40h
and ah, OFDh
retn

f endp

That’s shorter. It is worth noting the compiler works with the EAX register part via the AH register —that is the EAX register

part from 8th to 15th bits inclusive.

7th (bytenumben) T 6th [5th | 4th | 3rd | 2nd [1st | Oth
RAxx64
‘ EAX

AX
AH | AL

N.B.16-bit CPU 8086 accumulator was named AX and consisted of two 8-bit halves —AL (lower byte) and AH (higher byte).
In 80386 almost all registers were extended to 32-bit, accumulator was named EAX, but for the sake of compatibility, its older
parts may be still accessed as AX/AH/AL registers.

Since all x86 CPUs are 16-bit 8086 CPU successors, these older 16-bit opcodes are shorter than newer 32-bit opcodes.
That’'swhy¢‘or ah, 40h’’instruction occupyingonly 3 bytes. It would be more logical way to emit here‘‘or eax, 04000h’’
but that is 5 bytes, or even 6 (in case if register in first operand is not EAX).

It would be even shorter if to turn on -03 optimization flag and also set regparm=3.

Listing 17.14: Optimizing GCC

public f

f proc near
push ebp
or ah, 40h
mov ebp, esp
and ah, OFDh
pop ebp
retn

142

17.3. SHIFTS CHAPTER 17. BIT FIELDS
£ endp ‘

Indeed —first argument is already loaded into EAX, so it is possible to work with it in-place. It is worth noting that both
function prologue (‘‘push ebp / mov ebp,esp’’) and epilogue (““pop ebp’’) can easily be omitted here, but GCC probably
is not good enough for such code size optimizations. However, such short functions are better to be inlined functions (27).

17.2.2 ARM + Optimizing Keil + ARM mode

Listing 17.15: Optimizing Keil + ARM mode

02 0C CO E3 BIC RO, RO, #0x200
01 09 80 E3 ORR RO, RO, #0x4000
1E FF 2F E1l BX LR

BICis “logical and”, analogical to AND in x86. ORR is “logical or”, analogical to OR in x86.
So far, so easy.

17.2.3 ARM + Optimizing Keil + thumb mode

Listing 17.16: Optimizing Keil + thumb mode

01 21 89 03 MOVS R1, 0x4000

08 43 ORRS RO, R1

49 11 ASRS R1, R1, #5 ; generate 0x200 and place to R1
88 43 BICS RO, R1

70 47 BX LR

Apparently, Keil concludes the code in thumb mode, making 0x200 from 0x4000, will be more compact than code, writing
0x200 to arbitrary register.
So that is why, with the help of ASRS (arithmetic shift right), this value is calculating as 0x4000 > 5.

17.2.4 ARM + Optimizing Xcode (LLVM) + ARM mode

Listing 17.17: Optimizing Xcode (LLVM) + ARM mode

42 0C CO E3 BIC RO, RO, #0x4200
01 09 80 E3 ORR RO, RO, #0x4000
1E FF 2F E1l BX LR

The code was generated by LLVM, in source code form, in fact, could be looks like:

REMOVE_BIT (rt, 0x4200);
SET_BIT (rt, 0x4000);

And it does exactly the same we need. But why 0x4200? Perhaps, that is the LLVM optimizer’s artifact °. Probably, com-
piler’s optimizer error, but generated code works correct anyway.

More about compiler’s anomalies, read here (63).

For thumb mode, Optimizing Xcode (LLVM) generates likewise code.

17.3 Shifts

Bit shifts in C/C++ are implemented via < and >> operators.
Here is a simple example of function, calculating number of 1 bits in input variable:

#define IS_SET(flag, bit) ((flag) & (bit))

int f(unsigned int a)
{

int i;

int rt=0;

51t was LLVM build 2410.2.00 bundled with Apple Xcode 4.6.3

143

17.3. SHIFTS

CHAPTER 17. BIT FIELDS

for (i=

if

0; i<32; i++)
(IS_SET (a, 1<<i))
rt++;

return rt;

};

In this loop, iteration count value i counting from 0to 31, 1 < i statement will be counting from 1 to 0x80000000. Describ-
ing this operation in natural language, we would say shift 1 by n bits left. In other words, 1 < ¢ statement will consequently
produce all possible bit positions in 32-bit number. By the way, freed bit at right is always cleared. IS_SET macro is checking
bit presence in the a.

The IS_SET macro is in fact logical and operation (AND) and it returns 0 if specific bit is absent there, or bit mask, if the
bit is present. if() operator triggered in C/C++ if expression in it is not a zero, it might be even 123456, that is why it always
working correctly.

17.3.1 x86
Let’s compile (MSVC 2010):

Listing 17.18: MSVC 2010

_rt$ = -8
_i$ = -4
_a$ =8
_f PROC
push
mov
sub
mov
mov
jmp
$LN30f :
mov
add
mov
$LN40f :
cmp
jge
mov
mov
shl
and

je

mov
add
mov

$LN1@f:
jmp

$LN20f :
mov
mov
pop
ret

f ENDP

; size = 4
; size = 4
; size = 4

ebp

ebp, esp

esp, 8

DWORD PTR _rt$[ebp], O
DWORD PTR _i$[ebpl, O
SHORT $LN4@f

eax, DWORD PTR _i$[ebp]
eax, 1
DWORD PTR _i$[ebpl, eax

DWORD PTR _i$[ebpl, 32
SHORT $LN2@f

edx, 1

ecx, DWORD PTR _i$[ebp]
edx, cl

edx, DWORD PTR _a$[ebp]
SHORT $LN1@f

eax, DWORD PTR _rt$[ebp]
eax, 1
DWORD PTR _rt$[ebp]l, eax

SHORT $LN3@f

eax, DWORD PTR _rt$[ebp]
esp, ebp

ebp

0

; increment of 1

; 00000020H
; loop finished?

; EDX=EDX<<CL

; result of AND instruction was 07
; then skip next instructions

; no, not zero

; ilncrement rt

144

17.3. SHIFTS CHAPTER 17. BIT FIELDS

That’s how SHL (SHift Left) working.
Let’s compileitin GCC 4.4.1:

Listing 17.19: GCC 4.4.1

public £
f proc near

rt dword ptr -0Ch
i = dword ptr -8

arg_0 = dword ptr 8

push ebp

mov ebp, esp

push ebx

sub esp, 10h

mov [ebptrt], O

mov [ebp+i], O

jmp short loc_80483EF
loc_80483D0:

mov eax, [ebp+il

mov edx, 1

mov ebx, edx

mov ecx, eax

shl ebx, cl

mov eax, ebx

and eax, [ebptarg_0]

test eax, eax

jz short loc_80483EB

add [ebp+rt], 1
loc_80483EB:

add [ebp+il, 1
loc_80483EF:

cmp [ebp+i], 1Fh

jle short loc_80483D0

mov eax, [ebp+rt]

add esp, 10h

pop ebx

pop ebp

retn
f endp

Shift instructions are often used in division and multiplications by power of two numbers (1, 2, 4, 8, etc).
For example:

unsigned int f(unsigned int a)

{
return a/4;
I3
We got (MSVC 2010):
Listing 17.20: MSVC 2010
_a$ =8 ; size = 4
_f PROC
mov eax, DWORD PTR _a$[esp-4]
shr eax, 2
ret 0
f ENDP

SHR (SHift Right) instruction in this example is shifting a number by 2 bits right. Two freed bits at left (e.g., two most
significant bits) are set to zero. Two least significant bits are dropped. In fact, these two dropped bits —division operation
remainder.

SHR instruction works just like as SHL but in other direction.

145

17.4. CRC32 CALCULATION EXAMPLE CHAPTER 17. BIT FIELDS

OSSN

It can be easily understood if to imagine decimal numeral system and number 23. 23 can be easily divided by 10 just by
dropping last digit (3 —is division remainder). 2 is leaving after operation as a quotient.

The same story about multiplication. Multiplication by 4 is just shifting the number to the left by 2 bits, while inserting 2
zero bits at right (as the last two bits). It is just like to multiply 3 by 100 —we need just to add two zeroes at the right.

17.3.2 ARM + Optimizing Xcode (LLVM) + ARM mode

Listing 17.21: Optimizing Xcode (LLVM) + ARM mode

MOV R1, RO
MOV RO, #0
MOV R2, #1
MOV R3, RO
loc_2Eb4
TST R1, R2,LSL R3 ; set flags according to R1 & (R2<<R3)
ADD R3, R3, #1 ; R3++
ADDNE RO, RO, #1 ; if ZF flag is cleared by TST, RO++
CMP R3, #32
BNE loc_2Eb54
BX LR

TST is the same things as TEST in x86.

As | mentioned before (14.2.1), there are no separate shifting instructions in ARM mode. However, there are modifiers LSL
(Logical Shift Left), LSR (Logical Shift Right), ASR (Arithmetic Shift Right), ROR (Rotate Right) and RRX (Rotate Right with Extend)
, which may be added to such instructions as MOV, TST, CMP, ADD, SUB, RSB®.

These modificators are defines, how to shift second operand and by how many bits.

Thus““TST R1, R2,LSL R3’instruction works hereas R1 A (R2 < R3).

17.3.3 ARM + Optimizing Xcode (LLVM) + thumb-2 mode

Almost the same, but here are two LSL.W/TST instructions are used instead of single TST, because, in thumb mode, it is not
possible to define LSL modifier right in TST.

MOV R1, RO

MOVS RO, #0

MOV.W R9, #1

MOVS R3, #0
loc_2FT7A

LSL.W R2, R9, R3

TST R2, R1

ADD.W R3, R3, #1

IT NE

ADDNE RO, #1

CMP R3, #32

BNE loc_2F7A

BX LR

17.4 CRC32 calculation example

This is very popular table-based CRC32 hash calculation technique’.

6These instructions are also called “data processing instructions”
"Source code was taken here: http://burtleburtle.net/bob/c/crc.c

146

http://burtleburtle.net/bob/c/crc.c

17.4. CRC32 CALCULATION EXAMPLE

CHAPTER 17. BIT FIELDS

/* By Bob Jenkins, (c) 2006, Public Domain */
#include <stdio.h>
#include <stddef.h>

#include <string.h>

typedef wunsigned long ub4;
typedef wunsigned char ubl;

static const ub4 crctab[256] = {

0x00000000, 0x77073096, Oxeele612c, 0x990951ba, 0x076dc419,
0xe963ab535, 0x9e6495a3, 0x0edb8832, 0x79dcb8ad, 0xeOdbe9le,
0x09b64c2b, 0x7ebl7cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064,
0x£3b97148, 0x84bedlde, Oxladad47d, Ox6dddedeb, O0xf4d4b551,
0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f,
0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
0x3c03e4dl, 0x4b04d447, 0xd20d85fd, OxabO0abb56b, 0x35bba8fa,
0xdbbbc9d6, Oxacbcf940, 0x32d86ce3, 0x45df5c75, Oxdcd60dct,
0x26d930ac, 0x51de003a, 0xc8d75180, Oxbfd06116, 0x21b4f4b5,
0xcfba9599, 0xb8bda50f, 0x2802b89%e, 0x5f058808, 0xc60cd9b2,
0x2f6£7c87, 0x58684cll, Oxcl6lldab, 0xb6662d3d, 0x76dc4190,
0x98d220bc, 0Oxefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfedab,
0x7807c9a2, 0x0f00£934, 0x9609a88e, 0xel10e9818, 0x7f6a0dbb,
0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8,
0x6c0695ed, 0x1b01a57b, 0x8208f4cl, 0xf50fc457, 0x65b0d9c6,
0x8bbeb8ea, 0xfcb9887c, 0x62ddiddf, Ox15da2d49, 0x8cd37cf3,
0x4db26158, 0x3abb5lce, 0xa3bc0074, 0xd4bb30e2, Ox4adfab4l,
Oxa4dlc46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846,
0x44042d73, 0x33031de5, Oxaalad4c5f, 0xdd0d7cc9, 0x5005713c,
0xbeOb1010, 0xc90c2086, 0x5768b525, 0x206£85b3, 0xb966d4409,
0Ox5edef90e, 0x29d9c998, 0xb0d09822, 0Oxc7d7a8b4, 0x59b33d17,
0xb7bd5¢c3b, OxcOba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c,
Oxeadb4739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12,
0x0d6d6a3e, 0x7ababaa8, Oxed0ecfOb, 0x9309ff9d, 0x0al00ae27,
0xf00£f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d,
0x196c3671, 0x6e6b06e7, Oxfed41b76, 0x89d32be0, 0x10da7aba,
0xf9p9df6f, 0x8ebeeff9, 0x17b7bed3, 0x60b08ed5, 0xd6d6a3e8,
0x38d8c2c4, 0x4fdff252, 0xdlbb67f1, 0xabbcb5767, 0x3fb506dd,
0xd80d2bda, OxafOalb4c, 0x36034af6, 0x41047a60, 0xdf60efc3,
0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0,
0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, Oxcbba3bbe,
0x2bb45a92, 0x5cb36a04, Oxc2d7ffa7, O0xbb5d0cf31, 0x2cd99e8b,
0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9,
0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87ald, 0x7bbl2bae,
0x92d28e9b, 0xebd5beOd, Ox7cdcefb7, 0xObdbdf21, 0x86d3d2d4,
0x68ddb3f8, 0x1fda836e, 0x81bel6cd, 0xf6b9265b, 0x6fb077el,
0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010bbc, 0x8f659eff,
0x616bffd3, 0x166ccf45, 0xal00ae278, 0xd70dd2ee, 0x4e048354,
0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, Oxaedl6ada,
0x40df0b66, 0x37d83bf0, Oxa9bcaeb53, Oxdebb9ec5, 0x47b2cf7f,
Oxbdbdf21c, Oxcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02,
0xb40bbe37, 0xc30c8eal, 0x5a05dflb, 0x2d02ef8d,

};

0x706af48f,
0x97d2d988,
0x6ab020f2,
0x83d385c7,
0x63066cd9,
0xa2677172,
0x42b2986¢,
Oxabd13d59,
0x56b3c423,
0xb10be924,
0x01db7106,
0xe8b8d433,
0x086d3d2d,
0x£262004e,
0x12b7e950,
0xfbd44c65,
0x3dd895d7,
0xda60b8d0,
0x270241aa,
Oxce61e49f,
0x2eb40d81,
0x74b1d29a,
0x94643b84,
0x7d079eb1l,
0x806567cb,
0x67dd4acc,
0xal1d1937e,
0x48b2364b,
0xa867df5b5,
0x5268e236,
0xb2bd0b28,
0x5bdeaeld,
0xeb0e363f,
0x0cb61b38,
Oxf1d4e242,
0x18b74777,
0xf862ae69,
0x3903b3c2,
0xd9d65adc,
0x30b5ffe9,
0xcdd70693,
0x2a6f2b9%4,

/* how to derive the values in crctab[] from polynomial O0xedb88320 */

void build_table()
{
ub4 i, j;
for (i=0; i<256; ++i) {

147

17.4. CRC32 CALCULATION EXAMPLE

CHAPTER 17. BIT FIELDS

(S
|

e G G s s s Gl

prin

= i;

(j>>1)
(j>>1)
(j>>1)
(G>>1)
(j>>1)
(j>>1)
(3>>1)
(j>>1)

(GG&1)
((j&1)
((j&1)
((3&1)
((G&1)
(GG&1)
(GG&1)
((j&1)

tf("0x%.81x, ",

? 0xedb88320 :
1 0);
0xedb88320 :

? 0xedb88320

0xedb88320

N N N N N

j);

if (i%6 == 5) printf("\n");

/* the hash function */

0);

0);

: 0);
0xedb88320 :
0xedb88320 :
0xedb88320 :
? 0xedb88320 :

0);
0);
0);
0);

ub4 crc(const void *key, ub4 len, ub4 hash)

{

ub4d i;

>

const ubl *k = key;
for (hash=len, i=0; i<len; ++i)

hash = (hash >> 8) ~ crctab[(hash & Oxff) -~ k[il];

return

}

hash;

/* To use, try "gcc -0 crc.c -o crc; crc < crc.c" */

int main
{

char s

while (gets(s)) printf("%.81x\n", crc(s, strlen(s), 0));

return

}

O
[1000] ;

0;

We are interesting in the crc () function only. By the way, pay attention to two loop initializers in the for () statement:
hash=len, i=0. C/C++ standard allows this, of course. Emitted code will contain two operations in loop initialization part
instead of usual one.

Let’s compile it in MSVC with optimization (/0x). For the sake of brevity, only crc() function is listed here, with my

comments.
_key$ = 8 ; size = 4
_len$ = 12 ; size = 4
_hash$ = 16 ; size = 4
_crc PROC
mov edx, DWORD PTR _len$[esp-4]
Xor ecx, ecx ; i will be stored in ECX
mov eax, edx
test edx, edx
jbe SHORT $LN1@crc
push ebx
push esi
mov esi, DWORD PTR _key$[esp+4] ; ESI = key
push edi
$LL30@crc:

; work with bytes using only 32-bit registers. byte from address key+i we store into EDI

movzx

mov
and

; XOR EDI, EBX (EDI=EDI"EBX) - this operation uses all 32 bits of each register
; but other bits (8-31) are cleared all time, so it’s 0K

edi, BYTE PTR [ecx+esi]

ebx, eax ; EBX = (hash = len)

ebx, 255 ; EBX = hash & Oxff

148

17.4. CRC32 CALCULATION EXAMPLE

CHAPTER 17. BIT FIELDS

; these are cleared because, as for EDI, it was done by MOVZX instruction above
; high bits of EBX was cleared by AND EBX, 255 instruction above (255 = Oxff)

Xor

edi, ebx

; EAX=EAX>>8; bits 24-31 taken "from nowhere" will be cleared

shr

eax, 8

; EAX=EAX~crctab[EDI*4] - choose EDI-th element from crctabl[] table
eax, DWORD PTR _crctab[edix*4]

B

i++

; i<len 7

xor
inc ecx
cmp ecx, edx
jb SHORT $LL3Qcrc ; yes
pop edi
pop esi
pop ebx
$LN1@crc:
ret 0
_crc ENDP

Let’s try the same in GCC 4.4.1 with -03 option:

crc

key
hash

public crc
proc near

loc_80484B8:

loc_80484D3:

crc

= dword ptr 8

= dword ptr OCh

push ebp

Xor edx, edx

mov ebp, esp

push esi

mov esi, [ebptkey]
push ebx

mov ebx, [ebp+hash]
test ebx, ebx

mov eax, ebx

jz short loc_80484D3
nop g
lea esi, [esi+O0] g
mov ecx, eax g
xor al, [esi+edx] g
add edx, 1 5
shr ecx, 8 ;
movzx eax, al ;
mov eax, dword ptr ds
xor eax, ecx g
cmp ebx, edx

ja short loc_80484B8
pop ebx

pop esi

pop ebp

retn

endp

padding
padding; ESI doesn’t changing here

save previous state of hash to ECX
AL=+ (key+i)

i++

ECX=hash>>8

EAX=+ (key+1i)

:crctab[eax*4] ; EAX=crctab[EAX]

hash=EAX"ECX

GCC aligned loop start on a 8-byte boundary by adding NOP and 1ea esi, [esi+0] (thatistheidle operationtoo). Read
more about it in npad section (61).

149

CHAPTER 18. STRUCTURES

Chapter 18

Structures

It can be defined the C/C++ structure, with some assumptions, just a set of variables, always stored in memory together, not

necessary of the same type .

18.1 SYSTEMTIME example

Let’s take SYSTEMTIME? win32 structure describing time.
That’s how it is defined:

Listing 18.1: WinBase.h

typedef struct _SYSTEMTIME {
WORD wYear;
WORD wMonth;
WORD wDayOfWeek;
WORD wDay;
WORD wHour;
WORD wMinute;
WORD wSecond;
WORD wMilliseconds;
} SYSTEMTIME, *PSYSTEMTIME;

Let’s write a C function to get current time:

#include <windows.h>
#include <stdio.h>

void main()

{
SYSTEMTIME t;
GetSystemTime (&t);
printf ("%04d-%02d-%02d %02d:%02d:%02d\n",
t.wYear, t.wMonth, t.wDay,
t.wHour, t.wMinute, t.wSecond);
return;
}s
We got (MSVC 2010):
Listing 18.2: MSVC 2010
_t$ = -16 ; size = 16
_main PROC
push ebp
mov ebp, esp

TAKA “heterogeneous container”
2MSDN: SYSTEMTIME structure

150

http://msdn.microsoft.com/en-us/library/ms724950(VS.85).aspx

18.1. SYSTEMTIME EXAMPLE CHAPTER 18. STRUCTURES

sub esp, 16 ; 00000010H

lea eax, DWORD PTR _t$[ebp]

push eax

call DWORD PTR __imp__GetSystemTime@4
movzx ecx, WORD PTR _t$[ebp+12] ; wSecond
push ecx

movzx edx, WORD PTR _t$[ebp+10] ; wMinute
push edx

movzx eax, WORD PTR _t$[ebp+8] ; wHour
push eax

movzx ecx, WORD PTR _t$[ebp+6] ; wDay
push ecx

movzx edx, WORD PTR _t$[ebp+2] ; wMonth
push edx

movzx eax, WORD PTR _t$[ebp] ; wYear

push eax

push OFFSET $SG78811 ; ’%04d-%02d-%02d %02d:%02d:%02d4°, OaH, OOH
call _printf

add esp, 28 ; 0000001cH
xor eax, eax
mov esp, ebp
pop ebp
ret 0
_main ENDP

16 bytes are allocated for this structure in local stack —that is exactly sizeof (WORD) *8 (there are 8 WORD variables in
the structure).

Pay attention to the fact the structure beginning with wYear field. It can be said, an pointer to SYSTEMTIME structure
is passed to the GetSystemTime ()3, but it is also can be said, pointer to the wYear field is passed, and that is the same!
GetSystemTime () writes current year to the WORD pointer pointing to, then shifts 2 bytes ahead, then writes current month,
etc, etc.

The fact the structure fields are just variables located side-by-side, | can demonstrate by the following technique. Keeping
in ming SYSTEMTIME structure description, | can rewrite this simple example like this:

#include <windows.h>
#include <stdio.h>

void main()

{
WORD array[8];
GetSystemTime (array);
printf ("%04d-%02d-%02d %02d:%024d:%02d\n",
array[0] /* wYear */, array[1] /* wMonth */, array[3] /* wDay */,
array[4] /* wHour */, array[5] /* wMinute */, array[6] /* wSecond */);
return;
s

Compiler will grumble for a little:

systemtime2.c(7) : warning C4133: ’function’ : incompatible types - from *WORD [8]’ to °’
LPSYSTEMTIME’

But nevertheless, it will produce this code:

Listing 18.3: MSVC 2010

$SG78573 DB ?%04d-7%02d-%02d 7%02d:%02d:%02d°, OaH, OOH
_array$ = -16 ; size = 16
_main PROC

3MSDN: SYSTEMTIME structure

151

http://msdn.microsoft.com/en-us/library/ms724950(VS.85).aspx

18.2. LET’S ALLOCATE SPACE FOR STRUCTURE USING MALLOC()

CHAPTER 18. STRUCTURES

push ebp
mov ebp, esp
sub esp, 16 ; 00000010H
lea eax, DWORD PTR _array$[ebp]
push eax
call DWORD PTR __imp__GetSystemTime@4
MOVZX ecx, WORD PTR _array$[ebp+12] ; wSecond
push ecx
movzx edx, WORD PTR _array$[ebp+10] ; wMinute
push edx
movzx eax, WORD PTR _array$[ebp+8] ; wHoure
push eax
movzx ecx, WORD PTR _array$[ebp+6] ; wDay
push ecx
movzx edx, WORD PTR _array$[ebp+2] ; wMonth
push edx
MOVZX eax, WORD PTR _array$[ebp] ; wYear
push eax
push OFFSET $SG78573
call _printf
add esp, 28 ; 0000001cH
Xor eax, eax
mov esp, ebp
pop ebp
ret 0
_main ENDP

And it works just as the same!

It is very interesting fact the result in assembly form cannot be distinguished from the result of previous compilation. So
by looking at this code, one cannot say for sure, was there structure declared, or just pack of variables.

Nevertheless, no one will do it in sane state of mind. Since it is not convenient. Also structure fields may be changed by
developers, swapped, etc.

18.2 Let’s allocate space for structure using malloc()

However, sometimes it is simpler to place structures not in local stack, but in heap:

#include <windows.h>
#include <stdio.h>

void main()

{

SYSTEMTIME *t;

t=(SYSTEMTIME *)malloc (sizeof (SYSTEMTIME)) ;
GetSystemTime (t);
printf ("%04d-%02d-%02d %02d:%02d:%02d\n",

t->wYear, t->wMonth, t->wDay,
t->wHour, t->wMinute, t->wSecond);

free (t);
return;
};
Let’s compile it now with optimization (/0x) so to easily see what we need.
Listing 18.4: Optimizing MSVC
_main PROC

152

CHAPTER 18. STRUCTURES

18.2. LET’S ALLOCATE SPACE FOR STRUCTURE USING MALLOC()

push esi

push 16

call _malloc
add esp, 4
mov esi, eax

push esi

; 00000010H

call DWORD PTR __imp__GetSystemTime@4

movzx eax, WORD PTR [esi+12]
movzx ecx, WORD PTR [esi+10]
movzx edx, WORD PTR [esi+8]

push eax

movzx eax, WORD PTR [esi+6]

push ecx

movzx ecx, WORD PTR [esi+2]

push edx

movzx edx, WORD PTR [esi]

push eax
push ecx
push edx

push OFFSET $SG78833

call _printf
push esi

call _free
add esp, 32
x0T eax, eax
pop esi
ret 0

_main ENDP

; wSecond
; wMinute
; wHour

; wDay

; wMonth

; wYear

; 00000020H

So, sizeof (SYSTEMTIME) = 16, that is exact number of bytes to be allocated by malloc (). It returns the pointer to
freshly allocated memory block in the EAX register, which is then moved into the EST register. GetSystemTime () win32 func-
tion undertake to save value in the ESI, and that is why it is not saved here and continue to be used after GetSystemTime ()

call.

New instruction —MOVZX (Move with Zero eXtent). It may be used almost in those cases as MOVSX (13.1), but, it clears other
bits to 0. That’s because printf () requires 32-bit int, but we got WORD in structure —that is 16-bit unsigned type. That’s why
by copying value from WORD into int, bits from 16 to 31 must also be cleared, because there will be random noise otherwise,
leaved there from previous operations on registers.

In this example, | can represent structure as array of WORD-s:

#include <windows.h>
#include <stdio.h>

void main()

{
WORD *t;
t=(WORD *)malloc (16);
GetSystemTime (t);
printf ("%04d-%02d-%02d %02d:%02d:%02d\n",
t[0] /* wYear */, t[1] /* wMonth */, t[3] /* wDay */,
t[4] /* wHour */, t[5] /* wMinute */, t[6] /* wSecond */);
free (t);
return;
}s
We got:

Listing 18.5: Optimizing MSVC

153

18.3. STRUCT TM

CHAPTER 18. STRUCTURES

$SG78594 DB

_main PROC
push
push
call
add
mov
push
call
movzx
movzx
MovVzX
push
movzx
push
movzx
push
Mmovzx
push
push
push
push
call
push
call
add
xor
pop
ret

_main ENDP

>%04d-%02d-%02d %02d:%02d:%02d°>, OaH, OOH

PTR
PTR
PTR
PTR
PTR

PTR

imp__GetSystemTime@4

[esi+12]
[esi+10]
[esi+8]
[esi+6]

[esi+2]

[esi]

esi

16
_malloc
esp, 4
esi, eax
esi

DWORD PTR
eax, WORD
ecx, WORD
edx, WORD
eax

eax, WORD
ecx

ecx, WORD
edx

edx, WORD
eax

ecx

edx
OFFSET $SG78594
_printf
esi

_free
esp, 32
eax, eax
esi

0

>

>

00000010H

00000020H

Again, we got the code cannot be distinguished from the previous. And again | should note, one should not do this in

practice.

18.3 structtm

18.3.1 Linux

As of Linux, let’s take tm structure from time . h for example:

#include <stdio.h>
#include <time.h>

void main()

{

struct tm t;

time_t unix_time;

unix_time=time (NULL) ;

localtime_r (&unix_time, &t);

printf ("Year: %d\n", t.tm_year+1900);
printf ("Month: %d\n", t.tm_mon);
printf ("Day: %d\n", t.tm_mday);
printf ("Hour: %d\n", t.tm_hour);
printf ("Minutes: %d\n", t.tm_min);
printf ("Seconds: %d\n", t.tm_sec);

};

Let’s compileitin GCC 4.4.1:

154

18.3. STRUCT TM

CHAPTER 18. STRUCTURES

Listing 18.6: GCC 4.4.1

main proc near
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 40h
mov dword ptr [esp]l, O ; first argument for time()
call time
mov [esp+3Ch], eax
lea eax, [esp+3Ch] ; take pointer to what time() returned
lea edx, [esp+10h] ; at ESP+10h struct tm will begin
mov [esp+4], edx ; pass pointer to the structure begin
mov [esp], eax ; pass pointer to result of time()
call localtime_r
mov eax, [esp+24h] ; tm_year
lea edx, [eax+76Ch] ; edx=eax+1900
mov eax, offset format ; "Year: %d\n"
mov [esp+4], edx
mov [esp]l, eax
call printf
mov edx, [esp+20h] ; tm_mon
mov eax, offset aMonthD ; "Month: %d\n"
mov [esp+4], edx
mov [esp], eax
call printf
mov edx, [esp+1Ch] ; tm_mday
mov eax, offset aDayD ; "Day: %d\n"
mov [esp+4], edx
mov [esp], eax
call printf
mov edx, [esp+18h] ; tm_hour
mov eax, offset aHourD ; "Hour: %d\n"
mov [espt4], edx
mov [esp], eax
call printf
mov edx, [esp+14h] ; tm_min
mov eax, offset aMinutesD ; "Minutes: %d\n"
mov [espt4], edx
mov [esp], eax
call printf
mov edx, [esp+10h]
mov eax, offset aSecondsD ; "Seconds: %d\n"
mov [espt4], edx ; tm_sec
mov [esp]l, eax
call printf
leave
retn

main endp

Somehow, IDA did not created local variables names in local stack. But since we already experienced reverse engineers

:-) we may do it without this information in this simple example.

Please also pay attention to the lea edx, [eax+76Ch] —this instruction just adding 0x76C to value in the EAX, but not

modifies any flags. See also relevant section about LEA (80.6.2).

In order to illustrate the structure is just variables laying side-by-side in one place, let’s rework example, while looking at

the file time.h:

Listing 18.7: time.h

struct tm

{
int tm_sec;
int tm_min;

155

18.3. STRUCT TM CHAPTER 18. STRUCTURES

int tm_hour;
int tm_mday;
int tm_mon;

int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

};

#include <stdio.h>
#include <time.h>

void main()

{
int tm_sec, tm_min, tm_hour, tm_mday, tm_mon, tm_year, tm_wday, tm_yday, tm_isdst;
time_t unix_time;
unix_time=time (NULL) ;
localtime_r (&unix_time, &tm_sec);
printf ("Year: %d\n", tm_year+1900);
printf ("Month: %d\n", tm_mon);
printf ("Day: %d\n", tm_mday);
printf ("Hour: %d\n", tm_hour);
printf ("Minutes: %d\n", tm_min);
printf ("Seconds: %d\n", tm_sec);

}s

N.B. The pointer to the exactly tm_sec field is passed into localtime_r, i.e., to the first “structure” element.
Compiler will warn us:

Listing 18.8: GCC 4.7.3

GCC_tm2.c: In function ’main’:

GCC_tm2.c:11:5: warning: passing argument 2 of ’localtime_r’ from incompatible pointer type [
enabled by default]

In file included from GCC_tm2.c:2:0:

/usr/include/time.h:59:12: note: expected ’struct tm *’ but argument is of type ’int *’

But nevertheless, will generate this:

Listing 18.9: GCC 4.7.3

main proc near
var_30 = dword ptr -30h
var_2C = dword ptr -2Ch
unix_time = dword ptr -1Ch
tm_sec = dword ptr -18h
tm_min = dword ptr -14h
tm_hour = dword ptr -10h
tm_mday = dword ptr -0Ch
tm_mon = dword ptr -8
tm_year = dword ptr -4
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 30h
call __main
mov [esp+30h+var_30], O ; arg O
call time

156

18.3. STRUCT TM

CHAPTER 18

. STRUCTURES

mov
lea
mov
lea
mov
call
mov
add
mov
mov
call
mov
mov
mov
call
mov
mov
mov
call
mov
mov
mov
call
mov
mov
mov
call
mov
mov
mov
call
leave
retn

main endp

[esp+30h+unix_time], eax
eax, [esp+30h+tm_sec]
[esp+30h+var_2C], eax
eax, [esp+30h+unix_time]
[esp+30h+var_30], eax
localtime_r

eax, [esp+30h+tm_year]
eax, 1900
[esp+30h+var_2C], eax
[esp+30h+var_30], offset
printf

eax, [esp+30h+tm_mon]
[esp+30h+var_2C], eax
[esp+30h+var_30], offset
printf

eax, [esp+30h+tm_mday]
[esp+30h+var_2C], eax
[esp+30h+var_30], offset
printf

eax, [esp+30h+tm_hour]
[esp+30h+var_2C], eax
[esp+30h+var_30], offset
printf

eax, [esp+30h+tm_min]
[esp+30h+var_2C], eax
[esp+30h+var_30], offset
printf

eax, [esp+30h+tm_sec]
[esp+30h+var_2C], eax
[esp+30h+var_30], offset
printf

aYearD ; "Year: %d\n"

aMonthD ; "Month: %d\n"
aDayD ; "Day: %d\n"
aHourD ; "Hour: %d\n"
"Minutes: %d\n"

aMinutesD ;

aSecondsD ; "Seconds: %d\n"

This code is identical to what we saw previously and it is not possible to say, was it structure in original source code or

just pack of variables.

And this works. However, it is not recommended to do this in practice. Usually, compiler allocated variables in local stack
in the same order as they were declared in function. Nevertheless, there is no any guarantee.

By the way, some other compiler may warn the tm_year, tm_mon, tm_mday, tm_hour, tm_min variables, but not tm_sec
are used without being initialized. Indeed, compiler do not know these will be filled when calling to localtime_r ().

| chose exactly this example for illustration, since all structure fields has int type, and SYSTEMTIME structure fields —16-
bit WORD, and if to declare them as a local variables, they will be aligned on a 32-bit border, and nothing will work (because
GetSystemTime () will fill them incorrectly). Read more about it in next section: “Fields packing in structure”.

So, structure s just variables pack laying on one place, side-by-side. | could say the structure is a syntactic sugar, directing
compiler to hold them in one place. However, I’'m not programming languages expert, so, most likely, I’'m wrong with this
term. By the way, there were a times, in very early C versions (before 1972), in which there were no structures at all [29].

18.3.2 ARM + Optimizing Keil + thumb mode

Same example:

Listing 18.10: Optimizing Keil + thumb mode

var_38 = -0x38
var_34 = -0x34
var_30 = -0x30
var_2C = -0x2C
var_28 = -0x28
var_24 = -0x24
timer = -0xC

157

18.3. STRUCT TM

. STRUCTURES

PUSH
MOVS
SUB
BL
STR
MOV
ADD
BL
LDR
LDR
ADDS
ADR
BL
LDR
ADR
BL
LDR
ADR
BL
LDR
ADR
BL
LDR
ADR
BL
LDR
ADR
BL
ADD
POP

CHAPTER 18
{LR}
RO, #0 ; timer
SP, SP, #0x34
time
RO, [SP,#0x38+timer]
R1, SP ; tp

RO, SP, #0x38+timer ; timer
localtime_r

R1, =0x76C

RO, [SP,#0x38+var_24]

R1, RO, R1

RO, aYearD ; "Year: %d\n"
__2printf

R1, [SP,#0x38+var_28]

RO, aMonthD ; "Month: %d\n"
__2printf

R1, [SP,#0x38+var_2C]

RO, aDayD ; "Day: %d\n"
__2printf

R1, [SP,#0x38+var_30]

RO, aHourD ; "Hour: %d\n"
__2printf

R1, [SP,#0x38+var_34]

RO, aMinutesD ; "Minutes: %d\n"

2printf

R1, [SP,#0x38+var_38]

RO, aSecondsD ; "Seconds: %d\n"
__2printf

SP, SP, #0x34

{PC}

18.3.3 ARM + Optimizing Xcode (LLVM) + thumb-2 mode

IDA “get to know” tm structure (because IDA “knows” argument types of library functions like localtime_r()), so it shows
here structure elements accesses and also names are assigned to them.

Listing 18.11: Optimizing Xcode (LLVM) + thumb-2 mode

var_38
var_34

= -0x38
-0x34

PUSH
MOV
SUB
MOVS
BLX
ADD
STR
MOV
BLX
LDR
MOV
ADD
ADDW
BLX
LDR
MOV
ADD
BLX
LDR
MOV

{R7,LR}

R7, SP

SP, SP, #0x30

RO, #0 ; time_t *
_time

R1, SP, #0x38+var_34 ; struct tm *
RO, [SP,#0x38+var_38]

RO, SP ; time_t *
_localtime_r

R1, [SP,#0x38+var_34.tm_year]
RO, O0xF44 ; "Year: %d\n"

RO, PC ; char x

R1, R1, #0x76C

_printf

R1, [SP,#0x38+var_34.tm_mon]
RO, OxF3A ; "Month: %d\n"

RO, PC ; char x

_printf

R1, [SP,#0x38+var_34.tm_mday]
RO, 0xF35 ; "Day: %d\n"

158

18.4. FIELDS PACKING IN STRUCTURE CHAPTER 18. STRUCTURES

ADD RO, PC ; char *
BLX _printf
LDR R1, [SP,#0x38+var_34.tm_hour]
MOV RO, OxF2E ; "Hour: %d\n"
ADD RO, PC ; char *
BLX _printf
LDR R1, [SP,#0x38+var_34.tm_min]
MOV RO, 0xF28 ; "Minutes: %d\n"
ADD RO, PC ; char x*
BLX _printf
LDR R1, [SP,#0x38+var_34]
MOV RO, OxF25 ; "Seconds: %d\n"
ADD RO, PC ; char x*
BLX _printf
ADD SP, SP, #0x30
POP {R7,PC}
00000000 tm struc ; (sizeof=0x2C, standard type)
00000000 tm_sec DCD 7
00000004 tm_min DCD 7
00000008 tm_hour DCD 7
0000000C tm_mday DCD 7
00000010 tm_mon DCD 7
00000014 tm_year DCD ?
00000018 tm_wday DCD 7
0000001C tm_yday DCD 7
00000020 tm_isdst DCD 7
00000024 tm_gmtoff DCD 7
00000028 tm_zone DCD 7 ; offset
0000002C tm ends

18.4 Fields packing in structure

One important thing is fields packing in structures®.
Let’s take a simple example:

#include <stdio.h>

struct s
{

char a;

int b;

char c;

int d;
}s
void f(struct s s)
{

printf ("a=%d; b=ikd; c=V¥d; d=/d\n", s.a, s.b, s.c, s.d);
}s

As we see, we have two char fields (each is exactly one byte) and two more —int (each - 4 bytes).

18.4.1 x86

That’s all compiling into:

4See also: Wikipedia: Data structure alignment

159

http://en.wikipedia.org/wiki/Data_structure_alignment

18.4. FIELDS PACKING IN STRUCTURE

CHAPTER 18. STRUCTURES

_s$ =38 ; size = 16
?7fQQYAXUs@@Q@Z PROC g

push ebp

mov ebp, esp

mov eax, DWORD PTR _s$[ebp+12]
push eax

movsx ecx, BYTE PTR _s$[ebp+8]
push ecx

mov edx, DWORD PTR _s$[ebp+4]
push edx

movsx eax, BYTE PTR _s$[ebp]
push eax

push OFFSET $SG3842

call _printf

add esp, 20 ; 00000014H

pop ebp

ret 0
?7f@@YAXUs@@@Z ENDP ; f
_TEXT ENDS

As we can see, each field’s address is aligned on a 4-bytes border. That’s why each char occupies 4 bytes here (like int).

Why? Thus it is easier for CPU to access memory at aligned addresses and to cache data from it.

However, it is not very economical in size sense.

Let’s try to compile it with option (/Zp1) (/Zp[n] pack structures on n-byte boundary).

Listing 18.12: MSVC /Zp1

_TEXT SEGMENT

_s$ =8 ; size = 10
7f@QYAXUs@QQ@Z PROC g i

push ebp

mov ebp, esp

mov eax, DWORD PTR _s$[ebp+6]
push eax
movsx ecx, BYTE PTR _s$[ebp+5]
push ecx
mov edx, DWORD PTR _s$[ebp+1]
push edx
movsx eax, BYTE PTR _s$[ebp]
push eax
push OFFSET $SG3842
call _printf
add esp, 20 ; 00000014H
pop ebp
ret 0

7f@QYAXUsQ@Q@QZ ENDP g i

Now the structure takes only 10 bytes and each char value takes 1 byte. What it give to us? Size economy. And as draw-
back —CPU will access these fields without maximal performance it can.
As it can be easily guessed, if the structure is used in many source and object files, all these must be compiled with the

same convention about structures packing.

Aside from MSVC /Zp option which set how to align each structure field, here is also #pragma pack compiler option, it

can be defined right in source code. Itis available in both MSVC>and GCC®.

Let’s back to the SYSTEMTIME structure consisting in 16-bit fields. How our compiler know to pack them on 1-byte align-

ment boundary?
WinNT.h file has this:

Listing 18.13: WinNT.h

#include "pshpackl.h"

SMSDN: Working with Packing Structures
6Structure-Packing Pragmas

160

http://msdn.microsoft.com/en-us/library/ms253935.aspx
http://gcc.gnu.org/onlinedocs/gcc/Structure_002dPacking-Pragmas.html

18.4. FIELDS PACKING IN STRUCTURE CHAPTER 18. STRUCTURES
And this:

Listing 18.14: WinNT.h

#include "pshpack4.h" // 4 byte packing is the default

The file PshPack1.h looks like:

Listing 18.15: PshPackl.h

#if ! (defined(lint) || defined(RC_INVOKED))

#if (_MSC_VER >= 800 && !defined(_M_I86)) || defined(_PUSHPOP_SUPPORTED)
#pragma warning(disable:4103)

#if !(defined(MIDL_PASS)) || defined(__midl)
#pragma pack(push,1)

#else

#pragma pack(1l)

#endif

#else

#pragma pack(1)

#endif

#endif /* ! (defined(lint) || defined(RC_INVOKED)) */

That’s how compiler will pack structures defined after #pragma pack.
18.4.2 ARM + Optimizing Keil + thumb mode

Listing 18.16: Optimizing Keil + thumb mode

.text:0000003E exit ; CODE XREF: f+16
.text:0000003E 05 BO ADD SP, SP, #0x14
.text:00000040 00 BD POP {PC}

.text:00000280 £

.text:00000280

.text:00000280 var_18 = -0x18

.text:00000280 a = -0x14

.text :00000280 b = -0x10

.text:00000280 c = -0xC

.text:00000280 d = -8

.text:00000280

.text:00000280 OF B5 PUSH {RO-R3,LR}
.text:00000282 81 BO SUB SP, SP, #4
.text:00000284 04 98 LDR RO, [SP,#16] ; d
.text:00000286 02 9A LDR R2, [SP,#8] ; b
.text:00000288 00 90 STR RO, [SP]
.text:0000028A 68 46 MOV RO, SP
.text:0000028C 03 7B LDRB R3, [RO,#12] 5 @
.text:0000028E 01 79 LDRB R1, [RO,#4] ;5 a
.text:00000290 59 A0 ADR RO, aADBDCDDD ; "a=Yd; b=%d; c=%d; d=%d\n"
.text:00000292 05 FO AD FF BL __2printf
.text:00000296 D2 E6 B exit

As we may recall, here a structure passed instead of pointer to structure, and since first 4 function arguments in ARM are
passed via registers, so then structure fields are passed via RO-R3.

LDRB loads one byte from memory and extending it to 32-bit, taking into account its sign. This is akin to MOVSX (13.1)
instruction in x86. Here it is used for loading fields a and ¢ from structure.

One more thing we spot easily, instead of function epilogue, here is jump to another function’s epilogue! Indeed, that was
quite different function, not related in any way to our function, however, it has exactly the same epilogue (probably because,
it hold 5 local variables too (5 x4 = 0x14)). Also it is located nearly (take a look on addresses). Indeed, there is no difference,
which epilogue to execute, if it works just as we need. Apparently, Keil decides to reuse a part of another function by a reason
of economy. Epilogue takes 4 bytes while jump —only 2.

161

18.5. NESTED STRUCTURES

CHAPTER 18. STRUCTURES

18.4.3 ARM + Optimizing Xcode (LLVM) + thumb-2 mode

Listing 18.17: Optimizing Xcode (LLVM) + thumb-2 mode

var_C = -0xC

PUSH
MOV
SUB
MOV
MOV
MOVW
SXTB
MOVT.W
STR
ADD
SXTB
MOV
BLX
ADD
POP

{R7,LR}
R7, SP
SP, SP, #4
R9, Rl ; b
R1, RO ; a

RO, #0xF10 ; "a=%d; b=%d; c=%d; d=%d\n"

R1, R1 ; prepare a

RO, #0

R3, [SP,#0xC+var_C] ; place d to stack for printf()
RO, PC ; format-string

R3, R2 ; prepare c

R2, R9 ; Db

_printf

SP, SP, #4

{R7,PC}

SXTB (Signed Extend Byte) is analogous to MOVSX (13.1) in x86 as well, but works not with memory, but with register. All

the rest —just the same.

18.5 Nested structures

Now what about situations when one structure defines another structure inside?

#include <stdio.h>

struct inner_struct

{
int a;
int b;
Jrg
struct outer_struct
{
char a;
int b;
struct inner_struct c;
char d;
int e;
}s

void f(struct outer_struct s)

{

printf ("a=Yd; b=%d; c.a=%d; c.b=}d; d=%d; e=%d\n",
s.a, s.b, s.c.a, s.c.b, s.d, s.e);

};

...in this case, both inner_struct fields will be placed between a,b and d,e fields of outer_struct.

Let’s compile (MSVC 2010):

Listing 18.18: MSVC 2010

_s$ =8 ; size =
_f PROC

push ebp

mov ebp, esp

24

mov eax, DWORD PTR _s$[ebp+20] ; e

push eax

162

18.6. BIT FIELDS IN STRUCTURE CHAPTER 18. STRUCTURES
movsx ecx, BYTE PTR _s$[ebp+16] ; d
push ecx
mov edx, DWORD PTR _s$[ebp+12] ; c.b
push edx
mov eax, DWORD PTR _s$[ebp+8] ; c.a
push eax
mov ecx, DWORD PTR _s$[ebp+4] ; b
push ecx
movsx edx, BYTE PTR _s$[ebp] ;a
push edx
push OFFSET $SG2466
call _printf
add esp, 28 ; 0000001cH

pop ebp
ret 0
_f ENDP

One curious point here is that by looking onto this assembly code, we do not even see that another structure was used
inside of it! Thus, we would say, nested structures are finally unfolds into linear or one-dimensional structure.

Of course, if to replace struct inner_struct c; declaration to struct inner_struct *c; (thus making a pointer
here) situation will be quite different.

18.6 Bit fields in structure

18.6.1 CPUID example

C/C++ language allow to define exact number of bits for each structure fields. It is very useful if one needs to save memory
space. For example, one bit is enough for variable of bool type. But of course, it is not rational if speed is important.

Let’s consider CPUID instruction example. This instruction returning information about current CPU and its features.

If the EAX is set to 1 before instruction execution, CPUID will return this information packed into the EAX register:

3:0 Stepping

7:4 Model

11:8 Family

13:12 | Processor Type
19:16 | Extended Model
27:20 | Extended Family

MSVC 2010 has CPUID macro, but GCC 4.4.1 —has not. So let’s make this function by yourself for GCC with the help of its
built-in assembler®.

#include <stdio.h>

#ifdef __GNUC__

static inline void cpuid(int code, int *a, int *b, int *c, int *d) {
asm volatile("cpuid":"=a"(*a),"=b"(xb),"=c"(xc),"=d"(xd):"a"(code));

}

#endif

#ifdef _MSC_VER
#include <intrin.h>
#endif

struct CPUID_1_EAX

{
unsigned int stepping:4;
unsigned int model:4;
unsigned int family_id:4;
unsigned int processor_type:2;

"http://en.wikipedia.org/wiki/CPUID
8More about internal GCC assembler

163

http://en.wikipedia.org/wiki/CPUID
http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html

18.6. BIT FIELDS IN STRUCTURE

CHAPTER 18. STRUCTURES

unsigned int reservedl:2;
unsigned int extended_model_id:4;
unsigned int extended_family_id:8;
unsigned int reserved2:4;

int main()

struct CPUID_1_EAX *tmp;
int bl[4];

#ifdef _MSC_VER
__cpuid(b,1);
#endif

#ifdef __GNUC__
cpuid (1, &b[0], &b[1], &b[2], &b[3]1);
#endif

tmp=(struct CPUID_1_EAX *)&b[0];

printf ("stepping=/d\n", tmp->stepping);

printf ("model=%d\n", tmp->model);

printf ("family_id=%d\n", tmp->family_id);

printf ("processor_type=/d\n", tmp->processor_type);

printf ("extended _model_id=%d\n", tmp->extended_model_id);
printf ("extended_family_id=Jd\n", tmp->extended_family_id);

return 0;

};

After CPUID will fill EAX/EBX/ECX/EDX, these registers will be reflected in the b[] array. Then, we have a pointer to the

CPUID_1_EAX structure and we point it to the value in the EAX from b [] array.
In other words, we treat 32-bit int value as a structure.
Then we read from the stucture.
Let’s compile itin MSVC 2008 with /0x option:

Listing 18.19: Optimizing MSVC 2008

_b$ = -16 ; size = 16
_main PROC
sub esp, 16 ; 00000010H
push ebx
xXor ecx, ecx
mov eax, 1
cpuid

push esi

lea esi, DWORD PTR _b$[esp+24]
mov DWORD PTR [esi], eax

mov DWORD PTR [esi+4], ebx
mov DWORD PTR [esi+8], ecx
mov DWORD PTR [esi+12], edx

mov esi, DWORD PTR _b$[esp+24]

mov eax, esi

and eax, 15 ; 0000000fH
push eax

push OFFSET $SG15435 ; ’stepping=%d’, OaH, OOH
call _printf

mov ecx, esi

164

18.6. BIT FIELDS IN STRUCTURE CHAPTER 18. STRUCTURES
shr ecx, 4
and ecx, 15 ; 0000000fH
push ecx
push OFFSET $SG15436 ; ’model=%d’, OaH, OOH
call _printf

mov edx, esi

shr edx, 8

and edx, 15 ; 0000000fH
push edx

push OFFSET $SG15437 ; ’family_id=)d’, OaH, OOH
call _printf

mov eax, esi
shr eax, 12 ; 0000000cH
and eax, 3

push eax
push OFFSET $SG15438 ; ’processor_type=/d’, OaH, OOH
call _printf

mov ecx, esi
shr ecx, 16 ; 00000010H
and ecx, 15 ; 0000000fH

push ecx
push OFFSET $SG15439 ; ’extended_model_id=%d’, OaH, OOH
call _printf

shr esi, 20 ; 00000014H

and esi, 255 ; 000000ffH

push esi

push OFFSET $SG15440 ; ’extended_family_id=%d’, OaH, OOH
call _printf

add esp, 48 ; 00000030H
pop esi

xor eax, eax

pop ebx

add esp, 16 ; 00000010H
ret 0

_main ENDP

SHR instruction shifting value in the EAX register by number of bits must be skipped, e.g., we ignore a bits at right.
AND instruction clears bits not needed at left, or, in other words, leaves only those bits in the EAX register we need now.
Let’s try GCC 4.4.1 with -03 option.

Listing 18.20: Optimizing GCC 4.4.1

main proc near ; DATA XREF: _start+17
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
push esi
mov esi, 1
push ebx
mov eax, esi
sub esp, 18h
cpuid
mov esi, eax
and eax, OFh
mov [esp+8], eax
mov dword ptr [esp+4], offset aSteppingD ; "stepping=/d\n"

165

18.6. BIT FIELDS IN STRUCTURE CHAPTER 18

. STRUCTURES

mov
call
mov
shr
and
mov
mov
mov
call
mov
shr
and
mov
mov
mov
call
mov
shr
and
mov
mov
mov
call
mov
shr
shr
and
and
mov
mov
mov
call
mov
mov
mov
call
add
Xor
pop
pop
mov
pop
retn
main

dword ptr [esp], 1

___printf_chk
eax, esi

eax, 4

eax, OFh

[esp+8], eax
dword ptr [esp+4], offset aModelD ; "model=Jd\n"
dword ptr [espl, 1

___printf_chk
eax, esi

eax, 8

eax, OFh

[esp+8], eax
dword ptr [esp+4], offset aFamily_idD ; "family_id=%d\n"
dword ptr [esp]l, 1

___printf_chk
eax, esi

eax, OCh

eax, 3

[esp+8], eax
dword ptr [esp+4], offset aProcessor_type ; "processor_type=/d\n"
dword ptr [esp], 1

___printf_chk
eax, esi

eax, 10h

esi, 14h

eax, OFh

esi, OFFh

[esp+8], eax

dword ptr [esp+4], offset aExtended_model ; "extended_model_id=%d\n"
dword ptr [esp]l, 1

___printf_chk

[esp+8], esi

dword ptr [esp+4], offset unk_80486D0

dword ptr [espl, 1

___printf_chk
esp, 18h
eax, eax
ebx
esi
esp, ebp
ebp
endp

Almost the same. The only thing worth noting is the GCC somehow united calculation of extended_model_id and
extended_family_id into one block, instead of calculating them separately, before corresponding each printf () call.

18.6.2 Working with the float type as with a structure

As it was already noted in section about FPU (15), both float and double types consisted of sign, significand (or fraction) and
exponent. But will we able to work with these fields directly? Let’s try with float.

3130 2322 0

S| exponent mantissa or fraction

(S—sign)

#include <stdio.h>
#include <assert.h>

166

18.6. BIT FIELDS IN STRUCTURE CHAPTER 18. STRUCTURES

#include <stdlib.h>
#include <memory.h>

struct float_as_struct

{
unsigned int fractiom : 23; // fractional part
unsigned int exponent : 8; // exponent + Ox3FF
unsigned int sign : 1; // sign bit
i
float f(float _in)
{
float f=_in;
struct float_as_struct t;
assert (sizeof (struct float_as_struct) == sizeof (float));
memcpy (&t, &f, sizeof (float));
t.sign=1; // set negative sign
t.exponent=t.exponent+2; // multiple d by 2°n (n here is 2)
memcpy (&f, &t, sizeof (float));
return f;
i
int main()
{
printf ("%f\n", £(1.234));
i
float_as_struct structure occupies as much space is memory as float, e.g., 4 bytes or 32 bits.
Now we setting negative sign in input value and also by adding 2 to exponent we thereby multiplicating the whole number
by 22, e.g., by 4.
Let’s compile in MSVC 2008 without optimization:
Listing 18.21: Non-optimizing MSVC 2008
_t$ = -8 ; size = 4
_f$ = -4 ; size = 4
__in$ = 8 ; size = 4
?7fQOYAMMQ@Z PROC ;
push ebp
mov ebp, esp

sub esp, 8

f1d DWORD PTR __in$[ebp]
fstp DWORD PTR _f$[ebp]

push 4

lea eax, DWORD PTR _f$[ebp]

push eax

lea ecx, DWORD PTR _t$[ebp]

push ecx

call _memcpy

add esp, 12 ; 0000000cH

mov edx, DWORD PTR _t$[ebp]

or edx, -2147483648 ; 80000000H - set minus sign
mov DWORD PTR _t$[ebpl, edx

167

18.6. BIT FIELDS IN STRUCTURE

CHAPTER 18. STRUCTURES

mov eax, DWORD PTR _t$[ebp]
shr eax, 23 ; 00000017H - drop significand
and eax, 255 ; 000000ffH - leave here only exponent
add eax, 2 ; add 2 to it
and eax, 255 ; 000000£ffH
shl eax, 23 ; 00000017H - shift result to place of bits 30:23
mov ecx, DWORD PTR _t$[ebp]
and ecx, -2139095041 ; 807fffffH - drop exponent
or ecx, eax ; add original value without exponent with new calculated exponent
mov DWORD PTR _t$[ebpl, ecx
push 4
lea edx, DWORD PTR _t$[ebp]
push edx
lea eax, DWORD PTR _£$[ebp]
push eax
call _memcpy
add esp, 12 ; 0000000cH
f1d DWORD PTR _f$[ebp]
mov esp, ebp
pop ebp
ret 0
?fQQYAMM@Z ENDP g o

Redundant for a bit. If it is compiled with /0x flag there is no memcpy () call, f variable is used directly. But it is easier to

understand it all considering unoptimized version.
What GCC 4.4.1 with -03 will do?

Listing 18.22: Optimizing GCC 4.4.1

; f(float)
public _Z1ff

_Z1ff proc near
var_4 = dword ptr -4
arg_0 = dword ptr 8
push ebp
mov ebp, esp
sub esp, 4
mov eax, [ebptarg_0]
or eax, 80000000h ; set minus sign
mov edx, eax
and eax, 807FFFFFh ; leave only significand and exponent in EAX
shr edx, 23 ; prepare exponent
add edx, 2 ; add 2
movzx edx, dl ; clear all bits except 7:0 in EAX
shl edx, 23 ; shift new calculated exponent to its place
or eax, edx ; add new exponent and original value without exponent
mov [ebptvar_4], eax
f1d [ebp+var_4]
leave
retn
_Z1ff endp
public main
main proc near
push ebp
mov ebp, esp
and esp, OFFFFFFFOh

168

18.6. BIT FIELDS IN STRUCTURE CHAPTER 18. STRUCTURES

sub esp, 10h

fld ds:dword_8048614 ; -4.936

fstp qword ptr [esp+8]

mov dword ptr [esp+4], offset asc_8048610 ; "%f\n"
mov dword ptr [esp]l, 1

call ___printf_chk

Xor eax, eax

leave

retn

main endp

The £ () function is almost understandable. However, what is interesting, GCC was able to calculate f (1.234) result
during compilation stage despite all this hodge-podge with structure fields and prepared this argument to the printf () as
precalculated!

169

CHAPTER 19. UNIONS

Chapter 19

Unions

19.1 Pseudo-random number generator example

If we need float random numbers from 0 to 1, the most simplest thing is to use PRNG' like Mersenne twister produces random
32-bit values in DWORD form, transform this value to float and then dividing it by RAND_MAX (OxFFFFFFFF in our case) —value
we got will be in 0..1interval.

But as we know, division operation is slow. Will it be possible to get rid of it, as in case of division by multiplication? (14)

Let’s recall what float number consisted of: sign bit, significand bits and exponent bits. We need just to store random bits
to all significand bits for getting random float number!

Exponent cannot be zero (number will be denormalized in this case), so we will store 01111111 to exponent —this means
exponentwill be 1. Then fill significand with random bits, set sign bit to 0 (which means positive number) and voila. Generated
numbers will be in 1to 2 interval, so we also must subtract 1 from it.

Very simple linear congruential random numbers generator is used in my example?, produces 32-bit numbers. The PRNG
initializing by current time in UNIX-style.

Then, float type represented as union —it is the C/C++ construction enabling us to interpret piece of memory as differently
typed. In our case, we are able to create a variable of union type and then access to it as it is float or as it is uint32_t. It can
be said, itis just a hack. A dirty one.

#include <stdio.h>
#include <stdint.h>
#include <time.h>

union uint32_t_float
{
uint32_t i;
float f;
Jg

// from the Numerical Recipes book
const uint32_t RNG_a=1664525;
const uint32_t RNG_c=1013904223;

int main()

{
uint32_t_float tmp;

uint32_t RNG_state=time(NULL); // initial seed
for (int i=0; i<100; i++)

{
RNG_state=RNG_state*RNG_a+RNG_c;
tmp.i=RNG_state & 0x007fffff | 0x3F800000;
float x=tmp.f-1;
printf ("%f\n", x);

}s

return 0;

'Pseudorandom number generator
2idea was taken from: http://xor0110.wordpress.com/2010/09/24/how-to-generate-floating-point-random-numbers-efficiently

170

http://xor0110.wordpress.com/2010/09/24/how-to-generate-floating-point-random-numbers-efficiently

19.1. PSEUDO-RANDOM NUMBER GENERATOR EXAMPLE

CHAPTER 19. UNIONS

};

Listing 19.1: MSVC 2010 (/0x)
$SG4232 DB >%f’, OaH, OOH
__real@3f£0000000000000 DQ 03££0000000000000r ;01
tv140 = -4 ; size = 4
_tmp$ = -4 ; size = 4
_main PROC

push ebp

mov ebp, esp

and esp, -64 ; ffffffcOH

sub esp, 56 ; 00000038H

push esi

push edi

push O

call __time64

add esp, 4

mov esi, eax

mov edi, 100 ; 00000064H
$LN3Cmain:

; let’s generate random 32-bit number

imul esi, 1664525 ; 0019660dH
add esi, 1013904223 ; 3cb6ef3bfH
mov eax, esi

; leave bits for significand only

and eax, 8388607 ; 007fffffH
; set exponent to 1

or eax, 1065353216 ; 3f800000H
; store this value as int

mov DWORD PTR _tmp$[esp+64], eax
sub esp, 8

; load this value as float
f1d DWORD PTR _tmp$[esp+72]
; subtract one from it

fsub QWORD PTR __real@3££0000000000000
fstp DWORD PTR tv140[esp+72]

f1d DWORD PTR tv140 [esp+72]

fstp QWORD PTR [esp]

push OFFSET $S5G4232

call _printf

add esp, 12 ; 0000000cH
dec edi

jne SHORT $LN3@main

pop edi

xor eax, eax

171

19.1. PSEUDO-RANDOM NUMBER GENERATOR EXAMPLE

CHAPTER 19. UNIONS

pop esi
mov esp, ebp
pop ebp
ret 0
_main ENDP
_TEXT ENDS

END

GCC produces very similar code.

172

CHAPTER 20. POINTERS TO FUNCTIONS

Chapter 20

Pointers to functions

Pointer to function, as any other pointer, is just an address of function beginning in its code segment.
It is often used in callbacks .
Well-known examples are:

e gsort ()2, atexit ()3 from the standard C library;

e signalsin *NIX 0S%;

e thread starting: CreateThread () (win32), pthread_create() (POSIX);
e alot of win32 functions, e.g. EnumChildWindows ()°.

So, gsort () function is a C/C++ standard library quicksort implementation. The functions is able to sort anything, any
types of data, if you have a function for two elements comparison and gsort () is able to call it.
The comparison function can be defined as:

int (*compare) (const void *, const void *)

Let’s use slightly modified example | found here:

/* ex3 Sorting ints with gsort */

#include <stdio.h>
#include <stdlib.h>

int comp(const void * _a, const void * _b)
{

const int *a=(const int *)_a;

const int *b=(const int *)_b;

if (*a==%D)
return O;
else
if (*a < *b)
return -1;
else
return 1;

}

int main(int argc, char* argv[])

{
int numbers[10]={1892,45,200,-98,4087,5,-12345,1087,88,-100000};
int 1i;

Thttp://en.wikipedia.org/wiki/Callback_(computer_science)
?http://en.wikipedia.org/wiki/Qsort_(C_standard_library)
3http://www.opengroup.org/onlinepubs/009695399/functions/atexit.html
“http://en.wikipedia.org/wiki/Signal.h
Shttp://msdn.microsoft.com/en-us/library/ms633494(VS.85) .aspx

173

http://cplus.about.com/od/learningc/ss/pointers2_8.htm
http://en.wikipedia.org/wiki/Callback_(computer_science)
http://en.wikipedia.org/wiki/Qsort_(C_standard_library)
http://www.opengroup.org/onlinepubs/009695399/functions/atexit.html
http://en.wikipedia.org/wiki/Signal.h
http://msdn.microsoft.com/en-us/library/ms633494(VS.85).aspx

CHAPTER 20. POINTERS TO FUNCTIONS

/* Sort the array */

gsort (numbers, 10,sizeof (int) ,comp) ;

for (i=0;i<9;i++)

printf ("Number = %d\n",numbers[i])

>

return 0O;
}
Let’s compile it in MSVC 2010 (I omitted some parts for the sake of brevity) with /0x option:
Listing 20.1: Optimizing MSVC 2010
__,a$ =8 ; size = 4
__b$ = 12 ; size = 4
_comp PROC
mov eax, DWORD PTR __a$[esp-4]
mov ecx, DWORD PTR __b$[esp-4]
mov eax, DWORD PTR [eax]
mov ecx, DWORD PTR [ecx]
cmp eax, ecx
jne SHORT $LN4Qcomp
Xor eax, eax
ret 0
$LN4@comp:
Xor edx, edx
cmp eax, ecx
setge dl
lea eax, DWORD PTR [edx+edx-1]
ret 0
_comp ENDP
_numbers$ = -44 ; size = 40
_i$ = -4 ; size = 4
_argc$ = 8 ; size = 4
_argv$ = 12 ; size = 4
_main PROC
push ebp
mov ebp, esp

sub esp, 44

mov DWORD PTR _numbers$[ebp], 1892
mov DWORD PTR _numbers$[ebp+4], 45
mov DWORD PTR _numbers$[ebp+8], 200
mov DWORD PTR _numbers$[ebp+12],
mov DWORD PTR _numbers$[ebp+16],
mov DWORD PTR _numbers$[ebp+20],
mov DWORD PTR _numbers$[ebp+24],
mov DWORD PTR _numbers$[ebp+28],
mov DWORD PTR _numbers$[ebp+32],
mov DWORD PTR _numbers$[ebp+36],

lea eax, DWORD PTR _numbers$[ebp]

push OFFSET _co
push 4

push 10

push eax

call _gsort

add esp, 16

mp

98
4087

-12345
1087

88
-100000

>

B

>

>

B

B

0000002cH
00000764H

; 0000002dH

000000c8H
ffffffOeH
00000f£7H

; ffffcfc7H
; 0000043fH

00000058H
f£fe7960H

0000000aH

00000010H

Nothing surprising so far. As a fourth argument, an address of label _comp is passed, that is just a place where function

comp () located.
How gsort () callingit?

174

20.1. GCC

CHAPTER 20. POINTERS TO FUNCTIONS

Let’s take a look into this function located in MSVCR80.DLL (a MSVC DLL module with C standard library functions):

Listing 20.2: MSVCR80.DLL

.text:7816CBFO ; void __cdecl gsort(void *, unsigned int, unsigned int, int (__cdecl *) (const

void *, const void *))

.text:7816CBFO
.text:7816CBFO _gsort
.text:7816CBFO
.text:7816CBFO lo
.text:7816CBFO hi
.text:7816CBFO var_FC
.text:7816CBFO stkptr
.text:7816CBFO lostk
.text:7816CBFO histk
.text:7816CBFO base
.text:7816CBFO num
.text:7816CBFO width
.text:7816CBFO comp
.text:7816CBFO
.text:7816CBFO
.text:7816CCEO loc_7816CCEOQ:
.text:7816CCEQ
.text:7816CCE2

.text :7816CCES
.text:7816CCE7
.text:7816CCE9
.text:7816CCEA
.text:7816CCEB
.text:7816CCF2
.text:7816CCF5
.text:7816CCF7

public _

gsort

proc near

= dword
= dword
= dword
= dword
= dword
= dword
= dword
= dword
= dword
= dword

sub

shr
imul
add
mov
push
push
call
add
test
jle

ptr -104h
ptr -100h
ptr -OFCh
ptr -OF8h
ptr -OF4h
ptr -7Ch
ptr 4

ptr 8

ptr OCh
ptr 10h

esp, 100h

; CODE XREF:

eax, 1
eax, ebp
eax, ebx
edi,
edi
ebx
[esp+118h+comp]
esp, 8

eax, eax

short loc_7816CD04

eax

_gsort+B1

comp —is fourth function argument. Here the control is just passed to the address in the comp argument. Before it, two
arguments prepared for comp (). Its result is checked after its execution.

That’s why it is dangerous to use pointers to functions. First of all, if you call gsort () with incorrect pointer to function,
gsort () may pass control to incorrect point, a process may crash and this bug will be hard to find.

Second reason is the callback function types must comply strictly, calling wrong function with wrong arguments of wrong
types may lead to serious problems, however, process crashing is not a big problem —big problem is to determine a reason
of crashing —because compiler may be silent about potential trouble while compiling.

20.1 GCC

Not a big difference:

Listing 20.3: GCC

lea eax, [esp+40Oh+var_28]

mov [esp+40h+var_40], eax

mov [esp+40h+var_28], 764h

mov [esp+40h+var_24], 2Dh

mov [esp+40h+var_20], 0C8h

mov [esp+40h+var_1C], OFFFFFF9Eh
mov [esp+40h+var_18], OFF7h

mov [esp+40h+var_14], 5

mov [esp+40h+var_10], OFFFFCFC7h
mov [esp+40h+var_C], 43Fh

mov [esp+40h+var_8], 58h

mov [esp+40h+var_4], OFFFE7960h

175

20.1. GCC CHAPTER 20. POINTERS TO FUNCTIONS

mov [esp+40h+var_34], offset comp
mov [esp+40h+var_38], 4

mov [esp+40h+var_3C], OAh

call _qgsort

comp () function:

public comp

comp proc near
arg_0 = dword ptr 8
arg_4 = dword ptr OCh
push ebp
mov ebp, esp
mov eax, [ebptarg_4]
mov ecx, [ebptarg_0]
mov edx, [eax]
xor eax, eax
cmp [ecx], edx
jnz short loc_8048458
pop ebp
retn

loc_8048458:
setnl al
movzx eax, al

lea eax, [eax+teax-1]
pop ebp
retn

comp endp

gsort () implementation is located in the 1ibc.so.6 and itis in fact just a wrapper ® for gsort_r (.
It will call then quicksort (), where our defined function will be called via passed pointer:

Listing 20.4: (File libc.so0.6, glibc version —2.10.1)

.text :0002DDF6 mov edx, [ebptarg_10]
.text :0002DDF9 mov [esp+4], esi
.text :0002DDFD mov [espl, edi
.text:0002DE0O mov [esp+8], edx
.text :0002DE04 call [ebptarg_C]

6a concept like thunk function

176

CHAPTER 21. 64-BIT VALUES IN 32-BIT ENVIRONMENT

Chapter 21

64-bit values in 32-bit environment

In the 32-bit environment GPR’s are 32-bit, so 64-bit values are passed as 32-bit value pairs .

21.1 Arguments passing, addition, subtraction

#include <stdint.h>

uint64_t f1 (uint64_t a, uint64_t b)
{

return a+b;

};

void fi1_test ()
{
#ifdef __GNUC__
printf ("%1ld\n", £1(12345678901234, 23456789012345)) ;

t#telse

printf ("%I64d\n", £1(12345678901234, 23456789012345));
#endif
};
uint64_t f2 (uint64_t a, uint64_t b)
{

return a-b;
};

Listing 21.1: MSVC 2012 /Ox /Ob1

_a$ =8 ; size = 8
-b$ = 16 ; size = 8
_f1 PROC

mov eax, DWORD PTR _a$[esp-4]

add eax, DWORD PTR _b$[esp-4]

mov edx, DWORD PTR _a$[esp]

adc edx, DWORD PTR _b$[esp]

ret 0
_f1 ENDP

_f1_test PROC

push 5461 ; 00001555H
push 1972608889 ; 75939f79H
push 2874 ; 00000b3aH
push 1942892530 ; 7T3ce2ff2H
call _f1
push edx

1By the way, 32-bit values are passed as pairs in 16-bit environment just as the same

177

21.2. MULTIPLICATION, DIVISION

CHAPTER 21. 64-BIT VALUES IN 32-BIT ENVIRONMENT

push
push
call
add
ret
_f1_test ENDP

_f2 PROC
mov
sub
mov
sbb
ret

_f2 ENDP

eax

OFFSET $SG1436 ; ’%I164d’, OaH, OOH
_printf

esp,
0

eax,
eax,
edx,
edx,
0

28

; 0000001cH

DWORD PTR _a$[esp-4]
DWORD PTR _b$[esp-4]
DWORD PTR _a$[esp]
DWORD PTR _b$[esp]

We may see in the £1_test () function as each 64-bit value is passed by two 32-bit values, high part first, then low part.

Addition and subtraction occurring by pairs as well.

While addition, low 32-bit part are added first. If carry was occurred while addition, CF flag is set. The next ADC instruc-
tion adds high parts of values, but also adding 1if CF=1.

Subtraction is also occurred by pairs. The very first SUB may also turn CF flag on, which will be checked in the subsequent
SBB instruction: if carry flag is on, then 1 will also be subtracted from the result.

In a 32-bit environment, 64-bit values are returned from a functions in EDX:EAX registers pair. It is easily can be seen how
£1 () function is then passed to printf ().

Listing 21.2: GCC 4.8.1-01 -fno-inline

_f1:
mov
mov
add
adc
ret

_f1_test:
sub
mov
mov
mov
mov
call
mov
mov
mov
call
add
ret

_f2:
mov
mov
sub
sbb
ret

eax,
edx,
eax,
edx,

esp,
DWORD
DWORD
DWORD
DWORD
_f1
DWORD
DWORD
DWORD
_prin
esp,

eax,
edx,
eax,
edx,

DWORD PTR [esp+12]
DWORD PTR [esp+16]
DWORD PTR [esp+4]
DWORD PTR [esp+8]

28
PTR
PTR
PTR
PTR

PTR

PTR

PTR
tf
28

[esp+8], 1972608889 ; 75939f79H

[esp+12], 5461 ; 00001555H
[esp], 1942892530 ; 73ce2ff2H
[esp+4], 2874 ; 00000b3aH

[espt4], eax
[esp+8], edx
[esp], OFFSET FLAT:LCO ; "%11d\12\0"

DWORD PTR [esp+4]
DWORD PTR [esp+8]
DWORD PTR [esp+12]
DWORD PTR [esp+16]

GCC code is the same.

21.2 Multiplication, division

178

21.2. MULTIPLICATION, DIVISION CHAPTER 21. 64-BIT VALUES IN 32-BIT ENVIRONMENT

#include <stdint.h>

uint64_t f£3 (uint64_t a, uint64_t b)

{

return axb;
s
uint64_t f4 (uint64_t a, uint64_t b)
{

return a/b;
};
uint64_t f5 (uint64_t a, uint64_t b)
{

return a % b;
};

Listing 21.3: MSVC 2012 /Ox /Ob1

_a$ =8 ; size = 8
_b$ = 16 ; size = 8
_f3 PROC

push DWORD PTR _b$[esp]

push DWORD PTR _b$[esp]

push DWORD PTR _a$[esp+8]

push DWORD PTR _a$[esp+8]

call __allmul ; long long multiplication

ret 0
_f3 ENDP
_a$ =8 ; size = 8
_b$ = 16 ; size = 8
_f4 PROC

push DWORD PTR _b$[esp]

push DWORD PTR _b$[esp]

push DWORD PTR _a$[esp+8]

push DWORD PTR _a$[esp+8]

call __aulldiv ; unsigned long long division

ret 0
_f4 ENDP
_a$ =8 ; size = 8
_b$ = 16 ; size = 8
_f5 PROC

push DWORD PTR _b$[esp]

push DWORD PTR _b$[esp]

push DWORD PTR _a$[esp+8]

push DWORD PTR _a$[esp+8]

call __aullrem ; unsigned long long remainder

ret 0
_£f5 ENDP

Multiplication and division is more complex operation, so usually, the compiler embedds calls to the library functions
doing that.

These functions meaning are here: 83.

Listing 21.4: GCC 4.8.1-03 -fno-inline

_£3:
push ebx
mov edx, DWORD PTR [esp+8]

179

21.3. SHIFTING RIGHT

CHAPTER 21. 64-BIT VALUES IN 32-BIT ENVIRONMENT

mov eax, DWORD PTR [esp+16]
mov ebx, DWORD PTR [esp+12]
mov ecx, DWORD PTR [esp+20]
imul ebx, eax
imul ecx, edx
mul edx
add ecx, ebx
add edx, ecx
pop ebx
ret

_f4:
sub esp, 28
mov eax, DWORD PTR [esp+40]
mov edx, DWORD PTR [esp+44]
mov DWORD PTR [esp+8], eax
mov eax, DWORD PTR [esp+32]
mov DWORD PTR [esp+12], edx
mov edx, DWORD PTR [esp+36]
mov DWORD PTR [espl, eax
mov DWORD PTR [esp+4], edx
call ___udivdi3 ; unsigned division
add esp, 28
ret

_f5:
sub esp, 28
mov eax, DWORD PTR [esp+40]
mov edx, DWORD PTR [esp+44]
mov DWORD PTR [esp+8], eax
mov eax, DWORD PTR [esp+32]
mov DWORD PTR [esp+12], edx
mov edx, DWORD PTR [esp+36]
mov DWORD PTR [esp], eax
mov DWORD PTR [esp+4], edx
call ___umoddi3 ; unsigned modulo
add esp, 28
ret

GCC doing almost the same, but multiplication code is inlined right in the function, thinking it could be more efficient.

GCC has different library function names: 82.

21.3 Shifting right

#include <stdint.h>

uint64_t f6 (uint64_t a)

{

return a>>7;
}s

Listing 21.5: MSVC 2012 /Ox /Ob1

_a$ =8 ; size = 8
_f6 PROC

mov eax, DWORD PTR _a$[esp-4]

mov edx, DWORD PTR _a$[esp]

shrd eax, edx, 7

shr edx, 7

ret 0

180

21.4. CONVERTING OF 32-BIT VALUE INTO 64-BIT ONE

CHAPTER 21. 64-BIT VALUES IN 32-BIT ENVIRONMENT

_f6 ENDP
Listing 21.6: GCC 4.8.1-03 -fno-inline

_f6:

mov edx, DWORD PTR [esp+8]

mov eax, DWORD PTR [esp+4]

shrd eax, edx, 7

shr edx, 7

ret

Shifting also occurring in two passes: first lower part is shifting, then higher part. But the lower part is shifting with the
help of SHRD instruction, it shifting EDX value by 7 bits, but pulling new bits from EAX, i.e., from the higher part. Higher part is
shifting using more popular SHR instruction: indeed, freed bits in the higher part should be just filled with zeroes.

21.4 Converting of 32-bit value into 64-bit one

#include <stdint.h>

int64_t f7 (int64_t a, int64_t b, int32_t c)
{

return ax*b+c;

};
int64_t f7_main ()
{
return £7(12345678901234, 23456789012345, 12345);
};
Listing 21.7: MSVC 2012 /Ox /Ob1
~a$ =8 ; size = 8
_b$ = 16 ; size = 8
_c$ =24 ; size = 4
_£7 PROC
push esi
push DWORD PTR _b$[esp+4]
push DWORD PTR _b$[esp+4]
push DWORD PTR _a$[esp+12]
push DWORD PTR _a$[esp+12]
call __allmul ; long long multiplication
mov ecx, eax
mov eax, DWORD PTR _c$[esp]
mov esi, edx
cdq ; input: 32-bit value in EAX; output: 64-bit value in EDX:EAX
add eax, ecx
adc edx, esi
pop esi
ret 0
_f7 ENDP
_f7_main PROC
push 12345 ; 00003039H
push 5461 ; 00001555H
push 1972608889 ; 75939f79H
push 2874 ; 00000b3aH
push 1942892530 ; 73ce2ff2H
call _f7
add esp, 20 ; 00000014H
ret 0

_f7_main ENDP

181

21.4. CONVERTING OF 32-BIT VALUE INTO 64-BIT ONE CHAPTER 21. 64-BIT VALUES IN 32-BIT ENVIRONMENT

Here we also run into necessity to extend 32-bit signed value from c into 64-bit signed. Unsigned values are converted
straightforwardly: all bits in higher part should be set to 0. But it is not appropriate for signed data types: sign should be
copied into higher part of resulting number. An instruction CDQ doing that here, it takes input value in EAX, extending value
to 64-bit and leaving it in the EDX:EAX registers pair. In other words, CDQ instruction getting number sign in EAX (by getting
just most significant bit in EAX), and depending of it, setting all 32-bits in EDX to 0 or 1. Its operation is somewhat similar to
the MOVSX (13.1) instruction.

Listing 21.8: GCC 4.8.1-03 -fno-inline

_f7:
push edi
push esi
push ebx
mov esi, DWORD PTR [esp+16]
mov edi, DWORD PTR [esp+24]
mov ebx, DWORD PTR [esp+20]
mov ecx, DWORD PTR [esp+28]
mov eax, esi
mul edi
imul ebx, edi
imul ecx, esi
mov esi, edx
add ecx, ebx
mov ebx, eax
mov eax, DWORD PTR [esp+32]
add esi, ecx
cdq ; input: 32-bit value in EAX; output: 64-bit value in EDX:EAX
add eax, ebx
adc edx, esi
pop ebx
pop esi
pop edi
ret
_f7_main:
sub esp, 28
mov DWORD PTR [esp+16], 12345 ; 00003039H
mov DWORD PTR [esp+8], 1972608889 ; 75939f79H
mov DWORD PTR [esp+12], 5461 ; 00001555H
mov DWORD PTR [esp], 1942892530 ; T73ce2ff2H
mov DWORD PTR [esp+4], 2874 ; 00000b3aH
call _f7
add esp, 28
ret

GCC generates just the same code as MSVC, but inlines multiplication code right in the function.
See also: 32-bit values in 16-bit environment: 30.4.

182

CHAPTER 22. SIMD

Chapter 22

SIMD

SIMD' is just acronym: Single Instruction, Multiple Data.

As it is said, itis multiple data processing using only one instruction.

Just as FPU, that CPU subsystem looks like separate processor inside x86.

SIMD began as MMX in x86. 8 new 64-bit registers appeared: MM0-MM7.

Each MMX register may hold 2 32-bit values, 4 16-bit values or 8 bytes. For example, it is possible to add 8 8-bit values
(bytes) simultaneously by adding two values in MMX-registers.

One simple example is graphics editor, representing image as a two dimensional array. When user change image bright-
ness, the editor must add a coefficient to each pixel value, or to subtract. For the sake of brevity, ourimage may be grayscale
and each pixel defined by one 8-bit byte, then it is possible to change brightness of 8 pixels simultaneously.

When MMX appeared, these registers was actually located in FPU registers. It was possible to use either FPU or MMX at
the same time. One might think, Intel saved on transistors, but in fact, the reason of such symbiosis is simpler —older OS
may not aware of additional CPU registers would not save them at the context switching, but will save FPU registers. Thus,
MMX-enabled CPU + old OS + process utilizing MMX features = that all will work together.

SSE—is extension of SIMD registers up to 128 bits, now separately from FPU.

AVX—another extension to 256 bits.

Now about practical usage.

Of course, memory copying (memcpy), memory comparing (memcmp) and so on.

One more example: we got DES encryption algorithm, it takes 64-bit block, 56-bit key, encrypt block and produce 64-bit
result. DES algorithm may be considered as a very large electronic circuit, with wires and AND/OR/NOT gates.

Bitslice DES? —is an idea of processing group of blocks and keys simultaneously. Let’s say, variable of type unsigned int
on x86 may hold up to 32 bits, so, it is possible to store there intermediate results for 32 blocks-keys pairs simultaneously,
using 64+56 variables of unsigned int type.

| wrote an utility to brute-force Oracle RDBMS passwords/hashes (ones based on DES), slightly modified bitslice DES al-
gorithm for SSE2 and AVX —now it is possible to encrypt 128 or 256 block-keys pairs simultaneously.

http://conus.info/utils/ops_SIMD/

22.1 Vectorization

Vectorization?, for example, is when you have a loop taking couple of arrays at input and produces one array. Loop body
takes values from input arrays, do something and put result into output array. It is important that there is only one single
operation applied to each element. Vectorization —is to process several elements simultaneously.

Vectorization is not very fresh technology: author of this textbook saw it at least on Cray Y-MP supercomputer line from
1988 when played with its “lite” version Cray Y-MP EL *.

For example:

for (i = 0; i < 1024; i++)
{

Cl[i] = A[i]=*BI[i];
}

This fragment of code takes elements from A and B, multiplies them and save result into C.

'Single instruction, multiple data

Znttp://www.darkside.com.au/bitslice/

3Wikipedia: vectorization

4Remotely. It is installed in the museum of supercomputers: http: //www.cray- cyber.org

183

http://conus.info/utils/ops_SIMD/
http://www.darkside.com.au/bitslice/
http://en.wikipedia.org/wiki/Vectorization_(computer_science)
http://www.cray-cyber.org

22.1. VECTORIZATION CHAPTER 22. SIMD

If each array element we have is 32-bit int, theniitis possible to load 4 elements from A into 128-bit XMM-register, from B to
another XMM-registers, and by executing PMULLD (Multiply Packed Signed Dword Integers and Store Low Result) and PMULHW
(Multiply Packed Signed Integers and Store High Result), it is possible to get 4 64-bit products at once.

Thus, loop body count is 1024/4 instead of 1024, that is 4 times less and, of course, faster.

Some compilers can do vectorization automatically in a simple cases, e.g., Intel C++5.

| wrote tiny function:

int f (int sz, int *arl, int *ar2, int *ar3)
{
for (int i=0; i<sz; i++)
ar3[il=ar1[i]l+ar2[i];

return 0O;

};

22.1.1 Intel C++

Let’s compile it with Intel C++11.1.051 win32:
icl intel.cpp /QaxSSE2 /Faintel.asm /0x

We got (in IDA):

; int __cdecl f(int, int *, int *, int *)
public ?fQQYAHHPAHO0QZ
?fQQYAHHPAHOOQZ proc near

var_10 = dword ptr -10h
sz = dword ptr 4
arl = dword ptr 8
ar2 = dword ptr OCh
ar3 = dword ptr 10h
push edi
push esi
push ebx
push esi
mov edx, [esp+10h+sz]
test edx, edx
jle loc_15B
mov eax, [esp+10Oh+ar3]
cmp edx, 6
jle loc_143
cmp eax, [esp+10h+ar2]
jbe short loc_36
mov esi, [esp+10Oh+ar2]
sub esi, eax
lea ecx, ds:0[edxx*4]
neg esi
cmp ecx, esi
jbe short loc_55
loc_36: ; CODE XREF: f(int,int *,int *,int *)+21
cmp eax, [esp+10h+ar2]
jnb loc_143
mov esi, [esp+10Oh+ar2]
sub esi, eax
lea ecx, ds:0[edx*4]
cmp esi, ecx
jb loc_143

5More about Intel C++ automatic vectorization: Excerpt: Effective Automatic Vectorization

184

http://www.intel.com/intelpress/sum_vmmx.htm

22.1. VECTORIZATION

CHAPTER 22. SIMD

loc_b5:

loc_67:

loc_T7F:

loc_9A:

loc_C1:

loc_D6:

cmp
jbe
mov
sub
neg
cmp
jbe

cmp
jnb
mov
sub
cmp
jb

mov
and
jz
test
jnz
neg
add
shr

lea
cmp
jl
mov
sub
and
neg
add
test
jbe
mov
mov
mov
Xor

mov
add
mov
inc
cmp
jb

mov
mov

mov
lea
test
jz
mov
mov

; CODE XREF: f(int,int *,int *,int *)+34
eax, [esp+10h+ari]
short loc_67
esi, [esp+10Oh+ari]

esi, eax
esi
ecx, esi

short loc_7F

; CODE XREF: f(int,int *,int *,int *)+59
eax, [esp+10Oh+ari]

loc_143
esi, [esp+10h+ari]
esi, eax
esi, ecx
loc_143
; CODE XREF: f(int,int *,int *,int *)+65
edi, eax ; edi = aril
edi, OFh ; is arl 16-byte aligned?
short loc_9A ; yes
edi, 3
loc_162
edi
edi, 10h
edi, 2

; CODE XREF: f(int,int *,int *,int *)+84
ecx, [edi+4]

edx, ecx
loc_162
ecx, edx
ecx, edi
ecx, 3
ecx

ecx, edx
edi, edi

short loc_D6

ebx, [esp+10h+ar?2]
[esp+10h+var_10], ecx
ecx, [esp+10Oh+ari]
esi, esi

; CODE XREF: f(int,int *,int *,int *)+CD
edx, [ecx+tesix4]
edx, [ebx+esix4]
[eax+esi*4], edx
esi
esi, edi
short loc_C1
ecx, [esp+10h+var_10]
edx, [esp+10h+sz]

; CODE XREF: f(int,int *,int *,int *)+B2
esi, [esp+10h+ar?2]
esi, [esitedix4] ; is ar2+i*4 16-byte aligned?
esi, OFh
short loc_109 ; yes!
ebx, [esp+10Oh+ari]
esi, [esp+10Oh+ar2]

185

22.1. VECTORIZATION

CHAPTER 22. SIMD

loc_ED:

it to xmmO

loc_109:

loc_111:

loc_127:

loc_133:

loc_14D:

loc_15B:

movdqu
movdqu

paddd
movdga
add
cmp

movdqu
paddd
movdga
add
cmp

jb

cmp
jnb
mov
mov

mov
mov
Xor

mov
add
mov
inc
cmp
jb

xor
pop
pop

; CODE XREF: f(int,int *,int *,int *)+105
xmml, xmmword ptr [ebx+edix4]

xmm0, xmmword ptr [esitedi*4] ; ar2+i*4 is not 16-byte aligned, so load

xmml, xmmO

xmmword ptr [eax+edi*4], xmml
edi, 4

edi, ecx

short loc_ED

short loc_127

; CODE XREF: f(int,int *,int *,int *)+E3
ebx, [esp+10h+ari]
esi, [esp+10Oh+ar2]

; CODE XREF: f(int,int *,int *,int *)+125
xmm0, xmmword ptr [ebx+edix4]
xmm0, xmmword ptr [esi+edix*4]
xmmword ptr [eax+edi*4], xmmO
edi, 4
edi, ecx
short loc_111

; CODE XREF: f(int,int *,int *,int *)+107
; £(int,int *,int *,int *)+164

ecx, edx

short loc_15B

esi, [esp+10h+ari]

edi, [esp+10h+ar2]

; CODE XREF: f(int,int *,int *,int *)+13F
ebx, [esitecx*4]
ebx, [edi+tecx*4]
[eax+ecx*4], ebx
ecx
ecx, edx
short loc_133
short loc_15B

; CODE XREF: f(int,int *,int *,int *)+17
; £(int,int *,int *,int *)+3A ...

esi, [esp+1Oh+ari]

edi, [esp+10h+ar2]

ecx, ecx

; CODE XREF: f(int,int *,int *,int *)+159
ebx, [esitecx*4]
ebx, [editecx*4]
[eax+ecx*4], ebx
ecx
ecx, edx
short loc_14D

; CODE XREF: f(int,int *,int *,int *)+A
; £(int,int *,int *,int *)+129 ...

eax, eax

ecx

ebx

186

22.1. VECTORIZATION CHAPTER 22. SIMD

pop esi
pop edi
retn
loc_162: ; CODE XREF: f(int,int *,int *,int *)+8C
; £f(int,int *,int *,int *)+9F
xor ecx, ecx
jmp short loc_127

?fOQYAHHPAHOOQZ endp

SSE2-related instructions are:
e MOVDQU (Move Unaligned Double Quadword)—it just load 16 bytes from memory into a XMM-register.

e PADDD (Add Packed Integers)—adding 4 pairs of 32-bit numbers and leaving result in first operand. By the way, no
exception raised in case of overflow and no flags will be set, just low 32-bit of result will be stored. If one of PADDD
operands is address of value in memory, then address must be aligned on a 16-byte boundary. If it is not aligned,
exception will be occurred ©.

e MOVDQA (Move Aligned Double Quadword)—the same as MOVDQU, but requires address of value in memory to be aligned
on al6-bit border. Ifitis not aligned, exception will be raised. MOVDQA works faster than MOVDQU, but requires aforesaid.

So, these SSE2-instructions will be executed only in case if there are more 4 pairs to work on plus pointer ar3 is aligned
on a 16-byte boundary.
More than that, if ar2 is aligned on a 16-byte boundary as well, this fragment of code will be executed:

movdqu xmmO, xmmword ptr [ebx+edix4] ; arl+i*4
paddd xmm0O, xmmword ptr [esitedix*4] ; ar2+ix*4
movdqa xmmword ptr [eax+edi*4], xmm0 ; ar3+ix4

Otherwise, value from ar2 will be loaded into XMMO using MOVDQU, it does not require aligned pointer, but may work slower:

movdqu xmml, xmmword ptr [ebx+edix*4] ; arl+i*4

movdqu xmmO, xmmword ptr [esitedix4] ; ar2+i*4 is not 16-byte aligned, so load it to xmmO
paddd xmml, xmmO

movdga xmmword ptr [eax+tedix4], xmml ; ar3+i*4

In all other cases, non-SSE2 code will be executed.

22.1.2 GCC

GCC may also vectorize in a simple cases’, if to use -03 option and to turn on SSE2 support: -msse2.
What we got (GCC 4.4.1):

; £(int, int *, int *, int *)
public _Z1fiPiS_S_

_Z1fiPiS_S_ proc near
var_18 = dword ptr -18h
var_14 = dword ptr -14h
var_10 = dword ptr -10h
arg_O = dword ptr 8
arg_4 = dword ptr OCh
arg_8 = dword ptr 10h
arg_C = dword ptr 14h

push ebp

mov ebp, esp

push edi

push esi

push ebx

6More about data aligning: Wikipedia: Data structure alignment
"More about GCC vectorization support: http://gcc.gnu.org/projects/tree-ssa/vectorization.html

187

http://en.wikipedia.org/wiki/Data_structure_alignment
http://gcc.gnu.org/projects/tree-ssa/vectorization.html

22.1. VECTORIZATION

CHAPTER 22. SIMD

loc_80484C1:

loc_80484C8:

loc_80484D8:

loc_80484ES8:

loc_80484F8:

loc_8048503:

sub
mov
mov
mov
mov
test
jle
cmp
lea
ja

xXor
nop
lea

mov
add
mov
add
cmp
jnz

test
jnz
lea
cmp
jbe

lea
cmp
ja

cmp
jbe

mov
shr
mov
shl
test
mov
jz
mov
mov

esp, OCh

ecx, [ebptarg_0]
esi, [ebp+arg_4]
edi, [ebp+arg_8]
ebx, [ebptarg_C]
ecx, ecx

short loc_80484D8
ecx, 6

eax, [ebx+10h]

short loc_80484E8

E)

eax, eax
esi, [esi+O0]

b
edx, [edi+teaxx*4]
edx, [esiteaxx*4]

[ebx+eax*4], edx
eax, 1

eax, ecx

short loc_80484C8

esp, OCh

eax, eax

ebx

esi

edi

ebp

bl, OFh

short loc_80484C1
edx, [esi+10h]
ebx, edx

loc_8048578

edx, [edi+10h]
ebx, edx

short loc_8048503
edi, eax

short loc_80484C1

eax, ecx
eax, 2

[ebptvar_14], eax
eax, 2

eax, eax
[ebptvar_10], eax
short loc_8048547
[ebptvar_18], ecx
ecx, [ebptvar_14]

; CODE XREF: f(int,int *,int *,int *)+4B

f(int,int *,int *,int *)+61

; CODE XREF: f(int,int *,int *,int *)+36

CODE XREF: f(int,int *,int *,int *)+17
f(int,int *,int *,int *)+A5

CODE XREF: f(int,int *,int *,int *)+1F

CODE XREF: f(int,int *,int *,int *)+EO

CODE XREF: f(int,int *,int *,int *)+5D

188

22.2. SIMD STRLEN () IMPLEMENTATION

CHAPTER 22. SIMD

xor eax, eax
Xor edx, edx
nop
loc_8048520: ; CODE XREF: f(int,int *,int *,int *)+9B

movdqu xmml, xmmword ptr [edi+eax]
movdqu xmm0, xmmword ptr [esi+eax]
add edx, 1

paddd xmmO, xmml

movdga xmmword ptr [ebx+eax], xmmO

add eax, 10h

cmp edx, ecx

jb short loc_8048520

mov ecx, [ebptvar_18]

mov eax, [ebptvar_10]

cmp ecx, eax

jz short loc_80484D8
loc_8048547: ; CODE XREF: f(int,int *,int *,int *)+73

lea edx, ds:0[eaxx*4]

add esi, edx

add edi, edx

add ebx, edx

lea esi, [esi+O0]
loc_8048558: ; CODE XREF: f(int,int *,int *,int *)+CC

mov edx, [edi]

add eax, 1

add edi, 4

add edx, [esi]

add esi, 4

mov [ebx], edx

add ebx, 4

cmp ecx, eax

jg short loc_8048558

add esp, OCh

xXor eax, eax

pop ebx

pop esi

pop edi

pop ebp

retn
loc_8048578: ; CODE XREF: f(int,int *,int *,int *)+52

cmp eax, esi

jnb loc_80484C1

jmp loc_80484F8
_Z1fiPiS_S_ endp

Almost the same, however, not as meticulously as Intel C++ doing it.

22.2 SIMD strlen() implementation

It should be noted the SIMD-instructions may be inserted into C/C++ code via special macros®. As of MSVC, some of them are

located in the intrin.hfile.

It is possible to implement strlen() function® using SIMD-instructions, working 2-2.5 times faster than common imple-

mentation. This function will load 16 characters into a XMM-register and check each against zero.

8MSDN: MMX, SSE, and SSE2 Intrinsics
9strlen() —standard C library function for calculating string length

189

http://msdn.microsoft.com/en-us/library/y0dh78ez(VS.80).aspx

22.2. SIMD STRLEN () IMPLEMENTATION CHAPTER 22. SIMD

size_t strlen_sse2(const char *str)

{
register size_t len = 0;
const char *s=str;
bool str_is_aligned=(((unsigned int)str)&OxFFFFFFFO) == (unsigned int)str;
if (str_is_aligned==false)
return strlen (str);
__m128i xmm0 = _mm_setzero_sil28();
__m128i xmmil;
int mask = 0;
for (5;)
{
xmml = _mm_load_sil128((__m128i *)s);
xmml = _mm_cmpeq_epi8(xmml, xmmO) ;
if ((mask = _mm_movemask_epi8(xmml)) != 0)
{
unsigned long pos;
_BitScanForward(&pos, mask);
len += (size_t)pos;
break;
}
s += sizeof(__m128i);
len += sizeof(__m128i);
};
return len;
}
(the example is based on source code from there).
Let’s compile in MSVC 2010 with /0x option:
_pos$75552 = -4 ; size = 4
_str$ = 8 ; size = 4

?strlen_sse20@Q@YAIPBDOZ PROC ; strlen_sse2

push ebp
mov ebp, esp
and esp, -16 ; fTf££f£££0H
mov eax, DWORD PTR _str$[ebp]
sub esp, 12 ; 0000000cH
push esi
mov esi, eax
and esi, -16 ; fEff£££f0H
Xor edx, edx
mov ecx, eax
cmp esi, eax
je SHORT $LN4Q@strlen_sse
lea edx, DWORD PTR [eax+1]
npad 3
$LL11@strlen_sse:
mov cl, BYTE PTR [eax]
inc eax
test cl, cl
jne SHORT $LL11@strlen_sse
sub eax, edx
pop esi
mov esp, ebp

190

http://www.strchr.com/sse2_optimised_strlen

22.2. SIMD STRLEN () IMPLEMENTATION CHAPTER 22. SIMD
pop ebp
ret 0
$LN4@strlen_sse:
movdqa xmml, XMMWORD PTR [eax]
pxor xmmO, xmmO
pcmpegb xmml, xmmO
pmovmskb eax, xmml
test eax, eax
jne SHORT $LN9@strlen_sse
$LL30@strlen_sse:
movdga xmml, XMMWORD PTR [ecx+16]

add ecx, 16 ; 00000010H
pcmpegb xmml, xmmO
add edx, 16 ; 00000010H
pmovmskb eax, xmml
test eax, eax
je SHORT $LL3@strlen_sse
$LN9@strlen_sse:
bsf eax, eax
mov ecx, eax
mov DWORD PTR _pos$75552[esp+16], eax
lea eax, DWORD PTR [ecx+edx]
pop esi
mov esp, ebp
pop ebp
ret 0
?strlen_sse2Q@QYAIPBD@Z ENDP ; strlen_sse2

First of all, we check str pointer, ifitis aligned on a 16-byte boundary. If not, let’s call generic strlen() implementation.

Then, load next 16 bytes into the XMM1 register using MOVDQA instruction.

Observant reader might ask, why MOVDQU cannot be used here since it can load data from the memory regardless the fact
if the pointer aligned or not.

Yes, it might be done in this way: if pointer is aligned, load data using MOVDQA, if not —use slower MOVDQU.

But here we are may stick into hard to notice caveat:

In Windows NT line of OS but not limited to it, memory allocated by pages of 4 KiB (4096 bytes). Each win32-process has
ostensibly 4 GiB, but in fact, only some parts of address space are connected to real physical memory. If the process accessing
to the absent memory block, exception will be raised. That’s how virtual memory works'®.

So, a function loading 16 bytes at once, may step over a border of allocated memory block. Let’s consider, OS allocated
8192 (0x2000) bytes at the address 0x008c0000. Thus, the block is the bytes starting from address 0x008c0000 to 0x008c1fff
inclusive.

After the block, that is, starting from address 0x008c2000 there is nothing at all, e.g., OS not allocated any memory there.
Attempt to access a memory starting from the address will raise exception.

And let’s consider, the program holding a string containing 5 characters almost at the end of block, and that is not a crime.

0x008c1ff8 | ’h’

0x008c1ff9 | ’e’

0x008ciffa | I’

0x008ciffb | I’

0x008c1ffc | 0’

0x008c1ffd | "\x00’
0x008c1ffe | random noise
0x008c1fff | random noise

So, incommon conditions the program calling strlen() passingitapointertostring >hello’ lyingin memory at address
0x008clff8. strlen() will read one byte at a time until 0x008c1ffd, where zero-byte, and so here it will stop working.

Now if we implement our own strlen() reading 16 byte at once, starting at any address, will it be aligned or not, MOVDQU
may attempt to load 16 bytes at once at address 0x008¢1ff8 up to 0x008c2008, and then exception will be raised. That’s the
situation to be avoided, of course.

So then we’ll work only with the addresses aligned on a 16 byte boundary, what in combination with a knowledge of 0OS
page size is usually aligned on a 16-byte boundary too, give us some warranty our function will not read from unallocated
memory.

Onttp://en.wikipedia.org/wiki/Page_(computer_memory)

191

http://en.wikipedia.org/wiki/Page_(computer_memory)

22.2. SIMD STRLEN () IMPLEMENTATION CHAPTER 22. SIMD
Let’s back to our function.
_mm_setzero_sil28() —is a macro generating pxor xmm0O, xmmO —instruction just clears the XMMO register
_mm_load_si128()—is a macro for MOVDQA, it just loading 16 bytes from the address in the XMM1 register.
_mm_cmpeq_epi8()—is a macro for PCMPEQB, is an instruction comparing two XMM-registers bytewise.
And if some byte was equals to other, there will be 0xff at this point in the result or 0 if otherwise.
For example.

XMM1: 11223344556677880000000000000000
XMMO: 11ab3444007877881111111111111111

After pcmpeqb xmm1, xmmO execution, the XMM1 register shall contain:
XMM1: ££0000££0000££££0000000000000000

In our case, this instruction comparing each 16-byte block with the block of 16 zero-bytes, was set in the XMMO register by
pxor xmmO, xmmO.

The next macro is _mm_movemask_epi8() —that is PMOVMSKB instruction.

It is very useful if to use it with PCMPEQB.

pmovmskb eax, xmml

This instruction will set first EAX bit into 1if most significant bit of the first byte in the XMM1 is 1. In other words, if first byte
of the XMM1 register is 0xf £, first EAX bit will be set to 1 too.

If second byte in the XMM1 register is 0xf £, then second EAX bit will be set to 1too. In other words, the instruction is answer
to the question which bytes in the XMM1 are 0zff? And will prepare 16 bits in the EAX register. Other bits in the EAX register
are to be cleared.

By the way, do not forget about this feature of our algorithm:

There might be 16 bytes on input like he110\x00garbage\x00ab

Itisa *hello’ string, terminating zero, and also a random noise in memory.

If we load these 16 bytes into XMM1 and compare them with zeroed XMMO, we will get something like (I use here order from
MSB'"to LSB™):

XMM1: 0000££00000000000000££0000000000

This means, the instruction found two zero bytes, and that is not surprising.

PMOVMSKB in our case will prepare EAX like (in binary representation): 0070000000100000b.

Obviously, our function must consider only first zero bit and ignore the rest ones.

The nextinstruction—BSF (Bit Scan Forward). This instruction find first bit set to 1and stores its position into first operand.

EAX=0010000000100000b

Afterbsf eax, eaxinstruction execution, EAX will contain 5, this means, 1found at 5th bit position (starting from zero).

MSVC has a macro for this instruction: _BitScanForward.

Now itis simple. If zero byte found, its position added to what we already counted and now we have ready to return result.

Almost all.

By the way, it is also should be noted, MSVC compiler emitted two loop bodies side by side, for optimization.

By the way, SSE 4.2 (appeared in Intel Core i7) offers more instructions where these string manipulations might be even
easier: http://www.strchr.com/strcmp_and_strlen_using_sse_4.2

"most significant bit
2|east significant bit

192

http://www.strchr.com/strcmp_and_strlen_using_sse_4.2

CHAPTER 23. 64 BITS

Chapter 23

64 bits

23

Itis

.1 x86-64

a 64-bit extension to x86-architecture.

From the reverse engineer’s perspective, most important differences are:

e Almost all registers (except FPU and SIMD) are extended to 64 bits and got r- prefix. 8 additional registers added. Now

GPR’s are: RAX, RBX, RCX, RDX, RBP, RSP, RSI,RDI,R8,R9,R10,R11,R12,R13,R14,R15

It is still possible to access to older register parts as usual. For example, it is possible to access lower 32-bit part of the
RAX register using EAX.

New r8-r15 registers also has its lower parts: r8d-r15d (lower 32-bit parts), r8w-r15w (lower 16-bit parts), r8b-r15b
(lower 8-bit parts).

SIMD-registers number are doubled: from 8 to 16: XMMO-XMM15.

e In Win64, function calling convention is slightly different, somewhat resembling fastcall (2?). First 4 arguments stored

in the RCX, RDX, R8, R9 registers, others —in the stack. Caller function must also allocate 32 bytes so the callee may save
there 4 first arguments and use these registers for own needs. Short functions may use arguments just from registers,
but larger may save their values on the stack.

System V AMD64 ABI (Linux, *BSD, MacOSX) [21] also somewhat resembling fastcall, it uses 6 registers RDI, RSI, RDX,
RCX, R8, R9 for the first 6 arguments. All the rest are passed in the stack.

See also section about calling conventions (2?).

e Cinttype is still 32-bit for compatibility.

e All pointers are 64-bit now.

This provokes irritation sometimes: now one need twice as much memory for storing pointers, including, cache mem-
ory, despite the fact x64 CPUs addresses only 48 bits of external RAM.

Since now registers number are doubled, compilers has more space now for maneuvering calling register allocation. What

itm

eanings for us, emitted code will contain less local variables.
For example, function calculating first S-box of DES encryption algorithm, it processing 32/64/128/256 values at once

(depending on DES_type type (uint32, uint64, SSE2 or AVX)) using bitslice DES method (read more about this technique here

(22)

)

/%

*
*
*
*
*
*

*/

#if
#de
#el
#de

Generated S-box files.

This software may be modified, redistributed, and used for any purpose,
so long as its origin is acknowledged.

Produced by Matthew Kwan - March 1998

def _WIN64

fine DES_type unsigned __int64
se

fine DES_type unsigned int

193

23.1. X86-64

CHAPTER 23. 64 BITS

#endif

void

s1 (
DES_type al,
DES_type az,
DES_type a3,
DES_type a4,
DES_type a5,
DES_type a6,
DES_type *outl,
DES_type *out2,
DES_type *out3,
DES_type *out4

) {
DES_type x1, x2, x3, x4, x5, x6, x7, x8;
DES_type x9, x10, x11, x12, x13, x14, x15, x16;
DES_type x17, x18, x19, x20, x21, x22, x23, x24;
DES_type x25, x26, x27, x28, x29, x30, x31, x32;
DES_type x33, x34, x3b, x36, x37, x38, x39, x40;
DES_type x41, x42, x43, x44, x45, x46, x47, x48;
DES_type x49, x50, x51, x52, x53, x54, xb55, x56;

x1 = a3 & “ab;

x2 = x1 = a4;
x3 = a3 & "a4;
x4 = x3 | ab;
x5 = a6 & x4;
x6 = x2 ~ xb;
X7 = a4 & ~ab;
x8 = a3 ~ a4;

x9 = a6 & 7x8;
x10 = x7 -~ x9;
x11 = a2 | x10;
x12 = x6 = x11;
x13 = ab =~ xb;
x14 = x13 & x8;
x15 = ab & "a4;
x16 = x3 ~ x14;
x17 = a6 | x16;
x18 = x15 =~ x17;
x19 = a2 | x18;
x20 = x14 =~ x19;
x21 = al & x20;
x22 = x12 = "x21;
*out2 ~= x22;
x23 = x1 | x5;
x24 = x23 ~ x8;
x25 = x18 & “x2;
x26 = a2 & "x25;
x27 = x24 -~ x26;
x28 = x6 | x7;
x29 = x28 ~ x25;
x30 = x9 ~ x24;
x31 = x18 & "x30;
x32 = a2 & x31;
x33 = x29 ~ x32;
x34 = al & x33;
x35 = x27 =~ x34;
*xoutd ~= x35;
x36 = a3 & x28;

194

23.1. X86-64

CHAPTER 23. 64 BITS

x37 = x18 & “x36;
x38 = a2 | x3;
x39 = x37 ~ x38;
x40 = a3 | x31;
x41 = x24 & ~x37;
x42 = x41 | x3;
x43 = x42 & "a2;
x44 = x40 -~ x43;
x45 = al & "x44;
x46 = x39 - “x45;
*outl ~= x46;
x47 = x33 & ~x9;
x48 = x47 ~ x39;
x49 = x4 = x36;
x50 = x49 & “x5;
x51 = x42 | x18;
x52 = x51 ~ ab;
x53 = a2 & "xb52;
xb4 = x50 =~ x53;
xb5 = al | x54;
x56 = x48 ~ “xb5;
*out3d ~= x56;

}

There is a lot of local variables. Of course, not all those will be in local stack. Let’s compile it with MSVC 2008 with /0x
option:
Listing 23.1: Optimizing MSVC 2008
PUBLIC _s1

; Function compile flags: /Ogtpy
_TEXT SEGMENT

_x6$ = -20
_x3$ = -16
_x1$ = -12

_x8% = -8
_x4$ = -4
_al$ = 8
_a2$ = 12
_a3$ = 16

_x33% = 20

_x7$ = 20
_a4$ = 20
_ab$ = 24
tv326
_x36$

_a6$ = 28

28
28
_x28% = 28

_outl$ = 32 g

_x24%$

36

_out2$ = 36 H
_out3$ = 40 g
_out4$ = 44 5
_sl PROC

sub
mov
push
mov
push
push
mov
push

esp, 20
edx, DWORD
ebx

ebx, DWORD
ebp

esi

esi, DWORD
edi

size =
size =
size =
size =
size =
size =
size =
size =
size =
size =
size =
size =
size =
size =
size =
size =
size =
size =
size =
size =

[O OO N O N N O N O N N O NS O O N N SIS

size =

PTR _ab$[esp+16]

PTR _a4$[esp+20]

PTR _a3$[esp+28]

>

; 00000014H

195

23.1. X86-64 CHAPTER 23. 64 BITS
mov edi, ebx
not edi
mov ebp, edi
and edi, DWORD PTR _ab$[esp+32]
mov ecx, edx
not ecx
and ebp, esi
mov eax, ecx
and eax, esi
and ecx, ebx
mov DWORD PTR _x1$[esp+36], eax
Xor eax, ebx
mov esi, ebp
or esi, edx
mov DWORD PTR _x4$[esp+36], esi
and esi, DWORD PTR _a6$[esp+32]
mov DWORD PTR _x7$[esp+32], ecx
mov edx, esi
Xor edx, eax
mov DWORD PTR _x6$[esp+36], edx
mov edx, DWORD PTR _a3$[esp+32]
Xor edx, ebx
mov ebx, esi
xor ebx, DWORD PTR _ab5$[esp+32]
mov DWORD PTR _x8$[esp+36], edx
and ebx, edx
mov ecx, edx
mov edx, ebx
Xor edx, ebp
or edx, DWORD PTR _a6$[esp+32]
not ecx
and ecx, DWORD PTR _a6$[esp+32]
Xor edx, edi
mov edi, edx
or edi, DWORD PTR _a2$[esp+32]
mov DWORD PTR _x3$[esp+36], ebp
mov ebp, DWORD PTR _a2$[esp+32]
Xor edi, ebx
and edi, DWORD PTR _al$[esp+32]
mov ebx, ecx
xor ebx, DWORD PTR _x7$[esp+32]
not edi
or ebx, ebp
Xor edi, ebx
mov ebx, edi
mov edi, DWORD PTR _out2$[esp+32]
xor ebx, DWORD PTR [edi]
not eax
xor ebx, DWORD PTR _x6$[esp+36]
and eax, edx
mov DWORD PTR [edil], ebx
mov ebx, DWORD PTR _x7$[esp+32]
or ebx, DWORD PTR _x6$[esp+36]
mov edi, esi
or edi, DWORD PTR _x1$[esp+36]
mov DWORD PTR _x28%[esp+32], ebx
xor edi, DWORD PTR _x8%[esp+36]
mov DWORD PTR _x24$[esp+32], edi
Xor edi, ecx
not edi
and edi, edx

196

23.1. X86-64

CHAPTER 23. 64 BITS

mov ebx, edi

and ebx, ebp

xor ebx, DWORD PTR _x28$[esp+32]
Xor ebx, eax

not eax

mov DWORD PTR _x33$[esp+32], ebx
and ebx, DWORD PTR _al$[esp+32]
and eax, ebp

Xor eax, ebx

mov ebx, DWORD PTR _out4$[esp+32]
Xor eax, DWORD PTR [ebx]

xor eax, DWORD PTR _x24$[esp+32]
mov DWORD PTR [ebx], eax

mov eax, DWORD PTR _x28$[esp+32]
and eax, DWORD PTR _a3$[esp+32]
mov ebx, DWORD PTR _x3$[esp+36]

or edi, DWORD PTR _a3$[esp+32]
mov DWORD PTR _x36$[esp+32], eax
not eax

and eax, edx

or ebx, ebp

Xor ebx, eax

not eax

and eax, DWORD PTR _x24$[esp+32]
not ebp

or eax, DWORD PTR _x3$[esp+36]
not esi

and ebp, eax

or eax, edx

xor eax, DWORD PTR _ab5$[esp+32]
mov edx, DWORD PTR _x36$[esp+32]
xor edx, DWORD PTR _x4$[esp+36]

Xor ebp, edi

mov edi, DWORD PTR _outl$[esp+32]
not eax

and eax, DWORD PTR _a2$[esp+32]
not ebp

and ebp, DWORD PTR _al$[esp+32]
and edx, esi

Xor eax, edx

or eax, DWORD PTR _al$[esp+32]
not ebp

xor ebp, DWORD PTR [edi]

not ecx

and ecx, DWORD PTR _x33$[esp+32]
Xor ebp, ebx

not eax

mov DWORD PTR [edi], ebp

xor eax, ecx

mov ecx, DWORD PTR _out3$[esp+32]
xor eax, DWORD PTR [ecx]

pop edi
pop esi
Xor eax, ebx
pop ebp
mov DWORD PTR [ecx], eax
pop ebx
add esp, 20 2
ret 0
_sl ENDP

00000014H

197

23.1. X86-64

CHAPTER 23. 64 BITS

5 variables was allocated in local stack by compiler.
Now let’s try the same thing in 64-bit version of MSVC 2008:

Listing 23.2: Optimizing MSVC 2008

al$
a2$
a3$ =
ad$ =

x36$1$

ab$ =
a6$ =
outl$

out2$ =

out3$
out4$
s1

$LN3:

56
64
72
80
= 88
88
96
= 104
112
= 120
= 128
PROC

mov QWORD PTR [rsp+24], rbx
mov QWORD PTR [rsp+32], rbp
mov QWORD PTR [rsp+16], rdx
mov QWORD PTR [rsp+8], rcx
push rsi

push rdi
push ri2
push ri13
push ri4
push rib

mov r15, QWORD PTR ab5$[rsp]
mov rcx, QWORD PTR a6$[rsp]

mov rbp, r8

mov r10, r9

mov rax, rlb
mov rdx, rbp
not rax

Xor rdx, r9

not ri10

mov rll, rax
and rax, r9

mov rsi, r10

mov QWORD PTR x36$1$[rspl, rax
and ril, r8

and rsi, r8
and r10, rib
mov ri13, rdx
mov rbx, ril
Xor rbx, r9
mov r9, QWORD PTR a2$[rsp]
mov rl2, rsi
or ri12, rib
not ri3

and r13, rcx
mov rid, ri2
and ril4, rcx
mov rax, ri4d
mov r8, ri4
Xor r8, rbx
Xor rax, ri15
not rbx

and rax, rdx
mov rdi, rax
Xor rdi, rsi

198

23.1. X86-64 CHAPTER 23. 64 BITS
or rdi, rcx
Xor rdi, ri10
and rbx, rdi
mov rcx, rdi
or rcx, r9
Xor rcx, rax
mov rax, ri3
xor rax, QWORD PTR x36$1$[rsp]
and rcx, QWORD PTR ai$[rsp]
or rax, r9
not rcx
Xor rcx, rax
mov rax, QWORD PTR out2$[rspl
xor rcx, QWORD PTR [rax]
Xor rcx, r38
mov QWORD PTR [rax], rcx
mov rax, QWORD PTR x36$1$[rsp]
mov rcx, ri4
or rax, r3
or rcx, rii
mov ril, r9
Xor rcx, rdx
mov QWORD PTR x36$1$[rspl, rax
mov r8, rsi
mov rdx, rcx
Xor rdx, ri3
not rdx
and rdx, rdi
mov r10, rdx
and ri0, r9
xor r10, rax
Xor rl10, rbx
not rbx
and rbx, r9
mov rax, rl10
and rax, QWORD PTR ail$[rsp]
Xor rbx, rax
mov rax, QWORD PTR out4$[rsp]
xor rbx, QWORD PTR [rax]
Xor rbx, rcx
mov QWORD PTR [rax], rbx
mov rbx, QWORD PTR x36$1$ [rsp]
and rbx, rbp
mov r9, rbx
not r9
and r9, rdi
or r8, ril
mov rax, QWORD PTR outl$[rsp]
Xor r8, r9
not r9
and r9, rcx
or rdx, rbp
mov rbp, QWORD PTR [rsp+80]
or r9, rsi
Xor rbx, ri2
mov rcx, rii
not rcx
not ri4d
not ri3
and rcx, r9
or r9, rdi

199

23.2. ARM CHAPTER 23. 64 BITS
and rbx, ri4
Xor r9, rib
Xor rcx, rdx
mov rdx, QWORD PTR ai$[rsp]
not r9
not rcx
and ri3, r10
and r9, riil
and rcx, rdx
Xor r9, rbx
mov rbx, QWORD PTR [rsp+72]
not rcx
xor rcx, QWORD PTR [rax]
or r9, rdx
not r9
Xor rcx, r8
mov QWORD PTR [rax], rcx
mov rax, QWORD PTR out3$[rspl
Xor r9, ri3
xor r9, QWORD PTR [rax]
Xor r9, r8
mov QWORD PTR [rax], r9
pop rib
pop ri4
pop ri3
pop ri2
pop rdi
pop rsi
ret 0
sl ENDP

Nothing allocated in local stack by compiler, x36 is synonym for a5.

By the way, we can see here, the function saved RCX and RDX registers in allocated by caller space, but R8 and R9 are not
saved but used from the beginning.

By the way, there are CPUs with much more GPR’s, e.g. Itanium (128 registers).

23.2 ARM

In ARM, 64-bit instructions are appeared in ARMvS.

23.3 Float point numbers

Read more here24 about how float point numbers are processed in x86-64.

200

CHAPTER 24. WORKING WITH FLOAT POINT NUMBERS USING SIMD IN X64

Chapter 24

Working with float point numbers using SIMD
in x64

Of course, FPU remained in x86-compatible processors, when x64 extension was added. But at the time, SIMD-extensions
(SSE', SSE2, etc) were already present, which can work with float point numbers as well. Number format remaining the same
(IEEE 754).

So, x86-64 compilers are usually use SIMD-instructions. It can be said, it’s a good news, because it’s easier to work with
them.

We will reuse here examples from the FPU section 15.

24.1 Simple example

double f (double a, double b)

{
return a/3.14 + bx4.1;

};

Listing 24.1: MSVC 2012 x64 /Ox

_real@4010666666666666 DQ 04010666666666666r ; 4.1
_real@40091eb851eb851f DQ 040091eb851eb851fr ; 3.14

a$ = 8

b$ = 16

b PROC
divsd xmmO, QWORD PTR __real@40091eb851eb851f
mulsd xmml, QWORD PTR __real@4010666666666666
addsd xmmO, xmml
ret 0

£ ENDP

Input floating point values are passed in XMMO-XMM3 registers, all the rest—via stack 2.

a is passed in XMMO, b—via XMM1. XMM-registers are 128-bit (as we know from the section about SIMD22), but double
values—64 bit ones, so only lower register half is used.

DIVSD is SSE-instruction, meaning “Divide Scalar Double-Precision Floating-Point Values”, it just divides one value of
double type by another, stored in the lower halves of operands.

Constants are encoded by compiler in IEEE 754 format.

MULSD and ADDSD works just as the same, but doing multiplication and addition.

The result of double type the function leaves in XMMO register.

That is how non-optimizing MSVC works:

Listing 24.2: MSVC 2012 x64

'Streaming SIMD Extensions
2MSDN: Parameter Passing

201

http://msdn.microsoft.com/en-us/library/zthk2dkh.aspx

24.2. PASSING FLOATING POINT NUMBER VIA ARGUMENJIBAPTER 24. WORKING WITH FLOAT POINT NUMBERS USING SIMD IN X64

__real@4010666666666666 DQ 040106666666666661r ; 4.1
__real@40091eb851eb851f DR 040091eb851eb851fr ; 3.14
a$ = 8

b$ = 16

f PROC

movsdx QWORD PTR [rsp+16], xmml
movsdx QWORD PTR [rsp+8], xmmO
movsdx xmmO, QWORD PTR a$[rsp]
divsd xmmO, QWORD PTR __real@40091eb851eb851f
movsdx xmml, QWORD PTR b$[rsp]
mulsd xmml, QWORD PTR __real@4010666666666666
addsd xmmO, xmml
ret 0
f ENDP

Slightly redundant. Input arguments are saved in “shadow space” (7.2.1), but only lower register halves, i.e., only 64-bit
values of double type.

GCC produces very same code.

24.2 Passing floating point number via arguments

#include <math.h>
#include <stdio.h>

int main ()
{
printf ("32.01 ~ 1.54 = J1f\n", pow (32.01,1.54));

return O;

They are passed in lower halves of the XMMO-XMM3 registers.

Listing 24.3: MSVC 2012 x64 /Ox

$SG1354 DB ’32.01 ~ 1.54 = J1f’, OaH, OOH

__real@40400147ael147ael DQ 040400147aeld7aelr ; 32.01
__real@3ff8a3d70a3d70a4 DR 03ff8a3d70a3d70aidr ; 1.54

main PROC
sub rsp, 40 ; 00000028H
movsdx xmml, QWORD PTR __real@3ff8a3d70a3d70a4
movsdx xmmO, QWORD PTR __real©40400147aeld7ael

call pow

lea rcx, OFFSET FLAT:$SG1354

movaps xmml, xmmO

movd rdx, xmml

call printf

xXor eax, eax

add rsp, 40 ; 00000028H
ret 0

main ENDP

There are noMOVSDX instructionin Intel [14] and AMD [1] manuals, it is called there just MOVSD. So there are two instructions
sharing the same name in x86 (about other: 80.6.2). Apparently, Microsoft developers wanted to get rid of mess, so they
renamed it into MOVSDX. It just loads a value into lower half of XMM-register.

pow () takes arguments from XMMO and XMM1, and returning result in XMMO. It is then moved into RDX for printf (). Why?
Honestly speaking, | don’t know, maybe because printf () —is a variable arguments function?

202

24.3. COMPARISON EXAMPLE CHAPTER 24. WORKING WITH FLOAT POINT NUMBERS USING SIMD IN X64
Listing 24.4: GCC 4.4.6 x64 -03

.LC2:
.string "32.01 ~ 1.54 = %1f\n"
main:
sub rsp, 8
movsd xmml, QWORD PTR .LCO[rip]
movsd xmmO, QWORD PTR .LC1[rip]
call pow
; result is now in XMMO
mov edi, OFFSET FLAT:.LC2
mov eax, 1 ; number of vector registers passed
call printf
xXor eax, eax
add rsp, 8
ret
.LCO:
.long 171798692
.long 1073259479
.LC1:

.long 2920577761
.long 1077936455

GCC making more clear result. Value for printf () is passed in XMMO. By the way, here is a case when 1is written into EAX
for printf () —this mean that one argument will be passed in vector registers, just as the standard requires [21].

24.3 Comparison example

double d_max (double a, double b)

{

if (a>b)

return a;

return b;

}s
Listing 24.5: MSVC 2012 x64 /Ox

a$ = 8
b$ 16
d_max PROC

comisd xmmO, xmml

ja SHORT $LN2@d_max

movaps xmmO, xmml
$LN2@d_max:

fatret O
d_max ENDP

Optimizing MSVC generates very easy code to understand.
COMISD is “Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS”. Essentially, that is what it
does.

Non-optimizing MSVC generates more redundant code, but it is still not hard to understand:

Listing 24.6: MSVC 2012 x64

a$ = 8
b$ = 16
d_max PROC

movsdx QWORD PTR [rsp+16], xmml
movsdx QWORD PTR [rsp+8], xmmO
movsdx xmmO, QWORD PTR a$[rspl

203

24.4. SUMMARY CHAPTER 24. WORKING WITH FLOAT POINT NUMBERS USING SIMD IN X64
comisd xmmO, QWORD PTR b$[rsp]

jbe SHORT $LN1@d_max

movsdx xmmO, QWORD PTR a$[rsp]

jmp SHORT $LN2@d_max
$LN1@d_max:

movsdx xmmO, QWORD PTR b$[rsp]
$LN20@d_max:

fatret O

d_max ENDP

However, GCC 4.4.6 did more optimizing and used the MAXSD (“Return Maximum Scalar Double-Precision Floating-Point
Value”) instruction, which just choose maximal value!

Listing 24.7: GCC 4.4.6 x64 -03

d_max:
maxsd xmmO, xmml
ret

24.4 Summary

Only lower half of XMM-registers are used in all examples here, a number in IEEE 754 format is stored there.

Essentially, all instructions prefixed by -SD (“Scalar Double-Precision”)—are instructions working with float point num-
bers in IEEE 754 format stored in the lower 64-bit half of XMM-register.

And it is easier than FPU, apparently because SIMD extensions were evolved not as chaotic as FPU in the past. Stack
register model is not used.

If you would try to replace double to float in these examples, the same instructions will be used, but prefixed with -SS
(“Scalar Single-Precision”), for example, MOVSS, COMISS, ADDSS, etc.

“Scalar” mean that SIMD-register will contain only one value instead of several. Instructions working with several values
in a register simultaneously, has “Packed” in the name.

204

CHAPTER 25. TEMPERATURE CONVERTING

Chapter 25

Temperature converting

Another very popular example in programming books for beginners, is a small program converting Fahrenheit temperature
to Celsius or back.

5-(F —32)
9
| also added simple error handling: 1) we should check if user enters correct number; 2) we should check if Celsius tem-
perature is not below —273 number (which is below absolute zero, as we may remember from school physics lessons).
exit () function terminates program instantly, without returning to the caller function.

O:

25.1 Integer values

#include <stdio.h>
#include <stdlib.h>

int main()

{
int celsius, fahr;
printf ("Enter temperature in Fahrenheit:\n");
if (scanf ("%d", &fahr)!'!'=1)
{
printf ("Error while parsing your input\n");
exit(0);
s
celsius = 5 * (fahr-32) / 9;
if (celsius<-273)
{
printf ("Error: incorrect temperature!\n");
exit (0);
s
printf ("Celsius: %d\n", celsius);
};

25.1.1 MSVC 2012 x86 /Ox

Listing 25.1: MSVC 2012 x86 /Ox

$3SG4228 DB ’Enter temperature in Fahrenheit:’, OaH, OOH
$SG4230 DB >%d’, OOH

$SG4231 DB ’Error while parsing your input’, OaH, OOH
$SG4233 DB ’Error: incorrect temperature!’, OaH, OOH
$SG4234 DB ’Celsius: %d’, OaH, OOH

205

25.1. INTEGER VALUES

CHAPTER 25. TEMPERATURE CONVERTING

_fahr$ = -4 H
_main PROC
push ecx
push esi
mov esi, DWORD PTR __imp__printf
push OFFSET $SG4228 ;
call esi ; call printf()
lea eax, DWORD PTR _fahr$[esp+12]
push eax
push OFFSET $SG4230 3 2hd?
call DWORD PTR __imp__scanf
add esp, 12 ;
cmp eax, 1
je SHORT $LN2@main
push OFFSET $SG4231 ;
call esi ; call printf()
add esp, 4
push 0
call DWORD PTR __imp__exit
$LN9Cmain:
$LN2@main:
mov eax, DWORD PTR _fahr$[esp+8]
add eax, -32 ;
lea ecx, DWORD PTR [eax+eax*4]
mov eax, 954437177 3
imul ecx
sar edx, 1
mov eax, edx
shr eax, 31 ;
add eax, edx
cmp eax, -273 5
jge SHORT $LN1@main
push OFFSET $SG4233 5
call esi ; call printf()
add esp, 4
push 0
call DWORD PTR __imp__exit
$LN10CGmain:
$LN1C@main:
push eax
push OFFSET $SG4234 ; ’Celsius: %d’
call esi ; call printf()
add esp, 8
; return 0 - at least by C99 standard
xor eax, eax
pop esi
pop ecx
ret 0
$LN8Cmain:
_main ENDP

size = 4

’Enter temperature in Fahrenheit:’

0000000cH

’Error while parsing your input’

ffffffeOH

38e38e39H

0000001fH

fffffeefH

’Error: incorrect temperature!’

What we can say about it:

e Address of printf () is first loaded into ESI register, so the subsequent printf () calls are processed just by CALL
EST instruction. It’s a very popular compiler technique, possible if several consequent calls to the same function are
present in the code, and/or, if there are free register which can be used for this.

e Wesee ADD EAX, -32instruction atthe place where 32 should be subtracted from the value. EAX = EAX + (—32)
is equivalentto FAX = FAX — 32 and somehow, compiler decide to use ADD instead of SUB. Maybe it’s worth it.

e LEA instruction is used when value should be multiplied by 5: 1ea ecx, DWORD PTR [eax+eax*4]. Yes,i + i x4 is
equivalent to i « 5 and LEA works faster then IMUL. By the way, SHL. EAX, 2 / ADD EAX, EAXinstructions pair could

be also used here instead— some compilers do it in this way.

206

25.2. FLOAT POINT VALUES CHAPTER 25. TEMPERATURE CONVERTING
e Division by multiplication trick (14) is also used here.

e main() function returns 0 while we haven’t return 0 at its end. C99 standard tells us [15, 5.1.2.2.3] that main () will
return 0 in case of return statement absence. This rule works only formain () function. Though, MSVC doesn’t support
C99, but maybe partly it does?
25.1.2 MSVC 2012 x64 /Ox

The code is almost the same, but I've found INT 3 instructions after each exit () call:

xor ecx, ecx
call QWORD PTR __imp_exit
int 3

INT 3isadebugger breakpoint.
It is known that exit () is one of functions which never can return ', so if it does, something really odd happens and it’s
time to load debugger.

25.2 Float point values

#include <stdio.h>
#include <stdlib.h>

int main()
{
double celsius, fahr;
printf ("Enter temperature in Fahrenheit:\n");
if (scanf ("%1f", &fahr)!=1)
{
printf ("Error while parsing your input\n");
exit(0);
s

celsius = 5 * (fahr-32) / 9;

if (celsius<-273)

{
printf ("Error: incorrect temperature!\n");
exit(0);

};

printf ("Celsius: %1f\n", celsius);

};

MSVC 2010 x86 use FPU instructions...

Listing 25.2: MSVC 2010 x86 /Ox

$SG4038 DB ’Enter temperature in Fahrenheit:’, OaH, OOH
$SG4040 DB >%1£°, OOH

$SG4041 DB ’Error while parsing your input’, OaH, OOH
$SG4043 DB ’Error: incorrect temperature!’, OaH, OOH
$SG4044 DB ’Celsius: %1f’, OaH, OOH

_real@c071100000000000 DQ 0c071100000000000r ; =273
_real@4022000000000000 DQ 04022000000000000r ;9
__real©@4014000000000000 DQ 04014000000000000r ; 5
__real@4040000000000000 DQ 04040000000000000r 5 32

_fahr$ = -8 ; size = 8
_main PROC

Tanother popular one is long jmp ()

207

25.2. FLOAT POINT VALUES

CHAPTER 25. TEMPERATURE CONVERTING

sub esp, 8
push esi
mov esi, DWORD PTR __imp__printf
push OFFSET $SG4038 ; ’Enter temperature in Fahrenheit:’
call esi ; call printf
lea eax, DWORD PTR _fahr$[esp+16]
push eax
push OFFSET $SG4040 s 2%1f?
call DWORD PTR __imp__scanf
add esp, 12 ; 0000000cH
cmp eax, 1
je SHORT $LN2@Gmain
push OFFSET $SG4041 ; ’Error while parsing your input’
call esi ; call printf
add esp, 4
push 0
call DWORD PTR __imp__exit
$LN2@main:
f1d QWORD PTR _fahr$[esp+12]

fsub QWORD PTR __real@4040000000000000 ; 32
fmul QWORD PTR __real@4014000000000000 ; 5
fdiv QWORD PTR __real@4022000000000000 ; 9
fld QWORD PTR __real@c071100000000000 ; -273
fcomp ST(1)

fnstsw ax

test ah, 65 ; 00000041H
jne SHORT $LN1@main
push OFFSET $SG4043 ; ’Error: incorrect temperature!’
fstp ST(0)
call esi ; call printf
add esp, 4
push 0
call DWORD PTR __imp__exit
$LN1@main:
sub esp, 8
fstp QWORD PTR [esp]
push OFFSET $SG4044 ; ’Celsius: %1f’
call esi
add esp, 12 ; 0000000cH
; return O
xor eax, eax
pop esi
add esp, 8
ret 0
$LN10Gmain:
_main ENDP

... but MSVC from year 2012 use SIMD instructions instead:

Listing 25.3: MSVC 2010 x86 /Ox

$SG4228 DB ’Enter temperature in Fahrenheit:’, OaH, OOH
$SG4230 DB >%1£°, OOH

$SG4231 DB ’Error while parsing your input’, OaH, OOH
$3SG4233 DB ’Error: incorrect temperature!’, OaH, OOH
$3G4234 DB ’Celsius: %1f’, OaH, OOH

__real@c071100000000000 DQ 0c071100000000000r ; -273
__real@4040000000000000 DQ 04040000000000000r ; 32
__real@4022000000000000 DQ 04022000000000000r ;9
__real@4014000000000000 DQ 04014000000000000r 3 B

_fahr$ = -8 ; size =

208

8

25.2. FLOAT POINT VALUES CHAPTER 25. TEMPERATURE CONVERTING
_main PROC

sub esp, 8
push esi
mov esi, DWORD PTR __imp__printf
push OFFSET $SG4228 ; ’Enter temperature in Fahrenheit:’
call esi ; call printf
lea eax, DWORD PTR _fahr$[esp+16]
push eax
push OFFSET $SG4230 HEEYAS
call DWORD PTR __imp__scanf
add esp, 12 ; 0000000cH
cmp eax, 1
je SHORT $LN2@main
push OFFSET $SG4231 ; ’Error while parsing your input’
call esi ; call printf
add esp, 4
push 0
call DWORD PTR __imp__exit
$LN9@main:
$LN2@main:

movsd xmml, QWORD PTR _fahr$[esp+12]

subsd xmml, QWORD PTR __real@4040000000000000 ; 32
movsd xmmO, QWORD PTR __real@c071100000000000 ; -273
mulsd xmml, QWORD PTR __real@4014000000000000 ; 5
divsd xmml, QWORD PTR __real@4022000000000000 ; 9
comisd xmmO, xmmil

jbe SHORT $LN1@main
push OFFSET $SG4233 ; ’Error: incorrect temperature!’
call esi ; call printf
add esp, 4
push 0
call DWORD PTR __imp__exit
$LN10@main:
$LN1@main:
sub esp, 8
movsd QWORD PTR [esp], xmml
push OFFSET $SG4234 ; ’Celsius: %1f’
call esi ; call printf
add esp, 12 ; 0000000cH
; return O
xor eax, eax
pop esi
add esp, 8
ret 0
$LN8Cmain:
_main ENDP

Of course, SIMD instructions are available in x86 mode, including those working with floating point numbers. It’s some-
what easier to use them for calculations, so the new Microsoft compiler use them.

We may also notice that —273 value is loaded into XMMO register too early. And that’s OK, because, compiler may emit
instructions not in the order they are in source code.

209

CHAPTER 26. C99 RESTRICT

Chapter 26

C99 restrict

Here is a reason why FORTRAN programs, in some cases, works faster than C/C++ ones.

void f1 (int* x, int* y, int* sum, int* product, int* sum_product, int* update_me, size_t s)

{

for (int i=0; i<s; i++)

{
sum[il=x[i]+y[i];
product [i]=x[il*y[i];
update_me[i]=1%123; // some dummy value
sum_product [i]=sum[i]+product [i];

s

};

That’s very simple example with one specific thing in it: pointer to update_me array could be a pointer to sum array,
product array, or even sum_product array—since itis not a crime init, right?
Compiler is fully aware about it, so it generates a code with four stages in loop body:

e calculate next sum[i]

e calculate next product [i]

e calculate nextupdate_me[i]

e calculate next sum_product [i]—onthis stage, we need to load from memory already calculated sum[i] and product [i]

Is it possible to optimize the last stage? Since already calculated sum[i] and product [i] are not necessary to load from
memory again, because we already calculated them. Yes, but compiler is not sure that nothing was overwritten on 3rd stage!
This is called “pointer aliasing”, a situation, when compiler cannot be sure that a memory to which a pointer is pointing, was
not changed.

restrictin C99 standard [15, 6.7.3/1] is a promise, given by programmer to compiler the function arguments marked by this
keyword will always be pointing to different memory locations and never be crossed.

If to be more precise and describe this formally, restrict shows that only this pointer is to be used to access an object, with
which we are working via this pointer, and no other pointer will be used for it. It can be even said the object will be accessed
only via one single pointer, if it is marked as restrict.

Let’s add this keyword to each argument-pointer:

void f2 (int* restrict x, int* restrict y, int* restrict sum, int* restrict product, intx*
restrict sum_product,
int* restrict update_me, size_t s)
{
for (int i=0; i<s; i++)
{
sum[il=x[i]+y[i];
product [i]=x[i]*y[i];
update_me[i]=i*123; // some dummy value
sum_product [i]=sum[i]+product [i] ;
Iz
75

Let’s see results:

210

CHAPTER 26. C99 RESTRICT

Listing 26.1: GCC x64: f1()

f1:
push r15 r14 ri13 ri12 rbp rdi rsi rbx
mov r13, QWORD PTR 120[rsp]
mov rbp, QWORD PTR 104 ([rsp]
mov r12, QWORD PTR 112[rsp]
test ri13, ri3
je L1
add ri3, 1
Xor ebx, ebx
mov edi, 1
Xor riid, ri1id
jmp L4
.L6:
mov ril, rdi
mov rdi, rax
L4:
lea rax, O0[0+ri11x4]
lea r10, [rcx+rax]
lea ri14, [rdx+rax]
lea rsi, [r8+rax]
add rax, r9
mov r15d, DWORD PTR [r10]
add r15d, DWORD PTR [r14]
mov DWORD PTR [rsil], ri15d ; store to sum[]
mov r10d, DWORD PTR [r10]
imul r10d, DWORD PTR [ri14]
mov DWORD PTR [rax], r10d ; store to product[]
mov DWORD PTR [ri12+ri11x4], ebx ; store to update_me/[]
add ebx, 123
mov r10d, DWORD PTR [rsil] ; reload suml[i]
add r10d, DWORD PTR [rax] ; reload product[i]
lea rax, 1[rdil
cmp rax, ri3
mov DWORD PTR O[rbp+r11x4], r10d ; store to sum_product[]
jne .L6
.L1:
pop rbx rsi rdi rbp ri12 ri3 ri14 rib
ret
Listing 26.2: GCC x64: 2()
£2:
push r13 r12 rbp rdi rsi rbx
mov r13, QWORD PTR 104[rsp]
mov rbp, QWORD PTR 88[rsp]
mov r12, QWORD PTR 96 [rsp]
test ri3, ri3
je L7
add ri3, 1
Xor r10d, r10d
mov edi, 1
xor eax, eax
jmp .L10
.L11:
mov rax, rdi
mov rdi, rii
.L10:
mov esi, DWORD PTR [rcx+rax*4]
mov r11d, DWORD PTR [rdx+rax*4]
mov DWORD PTR [ri12+rax*4], r10d ; store to update_mel[]

211

CHAPTER 26. C99 RESTRICT

add r10d, 123
lea ebx, [rsi+rii]
imul rild, esi
mov DWORD PTR [r8+rax*4], ebx ; store to sum[]
mov DWORD PTR [r9+rax*4], rilid ; store to product[]
add rlld, ebx
mov DWORD PTR O[rbp+rax*4], rlld ; store to sum_product[]
lea ri1, 1[rdil
cmp ri1l, ri3
jne .L11
LT
pop rbx rsi rdi rbp ri2 ri3
ret

The difference between compiled £1 () and £2() functionis as follows: in£1 (), sum[i] and product [i] are reloaded in
the middle of loop, and in £2 () there are no such thing, already calculated values are used, since we “promised” to compiler,
that no one and nothing will change values in sum[i] and product [i] while execution of loop body, so it is “sure” the value
from memory may not be loaded again. Obviously, second example will work faster.

But whatif pointersin function arguments will be crossed somehow? This will be on programmer’s conscience, but results
will be incorrect.

Let’s back to FORTRAN. Compilers from this programming language treats all pointers as such, so when it was not possible
to set restrict, FORTRAN in these cases may generate faster code.

How practical is it? In the cases when function works with several big blocks in memory. E.g. there are a lot of such in
linear algebra. Alot of linear algebra used on supercomputers/HPC', probably, that is why, traditionally, FORTRAN is still used
there [19].

But when a number of iterations is not very big, certainly, speed boost will not be significant.

"High-Performance Computing

212

CHAPTER 27. INLINE FUNCTIONS

Chapter 27

Inline functions

Inlined code is when compiler, instead of placing call instruction to small or tiny function, just placing its body right in-place.

Listing 27.1: Simple example

#include <stdio.h>

int celsius_to_fahrenheit (int celsius)

{
return celsius * 9 / 5 + 32;
Jrg
int main(int argc, char *argv[])
{
int celsius=atol(argv[1]);
printf ("%d\n", celsius_to_fahrenheit (celsius));
Jg
... is compiled in very predictable way, however, if to turn on GCC optimization (-03), we’ll see:
Listing 27.2: GCC 4.8.1-03
_main:
push ebp
mov ebp, esp
and esp, -16
sub esp, 16
call ___main
mov eax, DWORD PTR [ebp+12]
mov eax, DWORD PTR [eax+4]
mov DWORD PTR [esp]l, eax
call _atol
mov edx, 1717986919
mov DWORD PTR [esp], OFFSET FLAT:LC2 ; "%d\12\0"
lea ecx, [eax+eax*8]
mov eax, ecx
imul edx
sar ecx, 31
sar edx
sub edx, ecx
add edx, 32
mov DWORD PTR [esp+4], edx
call _printf
leave
ret

(Here division is done by multiplication(14).)
Yes, our small function was just placed before printf () call. Why? It may be faster than executing this function’s code
plus calling/returning overhead.

213

CHAPTER 27. INLINE FUNCTIONS

In past, such function must be marked with “inline” keyword in function’s declaration, however, in modern times, these

functions are chosen automatically by compiler.
Another very common automatic optimization is inlining of string functions like strcpy(), stremp(), etc.

Listing 27.3: Another simple example

bool is_bool (char *s)

{
if (strcmp (s, "true")==0)
return true;
if (strcmp (s, "false")==0)
return false;
assert(0);
i
Listing 27.4: GCC 4.8.1-03
_is_bool:
push edi
mov ecx, b
push esi
mov edi, OFFSET FLAT:LCO ; "true\O"
sub esp, 20
mov esi, DWORD PTR [esp+32]
repz cmpsb
je L3
mov esi, DWORD PTR [esp+32]
mov ecx, 6
mov edi, OFFSET FLAT:LC1 ; "false\O"
repz cmpsb
seta cl
setb dl
xor eax, eax
cmp cl, dl
jne L8
add esp, 20
pop esi
pop edi
ret
Here is an example of very frequently seen piece of strcmp() code generated by MSVC:
Listing 27.5: MSVC
mov dl, [eax]
cmp dl, [ecx]
jnz short loc_10027FA0Q
test dl, dl
jz short loc_10027F9C
mov dl, [eax+1]
cmp dl, [ecx+1]
jnz short loc_10027FA0Q
add eax, 2
add ecx, 2
test dl, dl
jnz short loc_10027F80
loc_10027F9C: ; CODE XREF: f1+448
xor eax, eax
jmp short loc_10027FA5
loc_10027FAO: ; CODE XREF: f1+444

214

CHAPTER 27. INLINE FUNCTIONS

; £1+450
sbb eax, eax
sbb eax, OFFFFFFFFh

I wrote small IDA script for searching and folding such very frequently seen pieces of inline code:
https://github.com/yurichev/IDA_scripts.

215

https://github.com/yurichev/IDA_scripts

CHAPTER 28. INCORRECTLY DISASSEMBLED CODE

Chapter 28

Incorrectly disassembled code

Practicing reverse engineers often dealing with incorrectly disassembled code.

28.1 Disassembling started incorrectly (x86)

Unlike ARM and MIPS (where any instruction has length of 2 or 4 bytes), x86 instructions has variable size, so, any disassem-
bler, starting at the middle of x86 instruction, may produce incorrect results.
As an example:

add
dec

[ebp-31F7Bh], cl

dword ptr [ecx-3277Bh]
dword ptr [ebp-2CF7Bh]
dword ptr [ebx-7A76F33Ch]
st(4), st

>

dec
dec
dec
dec
dec
dec

dword ptr [ecx-21F7Bh]
dword ptr [ecx-22373h]
dword ptr [ecx-2276Bh]
dword ptr [ecx-22B63h]
dword ptr [ecx-22F4Bh]
dword ptr [ecx-23343h]
dword ptr [esi-74h]

db OFFh
db OFFh

H
mov
mov
mov
mov
mov
pushf
bop
mov
mov
lea
mov
mov
mov
mov
mov

word ptr [ebp-214h], cs
word ptr [ebp-238h], ds
word ptr [ebp-23Ch], es
word ptr [ebp-240h], fs
word ptr [ebp-244h], gs

dword ptr [ebp-210h]

eax, [ebp+4]

[ebp-218h], eax

eax, [ebp+4]

[ebp-20Ch], eax

dword ptr [ebp-2DOh], 10001h
eax, [eax-4]

[ebp-21Ch], eax

eax, [ebp+0Ch]

216

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED?

CHAPTER 28. INCORRECTLY DISASSEMBLED CODE

mov
mov
mov
mov
mov
call
mov
lea
push
call
pop
test
jnz

[ebp-320h], eax
eax, [ebp+10h]
[ebp-31Ch], eax
eax, [ebp+4]
[ebp-314h], eax
ds:IsDebuggerPresent
edi, eax

eax, [ebp-328h]
eax

sub_407663

ecx

eax, eax

short loc_402D7B

There are incorrectly disassembled instructions at the beginning, but eventually, disassembler finds right track.

28.2 How random noise looks disassembled?

Common properties which can be easily spotted are:

e Unusually big instruction dispersion. Most frequent x86 instructions are PUSH, MOV, CALL, but here we will see in-
structions from any instruction group: FPU instructions, IN/OUT instructions, rare and system instructions, everything
messed up in one single place.

e Big and random values, offsets and immediates.

e Jumps having incorrect offsets often jumping into the middle of another instructions.

Listing 28.1: random noise (x86)

mov bl, OCh

mov ecx, 0D38558Dh
mov eax, ds:2C869A86h
db 67h

mov dl, OCCh

insb

movsb

push eax

xor [edx-53h], ah
fcom qword ptr [edi-45A0EF72h]
pop esp

pop ss

in eax, dx

dec ebx

push esp

1lds esp, [esi-41h]
retf

rcl dword ptr [eax], cl
mov cl, 9Ch

mov ch, ODFh

push cs

insb

mov esi, OD9C65E4Dh
imul ebp, [ecx], 66h
pushf

sal dword ptr [ebp-64h], cl
sub eax, 0AC433D64h
out 8Ch, eax

pop ss

sbb [eax], ebx

aas

xchg cl, [ebx+ebx*4+14B31Eh]

217

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED?

CHAPTER 28. INCORRECTLY DISASSEMBLED CODE

jecxz
Xor
inc
db
pusha
stosb
test
sub
pop
stosb

loc_b8:
test
inc
das

loc_A2:

short near ptr loc_58+1

al, 0C6h

edx

36h

[ebx], ebx

al, OD3h ; °’L°
eax

; CODE XREF:

[esi], eax
ebp

64h
ecx

edx
OBOh, al

ebx

dx, al
al, OAh

dword ptr [edx], 96FCBE4Bh
eax, OEB37EE4Fh
esp

ecx
al, OCBh
ds:0D114C45Ch, al
esi, 659D1985h
6FE8h, 0ODSh
6FE6h, 0D9h

eax, esi

eax, 0A599866Eh

eax
eax
al, 21h ; ’1?

edi
eax, 9062EE5Bh
eax, [ebx]

; CODE XREF:

short loc_D7

218

seg000:0000004A

seg000:00000120

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED?

loc_D7:

sub ebx, [ecx]

in al, OCh

add esp, esp

mov bl, 8Fh

xchg eax, ecx

int 67h ; - LIM EMS
pop ds

pop ebx

db 36h

xor esi, [ebp-4Ah]
mov ebx, OEB4F980Ch

repne add bl, dh
imul ebx, [ebp+5616E7A5h], 67A4D1EEh
xchg eax, ebp

scasb

push esp

wait

mov dl, 11h

mov ah, 29h ; ’)°

fist dword ptr [edx]

; CODE XREF: seg000:000000A4
; 5eg000:000000A8 ...

dec dword ptr [ebp-5DOEOBA4h]
call near ptr 622FEE3Eh

sbb ax, 5A2Fh

jmp dword ptr cs: [ebx]

xor ch, [edx-5]

inc esp

push edi

xor esp, [ebx-6779D3B8h]
pop eax

int 3 ; Trap to Debugger
rcl byte ptr [ebx-3Eh], cl
xor [edi], bl

sbb al, [edx+ecx*4]

xor ah, [ecx-1DA4E05Dh]
push edi

Xor ah, cl

popa

cmp dword ptr [edx-62h], 46h ; ’F’
dec eax

in al, 6%

dec ebx

iret

or al, 6

jns short near ptr loc_D7+3
shl byte ptr [esi], 42h
repne adc [ebx+2Ch], eax

icebp

cmpsd

leave

push esi

jmp short loc_A2

and eax, OF2E41FESh

push esi

loop loc_14F

add ah, fs:[edx]

219

CHAPTER 28. INCORRECTLY DISASSEMBLED CODE

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED? CHAPTER 28. INCORRECTLY DISASSEMBLED CODE

loc_12D: ; CODE XREF: seg000:00000169
mov dh, OF7h
add [ebx+7B61D47Eh], esp
mov edi, 79F19525h
rcl byte ptr [eax+22015F55h], cl
cli
sub al, OD2h ; °T?
dec eax
mov ds:0A81406F5h, eax
sbb eax, OATAA179Ah
in eax, dx
loc_14F: ; CODE XREF: seg000:00000128
and [ebx-4CDFAC74h], ah
pop ecx
push esi
mov bl, 2Dh ; ’-°
in eax, 2Ch
stosd
inc edi
push esp
locret_15E: ; CODE XREF: seg000:1loc_1A0

retn 0C432h

and al, 86h

cwde

and al, 8Fh

cmp ebp, [ebp+7]

jz short loc_12D

sub bh, ch

or dword ptr [edi-7Bh], 8A16COF7h

db 65h

insd

mov al, ds:0A3A5173Dh

dec ecx

push ds

Xor al, cl

g short loc_195

push 6Eh ; ’n’

out ODDh, al

inc edi

sub eax, 6899BBF1h

leave

rcr dword ptr [ecx-69h], cl

sbb ch, [edi+5EDDCB54h]
loc_195: ; CODE XREF: seg000:0000017F

push es

repne sub ah, [eax-105FF22Dh]
cmc

and ch, al
loc_1A0: ; CODE XREF: seg000:00000217
jnp short near ptr locret_15E+1
or ch, [eax-66h]
add [edi+edx-35h], esi
out dx, al
db 2Eh

call far ptr 1AAh:6832F5DDh

220

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED?

jz
sbb
xchg
xXor

loc_1C1:
cmp
add
aad
imul
or
popf

loc_1DA:

xchg

mov
add
jnb
db

adc
js

sbb

loc_21E:

short near ptr loc_1DA+1
esp, [edi+2CBO2CEFh]
eax, edi
[ebx-766342ABh], edx

; CODE XREF: seg000:00000212
eax, 1BE9080h
[ecx], edi
0
esp, [edx-70h], 0A8990126h
dword ptr [edx+10C33693h], 4Bh

; CODE XREF: seg000:000001B2
ecx, cs

al, 3% ; ’9?

byte ptr [eax-77F7F1C5h], OC7h
[ecx], bl

0DD42h

3Eh

fs:[edi], edi
[ebx-24h], esp
64h

eax, ebp

cs

eax, [edi+36h]
bh, 0C7h

eax, OA710CBE7h
eax, ecx

eax, 51836E42h
eax, ebx

ecx

short near ptr loc_21E+3
64h

eax, esp

dh, [eax-31h]
ch, 13h

ebx, edx

short loc_1C1
65h

al, 0C5h

short loc_1A0
eax, 887F5BEEh

; CODE XREF: seg000:00000207
eax, 888E1FD6h
bl, 90h
[eax], ecx
61h ; reserved for user interrupt
edx, [esi-7EB5C9EAh]
qword ptr [eax+esi*4+38F9BA6L]
short loc_27C

st, st(2)
3Eh
edx, 54C03172h

221

CHAPTER 28. INCORRECTLY DISASSEMBLED CODE

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED? CHAPTER 28. INCORRECTLY DISASSEMBLED CODE

pop ds

xchg eax, esi

rcr ebx, cl

cmp [di+2Eh], ebx

repne xor [di-19h], dh

insd

adc dl, [eax-0C4579F7h]

push ss

xor [ecx+edx*4+65h], ecx

mov cl, [ecx+ebx-32E8SAC51h]

or [ebx], ebp

cmpsb

lodsb

iret

Listing 28.2: random noise (x86-64)

lea esi, [rax+rdx*4+43558D29h]
loc_AF3: ; CODE XREF: seg000:0000000000000B46

rcl byte ptr [rsi+rax*8+29BB423Ah], 1

lea ecx, cs:0FFFFFFFFB2A6780Fh

mov al, 96h

mov ah, OCEh

push rsp

lods byte ptr [esi]

db 2Fh ; /
pop rsp
db 64h

cmp ah, [rax+4Ah]
movzx rsi, dword ptr [rbp-25h]
push 4Ah

movzx rdi, dword ptr [rdi+rdx*8]

db 9Ah

rcr byte ptr [rax+1Dh], cl
lodsd

xor [rbp+6CF20173h], edx
xor [rbp+66F8B593h], edx
push rbx

sbb ch, [rbx-OFh]

stosd

int 87h ; used by BASIC while in interpreter
db 46h, 4Ch

out 33h, rax

xchg eax, ebp

test ecx, ebp

movsd

leave

push rsp

db 16h

xchg eax, esi

pop rdi

222

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED?

CHAPTER 28. INCORRECTLY DISASSEMBLED CODE

loc_B3D:

movsxd
pop
out
add

; CODE XREF:

ds :93CA685DF98A90F9%h, eax
short near ptr loc_AF3+6
dx, eax

bh, 5Dh ; ’]°

rbp, dword ptr [rbp-17h]
rbx

7Dh, al

eax, OD79BE769h

short near ptr loc_B3D+4

dword ptr [rbx+rbp+4Dh], 0D3h

cl, 41h ; ’A?

eax, [rbp-5B77E717h], 1DDE6E5Sh

ecx, ebx, 66359BCCh

bl, [rax]
ebp, [rcx-57h]

[rcx+1A533AB4h], al
short loc_CO05

3 ; Trap to Debugger

ebx, [rsp+rdx-5Bh]

esp, OC5BA61F7h
0A3h, al

al, OA6h

rbx

bh, fs:[rsil
ch, cl

dh, [rbp+rax*4-4CE9621Ah]

[rdi], ebx
eax, ecx
rsi

word ptr [rcx]
eax, ecx

223

seg000:0000000000000B5F

; Interrupt Controller #2, 8259A

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED? CHAPTER 28. INCORRECTLY DISASSEMBLED CODE

mov dh, 0COh ; ’L’
xchg eax, esp
push rsi
mov dh, [rdx+rbp+6918F1F3h]
xchg eax, ebp
out 9Dh, al
loc_BCO: ; CODE XREF: seg000:0000000000000C26
or [rcx-0Dh], ch
int 67h ; - LIM EMS
push rdx
sub al, 43h ; ’C’
test ecx, ebp

test [rdi+71F372A4h], cl

imul ebx, [rsi-ODh], 2BB30231h

xor ebx, [rbp-718B6E64h]

jns short near ptr loc_C56+1

ficomp dword ptr [rcx-1Ah]

and eax, 69BEECCT7h

mov esi, 37DA40F6h

imul r13, [rbp+rdi*8+529F33CDh], OFFFFFFFFF35CDD30h
or [rbx], edx

imul esi, [rbx-34h], OCDA42B87h

db 36h ; 6
db 1Fh
loc_CO05: ; CODE XREF: seg000:0000000000000B86
add dh, [rcxl]
mov edi, ODD3E659%
ror byte ptr [rdx-33h], cl
xlat
db 48h
sub rsi, [rcx]
db 1Fh
db 6
xor [rdi+13F5F362h], bh
cmpsb
sub esi, [rdx]
pop rbp
sbb al, 62h ; ’b’
mov dl, 33h ; ’3?
db 4Dh ; M
db 17h
jns short loc_BCO

push OFFFFFFFFFFFFFF86h

loc_C2A: ; CODE XREF: seg000:0000000000000C8F
sub [rdi-2Ah], eax

224

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED? CHAPTER 28. INCORRECTLY DISASSEMBLED CODE

wait

rcr byte ptr [rax+5Fh], cl
cmp bl, al

pushfq

xchg ch, cl

mov ds:0E43F3CCD3D9AB295h, eax
cmp ebp, ecx
jl short loc_C87
retn 8574h
out 3, al ; DMA controller, 8237A-5.
; channel 1 base address and word count

loc_C4C: ; CODE XREF: seg000:0000000000000C7F
cmp al, OA6h

push OFFFFFFFFFFFFFFBEh

ficom dword ptr [rbx+r10%8]

loc_C56: ; CODE XREF: seg000:0000000000000BDE
jnz short loc_C76
xchg eax, edx
db 26h
wait
iret
push rcx
db 48h ; H
db 9Bh
db 64h ; d
db 3Eh ; >
db 2Fh ; /
mov al, ds:8A7490CA2EQAA728h
stc
db 60nh ; ¢
test [rbx+rcx], ebp
int 3 ; Trap to Debugger
xlat
loc_C72: ; CODE XREF: seg000:0000000000000CC6
mov bh, 98h
db 2Eh ;
db ODFh
loc_C76: ; CODE XREF: seg000:loc_C56
jl short loc_C91
sub ecx, 13A7CCF2h
movsb

225

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED?

jns short near ptr loc_C4C+1
cmpsd
sub ah, ah
cdq
db 6Bh ; k
db b5Ah ; Z
loc_C87: ; CODE XREF: seg000:0000000000000C45
or ecx, [rbx+6Eh]
rep in eax, OEh ; DMA controller, 8237A-5.

; Clear mask registers.
; Any OUT enables all 4 channels.

cmpsb
jnb short loc_C2A
loc_C91: ; CODE XREF: seg000:loc_C76
scasd
add dl, [rcx+5FEF30E6h]
enter OFFFFFFFFFFFFC733h, 7Ch
insd
mov ecx, gs
in al, dx
out 2Dh, al
mov ds:6599E434E6D96814h, al
cmpsb
push OFFFFFFFFFFFFFFD6h
popfq
Xor ecx, ebp
db 48h
insb
test al, cl
xor [rbp-7Bh], cl
and al, 9Bh
db 9Ah
push rsp
Xor al, 8Fh
cmp eax, 924E81BSh
clc
mov bh, ODEh
jbe short near ptr loc_C72+1
db 1Eh

db 0C4h ; -
loc_CCD: ; CODE XREF: seg000:0000000000000D22

adc eax, 7CABFBF8h

db 38h ; 8

mov ebp, 9C3E66FCh

push rbp

dec byte ptr [rcx]

sahf

226

CHAPTER 28. INCORRECTLY DISASSEMBLED CODE

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED? CHAPTER 28. INCORRECTLY DISASSEMBLED CODE
fidivr word ptr [rdi+2Ch]

db 1Fh
db 3Eh
xchg eax, esi
loc_CE2: ; CODE XREF: seg000:0000000000000D5E
mov ebx, OC7AFE30Bh
clc
in eax, dx
sbb bh, bl

xchg eax, ebp

db 3Fh ; ?

cmp edx, 3EC3E4D7h
push 51h

db 3Eh

pushfq

jl short loc_D17

test [rax-4CFFOD49h], ebx

db 2Fh ; /

rdtsc

jns short near ptr loc_D40+4
mov ebp, 0B2BB03D8h

in eax, dx

db 1Eh

fsubr dword ptr [rbx-0Bh]

jns short loc_D70
scasd
mov ch, 0Cih ; ’+?
add edi, [rbx-53h]
db OE7h
loc_D17: ; CODE XREF: seg000:0000000000000CF7
jp short near ptr unk_D79
scasd
cmc
sbb ebx, [rsi]
fsubr dword ptr [rbx+3Dh]
retn
db 3
jnp short near ptr loc_CCD+4
db 36h
adc ri14b, ri3b
db 1Fh
retf
test [rdi+rdi*2], ebx
cdq

227

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED?

CHAPTER 28. INCORRECTLY DISASSEMBLED CODE

or ebx, edi
test eax, 310B94BCh
ffreep st(7)
cwde
sbb esi, [rdx+53h]
push 5372CBAAh
loc_D40: ; CODE XREF: seg000:0000000000000D02
push 53728BAAh
push OFFFFFFFFF85CF2FCh
db OEh
retn 9B9Bh
movzx r9, dword ptr [rdx]
adc [rcx+43nh], ebp
in al, 31h
db 37h ; 7
jl short loc_DC5
icebp
sub esi, [rdil]
clc
pop rdi
jb short near ptr loc_CE2+1
or al, 8Fh
mov ecx, T(70EFF81h
sub al, ch
sub al, 73h ; ’s’
cmpsd
adc bl, al
out 87h, eax ; DMA page register 74LS612:
; Channel 0 (address bits 16-23)
loc_D70: ; CODE XREF: seg000:0000000000000DOE
adc edi, ebx
db 49h
outsb
enter 33E5h, 97h
xchg eax, ebx
unk_D79 db OFEh ; CODE XREF: seg000:loc_D17
db OBEh
db OEilh
db 82h
loc_D7D ; CODE XREF: seg000:0000000000000DB3
cwde
db 7
db 5Ch ; \
db 10h
db 73h ; s
db 0A9h
db 2Bh ; +
db 9Fh

228

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED? CHAPTER 28. INCORRECTLY DISASSEMBLED CODE

loc_D85: ; CODE XREF: seg000:0000000000000DD1
dec dh
jnz short near ptr loc_DD3+3
mov ds:7C1758CB282EF9BFh, al
sal ch, 91h
rol dword ptr [rbx+7Fh], cl

fbstp tbyte ptr [rcx+2]
repne mov al, ds:4BFAB3C3ECF2BE13h

pushfq
imul edx, [rbx+rsi*8+3B484EESh], SEDC09C6h
cmp [rax], al
g short loc_D7D
xor [rcx-638C1102h], edx
test eax, 14E3AD7h
insd
db 38h ; 8
db 80h
db 0C3h
loc_DC5: ; CODE XREF: seg000:0000000000000D57
; seg000:0000000000000DD8
cmp ah, [rsi+rdi*2+527C01D3h]
sbb eax, BFC631FOh
jnb short loc_D85
loc_DD3: ; CODE XREF: seg000:0000000000000D87

call near ptr OFFFFFFFFC03919C7h
loope near ptr loc_DC5+3

sbb al, 0C8h

std

Listing 28.3: random noise (ARM in ARM mode)

BLNE 0xFE16A9DS8
BGE 0x1634D0C

SVCCS 0x450685

STRNVT R5, [PC],#-0x964

LDCGE p6, cl4, [RO],#0x168

STCCSL p9, c9, [LR],#0x14C

CMNHIP PC, R10,LSL#22

FLDMIADNV LR!, {D4}

MCR p5, 2, R2,c15,c6, 4

BLGE 0x1139558

BLGT 0xFF9146E4

STRNEB R5, [R4],#0xCA2

STMNEIB R5, {RO,R4,R6,R7,R9-SP,PC}
STMIA R8, {RO,R2-R4,R7,R8,R10,SP,LR}"
STRB SP, [R8],PC,ROR#18

LDCCS p9, c13, [R6,#0x1BC]

LDRGE R8, [R9,#0x66E]

STRNEB R5, [R8],#-0x8C3

STCCSL p15, c9, [R7,#-0x84]

RSBLS LR, R2, R11,ASR LR

SVCGT 0x9B0362

SVCGT 0xA73173

STMNEDB R11!, {RO,R1,R4-R6,R8,R10,R11,SP}
STR RO, [R3],#-0xCE4

LDCGT pi15, c8, [R1,#0x2CC]

LDRCCB R1, [R11],-R7,ROR#30

229

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED? CHAPTER 28. INCORRECTLY DISASSEMBLED CODE

BLLT 0xFED9D58C
BL 0x13E60F4

LDMVSIB R3!, {R1,R4-R7}"
USATNE R10, #7, SP,LSL#11
LDRGEB LR, [R1],#0xE56

STRPLT R9, [LR],#0x567

LDRLT R11, [R1],#-0x29B
SVCNV 0x12DB29

MVNNVS R5, SP,LSL#25

LDCL p8, cl4, [R12,#-0x288]
STCNEL p2, c6, [R6,#-0xBC]!
SVCNV 0x2E5A2F

BLX 0x1A8C97E

TEQGE R3, #0x1100000

STMLSIA R6, {R3,R6,R10,R11,SP}
BICPLS R12, R2, #0x5800

BNE 0x7CC408

TEQGE R2, R4,LSL#20

SUBS R1, R11, #0x28C

BICVS R3, R12, R7,ASR RO
LDRMI R7, [LR],R3,LSL#21
BLMI 0x1A79234

STMVCDB R6, {RO-R3,R6,R7,R10,R11}
EORMI R12, R6, #0xC5

MCRRCS p1, OxF, R1,R3,c2

Listing 28.4: random noise (ARM in Thumb mode)

LSRS R3, R6, #0x12
LDRH R1, [R7,#0x2C]
SUBS RO, #0x55 ; U’

ADR R1, loc_3C

LDR R2, [SP,#0x218]
CMP R4, #0x86

SXTB R7, R4

LDR R4, [R1,#0x4C]
STR R4, [R4,R2]

STR RO, [R6,#0x20]
BGT OxFFFFFF72

LDRH R7, [R2,#0x34]
LDRSH RO, [R2,R4]
LDRB R2, [R7,R2]
DCB 0x17

DCB OxED

STRB R3, [R1,R1]
STR R5, [RO,#0x6C]
LDMIA R3, {RO-R5,R7}
ASRS R3, R2, #3

LDR R4, [SP,#0x2C4]
SVC 0xB5

LDR R6, [R1,#0x40]

LDR R5, =0xB2C5CA32
STMIA R6, {R1-R4,R6}

LDR R1, [R3,#0x3C]

STR R1, [R5,#0x60]

BCC OxFFFFFF70

LDR R4, [SP,#0x1D4]
STR R5, [R5,#0x40]

ORRS R5, R7

230

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED? CHAPTER 28. INCORRECTLY DISASSEMBLED CODE

loc_3C ; DATA XREF: ROM:00000006
B OxFFFFFF98
ASRS R4, R1, #O0x1E
ADDS R1, R3, RO
STRH R7, [R7,#0x30]
LDR R3, [SP,#0x230]
CBZ R6, loc_90
MOVS R4, R2
LSRS R3, R4, #0x17
STMIA R6!, {R2,R4,R5}
ADDS R6, #0x42 ; ’B’

ADD R2, SP, #0x180
SUBS R5, RO, R6
BCC loc_BO
ADD R2, SP, #0x160
LSLS R5, RO, #O0x1A
CMP R7, #0x45
LDR R4, [R4,R5]
DCB Ox2F ; /
DCB 0xF4
B OxFFFFFD18
ADD R4, SP, #0x2CO
LDR R1, [SP,#0x14C]
CMP R4, #OxEE
DCB OxA
DCB OxFB

STRH R7, [R5,#0xAl
LDR R3, loc_78
DCB OxBE ; -

DCB OxFC

DCB 0x4F ; O
DCB OxEE

ADD R3, SP, #0x110

loc_78 ; DATA XREF: ROM:0000006C
STR R1, [R3,R6]
LDMIA R3!, {R2,R5-R7}
LDRB R2, [R4,R2]
ASRS R4, RO, #0x13

BKPT 0xD1
ADDS R5, RO, R6
STR R5, [R3,#0x58]
Listing 28.5: random noise(MIPS little endian)
1w $t9, 0xCB3($t5)
sb $t5, 0x3855($t0)

231

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED?

CHAPTER 28. INCORRECTLY DISASSEMBLED CODE

sltiu
ldr
daddi

lwci
daddiu
1lwu
cop0
bne
1h
sdl
jal
ori
blez
swl
sltiu
sdcl

$a2, $a0, -0x657A
$t4, -0x4D99($a2)
$s0, $s1, 0x50A4
$s7, -0x2353($s4)
$al, 0x17C5C

0x4B # K
0xb4 # T

$31, 0x66C5($sp)
$s1, 0x10D3($al)
$t6, -0x204B($zero)
$£30, Ox4DBE($s2)
$t1, $s1, 0x6BD9
$s5, -0x2C64($v1)
0x13D642D

$gp, $t4, OxFFFFOEFO
$ra, 0x1819($s1)
$fp, -0x6474($t8)
0x78C0050

$v0, $s2, 0xC634
$gp, OxFFFEA9D4
$t8, -0x2CD4($s2)
$a1, $k0, 0x685
$£15, 0x5964($at)
$s0, -0x19A6($al)
$t6, $a3, -0x66AD
$t7, -0x4F6($t3)
$fp, 0x4B02($al)

0x25 # %
0x4F # O

$a0, -0x1AC9($k0)
$4, 0x5199($ra)
$a2, $ald, 0x17308

$8, 0x659D($a2)
$£8, -0x2691($s6)
$s6, $t4, -0x2691
$t9, -0x7992($t4)
$v0, $t0, 0x163A4
$a3, $t2, -O0xB0DF
$v0, -0x11A5($v1l)
0x1B, 0x362($gp)
7, 0x3173($sp)
$t1, OxB678

$£3, flt_CE4($zero)
0x11, -0x704D($t4)
$k1, $s2, 0x1F67
$s6, 0x7533($sp)
$15, -0x67F4($k0)

232

28.3. INFORMATION ENTROPY OF AVERAGE CODE

CHAPTER 28. INCORRECTLY DISASSEMBLED CODE

141 $s3, OxF2($t7)

bne $s7, $a3, OxFFFE9Q73C
sh $s1, -0x11AA($a2)
bnel $al, $t6, OxFFFE566C
sdr $s1, -0x4D65($zero)
sd $s2, -0x24D7($t8)
scd $s4, 0x5C8D($t7)
byte 0xA2

byte OxE8

byte 0x5C # \

byte OxED

bgtz $t3, 0x189A0

sd $t6, 0x5A2F($t9)
sdc2 $10, 0x3223($k1)

sb $s3, 0x5744($t9)

lwr $a2, 0x2C48($a0)

beql $fp, $s2, OxFFFF3258

It is also important to keep in mind that cleverly constructed unpacking and decrypting code (including self-modifying)
may looks like noise as well, nevertheless, it executes correctly.

28.3 Information entropy of average code

ent utility results'.

(Entropy of ideally compressed (or encrypted) file is 8 bits per byte; of zero file of arbitrary size if 0 bits per byte.)
Here we can see that a code for CPU with 4-byte instructions (ARM in ARM mode and MIPS) is least effective in this sense.

28.3.1 x86

.text section of ntoskrnl . exe file from Windows 2003:

Entropy = 6.662739 bits per byte.

Optimum compression would reduce the size
of this 593920 byte file by 16 percent.

.text section of ntoskrnl . exe from Windows 7 x64:

Entropy = 6.549586 bits per byte.

Optimum compression would reduce the size
of this 1685504 byte file by 18 percent.

28.3.2 ARM (Thumb)
AngryBirds Classic:

Entropy = 7.058766 bits per byte.

Optimum compression would reduce the size
of this 3336888 byte file by 11 percent.

Thttp://www.fourmilab.ch/random/

233

http://www.fourmilab.ch/random/

28.3. INFORMATION ENTROPY OF AVERAGE CODE

CHAPTER 28. INCORRECTLY DISASSEMBLED CODE

28.3.3 ARM (ARM mode)
Linux Kernel 3.8.0:

Entropy = 6.036160 bits per byte.

Optimum compression would reduce the size
of this 6946037 byte file by 24 percent.

28.3.4 MIPS (little endian)

.text section of user32.d11 from Windows NT 4:

Entropy = 6.098227 bits per byte.

Optimum compression would reduce the size
of this 433152 byte file by 23 percent.

234

CHAPTER 29. OBFUSCATION

Chapter 29

Obfuscation

Obfuscation is an attempt to hide the code (or its meaning) from reverse engineer.

29.1 Text strings

As | revealed in (39) text strings may be utterly helpful. Programmers who aware of this, may try to hide them resulting
unableness to find the string in IDA or any hex editor.

Here is the simpliest method.

That is how the string may be constructed:

mov byte ptr [ebx], ’h’

mov byte ptr [ebx+1], ’e’
mov byte ptr [ebx+2], ’1°
mov byte ptr [ebx+3], ’1°
mov byte ptr [ebx+4], ‘o’
mov byte ptr [ebx+5], ’> °
mov byte ptr [ebx+6], ’w’
mov byte ptr [ebx+7], ‘0’
mov byte ptr [ebx+8], ’r’
mov byte ptr [ebx+9], °1°
mov byte ptr [ebx+10], ’d’

The string is also can be compared with another like:

mov ebx, offset username
cmp byte ptr [ebx], ’j’
jnz fail

cmp byte ptr [ebx+1], 20’
jnz fail

cmp byte ptr [ebx+2], ’h’
jnz fail

cmp byte ptr [ebx+3], ’n’
jnz fail

jz it_is_john

In both cases, it is impossible to find these strings straightforwardly in hex editor.

By the way, it is a chance to work with the strings when it is impossible to allocate it in data segment, for example, in PIC
orin shellcode.

Another method I once saw is to use sprintf () for constructing:

sprintf (buf, "Yslchshckhs", "hel",’1’,"o w",’0’,"rld");

The code looks weird, but as a simpliest anti-reversing measure it may be helpul.
Text strings may also be present in encrypted form, then all string usage will precede string decrypting routine.

235

29.2. EXECUTABLE CODE CHAPTER 29. OBFUSCATION
29.2 Executable code

29.2.1 |Inserting garbage

Executable code obfuscation mean inserting random garbage code between real one, which executes but not doing anything
useful.
Simple example is:

add eax, ebx
mul ecx
Listing 29.1: obfuscated code

xor esi, 011223344h ; garbage

add esi, eax ; garbage

add eax, ebx

mov edx, eax ; garbage

shl edx, 4 ; garbage

mul ecx

xor esi, ecx ; garbage

Here garbage code uses registers which are not used in the real code (ESI and EDX). However, intermediate results pro-
duced by the real code may be used by garbage instructions for extra mess—why not?
29.2.2 Replacing instructions to bloated equivalents

e MOV opl, op2can bereplaced by PUSH op2 / POP opl pair.

e JMP label can be replaced by PUSH label / RET pair. IDA will not show references to the label.

e CALL label canbereplaced by PUSH label_after CALL_instruction / PUSH label / RET triplet.

e PUSH op may also be replaced by SUB ESP, 4 (or 8) / MOV [ESP], op pair.

29.2.3 Always executed/never executed code

If the developer is sure that ESI at the point is always 0:

mov esi, 1

; some code not touching ESI
dec esi

; some code not touching ESI
cmp esi, O
jz real_code

; fake luggage
real_code:

Reverse engineer need some time to get into it.
This is also called opaque predicate.
Another example (and again, developer is sure that ESI—is always zero):

add eax, ebx ; real code
mul ecx ; real code
add eax, esi ; opaque predicate. XOR, AND or SHL, etc, can be here instead of ADD.

29.2.4 Making a lot of mess

instruction 1
instruction 2
instruction 3

Can be replaced to:

236

29.3. VIRTUAL MACHINE / PSEUDO-CODE CHAPTER 29. OBFUSCATION

begin: jmp insl_label
ins2_label: instruction 2

jmp ins3_label
ins3_label: instruction 3

jmp exit:
ins1_label: instruction 1

jmp ins2_label
exit:

29.2.5 Usingindirect pointers

dummy_datal db 100h dup (0)

messagel db ’hello world’,0

dummy_data?2 db 200h dup (0)

message2 db ’another message’,0

func proc
mov eax, offset dummy_datal ; PE or ELF reloc here
add eax, 100h
push eax

call dump_string

mov eax, offset dummy_data2 ; PE or ELF reloc here
add eax, 200h
push eax

call dump_string

func endp

IDA will show references only to dummy_datal and dummy_data2, but not to the text strings.
Global variables and even functions may be accessed like that.

29.3 Virtual machine / pseudo-code
Programmer may construct his/her own PL or ISA and interpreter for it. (Like pre-5.0 Visual Basic, .NET, Java machine). Re-

verse engineerwill have to spend some time to understand meaning and details of all ISA instructions. Probably, he/she will
also need to write a disassembler/decompiler of some sort.

29.4 Other thing to mention

My own (yet weak) attempt to patch Tiny C compiler to produce obfuscated code: http://blog.yurichev.com/node/58.
Using MOV instruction for really complicated things: [8].

237

http://blog.yurichev.com/node/58

CHAPTER 30. WINDOWS 16-BIT

Chapter 30

Windows 16-bit

16-bit Windows program are rare nowadays, but in the sense of retrocomputing, or dongle hacking (55), | sometimes digging
into these.

16-bit Windows versions were up to 3.11. 96/98/ME also support 16-bit code, as well as 32-bit versions of Windows NT line.
64-bit versions of Windows NT line are not support 16-bit executable code at all.

The code is resembling MS-DOS one.

Executable files has not MZ-type, nor PE-type, they are NE-type (so-called “new executable”).

All examples considered here were compiled by OpenWatcom 1.9 compiler, using these switches:
wcl.exe -i=C:/WATCOM/h/win/ -s -os -bt=windows -bcl=windows example.c

30.1 Example#1

#include <windows.h>

int PASCAL WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR 1pCmdLine,
int nCmdShow)

{
MessageBeep (MB_ICONEXCLAMATION) ;
return 0O;
};
WinMain proc near
push bp
mov bp, sp
mov ax, 30h ; ’0? ; MB_ICONEXCLAMATION constant
push ax
call MESSAGEBEEP
Xor ax, ax ; return O
pop bp
retn OAh
WinMain endp

Seems to be easy, so far.

30.2 Example #2

#include <windows.h>

int PASCAL WinMain(HINSTANCE hlInstance,
HINSTANCE hPrevInstance,
LPSTR 1pCmdLine,
int nCmdShow)

238

30.3. EXAMPLE #3

CHAPTER 30. WINDOWS 16-BIT

{
MessageBox (NULL, "hello, world", "caption", MB_YESNOCANCEL);
return O;
Jg
WinMain proc near
push bp
mov bp, sp
Xor ax, ax ; NULL
push ax
push ds
mov ax, offset aHelloWorld ; 0x18. "hello, world"
push ax
push ds
mov ax, offset aCaption ; 0x10. "caption"
push ax
mov ax, 3 ; MB_YESNOCANCEL
push ax
call MESSAGEBOX
Xor ax, ax ; return O
pop bp
retn OAh
WinMain endp

dseg02:0010 aCaption

dseg02:0018 aHelloWorld

db ’caption’,0
db ’hello, world’,O

Couple important things here: PASCAL calling convention dictates passing the last argument first (MB_YESNOCANCEL),
and the first argument—last (NULL). This convention also tells callee to restore stack pointer: hence RETN instruction has 0Ah
argument, meaning pointer should be shifted above by 10 bytes upon function exit.

Pointers are passed by pairs: a segment of data is first passed, then the pointer inside of segment. Here is only one
segment in this example, so DS is always pointing to data segment of executable.

30.3 Example #3

#include <windows.h>

int PASCAL WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR 1pCmdLine,
int nCmdShow)

int result=MessageBox (NULL, "hello, world", "caption", MB_YESNOCANCEL) ;

if (result==IDCANCEL)

MessageBox (NULL, "you pressed cancel", "caption", MB_0K);

else if (result==IDYES)

MessageBox (NULL, "you pressed yes", "caption", MB_OK) ;

else if (result==IDNO)

MessageBox (NULL, "you pressed no", "caption", MB_0K);

return O;

};

WinMain proc near

push
mov
xor
push

bp

bp, sp

ax, ax ; NULL
ax

239

30.4. EXAMPLE #4

. WINDOWS 16-BIT

loc_49:
push
push
mov
push
xor
push
call
loc_57:
xor
pop
retn
WinMain endp

CHAPTER 30
ds
ax, offset aHelloWorld ; "hello, world"
ax
ds
ax, offset aCaption ; "caption"
ax
ax, 3 ; MB_YESNOCANCEL
ax
MESSAGEBOX
ax, 2 ; IDCANCEL
short loc_2F
ax, ax
ax
ds
ax, offset aYouPressedCanc ; "you pressed cancel"

short loc_49

ax, 6 ; IDYES

short loc_3D

ax, ax

ax

ds

ax, offset aYouPressedYes ; '"you pressed yes"

short loc_49

ax, 7 ; IDNO

short loc_57

ax, ax

ax

ds

ax, offset aYouPressedNo ; '"you pressed no"
ax

ds

ax, offset aCaption ; "caption"
ax

ax, ax

ax

MESSAGEBOX

ax, ax

bp

OAh

Somewhat extended example from the previous section.

30.4 Example #4

#include <windows.h>

int PASCAL funcl (int a, int b, int c)

{

return axb+c;

};

long PASCAL func2 (long a, long b, long c)

{

240

30.4. EXAMPLE #4

CHAPTER 30. WINDOWS 16-BIT

};

return axb+c;

long PASCAL func3 (long a, long b, long c, int d)

{

};

return axb+c-d;

int PASCAL WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR 1pCmdLine,

int nCmdShow)

{
funcl (123, 456, 789);
func2 (600000, 700000, 800000) ;
func3 (600000, 700000, 800000, 123);
return 0;
s
funcl proc near
C = word ptr 4
b = word ptr 6
a = word ptr 8
push bp
mov bp, sp
mov ax, [bp+al
imul [bp+b]
add ax, [bp+c]
pop bp
retn 6
funcl endp
func2 proc near
arg_O = word ptr 4
arg_2 = word ptr 6
arg_4 = word ptr 8
arg_6 = word ptr OAh
arg_8 = word ptr OCh
arg_A = word ptr OEh
push bp
mov bp, sp
mov ax, [bp+arg_8]
mov dx, [bp+arg_A]
mov bx, [bp+targ_4]
mov cx, [bpt+arg_6]
call sub_B2 ; long 32-bit multiplication
add ax, [bptarg_0]
adc dx, [bptarg_2]
pop bp
retn 12
func2 endp
func3 proc near
arg_0 = word ptr 4
arg_2 = word ptr 6
arg_4 = word ptr 8

241

30.4. EXAMPLE #4

CHAPTER 30. WINDOWS 16-BIT

arg_6
arg_8
arg_A
arg_C

func3

WinMain

sub_B2 ; long 32-bit multiplication

; BX=high part, CX=low part

; AX=low part d, DX=high part d

; high part of 600000

low part of 600000
high part of 700000
low part of 700000
high part of 800000

low part of 800000

high part of 600000
low part of 600000
high part of 700000
low part of 700000
high part of 800000

low part of 800000

= word ptr OAh

= word ptr OCh

= word ptr OEh

= word ptr 10h

push bp

mov bp, sp

mov ax, [bp+arg_A]
mov dx, [bp+arg_C]
mov bx, [bptarg_6]
mov cx, [bptarg_8]
call

mov cx, [bptarg_2]
add cX, ax

mov bx, [bptarg_4]
adc bx, dx

mov ax, [bp+arg_0]
cwd

sub cxX, ax

mov ax, cx

sbb bx, dx

mov dx, bx

pop bp

retn 14

endp

proc near

push bp

mov bp, sp

mov ax, 123

push ax

mov ax, 456

push ax

mov ax, 789

push ax

call funcil

mov ax, 9 5
push ax

mov ax, 27COh ;
push ax

mov ax, OAh 5
push ax

mov ax, OAE60h ;
push ax

mov ax, OCh ;
push ax

mov ax, 3500h ;
push ax

call func?2

mov ax, 9 ;
push ax

mov ax, 27COh ;
push ax

mov ax, OAh 5
push ax

mov ax, OAE60h ;
push ax

mov ax, OCh 5
push ax

mov ax, 3500nh ;
push ax

242

30.5. EXAMPLE #5 CHAPTER 30. WINDOWS 16-BIT

mov ax, 7Bh ; 123
push ax
call func3
xor ax, ax ; return O
pop bp
retn OAh

WinMain endp

32-bit values (long data type mean 32-bit, while int is fixed on 16-bit data type) in 16-bit code (both MS-DOS and Win16)
are passed by pairs. It is just like 64-bit values are used in 32-bit environment (21).

sub_B2 here is a library function written by compiler developers, doing “long multiplication”, i.e., multiplies two 32-bit
values. Other compiler functions doing the same are listed here: 83, 82.

ADD/ADC instruction pairis used for addition of compound values: ADD may set/clear CF carry flag, ADC will use it. SUB/SBB
instruction pair is used for subtraction: SUB may set/clear CF flag, SBB will use it.

32-bit values are returned from functions in DX : AX register pair.

Constant also passed by pairs in WinMain () here.

int-typed 123 constant is first converted respecting its sign into 32-bit value using CWD instruction.

30.5 Example #5

#include <windows.h>

int PASCAL string_compare (char *sl, char *s2)

{
while (1)
{
if (*sl!=%s2)
return O;
if (*s1==0 || *s2==0)
return 1; // end of string
sl++;
S2++;
s
Irg
int PASCAL string_compare_far (char far *sl, char far *s2)
{
while (1)
{
if (*sl!=%s2)
return O;
if (*s1==0 || *s2==0)
return 1; // end of string
ild=rg
s2++;
i
};
void PASCAL remove_digits (char *s)
{
while (*s)
{
if (*s>=20° && *s<=’9?)
*s=7-7
s++;
I
i35

243

30.5. EXAMPLE #5

CHAPTER 30. WINDOWS 16-BIT

char str[]="hello 1234 world";

int PASCAL WinMain(HINSTANCE hInstance,

};

string_compare ("asd", "def");
string_compare_far ("asd", "def");

remove_digit

HINSTANCE hPrevInstance,

LPSTR 1pCmdLine,
int nCmdShow)

s (str);

MessageBox (NULL, str, "caption", MB_YESNOCANCEL) ;

return O;

string_compare proc

arg_0
arg_2

loc_12:

loc_22:

= WO

WO

push
mov
push
mov
mov

test
jz
jnz

pop
pop
retn

string_compare endp

near

rd ptr 4

rd ptr 6
bp
bp, sp
si

si, [bpt+arg_0]
bx, [bptarg_2]

al, [bx]

al, [si]
short loc_1C
ax, ax

short loc_2B

al, al
short loc_22
short loc_27

ax, 1
short loc_2B

bx
si
short loc_12

si

bp
4

string_compare_far proc near

arg_0
arg_2
arg_4

wo

wOo

wo

rd ptr 4
rd ptr 6
rd ptr 8

; CODE XREF:

; CODE XREF:

; CODE XREF:

; CODE XREF:
; string_compare+1Dj

244

string_compare+21j

string_compare+Ej

string_compare+16j

string_compare+12j

; CODE XREF: WinMain+18p

30.5. EXAMPLE #5

CHAPTER 30. WINDOWS 16-BIT

arg_6

loc_3A:

loc_bE:

string_compare_far endp

remove_digits

arg_O

loc_72:

= word ptr OAh
push bp
mov bp, sp
push si
mov si, [bpt+arg_0]
mov bx, [bptarg_4]
; CODE XREF:
mov es, [bptarg_6]
mov al, es:[bx]
mov es, [bptarg_2]
cmp al, es:[si]
jz short loc_4C
xor ax, ax
jmp short loc_67
; CODE XREF:
mov es, [bptarg_6]
cmp byte ptr es:[bx], 0
jz short loc_5E
mov es, [bptarg_2]
cmp byte ptr es:[si], O
jnz short loc_63
; CODE XREF:
mov ax, 1
jmp short loc_67
; CODE XREF
inc bx
inc si
jmp short loc_3A
; CODE XREF:
pop si
pop bp
retn 8
proc near ; CODE XREF:
= word ptr 4
push bp
mov bp, sp
mov bx, [bpt+arg_0]
; CODE XREF:
mov al, [bx]
test al, al
jz short loc_86
cmp al, 30h ; ’0°
jb short loc_83
cmp al, 3% ; ’9?
ja short loc_83
mov byte ptr [bx], 2Dh ; ’-’

245

string_compare_far+35j

string_compare_far+16j

string_compare_far+23j

string_compare_far+1Aj

string_compare_far+31j

WinMain+1Fp

remove_digits+18j

30.5. EXAMPLE #5 CHAPTER 30. WINDOWS 16-BIT

loc_83: ; CODE XREF: remove_digits+Ej
; remove_digits+12j
inc bx
jmp short loc_72
loc_86: ; CODE XREF: remove_digits+Aj
pop bp
retn 2

remove_digits endp

WinMain proc near ; CODE XREF: start+EDp
push bp
mov bp, sp
mov ax, offset aAsd ; "asd"
push ax
mov ax, offset aDef ; "def"
push ax
call string_compare
push ds
mov ax, offset aAsd ; "asd"
push ax
push ds
mov ax, offset aDef ; "def"
push ax
call string_compare_far
mov ax, offset aHello1234World ; "hello 1234 world"
push ax
call remove_digits
xor ax, ax
push ax
push ds
mov ax, offset aHello1234World ; "hello 1234 world"
push ax
push ds
mov ax, offset aCaption ; "caption"
push ax
mov ax, 3 ; MB_YESNOCANCEL
push ax
call MESSAGEBOX
xor ax, ax
pop bp
retn OAh
WinMain endp

Here we see a difference between so-called “near” pointers and “far” pointers: another weird artefact of segmented mem-
ory of 16-bit 8086.

Read more about it: 66.

“near” pointers are those which points within current data segment. Hence, string_compare () function takes only two
16-bit pointers, and accesses data as it is located in the segment DS pointing to (mov al, [bx] instruction actually works
likemov al, ds:[bx]—DS isimplicitly used here).

“far” pointers are those which may point to data in another segment memory. Hence string_compare_far () takes
16-bit pair as a pointer, loads high part of it to ES segment register and accessing data through it (mov al, es:[bx]). “far”
pointers are also used in my MessageBox () win16 example: 30.2. Indeed, Windows kernel is not aware which data segment
to use when accessing text strings, so it need more complete information.

The reason for this distinction is that compact program may use just one 64kb data segment, so it doesn’t need to pass
high part of the address, which is always the same. Bigger program may use several 64kb data segments, so it needs to
specify each time, in which segment data is located.

The same story for code segments. Compact program may have all executable code within one 64kb-segment, then all
functions will be called in it using CALL NEAR instruction, and code flow will be returned using RETN. But if there are several

246

30.6. EXAMPLE #6 CHAPTER 30. WINDOWS 16-BIT
code segments, then the address of the function will be specified by pair, it will be called using CALL FAR instruction, and
the code flow will be returned using RETF.

This is what to be set in compiler by specifying “memory model”.

Compilers targeting MS-DOS and Win16 has specific libraries for each memory model: they were differ by pointer types
for code and data.

30.6 Example #6

#include <windows.h>
#include <time.h>
#include <stdio.h>

char strbuf[256];

int PASCAL WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR 1pCmdLine,
int nCmdShow)

{
struct tm *t;
time_t unix_time;
unix_time=time (NULL) ;
t=localtime (&unix_time);
sprintf (strbuf, "%04d-%02d-%02d %02d:%02d:%02d", t->tm_year+1900, t->tm_mon, t->tm_mday,
t->tm_hour, t->tm_min, t->tm_sec);
MessageBox (NULL, strbuf, "caption", MB_OK) ;
return 0O;
}s
WinMain proc near
var_4 = word ptr -4
var_2 = word ptr -2
push bp
mov bp, sp
push ax
push ax
xor ax, ax
call time_
mov [bpt+var_4], ax ; low part of UNIX time
mov [bp+var_2], dx ; high part of UNIX time
lea ax, [bpt+var_4] ; take a pointer of high part
call localtime_
mov bx, ax ; t
push word ptr [bx] ; second
push word ptr [bx+2] ; minute

push word ptr [bx+4] ; hour
push word ptr [bx+6] ; day
push word ptr [bx+8] ; month

mov ax, [bx+0Ah] ; year

add ax, 1900

push ax

mov ax, offset a04d02d02d02d02 ; "%04d-%02d-%02d %02d:%02d:%02d4"

247

30.6. EXAMPLE #6 CHAPTER 30. WINDOWS 16-BIT

push ax
mov ax, offset strbuf
push ax
call sprintf_
add sp, 10h
Xor ax, ax ; NULL
push ax
push ds
mov ax, offset strbuf
push ax
push ds
mov ax, offset aCaption ; "caption"
push ax
Xor ax, ax ; MB_OK
push ax
call MESSAGEBOX
Xor ax, ax
mov sp, bp
pop bp
retn OAh
WinMain endp

UNIX time is 32-bit value, so it is returned in DX : AX register pair and stored into two local 16-bit variables. Then a pointer
to the pair is passed to localtime () function. The localtime () function has struct tm allocated somewhere in guts of
the C library, so only pointer to it is returned. By the way, this is also means that the function cannot be called again until its
results are used.

For the time () and localtime () functions, a Watcom calling convention is used here: first four arguments are passed
in AX, DX, BX and CX, registers, all the rest arguments are via stack. Functions used this convention are also marked by under-
score at the end of name.

sprintf () does not use PASCAL calling convention, nor Watcom one, so the arguments are passed in usual cdecl way
(22).

30.6.1 Global variables

This is the same example, but now these variables are global:

#include <windows.h>
#include <time.h>
#include <stdio.h>

char strbuf[256];
struct tm *t;
time_t unix_time;

int PASCAL WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR 1pCmdLine,
int nCmdShow)

{
unix_time=time (NULL) ;
t=localtime (&unix_time);
sprintf (strbuf, "%04d-7%02d-%02d %02d:%02d:%02d", t->tm_year+1900, t->tm_mon, t->tm_mday,
t->tm_hour, t->tm_min, t->tm_sec);
MessageBox (NULL, strbuf, "caption", MB_OK);
return 0;
};

248

30.6. EXAMPLE #6

CHAPTER 30. WINDOWS 16-BIT

unix_time_low dw O
unix_time_high dw O

t dw O
WinMain proc near
push bp
mov bp, sp
xor ax, ax
call time_
mov unix_time_low, ax
mov unix_time_high, dx
mov ax, offset unix_time_low
call localtime_
mov bx, ax
mov t, ax ; will not be used in future...
push word ptr [bx] ; seconds
push word ptr [bx+2] ; minutes
push word ptr [bx+4] ; hour
push word ptr [bx+6] ; day
push word ptr [bx+8] ; month
mov ax, [bx+0Ah] ; year
add ax, 1900
push ax
mov ax, offset a04d02d02d02d02 ; "%04d-%02d-%02d %02d:%02d:%024"
push ax
mov ax, offset strbuf
push ax
call sprintf_
add sp, 10h
Xor ax, ax 5 NULL
push ax
push ds
mov ax, offset strbuf
push ax
push ds
mov ax, offset aCaption ; "caption"
push ax
Xor ax, ax ; MB_OK
push ax
call MESSAGEBOX
xor ax, ax ; return O
pop bp
retn OAh
WinMain endp

t will not be used, but compiler emitted the code which stores the value. Because it is not sure, maybe that value will be

eventually used somewhere.

249

Part i

C++

250

CHAPTER 31. CLASSES

Chapter 31

Classes

31.1 Simple example

Internally, C++ classes representation is almost the same as structures representation.
Let’s try an example with two variables, two constructors and one method:

#include <stdio.h>

class c
{
private:
int vi;
int v2;
public:
c() // default ctor
{
v1=667;
v2=999;
};

c(int a, int b) // ctor
{

vi=a;

v2=b;
}s

void dump()
{
printf ("%d; %d\n", vi, v2);
Irg
55

int main()

{
class c cl;
class c c2(5,6);

cl.dump();
c2.dump() ;

return O0;

};

31.1.1 MSVC—x86

Here is how main () function looks like translated into assembly language:

251

31.1. SIMPLE EXAMPLE CHAPTER 31. CLASSES
Listing 31.1: MSVC

_c2$ = -16 ; size = 8
_cl$ = -8 ; size = 8
_main PROC
push ebp
mov ebp, esp
sub esp, 16 ; 00000010H
lea ecx, DWORD PTR _c1$[ebp]
call 7?70cQQCQAEQXZ ; Cci:cC
push 6
push 5
lea ecx, DWORD PTR _c2$[ebp]
call ?70cQ@QAEQHHQZ ; ci:cC
lea ecx, DWORD PTR _c1$[ebp]
call 7dump@c@QQAEXXZ ; c::dump
lea ecx, DWORD PTR _c2$[ebp]
call 7dump@c@QQAEXXZ ; C::dump
xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP

So what’s going on. For each object (instance of class c) 8 bytes allocated, that is exactly size of 2 variables storage.

For c1 a default argumentless constructor 770c@@QAEQXZ is called. For ¢2 another constructor ??70c@@QAEQGHHQZ is called
and two numbers are passed as arguments.

A pointer to object (this in C++ terminology) is passed in the ECX register. This is called thiscall (31.1.1) —a pointer to object
passing method.

MSVC doing it using the ECX register. Needless to say, it is not a standardized method, other compilers could do it differ-
ently, e.g., via first function argument (like GCC).

Why these functions has so odd names? That’s name mangling.

C++ class may contain several methods sharing the same name but having different arguments —that is polymorphism.
And of course, different classes may own methods sharing the same name.

Name mangling enable us to encode class name + method name + all method argument types in one ASCII-string, which
is to be used as internal function name. That’s all because neither linker, nor DLL OS loader (mangled names may be among
DLL exports as well) knows nothing about C++ or OOP".

dump () function called two times after.

Now let’s see constructors’ code:

Listing 31.2: MSVC

_this$ = -4 ; size = 4
?70c@QOQRAEQXZ PROC ; c::c, COMDAT
; _this$ = ecx

push ebp

mov ebp, esp

push ecx

mov DWORD PTR _this$[ebp], ecx

mov eax, DWORD PTR _this$[ebp]

mov DWORD PTR [eax], 667 ; 0000029bH
mov ecx, DWORD PTR _this$[ebp]

mov DWORD PTR [ecx+4], 999 ; 000003e7H
mov eax, DWORD PTR _this$[ebp]

mov esp, ebp

pop ebp

ret 0
??70c@OQAEQXZ ENDP ; ci:icC
_this$ = -4 ; size = 4
_a$ =8 ; size = 4

'Object-Oriented Programming

252

31.1. SIMPLE EXAMPLE CHAPTER 31. CLASSES

_b$ = 12 ; size = 4
?70c@Q@QAEC@HHOZ PROC ; c::c, COMDAT
; _this$ = ecx

push ebp

mov ebp, esp

push ecx

mov DWORD PTR _this$[ebpl, ecx
mov eax, DWORD PTR _this$[ebp]
mov ecx, DWORD PTR _a$[ebp]
mov DWORD PTR [eax], ecx

mov edx, DWORD PTR _this$[ebp]
mov eax, DWORD PTR _b$[ebp]
mov DWORD PTR [edx+4], eax
mov eax, DWORD PTR _this$[ebp]

mov esp, ebp
pop ebp
ret 8
?770c@@QAE@HHQ@Z ENDP 5 ©338

Constructors are just functions, they use pointer to structure in the ECX, moving the pointer into own local variable, how-
ever, it is not necessary.

From the C++ standard [16, 12.1] we know that constructors should not return any values. In fact, internally, constructors
are returns pointer to the newly created object, i.e., this.

Now dump () method:

Listing 31.3: MSVC

_this$ = -4 ; size = 4
?7dump@c@@QAEXXZ PROC ; c::dump, COMDAT
; _this$ = ecx

push ebp

mov ebp, esp

push ecx

mov DWORD PTR _this$[ebp]l, ecx

mov eax, DWORD PTR _this$[ebp]

mov ecx, DWORD PTR [eax+4]

push ecx

mov edx, DWORD PTR _this$[ebp]

mov eax, DWORD PTR [edx]

push eax

push OFFSET ?7_CQ_07NJBDCIECQ@?$CFA?$DL757$CFA767$AAQ
call _printf

add esp, 12 ; 0000000cH
mov esp, ebp
pop ebp
ret 0
?7dump@c@Q@QAEXXZ ENDP ; c::dump

Simple enough: dump () taking pointer to the structure containing two int’s in the ECX, takes two values from it and passing
itinto printf ().
The code is much shorter if compiled with optimization (/0x):

Listing 31.4: MSVC

?70c@QQRAEQXZ PROC ; c::c, COMDAT
; _this$ = ecx
mov eax, ecx
mov DWORD PTR [eax], 667 ; 0000029bH
mov DWORD PTR [eax+4], 999 ; 000003e7H
ret 0
7?70cQQQAE@XZ ENDP ; Ci:cC
_a$ =8 ; size = 4
_b$ = 12 ; size = 4

253

31.1. SIMPLE EXAMPLE CHAPTER 31. CLASSES
?70c@Q@QAEQHHQ@Z PROC ; c::c, COMDAT
; _this$ = ecx

mov edx, DWORD PTR _b$[esp-4]

mov eax, ecx

mov ecx, DWORD PTR _a$[esp-4]

mov DWORD PTR [eax], ecx

mov DWORD PTR [eax+4], edx

ret 8
?70c@OQAEQHHQZ ENDP 3 ©33@
?dump@c@@QAEXXZ PROC ; c::dump, COMDAT

; _this$ = ecx
mov eax, DWORD PTR [ecx+4]
mov ecx, DWORD PTR [ecx]
push eax
push ecx
push OFFSET ?7_CQ_07NJBDCIECQ@?$CFA?$DL757$CFA767$AAQ
call _printf

add esp, 12 ; 0000000cH
ret 0
?dump@c@@QAEXXZ ENDP 5 c::dump

That’s all. One more thing to say is the stack pointer was not corrected with add esp, X after constructor called. Withal,
constructor has ret 8instead of the RET at the end.

This is all because here used thiscall (31.1.1) calling convention, the method of passing values through the stack, which
is, together with stdcall (2?) method, offers to correct stack to callee rather then to caller. ret xinstruction adding X to the
value in the ESP, then passes control to the caller function.

See also section about calling conventions (2?).

It is also should be noted the compiler deciding when to call constructor and destructor —but that is we already know
from C++ language basics.

31.1.2 MSVC—x86-64

As we already know, first 4 function arguments in x86-64 are passed in RCX, RDX, R8, RO registers, all the rest—via stack.
Nevertheless, this pointer to the object is passed in RCX, first method argument—in EDX, etc. We can see thisin the c(int a,
int b) method internals:

Listing 31.5: MSVC 2012 x64 /Ox

; void dump()

?7dump@c@@QEAAXXZ PROC ; c::dump
mov r8d, DWORD PTR [rcx+4]
mov edx, DWORD PTR [rcx]
lea rcx, OFFSET FLAT:?7_C@_O7NJBDCIECQ@?$CFA7$DL757$CFA767$AAQ ; *%d; %d’
jmp printf
?dump@c@@QEAAXXZ ENDP ; c::dump

; c(int a, int b)

?70c@OQEAAQGHH@Z PROC ; ci:cC
mov DWORD PTR [rcx], edx ; 1st argument: a
mov DWORD PTR [rcx+4], r8d ; 2nd argument: b
mov rax, rcx
ret 0

??70c@QQ@QEAAQHHQ@Z ENDP ; Ci:C

; default ctor

770c@Q@QEAAQXZ PROC ; C::C
mov DWORD PTR [rcx], 667 ; 0000029bH
mov DWORD PTR [rcx+4], 999 ; 000003e7H

254

31.1. SIMPLE EXAMPLE

CHAPTER 31. CLASSES

mov
ret

rax, rcx

0

??70c@OQEAAQXZ ENDP

3 ©33@

int data type is still 32-bit in x64 2, so that is why 32-bit register’s parts are used here.
We also see JMP printf instead of RET in the dump () method, that hack we already saw earlier: 11.1.1.

31.1.3 GCC—x86

It is almost the same situation in GCC 4.4.1, with a few exceptions.

Listing 31.6: GCC 4.4.1

main

var_20
var_1C
var_18
var_10
var_8

main

public main

proc near ; DATA XREF:
= dword ptr -20h

= dword ptr -1Ch

= dword ptr -18h

= dword ptr -10h

= dword ptr -8

push ebp

mov ebp, esp

and esp, OFFFFFFFOh

sub esp, 20h

lea eax, [esp+20h+var_8]
mov [esp+20h+var_20], eax
call _ZN1cClEv

mov [esp+20h+var_18], 6
mov [esp+20h+var_1C], 5
lea eax, [esp+20h+var_10]
mov [esp+20h+var_20], eax
call _ZN1cClEii

lea eax, [esp+20h+var_8]
mov [esp+20h+var_20], eax
call _ZN1c4dumpEv

lea eax, [esp+20h+var_10]
mov [esp+20h+var_20], eax
call _ZN1c4dumpEv

mov eax, O

leave

retn

endp

_start+17

Here we see another name mangling style, specific to GNU 2 It is also can be noted the pointer to object is passed as first

function argument —transparently from programmer, of course.

First constructor:

_ZN1cC1Ev

arg_0

public _ZN1cClEv ; weak

proc near ; CODE XREF: main+10
= dword ptr 8

push ebp

mov ebp, esp

mov eax, [ebp+arg_0]

mov dword ptr [eax], 667

mov eax, [ebptarg_0]

mov dword ptr [eax+4], 999

pop ebp

2Apparently, for easier porting of C/C++ 32-bit code to x64
30ne more document about different compilers name mangling types: [12] standards.

255

31.1. SIMPLE EXAMPLE

CHAPTER 31. CLASSES

retn
_ZN1cCl1Ev endp

What it does is just writes two numbers using pointer passed in first (and single) argument.

Second constructor:

public _ZN1cC1lEii

_ZN1cC1Eii proc near

arg_0 = dword ptr 8

arg_4 = dword ptr OCh

arg_8 = dword ptr 10h
push ebp
mov ebp, esp
mov eax, [ebptarg_0]
mov edx, [ebptarg_4]
mov [eax], edx
mov eax, [ebp+arg_0]
mov edx, [ebptarg_8]
mov [eax+4], edx
pop ebp
retn

_ZN1cC1Eii endp

This is a function, analog of which could be looks like:

void ZN1cClEii (int *obj, int a, int b)

{
*obj=a;
*(obj+1)=b;

s

...and that is completely predictable.

Now dump () function:

public _

ZN1c4dumpEv

_ZN1c4dumpEv proc near

dword
dword
dword
dword

var_18
var_14
var_10
arg_O

push
mov
sub
mov
mov
mov
mov
mov
mov
mov
call
leave
retn
_ZN1c4dumpEv endp

ptr -18h
ptr -14h
ptr -10h
ptr 8
ebp

ebp, esp
esp, 18h

eax, [ebp+arg_ 0]

edx, [eax+4]

eax, [ebp+arg_0]

eax, [eax]

[esp+t18h+var_10], edx

[esp+18h+var_14], eax

[esp+18h+var_18], offset aDD ; "%d; %d\n"
_printf

This function in its internal representation has sole argument, used as pointer to the object (this).
Thus, if to base our judgment on these simple examples, the difference between MSVC and GCC is style of function names
encoding (name mangling) and passing pointer to object (via the ECX register or via the first argument).

256

31.2. CLASS INHERITANCE CHAPTER 31. CLASSES
31.1.4 GCC—x86-64

The first 6 arguments, as we already know, are passed in the RDI, RSI, RDX, RCX, R8, R9 [21] registers, and the pointer to this
via first one (RDI) and that is what we see here. int data type is also 32-bit here. JMP instead of RET hack is also used here.

Listing 31.7: GCC 4.4.6 x64

; default ctor

_ZN1cC2Ev:
mov DWORD PTR [rdil, 667
mov DWORD PTR [rdi+4], 999
ret

; c(int a, int b)

_ZN1cC2Eii:
mov DWORD PTR [rdil, esi
mov DWORD PTR [rdi+4], edx
ret

; dump ()

_ZN1c4dumpEv:
mov edx, DWORD PTR [rdi+4]
mov esi, DWORD PTR [rdi]
xor eax, eax
mov edi, OFFSET FLAT:.LCO ; "%d; %d\n"
Jjmp printf

31.2 Classinheritance

It can be said about inherited classes that it is simple structure we already considered, but extending in inherited classes.
Let’s take simple example:

#include <stdio.h>

class object
{
public:
int color;
object() { };
object (int color) { this->color=color; };
void print_color() { printf ("color=}d\n", color); I};
Ig

class box : public object
{
private:
int width, height, depth;
public:
box(int color, int width, int height, int depth)
{
this->color=color;
this->width=width;
this->height=height;
this->depth=depth;
};
void dump()
{
printf ("this is box. color=Yd, width=Jd, height=}d, depth=/d\n", color, width,
height, depth);

257

31.2. CLASS INHERITANCE CHAPTER 31. CLASSES

};
};
class sphere : public object
{
private:
int radius;
public:
sphere(int color, int radius)
{
this->color=color;
this->radius=radius;
};
void dump()
{
printf ("this is sphere. color=Jd, radius=%d\n", color, radius);
};
};
int main()
{
box b(1, 10, 20, 30);
sphere s(2, 40);
b.print_color();
s.print_color();
b.dump() ;
s.dump() ;
return O;
Ig

Let’s investigate generated code of the dump () functions/methods and also object: :print_color (), let’s see memory
layout for structures-objects (as of 32-bit code).
So, dump () methods for several classes, generated by MSVC 2008 with /0x and /0b0 options *

Listing 31.8: Optimizing MSVC 2008 /Ob0

?7_C@_09GCEDOLPAQcolor?$DN7$CFA?67$AA@ DB ’color=/d’, OaH, OOH ; ‘string’

?print_color@object@QQAEXXZ PROC ; object::print_color, COMDAT
; _this$ = ecx

mov eax, DWORD PTR [ecx]

push eax

; ’color=%d’, OaH, OOH
push OFFSET ?77_C@_09GCEDOLPA@color?$DN?$CFA767$AAQ

call _printf

add esp, 8

ret 0
?print_color@object@QQAEXXZ ENDP ; object::print_color

Listing 31.9: Optimizing MSVC 2008 /Ob0

7dump@box@QQAEXXZ PROC ; box::dump, COMDAT
; _this$ = ecx

mov eax, DWORD PTR [ecx+12]

mov edx, DWORD PTR [ecx+8]

push eax

mov eax, DWORD PTR [ecx+4]

mov ecx, DWORD PTR [ecx]

4/0b0 options means inline expansion disabling since function inlining right into the code where the function is called will make our experiment harder

258

31.2. CLASS INHERITANCE

push
push
push

; ’this is box.

edx
eax
ecx

color=Yd, width=%d, height=Yd, depth=Yd’, OaH, OOH ; ‘string’

push OFFSET 77_C@_ODG@NCNGAADL@this?5is?5box?475c0lor?$DN?$CFA7075width?$DN?$CFA70@
call _printf
add esp, 20 ; 00000014H
ret 0
?dump@box@QQAEXXZ ENDP ; box::dump
Listing 31.10: Optimizing MSVC 2008 /Ob0
?dump@sphere@QQAEXXZ PROC ; sphere::dump, COMDAT
; _this$ = ecx
mov eax, DWORD PTR [ecx+4]
mov ecx, DWORD PTR [ecx]
push eax
push ecx
; ’this is sphere. color=Jd, radius=%d’, OaH, OOH
push OFFSET ?77_C@_OCFQEFEDJLDC@this?5is?bsphere?475color?$DN7?$CFd?075radius@
call _printf
add esp, 12 ; 0000000cH
ret 0
?dump@sphereQ@QQAEXXZ ENDP ; sphere: :dump

So, here is memory layout:
(base class object)

offset | description
+0x0 int color

(inherited classes)
box:

sphere:

offset | description
+0x0 int color
+0x4 int width
+0x8 int height
+0xC | intdepth

offset | description
+0x0 int color
+0x4 int radius

Let’s seemain () function body:

Listing 31.11: Optimizing MSVC 2008 /Ob0

PUBLIC
_TEXT
_s$ =
_b$ =
_main

_main
SEGMENT

-24

-16
PROC
sub
push
push
push
push
lea
call

; size = 8
; size = 16
esp, 24 ; 00000018H
30 ; 0000001eH
20 ; 00000014H
10 ; 0000000aH
1
ecx, DWORD PTR _b$[esp+40]
?70box@@QAE@GHHHHGZ ; box::box

259

CHAPTER 31. CLASSES

31.3. ENCAPSULATION CHAPTER 31. CLASSES

push 40 ; 00000028H
push 2
lea ecx, DWORD PTR _s$[esp+32]
call ??70sphere@@QAECHHQZ ; sphere: :sphere
lea ecx, DWORD PTR _b$[esp+24]
call ?print_color@object@QQAEXXZ ; object::print_color
lea ecx, DWORD PTR _s$[esp+24]
call ?print_color@object@@RAEXXZ ; object::print_color
lea ecx, DWORD PTR _b$[esp+24]
call ?dump@boxQ@QQAEXXZ ; box::dump
lea ecx, DWORD PTR _s$[esp+24]
call ?dump@sphere@@NAEXXZ ; sphere: :dump
xor eax, eax
add esp, 24 ; 00000018H
ret 0
_main ENDP

Inherited classes must always add their fields after base classes’ fields, so to make possible for base class methods to
work with their fields.

When object: :print_color () method is called, a pointers to both box object and sphere object are passed as this, it
can work with these objects easily since color field in these objects is always at the pinned address (at +0x0 offset).

Itcan besaid, object: :print_color () method is agnosticin relation to input object type as long as fields will be pinned
at the same addresses, and this condition is always true.

And if you create inherited class of the e.g. box class, compiler will add new fields after depth field, leaving box class fields
at the pinned addresses.

Thus, box: : dump () method will work fine accessing color/width/height/depths fields always pinned on known addresses.

GCC-generated code is almost likewise, with the sole exception of this pointer passing (as it was described above, it
passing as first argument instead of the ECX registers.

31.3 Encapsulation

Encapsulation is data hiding in the private sections of class, e.g. to allow access to them only from this class methods, but no
more than.

However, are there any marks in code about the fact that some field is private and some other —not?

No, there are no such marks.

Let’s try simple example:

#include <stdio.h>

class box
{
private:
int color, width, height, depth;
public:
box(int color, int width, int height, int depth)
{
this->color=color;
this->width=width;
this->height=height;
this->depth=depth;
};
void dump()
{

printf ("this is box. color=Yd, width=Jd, height=}d, depth=/d\n", color, width,
height, depth);

};
T
Let’s compile it again in MSVC 2008 with /0x and /0bO0 options and let’s see box: : dump () method code:
?dump@box@@QAEXXZ PROC ; box::dump, COMDAT

; _this$ = ecx

260

31.3. ENCAPSULATION CHAPTER 31. CLASSES

mov eax, DWORD PTR [ecx+12]
mov edx, DWORD PTR [ecx+8]
push eax

mov eax, DWORD PTR [ecx+4]
mov ecx, DWORD PTR [ecx]
push edx

push eax

push ecx

; ’this is box. color=Y}d, width=)d, height=/d, depth=/d’, OaH, OOH
push OFFSET ?77_C@_ODG@NCNGAADL@this?5is?5box?475c0lor?$DN?$CFA707?5width?$DN?$CFA70@

call _printf
add esp, 20 ; 00000014H
ret 0

?dump@box@@QAEXXZ ENDP ; box::dump

Here is a memory layout of the class:

offset | description
+0x0 int color
+0x4 int width
+0x8 int height
+0xC int depth

All fields are private and not allowed to access from any other functions, but, knowing this layout, can we create a code
modifying these fields?
So | added hack_oop_encapsulation() function, which, if has the body as follows, will not compile:

void hack_oop_encapsulation(class box * o)

{
o->width=1; // that code can’t be compiled: "error C2248: ’box::width’ : cannot access
private member declared in class ’box’"

};

Nevertheless, if to cast box type to pointer to int array, and if to modify array of the int-s we got, then we have success.

void hack_oop_encapsulation(class box * o)

{
unsigned int *ptr_to_object=reinterpret_cast<unsigned int*>(o0);
ptr_to_object[1]1=123;

s

This functions’ code is very simple —it can be said, the function taking pointer to array of the int-s on input and writing
123 to the second int:

7hack_oop_encapsulation@Q@YAXPAVbox@@Q@Z PROC ; hack_oop_encapsulation
mov eax, DWORD PTR _o$[esp-4]
mov DWORD PTR [eax+4], 123 ; 0000007bH
ret 0

?hack_oop_encapsulation@Q@YAXPAVbox@QQZ ENDP ; hack_oop_encapsulation

Let’s check, how it works:

int main()

' box b(1, 10, 20, 30);
b.dump() ;
hack_oop_encapsulation(&b);
b.dump() ;
return O;

};

261

31.4. MULTIPLE INHERITANCE CHAPTER 31. CLASSES
Let’s run:

this is box. color=1, width=10, height=20, depth=30
this is box. color=1, width=123, height=20, depth=30

We see, encapsulation is just class fields protection only on compiling stage. C++ compiler will not allow to generate a
code modifying protected fields straightforwardly, nevertheless, it is possible with the help of dirty hacks.

31.4 Multiple inheritance

Multiple inheritance is a class creation which inherits fields and methods from two or more classes.
Let’s write simple example again:

#include <stdio.h>

class box
{
public:
int width, height, depth;
box() { };
box(int width, int height, int depth)
{
this->width=width;
this->height=height;
this->depth=depth;
};
void dump()
{
printf ("this is box. width=%d, height=Yd, depth=}d\n", width, height, depth);
s
int get_volume()
{
return width * height * depth;
s
s
class solid_object
{
public:
int density;
solid_object() { };
solid_object(int density)
{
this->density=density;
s
int get_density()
{
return density;
};
void dump()
{
printf ("this is solid_object. density=/d\n", density);
};
s
class solid_box: box, solid_object
{
public:
solid_box (int width, int height, int depth, int density)
{

this->width=width;

262

31.4. MULTIPLE INHERITANCE CHAPTER 31. CLASSES
this->height=height;
this->depth=depth;
this->density=density;

s
void dump()
{
printf ("this is solid_box. width=%d, height=Yd, depth=}d, density=Y%d\n", width,
height, depth, density);
s
int get_weight() { return get_volume() * get_density(); };

int main()

box b(10, 20, 30);
solid_object so0(100);
solid_box sb(10, 20, 30, 3);

b.dump() ;
so.dump() ;
sb.dump() ;
printf ("%d\n", sb.get_weight());

return O;

};

Let’s compileitin MSVC 2008 with /0x and /0b0 options and let’s seebox: : dump (), solid_object: :dump() and solid_box: : dum
methods code:

Listing 31.12: Optimizing MSVC 2008 /Ob0

?dump@box@@QAEXXZ PROC ; box::dump, COMDAT
; _this$ = ecx

mov eax, DWORD PTR [ecx+8]

mov edx, DWORD PTR [ecx+4]

push eax

mov eax, DWORD PTR [ecx]

push edx

push eax

; ’this is box. width=%d, height=}d, depth=/d’, OaH, OOH
push OFFSET ?77_C@_OCM@DIKPHDFI@this?5is?5box?475width?$DN?$CFA?075height?$DN?$CFAQ

call _printf

add esp, 16 ; 00000010H

ret 0
?dump@box@QQAEXXZ ENDP ; box::dump

Listing 31.13: Optimizing MSVC 2008 /Ob0

?dump@solid_object@@QAEXXZ PROC ; solid_object::dump, COMDAT
; _this$ = ecx

mov eax, DWORD PTR [ecx]

push eax

; >this is solid_object. density=Y%d’, OaH
push OFFSET ?7_CQ_OCCQKICFJINLQ@this?5is?5solid_object?4?5density?$DN?$CFd@

call _printf
add esp, 8
ret 0
?dump@solid_object@Q@QAEXXZ ENDP ; solid_object: :dump

Listing 31.14: Optimizing MSVC 2008 /Ob0

?dump@solid_box@@QAEXXZ PROC ; solid_box: :dump, COMDAT
; _this$ = ecx

263

31.4. MULTIPLE INHERITANCE CHAPTER 31. CLASSES

mov eax, DWORD PTR [ecx+12]
mov edx, DWORD PTR [ecx+8]
push eax

mov eax, DWORD PTR [ecx+4]
mov ecx, DWORD PTR [ecx]
push edx

push eax

push ecx

; ’this is solid_box. width=%d, height=Yd, depth=}d, density=/d’, OaH
push OFFSET ?77_C@_ODO@HNCNIHNN@this?5is?5s0lid_box?475width?$DN?$CFA?075hei@

call _printf
add esp, 20 ; 00000014H
ret 0
?dump@solid_box@QQAEXXZ ENDP ; solid_box: :dump
So, the memory layout for all three classes is:
box class:
offset | description
+0x0 width
+0x4 height
+0x8 depth

solid_object class:

offset | description
+0x0 density

It can be said, solid_box class memory layout will be united:
solid_box class:

offset | description

+0x0 | width
+0x4 height
+0x8 | depth

+0xC | density

The code of the box: : get_volume () and solid_object: :get_density() methodsis trivial:

Listing 31.15: Optimizing MSVC 2008 /Ob0

?get_volume@box@@QAEHXZ PROC ; box::get_volume, COMDAT
; _this$ = ecx

mov eax, DWORD PTR [ecx+8]

imul eax, DWORD PTR [ecx+4]

imul eax, DWORD PTR [ecx]

ret 0

?get_volume@box@CNAEHXZ ENDP ; box::get_volume
Listing 31.16: Optimizing MSVC 2008 /Ob0

?get_density@solid_object@@QAEHXZ PROC ; solid_object::get_density, COMDAT
; _this$ = ecx

mov eax, DWORD PTR [ecx]

ret 0
?get_density@solid_object@Q@QAEHXZ ENDP ; solid_object::get_density

But the code of the solid_box: :get_weight () method is much more interesting:

Listing 31.17: Optimizing MSVC 2008 /Ob0

7get_weight@solid_boxQ@QQAEHXZ PROC ; solid_box::get_weight, COMDAT
; _this$ = ecx

push esi

mov esi, ecx

264

31.5. VIRTUAL METHODS

CHAPTER 31. CLASSES

push
lea
call
mov
mov
call
imul
pop
pop
ret

edi
ecx, DWORD PTR [esi+12]
?get_density@solid_object@QQAEHXZ

ecx, esi

edi, eax
7get_volume@box@QQAEHXZ
eax, edi

edi

esi

0

?get_weight@solid_box@QQAEHXZ ENDP

; solid_object::get_density

; box::get_volume

; solid_box::get_weight

get_weight () just calling two methods, but for get_volume () it just passing pointer to this, and for get _density() it
passing pointerto this shifted by 12 (or 0xC) bytes, and there, in the solid_box class memory layout, fields ofthe solid_object

class are beginning.

Thus,solid_object: :get_density() method will believeitis dealingwith usualsolid_object class,andbox: :get_volume ()
method will work with its three fields, believing this is usual object of the box class.

Thus, we can say, an object of a class, inheriting from several other classes, representing in memory united class, con-
taining all inherited fields. And each inherited method called with a pointer to corresponding structure’s part passed.

31.5 Virtual methods

Yet another simple example:

#include <stdio.h>

class object
{
public:

int color;
object() { };

object (int color) { this->color=color; };

virtual void dump()

printf ("this is box. color=Yd, width=Yd, height=%d, depth=)/d\n", color, width,

{
printf ("color=Yd\n", color);
};
Jrg
class box : public object
{
private:
int width, height, depth;
public:
box(int color, int width, int height, int depth)
{
this->color=color;
this->width=width;
this->height=height;
this->depth=depth;
};
void dump()
{
height, depth);
};
};

class sphere

{

private:

: public object

int radius;

265

31.5. VIRTUAL METHODS CHAPTER 31. CLASSES
public:
sphere(int color, int radius)

{

this->color=color;
this->radius=radius;
8
void dump()
{
printf ("this is sphere. color=Yd, radius=%d\n", color, radius);
};
};

int main()

{
box b(1, 10, 20, 30);
sphere s(2, 40);

object *ol=&b;
object *02=&s;

01->dump () ;
02->dump () ;
return 0;

};

Class object has virtual method dump (), being replaced in the box and sphere class-inheritors.

If in an environment, where it is not known what type has object, as in the main () function in example, a virtual method
dump () is called, somewhere, the information about its type must be stored, so to call relevant virtual method.

Let’s compile it in MSVC 2008 with /0x and /0bO0 options and let’s see main () function code:

_s$ = -32 ; size = 12
_b$ = -20 ; size = 20
_main PROC
sub esp, 32 ; 00000020H
push 30 ; 0000001eH
push 20 ; 00000014H
push 10 ; 0000000aH
push 1
lea ecx, DWORD PTR _b$[esp+48]
call 7?70boxQ@CQAE@GHHHHQ@Z ; box::box
push 40 ; 00000028H
push 2
lea ecx, DWORD PTR _s$[esp+40]
call ??70sphere@@QAEQHHQZ ; sphere: :sphere
mov eax, DWORD PTR _b$[esp+32]
mov edx, DWORD PTR [eax]
lea ecx, DWORD PTR _b$[esp+32]
call edx
mov eax, DWORD PTR _s$[esp+32]
mov edx, DWORD PTR [eax]
lea ecx, DWORD PTR _s$[esp+32]
call edx
xor eax, eax
add esp, 32 ; 00000020H
ret 0
_main ENDP

Pointer to the dump () function is taken somewhere from object. Where the address of new method would be written
there? Only somewhere in constructors: there is no other place since nothing more is called in the main () function. ®
Let’s see box class constructor’s code:

5About pointers to functions, read more in relevant section:(20)

266

31.5. VIRTUAL METHODS

CHAPTER 31. CLASSES

??_RO7AVbox@Q@Q@8 DD FLAT:?7_7type_infoQQ6BQ
DD 00H
DB > .7AVbox@@’, O0H

??7_R1A@70AQEAQ@box@@8 DD FLAT:7?7_RO7AVboxQQ@8

(0,-1,0,64)°
DD 01H
DD 00H
DD OffffffffH
DD OCH
DD 040H
DD FLAT:?7_R3box@@8

??_R2box0@@8 DD FLAT:?7_R1AQ70AQEAQ@boxQQ8
DD FLAT:??_R1A@70AQEAQobject@@8

?7_R3box@@8 DD O0OH

DD OOH
DD 02H
DD FLAT:?7_R2box@@8

?7_R4box@@6B@ DD OOH

DD OCH

DD 00H

DD FLAT:??_RO?AVbox@Q@8
DD FLAT:??7_R3box0@8

??_Tbox@@6B@ DD FLAT:??_R4box@Q@6BQ

DD FLAT: ?dump@box@QUAEXXZ
_color$ = 8
_width$ = 12
_height$ = 16
_depth$ = 20

7?70box@@QAE@HHHH@Z PROC
; _this$ = ecx

push esi

mov esi, ecx

call ?700bject@QQAEQCXZ

mov eax, DWORD PTR _color$[esp]
mov ecx, DWORD PTR _width$[esp]
mov edx, DWORD PTR _height$[esp]
mov DWORD PTR [esi+4], eax

mov eax, DWORD PTR _depth$[esp]
mov DWORD PTR [esi+16], eax

mov DWORD PTR [esi], OFFSET ?7_7box@@6B@
mov DWORD PTR [esi+8], ecx

mov DWORD PTR [esi+12], edx

mov eax, esi

pop esi

ret 16

?770box@QQAEQHHHHO@Z ENDP

; box ‘RTTI Type Descriptor’

; box::‘RTTI Base Class Descriptor at

; box::‘RTTI Base Class Array’

; box::‘RTTI Class Hierarchy Descriptor’

; box::‘RTTI Complete Object Locator’

; box::‘vftable’

; size = 4
; size = 4
; size = 4
; size = 4

; box::box, COMDAT

; object::object

; 00000010H
; box::box

Here we see slightly different memory layout: the first field is a pointer to some table box: : ‘vftable’ (name was set by

MSVC compiler).

Inthistable weseealinkto thetablenamedbox: : ‘RTTI Complete Object Locator’andalsoalinktothebox: :dump ()
method. So this is named virtual methods table and RTTI®. Table of virtual methods contain addresses of methods and RTTI
table contain information about types. By the way, RTTI-tables are the tables enumerated while calling to dynamic_cast
and typeid in C++. You can also see here class name as plain text string. Thus, a method of base object class may call vir-

5Run-time type information

31.5. VIRTUAL METHODS CHAPTER 31. CLASSES

tual method object::dump(), which in turn, will call a method of inherited class since that information is present right in the
object’s structure.

Some additional CPU time needed for enumerating these tables and finding right virtual method address, thus virtual
methods are widely considered as slightly slower than common methods.

In GCC-generated code RTTI-tables constructed slightly differently.

268

CHAPTER 32. OSTREAM

Chapter 32

ostream

Let’s start again with a “hello world” example, but now will use ostream:

#include <iostream>

int main()

{
std::cout << "Hello, world!\n";

3

Almost any C++ textbook tells that « operation can be replaced (overloaded) for other types. That is what is done in
ostream. We see that operator« is called for ostream:

Listing 32.1: MSVC 2012 (reduced listing)

$SG37112 DB ’Hello, world!’, OaH, OOH

_main PROC
push OFFSET $SG37112
push OFFSET 7cout@std@@3V?$basic_ostream@DU?$char_traits@D@std@@@1@A ; std::cout
call 77$76U7$char_traits@D@std@@@std@@YAAAV?$basic_ostream@DU?
$char_traits@D@std@O@OQ@AAV10@PBDQZ ; std::operator<<<std::char_traits<char> >

add esp, 8
xXor eax, eax
ret 0

_main ENDP

Let’s modify the example:

#include <iostream>

int main()

{

std::cout << "Hello, " << "world!\n";

}

And again, from many C++ textbooks we know that the result of each operator« in ostream is forwarded to the next one.
Indeed:

Listing 32.2: MSVC 2012

$3SG37112 DB ’world!’, OaH, OOH
$3SG37113 DB ’Hello, ’, OOH
_main PROC

push OFFSET $SG37113 ; °’Hello, °’

push OFFSET ?cout@std@@3V?$basic_ostream@DU?$char_traits@DO@std@@@1QA ; std::cout

call ?77$76U?$char_traits@D@std@@@std@@YAAAV?$basic_ostream@DU?
$char_traits@DOstd@@@O@AAV10@PBDAZ ; std::operator<<<std::char_traits<char> >

add esp, 8

269

CHAPTER 32. OSTREAM

push OFFSET $SG37112 ; ’world!’

push eax ; result of previous function

call ?77$76U7$char_traits@DOstd@@@std@@YAAAV?$basic_ostream@DU?
$char_traits@DOstd@@@O@AAV10@PBDAZ ; std::operator<<<std::char_traits<char> >

add esp, 8
Xor eax, eax
ret 0

_main ENDP

If to replace operator« by f(), that code can be rewritten as:

f(f(std::cout, "Hello, "), "world!")

GCC generates almost the same code as MSVC.

270

CHAPTER 33. REFERENCES

Chapter 33

References

In C++, references are pointers (9) as well, but they are called safe, because it is harder to make a mistake while dealing

with them [16, 8.3.2]. For example, reference must always be pointing to the object of corresponding type and cannot be

NULL [6, 8.6]. Even more than that, reference cannot be changed, it isimpossible to point it to another object (reseat) [6, 8.5].
If we will try to change the pointers example (9) to use references instead of pointers:

void f2 (int x, int y, int & sum, int & product)

{

SuUm=x+y ;

product=xx*y;
i

Then we’ll figure out the compiled code is just the same as in pointers example (9):
Listing 33.1: Optimizing MSVC 2010

_x$ =8 ; size = 4
_y$ = 12 ; size = 4
_sum$ = 16 ; size = 4
_product$ = 20 ; size = 4
7£f200YAXHHAAHOQ@Z PROC ; £2

mov ecx, DWORD PTR _y$[esp-4]

mov eax, DWORD PTR _x$[esp-4]

lea edx, DWORD PTR [eax+ecx]

imul eax, ecx

mov ecx, DWORD PTR _product$[esp-4]

push esi

mov esi, DWORD PTR _sum$[esp]

mov DWORD PTR [esi], edx

mov DWORD PTR [ecx], eax

pop esi

ret 0
7£f20QYAXHHAAHOQ@Z ENDP ; £2

(A reason why C++ functions has such strange names, is described here: 31.1.1.)

271

CHAPTER 34. STL

Chapter 34

STL

N.B.: all examples here were checked only in 32-bit environment. x64 wasn’t checked.

34.1 std::string

34.1.1 Internals

Many string libraries ([37, 2.2]) implements structure containing pointer to the buffer containing string, a variable always
containing current string length (that is very convenient for many functions: [37, 2.2.1]) and a variable containing current
buffer size. Astring in buffer is usually terminated with zero: in order to be able to pass a pointer to a buffer into the functions
taking usual C ASCIIZ-string.

It is not specified in the C++ standard ([16]) how std::string should be implemented, however, it is usually implemented
as described above.

By standard, std::string is not a class (as QString in Qt, for instance) but template, this is done in order to support various
character types: at least char and wchar_t.

There are no assembly listings, because std::string internals in MSVC and GCC can be illustrated without them.

MSsvC

MSVC implementation may store buffer in place instead of pointer to buffer (if the string is shorter than 16 symbols).
This mean that short string will occupy at least 16 + 4 4+ 4 = 24 bytes in 32-bit environment or at least 16 + 8 + 8 = 32
bytes in 64-bit, and if the string is longer than 16 characters, add also length of the string itself.

Listing 34.1: example for MSVC

#include <string>
#include <stdio.h>

struct std_string

{
union
{
char buf[16];
charx ptr;
}ou;
size_t size; // AKA ’Mysize’ in MSVC
size_t capacity; // AKA ’Myres’ in MSVC
3
void dump_std_string(std::string s)
{
struct std_string *p=(struct std_string*)&s;
printf ("[%s] size:%d capacity:%d\n", p->size>16 ? p->u.ptr : p->u.buf, p->size, p->
capacity) ;
s

int main()

{

272

34.1. STD::STRING CHAPTER 34. STL

std::string sl="short string";
std::string s2="string longer that 16 bytes";

dump_std_string(sl);
dump_std_string(s2);

// that works without using c_str()
printf ("%s\n", &sl);
printf ("%s\n", s2);

};

Almost everything is clear from the source code.

Couple notes:

If the string is shorter than 16 symbols, a buffer for the string will not be allocated in the heap. This is convenient because
in practice, large amount of strings are short indeed. Apparently, Microsoft developers chose 16 characters as a good balance.

Very important thing here is in the end of main() functions: I’'m not using c_str() method, nevertheless, if to compile the
code and run, both strings will be appeared in the console!

This is why it works.

The string is shorter than 16 characters and buffer with the string is located in the beginning of std::string object (it can
be treated just as structure). printf() treats pointer as a pointer to the null-terminated array of characters, hence it works.

Second string (longer than 16 characters) printing is even more dangerous: it is typical programmer’s mistake (or typo) to
forget to write c_str(). This works because at the moment a pointer to buffer is located at the start of structure. This may left
unnoticed for a long span of time: until a longer string will appear there, then a process will crash.

GCC

GCC implementation of a structure has one more variable—reference count.
One interesting fact is that a pointer to std::string instance of class points not to beginning of the structure, but to the
pointer to buffer. In libstdc++-v3\include\bits\basic_string.h we may read that it was made for convenient debugging:

The reason you want _M_data pointing to the character %array and
not the _Rep is so that the debugger can see the string
contents. (Probably we should add a non-inline member to get

the _Rep for the debugger to use, so users can check the actual
string length.)

* ¥ ¥ ¥ *

basic_string.h source code
| considering this in my example:

Listing 34.2: example for GCC

#include <string>
#include <stdio.h>

struct std_string

{
size_t length;
size_t capacity;
size_t refcount;
s
void dump_std_string(std::string s)
{
char *pl=+(char**)&s; // GCC type checking workaround
struct std_string *p2=(struct std_string*) (pl-sizeof(struct std_string));
printf ("[%s] size:%d capacity:%d\n", pl, p2->length, p2->capacity);
s

int main()
{
std::string sl="short string";
std::string s2="string longer that 16 bytes";

273

http://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.4/a01068.html

34.1. STD::STRING CHAPTER 34. STL
dump_std_string(s1);
dump_std_string(s2);

// GCC type checking workaround:

printf ("%s\n", *(char**)&s1);

printf ("%s\n", *(char**)&s2);
};

A trickery should be also used to imitate mistake | already wrote above because GCC has stronger type checking, never-
theless, printf() works here without c_str() as well.

34.1.2 More complex example

#include <string>
#include <stdio.h>

int main()

{
std::string sl1="Hello, ";
std: :string s2="world!\n";
std::string s3=s1+s2;
printf ("%s\n", s3.c_str());
}
Listing 34.3: MSVC 2012
$3SG39512 DB ’Hello, ’, OOH
$3SG39514 DB ’world!’, OaH, OOH
$SG39581 DB *%s?, OaH, OOH
_s2$ = -72 ; size = 24
_s3% = -48 ; size = 24
_s1$ = -24 ; size = 24
_main PROC
sub esp, 72 ; 00000048H
push 4
push OFFSET $SG39512
lea ecx, DWORD PTR _s1$[esp+80]
mov DWORD PTR _s1$[esp+100], 15 ; 0000000fH
mov DWORD PTR _s1$[esp+96], O
mov BYTE PTR _s1$[esp+80], O

call 7assign@?$basic_string@DU?$char_traits@DOstd@QV?
$allocator@D@20@std@@QAEAAV12@PBDIQZ ; std::basic_string<char,std::char_traits<char>,std::
allocator<char> >::assign

push 7

push OFFSET $SG39514

lea ecx, DWORD PTR _s2$[esp+80]

mov DWORD PTR _s2$[esp+100], 15 ; 0000000fH
mov DWORD PTR _s2$[esp+96], O

mov BYTE PTR _s2$[esp+80], O

call 7assign@7?$basic_string@DU?$char_traits@DOstd@QV?
$allocator@D@20@stdQ@QAEAAV12@PBDIQZ ; std::basic_string<char,std::char_traits<char>,std::
allocator<char> >::assign

lea eax, DWORD PTR _s2$[esp+72]
push eax
lea eax, DWORD PTR _s1$[esp+76]

274

34.1. STD::STRING

CHAPTER 34. STL

push
lea

push
call

eax
eax, DWORD PTR _s3$[esp+80]
eax

?7$7HDU?$char_traitsO@DOstd@OV?$allocator@D@1@Q@std0@YA?AV?$basic_string@DU?
$char_traits@D@std@OV7$allocator@D@2@@OGABV10@0Q@Z ; std::operator+<char,std::char_traits<char
>,std::allocator<char> >

; inlined c_str() method:

cmp
lea
cmovae

push
push
call
add

cmp
jb
push
call
add
$LN119Gmain:
cmp
mov
mov
mov
jb
push
call
add
$LN1510@main:
cmp
mov
mov
mov
jb
push
call
add
$LN195@main:
Xor
add
ret
_main ENDP

DWORD PTR _s3$[esp+104], 16
eax, DWORD PTR _s3$[esp+84]
eax, DWORD PTR _s3$[esp+84]

eax
OFFSET $SG39581
_printf
esp, 20

DWORD PTR _s3$[esp+92], 16
SHORT $LN119@main

DWORD PTR _s3$[esp+72]
773QYAXPAXQZ

esp, 4

DWORD PTR _s2$[esp+92], 16
DWORD PTR _s3$[esp+92], 15
DWORD PTR _s3$[esp+88], 0
BYTE PTR _s3%[esp+72], O
SHORT $LN151@main

DWORD PTR _s2$[esp+72]
773QYAXPAXQZ

esp, 4

DWORD PTR _si$[esp+92], 16
DWORD PTR _s2$[esp+92], 15
DWORD PTR _s2$[esp+88], 0
BYTE PTR _s2$[esp+72], O
SHORT $LN195@main

DWORD PTR _s1$[esp+72]
?73@YAXPAXQZ

esp, 4

eax, eax
esp, 72
0

; 00000010H

; 00000014H

; 00000010H

; operator delete

; 00000010H
; 0000000£fH

; operator delete

; 00000010H
; 0000000fH

; operator delete

; 00000048H

Compiler not constructing strings statically: how itis possible anyway if buffer should be located in the heap? Usual ASCIIZ
strings are stored in the data segment instead, and later, at the moment of execution, with the help of “assign” method, s1
and s2 strings are constructed. With the help of operator+, s3 string is constructed.

Please note that there are no call to c_str() method, because, its code is tiny enough so compiler inlined it right here: if
the string is shorter than 16 characters, a pointer to buffer is leaved in EAX register, and an address of the string buffer located
in the heap is fetched otherwise.

Next, we see calls to the 3 destructors, and they are called if string is longer than 16 characters: then a buffers in the
heap should be freed. Otherwise, since all three std::string objects are stored in the stack, they are freed automatically, upon

function finish.

As a consequence, short strings processing is faster because of lesser heap accesses.
GCC code is even simpler (because GCC way, as | mentioned above, is not to store shorter string right in the structure):

Listing 34.4: GCC 4.8.1

.LCO:

.string "Hello, "

275

34.1. STD::STRING

CHAPTER 34. STL

.LC1:

main:

.string "world!\n"

push
mov
push
push
push
and
sub
lea
lea
mov
lea
mov
mov

call
mov
mov
mov

call

mov
mov

call

mov
mov

call

ebp

ebp, esp
edi

esi

ebx

esp, -16
esp, 32

ebx, [esp+28]
edi, [esp+20]
DWORD PTR [esp+8], ebx
esi, [esp+24]

DWORD PTR [esp+4], OFFSET FLAT:

DWORD PTR [esp]l, edi
_ZNSsC1EPKcRKSaIcE

DWORD PTR [esp+8], ebx

DWORD PTR [esp+4], OFFSET FLAT:

DWORD PTR [esp], esi
_ZNSsC1EPKcRKSaIcE

DWORD PTR [esp+4], edi
DWORD PTR [esp], ebx

_ZNSsC1ERKSs

DWORD PTR [esp+4], esi
DWORD PTR [esp], ebx

_ZNSs6appendERKSs

; inlined c_str():

mov
mov

call

mov
lea
mov
sub
mov
call
mov
mov
sub
mov
call
mov
mov
sub
mov
call
lea
XOor
pop
pop

eax, DWORD PTR [esp+28]
DWORD PTR [esp], eax

puts

eax, DWORD PTR [esp+28]

ebx, [esp+19]

DWORD PTR [esp+4], ebx

eax, 12

DWORD PTR [espl, eax
_ZNSs4_Repl10_M_disposeERKSaIcE
eax, DWORD PTR [esp+24]

DWORD PTR [esp+4], ebx

eax, 12

DWORD PTR [espl, eax
_ZNSs4_Repl10_M_disposeERKSaIcE
eax, DWORD PTR [esp+20]

DWORD PTR [esp+4], ebx

eax, 12

DWORD PTR [espl, eax
_ZNSs4_Repl10_M_disposeERKSaIcE
esp, [ebp-12]

eax, eax

ebx

esi

.LCO

.LC1

276

34.1. STD::STRING CHAPTER 34. STL

pop edi
pop ebp
ret

It can be seen that not a pointer to object is passed to destructors, but rather a place 12 bytes (or 3 words) before, i.e.,
pointer to the real start of the structure.
34.1.3 std::string as a global variable

Experienced C++ programmers may argue: a global variables of STL' types are in fact can be defined.
Yes, indeed:

#include <stdio.h>
#include <string>

std::string s="a string";

int main()

{
printf ("%s\n", s.c_str());
};
Listing 34.5: MSVC 2012
$SG39512 DB ’a string’, OOH
$SG39519 DB >%s?, OaH, OOH
_main PROC
cmp DWORD PTR 7s@@3V7$basic_string@DU?$char_traits@D@std00V?$allocator@D@20@0stdCRA
+20, 16 ; 00000010H
mov eax, OFFSET 7s@@3V7$basic_string@DU?$char_traits@D@std@OV?$allocator@DO@2@OstdQCA
; S
cmovae eax, DWORD PTR 7s@@3V?$basic_string@DU?$char_traits@D@stdQQV?
$allocator@D@20@stdQ@GA
push eax
push OFFSET $SG39519
call _printf
add esp, 8
xor eax, eax
ret 0
_main ENDP
77__Es@QYAXXZ PROC ; ‘dynamic initializer for ’s’’, COMDAT
push 8
push OFFSET $SG39512
mov ecx, OFFSET 7s@@3V7$basic_string@U?$char_traits@D@std@OV?$allocator@DO@20@AstdQCA
; S
call 7assign@?$basic_string@DU?$char_traits@DOstd@QV?
$allocator@D@20@std@@QAEAAV12@PBDIQZ ; std::basic_string<char,std::char_traits<char>,std::
allocator<char> >::assign
push OFFSET ?77__FsQQYAXXZ ; ‘dynamic atexit destructor for ’s’’
call _atexit
pop ecx
ret 0
?7__EsQQYAXXZ ENDP ; ‘dynamic initializer for ’s’’
?7__Fs@QYAXXZ PROC ; ‘dynamic atexit destructor for ’s’’,
COMDAT
push ecx
cmp DWORD PTR ?7s@@3V7$basic_string@DU?$char_traits@D@std@Q@V?$allocator@D@2@0stdQQA

+20, 16 ; 00000010H

1(C++) Standard Template Library: 34

277

34.1. STD::STRING CHAPTER 34. STL

jb SHORT $LN23@dynamic

push esi

mov esi, DWORD PTR 7s@@3V?$basic_string@DU?$char_traits@D@std@QV?
$allocator@D@20@@std@GA

lea ecx, DWORD PTR $T2[esp+8]

call ?7707$_Wrap_alloc@V7$allocator@@std@@@stdQOQAECXZ ; std::_Wrap_alloc<std::
allocator<char> >::_Wrap_alloc<std::allocator<char> >

push OFFSET 7s@@3V7$basic_string@DU?$char_traits@D@std@@V?$allocator@D@200std@QA ; s

lea ecx, DWORD PTR $T2[esp+12]

call ?778destroy@PAD@?$_Wrap_alloc@V?$allocator@DO@std@@@std@@QAEXPAPADQZ ; std::
_Wrap_alloc<std::allocator<char> >::destroy<char *>

lea ecx, DWORD PTR $T1[esp+8]

call ?7707$_Wrap_alloc@V?$allocator@@std@00std@QQAEQXZ ; std::_Wrap_alloc<std::
allocator<char> >::_Wrap_alloc<std::allocator<char> >

push esi
call ?7?30@YAXPAXQZ ; operator delete
add esp, 4
pop esi
$LN23@dynamic:
mov DWORD PTR ?7s@@3V7$basic_string@DU?$char_traits@D@std@QV?$allocator@D@2@0stdQQA
+20, 15 ; 0000000fH
mov DWORD PTR 7s@@3V7$basic_string@DU?$char_traits@D@std00V7$allocator@D@200stdCRA
+16, 0O
mov BYTE PTR 7sQ@3V?$basic_string@DU?$char_traits@D@std@QV?$allocator@D@20@@std@CA, O
pop ecx
ret 0
?7__FsQ@Q@YAXXZ ENDP ; ‘dynamic atexit destructor for ’s’’

In fact, a special function with all constructors of global variables is called from CRT, before main(). More than that: with
the help of atexit() another function is registered: which contain all destructors of such variables.
GCC works likewise:

Listing 34.6: GCC 4.8.1

main:
push ebp
mov ebp, esp
and esp, -16
sub esp, 16
mov eax, DWORD PTR s
mov DWORD PTR [esp], eax
call puts
xor eax, eax
leave
ret
.LCO:

.string "a string"
_GLOBAL__sub_I_s:

sub esp, 44
lea eax, [esp+31]
mov DWORD PTR [esp+8], eax
mov DWORD PTR [esp+4], OFFSET FLAT:.LCO
mov DWORD PTR [esp], OFFSET FLAT:s
call _ZNSsC1EPKcRKSaIcE
mov DWORD PTR [esp+8], OFFSET FLAT:__dso_handle
mov DWORD PTR [esp+4], OFFSET FLAT:s
mov DWORD PTR [esp], OFFSET FLAT:_ZNSsD1Ev
call __cxa_atexit
add esp, 44
ret
.LFE645:
.size _GLOBAL__sub_I_s, .-_GLOBAL__sub_I_s

278

34.2. STD:LIST CHAPTER 34. STL

.section .init_array, "aw
.align 4

.long _GLOBAL__sub_I_s

.globl s

.bss

.align 4

.type s, Q@object

.size s, 4

.Zero 4
.hidden __dso_handle

It even not creates separated functions for this, each destructor is passed to atexit(), one by one.

34.2 std::list

This is a well-known doubly-linked list: each element has two pointers, to the previous and the next elements.

This mean that a memory footprint is enlarged by 2 words for each element (8 bytes in 32-bit environment or 16 bytes in
64-bit).

This is also a circular list, meaning that the last element has a pointer to the first and vice versa.

C++ STL just append “next” and “previous” pointers to your existing structure you wish to unite into a list.

Let’s work out an example with a simple 2-variable structure we want to store in the list.

Although standard C++ standard [16] does not offer how to implement it, MSVC and GCC implementations are straight-
forward and similar to each other, so here is only one source code for both:

#include <stdio.h>
#include <list>
#include <iostream>

struct a
{
int x;
int y;
}s
struct List_node
{
struct List_nodex _Next;
struct List_node* _Prev;
int x;
int y;
Jrg
void dump_List_node (struct List_node *n)
{
printf ("ptr=0xip _Next=0x}p _Prev=0x%p x=kd y=/d\n",
n, n->_Next, n->_Prev, n->x, n->y);
Jrg
void dump_List_vals (struct List_node* n)
{
struct List_node* current=n;
for (;3;)
{
dump_List_node (current);
current=current->_Next;
if (current==n) // end
break;
};
}s

279

34.2. STD:LIST

CHAPTER 34. STL

void dump_List_val (unsigned int *a)

{
#ifdef

#endif

};

_MSC_VER

// GCC implementation doesn’t have "size" field
printf ("_Myhead=0x%p, _Mysize=Jd\n", a[0], a[1l);

dump_List_vals ((struct List_node*)al[0]);

int main()

{

std::list<struct a> 1;

printf ("* empty list:\n");
dump_List_val((unsigned intx*) (void*)&l);

struct a ti;

il 5=l g

tl.y=2;
1.push_front (t1);
t1.x=3;

tl.y=4;
1.push_front (t1);
t1.x=5;

tl.y=6;
1.push_back (t1);

printf ("* 3-elements list:\n");
dump_List_val((unsigned int*) (void*)&l);

std::list<struct a>::iterator tmp;

printf ("node at .begin:\n");

tmp=1.begin();

dump_List_node ((struct List_node *)*(void**)&tmp) ;
printf ("node at .end:\n");

tmp=1.end () ;

dump_List_node ((struct List_node *)*(void#**)&tmp);

printf ("* let’s count from the begin:\n");
std::list<struct a>::iterator it=1.begin();

printf ("1st element: %d %d\n", (xit).x, (*it).y);

it++;

printf ("2nd element: %d %d\n", (xit).x, (xit).y);

it++;

printf ("3rd element: %d %d\n", (xit).x, (*it).y);

it++;

printf ("element at .end(): %d %d\n", (*it).x, (*it).y);

printf ("* let’s count from the end:\n");

std::list<struct a>::iterator it2=1.end();

printf ("element at .end(): %d %d\n", (*it2).x, (*it2).y);
it2--;

printf ("3rd element: %d %d\n", (*it2).x, (*it2).y);
it2--;

printf ("2nd element: %d %d\n", (*it2).x, (*it2).y);
it2--;

printf ("1st element: %d %d\n", (*it2).x, (*it2).y);

printf ("removing last element...\n");
1.pop_back();

280

34.2. STD:LIST CHAPTER 34. STL
dump_List_val((unsigned intx*) (void*)&l);

};

34.21 GCC

Let’s start with GCC.
When we run the example, we’ll see a long dump, let’s work with it part by part.

* empty list:
ptr=0x0028£e90 _Next=0x0028fe90 _Prev=0x0028fe90 x=3 y=0

Here we see an empty list. Despite the fact it is empty, it has one element with garbage in x and y variables. Both “next”
and “prev” pointers are pointing to the self node:

list.begin() Variable std::list | [list.end()
—1 Next —
— Prev —
X=garbage
Y=garbage

That’s is the moment when .begin and .end iterators are equal to each other.
Let’s push 3 elements, and the list internally will be:

* 3-elements list:

ptr=0x000349a0 _Next=0x00034988 _Prev=0x0028fe90 x=3 y=4
ptr=0x00034988 _Next=0x00034b40 _Prev=0x000349a0 x=1 y=2
ptr=0x00034b40 _Next=0x0028fe90 _Prev=0x00034988 x=5 y=6
ptr=0x0028£e90 _Next=0x000349a0 _Prev=0x00034b40 x=5 y=6

The last element is still at 0x0028fe90, it will not be moved until list disposal. It still contain random garbage in z and y
fields (5 and 6). By occasion, these values are the same as in the last element, but it doesn’t mean they are meaningful.
Here is how 3 elements will be stored in memory:

Variable std::list

N2
list.begin() list.end()
—1 Next 1 Next — Next —{ Next —
— Prev <—{ Prev <—{ Prev <—{ Prev —
X=1st element X=2nd element X=3rd element X=garbage
Y=1st element Y=2nd element Y=3rd element Y=garbage

The variable [is always points to the first node.

281

34.2. STD:LIST CHAPTER 34. STL

.begin() and .end() iterators are not pointing to anything and not present in memory at all, but the pointers to these nodes
will be returned when corresponding method is called.

Having a “garbage” element is a very popular practice in implementing doubly-linked lists. Without it, a lot of operations
may become slightly more complex and, hence, slower.

Iterator in fact is just a pointer to a node. list.begin() and list.end() are just returning pointers.

node at .begin:

ptr=0x000349a0 _Next=0x00034988 _Prev=0x0028fe90 x=3 y=4
node at .end:

ptr=0x0028fe90 _Next=0x000349a0 _Prev=0x00034b40 x=5 y=6

The fact the list is circular is very helpful here: having a pointer to the first list element, i.e., that is in the [variable, it is
easy to get a pointer to the last one quickly, without need to traverse whole list. Inserting element at the list end is also quick,
thanks to this feature.

operator- and operator++ are just set current iterator value to the current_node->prev or current_node->next
values. Reverse iterators (.rbegin, .rend) works just as the same, but in inverse way.

operator* of iterator just returns pointer to the point in the node structure, where user’s structure is beginning, i.e.,
pointer to the very first structure element (z).

List insertion and deletion is trivial: just allocate new node (or deallocate) and fix all pointers to be valid.

That’s why iterator may become invalid after element deletion: it may still point to the node already deallocated. And of
course, the information from the freed node, to which iterator still points, cannot be used anymore.

The GCC implementation (as of 4.8.1) doesn’t store current list size: this resulting in slow .size() method: it should traverse
the whole list counting elements, because it doesn’t have any other way to get the information. This mean this operation is
O(n), i.e., itis as slow, as how many elements present in the list.

Listing 34.7: GCC 4.8.1-03 -fno-inline-small-functions

main proc near
push ebp
mov ebp, esp
push esi
push ebx
and esp, OFFFFFFFOh
sub esp, 20h
lea ebx, [esp+10h]
mov dword ptr [esp], offset s ; "* empty list:"
mov [esp+10h], ebx
mov [esp+14h], ebx
call puts
mov [esp]l, ebx
call _Z13dump_List_valPj ; dump_List_val(uint *)
lea esi, [esp+18h]
mov [espt4], esi
mov [esp], ebx
mov dword ptr [esp+18h], 1 ; X for new element
mov dword ptr [esp+1Ch], 2 ; Y for new element
call _ZNSt4listI1aSaISO_EE10push_frontERKSO_ ; std::1list<a,std::allocator<a
>>::push_front(a const&)
mov [esp+4], esi
mov [esp]l, ebx
mov dword ptr [esp+18h], 3 ; X for new element
mov dword ptr [esp+1Ch], 4 ; Y for new element
call _ZNSt4listI1aSaISO_EE10push_frontERKSO_ ; std::1list<a,std::allocator<a
>>::push_front(a const&)
mov dword ptr [esp]l, 10h
mov dword ptr [esp+18h], 5 ; X for new element
mov dword ptr [esp+1Ch], 6 ; Y for new element
call _Znwj ; operator new(uint)
cmp eax, OFFFFFFF8h
jz short loc_80002A6
mov ecx, [esp+1Ch]
mov edx, [esp+18h]
mov [eax+0Ch], ecx

282

34.2. STD:LIST CHAPTER 34. STL

mov [eax+8], edx
loc_80002A6: ; CODE XREF: main+86
mov [espt4], ebx
mov [esp]l, eax
call _ZNSt8__detaill5_List_node_base7_M_hookEPSO_ ; std::__detail::
_List_node_base::_M_hook(std::__detail::_List_node_basex)
mov dword ptr [esp], offset a3ElementsList ; "* 3-elements list:"
call puts
mov [esp]l, ebx
call _Z13dump_List_valPj ; dump_List_val(uint *)
mov dword ptr [esp], offset aNodeAt_begin ; "node at .begin:"
call puts
mov eax, [esp+10h]
mov [esp], eax
call _Z14dump_List_nodeP9List_node ; dump_List_node(List_node *)
mov dword ptr [esp], offset aNodeAt_end ; "node at .end:"
call puts
mov [esp], ebx
call _Z14dump_List_nodeP9List_node ; dump_List_node(List_node *)
mov dword ptr [esp], offset aLetSCountFromT ; "* let’s count from the begin:"
call puts
mov esi, [esp+10h]
mov eax, [esi+0Ch]
mov [esp+0Ch], eax
mov eax, [esi+8]
mov dword ptr [esp+4], offset alstElementDD ; "1st element: %d %d\n"
mov dword ptr [esp]l, 1
mov [esp+8], eax
call __printf_chk
mov esi, [esi] ; operator++: get ->next pointer
mov eax, [esi+0Ch]
mov [esp+0OCh], eax
mov eax, [esi+8]
mov dword ptr [esp+4], offset a2ndElementDD ; "2nd element: %d %d\n"
mov dword ptr [esp]l, 1
mov [esp+8], eax
call __printf_chk
mov esi, [esi] ; operator++: get ->next pointer
mov eax, [esi+0Ch]
mov [esp+0Ch], eax
mov eax, [esi+8]
mov dword ptr [esp+4], offset a3rdElementDD ; "3rd element: %d %d\n"
mov dword ptr [esp]l, 1
mov [esp+8], eax
call __printf_chk
mov eax, [esi] ; operator++: get ->next pointer
mov edx, [eax+0Ch]
mov [esp+0OCh], edx
mov eax, [eax+8]
mov dword ptr [esp+4], offset aElementAt_endD ; "element at .end(): %d %d\n"
mov dword ptr [esp]l, 1
mov [esp+8], eax
call __printf_chk
mov dword ptr [esp], offset aLetSCountFro_0 ; "* let’s count from the end:"
call puts
mov eax, [esp+1Ch]
mov dword ptr [esp+4], offset aElementAt_endD ; "element at .end(): %d %d\n"
mov dword ptr [esp], 1
mov [esp+0OCh], eax
mov eax, [esp+18h]

283

34.2. STD:LIST

CHAPTER 34. STL

mov
call
mov
mov
mov
mov
mov
mov
mov
call
mov
mov
mov
mov
mov
mov
mov
call
mov
mov
mov
mov
mov
mov
mov
call
mov
call
mov
mov
call
_List_node_base:
mov
call
mov
call
mov
call

[esp+8], eax

__printf_chk

esi, [esp+14h]

eax, [esi+0Ch]

[esp+0OCh], eax

eax, [esi+8]

dword ptr [esp+4], offset a3rdElementDD ; "3rd element: %d %d\n"
dword ptr [espl, 1

[esp+8], eax

__printf_chk

esi, [esi+4] ; operator--: get ->prev pointer

eax, [esi+OChl]

[esp+OCh], eax

eax, [esi+8]

dword ptr [esp+4], offset a2ndElementDD ; "2nd element: %d %d\n"
dword ptr [esp], 1

[esp+8], eax

__printf_chk

eax, [esi+4] ; operator--: get ->prev pointer

edx, [eax+0Ch]

[esp+0OCh], edx

eax, [eax+8]

dword ptr [esp+4], offset alstElementDD ; "1st element: ’%d %d\n"
dword ptr [espl, 1

[esp+8], eax

__printf_chk
dword ptr [esp], offset aRemovinglastEl ; "removing last element..."
puts

esi, [esp+14h]
[esp], esi
_ZNSt8__detaillb_List_node_base9_M_unhookEv ; std::__detail::

:_M_unhook (void)

[esp]l, esi ; void *

_Zd1Pv ; operator delete(void *)
[esp], ebx

_Z13dump_List_valPj ; dump_List_val(uint *)
[esp]l, ebx

_ZNSt10_List_basellaSaISO_EE8_M_clearEv ; std::_List_base<a,std::

allocator<a>>::_M_clear(void)

lea
X0r
pop
pop
pop
retn
main endp

esp, [ebp-8]
eax, eax
ebx

esi

ebp

Listing 34.8: The whole output

* empty list:

ptr=0x0028£e90 _Next=0x0028fe90 _Prev=0x0028fe90 x=3 y=0

* 3-elements list:

ptr=0x000349a0 _Next=0x00034988 _Prev=0x0028fe90 x=3 y=4
ptr=0x00034988 _Next=0x00034b40 _Prev=0x000349a0 x=1 y=2
ptr=0x00034b40 _Next=0x0028fe90 _Prev=0x00034988 x=5 y=6
ptr=0x0028£e90 _Next=0x000349a0 _Prev=0x00034b40 x=5 y=6

node at .begin:

ptr=0x000349a0 _Next=0x00034988 _Prev=0x0028fe90 x=3 y=4

node at .end:

ptr=0x0028£fe90 _Next=0x000349a0 _Prev=0x00034b40 x=5 y=6
* let’s count from the begin:

284

34.2. STD:LIST CHAPTER 34. STL

1st element: 3 4

2nd element: 1 2

3rd element: 5 6

element at .end(): 5 6

* let’s count from the end:

element at .end(): 5 6

3rd element: 5 6

2nd element: 1 2

1st element: 3 4

removing last element...

ptr=0x000349a0 _Next=0x00034988 _Prev=0x0028fe90 x=3 y
ptr=0x00034988 _Next=0x0028fe90 _Prev=0x000349a0 x=1 y
ptr=0x0028fe90 _Next=0x000349a0 _Prev=0x00034988 x=5 y

4
2
6

34.2.2 MSVC

MSVC implementation (2012) is just the same, but it also stores current list size. This mean, .size() method is very fast (O(1)):
just read one value from memory. On the other way, size variable must be corrected at each insertion/deletion.
MSVC implementation is also slightly different in a way it arrange nodes:

Variable std::list

N2
list.end() list.begin()
—1 Next 1 Next — Next —{ Next —
— Prev <—{ Prev <—{ Prev <—{ Prev —
X=garbage X=1st element X=2nd element X=3rd element
Y=garbage Y=1st element Y=2nd element Y=3rd element

GCC has its “garbage” element at the end of the list, while MSVC at the beginning of it.

Listing 34.9: MSVC 2012 /Fa2.asm /Ox /GS- /Ob1

_1$ = -16 ; size = 8
_t1$ = -8 ; size = 8
_main PROC

sub esp, 16 ; 00000010H

push ebx

push esi

push edi

push 0

push 0

lea ecx, DWORD PTR _1$[esp+36]

mov DWORD PTR _1$[esp+40], O

; allocate first "garbage" element

call ?_Buynode0@7$_List_alloc@$0AQU?$_List_base_typesQUaQQV?
$allocator@Ua@0@std@@@stdQ@O@std@QQAEPAU?$ _List_node@Ua@OPAXQ2Q@PAU32@0Q@Z ; std::_List_alloc<O,
std::_List_base_types<a,std::allocator<a> > >::_Buynode0

mov edi, DWORD PTR __imp__printf

mov ebx, eax

push OFFSET $SG40685 ; ’* empty list:’
mov DWORD PTR _1$[esp+32], ebx

285

34.2. STD::LIST CHAPTER 34. STL
call edi ; printf

lea eax, DWORD PTR _1$[esp+32]

push eax

call ?dump_List_valQ@Q@YAXPAIQZ ; dump_List_val
mov esi, DWORD PTR [ebx]

add esp, 8

lea eax, DWORD PTR _t1$[esp+28]

push eax

push DWORD PTR [esi+4]

lea ecx, DWORD PTR _1$[esp+36]

push esi

mov DWORD PTR _t1$[esp+40], 1 ; data for a new node
mov DWORD PTR _t1$[espt+44], 2 ; data for a new node

; allocate new node
call ?77$_Buynode@ABUa@@Q?7$_List_buy@Ua@@V?$allocatorQ@Ua®0@std@@Q@stdQ@QAEPAU?
$_List_node@Ua@@PAXQ@1@PAU21@0ABUaG@OZ ; std::_List_buy<a,std::allocator<a> >::_Buynode<a

const &>
mov DWORD PTR [esi+4], eax
mov ecx, DWORD PTR [eax+4]
mov DWORD PTR _t1$[esp+28], 3 ; data for a new node
mov DWORD PTR [ecx], eax
mov esi, DWORD PTR [ebx]
lea eax, DWORD PTR _t1$[esp+28]
push eax
push DWORD PTR [esi+4]
lea ecx, DWORD PTR _1$[esp+36]
push esi
mov DWORD PTR _t1$[esp+44], 4 ; data for a new node

; allocate new node
call ?77$_Buynode@ABUa@@@?7$_List_buy@Ua@@V7$allocator@Ual@@std@@@stdQ@QAEPAU?
$_List_node@Ua@@PAXQ@1Q@PAU21Q0ABUa@QOZ ; std::_List_buy<a,std::allocator<a> >::_Buynode<a

const &>
mov DWORD PTR [esi+4], eax
mov ecx, DWORD PTR [eax+4]
mov DWORD PTR _t1$[esp+28], 5 ; data for a new node
mov DWORD PTR [ecx], eax
lea eax, DWORD PTR _t1$[esp+28]
push eax
push DWORD PTR [ebx+4]
lea ecx, DWORD PTR _1$[esp+36]
push ebx
mov DWORD PTR _t1$[esp+44], 6 ; data for a new node

; allocate new node
call ?77$_Buynode@ABUa@@0?$_List_buy@UaeV?$allocator@Ua@@@std@@@std@@QAEPAU?
$_List_node@Ua@@PAXQ1Q@PAU21Q@0ABUa@@QZ ; std::_List_buy<a,std::allocator<a> >::_Buynode<a

const &>
mov DWORD PTR [ebx+4], eax
mov ecx, DWORD PTR [eax+4]
push OFFSET $SG40689 ; ’* 3-elements list:’
mov DWORD PTR _1$[esp+36], 3
mov DWORD PTR [ecx], eax
call edi ; printf
lea eax, DWORD PTR _1$[esp+32]
push eax
call ?dump_List_val@@YAXPAIQZ ; dump_List_val

push OFFSET $SG40831 ; ’node at .begin:’

call edi ; printf

push DWORD PTR [ebx] ; get next field of node 1 variable points to
call ?dump_List_node@@YAXPAUList_node@QQZ ; dump_List_node

push OFFSET $SG40835 ; ’node at .end:’

call edi ; printf

286

34.2. STD:LIST

CHAPTER 34. STL

push
call
push
call
mov

push
push
push
call
mov

push
push
push
call
mov

push
push
push
call
mov

add

push
push
push
call
push
call
push
push
push
call
mov

push
push
push
call
mov

push
push
push
call
mov

push
push
push
call
add

push
call
mov

add

ebx ; pointer to the node 1 variable points to!
?dump_List_node@@YAXPAUList_node@QQZ ; dump_List_node
OFFSET $SG40839 ; ’* let’’s count from the begin:’
edi ; printf

esi, DWORD PTR [ebx] ; operator++: get ->next pointer
DWORD PTR [esi+12]

DWORD PTR [esi+8]

OFFSET $SG40846 ; ’1st element: %d %d’

edi ; printf

esi, DWORD PTR [esi] ; operator++: get ->next pointer
DWORD PTR [esi+12]

DWORD PTR [esi+8]

OFFSET $SG40848 ; ’2nd element: %d %d’

edi ; printf

esi, DWORD PTR [esi] ; operator++: get ->next pointer
DWORD PTR [esi+12]

DWORD PTR [esi+8]

OFFSET $SG40850 ; ’3rd element: %d %d’

edi ; printf

eax, DWORD PTR [esi] ; operator++: get ->next pointer
esp, 64 ; 00000040H
DWORD PTR [eax+12]

DWORD PTR [eax+8]

OFFSET $SG40852 ; ’element at .end(): %d %4’

edi ; printf

OFFSET $SG40853 ; ’* let’’s count from the end:’

edi ; printf

DWORD PTR [ebx+12] ; use x and y fields from the node 1 variable points to
DWORD PTR [ebx+8]

OFFSET $SG40860 ; ’element at .end(): %d %d’

edi ; printf

esi, DWORD PTR [ebx+4] ; operator--: get ->prev pointer
DWORD PTR [esi+12]

DWORD PTR [esi+8]

OFFSET $SG40862 ; ’3rd element: %d %d’

edi ; printf

esi, DWORD PTR [esi+4] ; operator--: get ->prev pointer
DWORD PTR [esi+12]

DWORD PTR [esi+8]

OFFSET $SG40864 ; ’2nd element: %d %d’

edi ; printf

eax, DWORD PTR [esi+4] ; operator--: get ->prev pointer
DWORD PTR [eax+12]

DWORD PTR [eax+8]

OFFSET $SG40866 ; ’1st element: %d %d’

edi ; printf

esp, 64 ; 00000040H
OFFSET $SG40867 ; ’removing last element...~’

edi ; printf

edx, DWORD PTR [ebx+4]

esp, 4

; prev=next?
; it is the only element, "garbage one"?
; if yes, do not delete it!

cmp
Je

mov
mov
mov
mov

edx, ebx

SHORT $LN349@main
ecx, DWORD PTR [edx+4]
eax, DWORD PTR [edx]
DWORD PTR [ecx], eax
ecx, DWORD PTR [edx]

287

34.2. STD:LIST CHAPTER 34. STL

mov eax, DWORD PTR [edx+4]
push edx
mov DWORD PTR [ecx+4], eax
call 773QYAXPAXQZ ; operator delete
add esp, 4
mov DWORD PTR _1$[espt+32], 2
$LN3490main:
lea eax, DWORD PTR _1$[esp+28]
push eax
call ?dump_List_val@@YAXPAIQZ ; dump_List_val
mov eax, DWORD PTR [ebx]
add esp, 4
mov DWORD PTR [ebx], ebx
mov DWORD PTR [ebx+4], ebx
cmp eax, ebx
je SHORT $LN412@main
$LL4140main:
mov esi, DWORD PTR [eax]
push eax
call 773QYAXPAXQZ ; operator delete
add esp, 4
mov eax, esi
cmp esi, ebx
jne SHORT $LL414@main
$LN412@main:
push ebx
call ?7?30YAXPAXQZ ; operator delete
add esp, 4
xor eax, eax
pop edi
pop esi
pop ebx
add esp, 16 ; 00000010H
ret 0
_main ENDP

Unlike GCC, MSVC code allocates “garbage” element at the function start with “Buynode” function, it is also used for the
rest nodes allocations (GCC code allocates the very first element in the local stack).

Listing 34.10: The whole output

* empty list:

_Myhead=0x003CC258, _Mysize=0

ptr=0x003CC258 _Next=0x003CC258 _Prev=0x003CC258 x=6226002 y=4522072
* 3-elements list:

_Myhead=0x003CC258, _Mysize=3

ptr=0x003CC258 _Next=0x003CC288 _Prev=0x003CC2A0 x=6226002 y=4522072
ptr=0x003CC288 _Next=0x003CC270 _Prev=0x003CC258 x=3 y=4
ptr=0x003CC270 _Next=0x003CC2A0 _Prev=0x003CC288 x=1 y=2
ptr=0x003CC2A0 _Next=0x003CC258 _Prev=0x003CC270 x=5 y=6

node at .begin:

ptr=0x003CC288 _Next=0x003CC270 _Prev=0x003CC258 x=3 y=4
node at .end:

ptr=0x003CC258 _Next=0x003CC288 _Prev=0x003CC2A0 x=6226002 y=4522072
* let’s count from the begin:

1st element: 3 4

2nd element: 1 2

3rd element: 5 6

element at .end(): 6226002 4522072

* let’s count from the end:

element at .end(): 6226002 4522072

3rd element: 5 6

288

34.3. STD::VECTOR CHAPTER 34. STL
2nd element: 1 2

1st element: 3 4

removing last element...

_Myhead=0x003CC258, _Mysize=2

ptr=0x003CC258 _Next=0x003CC288 _Prev=0x003CC270 x=6226002 y=4522072

ptr=0x003CC288 _Next=0x003CC270 _Prev=0x003CC258 x=3 y=4

ptr=0x003CC270 _Next=0x003CC258 _Prev=0x003CC288 x=1 y=2

34.2.3 C++11std::forward_list

The same thing as std::list, but singly-linked one, i.e., having only “next” field at teach node. It require smaller memory
footprint, but also don’t offer a feature to traverse list back.

34.3 std::vector

I would call std: : vector “safe wrapper” of PODT? C array. Internally, it is somewhat similar to std: : string (34.1): ithas a
pointer to buffer, pointer to the end of array, and a pointer to the end of buffer.

Array elements are lie in memory adjacently to each other, just like in usual array (16). In C++11 there are new method
.data() appeared, returning a pointer to the buffer, akinto .c_str () in std: :string.

Allocated buffer in heap may be larger than array itself.

Both MSVC and GCC implementations are similar, just structure field names are slightly different?, so here is one source
code working for both compilters. Here is again a C-like code for dumping std: : vector structure:

#include <stdio.h>
#include <vector>
#include <algorithm>
#include <functional>

struct vector_of_ints

{
// MSVC names:
int *Myfirst;
int *Mylast;
int *Myend;
// GCC structure is the same, names are: _M_start, _M_finish, _M_end_of_storage
g
void dump(struct vector_of_ints *in)
{
printf ("_Myfirst=Yp, _Mylast=)p, _Myend=/p\n", in->Myfirst, in->Mylast, in->Myend);
size_t size=(in->Mylast-in->Myfirst);
size_t capacity=(in->Myend-in->Myfirst);
printf ("size=Yd, capacity=/d\n", size, capacity);
for (size_t i=0; i<size; i++)
printf ("element %d: %d\n", i, in->Myfirst[i]);
bs

int main()

{
std: :vector<int> c;
dump ((struct vector_of_ints*) (voidx*)&c);
c.push_back(1);
dump ((struct vector_of_ints*) (voidx)&c) ;
c.push_back(2) ;
dump ((struct vector_of_ints*) (voidx*)&c);
c.push_back(3);

2(C++) Plain Old Data Type
3GCCinternals: http://gcc.gnu.org/onlinedocs/libstdc++/1libstdc++-html-USERS-4.4/a01371.html

289

http://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.4/a01371.html

34.3. STD::VECTOR CHAPTER 34. STL
dump ((struct vector_of_ints*) (voidx*)&c);
c.push_back(4);
dump ((struct vector_of_ints*) (voidx)&c) ;
c.reserve (6);
dump ((struct vector_of_ints*) (voidx*)&c);
c.push_back(5) ;
dump ((struct vector_of_ints*) (voidx*)&c);
c.push_back(6);
dump ((struct vector_of_ints*) (voidx)&c) ;
printf ("%d\n", c.at(5)); // bounds checking
printf ("%d\n", c[8]); // operator[], no bounds checking

};

Here is a sample output if compiled in MSVC:

_Myfirst=00000000, _Mylast=00000000, _Myend=00000000
size=0, capacity=0

_Myfirst=0051CF48, _Mylast=0051CF4C, _Myend=0051CF4C
size=1, capacity=1

element O0: 1

_Myfirst=0051CF58, _Mylast=0051CF60, _Myend=0051CF60
size=2, capacity=2

element O0: 1

element 1: 2

_Myfirst=0051C278, _Mylast=0051C284, _Myend=0051C284
size=3, capacity=3

element 0: 1

element 1: 2

element 2: 3

_Myfirst=0051C290, _Mylast=0051C2A0, _Myend=0051C2A0
size=4, capacity=4

element 0: 1

element 1: 2

element 2: 3

element 3: 4

_Myfirst=0051B180, _Mylast=0051B190, _Myend=0051B198
size=4, capacity=6

element O0: 1

element 1: 2

element 2: 3

element 3: 4

_Myfirst=0051B180, _Mylast=0051B194, _Myend=0051B198
size=b, capacity=6

element O0: 1

element 1: 2

element 2: 3

element 3: 4

element 4: 5

_Myfirst=0051B180, _Mylast=0051B198, _Myend=0051B198
size=6, capacity=6

w N = O

element 0: 1
element 1: 2
element 2: 3
element 3: 4
element 4: 5
element 5: 6
6

6619158

As it can be seen, there is no allocated buffer at the main () function start yet. After first push_back () call buffer is al-
located. And then, after each push_back () call, both array size and buffer size (capacity) are increased. But buffer address
is changed as well, because push_back () function reallocates the buffer in the heap each time. It is costly operation, that’s

290

34.3. STD::VECTOR CHAPTER 34. STL
why it is very important to predict future array size and reserve a space for it with .reserve () method. The very last num-
ber is a garbage: there are no array elements at this point, so random number is printed. This is illustration to the fact that
operator [] of std: :vector is not checking if the index in the array bounds. .at () method, however, does checking and
throw std: : out_of_range exception in case of error.

Let’s see the code:

Listing 34.11: MSVC 2012 /GS- /Ob1

$SG52650 DB >%d’, OaH, OOH
$SG52651 DB >%d’, OaH, OOH
_this$ = -4 ; size = 4
__Pos$ = 8 ; size = 4
7at@?$vector@HV?$allocator@HOstd@@@std@EQAEAAHI@Z PROC ; std::vector<int,std::allocator<int> >::
at, COMDAT

; _this$ = ecx

push ebp

mov ebp, esp

push ecx

mov DWORD PTR _this$[ebp]l, ecx

mov eax, DWORD PTR _this$[ebp]

mov ecx, DWORD PTR _this$[ebp]

mov edx, DWORD PTR [eax+4]

sub edx, DWORD PTR [ecx]

sar edx, 2

cmp edx, DWORD PTR __Pos$[ebp]

ja SHORT $LN1@at

push OFFSET ?77_C@_OBM@GNMJKDPPO@invalid?5vector?$DMT?$D075subscript?$AAQ
call DWORD PTR __imp_7_Xout_of_rangeQ@std@@YAXPBDQZ

$LN1@at:

mov eax, DWORD PTR _this$[ebp]

mov ecx, DWORD PTR [eax]

mov edx, DWORD PTR __Pos$[ebp]

lea eax, DWORD PTR [ecx+edx*4]
$LN3Cat :

mov esp, ebp

pop ebp

ret 4
?at@?$vector@HV?$allocator@H@std@@@std@@QAEAAHIQ@Z ENDP ; std::vector<int,std::allocator<int> >::

at

_c$ = -36 ; size = 12
$T1 = -24 ; size = 4
$T2 = -20 ; size = 4
$T3 = -16 ; size = 4
$T4 = -12 ; size = 4
$T5 = -8 ; size = 4
$T6 = -4 ; size = 4
_main PROC

push ebp

mov ebp, esp

sub esp, 36 ; 00000024H

mov DWORD PTR _c$[ebpl, O ; Myfirst

mov DWORD PTR _c$[ebp+4], O ; Mylast

mov DWORD PTR _c$[ebp+8], O ; Myend

lea eax, DWORD PTR _c$[ebp]

push eax

call ?dump@@YAXPAUvector_of_intsQQQZ ; dump

add esp, 4

mov DWORD PTR $T6[ebpl, 1

lea ecx, DWORD PTR $T6 [ebp]

push ecx

291

34.3. STD::VECTOR CHAPTER 34. STL

lea ecx, DWORD PTR _c$[ebp]
call ?push_back@?$vector@HV?$allocator@HOstd00@stdQ@QAEX$$QAHOZ ; std::vector<int,std
::allocator<int> >::push_back

lea edx, DWORD PTR _c$[ebp]

push edx

call ?dump@@YAXPAUvector_of_intsQQQZ ; dump
add esp, 4

mov DWORD PTR $T5[ebpl, 2

lea eax, DWORD PTR $T5[ebp]

push eax

lea ecx, DWORD PTR _c$[ebp]

call ?push_back@?$vector@HV?$allocator@HOstd00@stdQOQAEX$$QAHOZ ; std::vector<int,std
::allocator<int> >::push_back

lea ecx, DWORD PTR _c$[ebp]

push ecx

call ?dump@Q@YAXPAUvector_of_intsQQQZ ; dump
add esp, 4

mov DWORD PTR $T4[ebpl, 3

lea edx, DWORD PTR $T4[ebp]

push edx

lea ecx, DWORD PTR _c$[ebp]

call ?push_back@?$vector@HV?$allocator@HOstd00AstdQOQAEX$$QAHOZ ; std::vector<int,std
::allocator<int> >::push_back

lea eax, DWORD PTR _c$[ebp]

push eax

call ?dump@@YAXPAUvector_of _intsQQQZ ; dump
add esp, 4

mov DWORD PTR $T3[ebpl, 4

lea ecx, DWORD PTR $T3[ebp]

push ecx

lea ecx, DWORD PTR _c$[ebp]

call ?push_back@?$vector@HV?$allocator@HOstd0C@stdQCQAEX$$QAHGZ ; std::vector<int,std
::allocator<int> >::push_back

lea edx, DWORD PTR _c$[ebp]

push edx

call ?dump@QYAXPAUvector_of_ints@QQZ ; dump
add esp, 4

push 6

lea ecx, DWORD PTR _c$[ebp]

call ?reserve@?$vector@iV?$allocator@i@std@@@std@@QYAEXIQ@Z ; std::vector<int,std::
allocator<int> >::reserve

lea eax, DWORD PTR _c$[ebp]

push eax

call ?dump@Q@YAXPAUvector_of_ints@QQZ ; dump
add esp, 4

mov DWORD PTR $T2[ebpl, 5

lea ecx, DWORD PTR $T2[ebp]

push ecx

lea ecx, DWORD PTR _c$[ebp]

call ?push_back@?$vector@HV?$allocator@HOstd00@stdQOQAEX$$QAHOZ ; std::vector<int,std
::allocator<int> >::push_back

lea edx, DWORD PTR _c$[ebp]

push edx

call ?dump@Q@YAXPAUvector_of_intsQQQZ ; dump
add esp, 4

mov DWORD PTR $T1[ebpl, 6

lea eax, DWORD PTR $T1[ebp]

push eax

lea ecx, DWORD PTR _c$[ebp]

call ?push_back@?$vector@HV?$allocator@HOstd00@stdQCQAEX$$QAHOZ ; std::vector<int,std
::allocator<int> >::push_back

292

34.3. STD::VECTOR

CHAPTER 34. STL

lea
push
call
add
push
lea
call

ecx, DWORD PTR _c$[ebp]

ecx

?dump@@YAXPAUvector_of_intsQQQZ ; dump

esp, 4

5

ecx, DWORD PTR _c$[ebp]

7at@?$vector@HV?$allocator@H@std@@Astd@OOAEAAHIQZ ; std::vector<int,std::

allocator<int> >::at

mov
push
push
call
add
mov
shl
mov
mov
push
push
call
add
lea
call

edx, DWORD PTR [eax]

edx

OFFSET $SG52650 ; ’%d’
DWORD PTR __imp__printf
esp, 8

eax, 8

eax, 2

ecx, DWORD PTR _c$[ebp]
edx, DWORD PTR [ecxteax]
edx

OFFSET $SG52651 ; %4’
DWORD PTR __imp__printf
esp, 8

ecx, DWORD PTR _c$[ebp]
?_Tidy@7$vector@HV?$allocator@HOstd@0Ostd@QIAEXXZ ; std::vector<int,std::

allocator<int> >::_Tidy

xor
mov
pop
ret
_main ENDP

eax, eax
esp, ebp
ebp

0

We see how .at () method check bounds and throw exception in case of error. The number of the last printf () callis
just to be taken from a memory, without any checks.

One may ask, why not to use variables like “size” and “capacity”, like it was done in std: : string. | suppose, that was
done for the faster bounds checking. But I’m not sure.

The code GCC generates is almost the same on the whole, but . at () method is inlined:

Listing 34.12: GCC 4.8.1 -fno-inline-small-functions -O1

main

proc near

>>::push_back(int const&)

push ebp

mov ebp, esp

push edi

push esi

push ebx

and esp, OFFFFFFFOh

sub esp, 20h

mov dword ptr [esp+14h], O

mov dword ptr [esp+18h], O

mov dword ptr [esp+1Ch], O

lea eax, [esp+14h]

mov [esp]l, eax

call _Z4dumpPl4vector_of_ints ; dump(vector_of_ints *)
mov dword ptr [esp+10h], 1

lea eax, [esp+10h]

mov [espt4], eax

lea eax, [esp+14h]

mov [esp]l, eax

call _ZNSt6vectorIiSaliEE9push_backERKi ; std::vector<int,std::allocator<int
lea eax, [esp+14h]

mov [esp]l, eax

call _Z4dumpPl4vector_of_ints ; dump(vector_of_ints *)

293

34.3. STD::VECTOR

CHAPTER 34. STL

>>: :push_back(int

>>: :push_back(int

>>: :push_back(int

loc_80001AD:

loc_80001BD:

mov
lea
mov
lea
mov
call

lea
mov
call
mov
lea
mov
lea
mov
call

lea
mov
call
mov
lea
mov
lea
mov
call

lea
mov
call
mov
mov
sub
cmp
ja
mov
sub
sar
mov
call
mov
test
jz
lea
mov
mov
mov
call

mov
test
jz
mov
call

mov
lea
mov
add

dword ptr [esp+10h], 2

eax, [esp+10h]

[esp+4], eax

eax, [esp+14h]

[esp]l, eax

_ZNSt6vectorIiSaliEE9push_backERKi ; std::vector<int,std::allocator<int
const&)

eax, [esp+14h]

[esp], eax

_Z4dumpPl4vector_of_ints ; dump(vector_of_ints *)

dword ptr [esp+10h], 3

eax, [esp+10h]

[esp+4], eax

eax, [esp+14h]

[esp], eax

_ZNSt6vectorIiSaliEE9push_backERKi ; std::vector<int,std::allocator<int
const&)

eax, [esp+14h]

[esp], eax

_Z4dumpPl4vector_of_ints ; dump(vector_of_ints *)

dword ptr [esp+10h], 4

eax, [esp+10h]

[esp+4], eax

eax, [esp+14h]

[esp], eax

_ZNSt6vectorIiSaliEE9push_backERKi ; std::vector<int,std::allocator<int
const&)

eax, [esp+14h]

[esp]l, eax

_Z4dumpPl4vector_of_ints ; dump(vector_of_ints *)

ebx, [esp+14h]

eax, [esp+1Ch]

eax, ebx

eax, 17h

short loc_80001CF

edi, [esp+18h]

edi, ebx

edi, 2

dword ptr [esp], 18h

_Znwj ; operator new(uint)
esi, eax

edi, edi

short loc_80001AD
eax, ds:0[edix4]

[esp+8], eax ; n
[esp+4], ebx ; src
[esp], esi ; dest
memmove

; CODE XREF: main+F8
eax, [esp+14h]

eax, eax
short loc_80001BD

[esp]l, eax ; void *

_Zd1Pv ; operator delete(void *)

; CODE XREF: main+117
[esp+14h], esi
eax, [esi+edix*4]
[esp+18h], eax
esi, 18h

294

34.3. STD::VECTOR

CHAPTER 34. STL

loc_80001CF:

>>: :push_back(int

>>: :push_back(int

1loc_8000246:

loc_80002A4:

mov

lea
mov
call
mov
lea
mov
lea
mov
call

lea
mov
call
mov
lea
mov
lea
mov
call

lea
mov
call
mov
mov
sub
cmp
ja
mov
call

[esp+1Ch], esi

; CODE XREF: main+DD
eax, [esp+14h]
[esp]l, eax
_Z4dumpPl4vector_of_ints ; dump(vector_of_ints *)
dword ptr [esp+10h], 5
eax, [esp+10h]
[espt4], eax
eax, [esp+14h]
[esp]l, eax
_ZNSt6vectorIiSaliEE9push_backERKi ; std::vector<int,std::allocator<int

const&)

eax, [esp+14h]

[esp], eax

_Z4dumpPl4vector_of_ints ; dump(vector_of_ints *)

dword ptr [esp+10h], 6

eax, [esp+10h]

[esp+4], eax

eax, [esp+14h]

[esp]l, eax

_ZNSt6vectorIiSaliEE9push_backERKi ; std::vector<int,std::allocator<int

const&)

eax, [esp+14h]

[esp], eax

_Z4dumpPl4vector_of_ints ; dump(vector_of_ints *)

eax, [esp+14h]

edx, [esp+18h]

edx, eax

edx, 17h

short loc_8000246

dword ptr [esp], offset aVector_m_range ; "vector::_M_range_check"

_ZSt20__throw_out_of _rangePKc ; std::__throw_out_of_range(char const*)
; CODE XREF: main+19C

eax, [eax+14h]

[esp+8], eax

dword ptr [esp+4], offset aD ; "Vd\n"

dword ptr [esp]l, 1

__printf_chk

eax, [esp+14h]

eax, [eax+20h]

[esp+8], eax

dword ptr [esp+4], offset aD ; "Vd\n"

dword ptr [esp]l, 1

__printf_chk

eax, [esp+14h]

eax, eax

short loc_80002AC

[esp]l, eax ; void *

_Zd1Pv ; operator delete(void *)

short loc_80002AC

ebx, eax

edx, [esp+14h]

edx, edx

short loc_80002A4

[esp]l, edx ; void *

_Zd1Pv ; operator delete(void *)

; CODE XREF: main+1FE

295

34.3. STD::VECTOR CHAPTER 34. STL

mov [esp]l, ebx
call _Unwind_Resume
loc_80002AC: ; CODE XREF: main+1EA
; main+1F4
mov eax, O
lea esp, [ebp-0Ch]
pop ebx
pop esi
pop edi
pop ebp
locret_80002B8: ; DATA XREF: .eh_frame:08000510
; .eh_frame:080005BC
retn
main endp

.reserve () method is inlined as well. It calls new() if buffer is too small for new size, call memmove () to copy buffer
contents, and call delete () to free old buffer.
Let’s also see what the compiled program outputs if compiled by GCC:

_Myfirst=0x(nil), _Mylast=0x(nil), _Myend=0x(nil)
size=0, capacity=0

_Myfirst=0x8257008, _Mylast=0x825700c, _Myend=0x825700c
size=1, capacity=1

element 0: 1

_Myfirst=0x8257018, _Mylast=0x8257020, _Myend=0x8257020
size=2, capacity=2

element 0: 1

element 1: 2

_Myfirst=0x8257028, _Mylast=0x8257034, _Myend=0x8257038
size=3, capacity=4

element 0: 1

element 1: 2

element 2: 3

_Myfirst=0x8257028, _Mylast=0x8257038, _Myend=0x8257038
size=4, capacity=4

element 0: 1

element 1: 2

element 2: 3

element 3: 4

_Myfirst=0x8257040, _Mylast=0x8257050, _Myend=0x8257058
size=4, capacity=6

element 0: 1

element 1: 2

element 2: 3

element 3: 4

_Myfirst=0x8257040, _Mylast=0x8257054, _Myend=0x8257058
size=5, capacity=6

element 1

element 1: 2

element 2: 3

element 3: 4

element 4: 5

_Myfirst=0x8257040, _Mylast=0x8257058, _Myend=0x8257058
size=6, capacity=6

element 0: 1

element
element

w N = O

element
element

IV O @)
o wN

296

34.4. STD::MAP AND STD::SET CHAPTER 34. STL
element 5: 6

6

0

We can spot that buffer size grows in different way that in MSVC.
Simple experimentation shows that MSVC implementation buffer grows by ~50% each time it needs to be enlarged, while
GCC code enlarges it by 100% each time, i.e., doubles it each time.

34.4 std::map and std::set

Binary tree is another fundamental data structure. As it states, this is a tree, but each node has at most 2 links to other nodes.
Each node have key and/or value.
Binary trees are usually the structure used in “dictionaries” of key-values (AKA “associative arrays”) implementations.
There are at least three important properties binary trees has:

e All keys are stored in always sorted form.

e Keys of any types can be stored easily. Binary tree algorithms are unaware of key type, only key comparison function
is required.

e Finding needed key is relatively fast in comparison with lists and arrays.

Here is a very simple example: let’s store these numbersin binary tree: 0,1, 2, 3,5, 6, 9,10, 11,12, 20, 99,100, 101, 107, 1001,
1010.

All keys lesser than node key value is stored on the left side. All keys greater than node key value is stored on the right
side.

Hence, finding algorithm is straightforward: if the value you looking for is lesser than current node’s key value: move left,
if it is greater: move right, stop if the value required is equals to the node’s key value. That is why searching algorithm may
search for numbers, text strings, etc, using only key comparison function.

All keys has unique values.

Having that, one need ~ log, n stepsin order to find a key in the balanced binary tree of n keys. Itis~ 10 steps for ~ 1000
keys, or = 13 steps for ~ 10000 keys. Not bad, but tree should always be balanced for this: i.e., keys should be distributed
evenly on all tiers. Insertion and removal operations do some maintenance to keep tree in balanced state.

There are several popularbalancing algorithms available, including AVL tree and red-black tree. The latter extends a node
by a “color” value for simplifying balancing process, hence, each node may be “red” or “black”.

Both GCC and MSVC std: :map and std: : set template implementations use red-black trees.

std: :set contain only keys. std: :map is “extended” version of set: it also has a value at each node.

34.41 MSVC

#include <map>
#include <set>
#include <string>
#include <iostream>

297

34.4. STD::MAP AND STD::SET

CHAPTER 34. STL

// struct is not packed!
struct tree_node

{
struct tree_node *Left;
struct tree_node *Parent;
struct tree_node *Right;
char Color; // O - Red, 1 - Black
char Isnil;
//std: :pair Myval;
unsigned int first; // called Myval in std::set
const char *second; // not present in std::set
}s
struct tree_struct
{
struct tree_node *Myhead;
size_t Mysize;
Jrg

void dump_tree_node (struct tree_node *n, bool is_set, bool traverse)

{

printf ("ptr=0xYp Left=0xJ)p Parent=0x%p Right=0x%p Color=/d Isnil=)d\n",
n, n->Left, n->Parent, n->Right, n->Color, n->Isnil);

if (n->Isnil==0)

{
if (is_set)
printf ("first=Jd\n", n->first);
else
printf ("first=)d second=[%s]\n", n->first, n->second);
}
if (traverse)
{
if (n->Isnil==1)
dump_tree_node (n->Parent, is_set, true);
else
{
if (n->Left->Isnil==0)
dump_tree_node (n->Left, is_set, true);
if (n->Right->Isnil==0)
dump_tree_node (n->Right, is_set, true);
};
I8

I3
const char* ALOT_OF_TABS="\t\t\t\t\t\t\t\t\t\t\t";

void dump_as_tree (int tabs, struct tree_node *n, bool is_set)
{
if (is_set)
printf ("%d\n", n->first);
else
printf ("%d [%s]\n", n->first, n->second);
if (n->Left->Isnil==0)

{
printf ("%.*sL------- ", tabs, ALOT_OF_TABS);
dump_as_tree (tabs+l, n->Left, is_set);

};

if (n->Right->Isnil==0)

{

298

34.4. STD::MAP AND STD::SET

CHAPTER 34. STL

printf ("%.*sR------- ", tabs, ALOT_OF_TABS);
dump_as_tree (tabs+l, n->Right, is_set);

};
s
void dump_map_and_set(struct tree_struct *m, bool is_set)
{
printf ("ptr=0x’p, Myhead=0x%p, Mysize=}d\n", m, m->Myhead, m->Mysize);
dump_tree_node (m->Myhead, is_set, true);
printf ("As a tree:\n");
printf ("root----");
dump_as_tree (1, m->Myhead->Parent, is_set);
};

int main()
{
// map

std::map<int, const char*> m;

m[10]="ten";

m[20]="twenty";

m[3]="three";

m[101]="one hundred one";
m[100]="one hundred";
m[12]="twelve";

m[107]="one hundred seven";
m[0]="zero";

m[1]="one";

m[6]="six";
m[99]="ninety-nine";
m[5]="five";

m[11]="eleven";

m[1001]="one thousand one";
m[1010]="one thousand ten";
m[2]="two";

m[9]="nine";

printf ("dumping m as map:\n");
dump_map_and_set ((struct tree_struct *)(voidx)&m, false);

std: :map<int, const char*>::iterator itl=m.begin();

printf ("m.begin():\n");

dump_tree_node ((struct tree_node *)*(voidx*)&itl, false, false);
itl=m.end();

printf ("m.end():\n");

dump_tree_node ((struct tree_node *)*(voidx*)&itl, false, false);

// set

std::set<int> s;

.insert (123);

.insert (456) ;

.insert(11);

.insert (12);

.insert (100);

s.insert(1001) ;

printf ("dumping s as set:\n");

dump_map_and_set ((struct tree_struct *)(void*)&s, true);
std: :set<int>::iterator it2=s.begin();

printf ("s.begin():\n");

dump_tree_node ((struct tree_node *)*(void**)&it2, true, false);

n n n n 0

299

34.4. STD::MAP AND STD::SET

CHAPTER 34. STL

it2=s.end();
printf ("s.end():\n");

dump_tree_node ((struct tree_node *)*(void**)&it2, true, false);

Listing 34.13: MSVC 2012

dumping m as map:

ptr=0x0020FE04, Myhead=0x005BB3A0, Mysize=17
ptr=0x005BB3A0 Left=0x005BB4A0 Parent=0x005BB3CO
ptr=0x005BB3CO Left=0x005BB4C0O Parent=0x005BB3A0
first=10 second=[ten]
ptr=0x005BB4CO Left=0x005BB4A0
first=1 second=[one]
ptr=0x005BB4A0 Left=0x005BB3A0
first=0 second=[zero]
ptr=0x005BB520 Left=0x005BB400
first=5 second=[five]
ptr=0x005BB400 Left=0x005BB5A0
first=3 second=[three]
ptr=0x005BB5A0 Left=0x005BB3A0
first=2 second=[two]
ptr=0x005BB4E0 Left=0x005BB3A0
first=6 second=[six]
ptr=0x005BB5C0O Left=0x005BB3A0
first=9 second=[nine]
ptr=0x005BB440 Left=0x005BB3EO
first=100 second=[one hundred]
ptr=0x005BB3E0 Left=0x005BB460
first=20 second=[twenty]
ptr=0x005BB460 Left=0x005BB540
first=12 second=[twelve]
ptr=0x005BB540 Left=0x005BB3A0
first=11 second=[eleven]
ptr=0x005BB500 Left=0x005BB3A0
first=99 second=[ninety-nine]
ptr=0x005BB480 Left=0x005BB420 Parent=0x005BB440
first=107 second=[one hundred seven]
ptr=0x005BB420 Left=0x005BB3A0 Parent=0x005BB480
first=101 second=[one hundred one]
ptr=0x005BB560 Left=0x005BB3A0 Parent=0x005BB480
first=1001 second=[one thousand one]
ptr=0x005BB580 Left=0x005BB3A0 Parent=0x005BB560
first=1010 second=[one thousand ten]

As a tree:

Parent=0x005BB3CO

Parent=0x005BB4C0O

Parent=0x005BB4CO

Parent=0x005BB520

Parent=0x005BB400

Parent=0x005BB520

Parent=0x005BB4EO

Parent=0x005BB3CO

Parent=0x005BB440

Parent=0x005BB3EQO

Parent=0x005BB460

Parent=0x005BB3EO

Right=0x005BB580
Right=0x005BB440

Right=0x005BB520
Right=0x005BB3A0
Right=0x005BB4EQ
Right=0x005BB3A0
Right=0x005BB3A0
Right=0x005BB5CO
Right=0x005BB3A0
Right=0x005BB480
Right=0x005BB500
Right=0x005BB3A0
Right=0x005BB3A0
Right=0x005BB3A0
Right=0x005BB560
Right=0x005BB3A0
Right=0x005BB580

Right=0x005BB3A0

root----10 [ten]
R 1 [one]
Lo 0 [zero]
R-—-mm— 5 [five]
P 3 [three]
L-—————- 2 [two]
| 6 [six]
R-——-—-——- 9 [nine]
Ro—oeeee 100 [one hundred]
20 [twenty]
P 12 [twelve]
[P 11 [eleven]
R-——---- 99 [ninety-nine]
R-—————- 107 [one hundred seven]
IR —— 101 [one hundred one]
R----———- 1001 [one thousand one]

300

Color=1
Color=1

Color=1

Color=1

Color=0

Color=1

Color=0

Color=1

Color=0

Color=1

Color=0

Color=1

Color=0

Color=1

Color=0

Color=1

Color=1

Color=0

Isnil=1
Isnil=0

Isnil=0

Isnil=0

Isnil=0

Isnil=0

Isnil=0

Isnil=0

Isnil=0

Isnil=0

Isnil=0

Isnil=0

Isnil=0

Isnil=0

Isnil=0

Isnil=0

Isnil=0

Isnil=0

34.4. STD::MAP AND STD::SET

CHAPTER 34. STL

m.begin() :

R-———-——- 1010 [one thousand ten]

ptr=0x005BB4A0 Left=0x005BB3A0 Parent=0x005BB4CO Right=0x005BB3A0
first=0 second=[zero]

m.end() :

ptr=0x005BB3A0 Left=0x005BB4A0 Parent=0x005BB3CO

dumping s as set:
ptr=0x0020FDFC, Myhead=0x005BB5EO, Mysize=6

ptr=0x005BB5EO
ptr=0x005BB600
first=123
ptr=0x005BB660
first=12
ptr=0x005BB640
first=11
ptr=0x005BB680
first=100
ptr=0x005BB620
first=456
ptr=0x005BB6A0
first=1001

As a tree:
root----123

s.begin():

Left=0x005BB640
Left=0x005BB660

Left=0x005BB640

Left=0x005BB5EO

Left=0x005BB5EO

Left=0x005BB5EOQ

Left=0x005BB5EO

-12
Lo-—-mn 11
R--—-m—- 100

-456
R----m-- 1001

Parent=0x005BB600
Parent=0x005BB5EO

Parent=0x005BB600

Parent=0x005BB660

Parent=0x005BB660

Parent=0x005BB600

Parent=0x005BB620

Right=0x005BB580

Right=0x005BB6A0
Right=0x005BB620

Right=0x005BB680
Right=0x005BB5EOQ
Right=0x005BB5EO
Right=0x005BB6AO

Right=0x005BB5EO

Color=1

Color=1

Color=1
Color=1

Color=1

Color=0

Color=0

Color=1

Color=0

Isnil=0

Isnil=1

Isnil=1
Isnil=0

Isnil=0

Isnil=0

Isnil=0

Isnil=0

Isnil=0

ptr=0x005BB640 Left=0x005BB5EO Parent=0x005BB660 Right=0x005BB5EO Color=0 Isnil=0

first=11
s.end():

ptr=0x005BB5EO Left=0x005BB640 Parent=0x005BB600 Right=0x005BB6A0 Color=1 Isnil=1

Structure is not packed, so both char type values occupy 4 bytes each.
As for std: :map, first and second can be viewed as a single value of std: :pair type. std: : set has only one value at
this point in the structure instead.
Current size of tree is always present, as in case of std: : 1ist MSVC implementation (34.2.2).
As in case of std: :1ist, iterators are just pointers to the nodes. .begin() iterator pointing to the minimal key. That
pointer is not stored somewhere (as in lists), minimal key of tree is to be found each time. operator- and operator++
moves pointer to the current node to predecessor and successor respectively, i.e., nodes which has previous and next key.
The algorithms for all these operations are described in [7].
.end () iterator pointing to the root node, it has 1 in Isnil, meaning, the node has no key and/or value. So it can be
viewed as a “landing zone” in HDD*.

34.4.2 GCC

#include
#include <map>
#include <set>
#include

#include

struct map_pair

{

<stdio.h>

<string>
<iostream>

int key;
const char *value;

};

4Hard disk drive

301

34.4. STD::MAP AND STD::SET CHAPTER 34. STL

struct tree_node

{
int M_color; // O - Red, 1 - Black
struct tree_node *M_parent;
struct tree_node *M_left;
struct tree_node *M_right;

i

struct tree_struct

{
int M_key_compare;
struct tree_node M_header;
size_t M_node_count;

Jg

void dump_tree_node (struct tree_node *n, bool is_set, bool traverse, bool dump_keys_and_values)

{
printf ("ptr=0xYp M_left=0x%p M_parent=0x%p M_right=0xp M_color=%d\n",
n, n->M_left, n->M_parent, n->M_right, n->M_color) ;

void *point_after_struct=((char*)n)+sizeof (struct tree_node);

if (dump_keys_and_values)

{
if (is_set)
printf ("key=%d\n", *(int*)point_after_struct);
else
{
struct map_pair *p=(struct map_pair #*)point_after_struct;
printf ("key=Jd value=[%s]\n", p->key, p->value);
};
};

if (traverse==false)
return;

if (n->M_left)

dump_tree_node (n->M_left, is_set, traverse, dump_keys_and_values);
if (n->M_right)

dump_tree_node (n->M_right, is_set, traverse, dump_keys_and_values);

};
const char* ALOT_OF_TABS="\t\t\t\t\t\t\t\t\t\t\t";

void dump_as_tree (int tabs, struct tree_node *n, bool is_set)
{

void *point_after_struct=((char*)n)+sizeof (struct tree_node);

if (is_set)
printf ("%d\n", *(int*)point_after_struct);

else

{
struct map_pair *p=(struct map_pair *)point_after_struct;
printf ("%d [%s]l\n", p->key, p->value);

}

if (n->M_left)

{
printf ("% .*sL------- ", tabs, ALOT_OF_TABS);
dump_as_tree (tabs+l, n->M_left, is_set);

302

34.4. STD::MAP AND STD::SET

CHAPTER 34. STL

};
if (n->M_right)
{
printf ("%.*sR------- ", tabs, ALOT_OF_TABS);
dump_as_tree (tabs+l, n->M_right, is_set);
};
};
void dump_map_and_set(struct tree_struct *m, bool is_set)
{
printf ("ptr=0xYp, M_key_compare=0x%x, M_header=0xJp, M_node_count=%d\n",
m, m->M_key_compare, &m->M_header, m->M_node_count) ;
dump_tree_node (m->M_header.M_parent, is_set, true, true);
printf ("As a tree:\n");
printf ("root----");
dump_as_tree (1, m->M_header.M_parent, is_set);
};

int main()
{
// map

std::map<int, const char*> m;

m[10]="ten";
m[20]="twenty";
m[3]="three";

m[101]="one hundred one";
m[100]="one hundred";
m[12]="twelve";

m[107]="one hundred seven';
m[0]="zero";

m[1]="one";

m[6]="six";
m[99]="ninety-nine";
m[5]="five";
m[11]="eleven";
m[1001]="one thousand one";
m[1010]="one thousand ten";
m[2]="two";

m[9]="nine";

printf ("dumping m as map:\n");
dump_map_and_set ((struct tree_struct *)(voidx)&m, false);

std: :map<int, const char*>::iterator itl=m.begin();

printf ("m.begin():\n");

dump_tree_node ((struct tree_node *)*(void**)&itl, false, false, true);
itl=m.end();

printf ("m.end():\n");

dump_tree_node ((struct tree_node *)*(void**)&itl, false, false, false);

// set

std: :set<int> s;
.insert(123);
.insert (456) ;
.insert (11);
.insert (12);
.insert (100);
.insert (1001);

n n n n n "

303

34.4. STD::MAP AND STD::SET

CHAPTER 34. STL

printf ("dumping s as set:\n");
dump_map_and_set ((struct tree_struct *)(voidx*)&s, true);
std::set<int>::iterator it2=s.begin();

printf ("s.begin():\n");

dump_tree_node ((struct tree_node *)*(void**)&it2, true, false, true);

it2=s.end();
printf ("s.end():\n");

dump_tree_node ((struct tree_node *)*(void**)&it2, true, false, false);

Listing 34.14: GCC 4.8.1

dumping m as map:

ptr=0x0028FE3C, M_key_compare=0x402b70, M_header=0x0028FE40, M_node_count=17
ptr=0x007A4988 M_left=0x007A4C00 M_parent=0x0028FE40 M_right=0x007A4B80

key=10 value=[ten]

ptr=0x007A4C00 M_left=0x007A4BEO M_parent=0x007A4988 M_right=0x007A4C60

key=1 value=[one]

ptr=0x007A4BEO M_left=0x00000000
key=0 value=[zero]
ptr=0x007A4C60 M_left=0x007A4B40
key=5 value=[five]
ptr=0x007A4B40 M_left=0x007A4CEO
key=3 value=[three]
ptr=0x007A4CE0 M_1eft=0x00000000
key=2 value=[two]

ptr=0x007A4C20 M_left=0x00000000
key=6 value=[six]

ptr=0x007A4D00 M_left=0x00000000
key=9 value=[nine]
ptr=0x007A4B80 M_left=0x007A49A8
key=100 value=[one hundred]
ptr=0x007A49A8 M_left=0x007A4BAO
key=20 value=[twenty]
ptr=0x007A4BA0 M_left=0x007A4C80
key=12 value=[twelve]
ptr=0x007A4C80 M_1left=0x00000000
key=11 value=[eleven]
ptr=0x007A4C40 M_left=0x00000000
key=99 value=[ninety-nine]
ptr=0x007A4BCO M_left=0x007A4B60
key=107 value=[one hundred seven]
ptr=0x007A4B60 M_left=0x00000000
key=101 value=[one hundred one]
ptr=0x007A4CA0 M_left=0x00000000
key=1001 value=[one thousand one]
ptr=0x007A4CCO M_1eft=0x00000000
key=1010 value=[one thousand ten]
As a tree:

M_parent=0x007A4C00
M_parent=0x007A4C00
M_parent=0x007A4C60
M_parent=0x007A4B40
M_parent=0x007A4C60
M_parent=0x007A4C20
M_parent=0x007A4988
M_parent=0x007A4B80
M_parent=0x007A49A8
M_parent=0x007A4BAO
M_parent=0x007A49A8
M_parent=0x007A4B80
M_parent=0x007A4BCO
M_parent=0x007A4BCO

M_parent=0x007A4CAO

root----10 [ten]
1 [one]
Lomemmee 0 [zero]
Rommmmmm 5 [five]
Lo _ 3 [threel
R 2 [two]
R--—mmm e 6 [six]
Ro-mmmm- 9 [nine]
Ro—mmmem 100 [one hundred]
20 [twenty]
Le—mmm o 12 [twelvel
R 11 [eleven]

304

M_right=0x00000000
M_right=0x007A4C20
M_right=0x00000000
M_right=0x00000000
M_right=0x007A4D00
M_right=0x00000000
M_right=0x007A4BCO
M_right=0x007A4C40
M_right=0x00000000
M_right=0x00000000
M_right=0x00000000
M_right=0x007A4CAQ
M_right=0x00000000
M_right=0x007A4CCO

M_right=0x00000000

M_color=1

M_color=1

M_color=1

M_color=0

M_color=1

M_color=0

M_color=1

M_color=0

M_color=1

M_color=0

M_color=1

M_color=0

M_color=1

M_color=0

M_color=1

M_color=1

M_color=0

34.4. STD::MAP AND STD::SET CHAPTER 34. STL

Ro-—oeeee 99 [ninety-ninel
Bococo== 107 [one hundred seven]
A 101 [one hundred one]
Ro-oeoe— 1001 [one thousand one]
R--—————- 1010 [one thousand ten]

m.begin() :

ptr=0x007A4BEO0 M_left=0x00000000 M_parent=0x007A4C00 M_right=0x00000000 M_color=1
key=0 value=[zero]

m.end() :

ptr=0x0028FE40 M_left=0x007A4BEO M_parent=0x007A4988 M_right=0x007A4CCO M_color=0

dumping s as set:

ptr=0x0028FE20, M_key_compare=0x8, M_header=0x0028FE24, M_node_count=6
ptr=0x007A1E80 M_left=0x01D5D890 M_parent=0x0028FE24 M_right=0x01D5D850 M_color=1
key=123

ptr=0x01D5D890 M_1left=0x01D5D870 M_parent=0x007A1E80 M_right=0x01D5D8BO M_color=1
key=12

ptr=0x01D5D870 M_1left=0x00000000 M_parent=0x01D5D890 M_right=0x00000000 M_color=0
key=11

ptr=0x01D5D8BO M_1left=0x00000000 M_parent=0x01D5D890 M_right=0x00000000 M_color=0
key=100

ptr=0x01D5D850 M_1eft=0x00000000 M_parent=0x007A1E80 M_right=0x01D5D8D0 M_color=1

key=456
ptr=0x01D5D8D0 M_1left=0x00000000 M_parent=0x01D5D850 M_right=0x00000000 M_color=0
key=1001
As a tree:
root----123
L-—--——- 12
L-—--——-—- 11
R-——---—-—- 100
R-——-—-——- 456
R------- 1001
s.begin():
ptr=0x01D5D870 M_1left=0x00000000 M_parent=0x01D5D890 M_right=0x00000000 M_color=0
key=11
s.end():

ptr=0x0028FE24 M_left=0x01D5D870 M_parent=0x007A1E80 M_right=0x01D5D8D0 M_color=0

GCC implementation is very similar . The only difference is absence of Isnil field, so the structure occupy slightly less
space in memory than as it is implemented in MSVC. Root node is also used as a place .end () iterator pointing to and also
has no key and/or value.

34.4.3 Rebalancing demo (GCC)
Here is also a demo showing us how tree is rebalanced after insertions.

Listing 34.15: GCC

#include <stdio.h>
#include <map>
#include <set>
#include <string>
#include <iostream>

struct map_pair
{
int key;
const char *value;

};

struct tree_node

Shttp://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.1/stl__tree_8h-source.html

305

http://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.1/stl__tree_8h-source.html

34.4. STD::MAP AND STD::SET CHAPTER 34. STL
{

int M_color; // O - Red, 1 - Black
struct tree_node *M_parent;

struct tree_node *M_left;

struct tree_node *M_right;

}s

struct tree_struct

{
int M_key_compare;
struct tree_node M_header;
size_t M_node_count;

}s

const char* ALOT_OF_TABS="\t\t\t\t\t\t\t\t\t\t\t";

void dump_as_tree (int tabs, struct tree_node *n)

{
void #*point_after_struct=((char*)n)+sizeof (struct tree_node);
printf ("%d\n", *(int*)point_after_struct);
if (n->M_left)
{
printf ("%.*sL------- ", tabs, ALOT_OF_TABS);
dump_as_tree (tabs+l, n->M_left);
};
if (n->M_right)
{
printf ("%.*sR------- ", tabs, ALOT_OF_TABS);
dump_as_tree (tabs+1, n->M_right);
};
};
void dump_map_and_set(struct tree_struct *m)
{
printf ("root----");
dump_as_tree (1, m->M_header.M_parent) ;
};

int main()
{
std: :set<int> s;
s.insert(123);
s.insert (456);
printf ("123, 456 are inserted\n");
dump_map_and_set ((struct tree_struct *) (void*)&s);
s.insert(11);
s.insert(12);
printf ("\n");
printf ("11, 12 are inserted\n");
dump_map_and_set ((struct tree_struct *)(void*)&s);
s.insert (100);
s.insert (1001);
printf ("\n");
printf ("100, 1001 are inserted\n");
dump_map_and_set ((struct tree_struct *) (void*)&s);
s.insert (667) ;
s.insert(1);
s.insert(4);
s.insert(7);

306

34.4. STD::MAP AND STD::SET

CHAPTER 34. STL

printf ("\n");

printf ("667, 1, 4, 7 are inserted\n");

dump_map_and_set ((struct tree_struct *) (void*)&s);

printf ("\n");

Listing 34.16: GCC 4.8.1

123, 456 are inserted
root----123

11, 12 are inserted

root----123
L-————- 11
Rocooeene
R---—-—--—- 456

100, 1001 are inserted
root----123

Lom—mmm 12
| P
.

R-----—- 456
Ro—oeeewe

667, 1, 4, 7 are inserte
root----12

d

307

Part il

Important fundamentals

308

CHAPTER 35. SIGNED NUMBER REPRESENTATIONS

Chapter 35

Signed number representations

There are several methods of representing signed numbers', but in x86 architecture used “two’s complement”.

binary hexadecimal | unsigned | signed (2’s complement)
onmm oxrf 127 127
O1111110 0x7e 126 126
00000010 | Ox2 2 2
00000001 | Ox1 1 1
00000000 | 0x0 0 0
minim Oxff 255 -1
nno Oxfe 254 -2
10000010 | 0x82 130 -126
10000001 0x81 129 -127
10000000 | 0x80 128 -128

The difference between signed and unsigned numbers is that if we represent OxFFFFFFFE and 0x0000002 as unsigned,
then first number (4294967294) is bigger than second (2). If to represent them both as signed, first will be —2, and it is lesser
than second (2). That is the reason why conditional jumps (10) are present both for signed (e.g. JG, JL) and unsigned (JA,
JBE) operations.

For the sake of simplicity, that is what one need to know:

e Number can be signed or unsigned.

C/C++ signed types: int (-2147483646..2147483647 or 0x80000000 . . 0x7FFFFFFF), char (-127..128 or 0x7F . . 0x80). Un-
signed: unsigned int (0..4294967295 or 0. .OxFFFFFFFF), unsigned char (0..2550r0. .0xFF), size_t.

Signed types has sign in the most significant bit: 1 mean “minus”, 0 mean “plus”.

Addition and subtraction operations are working well for both signed and unsigned values. But for multiplication and
division operations, x86 has different instructions: IDIV/IMUL for signed and DIV/MUL for unsigned.

More instructions working with signed numbers: CBW/CWD/CWDE/CDQ/CDQE (80.6.3), MOVSX (13.1), SAR (80.6.3).

35.1 Integer overflow

It is worth noting that incorrect representation of number can lead integer overflow vulnerability.

For example, we have a network service, it receives network packets. In the packets there is also a field where subpacket
length is coded. It is 32-bit value. After network packet received, service checking the field, and if it is larger than, e.g. some
MAX_PACKET_SIZE (let’s say, 10 kilobytes), the packet is rejected as incorrect. Comparison is signed. Intruder set this value to
the OxFFFFFFFF. While comparison, this number is considered as signed —1 and it is lesser than 10 kilobytes. No error here.
Service would like to copy the subpacket to another place in memory and callmemcpy (dst, src, OxFFFFFFFF) function:
this operation, rapidly garbling a lot of inside of process memory.

More about it: [3].

Thttp://en.wikipedia.org/wiki/Signed_number_representations

309

http://en.wikipedia.org/wiki/Signed_number_representations

CHAPTER 36. ENDIANNESS

Chapter 36

Endianness

Endianness is a way of representing values in memory.

36.1 Big-endian

A 0x12345678 value will be represented in memory as:

address in memory | byte value
+0 0x12
+1 0x34
+2 0x56
+3 0x78
Big-endian CPUs are including Motorola 68k, IBM POWER.
36.2 Little-endian
A 0x12345678 value will be represented in memory as:
address in memory | byte value
+0 0x78
+1 0x56
+2 0x34
+3 0x12

Little-endian CPUs are including Intel x86.

36.3 Bi-endian

CPUs which may switch between endianness are ARM, PowerPC, SPARC, MIPS, I1A64', etc.

36.4 Converting data

TCP/IP network data packets are used big-endian conventions, so that is why a program working on little-endian architecture

should convert values using htonl () and htons () functions.

Big-endian convention in the TCP/IP environment is also called “network byte order”, while little-endian—“host byte or-

der”.
BSWAP instruction is also can be used for the conversion.

TIntel Architecture 64 (Itanium): 65

310

Part IV

Finding important/interesting stuff in the code

3M

Minimalism it is not a significant feature of modern software.

But not because programmers are writing a lot, but in a reason that all libraries are commonly linked statically to exe-
cutable files. If all external libraries were shifted into external DLL files, the world would be different. (Another reason for
C++—STL and other template libraries.)

Thus, itis very important to determine origin of a function, if it is from standard library or well-known library (like Boost?,
libpng3), and which one —is related to what we are trying to find in the code.

It is just absurdly to rewrite all code to C/C++ to find what we looking for.

One of the primary reverse engineer’s task is to find quickly in the code what is needed.

IDA disassembler allow us search among text strings, byte sequences, constants. It is even possible to export the code
into .Ist or .asm text file and then use grep, awk, etc.

When you try to understand what a code is doing, this easily could be some open-source library like libpng. So when you
see some constants or text strings looks familiar, it is always worth to google it. And if you find the opensource project where
it is used, then it will be enough just to compare the functions. It may solve some part of problem.

For example, if program use a XML files, the first step may be determining, which XML-library is used for processing, since
standard (or well-known) library is usually used instead of self-made one.

For example, once upon a time | tried to understand how SAP 6.0 network packets compression/decompression is work-
ing. Itis a huge software, but a detailed .PDB with debugging information is present, and that is cozily. | finally came to idea
that one of the functions doing decompressing of network packet called CsDecomprLZC(). Immediately | tried to google its
name and | quickly found the function named as the same is used in MaxDB (it is open-source SAP project)*.

http://www.google.com/search?q=CsDecomprLZC

Astoundingly, MaxDB and SAP 6.0 software shared likewise code for network packets compression/decompression.

2http://www.boost .org/
3http://www.libpng.org/pub/png/libpng.html
4More about it in relevant section (57.1)

312

http://www.google.com/search?q=CsDecomprLZC
http://www.boost.org/
http://www.libpng.org/pub/png/libpng.html

CHAPTER 37. IDENTIFICATION OF EXECUTABLE FILES

Chapter 37

Identification of executable files

37.1 Microsoft Visual C++

MSVC versions and DLLs which may be imported:

Marketing version | Internalversion | CL.EXE version | DLLs may be imported Release date

6 6.0 12.00 msvcrt.dll, msvcp60.dll June 1998

.NET (2002) 7.0 13.00 msvcr70.dll, msvep70.dll February 13,2002
.NET 2003 7.1 13.10 msvcr71.dll, msvep71.dll April 24,2003

2005 8.0 14.00 msvcr80.dll, msvep80.dll November 7, 2005
2008 9.0 15.00 msvcr90.dll, msvep90.dll November 19, 2007
2010 10.0 16.00 msvcr100.dll, msvep100.dll | April 12,2010

2012 1.0 17.00 msvcr110.dll, msvep110.dll | September 12,2012
2013 12.0 18.00 msvcr120.dll, msvecp120.dil | October 17,2013

msvcp*.dll contain C++-related functions, so, if it is imported, this is probably C++ program.

37.1.1 Name mangling

Names are usually started with ? symbol.
Read more about MSVC name mangling here: 31.1.1.

37.2 GCC

Aside from *NIX targets, GCC is also present in win32 environment: in form of Cygwin and MinGW.

37.2.1 Name mangling

Names are usually started with _Z symbols.
Read more about GCC name mangling here: 31.1.1.

37.2.2 Cygwin

cygwinl.dllis often imported.

37.2.3 MinGW

msvcrt.dll may be imported.

37.3 Intel FORTRAN

libifcoremd.dll, libifportmd.dll and libiomp5md.dIl (OpenMP support) may be imported.
libifcoremd.dll has a lot of functions prefixed with for_, meaning FORTRAN.

313

37.4. WATCOM, OPENWATCOM CHAPTER 37. IDENTIFICATION OF EXECUTABLE FILES
37.4 Watcom, OpenWatcom

37.4.1 Name mangling

Names are usually started with W symbol.
For example, that is how method named “method” of the class “class” not having arguments and returning void is en-
coded to:

W?method$_class$n__v

37.5 Borland

Here is an example of Borland Delphi and C++Builder name mangling:

@TApplication@IdleAction$qv
@TApplication@ProcessMDIAccels$qp6tagMSG
@TModule@$bctr$gpcpvtl

Q@TModule@$bdtr$qv
@TModule@ValidWindow$qpl4TWindowsObject

Q@TrueBitmap@$bctr$qpcl
@TrueBitmap@$bctr$qpvl
@TrueBitmap@$bctr$qiilll

Names are always started with @ symbol, then class name came, method name, and encoded method argument types.
These names can be in .exe imports, .dll exports, debug data, etc.

Borland Visual Component Libraries (VCL) are stored in .bpl files instead of .dll ones, for example, vcl50.dll, rtl60.dll.
Other DLL might be imported: BORLNDMM.DLL.

37.5.1 Delphi

Almost all Delphi executables has “Boolean” text string at the very beginning of code segment, along with other type names.
This is a very typical beginning of . text segment of a Delphi program, this block came right after win32 PE file header:

00000400 04 10 40 00 03 07 42 6f 6f 6¢c 65 61 6e 01 00 00 |..@...Boolean...|
00000410 00 00 01 00 00 00 00 10 40 00 05 46 61 6¢c 73 65 |........ @..Falsel
00000420 04 54 72 75 65 84 40 00 2c 10 40 00 09 08 57 69 |.True.@.,.Q@...Wi]
00000430 64 65 43 68 61 72 03 00 00 00 00 ff ff 00 00 90 |deChar.......... |
00000440 44 10 40 00 02 04 43 68 61 72 01 00 00 00 00 ff |D.@...Char...... |

00000450 00 00 00 90 58 10 40 00 01 08 53 6d 61 6¢c 6¢c 69 |....X.Q...Smallil
00000460 6e 74 02 00 80 ff ff ff 7f 00 00 90 70 10 40 00 Int.......... p-Q@.|
00000470 01 07 49 6e 74 65 67 65 72 04 00 00 00 80 ff ff |..Integer....... |
00000480 ff 7f 8b cO 88 10 40 00 01 04 42 79 74 65 01 00 |...... @...Byte..|
00000490 00 00 00 ff 00 00 00 90 9c 10 40 00 01 04 57 6f |.......... Q...Wol
000004a0 72 64 03 00 00 00 00 ff £f 00 00 90 bO 10 40 00 |rd............ Q.|
000004b0 01 08 43 61 72 64 69 6e 61 6¢c 05 00 00 00 00 ff |..Cardinal...... |
000004c0 ff ff ff 90 c8 10 40 00 10 05 49 6e 74 36 34 00 [...... @...Int64. |
00000440 00 00 00 00 00 00 80 ff f£f ff ff ff ff £f 7f 90 |................ |
000004e0 e4 10 40 00 04 08 45 78 74 65 6e 64 65 64 02 90 ..0.. .Extended..
000004f0 £f4 10 40 00 04 06 44 6f 75 62 6¢c 65 01 8d 40 00 ..Q@...Double..Q.
00000500 04 11 40 00 04 08 43 75 72 72 65 6e 63 79 04 90 .@...Currency..
e

00000520 Ob Oa 57 69 64 65 53 74 72 69 6e 67 30 11 40 00 . .WideString0.a@.
00000530 Oc 07 56 61 72 69 61 6e 74 8d 40 00 40 11 40 00 ..Variant.@.Q.@.
00000540 Oc 0Oa 4f 6¢c 65 56 61 72 69 61 6e 74 98 11 40 00 ..0leVariant..@Q.
00000550 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0 |................ |
00000560 00 00 00 00 00 00 00 00 00 00 00 00 98 11 40 00 |.............. Q.|
00000570 04 00 00 00 00 00 00 00 18 4d 40 00 24 4d 40 00 |......... Me. $Me. |
00000580 28 4d 40 00 2c 4d 40 00 20 4d 40 00 68 4a 40 00 |(M@.,M@. M@.hJ@. |

I I
I I
I I
00000510 14 11 40 00 Oa 06 73 74 72 69 6e 67 20 11 40 00 |..@...string .@.|
I I
I I
I I

314

37.6. OTHER KNOWN DLLS CHAPTER 37. IDENTIFICATION OF EXECUTABLE FILES
00000590 84 4a 40 00 cO 4a 40 00 07 54 4f 62 6a 65 63 74 |.J@..J@..TObject|

00000520 a4 11 40 00 07 07 54 4f 62 6a 65 63 74 98 11 40 |..@...TObject..@|
000005b0 00 00 00 00 00 00 00 06 53 79 73 74 65 6d 00 00 |........ System. . |
000005c0 c4 11 40 00 Of Oa 49 49 6e 74 65 72 66 61 63 65 |..0...IInterface]
000005d0 00 00 00 00 01 00 00 00 00 00 00 00 00 cO 00 00 |................ |
000005e0 00 00 00 00 46 06 53 79 73 74 65 6d 03 00 ff ffF.System....|
000005f0 f4 11 40 00 Of 09 49 44 69 73 70 61 74 63 68 cO ..Q...IDispatch. |

I

I

00000600 11 40 00 01 00 04 02 00 00 00 00 00 cO 00 00 00 |
00000610 00 00 00 46 06 53 79 73 74 65 6d 04 00 ff ff 90 |...F.System..... |

I

I

I

00000620 cc 83 44 24 04 £8 e9 51 6¢ 00 00 83 44 24 04 £8 D$...Q1...D$.. |
00000630 €9 6f 6¢c 00 00 83 44 24 04 £8 €9 79 6¢ 00 00 cc ol...D$...yl I
00000640 cc 21 12 40 00 2b 12 40 00 35 12 40 00 01 00 00 1.0.+.0.5.0 I
00000650 00 00 00 00 00 00 00 00 00 cO 00 00 00 00 00 OO0 |................ |
00000660 46 41 12 40 00 08 00 00 00 00 00 00 00O 8d 40 00 |FA.@.......... Q. |
00000670 bc 12 40 00 4d 12 40 00 00 00 00 00 00 00 00 00 |..@.M.Q@......... |
00000680 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0 |................ |
00000690 bc 12 40 00 Oc 00 00 00 4c 11 40 00 18 44 40 00 |..@..... L.e..Me. |

00000620 50 7e 40 00 5¢c 7e 40 00 2c 4d 40 00 20 4d 40 00 |[P~7@.\7@.,M@. M@.|
000006b0 6¢c 7e 40 00 84 4a 40 00 cO 4a 40 00 11 54 49 6e [17@..J@..J@..TIn|
000006cO0 74 65 72 66 61 63 65 64 4f 62 6a 65 63 74 8b cO |terfacedObject.. |

000006d0 d4 12 40 00 07 11 54 49 6e 74 65 72 66 61 63 65 |..@...TInterfacel
000006e0 64 4f 62 6a 65 63 74 bc 12 40 00 a0 11 40 00 00 |dObject..@...@Q..|
000006f0 00 06 53 79 73 74 65 6d 00 00 8b cO 00 13 40 00 |..System...... Q.|
00000700 11 Ob 54 42 6f 75 6e 64 41 72 72 61 79 04 00 00 |..TBoundArray... |
00000710 00 00 00 00 00 03 00 00 00 6¢c 10 40 00 06 53 79 |......... 1.0..8yl
00000720 73 74 65 6d 28 13 40 00 04 09 54 44 61 74 65 54 |stem(.Q...TDateT|
00000730 69 6d 65 01 ff 25 48 e0 c4 00 8b cO ff 25 44 e0 |ime..%H...... D. |

37.6 Other known DLLs

e vcomp*.dll—Microsoft implementation of OpenMP.

315

CHAPTER 38. COMMUNICATION WITH THE OUTER WORLD (WIN32)

Chapter 38

Communication with the outer world (win32)

Files and registry access: for the very basic analysis, Process Monitor' utility from SysInternals may help.
For the basic analysis of network accesses, Wireshark? may help.
But then you will need to look inside anyway.

First what to look on is which functions from OS API® and standard libraries are used.

If the program is divided into main executable file and a group of DLL-files, sometimes, these function’s names may be
helpful.

If we are interesting, what exactly may lead to the MessageBox () call with specific text, first what we can try to do: find
this text in data segment, find references to it and find the points from which a control may be passed to the MessageBox ()
call we're interesting in.

If we are talking about a video game and we’re interesting, which events are more or less random in it, we may try to find
rand () function or its replacement (like Mersenne twister algorithm) and find a places from which this function called and
most important: how the results are used.

Butifitis nota game, but rand () is used, itis also interesting, why. There are cases of unexpected rand () usage in data
compression algorithm (for encryption imitation): http://blog.yurichev.com/node/44.

38.1 Often used functions in Windows API

These functions may be among imported. It is worth to note that not every function might be used by the code written by
author. A lot of functions might be called from library functions and CRT code.

e Registry access (advapi32.dll): RegEnumKeyEx* >, RegEnumValue® °, RegGetValue” °, RegOpenKeyEx® >, RegQueryVal-
ueEx®>.

e Access to text .ini-files (kernel32.dll): GetPrivateProfileString ° .
e Dialog boxes (user32.dll): MessageBox ' °, MessageBoxEx % °, SetDlgltemText ' °, GetDlgltemText ' .
e Resources access(50.2.8): (user32.dll): LoadMenu ™ >,

e TCP/IP-network (ws2_32.dll): WSARecv '¢, WSASend .

Thttp://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
2http://www.wireshark.org/

3Application programming interface
“http://msdn.microsoft.com/en-us/library/windows/desktop/ms724862 (v=vs.85) .aspx
5May have -A suffix for ASCll-version and -W for Unicode-version
Shttp://msdn.microsoft.com/en-us/library/windows/desktop/ms724865 (v=vs.85) .aspx
"http://msdn.microsoft.com/en-us/library/windows/desktop/ms724868(v=vs.85) .aspx
8http://msdn.microsoft.com/en-us/library/windows/desktop/ms724897 (v=vs.85) .aspx
Shttp://msdn.microsoft.com/en-us/library/windows/desktop/ms724911(v=vs.85) .aspx
Ohttp://msdn.microsoft.com/en-us/library/windows/desktop/ms724353 (v=vs.85) .aspx
"http://msdn.microsoft.com/en-us/library/ms645505(VS.85) .aspx
Zhttp://msdn.microsoft.com/en-us/library/ms645507 (v=vs.85) .aspx
Bhttp://msdn.microsoft.com/en-us/library/ms645521 (v=vs.85) .aspx
"http://msdn.microsoft.com/en-us/library/ms645489 (v=vs.85) .aspx
Bhttp://msdn.microsoft.com/en-us/library/ms647990 (v=vs.85) .aspx
®nttp://msdn.microsoft.com/en-us/library/windows/desktop/ms741688(v=vs.85) .aspx
"http://msdn.microsoft.com/en-us/library/windows/desktop/ms742203 (v=vs.85) . aspx

316

http://blog.yurichev.com/node/44
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://www.wireshark.org/
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724862(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724865(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724868(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724911(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724353(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms645505(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms645507(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms645521(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms645489(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms647990(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms741688(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms742203(v=vs.85).aspx

38.2. TRACER: INTERCEPTING ALL FUNCTIONS IN SPECIFIC MOOHAPTER 38. COMMUNICATION WITH THE OUTER WORLD (WIN32)
File access (kernel32.dll): CreateFile '® 5, ReadFile ', ReadFileEx 2°, WriteFile 2!, WriteFileEx 2.

High-level access to the Internet (wininet.dll): WinHttpOpen 23,

Check digital signature of a executable file (wintrust.dll): WinVerifyTrust 24,

Standard MSVC library (in case of dynamic linking) (msvcr*.dll): assert, itoa, ltoa, open, printf, read, strcmp, atol, atoi,
fopen, fread, fwrite, memcmp, rand, strlen, strstr, strchr.

38.2 tracer: Intercepting all functions in specific module

There is INT3-breakpoints in tracer, triggering only once, however, they can be set to all functions in specific DLL.

--one-time-INT3-bp:somedll.dll!.x*

Or, let’s set INT3-breakpoints to all functions with xm1 prefix in name:

--one-time-INT3-bp:somedll.dll!xml.*

On the other side of coin, such breakpoints are triggered only once.

Tracer will show calling of a function, if it happens, but only once. Another drawback —it is impossible to see function’s
arguments.

Nevertheless, this feature is very useful when you know the program uses a DLL, but do not know which functions in it.
And there are a lot of functions.

For example, let’s see, what uptime cygwin-utility uses:

tracer -l:uptime.exe --one-time-INT3-bp:cygwinl.dll!.x*

Thus we may see all cygwinl.dll library functions which were called at least once, and where from:

One-time INT3 breakpoint: cygwinl.dll!__main (called from uptime.exe!OEP+0x6d (0x40106d))
One-time INT3 breakpoint: cygwinl.dll!_geteuid32 (called from uptime.exe!OEP+0xba3 (0x401ba3))
One-time INT3 breakpoint: cygwinl.dll!_getuid32 (called from uptime.exe!0EP+Oxbaa (0x401baa))
One-time INT3 breakpoint: cygwinl.dll!_getegid32 (called from uptime.exe!OEP+0xcb7 (0x401cb7))
One-time INT3 breakpoint: cygwinl.dll!_getgid32 (called from uptime.exe!0EP+Oxcbe (0x401cbe))
One-time INT3 breakpoint: cygwinl.dll!sysconf (called from uptime.exe!OEP+0x735 (0x401735))
One-time INT3 breakpoint: cygwinl.dll!setlocale (called from uptime.exe!0OEP+0x7b2 (0x4017b2))
One-time INT3 breakpoint: cygwinl.dll!_open64 (called from uptime.exe!OEP+0x994 (0x401994))
One-time INT3 breakpoint: cygwinl.dll!_lseek64 (called from uptime.exe!OEP+0x7ea (0x4017ea))
One-time INT3 breakpoint: cygwinl.dll!read (called from uptime.exe!OEP+0x809 (0x401809))
One-time INT3 breakpoint: cygwinl.dll!sscanf (called from uptime.exe!0EP+0x839 (0x401839))
One-time INT3 breakpoint: cygwinl.dll!uname (called from uptime.exe!OEP+0x139 (0x401139))
One-time INT3 breakpoint: cygwinl.dll!time (called from uptime.exe!OEP+0x22e (0x40122e¢))
One-time INT3 breakpoint: cygwini.dll!localtime (called from uptime.exe!0EP+0x236 (0x401236))
One-time INT3 breakpoint: cygwinl.dll!sprintf (called from uptime.exe!OEP+0x25a (0x40125a))
One-time INT3 breakpoint: cygwinl.dll!setutent (called from uptime.exe!OEP+0x3bl (0x4013b1))
One-time INT3 breakpoint: cygwinl.dll!getutent (called from uptime.exe!0OEP+0x3c5 (0x4013c5))
One-time INT3 breakpoint: cygwinl.dll!endutent (called from uptime.exe!0OEP+0x3e6 (0x4013e6))
One-time INT3 breakpoint: cygwinil.dll!puts (called from uptime.exe!OEP+0x4c3 (0x4014c3))

Bhttp://msdn.microsoft.com/en-us/library/windows/desktop/aa363858 (v=vs.85) .aspx
Phttp://msdn.microsoft.com/en-us/library/windows/desktop/aa365467 (v=vs.85) .aspx
2http://msdn.microsoft.com/en-us/library/windows/desktop/aa365468 (v=vs.85) .aspx
Z'http://msdn.microsoft.com/en-us/library/windows/desktop/aa365747 (v=vs.85) .aspx
2http://msdn.microsoft.com/en-us/library/windows/desktop/aa365748 (v=vs.85) .aspx
Bhttp://msdn.microsoft.com/en-us/library/windows/desktop/aa384098 (v=vs.85) .aspx
2http://msdn.microsoft.com/library/windows/desktop/aa388208.aspx

317

http://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365467(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365468(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365747(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365748(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa384098(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/desktop/aa388208.aspx

CHAPTER 39. STRINGS

Chapter 39

Strings

39.1 Text strings

Usual C-strings are zero-terminated (ASCIIZ-strings).
The reason why C string format is as it is (zero-terminating) is apparently hisorical. In [27] we can read:

A minor difference was that the unit of /O was the word, not the byte, because the PDP-7 was a word-
addressed machine. In practice this meant merely that all programs dealing with character streams ignored
null characters, because null was used to pad a file to an even number of characters.

In Hiew or FAR Manager these strings looks like as it is:

int main()

{
printf ("Hello, world!\n");
Ig
C:\Polygonihwl.exe
Hello, world!E pvi@
Figure 39.1: Hiew
The string is preceeded by 8-bit or 32-bit string length value.
For example:
Listing 39.1: Delphi

CODE:00518AC8 dd 1%h

CODE:00518ACC aloading___Plea db ’Loading... , please wait.’,0

CODE:00518AFC dd 10h
CODE:00518B00 aPreparingRun__ db ’Preparing run...’,0

318

39.1. TEXT STRINGS CHAPTER 39. STRINGS
39.1.1 Unicode

Often, what is called by Unicode is a methods of strings encoding when each character occupies 2 bytes or 16 bits. This is
common terminological mistake. Unicode is a standard assigning a number to each character of many writing systems of the
world, but not describing encoding method.

Most popular encoding methods are: UTF-8 (often used in Internet and *NIX systems) and UTF-16LE (used in Windows).

UTF-8

UTF-8 is one of the most successful methods of character encoding. All Latin symbols are encoded just like in an ASCII-
encoding, and symbols beyond ASClI-table are encoded by several bytes. 0 is encoded as it was before, so all standard C
string functions works with UTF-8-strings just like any other string.

Let’s see how symbols in various languages are encoded in UTF-8 and how it looks like in FAR in 437 codepage :

How muach? 100E€7?

(English) I can =at glass and it doesn't hurt me.

(Greek) Mpmopd vo @én OODCOREVE yuohid ywpic v néfw TimoTo.
(Hungarian) Meg tudom enni az fiveget, nem lesz tdédle bajom.
[(Icelandic) Eg get 2tid gler &n pess a8 meifa mig.
(Polish) Moge jesé szklo i mi nie szkodzi.

(Russian) 4 Moy eCTE CTERNO, OHO MHe HEe EDeIMT.

(Brabic): ,ial§s ¥ 1dis 3 glsjdl 4€i le jal3 Lii.
(Hebrew): "% P Tn ®7 AT1 N"2127 21287 2127 71X,

(Chinese) HUEETWEMTESE-

(Tapanese) FIHSAFEENET - THIZHFEDITERA -

(Hindi) # &g @ Wl § AW AP IWE e dic 7 qgud.

view hw4 UTFS.txt - Far 2.0.1807 =86 Administrator

g How much? 1007 e

Ponli | 1 | I Bt I |
LR TE =59

diuuuy Ly
35 J,

Figure 39.2: FAR: UTF-8

As it seems, English language string looks like as it is in ASCll-encoding. Hungarian language uses Latin symbols plus
symbols with diacritic marks. These symbols are encoded by several bytes, | underscored them by red. The same story with
Icelandic and Polish languages. | also used “Euro” currency symbol at the begin, which is encoded by 3 bytes. All the rest
writing systems here have no connection with Latin. At least about Russian, Arabic, Hebrew and Hindi we could see recurring
bytes, and that is not surprise: all symbols from the writing system is usually located in the same Unicode table, so their code
begins with the same numbers.

At the very beginning, before “How much?” string we see 3 bytes, which is BOM? in fact. BOM defines encoding system to
be used now.

UTF-16LE

Many win32 functions in Windows has a suffix -A and -W. The first functions works with usual strings, the next with UTF-16LE-
strings (wide). As in the second case, each symbol is usually stored in 16-bit value of short type.

"'ve got example and translations from there: http://www.columbia.edu/~fdc/utf8/
2Byte order mark

319

http://www.columbia.edu/~fdc/utf8/

39.1. TEXT STRINGS CHAPTER 39. STRINGS
Latin symbols in UTF-16 strings looks in Hiew or FAR as interleaved with zero byte:

int wmain()

{
wprintf (L"Hello, world!\n");
Jg

Hiew: hw2.exe
C:3\Polygonihw?.exe

wWwor

Figure 39.3: Hiew
We may often see this in Windows NT system files:

view ntoskrnl.exe - Far 2.0.1807 x64 Administrator

]]
m
A oD

m =

O
ion 6 . 1. :) ¢
*+:4PADDIN \D ADDINGPADDI

Figure 39.4: Hiew

String with characters occupying exactly 2 bytes are called by “Unicode” in IDA:

.data:0040E000 aHelloWorld:
.data:0040E000 unicode 0, <Hello, world!>
.data:0040E000 dw OAh, O

Here is how Russian language string encoded in UTF-16LE may looks like:

Ae=4>42404

2404 E424C 4040454 !

Figure 39.5: Hiew: UTF-16LE

320

39.2. ERROR/DEBUG MESSAGES CHAPTER 39. STRINGS
What we can easily spot—is that symbols are interleaved by diamond character (which has code of 4). Indeed, Cyrillic

symbols are located in the fourth Unicode plane 3. Hence, all Cyrillic symbols in UTF-16LE are located in 0x400-0x4FF range.
Let’s back to the example with the string written in multiple languages. Here we can see it in UTF-16LE encoding.

wview hw4_UTF16le.txt - Far 2.0.1807 =86 Adminisktrator
mHow much? 100M4KT7

L, Enag I C
3 e e el vy

3
-

m—.=
]

} miag.
] noi z 1.

EL (O S + o A S =44 < #04% ISR EEHES .

Ed'd/dld T0SId FACHOd HDAZS b4 b Hé GhOd'd Dé'd JSTADESESIS,

L vl A U e bt S B LTl 2

wwm —

Figure 39.6: FAR: UTF-16LE

Here we can also see BOM in the very beginning. All Latin characters are interleaved with zero byte. | also underscored
by red some characters with diacritic marks (Hungarian and Icelandic languages).

39.2 Error/debug messages

Debugging messages are often very helpful if present. In some sense, debugging messages are reporting about what’s going
on in program right now. Often these are printf ()-like functions, which writes to log-files, and sometimes, not writing
anything but calls are still present since this build is not a debug build but release one. If local or global variables are dumped
in debugging messages, it might be helpful as well since it is possible to get variable names at least. For example, one of such
functions in Oracle RDBMS is ksdwrt ().

Meaningful text strings are often helpful. IDA disassembler may show from which function and from which point this
specific string is used. Funny cases sometimes happen.

Error messages may help us as well. In Oracle RDBMS, errors are reporting using group of functions. More about it.

It is possible to find very quickly, which functions reporting about errors and in which conditions. By the way, it is often
a reason why copy-protection systems has inarticulate cryptic error messages or just error numbers. No one happy when
software cracker quickly understand why copy-protection is triggered just by error message.

One example of encrypted error messages is here: 55.2.

Shttps://en.wikipedia.org/wiki/Cyrillic_(Unicode_block)

321

http://blog.yurichev.com/node/32
http://blog.yurichev.com/node/43
https://en.wikipedia.org/wiki/Cyrillic_(Unicode_block)

CHAPTER 40. CALLS TO ASSERT/()

Chapter 40

Calls to assert()

Sometimes assert () macro presence is useful too: commonly this macro leaves source file name, line number and condition
in code.

Most useful information is contained in assert-condition, we can deduce variable names, or structure field names from
it. Another useful piece of information is file names —we can try to deduce what type of code is here. Also by file names it is
possible to recognize a well-known open-source libraries.

Listing 40.1: Example of informative assert() calls

.text:107D4B29 mov dx, [ecx+42h]

.text:107D4B2D cmp edx, 1

.text:107D4B30 jz short loc_107D4B4A

.text:107D4B32 push 1ECh

.text:107D4B37 push offset aWrite_c ; "write.c"

.text:107D4B3C push offset aTdTd_planarcon ; "td->td_planarconfig ==
PLANARCONFIG_CON". ..

.text:107D4B41 call ds:_assert

.text:107D52CA mov edx, [ebp-4]

.text:107D52CD and edx, 3

.text:107D52D0 test edx, edx

.text:107D52D2 jz short loc_107D52E9

.text:107D52D4 push 58h

.text:107D52D6 push offset aDumpmode_c ; "dumpmode.c"

.text:107D52DB push offset aN30 ; "(n & 3) == 0"

.text:107D52E0 call ds:_assert

.text:107D6759 mov cx, [eax+6]

.text:107D675D cmp ecx, 0OCh

.text:107D6760 jle short loc_107D677A

.text:107D6762 push 2D8h

.text:107D6767 push offset alzw_c ; "lzw.c"

.text:107D676C push offset aSpLzw_nbitsBit ; "sp->lzw_nbits <= BITS_MAX"

.text:107D6771 call ds:_assert

It is advisable to “google” both conditions and file names, that may lead us to open-source library. For example, if to
“google” “sp->lzw_nbits <= BITS_MAX”, this predictably give us some open-source code, something related to LZW-compression.

322

CHAPTER 41. CONSTANTS

Chapter 41

Constants

Some algorithms, especially cryptographical, use distinct constants, which is easy to find in code using IDA.
For example, MD5' algorithm initializes its own internal variables like:

var int hO := 0x67452301

var int hl := OxEFCDAB89
var int h2 := 0x98BADCFE
var int h3 := 0x10325476

If you find these four constants usage in the code in a row —it is very high probability this function is related to MD5.

Another example is CRC16/CRC32 algorithms, often, calculation algorithms use precomputed tables like:

Listing 41.1: linux/lib/crc16.c

/** CRC table for the CRC-16. The poly is 0x8005 (x~16 + x~15 + x~2 + 1) */
ul6é const crcl6_table[256] = {
0x0000, 0xCOC1, 0xC181, 0x0140, 0xC301, 0x03CO, 0x0280, 0xC241,
0xC601, 0x06C0O, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,
0xCC01, 0x0CCO, 0x0D80, 0xCD41, 0xOF00, O0xCFC1, OxCE81, 0xOE40,

See also precomputed table for CRC32: 17.4.

41.1 Magic numbers

A lot of file formats defining a standard file header where magic number? is used.

For example, all Win32 and MS-DOS executables are started with two characters “MZ”3.

At the MIDI-file beginning “MThd” signature must be present. If we have a program which uses MIDI-files for something,
very likely, it must check MIDI-files for validity by checking at least first 4 bytes.

This could be done like:

(buf pointing to the beginning of loaded file into memory)

cmp [buf], 0x6468544D ; "MThd"
jnz _error_not_a _MIDI_file

...or by calling function for comparing memory blocks memcmp () or any other equivalent code up to a CMPSB (80.6.3)
instruction.

When you find such point you already may say where MIDI-file loading is starting, also, we could see a location of MIDI-file
contents buffer and what is used from the buffer, and how.

Thttp://en.wikipedia.org/wiki/MD5
Zhttp://en.wikipedia.org/wiki/Magic_number_(programming)
3http://en.wikipedia.org/wiki/DOS_MZ_executable

323

http://en.wikipedia.org/wiki/MD5
http://en.wikipedia.org/wiki/Magic_number_(programming)
http://en.wikipedia.org/wiki/DOS_MZ_executable

41.2. CONSTANT SEARCHING CHAPTER 41. CONSTANTS
41.1.1 DHCP

This applies to network protocols as well. For example, DHCP protocol network packets contains so-called magic cookie:
0x63538263. Any code generating DHCP protocol packets somewhere and somehow must embed this constant into packet.
If we find it in the code we may find where it happen and not only this. Something received DHCP packet must check magic
cookie, comparing it with the constant.
For example, let’s take dhcpcore.dll file from Windows 7 x64 and search for the constant. And we found it, two times: it
seems, the constantis used in two functions eloquently named asDhcpExtractOptionsForValidation() and DhcpExtractFullOpt

Listing 41.2: dhcpcore.dll (Windows 7 x64)

.rdata:000007FF6483CBES dword_7FF6483CBE8 dd 63538263h ; DATA XREF:
DhcpExtractOptionsForValidation+79
.rdata:000007FF6483CBEC dword_7FF6483CBEC dd 63538263h ; DATA XREF:

DhcpExtractFullOptions+97

And the places where these constants accessed:

Listing 41.3: dhcpcore.dll (Windows 7 x64)

.text:000007FF6480875F mov eax, [rsi]
.text:000007FF64808761 cmp eax, cs:dword_7FF6483CBES8
.text :000007FF64808767 jnz loc_T7FF64817179

And:

Listing 41.4: dhcpcore.dll (Windows 7 x64)

.text :000007FF648082C7 mov eax, [ri12]
.text:000007FF648082CB cmp eax, cs:dword_7FF6483CBEC
.text :000007FF648082D1 jnz loc_T7FF648173AF

41.2 Constant searching

It is easy in IDA: Alt-B or Alt-l. And for searching for constant in big pile of files, or for searching it in non-executable files, |
wrote small utility binary grep*.

“https://github.com/yurichev/bgrep

324

https://github.com/yurichev/bgrep

CHAPTER 42. FINDING THE RIGHT INSTRUCTIONS

Chapter 42

Finding the right instructions

If the program is utilizing FPU instructions and there are very few of them in a code, one can try to check each one manually
by debugger.

For example, we may be interesting, how Microsoft Excel calculating formulae entered by user. For example, division op-
eration.

If to load excel.exe (from Office 2010) version 14.0.4756.1000 into IDA, then make a full listing and to find each FDIV in-
structions (except ones which use constants as a second operand —obviously, it is not suits us):

cat EXCEL.1lst | grep fdiv | grep -v dbl_ > EXCEL.fdiv

...then we realizing they are just 144.
We can enter string like =(1/3) in Excel and check each instruction.

Checking each instruction in debugger or tracer (one may check 4 instruction at a time), it seems, we are lucky here and
sought-for instruction is just 14th:

.text:3011E919 DC 33 fdiv qword ptr [ebx]

PID=13944 | TID=28744| (0) 0x2f64e919 (Excel.exe!BASE+0x11e919)
EAX=0x02088006 EBX=0x02088018 ECX=0x00000001 EDX=0x00000001
ESI=0x02088000 EDI=0x00544804 EBP=0x0274FA3C ESP=0x0274F9F8
EIP=0x2F64E919

FLAGS=PF IF

FPU ControlWord=IC RC=NEAR PC=64bits PM UM OM ZM DM IM

FPU StatusWord=

FPU ST(0): 1.000000

ST (0) holding first argument (1) and second one is in [EBX].

Next instruction after FDIV writes result into memory:

.text:3011E91B DD 1E fstp qword ptr [esi]

If to set breakpoint on it, we may see result:

PID=32852|TID=36488]| (0) 0x2f40e91b (Excel.exe!BASE+0x11e91b)
EAX=0x00598006 EBX=0x00598018 ECX=0x00000001 EDX=0x00000001
ESI=0x00598000 EDI=0x00294804 EBP=0x026CF93C ESP=0x026CF3F8
EIP=0x2F40E91B

FLAGS=PF IF

FPU ControlWord=IC RC=NEAR PC=64bits PM UM OM ZM DM IM

FPU StatusWord=C1 P

FPU ST(0): 0.333333

325

CHAPTER 42. FINDING THE RIGHT INSTRUCTIONS

Also as a practical joke, we can modify it on-fly:

tracer -l:excel.exe bpx=excel.exe!BASE+0x11E91B,set(st0,666)

PID=36540|TID=24056| (0) 0x2f40e91b (Excel.exe!BASE+0x11e91b)
EAX=0x00680006 EBX=0x00680018 ECX=0x00000001 EDX=0x00000001
ESI=0x00680000 EDI=0x00395404 EBP=0x0290FDO9C ESP=0x0290FD58
EIP=0x2F40E91B

FLAGS=PF IF

FPU ControlWord=IC RC=NEAR PC=64bits PM UM OM ZM DM IM

FPU StatusWord=C1 P

FPU ST(0): 0.333333

Set STO register to 666.000000

Excel showing 666 in the cell what finally convincing us we find the right point.

B ‘f’ Calibri 1l v AN ==
_I:"Iv
Paste ===
Clipboard Font Align
a1 - Fe | =(123/456)
Pt B 5 D E
1 BRE
| |
2
3
il
a
(3

Figure 42.1: Practical joke worked

If to try the same Excel version, but x64, we will find only 12 FDIV instructions there, and the one we looking for —third.

tracer.exe -l:excel.exe bpx=excel.exe!BASE+0x1B7FCC,set(st0,666)

It seems, a lot of division operations of float and double types, compiler replaced by SSE-instructions like DIVSD (DIVSD
present here 268 in total).

326

CHAPTER 43. SUSPICIOUS CODE PATTERNS

Chapter 43

Suspicious code patterns

43.1 XORinstructions
instructions like XOR op, op (forexample, XOR EAX, EAX) are usually used for setting register value to zero, but if operands
are different, exclusive or operation is executed. This operation is rare in common programming, but used often in cryptog-
raphy, including amateur. Especially suspicious case if the second operand is big number. This may points to encrypting/de-
crypting, checksum computing, etc.

One exception to this observation worth to note is “canary” (16.3) generation and checking is often done using XOR instruction.

This AWK script can be used for processing IDA listing (.Ist) files:

gawk -e '$2=="xor" { tmp=substr($3, 0, length($3)-1); if (tmp!'=$4) if($4!="esp") if ($4!="ebp") {
print $1, $2, tmp, ",", $4 } }’ filename.lst

Itis also worth to note that such script may also capture incorrectly disassembled code (28).

43.2 Hand-written assembly code

Modern compilers do not emit LOOP and RCL instructions. On the other hand, these instructions are well-known to coders
who like to code in straight assembly language. If you spot these, it can be said, with a high probability, this fragment of code
is hand-written. Such instructions are marked as (M) in the instructions list in appendix: 80.6.

Also function prologue/epilogue is not commonly present in hand-written assembly copy.

Commonly there is no fixed system in passing arguments into functions in the hand-written code.

Example from Windows 2003 kernel (ntoskrnl.exe file):

MultiplyTest proc near ; CODE XREF: Get386Stepping
xor cx, cX

loc_620555: ; CODE XREF: MultiplyTest+E
push CX
call Multiply
pop cx
jb short locret_620563
loop loc_620555
clc

locret_620563: ; CODE XREF: MultiplyTest+C
retn

MultiplyTest endp

Multiply proc near ; CODE XREF: MultiplyTest+5
mov ecx, 81lh
mov eax, 417A000h
mul ecx
cmp edx, 2

327

43.2. HAND-WRITTEN ASSEMBLY CODE

CHAPTER 43. SUSPICIOUS CODE PATTERNS

stc
jnz
cmp
stc
jnz
clc
locret_62057F:

retn
Multiply endp

short locret_62057F
eax, OFE7A000h

short locret_62057F

; CODE XREF: Multiply+10
; Multiply+18

Indeed, if we look into WRK' v1.2 source code, this code can be found easily in the file WRK-v1.2\base\ntos\ke\i386\cpu.asm.

'Windows Research Kernel

328

CHAPTER 44. USING MAGIC NUMBERS WHILE TRACING

Chapter 44

Using magic numbers while tracing

Often, main goalis to get to know, how avalue was read from file, or received via network, being used. Often, manualtracing of
avalueis very labouring task. One of the simplest techniques (although not 100% reliable) is to use your own magic number.

This resembling X-ray computed tomography is some sense: radiocontrast agent is often injected into patient’s blood,
which is used for improving visibility of internal structures in X-rays. For example, it is well known how blood of healthy
man/woman percolates in kidneys and if agent is in blood, it will be easily seen on tomography, how good and normal blood
was percolating, are there any stones or tumors.

We can take a 32-bit number like 0x0badf00d, or someone’s birth date like 0x11101979 and to write this, 4 byte holding
number, to some point in file used by the program we investigate.

Then, while tracing this program, with tracer in the code coverage mode, and then, with the help of grep or just by search-
ing in the text file (of tracing results), we can easily see, where the value was used and how.

Example of grepable tracer results in the cc mode:

0x150bf66 (_kziaia+0x14), e= 1 [MOV EBX, [EBP+8]] [EBP+8]=0xf59c934
0x150bf69 (_kziaia+0x17), e= 1 [MOV EDX, [69AEBO8h]] [69AEB0O8h]=0
0x150bf6f (_kziaia+0x1d), e= 1 [FS: MOV EAX, [2Ch]]

0x150bf75 (_kziaia+0x23), e= 1 [MOV ECX, [EAX+EDX*4]] [EAX+EDX%4]=0xf1ac360
0x150bf78 (_kziaia+0x26), e= 1 [MOV [EBP-4], ECX] ECX=0xflac360

This can be used for network packets as well. It is important to be unique for magic number and not to be present in the
program’s code.

Aside of tracer, DosBox (MS-DOS emulator) in heavydebug mode, is able to write information about all register’s states
for each executed instruction of program to plain text file', so this technique may be useful for DOS programs as well.

'See also my blog post about this DosBox feature: http://blog.yurichev.com/node/55

329

http://blog.yurichev.com/node/55

CHAPTER 45. OTHER THINGS

Chapter 45

Other things

RTTI (31.5)-data may be also useful for C++ classes identification.

330

CHAPTER 46. OLD-SCHOOL TECHNIQUES, NEVERTHELESS, INTERESTING TO KNOW

Chapter 46

Old-school techniques, nevertheless,
interesting to know

46.1 Memory “snapshots” comparing

The technique of straightforward two memory snapshots comparing in order to see changes, was often used to hack 8-bit
computer games and hacking “high score” files.

For example, if you got a loaded game on 8-bit computer (it is not much memory on these, but game is usually consumes
even less memory) and you know that you have now, let’s say, 100 bullets, you can do a “snapshot” of all memory and back it
up to some place. Then shoot somewhere, bullet count now 99, do second “snapshot” and then compare both: somewhere
must be a byte which was 100 in the beginning and now it is 99. Considering a fact these 8-bit games were often written in
assembly language and such variables were global, it can be said for sure, which address in memory holding bullets count.
If to search all references to the address in disassembled game code, it is not very hard to find a piece of code decrementing
bullets count, write NOP instruction there, or couple of NOP-s, we’ll have a game with e.g 100 bullets forever. Games on
these 8-bit computers was commonly loaded on the same address, also, there were no much different versions of each game
(commonly just one version was popular for a long span of time), enthusiastic gamers knew, which byte must be written
(using BASIC instruction POKE) to which address in order to hack it. This led to “cheat” lists containing of POKE instructions
published in magazines related to 8-bit games. See also: http://en.wikipedia.org/wiki/PEEK_and_POKE.

Likewise, it is easy to modify “high score” files, this may work not only with 8-bit games. Let’s notice your score count
and back the file up somewhere. When “high score” count will be different, just compare two files, it can be even done with
DOS-utility FC' (“high score” files are often in binary form). There will be a point where couple of bytes will be different and it
will be easy to see which ones are holding score number. However, game developers are aware of such tricks and may protect
against it.

MS-DOS utility for binary files comparing

331

http://en.wikipedia.org/wiki/PEEK_and_POKE

PartV

0S-specific

332

CHAPTER 47. THREAD LOCAL STORAGE

Chapter 47

Thread Local Storage

Itis a data area, specific to each thread. Every thread can store there what it needs. One famous example is C standard global
variable errno. Multiple threads may simultaneously call a functions which returns error code in the errno, so global variable
will not work correctly here, for multi-thread programs, errno must be stored in the TLS.

In the C++11 standard, a new thread_local modifier was added, showing that each thread will have its own version of the
variable, it can be initialized, and it is located in the TLS ":

Listing 47.1: C++11

#include <iostream>
#include <thread>

thread_local int tmp=3;

int main()

{

std::cout << tmp << std::endl;

};

2

If to say about PE-files, in the resulting executable file, the tmp variable will be stored in the section devoted to TLS.

1 C11 also has thread support, optional though
2Compiled in MinGW GCC 4.8.1, but not in MSVC 2012

333

CHAPTER 48. SYSTEM CALLS (SYSCALL-S)

Chapter 48

System calls (syscall-s)

As we know, all running processes inside OS are divided into two categories: those having all access to the hardware (“kernel
space”) and those have not (“user space”).

There are OS kernel and usually drivers in the first category.

All applications are usually in the second category.

This separation is crucial for OS safety: it is very important not to give to any process possibility to screw up somethingin
other processes or even in OS kernel. On the other hand, failing driver or error inside OS kernel usually lead to kernel panic
or BSOD'.

x86-processor protection allows to separate everything into 4 levels of protection (rings), but both in Linux and in Win-
dows only two are used: ring0 (“kernel space”) and ring3 (“user space”).

System calls (syscall-s) is a point where these two areas are connected. It can be said, this is the most principal API
providing to application software.

As in Windows NT, syscalls table reside in SSDT?.

Usage of syscalls is very popular among shellcode and computer viruses authors, because it is hard to determine the
addresses of needed functions in the system libraries, while it is easier to use syscalls, however, much more code should be
written due to lower level of abstraction of the API. It is also worth noting that the numbers of syscalls e.g. in Windows, may
be different from version to version.

48.1 Linux

In Linux, syscall is usually called via int 0x80. Call number is passed in the EAX register, and any other parameters —in the
other registers.

Listing 48.1: Simple example of two syscalls usage

section .text
global _start

_start:
mov edx,len ; buf len
mov ecx,msg ; buf
mov ebx,1 ; file descriptor. stdout is 1
mov eax,4 ; syscall number. sys_write is 4
int 0x80
mov eax,1 ; syscall number. sys_exit is 4
int 0x80

section .data

msg db ’Hello, world!’,Oxa
len equ $ - msg
Compilation:

"Black Screen of Death
2System Service Dispatch Table

334

48.2. WINDOWS

CHAPTER 48. SYSTEM CALLS (SYSCALL-S)

nasm -f elf32 1.s
1d 1.0

The full list of syscalls in Linux: http://syscalls.kernelgrok.com/.
For system calls intercepting and tracing in Linux, strace(53) can be used.

48.2 Windows

They are called by int 0x2e or using special x86 instruction SYSENTER.

The full list of syscalls in Windows: http://j00ru.vexillium.org/ntapi/.

Further reading:
“Windows Syscall Shellcode” by Piotr Bania.

335

http://syscalls.kernelgrok.com/
http://j00ru.vexillium.org/ntapi/
http://www.symantec.com/connect/articles/windows-syscall-shellcode

CHAPTER 49. LINUX

Chapter 49

Linux

49.1

Position-independent code

While analyzing Linux shared (.so) libraries, one may frequently spot such code pattern:

Listing 49.1: libc-2.17.s0 x86

.text:
.text:
.text:
.text:
.text:

.text:

.text:
.text:
:000576C8
.text:
.text:
.text:
.text:
:000576D6

.text

.text

.text:
.text:
RrexitE

tempname.c"
.text:
.text:

0012D5E3
0012D5E3
0012D5E3
0012D5E6
0012D5E6

000576C0O

000576CO
000576C1

000576C9
000576CA
000576CB
000576D0

000579F0
000579F6
000579FA

00057A00
00057A04

__x86_get_pc_thunk_bx proc near ; CODE XREF: sub_17350+3

mov
retn

; sub_173CC+4 ...
ebx, [esp+0]

__x86_get_pc_thunk_bx endp

sub_576CO

in __gen_tempname\""

.text:
.text:
.text:

00057AOA
00057A12
00057A15

proc near ; CODE XREF: tmpfile+73

push ebp

mov ecx, large gs:0

push edi

push esi

push ebx

call __x86_get_pc_thunk_bx

add ebx, 157930h

sub esp, 9Ch

lea eax, (a__gen_tempname - 1AFOOOh) [ebx] ; "__gen_tempname"
mov [esp+0ACh+var_AO], eax

lea eax, (a__SysdepsPosix - 1AFOOOh) [ebx] ; "../sysdeps/posix/
mov [esp+OACh+var_A8], eax

lea eax, (aInvalidKindIn_ - 1AFOOOh) [ebx] ; "! \"invalid KIND
mov [esp+0ACh+var_A4], 14Ah

mov [esp+OACh+var_AC], eax

call _assert_fail

All pointers to strings are corrected by a constant and by value in the EBX, which calculated at the beginning of each
function. This is so-called PIC, it is intended to execute placed at any random point of memory, that is why it cannot contain

any absolute memory addresses.

PIC was crucial in early computer systems and crucial now in embedded systems without virtual memory support (where
processes are all placed in single continous memory block). Itis also still used in *NIX systems for shared libraries since shared
libraries are shared across many processes while loaded in memory only once. But all these processes may map the same
shared library on different addresses, so that is why shared library should be working correctly without fixing on any absolute

336

49.1. POSITION-INDEPENDENT CODE

CHAPTER 49. LINUX

address.
Let’s do a simple experiment:

#include <stdio.h>
int global_variable=123;

int f1(int var)

{
int rt=global_variable+tvar;
printf ("returning %d\n", rt);
return rt;

Jg

Let’s compile itin GCC 4.7.3 and see resulting .so file in IDA:

gcc -fPIC -shared -03 -0 1.s0 1.c

Listing 49.2: GCC 4.7.3

.text:00000440 public _
.text:00000440 __x86_get_pc_thunk_bx proc near
.text :00000440

.text:00000440 mov ebx, [esp+0]
.text:00000443 retn

.text:00000443 __x86_get_pc_thunk_bx endp

_x86_get_pc_thunk_bx

; CODE XREF: _init_proc+4
; deregister_tm_clones+4 ...

.text:00000570 public f1

.text:00000570 f1 proc near

.text:00000570

.text:00000570 var_1C = dword ptr -1Ch
.text:00000570 var_18 = dword ptr -18h
.text:00000570 var_14 = dword ptr -14h
.text:00000570 var_8 = dword ptr -8

.text:00000570 var_4 = dword ptr -4

.text:00000570 arg_O = dword ptr 4

.text:00000570

.text :00000570 sub esp, 1Ch

.text :00000573 mov [esp+1Ch+var_8], ebx
.text :00000577 call __x86_get_pc_thunk_bx
.text:0000057C add ebx, 1A84h

.text :00000582 mov [esp+tiCh+var_4], esi
.text:00000586 mov eax, ds:(global_variable_ptr - 2000h) [ebx]
.text :0000058C mov esi, [eax]

.text :0000058E lea eax, (aReturningD - 2000h) [ebx] ; "returning %d\n"
.text :00000594 add esi, [esp+1Ch+arg_O]
.text :00000598 mov [esp+tiCh+var_18], eax
.text:0000059C mov [esp+1Ch+var_1C], 1
.text :000005A3 mov [esp+iCh+var_14], esi
.text :000005A7 call ___printf_chk
.text:000005AC mov eax, esi

.text :000005AE mov ebx, [esp+1Ch+var_8]
.text:000005B2 mov esi, [esp+1Ch+var_4]
.text:000005B6 add esp, 1Ch
.text:000005B9 retn

.text:000005B9 f1 endp

That’s it: pointers to «returning %d\n» string and global_variable are to be corrected at each function execution. The
__x86_get_pc_thunk_bx () function return address of the point after call to itself (0x57C here) in the EBX. That’s the simple
way to get value of program counter (EIP) at some point. The 0x1A84 constant is related to the difference between this
function begin and so-called Global Offset Table Procedure Linkage Table (GOT PLT), the section right after Global Offset Table
(GOT), where pointer to global_variable is. IDA shows these offset processed, so to understand them easily, but in fact the

codeis:

337

49.2. LD_PRELOAD HACK IN LINUX CHAPTER 49. LINUX

.text:00000577 call __x86_get_pc_thunk_bx
.text:0000057C add ebx, 1A84h
.text:00000582 mov [esp+1Ch+var_4], esi
.text:00000586 mov eax, [ebx-0Ch]
.text:0000058C mov esi, [eax]

.text :0000058E lea eax, [ebx-1A30h]

So, EBX pointing to the GOT PLT section and to calculate pointer to global_variable which stored in the GOT, 0xC must be
subtracted. To calculate pointer to the «returning %d\n» string, 0x1A30 must be subtracted.

By the way, that is the reason why AMD64 instruction set supports RIP'-relative addressing, just to simplify PIC-code.

Let’s compile the same C code in the same GCC version, but for x64.

IDA would simplify output code but suppressing RIP-relative addressing details, so | will run objdump instead to see the
details:

0000000000000720 <f1>:

720: 48 8b 05 b9 08 20 00 mov rax,QWORD PTR [rip+0x2008b9] # 200fe0 <_DYNAMIC+O
x1d0>

727 : 53 push rbx

728: 89 fb mov ebx,edi

T2a: 48 8d 35 20 00 00 00 lea rsi, [rip+0x20] # 751 <_fini+0x9>

731: bf 01 00 00 00 mov edi,Ox1

736: 03 18 add ebx,DWORD PTR [rax]

738: 31 c0 xXor eax,eax

73a: 89 da mov edx,ebx

78es e8 df fe ff ff call 620 <__printf_chkOplt>

741 : 89 d8 mov eax,ebx

743: 5b pop rbx

744 : c3 ret

0x2008b9 is the difference between address of instruction at 0x720 and global_variable and 0x20 is the difference be-
tween the address of the instruction at 0x72A and the «returning %d\n» string.

As you might see, the need to recalculate addresses frequently makes execution slower (it is better in x64, though). So it
is probably better to link statically if you aware of performance ([11]).

49.1.1 Windows

The PIC mechanism is not used in Windows DLLs. If Windows loader needs to load DLL on another base address, it “patches”
DLL in memory (at the FIXUP places) in order to correct all addresses. This means, several Windows processes cannot share
once loaded DLL on different addresses in different process’ memory blocks —since each loaded into memory DLL instance
fixed to be work only at these addresses..

49.2 LD_PRELOAD hack in Linux

This allows us to load our own dynamic libraries before others, even before system ones, like libc.so.6.
What, in turn, allows to “substitute” our written functions before original ones in system libraries. For example, it is easy
to intercept all calls to the time(), read(), write(), etc.

Let’s see, if we are able to fool uptime utility. As we know, it tells how long the computer is working. With the help of
strace(53), it is possible to see that this information the utility takes from the /proc/uptime file:

$ strace uptime

open("/proc/uptime", O_RDONLY) =3
lseek(3, 0, SEEK_SET) =0
read(3, "416166.86 414629.38\n", 2047) 20

Itis not a real file on disk, it is a virtual one, its contents is generated on fly in Linux kernel. There are just two numbers:

Tprogram counter in AMD64

338

49.2. LD_PRELOAD HACK IN LINUX CHAPTER 49. LINUX

$ cat /proc/uptime
416690.91 415152.03

What we can learn from wikipedia:

The first number is the total number of seconds the system has been up. The second number is how
much of that time the machine has spentidle, in seconds.

2

Let’s try to write our own dynamic library with the open(), read(), close() functions working as we need.

Atfirst, our open() will compare name of file to be opened with what we need and ifitis so, it will write down the descriptor
of the file opened. At second, read(), if it will be called for this file descriptor, will substitute output, and in other cases, will
call original read() from libc.so0.6. And also close(), will note, if the file we are currently follow is to be closed.

We will use the dlopen() and dlsym() functions to determine original addresses of functions in libc.so.6.

We need them because we must pass control to “real” functions.

On the other hand, if we could intercept e.g. strcmp(), and follow each string comparisons in program, then strcmp()
could be implemented easily on one’s own, while not using original function 3.

#include <stdio.h>

#include <stdarg.h>
#include <stdlib.h>
#include <stdbool.h>
#include <unistd.h>
#include <dlfcn.h>

#include <string.h>

void *1ibc_handle = NULL;

int (*open_ptr) (const char *, int) = NULL;

int (*close_ptr) (int) = NULL;

ssize_t (*read_ptr) (int, voidx, size_t) = NULL;

bool inited = false;

_Noreturn void die (const char * fmt, ...)
{

va_list va;

va_start (va, fmt);

vprintf (fmt, va);
exit (0);
}s

static void find_original_functions ()

{
if (inited)
return;

libc_handle = dlopen ("libc.so.6", RTLD_LAZY);
if (libc_handle==NULL)
die ("can’t open libc.so.6\n");

open_ptr = dlsym (libc_handle, "open");
if (open_ptr==NULL)
die ("can’t find open()\n");

close_ptr = dlsym (libc_handle, "close");

2https://en.wikipedia.org/wiki/Uptime
3For example, here is how simple strcmp() interception is works in article from Yong Huang

339

https://en.wikipedia.org/wiki/Uptime
http://yurichev.com/mirrors/LD_PRELOAD/Yong%20Huang%20LD_PRELOAD.txt

49.2. LD_PRELOAD HACK IN LINUX CHAPTER 49. LINUX

if (close_ptr==NULL)
die ("can’t find close()\n");

read_ptr = dlsym (libc_handle, "read");
if (read_ptr==NULL)
die ("can’t find read()\n");

inited = true;

static int opened_f£d=0;

int open(const char *pathname, int flags)

{
find_original_functions();
int fd=(*open_ptr) (pathname, flags);
if (strcmp(pathname, "/proc/uptime")==0)
opened_fd=fd; // that’s our file! record its file descriptor
else
opened_£d=0;
return fd;
};
int close(int fd)
{
find_original_functions();
if (fd==opened_£d)
opened_£fd=0; // the file is not opened anymore
return (*close_ptr) (£d);
s
ssize_t read(int fd, void *buf, size_t count)
{
find_original_functions();
if (opened_fd!=0 && fd==opened_£fd)
{
// that’s our file!
return snprintf (buf, count, "%d %d", Ox7fffffff, OxTLffffff)+1;
s
// not our file, go to real read() function
return (*read_ptr) (fd, buf, count);
};

Let’s compile it as common dynamic library:

gcc -fpic -shared -Wall -o fool_uptime.so fool_uptime.c -1dl

Let’s run uptime while loading our library before others:

LD_PRELOAD=‘pwd‘/fool_uptime.so uptime

And we see:

01:23:02 up 24855 days, 3:14, 3 users, 1load average: 0.00, 0.01, 0.05

If the LD_PRELOAD environment variable will always points to filename and path of our library, it will be loaded for all
starting programs.

More examples:

e Verysimpleinterception of the strcmp() (Yong Huang) http://yurichev.com/mirrors/LD_PRELOAD/Yong%20Huang/
20LD_PRELOAD. txt

340

http://yurichev.com/mirrors/LD_PRELOAD/Yong%20Huang%20LD_PRELOAD.txt
http://yurichev.com/mirrors/LD_PRELOAD/Yong%20Huang%20LD_PRELOAD.txt

49.2. LD_PRELOAD HACK IN LINUX CHAPTER 49. LINUX
e Kevin Pulo — Fun with LD_PRELOAD. A lot of examples and ideas. http://yurichev.com/mirrors/LD_PRELOAD/

1ca2009.pdf

e Filefunctionsinterception for compression/decompression files on fly (zlibc). ftp://metalab.unc.edu/pub/Linux/
libs/compression

341

http://yurichev.com/mirrors/LD_PRELOAD/lca2009.pdf
http://yurichev.com/mirrors/LD_PRELOAD/lca2009.pdf
ftp://metalab.unc.edu/pub/Linux/libs/compression
ftp://metalab.unc.edu/pub/Linux/libs/compression

CHAPTER 50. WINDOWS NT

Chapter 50

Windows NT

50.1 CRT (win32)

Does program execution starts right at themain () function? No, it is not. If to open any executable file in IDA or HIEW, we will
see OEP! pointing to another code. This is a code doing some maintenance and preparations before passing control flow to

our code. It is called startup-code or CRT-code (C RunTime).

main() fucntion takes an array of arguments passed in the command line, and also environment variables. But in fact, a
generic string is passed to the program, CRT-code will find spaces in it and cut by parts. CRT-code is also prepares environ-
ment variables array envp. As of GUI? win32 applications, WinMain is used instead of main (), having their own arguments:

int CALLBACK WinMain(

In_ HINSTANCE hInstance,

In_ HINSTANCE hPrevInstance,
In LPSTR 1pCmdLine,

In_ int nCmdShow

)

CRT-code prepares them as well.

Also, the number returned by main () function is an exit code. It may be passed in CRT to the ExitProcess() function,

taking exit code as argument.
Usually, each compiler has its own CRT-code.

Here is a typical CRT-code for MSVC 2008.

___tmainCRTStartup proc near

var_24 dword ptr -24h
var_20 dword ptr -20h
var_1C = dword ptr -1Ch

ms_exc = CPPEH_RECORD ptr -18h
push 14h
push offset stru_4092D0
call __SEH_prologé4
mov eax, 5A4Dh
cmp ds:400000h, ax
jnz short loc_401096
mov eax, ds:40003Ch
cmp dword ptr [eax+400000h], 4550h
jnz short loc_401096
mov ecx, 10Bh
cmp [eax+400018h], cx
jnz short loc_401096
cmp dword ptr [eax+400074h], OEh

'Original Entry Point
2Graphical user interface

342

50.1. CRT (WIN32)

jbe short loc_401096
xor ecx, ecx
cmp [eax+4000E8h], ecx
setnz cl
mov [ebptvar_1C], ecx
jmp short loc_40109A
loc_401096: ; CODE XREF: ___tmainCRTStartup+18
; ___tmainCRTStartup+29 ...
and [ebptvar_1C], O
loc_40109A: ; CODE XREF: ___tmainCRTStartup+50
push 1
call __heap_init
pop ecx
test eax, eax
jnz short loc_4010AE
push 1Ch
call _fast_error_exit
pop ecx
loc_4010AE: ; CODE XREF: ___tmainCRTStartup+60
call __mtinit
test eax, eax
jnz short loc_4010BF
push 10h
call _fast_error_exit
pop ecx
loc_4010BF: ; CODE XREF: ___tmainCRTStartup+71
call sub_401F2B
and [ebp+ms_exc.disabled], O
call __ioinit
test eax, eax
jge short loc_4010D9
push 1Bh
call __amsg_exit
pop ecx
loc_4010D9: ; CODE XREF: ___tmainCRTStartup+8B
call ds:GetCommandLineA
mov dword_40B7F8, eax
call ___crtGetEnvironmentStringsA
mov dword_40AC60, eax
call __setargv
test eax, eax
jge short loc_4010FF
push 8
call __amsg_exit
pop ecx
loc_4010FF: ; CODE XREF: ___tmainCRTStartup+Bl
call __setenvp
test eax, eax
jge short loc_401110
push 9
call __amsg_exit
pop ecx

343

CHAPTER 50. WINDOWS NT

50.1. CRT (WIN32)

CHAPTER 50. WINDOWS NT

loc_401110:

push
call
PO
test
jz
push
call

POP

loc_401123:
mov
mov
push
push
push
call
add
mov
cmp
jnz
push
call

$LN28:

mov
mov
mov
mov
push
push
call
pop
pop

call

loc_401186:
mov
mov

; CODE XREF: ___tmainCRTStartup+C2
1
__cinit
ecx
eax, eax
short loc_401123
eax
__amsg_exit
ecx

; CODE XREF: _tmainCRTStartup+D6

eax, envp
dword_40AC80, eax
eax ; envp
argv ; argv
argc ; argc
_main
esp, OCh
[ebp+var_20], eax
[ebptvar_1C], O
short $LN28
eax ; uExitCode
$LN32

; CODE XREF: ___tmainCRTStartup+105
cexit

short loc_401186

; DATA XREF: .rdata:stru_4092DO
eax, [ebp+ms_exc.exc_ptr] ; Exception filter O for function 401044
ecx, [eax]
ecx, [ecx]
[ebp+var_24], ecx
eax
ecx
__XcptFilter
ecx
ecx

; DATA XREF: .rdata:stru_4092D0O
esp, [ebp+tms_exc.old_esp] ; Exception handler O for function 401044
eax, [ebp+var_24]
[ebptvar_20], eax
[ebptvar_1C], O
short $LN29

eax ; int
exit
; CODE XREF: ___tmainCRTStartup+135
__c_exit
; CODE XREF: ___tmainCRTStartup+112

[ebp+tms_exc.disabled] , OFFFFFFFEh
eax, [ebp+var_20]

344

50.2. WIN32 PE CHAPTER 50. WINDOWS NT
call __SEH_epilog4
retn

Here we may see calls to GetCommandLineA (), then to setargv() and setenvp(), which are, apparently, fills global
variables argc, argv, envp.

Finally, main () is called with these arguments.

There are also calls to the functions having self-describing names like heap_init (), ioinit ().

Heap is indeed initialized in CRT: if you will try to use malloc (), the program exiting abnormally with the error:

runtime error R6030
- CRT not initialized

Global objects initializations in C++ is also occurred in the CRT before main(): 34.1.3.
Avariablemain () returns is passed to cexit (), or to $LN32, which in turn calling doexit ().
Is it possible to get rid of CRT? Yes, if you know what you do.

MSVC linker has /ENTRY option for setting entry point.

#include <windows.h>

int main()
{

MessageBox (NULL, "hello, world", "caption", MB_O0K);
};

Let’s compile itin MSVC 2008.

cl no_crt.c user32.1lib /link /entry:main

We will get a runnable .exe with size 2560 bytes, there are PE-header inside, instructions calling MessageBozx, two strings
in the data segment, MessageBox function imported from user32.d11 and nothing else.

This works, but you will not be able to write WinMain with its 4 arguments instead of main (). To be correct, you will be
able to write so, but arguments will not be prepared at the moment of execution.

By the way, it is possible to make .exe even shorter by doing PE3-section aligning less than default 4096 bytes.

cl no_crt.c user32.1lib /link /entry:main /align:16

Linker will say:

LINK : warning LNK4108: /ALIGN specified without /DRIVER; image may not run

We getting .exe of 720 bytes size. It runningin Windows 7 x86, but not in x64 (the error message will be showed when trying
to execute). By applying even more efforts, it is possible to make executable even shorter, but as you can see, compatibility
problems may arise quickly.

50.2 Win32PE

PE is a executable file format used in Windows.

The difference between .exe, .dll and .sys is that .exe and .sys usually does not have exports, only imports.

A DLL%, just as any other PE-file, has entry point (OEP) (the function DIIMain() is located at it) but usually this function
does nothing.

.sys is usually device driver.

As of drivers, Windows require the checksum is present in PE-file and must be correct >,

Starting at Windows Vista, driver PE-files must be also signed by digital signature. It will fail to load without signature.

Any PE-file begins with tiny DOS-program, printing a message like “This program cannot be run in DOS mode.” —if to run
this program in DOS or Windows 3.1, this message will be printed.

3Portable Executable: 50.2
4Dynamic-link library
SFor example, Hiew(54) can calculate it

345

50.2. WIN32 PE CHAPTER 50. WINDOWS NT
50.2.1 Terminology

e Module — is a separate file, .exe or.dll.
e Process — a program loaded into memory and running. Commonly consisting of one .exe-file and bunch of .dll-files.

e Process memory — the memory a process works with. Each process has its own. There can usually be loaded modules,
memory of the stack, heap(s), etc.

e VA® —is address which will be used in program.
e Base address—is the address within a process memory at which a module will be loaded.
e RVA’—is a VA-address minus base address. Many addresses in PE-file tables uses exactly RVA-addresses.

e IAT®—an array of addresses of imported symbols °. Sometimes, a IMAGE_DIRECTORY_ENTRY_IAT data directory is
points to the IAT. It is worth to note that IDA (as of 6.1) may allocate a pseudo-section named . idata for IAT, even if IAT
is a part of another section!

e INT'°—an array of names of symbols to be imported™.

50.2.2 Base address

The fact is that several module authors may prepare DLL-files for others and there is no possibility to reach agreement, which
addresses will be assigned to whose modules.

So that is why if two necessary for process loading DLLs has the same base addresses, one of which will be loaded at this
base address, and another —at the other spare space in process memory, and each virtual addresses in the second DLL will
be corrected.

Often, linker in MSVC generates an .exe-files with the base address 0x400000, and with the code section started at 0x401000.
This mean RVA of code section begin is 0x1000. DLLs are often generated by this linked with the base address 0x10000000
12

There is also another reason to load modules at various base addresses, rather at random ones.

Itis ASLR™ ™.

The fact is that a shellcode trying to be executed on a compromised system must call a system functions.

In older OS (in Windows NT line: before Windows Vista), system DLL (like kernel32.dll, user32.dll) were always loaded at
the known addresses, and also if to recall that its versions were rarely changed, an addresses of functions were fixed and
shellcode can call it directly.

In order to avoid this, ASLR method loads your program and all modules it needs at random base addresses, each time
different.

ASLR support is denoted in PE-file by setting the flag
IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE [30].

50.2.3 Subsystem

There is also subsystem field, usually it is native (.sys-driver), console (console application) or GUI (non-console).

50.2.4 OS version

A PE-file also has minimal Windows version needed in order to load it. The table of version numbers stored in PE-file and
corresponding Windows codenames is here.

For example, MSVC 2005 compiles .exe-files running on Windows NT4 (version 4.00), but MSVC 2008 is not (files generated
has version 5.00, at least Windows 2000 is needed to run them).

MSVC 2012 by default generates .exe-files of version 6.00, targeting at least Windows Vista, however, by by changing com-
piler’s options, it is possible to force it to compile for Windows XP.

SVirtual Address

"Relative Virtual Address

8Import Address Table

% [24]

1%mport Name Table

n [24]

2This can be changed by /BASE linker option

3Address Space Layout Randomization
“https://en.wikipedia.org/wiki/Address_space_layout_randomization

346

https://en.wikipedia.org/wiki/Windows_NT#Releases
http://blogs.msdn.com/b/vcblog/archive/2012/10/08/10357555.aspx
http://blogs.msdn.com/b/vcblog/archive/2012/10/08/10357555.aspx
https://en.wikipedia.org/wiki/Address_space_layout_randomization

50.2. WIN32 PE CHAPTER 50. WINDOWS NT
50.2.5 Sections

Division by sections, as it seems, are present in all executable file formats.
Itis done in order to separate code from data, and data —from constant data.

e There will be flag IMAGE_SCN_CNT_CODE or IMAGE_SCN_MEM_EXECUTE on code section—this is executable code.
e On data section—IMAGE_SCN_CNT_INITIALIZED_DATA, IMAGE_SCN_MEM_READ and IMAGE_SCN_MEM_WRITE flags.

e On an empty section with uninitialized data—/MAGE_SCN_CNT_UNINITIALIZED_DATA, IMAGE_SCN_MEM_READ and IM-
AGE_SCN_MEM_WRITE.

e On a constant data section, in other words, protected from writing, there are may be flags
IMAGE_SCN_CNT_INITIALIZED_DATA and IMAGE_SCN_MEM_READ without IMAGE_SCN_MEM_WRITE. A process will crash
if it would try to write to this section.

Each section in PE-file may have a name, however, it is not very important. Often (but not always) code section have the
name .text, data section — .data, constant data section — . rdata (readable data). Other popular section names are:

e .idata—imports section. IDA may create pseudo-section named like this: 50.2.1.

e .edata—exports section

e .pdata—section containing all information about exceptions in Windows NT for MIPS, IA64 and x64: 50.3.3
e .reloc—relocs section

e .bss—uninitialized data (BSS)

e .tls—thread local storage (TLS)

e .rsrc—resources

e .CRT—may present in binary files compiled by very old MSVC versions

PE-file packers/encryptors are often garble section names or replacing names to their own.

MSVC allows to declare data in arbitrarily named section .

Some compilers and linkers can add a section with debugging symbols and other debugging information (e.g. MinGW).
However it is not so in modern versions of MSVC (a separate PDB-files are used there for this purpose).

That is how section described in the file:

typedef struct _IMAGE_SECTION_HEADER {
BYTE Name[IMAGE_SIZEOF_SHORT_NAME] ;
union {
DWORD PhysicalAddress;
DWORD VirtualSize;
} Misc;
DWORD VirtualAddress;
DWORD SizeOfRawData;
DWORD PointerToRawData;
DWORD PointerToRelocations;
DWORD PointerToLinenumbers;
WORD NumberOfRelocations;
WORD Number(OfLinenumbers;
DWORD Characteristics;
} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;

16

A word about terminology: PointerToRawData it called “Offset” and VirtualAddress is called “RVA” in Hiew.

Bhttp://msdn.microsoft.com/en-us/library/windows/desktop/cc307397.aspx
®http://msdn.microsoft.com/en-us/library/windows/desktop/ms680341 (v=vs.85) .aspx

347

http://msdn.microsoft.com/en-us/library/windows/desktop/cc307397.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms680341(v=vs.85).aspx

50.2. WIN32 PE CHAPTER 50. WINDOWS NT
50.2.6 Relocations (relocs)

AKA FIXUP-s (at least in Hiew).

This is also present in almost all executable file formats ",

Obviously, modules can be loaded on various base addresses, but how to deal with e.g. global variables? They must be
accessed by an address. One solution is position-independent code(49.1). But it is not always suitable.

Thatis why relocations table is present. The addresses of points needs to be corrected in case of loading on another base
address are just enumerated in the table.

For example, there is a global variable at the address 0x410000 and this is how it is accessed:

A1 00 00 41 00 mov eax, [000410000]

Base address of module is 0x400000, RVA of global variable is 0x10000.

If the module is loading on the base address 0x500000, the factual address of the global variable must be 0x510000.

As we can see, address of variable is encoded in the instruction MOV, after the byte O0xA1.

That is why address of 4 bytes, after 0xA1, is written into relocs table.

, OS-loader enumerates all addresses in table, finds each 32-bit word the address points on, subtracts real, original base
address of it (we getting RVA here), and adds new base address to it.

If module is loading on original base address, nothing happens.

All global variables may be treated like that.

Relocs may have various types, however, in Windows, for x86 processors, the type is usually
IMAGE_REL_BASED_HIGHLOW.

By the way, relocs are darkened in Hiew, for example fig.6.12.

50.2.7 Exports and imports

As all we know, any executable program must use OS services and other DLL-libraries somehow.

It can be said, functions from one module (usually DLL) must be connected somehow to a points of their calls in other
module (.exe-file or another DLL).

Each DLL has “exports” for this, this is table of functions plus its addresses in a module.

Each .exe-file or DLL has “imports”, this is a table of functions it needs for execution including list of DLL filenames.

After loading main .exe-file, 0S-loader, processes imports table: it loads additional DLL-files, finds function names among
DLL exports and writes their addresses down in an IAT of main .exe-module.

As we can notice, during loading, loader must compare a lot of function names, but strings comparison is not a very fast
procedure, so, there is a support of “ordinals” or “hints”, that is a function numbers stored in the table instead of their names.

That is how they can be located faster in loading DLL. Ordinals are always present in “export” table.

For example, program using MFC'® library usually loads mfc*.dll by ordinals, and in such programs there are no MFC
function names in INT.

While loading such program in IDA, it will asks for a path to mfs*.dll files, in order to determine function names. If not to
tell IDA path to this DLL, they will look like mfc80_123 instead of function names.

Imports section

Often a separate section is allocated for imports table and everything related to it (with name like . idata), however, it is not
astrict rule.
Imports is also confusing subject because of terminological mess. Let’s try to collect all information in one place.

"Even .exe-files in MS-DOS
8Microsoft Foundation Classes

348

50.2. WIN32 PE CHAPTER 50. WINDOWS NT

OriginalFirstThunk for kernel32.dll text strings

IMAGE_IMPORT_DESCRIPTOR array

#1 RVA of ...
IMAGE_IMPORT _DESCRIPTOR for kernel32.dll #2 RVAof ...

> 16-bit hint, "CreateFileA”

— #3 RVA of :
<3l 16-bit hint, "GetFileSize"
CriginalFirst Thunk # RVAof ... |
TimeDateStamp =0 0 ¥_">| 16-bit hint, *Sleep® |

FarwarderChain = 0]
Mame \‘)| 16-hit hint, "WriteFile"
FirstThunk

“kernel32 4l
"user32.dil”

IMAGE_IMPORT_DESCRIPTOR for user32.dll

CriginalFirst Thunk
TimeDateStamp =0
ForwarderChain = 0
Mame

FirstThunk

QriginalFirstThunk for user32 dil]

J

NULL IMAGE_IMPORT_DESCRIPTOR

FirstThunk for kernel32 dil |

FirstThunk for user32.dll |
CriginalFirst Thunk = 0

[These values are set by loader)

TimeDateStamp =0 #1 __imp_CreateFileA |
ForwarderChain = 0 #2 imp_GefFileSize

Nlame =0) #3 imp_Sleep

FirstThunk = 0 #4 imp WriteFile

PE Data Directory executable code

#1 (IMAGE_DIRECTORY_ENTRY_IMPORT) ——

call CreateFileA

~
e

“ﬁ: 15 s o 20 xx call imp_GetFileSize

#5 (IMAGE_DIRECTORY _ENTRY_BASERELOC)

Relocations (or fixups)

IMAGE_REL_BASED HIGHLOW, RVA of ...
IMAGE_REL BASED HIGHLOW, RWVA of ...
IMAGE_REL BASED HIGHLOW, RWVA of ...
IMAGE_REL_BASED HIGHLOW, RVA of ...
IMAGE_REL BASED HIGHLOW, RWVA of ...

CreateFileA: FF 25 xx xx ®x ¢ jmp __imp_CreateFileA
> GetFileSize: FF 25 xx xx xx xx jmp __imp_GetFileSize
w | Sleep: FF 25 xx s 2 @2 jmp __imp_Sleep
WriteFile: FF 25 xx xe xx xx jmp __imp_WriteFile

Figure 50.1: The scheme, uniting all PE-file structures related to imports

Main structure is the array of IMAGE_IMPORT_DESCRIPTOR. Each element for each DLL being imported.

Each element holds RVA-address of text string (DLL name) (Name).

OriginalFirstThink is a RVA-address of INT table. This is array of RVA-addresses, each of which points to the text string with
function name. Each string is prefixed by 16-bit integer (“hint”)—“ordinal” of function.

While loading, if it is possible to find function by ordinal, then strings comparison will not occur. Array is terminated by
zero. There s also a pointer to the IAT table with a name FirstThunk, it is just RVA-address of the place where loader will write
addresses of functions resolved.

The points where loader writes addresses, IDA marks like: __imp_CreateFileA, etc.

There are at least two ways to use addresses written by loader.

e The code will have instructions like call __imp_CreateFileA, and since the field with the address of function imported is
a global variable in some sense, the address of call instruction (plus 1 or 2) will be added to relocs table, for the case if
module will be loaded on different base address.

But, obviously, this may enlarge relocs table significantly. Because there are might be a lot of calls to imported functions
in the module. Furthermore, large relocs table slowing down the process of module loading.

349

50.2. WIN32 PE CHAPTER 50. WINDOWS NT
e For each imported function, there is only one jump allocated, using JMP instruction plus reloc to this instruction. Such
points are also called “thunks”. All calls to the imported functions are just CALL instructions to the corresponding
“thunk”. In this case, additional relocs are not necessary because these CALL-s has relative addresses, they are not to

be corrected.

Both of these methods can be combined. Apparently, linker creates individual “thunk” if there are too many calls to the
functions, but by default it is not to be created.

By the way, an array of function addresses to which FirstThunk is pointing is not necessary to be located in IAT section. For
example, | once wrote the PE_add_import' utility for adding import to an existing .exe-file. Some time earlier, in the previous
versions of the utility, at the place of the function you want to substitute by call to another DLL, the following code my utility
writed:

MOV EAX, [yourdll.dll!function]
JMP EAX

FirstThunk points to the first instruction. In other words, while loading yourdll.dll, loader writes address of the function
function right in the code.

It also worth noting a code section is usually write-protected, so my utility adds IMAGE_SCN_MEM_WRITE flag for code
section. Otherwise, the program will crash while loading with the error code 5 (access denied).

One might ask: what if | supply a program with the DLL files set which are not supposed to change, is it possible to speed up
loading process?

Yes, it is possible to write addresses of the functions to be imported into FirstThunk arrays in advance. The Timestamp
field is present in the IMAGE_IMPORT_DESCRIPTOR structure. If a value is present there, then loader compare this value with
date-time of the DLL file. If the values are equal to each other, then the loader is not do anything, and loading process will
be faster. This is what called “old-style binding” %°. There is the BIND.EXE utility in Windows SDK for this. For speeding up of
loading of your program, Matt Pietrek in [24], offers to do binding shortly after your program installation on the computer of
the end user.

PE-files packers/encryptors may also compress/encrypt imports table. In this case, Windows loader, of course, will not load
all necessary DLLs. Therefore, packer/encryptor do this on its own, with the help of LoadLibrary() and GetProcAddress() func-
tions.

In the standard DLLs from Windows installation, often, IAT is located right in the beginning of PE-file. Supposedly, it is done
for optimization. While loading, .exe file is not loaded into memory as a whole (recall huge install programs which are started
suspiciously fast), it is “mapped”, and loaded into memory by parts as they are accessed. Probably, Microsoft developers
decided it will be faster.

50.2.8 Resources

Resources in a PE-file is just a set of icons, pictures, text strings, dialog descriptions. Perhaps, they were separated from the
main code, so all these things could be multilingual, and it would be simpler to pick text or picture for the language that is
currently setin OS.

As a side effect, they can be edited easily and saved back to the executable file, even, if one does not have special knowl-
edge, e.g. using ResHack editor(50.2.11).

50.2.9 .NET

.NET programs are compiled not into machine code but into special bytecode. Strictly speaking, there is bytecode instead of
usual x86-code in the .exe-file, however, entry point (OEP) is pointing to the tiny fragment of x86-code:

jmp mscoree.dll!_CorExeMain

.NET-loader is located in mscoree.dll, it will process the PE-file. It was so in pre-Windows XP OS. Starting from XP, OS-
loader able to detect the .NET-file and run it without execution of that JMP instruction 2'.

¥http://yurichev.com/PE_add_imports.html
2http://blogs.msdn.com/b/oldnewthing/archive/2010/03/18/9980802. aspx. There is also “new-style binding”, | will write about it in future
Zhttp://msdn.microsoft.com/en-us/library/xh0859k0(v=vs.110) .aspx

350

http://yurichev.com/PE_add_imports.html
http://blogs.msdn.com/b/oldnewthing/archive/2010/03/18/9980802.aspx
http://msdn.microsoft.com/en-us/library/xh0859k0(v=vs.110).aspx

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
50.2.10 TLS

This section holds initialized data for TLS(47) (if needed). When new thread starting, its TLS-data is initialized by the data
from this section.

Aside from that, PE-file specification also provides initialization of TLS-section, so-called, TLS callbacks. If they are present,
they will be called before control passing to the main entry point (OEP). This is used widely in the PE-file packers/encryptors.

50.2.11 Tools
e objdump (from cygwin) for dumping all PE-file structures.
e Hiew(54) as editor.
e pefile — Python-library for PE-file processing 2.

e ResHack AKA Resource Hacker — resources editor 23.

50.2.12 Further reading

e Daniel Pistelli — The .NET File Format %

50.3 Windows SEH

50.3.1 Let’s forget about MSVC

In Windows, SEH is intended for exceptions handling, nevertheless, it is language-agnostic, it is not connected to the C++ or
OOP in any way. Here we will take a look on SEH in isolated (from C++ and MSVC extensions) form.

Each running process has a chain of SEH-handlers, TIB has address of the last handler. When exception occurred (division
by zero, incorrect address access, user exception triggered by calling to RaiseException() function), OS will find the last
handlerin TIB, and will call it with passing all information about CPU state (register values, etc) at the moment of exception.
Exception handler will consider exception, was it made for it? If so, it will handle exception. If no, it will signal to OS that it
cannot handle it and OS will call next handler in chain, until a handler which is able to handle the exception will be found.

At the very end of the chain, there a standard handler, showing well-known dialog box, informing a process crash, some
technical information about CPU state at the crash, and offering to collect all information and send it to developers in Mi-
crosoft.

crazh.exe has encountered a problem and needs to
cloze. We are sorry for the inconvenience.

[F pou were in the middle of zomething, the information you were working on
might be lozt,

Pleaze tell Microzoft about thiz problem.

We have created an emar report that pou can send to us. We will treat
thiz report az confidential and anonymous.

Send Emor Report Don't Send

Figure 50.2: Windows XP

Znttps://code.google.com/p/pefile/
Bhttp://www.angusj . com/resourcehacker/
Zhttp://www.codeproject.com/Articles/12585/The-NET-File-Format

351

https://code.google.com/p/pefile/
http://www.angusj.com/resourcehacker/
http://www.codeproject.com/Articles/12585/The-NET-File-Format

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
x

The fallowing infarmation about vour process will be reported:

Exception Information ﬂ
Code: OxcO000005 Flags: 0x00000000
Decord: 0x0000000000000000 Address: 0x000000000040100e

System Information

[Mindows NT 5.1 Build: Z&00

CPT Wendor Code: 756EEE47 - 436E6EET — ECELST4EE
CPT Wersion: O000Z0547 CPU Feature Code: OFAEBFEFF
CPT AMD Feature Codes: O00D1ESZ4

Module 1

crash_exe

Image Base: 0x00400000 Image Si=ze: 0x00000000

Checksum: O0x00000000 Time Stamp: 0x52d41973c

Wersion Information j

The fallowing files will be included in thiz emrar repaort:
CADOCUME~TSADMIMI~TALOCALS 14T emphbl5_appoompat. bt

Cloze

Figure 50.3: Windows XP
% crash.exe B [

@ crash.exe has stopped working

Windows can chedk online for a solution to the problem.
=} Check online for a solution and close the program
=} Close the program

= Debug the program

ol

Problem signature: =
Preblem Event Mame: APPCRASH

Application Mame: crash.exe

Application Version: 0.0.0.0 b
Application Timestamp: 52d1973¢

Fault Module Name: crash.exe

Fault Module Version: 0.0.0.0

Fault Module Timestamp: 52d1973¢

Fyrentinn Code: 000005 hd
di ol

Figure 50.4: Windows 7

352

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT

L crash.exe = =

crash.exe has stopped working

A problem caused the program to stop working correctly.
Windows will close the program and notify you if a sclution is
available.

Close program

Figure 50.5: Windows 8.1

This handler was also called Dr. Watson earlier 2°,

By the way, some developers made their own handler, sending information about program crash to themselves. It is
registered with the help of SetUnhandledExceptionFilter () and will be called if OS do not have any other way to handle
exception. Other example is Oracle RDBMS it saves huge dumps containing all possible information about CPU and memory
state.

Let’s write our own primitive exception handler %:

#include <windows.h>
#include <stdio.h>

DWORD new_value=1234;

EXCEPTION_DISPOSITION __cdecl except_handler(
struct _EXCEPTION_RECORD *ExceptionRecord,
void * EstablisherFrame,
struct _CONTEXT *ContextRecord,
void * DispatcherContext)

unsigned i;
printf ("%s\n", __FUNCTION__);
printf ("ExceptionRecord->ExceptionCode=0x%p\n", ExceptionRecord->ExceptionCode) ;

printf ("ExceptionRecord->ExceptionFlags=0xJp\n", ExceptionRecord->ExceptionFlags) ;
printf ("ExceptionRecord->ExceptionAddress=0x%p\n", ExceptionRecord->ExceptionAddress) ;

if (ExceptionRecord->ExceptionCode==0xE1223344)

{
printf ("That’s for us\n");
// yes, we "handled" the exception
return ExceptionContinueExecution;
}
else if (ExceptionRecord->ExceptionCode==EXCEPTION_ACCESS_VIOLATION)
{
printf ("ContextRecord->Eax=0x%08X\n", ContextRecord->Eax) ;
// will it be possible to ’fix’> it?
printf ("Trying to fix wrong pointer address\n");
ContextRecord->Eax=(DWORD) &new_value;
// yes, we "handled" the exception
return ExceptionContinueExecution;
}
else
{

printf ("We do not handle this\n");
// someone else’s problem

Bhttps://en.wikipedia.org/wiki/Dr._Watson_(debugger)

26The example is based on the example from [23]

Itis compiled with the SAFESEH option: c1 sehl.cpp /link /safeseh:no
More about SAFESEH

353

https://en.wikipedia.org/wiki/Dr._Watson_(debugger)
http://msdn.microsoft.com/en-us/library/9a89h429.aspx

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
return ExceptionContinueSearch;

s
}
int main()
{
DWORD handler = (DWORD)except_handler; // take a pointer to our handler
// install exception handler
__asm
{ // make EXCEPTION_REGISTRATION record:
push handler // address of handler function
push FS: [0] // address of previous handler
mov FS:[0],ESP // add new EXECEPTION_REGISTRATION
3
RaiseException (0xE1223344, 0, O, NULL);
// now do something very bad
int* ptr=NULL;
int val=0;
val=xptr;
printf ("val=J)d\n", val);
// deinstall exception handler
__asm
{ // remove our EXECEPTION_REGISTRATION record
mov eax, [ESP] // get pointer to previous record
mov FS:[0], EAX // install previous record
add esp, 8 // clean our EXECEPTION_REGISTRATION off stack
3
return O;
}

FS: segment register is pointing to the TIB in win32. The very first element in TIB is a pointer to the last handler in chain.
We saving it in the stack and store an address of our handler there. The structure is named _EXCEPTION_REGISTRATION, it
is a simplest singly-linked list and its elements are stored right in the stack.

Listing 50.1: MSVC/VC/crt/src/exsup.inc

_EXCEPTION_REGISTRATION struc
prev dd ?
handler dd ?
_EXCEPTION_REGISTRATION ends

So each “handler” field points to handler and an each “prev” field points to previous record in the stack. The last record
has OxFFFFFFFF (-1) in “prev” field.

354

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT

TIB Stack
FS:0 +0: __except_list
+4: Prev=0xFFFFFFFF
+8: ... Handle handler function

Prev

Handle handler function

Prev

Handle handler function

When our handler is installed, let’s call RaiseException() ?'. This is user exception. Handler will check the code. If the
code is 0xE1223344, it will return ExceptionContinueExecution, which means that handler fixes CPU state (it is usually
EIP/ESP) and the OS can resume thread execution. If to alter the code slightly so the handler will return ExceptionContinueSearch,
then OS will call other handlers, and very unlikely the one who can handle it will be founded, since no one have information
about it (rather about its code). You will see the standard Windows dialog about process crash.

What is the difference between system exceptions and user? Here is a system ones:

as defined in WinBase.h as defined in ntstatus.h numerical value
EXCEPTION_ACCESS_VIOLATION STATUS_ACCESS_VIOLATION 0xC0000005
EXCEPTION_DATATYPE_MISALIGNMENT STATUS_DATATYPE_MISALIGNMENT 0x80000002
EXCEPTION_BREAKPOINT STATUS_BREAKPOINT 0x80000003
EXCEPTION_SINGLE_STEP STATUS_SINGLE_STEP 0x80000004
EXCEPTION_ARRAY_BOUNDS_EXCEEDED STATUS_ARRAY_BOUNDS_EXCEEDED 0xC000008C
EXCEPTION_FLT_DENORMAL_OPERAND STATUS_FLOAT_DENORMAL_OPERAND 0xC000008D
EXCEPTION_FLT_DIVIDE_BY_ZERO STATUS_FLOAT_DIVIDE_BY_ZERO 0xC000008E
EXCEPTION_FLT_INEXACT_RESULT STATUS_FLOAT_INEXACT_RESULT 0xCO00008F
EXCEPTION_FLT_INVALID_OPERATION STATUS_FLOAT_INVALID_OPERATION 0xC0000090
EXCEPTION_FLT_OVERFLOW STATUS_FLOAT_OVERFLOW 0xC0000091
EXCEPTION_FLT_STACK_CHECK STATUS_FLOAT_STACK_CHECK 0xC0000092
EXCEPTION_FLT_UNDERFLOW STATUS_FLOAT_UNDERFLOW 0xC0000093
EXCEPTION_INT_DIVIDE_BY_ZERO STATUS_INTEGER_DIVIDE_BY_ZERO 0xC0000094
EXCEPTION_INT_OVERFLOW STATUS_INTEGER_OVERFLOW 0xC0000095
EXCEPTION_PRIV_INSTRUCTION STATUS_PRIVILEGED_INSTRUCTION 0xC0000096
EXCEPTION_IN_PAGE_ERROR STATUS_IN_PAGE_ERROR 0xC0000006
EXCEPTION_ILLEGAL_INSTRUCTION STATUS_ILLEGAL_INSTRUCTION 0xC000001D
EXCEPTION_NONCONTINUABLE_EXCEPTION | STATUS_NONCONTINUABLE_EXCEPTION | 0xC0000025
EXCEPTION_STACK_OVERFLOW STATUS_STACK_OVERFLOW 0xCO0000FD
EXCEPTION_INVALID_DISPOSITION STATUS_INVALID_DISPOSITION 0xC0000026
EXCEPTION_GUARD_PAGE STATUS_GUARD_PAGE_VIOLATION 0x80000001
EXCEPTION_INVALID_HANDLE STATUS_INVALID_HANDLE 0xC0000008
EXCEPTION_POSSIBLE_DEADLOCK STATUS_POSSIBLE_DEADLOCK 0xC0000194
CONTROL_C_EXIT STATUS_CONTROL_C_EXIT 0xCO00013A

That is how code is defined:

31 292827

S U0

16 15 0

Facility code Error code

2’http://msdn.microsoft.com/en-us/library/windows/desktop/ms680552(v=vs.85) .aspx

355

http://msdn.microsoft.com/en-us/library/windows/desktop/ms680552(v=vs.85).aspx

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
S is a basic status code: 11—error; 10—warning; 01—informational; 00—success. U—whether the code is user code.
Thatis why | chose 0xE1223344— OxE (1110b) mean this is 1) user exception; 2) error. But to be honest, this example works

finely without these high bits.

Then we try to read a value from memory at the 0th address. Of course, there are nothing at this address in win32, so
exception is raised. However, the very first handler will be called — yours, it will be notified first, checking the code on equality
to the EXCEPTION_ACCESS_VIOLATION constant.

The code reading from memory at Oth address is looks like:

Listing 50.2: MSVC 2010

Xor eax, eax

mov eax, DWORD PTR [eax] ; exception will occur here
push eax

push OFFSET msg

call _printf

add esp, 8

Willit be possible to fix error “on fly” and to continue program execution? Yes, our exception handler can fix EAX value and
now let OS will execute this instruction once again. So that is what we do. printf () will print 1234, because, after execution
of our handler, EAX will not be 0, it will contain address of global variable new_value. Execution will be resumed.

That is what is going on: memory manager in CPU signaling about error, the CPU suspends the thread, it finds exception
handler in the Windows kernel, latter, in turn, is starting to call all handlers in SEH chain, one by one.

| use MSVC 2010 now, but of course, there are no any guarantee that EAX will be used for pointer.

This address replacement trick is looks showingly, and | offer it here for SEH internals illustration. Nevertheless, | cannot
recall where it is used for “on-fly” error fixing in practice.

Why SEH-related records are stored right in the stack instead of some other place? Supposedly because then OS will not
need to care about freeing this information, these records will be disposed when function finishing its execution. But I’'m not
100%-sure and can be wrong. This is somewhat like alloca(): (4.2.4).

50.3.2 Now let’s get back to MSVC

Supposedly, Microsoft programmers need exceptions in C, but not in C++, so they added a non-standard C extension to
MSVC?8, It is not related to C++ PL exceptions.

try

{

}
__except(filter code)
{

handler code

}

“Finally” block may be instead of handler code:

try

{
by
__finally
{

3

The filter code is an expression, telling whether this handler code is coressponding to the exception raised. If your code
is too big and cannot be fitted into one expression, a separate filter function can be defined.

There are a lot of such constructs in the Windows kernel. Here is couple of examples from there (WRK):

28http://msdn.microsoft.com/en-us/library/swezty51.aspx

356

http://msdn.microsoft.com/en-us/library/swezty51.aspx

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
Listing 50.3: WRK-v1.2/base/ntos/ob/obwait.c

try {

KeReleaseMutant ((PKMUTANT)SignalObject,
MUTANT_INCREMENT,
FALSE,
TRUE) ;

} except ((GetExceptionCode () == STATUS_ABANDONED | |
GetExceptionCode () == STATUS_MUTANT_NOT_OWNED)?
EXCEPTION_EXECUTE_HANDLER :
EXCEPTION_CONTINUE_SEARCH) {
Status = GetExceptionCode() ;

goto WaitExit;

Listing 50.4: WRK-v1.2/base/ntos/cache/cachesub.c

try {

Rt1CopyBytes((PVOID) ((PCHAR)CacheBuffer + PageOffset),
UserBuffer,
MorePages 7
(PAGE_SIZE - PageOffset)
(ReceivedLength - PageOffset));

} except(CcCopyReadExceptionFilter(GetExceptionInformation(),
&Status)) {

Here is also filter code example:

Listing 50.5: WRK-v1.2/base/ntos/cache/copysup.c

LONG

CcCopyReadExceptionFilter(
IN PEXCEPTION_POINTERS ExceptionPointer,
IN PNTSTATUS ExceptionCode
)

/*++

Routine Description:
This routine serves as a exception filter and has the special job of
extracting the "real" I/0 error when Mm raises STATUS_IN_PAGE_ERROR
beneath us.

Arguments:

ExceptionPointer - A pointer to the exception record that contains
the real Io Status.

ExceptionCode - A pointer to an NTSTATUS that is to receive the real
status.

Return Value:
EXCEPTION_EXECUTE_HANDLER

——x/

357

50.3. WINDOWS SEH

CHAPTER 50. WINDOWS NT

{

*ExceptionCode = ExceptionPointer->ExceptionRecord->ExceptionCode;

if ((*ExceptionCode == STATUS_IN_PAGE_ERROR) &&
(ExceptionPointer->ExceptionRecord->NumberParameters >= 3)) {

*ExceptionCode = (NTSTATUS) ExceptionPointer->ExceptionRecord->ExceptionInformation[2];

3

ASSERT(!NT_SUCCESS (¥ExceptionCode)) ;

return EXCEPTION_EXECUTE_HANDLER;

Internally, SEH is an extension of OS-supported exceptions. But the handler function is _except_handler3 (for SEH3) or
_except_handler4 (for SEH4). The code of this handler is MSVC-related, it is located in its libraries, or in msvcr*.dll. It is very

important to know that SEH is MSVC thing. Other compilers may offer something completely different.

SEH3

SEH3 has _except_handler3 as handler functions, and extends _EXCEPTION_REGISTRATION table, adding a pointer to the
scope table and previous try level variable. SEH4 extends scope table by 4 values for buffer overflow protection.

Scope table is a table consisting of pointers to the filter and handler codes, for each level of try/except nestedness.

TIB

FS:0

+0: __except_list

information about first
try/except block

information about sec-
ond try/except block

information about
third try/except block

+4: ...

+8: ...

scope table

OXFFFFFFFF (-1)

filter function

handler/finally function

filter function

handler/finally function

filter function

handler/finally function

...more entries...

Stack

.

Prev=0xFFFFFFFF

Handle

handler function

Prev

Handle

handler function

Prev

Handle

_except_handler3

scope table

previous try level

EBP

358

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT

Again, it is very important to understand that OS take care only of prev/handle fields, and nothing more. It is job of
_except_handler3 function to read other fields, read scope table, and decide, which handler to execute and when.

The source code of _except_handler3 function is closed. However, Sanos OS, which have win32 compatibility layer, has
the same functions redeveloped, which are somewhat equivalent to those in Windows 2°. Another reimplementations are
present in Wine3® and React0S?'.

If the filter pointer is zero, handler pointer is the pointer to a finally code.

During execution, previous try level value in the stack is changing, so the _except_handler3 will know about current state
of nestedness, in order to know which scope table entry to use.

SEH3: one try/except block example

#include <stdio.h>
#include <windows.h>
#include <excpt.h>

int main()

{
int* p = NULL;
__try
{
printf ("hello #1!\n");
*p = 13; // causes an access violation exception;
printf ("hello #2!\n");
}
__except (GetExceptionCode ()==EXCEPTION_ACCESS_VIOLATION ?
EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH)
{
printf ("access violation, can’t recover\n");
}
+
Listing 50.6: MSVC 2003
$SG74605 DB ’hello #1!’, OaH, OOH
ORG $+1
$SG74606 DB ’hello #2!’, OaH, OOH
ORG $+1
$SG74608 DB access violation, can’’t recover’, OaH, OOH
_DATA ENDS

; scope table

CONST SEGMENT

$T74622 DD OffffffffH ; previous try level
DD FLAT:$L74617 ; filter
DD FLAT:$L74618 ; handler

CONST ENDS

_TEXT SEGMENT

$T74621 = -32 ; size = 4
_p$ = -28 ; size = 4
__$SEHRec$ = -24 ; size = 24

_main PROC NEAR
push ebp
mov ebp, esp

Bhttps://code.google.com/p/sanos/source/browse/src/win32/msvert/except.c
30nttps://github.com/mirrors/wine/blob/master/d1lls/msvcrt/except_i386.c
3http://doxygen.reactos.org/d4/df2/1ib_2sdk_2crt_2except_2except_8c_source.html

359

https://code.google.com/p/sanos/source/browse/src/win32/msvcrt/except.c
https://github.com/mirrors/wine/blob/master/dlls/msvcrt/except_i386.c
http://doxygen.reactos.org/d4/df2/lib_2sdk_2crt_2except_2except_8c_source.html

50.3. WINDOWS SEH

CHAPTER 50. WINDOWS NT

$L74617:
$L74627:

$L74619:
$L74626:

$L74618:

$L74616:

_main
_TEXT

push
push
push
mov
push
mov
add
push
push
push
mov
mov
mov
push
call
add
mov
mov
push
call
add
mov

Jjmp

-1 ; previous try level
OFFSET FLAT:$T74622 ; scope table

OFFSET FLAT:__except_handler3 ; handler

eax, DWORD PTR fs:__except_list

eax ; prev

DWORD PTR fs:__except_list, esp

esp, -16

ebx ; saved 3 registers

esi ; saved 3 registers

edi ; saved 3 registers

DWORD PTR __$SEHRec$[ebp], esp

DWORD PTR _p$[ebpl, O

DWORD PTR __$SEHRec$[ebp+20], O ; previous try level
OFFSET FLAT:$SG74605 ; ’hello #1!°

_printf

esp, 4

eax, DWORD PTR _p$[ebp]

DWORD PTR [eax], 13

OFFSET FLAT:$SG74606 ; ’hello #2!°

_printf

esp, 4

DWORD PTR __$SEHRec$[ebp+20], -1 ; previous try level
SHORT $L74616

; filter code

mov
mov
mov
mov
mov
sub
neg
sbb
inc

ret

ecx, DWORD PTR __$SEHRec$ [ebp+4]
edx, DWORD PTR [ecx]

eax, DWORD PTR [edx]

DWORD PTR $T74621[ebp]l, eax
eax, DWORD PTR $T74621 [ebp]

eax, -1073741819; c0000005H

eax

eax, eax

eax

; handler code

mov
push
call
add
mov

Xor
mov
mov
pop
pop
pop
mov
pop
ret
ENDP
ENDS

esp, DWORD PTR __$SEHRec$ [ebp]

OFFSET FLAT:$SG74608 ; ’access violation, can’’t recover’

_printf

esp, 4

DWORD PTR __$SEHRec$[ebp+20], -1 ; setting previous try level back to -1

eax, eax
ecx, DWORD PTR __$SEHRec$ [ebp+8]
DWORD PTR fs:__except_list, ecx
edi

esi

ebx

esp, ebp

ebp

0

360

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
END ‘

Here we see how SEH frame is being constructed in the stack. Scope table is located in the CONST segment— indeed, these
fields will not be changed. An interesting thing is how previous try level variable is changed. Initial value is OxFFFFFFFF (—1).
The moment when body of try statement is opened is marked as an instruction writing 0 to the variable. The moment when
body of try statement is closed, —1 is returned back to it. We also see addresses of filter and handler code. Thus we can
easily see the structure of try/except constructs in the function.

Since the SEH setup code in the function prologue may be shared between many of functions, sometimes compiler inserts a
call to SEH_prolog() function in the prologue, which do that. SEH cleanup code may be in the SEH_epilog() function.

Let’s try to run this example in tracer:

tracer.exe -1:2.exe --dump-seh

Listing 50.7: tracer.exe output

EXCEPTION_ACCESS_VIOLATION at 2.exe!main+0x44 (0x401054) ExceptionInformation[0]=1

EAX=0x00000000 EBX=0x7efde000 ECX=0x0040cbc8 EDX=0x0008e3c8

ESI=0x00001db1 EDI=0x00000000 EBP=0x0018feac ESP=0x0018fe80

EIP=0x00401054

FLAGS=AF IF RF

* SEH frame at 0x18fe9c prev=0x18ff78 handler=0x401204 (2.exe!_except_handler3)

SEH3 frame. previous trylevel=0

scopetable entry[0]. previous try level=-1, filter=0x401070 (2.exe!main+0x60) handler=0x401088
(2.exe!main+0x78)

* SEH frame at 0x18ff78 prev=0x18ffc4 handler=0x401204 (2.exe!_except_handler3)

SEH3 frame. previous trylevel=0

scopetable entry[0]. previous try level=-1, filter=0x401531 (2.exe!mainCRTStartup+0x18d) handler
=0x401545 (2.exe!mainCRTStartup+0xlal)

* SEH frame at 0x18ffc4 prev=0x18ffe4 handler=0x771f71f5 (ntdll.dll!__except_handler4)

SEH4 frame. previous trylevel=0

SEH4 header: GSCookieOffset=0xfffffffe GSCookieXOROffset=0x0

EHCookieOffset=0xffffffcc EHCookieXOROffset=0x0

scopetable entry[0]. previous try level=-2, filter=0x771£74d0 (ntdl1.d11!___safe_se_handler_table
+0x20) handler=0x771f90eb (ntdll.dll!_TppTerminateProcess@4+0x43)

* SEH frame at 0x18ffe4 prev=0xffffffff handler=0x77247428 (ntdll.d1l1l!_FinalExceptionHandler@16)

We that SEH chain consisting of 4 handlers.

Firsttwo are located in out example. Two? But we made only one? Yes, anotheroneis settingupin CRT function _mainCRTStartup(),
and as it seems, it handles at least FPU exceptions. Its source code can found in MSVS installation: crt/src/winxfltr.c.

Third is SEH4 frame in ntdll.dll, and the fourth handler is not MSVC-related located in ntdll.dll, and it has self-describing
function name.

As you can see, there are 3 types of handlers in one chain: one is not related to MSVC at all (the last one) and two MSVC-
related: SEH3 and SEH4.

SEH3: two try/except blocks example

#include <stdio.h>
#include <windows.h>
#include <excpt.h>

int filter_user_exceptions (unsigned int code, struct _EXCEPTION_POINTERS *ep)
{
printf("in filter. code=0x%08X\n", code);
if (code == 0x112233)
{
printf("yes, that is our exception\n");
return EXCEPTION_EXECUTE_HANDLER;

361

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT

}
else
{
printf ("not our exception\n");
return EXCEPTION_CONTINUE_SEARCH;
};
}
int main()
{
int* p = NULL;
__try
{
__try
{
printf ("hello!\n");
RaiseException (0x112233, 0, 0, NULL);
printf ("0x112233 raised. now let’s crash\n");
*p = 13; // causes an access violation exception;
}
__except (GetExceptionCode () ==EXCEPTION_ACCESS_VIOLATION ?
EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH)
{
printf("access violation, can’t recover\n");
}
3
__except(filter_user_exceptions (GetExceptionCode(), GetExceptionInformation()))
{
// the filter_user_exceptions() function answering to the question
// "is this exception belongs to this block?"
// if yes, do the follow:
printf ("user exception caught\n");
}
}

Now there are two try blocks. So the scope table now have two entries, each entry for each block. Previous try level is
changing as execution flow entering or exiting try block.

Listing 50.8: MSVC 2003

$SG74606 DB ’in filter. code=0x%08X’, OaH, OOH
$SG74608 DB ’yes, that is our exception’, OaH, OOH
$SG74610 DB ’not our exception’, OaH, OOH
$SG74617 DB ’hello!’, 0OaH, OOH
$SG74619 DB ’0x112233 raised. now let’’s crash’, OaH, OOH
$SG74621 DB access violation, can’’t recover’, OaH, OOH
$SG74623 DB ’user exception caught’, OaH, OOH
_code$ = 8 ; size = 4
_ep$ = 12 ; size = 4
_filter_user_exceptions PROC NEAR
push ebp
mov ebp, esp
mov eax, DWORD PTR _code$[ebp]
push eax
push OFFSET FLAT:$SG74606 ; ’in filter. code=0x}08X’
call _printf
add esp, 8
cmp DWORD PTR _code$[ebpl, 1122867; 00112233H
jne SHORT $L74607
push OFFSET FLAT:$SG74608 ; ’yes, that is our exception’
call _printf
add esp, 4

362

50.3. WINDOWS SEH

CHAPTER 50. WINDOWS NT

mov eax, 1
jmp SHORT $L74605
$L74607:
push OFFSET FLAT:$SG74610 ; ’not our exception’
call _printf
add esp, 4
xor eax, eax
$L74605:
pop ebp
ret 0

_filter_user_exceptions ENDP

; scope table

CONST SEGMENT
$T74644 DD OffffffffH ; previous try level for outer block
DD FLAT:$L74634 ; outer block filter
DD FLAT:$L74635 ; outer block handler
DD OO0H ; previous try level for inner block
DD FLAT:$L74638 ; inner block filter
DD FLAT:$L74639 ; inner block handler
CONST ENDS
$T74643 = -36 ; size = 4
$T74642 = -32 ; size = 4
_p$ = -28 ; size = 4
__$SEHRec$ = -24 ; size = 24
_main PROC NEAR
push ebp
mov ebp, esp
push -1 ; previous try level
push OFFSET FLAT:$T74644
push OFFSET FLAT:__except_handler3
mov eax, DWORD PTR fs:__except_list
push eax
mov DWORD PTR fs:__except_list, esp
add esp, -20
push ebx
push esi
push edi
mov DWORD PTR __$SEHRec$[ebp], esp
mov DWORD PTR _p$[ebpl, O
mov DWORD PTR __$SEHRec$ [ebp+20], O ; outer try block entered. set previous
try level to O
mov DWORD PTR __$SEHRec$[ebp+20], 1 ; inner try block entered. set previous
try level to 1
push OFFSET FLAT:$SG74617 ; ’hello!’
call _printf
add esp, 4
push 0
push 0
push 0
push 1122867 ; 00112233H
call DWORD PTR __imp__RaiseException@16
push OFFSET FLAT:$SG74619 ; °0x112233 raised. now let’’s crash’
call _printf
add esp, 4
mov eax, DWORD PTR _p$[ebp]
mov DWORD PTR [eax], 13
mov DWORD PTR __$SEHRec$[ebp+20], O ; inner try block exited. set previous

try level back to O

363

50.3. WINDOWS SEH

CHAPTER 50. WINDOWS NT

Jmp
; inner

$L.74638:
$L.74650:
mov
mov
mov
mov
mov
sub
neg
sbb
inc
$L.74640:
$L.74648:
ret

; inner

$L.74639:
mov
push
call
add
mov
back to 0

$L74615:
mov
back to -1

Jjmp
; outer

$L74634:
$L74651:
mov
mov
mov
mov
mov
push
mov
push
call
add
$L74636:
$L74649:
ret

; outer

$L74635:
mov
push
call
add
mov
back to -1

SHORT $L74615

block filter

ecx, DWORD PTR __$SEHRec$ [ebp+4]
edx, DWORD PTR [ecx]

eax, DWORD PTR [edx]

DWORD PTR $T74643[ebp], eax

eax, DWORD PTR $T74643[ebp]

eax, -1073741819; c0000005H

eax

eax, eax

eax

block handler

esp, DWORD PTR __$SEHRec$ [ebp]

OFFSET FLAT:$SG74621 ; ’access violation, can’’t recover’

_printf

esp, 4

DWORD PTR __$SEHRec$[ebp+20], O ; inner try block exited. set previous try level

DWORD PTR __$SEHRec$[ebp+20], -1 ; outer try block exited, set previous try level
SHORT $L74633

block filter

ecx, DWORD PTR __$SEHRec$ [ebp+4]
edx, DWORD PTR [ecx]

eax, DWORD PTR [edx]

DWORD PTR $T74642[ebp], eax

ecx, DWORD PTR __$SEHRec$ [ebp+4]
ecx

edx, DWORD PTR $T74642 [ebp]

edx

_filter_user_exceptions

esp, 8

block handler

esp, DWORD PTR __$SEHRec$ [ebp]

OFFSET FLAT:$SG74623 ; ’user exception caught’

_printf

esp, 4

DWORD PTR __$SEHRec$[ebp+20], -1 ; both try blocks exited. set previous try level

364

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT

$L74633:
xor eax, eax
mov ecx, DWORD PTR __$SEHRec$ [ebp+8]
mov DWORD PTR fs:__except_list, ecx
pop edi
pop esi
pop ebx
mov esp, ebp
pop ebp
ret 0
_main ENDP

Ifto seta breakpointon printf () functionwhichis called from the handler, we may also see how yet another SEH handler
is added. Perhaps, yet another machinery inside of SEH handling process. Here we also see our scope table consisting of 2
entries.

tracer.exe -1:3.exe bpx=3.exe!printf --dump-seh

Listing 50.9: tracer.exe output

(0) 3.exe!printf

EAX=0x0000001b EBX=0x00000000 ECX=0x0040cc58 EDX=0x0008e3c8

ESI=0x00000000 EDI=0x00000000 EBP=0x0018£840 ESP=0x0018£838

EIP=0x004011b6

FLAGS=PF ZF IF

* SEH frame at 0x18f88c prev=0x18fe9c handler=0x771db4ad (ntdll.dll!ExecuteHandler2@20+0x3a)

* SEH frame at 0x18fe9c prev=0x18ff78 handler=0x4012e0 (3.exe!_except_handler3)

SEH3 frame. previous trylevel=1

scopetable entry[0]. previous try level=-1, filter=0x401120 (3.exe!main+0xb0) handler=0x40113b
(3.exe!main+0xcb)

scopetable entry[1]. previous try level=0, filter=0x4010e8 (3.exe!main+0x78) handler=0x401100 (3.
exe !main+0x90)

* SEH frame at 0x18ff78 prev=0x18ffc4 handler=0x4012e0 (3.exe!_except_handler3)

SEH3 frame. previous trylevel=0

scopetable entry[0]. previous try level=-1, filter=0x40160d (3.exe!mainCRTStartup+0x18d) handler
=0x401621 (3.exe!mainCRTStartup+0xlal)

* SEH frame at 0x18ffc4 prev=0x18ffe4 handler=0x771f71f5 (ntdll.d1l!__except_handler4)

SEH4 frame. previous trylevel=0

SEH4 header: GSCookieOffset=0xfffffffe GSCookieXOROffset=0x0

EHCookieOffset=0xffffffcc EHCookieXOROffset=0x0

scopetable entry[0]. previous try level=-2, filter=0x771£74d0 (ntdll.d11l!___safe_se_handler_table
+0x20) handler=0x771f90eb (ntdll.d1l!_TppTerminateProcess@4+0x43)

* SEH frame at 0x18ffed4 prev=0xffffffff handler=0x77247428 (ntdll.d1l1l!_FinalExceptionHandler@16)

SEH4

During buffer overflow (16.2) attack, address of the scope table can be rewritten, so starting at MSVC 2005, SEH3 was up-
graded to SEH4 in order to have buffer overflow protection. The pointer to scope table is now xored with security cookie.
Scope table extended to have a header, consisting of two pointers to security cookies. Each element have an offset inside of
stack of another value: this is address of stack frame (EBP) xored with security_cookie as well, placed in the stack. This
value will be read during exception handling and checked, if it is correct. Security cookie in the stack is random each time, so
remote attacker, hopefully, will not be able to predict it.

Initial previous try level is —2 in SEH4 instead of —1.

365

50.3. WINDOWS SEH

CHAPTER 50. WINDOWS NT

FS:0

information about first
try/except block

information about sec-
ond try/except block

information about
third try/except block

Here is both examples compiled in MSVC 2012 with SEH4:

.

Stack

TIB
+0: __except_list
+4: ...
+8: ...

scope table

GS Cookie Offset

GS Cookie XOR Offset

EH Cookie Offset

EH Cookie XOR Offset

OXFFFFFFFF (-1)

filter function

handler/finally function

filter function

handler/finally function

filter function

handler/finally function

...more entries...

Prev=0xFFFFFFFF

Handle

handler function

Prev

Handle

handler function

Prev

Handle

_except_handler4

scope
table®security_cookie

previous try level

EBP

EBP®security_cookie

Listing 50.10: MSVC 2012: one try block example

$SG85485 DB
$SG85486 DB
$SG85488 DB

; scope table

xdata$x SEGMENT

’hello #1!’, OaH, OOH
’hello #2!’, OaH, OOH
access violation, can’’t recover’, OaH, OOH

_sehtable$_main DD OfffffffeH

GS Cookie Offset

GS Cookie XOR Offset
EH Cookie Offset

EH Cookie XOR Offset
previous try level

DD OOH 5
DD OffffffccH ;
DD OOH ;
DD OfffffffeH ;
DD FLAT:$LN12@main ; filter

366

50.3. WINDOWS SEH

CHAPTER 50. WINDOWS NT

DD
xdata$x ENDS

FLAT:$LN8@main ; handler

B

>

xored pointer to scope table

ebp
pointer to VC_EXCEPTION_REGISTRATION_RECORD

security_cookie

previous try level
’hello #1!?

hello #2!?’

; previous try level

$T2 = -36 ; size = 4
_p$ = -32 ; size = 4
tve8 = -28 ; size = 4
__$SEHRec$ = -24 ; size = 24
_main PROC
push ebp
mov ebp, esp
push -2
push OFFSET __sehtable$_main
push OFFSET __except_handler4
mov eax, DWORD PTR £fs:0
push eax
add esp, -20
push ebx
push esi
push edi
mov eax, DWORD PTR ___security_cookie
xor DWORD PTR __$SEHRec$[ebp+16], eax ;
Xor eax, ebp
push eax
lea eax, DWORD PTR __$SEHRec$ [ebp+8]
mov DWORD PTR fs:0, eax
mov DWORD PTR __$SEHRec$[ebp], esp
mov DWORD PTR _p$[ebpl, 0
mov DWORD PTR __$SEHRec$ [ebp+20], O
push OFFSET $SG85485
call _printf
add esp, 4
mov eax, DWORD PTR _p$[ebp]
mov DWORD PTR [eax], 13
push OFFSET $SG85486
call _printf
add esp, 4
mov DWORD PTR __$SEHRec$ [ebp+20], -2
jmp SHORT $LN6CGmain
; filter
$LN7@main:
$LN12@main:
mov ecx, DWORD PTR __$SEHRec$[ebp+4]
mov edx, DWORD PTR [ecx]
mov eax, DWORD PTR [edx]
mov DWORD PTR $T2[ebp], eax
cmp DWORD PTR $T2[ebp]l, -1073741819 ; c0000005H
jne SHORT $LN4G@main
mov DWORD PTR tv68[ebpl, 1
jmp SHORT $LN5@main
$LN4@Gmain:
mov DWORD PTR tv68[ebp]l, O
$LN5@main:
mov eax, DWORD PTR tv68[ebp]
$LN9@main:
$LN11@main:
ret 0
; handler

367

50.3. WINDOWS SEH

CHAPTER 50. WINDOWS NT

$LN8Cmain:

mov esp, DWORD PTR __$SEHRec$ [ebp]

push OFFSET $5SG85488 ; ’access violation, can’’t recover’

call _printf

add esp, 4

mov DWORD PTR __$SEHRec$[ebp+20], -2 ; previous try level
$LN6Cmain:

xor eax, eax

mov ecx, DWORD PTR __$SEHRec$ [ebp+8]

mov DWORD PTR £fs:0, ecx

pop ecx

pop edi

pop esi

pop ebx

mov esp, ebp

pop ebp

ret 0
_main ENDP

Listing 50.11: MSVC 2012: two try blocks example

$3SG85486 DB ’in filter. code=0x%08X’, OaH, OOH
$3G85488 DB ’yes, that is our exception’, OaH, OOH
$SG85490 DB ’not our exception’, OaH, OOH
$SG85497 DB ’hello!’, OaH, OOH
$SG85499 DB ’0x112233 raised. now let’’s crash’, OaH, OOH
$3SG85501 DB access violation, can’’t recover’, OaH, OOH
$3SG85503 DB ’user exception caught’, OaH, OOH

xdata$x SEGMENT

__sehtable$_main DD OfffffffeH ; GS Cookie Offset
DD OOH ; GS Cookie XOR Offset
DD Offffffc8H ; EH Cookie Offset
DD OOH ; EH Cookie Offset
DD OfffffffeH ; previous try level for outer block
DD FLAT:$LN19@main ; outer block filter
DD FLAT:$LN9@main ; outer block handler
DD OOH ; previous try level for inner block
DD FLAT:$LN18@Gmain ; inner block filter
DD FLAT:$LN13@main ; inner block handler

xdata$x ENDS

$T2 = -40 ; size = 4
$T3 = -36 ; size = 4
_p$ = -32 ; size = 4
tv72 = -28 ; size = 4
__$SEHRec$ = -24 ; size = 24
_main PROC
push ebp
mov ebp, esp
push -2 ; initial previous try level

push OFFSET __sehtable$_main
push OFFSET __except_handler4

mov eax, DWORD PTR £fs:0

push eax ; prev
add esp, -24

push ebx

push esi

push edi

mov eax, DWORD PTR ___security_cookie

xor DWORD PTR __$SEHRec$[ebp+16], eax ; xored pointer to scope table

368

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT

xor eax, ebp ; ebp ~ security_cookie

push eax

lea eax, DWORD PTR __$SEHRec$ [ebp+8] ; pointer to
VC_EXCEPTION_REGISTRATION_RECORD

mov DWORD PTR £fs:0, eax

mov DWORD PTR __$SEHRec$[ebp]l, esp

mov DWORD PTR _p$[ebpl, O

mov DWORD PTR __$SEHRec$[ebp+20], O ; entering outer try block, setting
previous try level=0

mov DWORD PTR __$SEHRec$[ebp+20], 1 ; entering inner try block, setting
previous try level=1

push OFFSET $SG85497 ; ’hello!’

call _printf

add esp, 4

push 0

push 0

push 0

push 1122867 ; 00112233H

call DWORD PTR __imp__RaiseException@16

push OFFSET $SG85499 ; ’0x112233 raised. now let’’s crash’

call _printf

add esp, 4

mov eax, DWORD PTR _p$[ebp]

mov DWORD PTR [eax], 13

mov DWORD PTR __$SEHRec$ [ebp+20], O ; exiting inmner try block, set previous
try level back to O

jmp SHORT $LN2@main

; inner block filter

$LN12@main:
$LN18Cmain:
mov ecx, DWORD PTR __$SEHRec$ [ebp+4]
mov edx, DWORD PTR [ecx]
mov eax, DWORD PTR [edx]
mov DWORD PTR $T3[ebp], eax
cmp DWORD PTR $T3[ebp]l, -1073741819 ; c0000005H
jne SHORT $LN5@main
mov DWORD PTR tv72[ebp]l, 1
jmp SHORT $LN6@main
$LN5C@main:
mov DWORD PTR tv72[ebp], O
$LN6Cmain:
mov eax, DWORD PTR tv72[ebp]
$LN140Cmain:
$LN160Gmain:
ret 0

; inner block handler

$LN13@main:
mov esp, DWORD PTR __$SEHRec$ [ebp]
push OFFSET $SG85501 ; ’access violation, can’’t recover’
call _printf
add esp, 4
mov DWORD PTR __$SEHRec$ [ebp+20], O ; exiting inner try block, setting
previous try level back to O
$LN2@main:
mov DWORD PTR __$SEHRec$[ebp+20], -2 ; exiting both blocks, setting previous
try level back to -2
jmp SHORT $LN7@main

369

50.3. WINDOWS SEH

CHAPTER 50. WINDOWS NT

; outer block filter
$LN8Gmain:
$LN19@main:
mov ecx, DWORD PTR __$SEHRec$ [ebp+4]
mov edx, DWORD PTR [ecx]
mov eax, DWORD PTR [edx]
mov DWORD PTR $T2[ebp], eax
mov ecx, DWORD PTR __$SEHRec$ [ebp+4]
push ecx
mov edx, DWORD PTR $T2[ebp]
push edx
call _filter_user_exceptions
add esp, 8
$LN10@main:
$LN17@main:
ret 0
; outer block handler
$LN9@main:
mov esp, DWORD PTR __$SEHRec$ [ebp]
push OFFSET $SG85503
call _printf
add esp, 4
mov DWORD PTR __$SEHRec$[ebp+20], -2
try level back to -2
$LN7@main:
xor eax, eax
mov ecx, DWORD PTR __$SEHRec$ [ebp+8]
mov DWORD PTR £fs:0, ecx
pop ecx
pop edi
pop esi
pop ebx
mov esp, ebp
pop ebp
ret 0
_main ENDP
_code$ = 8 ; size = 4
_ep$ = 12 ; size = 4
_filter_user_exceptions PROC
push ebp
mov ebp, esp
mov eax, DWORD PTR _code$[ebp]
push eax
push OFFSET $SG85486
call _printf
add esp, 8
cmp DWORD PTR _code$[ebp], 1122867
jne SHORT $LN2@filter_use
push OFFSET $SG85488
call _printf
add esp, 4
mov eax, 1
jmp SHORT $LN3@filter_use
Jjmp SHORT $LN3@filter_use
$LN20filter_use:
push OFFSET $SG85490

370

; ’user exception caught’

; exiting both blocks, setting previous

; ’in filter. code=0x708X’

; 00112233H

; ’yes, that is our exception’

; ’not our exception’

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT

call _printf

add esp, 4

xor eax, eax
$LN3@filter_use:

pop ebp

ret 0

_filter_user_exceptions ENDP

Here is a meaning of cookies: Cookie Offset isadifference between address of saved EBP valueinstackandthe EBP &
security_cookie value in the stack. Cookie XOR Offset is additional difference between EBP & security_cookie value
and what is stored in the stack. If this equation is not true, a process will be stopped due to stack corruption:

security_cookie @ (Cookie XOROf f set + addressof saved EBP) == stack[addressofsaved EBP + CookieOf f set]

If Cookie Offsetis —2,itis not present.
Cookies checkingis alsoimplemented in my tracer,seehttps://github.com/dennis714/tracer/blob/master/SEH.
c for details.

It is still possible to fall back to SEH3 in the compilers after (and including) MSVC 2005 by setting /GS- option, however,
CRT code will use SEH4 anyway.

50.3.3 Windows x64

As you might think, it is not very fast thing to set up SEH frame at each function prologue. Another performance problem
is to change previous try level value many times while function execution. So things are changed completely in x64: now all
pointers to try blocks, filter and handler functions are stored in another PE-segment .pdata, that is where OS exception
handler takes all the information.

These are two examples from the previous section compiled for x64:

Listing 50.12: MSVC 2012

$SG86276 DB ’hello #1!’, OaH, OOH
$SG86277 DB ’hello #2!’, 0OaH, OOH
$3SG86279 DB access violation, can’’t recover’, OaH, OOH

pdata SEGMENT
$pdata$main DD imagerel $LN9
DD imagerel $LN9+61
DD imagerel $unwind$main
pdata ENDS
pdata SEGMENT
$pdata$main$filt$0 DD imagerel main$filt$0
DD imagerel main$filt$0+32
DD imagerel $unwind$main$filt$0
pdata ENDS
xdata SEGMENT
$unwind$main DD 020609H

DD 030023206H

DD imagerel __C_specific_handler

DD 01H

DD imagerel $LNO9+8

DD imagerel $LN9+40

DD imagerel main$filt$0

DD imagerel $LN9+40
$unwind$main$filt$0 DD 020601H

DD 050023206H
xdata ENDS

_TEXT SEGMENT
main PROC
$LN9:
push rbx
sub rsp, 32

371

https://github.com/dennis714/tracer/blob/master/SEH.c
https://github.com/dennis714/tracer/blob/master/SEH.c

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT

Xor ebx, ebx
lea rcx, OFFSET FLAT:$SG86276 ; ’hello #1!°
call printf
mov DWORD PTR [rbx], 13
lea rcx, OFFSET FLAT:$SG86277 ; ’hello #2!°
call printf
jmp SHORT $LN8Gmain
$LN6CGmain:
lea rcx, OFFSET FLAT:$SG86279 ; ’access violation, can’’t recover’
call printf
npad 1
$LN8Cmain:
xor eax, eax
add rsp, 32
pop rbx
ret 0
main ENDP
_TEXT ENDS

text$x SEGMENT
main$filt$0 PROC

push rbp

sub rsp, 32

mov rbp, rdx
$LNS@main$filt$:

mov rax, QWORD PTR [rcx]

Xor ecx, ecx

cmp DWORD PTR [rax], -1073741819; c0000005H

sete cl

mov eax, ecx
$LN7Cmain$filt$:

add rsp, 32

pop rbp

ret 0

int 3

main$£filt$0 ENDP
text$x ENDS

Listing 50.13: MSVC 2012

$SG86277 DB ’in filter. code=0xJ08X’, 0OaH, OOH

$SG86279 DB ’yes, that is our exception’, OaH, OOH
$3G86281 DB ’not our exception’, OaH, OOH

$SG86288 DB ’hello!’, 0aH, OOH

$3G86290 DB ’0x112233 raised. now let’’s crash’, 0OaH, OOH
$SG86292 DB access violation, can’’t recover’, OaH, OOH
$SG86294 DB ’user exception caught’, OaH, OOH

pdata SEGMENT
$pdata$filter_user_exceptions DD imagerel $LN6

DD imagerel $LN6+73

DD imagerel $unwind$filter_user_exceptions
$pdata$main DD imagerel $LN14

DD imagerel $LN14+95

DD imagerel $unwind$main
pdata ENDS

pdata SEGMENT
$pdata$main$filt$0 DD imagerel main$filt$0
DD imagerel main$filt$0+32
DD imagerel $unwind$main$filt$o
$pdata$main$filt$l DD imagerel main$filt$l

372

50.3. WINDOWS SEH

CHAPTER 50. WINDOWS NT

’hello!’

’0x112233 raised. now let’’s crash’

access violation, can’’t recover’

’user exception caught’

DD imagerel main$filt$1+30
DD imagerel $unwind$main$filt$l
pdata ENDS
xdata SEGMENT
$unwind$filter_user_exceptions DD 020601H
DD 030023206H
$unwind$main DD 020609H
DD 030023206H
DD imagerel __C_specific_handler
DD 02H
DD imagerel $LN14+8
DD imagerel $LN14+59
DD imagerel main$filt$o
DD imagerel $LN14+59
DD imagerel $LN14+8
DD imagerel $LN14+74
DD imagerel main$filt$l
DD imagerel $LN14+74
$unwind$main$filt$0 DD 020601H
DD 050023206H
$unwind$main$filt$1 DD 020601H
DD 050023206H
xdata ENDS
_TEXT SEGMENT
main PROC
$LN14:
push rbx
sub rsp, 32
Xor ebx, ebx
lea rcx, OFFSET FLAT:$SG86288 ;
call printf
Xor r9d, r9d
Xor r8d, r8d
Xor edx, edx
mov ecx, 1122867 ; 00112233H
call QWORD PTR __imp_RaiseException
lea rcx, OFFSET FLAT:$SG86290 ;
call printf
mov DWORD PTR [rbx], 13
jmp SHORT $LN13@main
$LN11@main:
lea rcx, OFFSET FLAT:$SG86292 ;
call printf
npad 1
$LN130@main:
jmp SHORT $LN9@main
$LN7@main:
lea rcx, OFFSET FLAT:$SG86294 ;
call printf
npad 1
$LN9@main:
Xxor eax, eax
add rsp, 32
pop rbx
ret 0
main ENDP
text$x SEGMENT

main$filt$0 PROC

373

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT

push rbp

sub rsp, 32

mov rbp, rdx
$LN10Cmain$filt$:

mov rax, QWORD PTR [rcx]

xor ecx, ecx

cmp DWORD PTR [rax], -1073741819; c0000005H

sete cl

mov eax, ecx
$LN12@main$filt$:

add rsp, 32

pop rbp

ret 0

int 3

main$filt$0 ENDP

main$filt$l PROC

push rbp
sub rsp, 32
mov rbp, rdx
$LN6Cmain$filt$:
mov rax, QWORD PTR [rcx]
mov rdx, rcx
mov ecx, DWORD PTR [rax]
call filter_user_exceptions
npad 1
$LN8Cmain$filt$:
add rsp, 32
pop rbp
ret 0
int 3

main$filt$l ENDP
text$x ENDS

_TEXT SEGMENT

code$ = 48
ep$ = 56
filter_user_exceptions PROC
$LN6:
push rbx
sub rsp, 32
mov ebx, ecx
mov edx, ecx
lea rcx, OFFSET FLAT:$SG86277 ; ’in filter. code=0x%08X’
call printf
cmp ebx, 1122867; 00112233H
jne SHORT $LN2@filter_use
lea rcx, OFFSET FLAT:$SG86279 ; ’yes, that is our exception’
call printf
mov eax, 1
add rsp, 32
pop rbx
ret 0
$LN2@filter_use:
lea rcx, OFFSET FLAT:$SG86281 ; ’not our exception’
call printf
xor eax, eax
add rsp, 32
pop rbx
ret 0

filter_user_exceptions ENDP

374

50.4. WINDOWS NT: CRITICAL SECTION

CHAPTER 50. WINDOWS NT

’_TEXT ENDS

Read [32] for more detailed information about this.
Aside from exception information, . pdata is a section containing addresses of almost all function starts and ends, hence
it may be useful for a tools targetting automated analysis.

50.3.4 Read more about SEH

(23], [32].

50.4 Windows NT:

Critical section

Critical sections in any OS are very important in multithreaded environment, mostly used for issuing a guarantee that only
one thread will access some data, while blocking other threads and interrupts.

That is how CRITICAL_SECTION structure is declared in Windows NT line OS:

Listing 50.14: (Windows Research Kernel v1.2) public/sdk/inc/nturtl.h

//

// section for the

//

LONG LockCount;

} RTL_CRITICAL_SECTION,

LONG RecursionCount;
HANDLE OwningThread;
HANDLE LockSemaphore;
ULONG_PTR SpinCount;

typedef struct _RTL_CRITICAL_SECTION {
PRTL_CRITICAL_SECTION_DEBUG DebuglInfo;

// The following three fields control entering and exiting the critical

resource

// from the thread’s ClientId->UniqueThread

// force size on 64-bit systems when packed
*PRTL_CRITICAL_SECTION;

That’s is how EnterCriticalSection() function works:

Listing 50.15: Windows 2008/ntdll.dll/x86 (begin)

dword
dword
dword
dword

var_C
var_8
var_4
arg_0

mov
push
mov
sub
push
push
mov
lea
mov

jnb

loc_7DE922DD:
mov
mov
mov
mov

pop

_RtlEnterCriticalSection®@4

ptr -0Ch
ptr -8
ptr -4
ptr 8
edi, edi
ebp

ebp, esp
esp, OCh
esi

edi

edi, [ebp+arg_O]

esi, [edi+4] ; LockCount
eax, esi

lock btr dword ptr [eax], O

wait ; jump if CF=0

eax, large fs:18h
ecx, [eax+24h]
[edi+0Ch], ecx
dword ptr [edi+8], 1
edi

375

50.4. WINDOWS NT: CRITICAL SECTION

CHAPTER 50. WINDOWS NT

xor eax, eax
pop esi

mov esp, ebp
pop ebp

retn 4

. skipped

The most important instruction in this code fragment is BTR (prefixed with LOCK): the zeroth bit is stored in CF flag and
cleared in memory. This is atomic operation, blocking all other CPUs to access this piece of memory (take a notice of LOCK
prefix before BTR instruction). If the bit at LockCount was 1, fine, reset it and return from the function: we are in critical sec-

tion. If not —critical section is already occupied by other thread, then wait.
Wait is done there using WaitForSingleObject().

And here is how LeaveCriticalSection() function works:

Listing 50.16: Windows 2008/ntdll.dll/x86 (begin)

_RtllLeaveCriticalSection@4 proc near

arg_0 = dword ptr 8
mov edi, edi
push ebp
mov ebp, esp
push esi
mov esi, [ebptarg_0]
add dword ptr [esi+8], OFFFFFFFFh ; RecursionCount
jnz short loc_7DE922B2
push ebx
push edi
lea edi, [esi+4] ; LockCount
mov dword ptr [esi+OCh], O
mov ebx, 1
mov eax, edi
lock xadd [eax], ebx
inc ebx
cmp ebx, OFFFFFFFFh
jnz loc_7DEASEB7

loc_7DE922B0:

pop edi

pop ebx
loc_7DE922B2:

xor eax, eax

pop esi

pop ebp

retn 4

. skipped

XADD is “exchange and add”. In this case, it summing LockCount value and 1 and stores result in EBX register, and at the
same time 1 goes to LockCount. This operation is atomic since it is prefixed by LOCK as well, meaning that all other CPUs or

CPU cores in system are blocked from accessing this point of memory.

LOCK prefix is very important: two threads, each of which working on separate CPUs or CPU cores may try to enter critical
section and to modify the value in memory simultaneously, this will result in unpredictable behaviour.

376

Part Vi

Tools

377

CHAPTER 51. DISASSEMBLER

Chapter 51

Disassembler

51.1 IDA

Older freeware version is available for downloading .
Short hot-keys cheatsheet:

key meaning

Space | switch listing and graph view
convert to code

convert to data

convert to string

convert to array

undefine

make offset of operand
make decimal number

make char

make binary number

make hexadecimal number
rename identificator
calculator

jump to address

add comment

Ctrl-X | show refernces to the current function, label, variable (incl. in local stack)

*> 0O 0

TOYNZO0O WX ITOC

X show references to the function, label, variable, etc
Alt-I search for constant
Ctrl-I search for the next occurrence of constant

Alt-B search for byte sequence

Ctrl-B | search for the next occurrence of byte sequence
Alt-T search for text (including instructions, etc)
Ctrl-T | search for the next occurrence of text

Alt-P edit current function

Enter | jump to function, variable, etc

Esc get back

Num - | fold function or selected area

Num + | unhide function or area

Function/area folding may be useful for hiding function parts when you realize what they do. this is used in my script? for
hiding some often used patterns of inline code.

Thttp://www.hex-rays.com/idapro/idadownfreeware.htm
Zhttps://github.com/yurichev/IDA_scripts

378

http://www.hex-rays.com/idapro/idadownfreeware.htm
https://github.com/yurichev/IDA_scripts

CHAPTER 52. DEBUGGER

Chapter 52

Debugger

| use tracer' instead of debugger.

| stopped to use debugger eventually, since all | need from it is to spot a function’s arguments while execution, or regis-
ters’ state at some point. To load debugger each time is too much, so | wrote a small utility tracer. It has console-interface,
working from command-line, enable us to intercept function execution, set breakpoints at arbitrary places, spot registers’
state, modify it, etc.

However, as for learning purposes, it is highly advisable to trace code in debugger manually, watch how register’s state
changing (e.g. classic SoftICE, OllyDbg, WinDbg highlighting changed registers), flags, data, change them manually, watch
reaction, etc.

Thttp://yurichev.com/tracer-en.html

379

http://yurichev.com/tracer-en.html

CHAPTER 53. SYSTEM CALLS TRACING

Chapter 53

System calls tracing

53.0.1 strace/dtruss

Will show which system calls (syscalls(48)) are called by process right now. For example:

strace df -h

access("/etc/1d.so.nohwcap", F_0K) = -1 ENOENT (No such file or directory)
open("/1ib/i386-1linux-gnu/libc.so.6", O0_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\220\232\1\0004\0\0\0" ..., 512) = 512
fstat64(3, {st_mode=S_IFREG|0755, st_size=1770984, ...}) =0

mmap2 (NULL, 1780508, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0xb75b3000

MacOSX has dtruss for the same aim.
The Cygwin also has strace, but if | understood correctly, it works only for .exe-files compiled for cygwin environment
itself.

380

CHAPTER 54. OTHER TOOLS

Chapter 54

Other tools

e Microsoft Visual Studio Express': Stripped-down free Visual Studio version, convenient for simple experiments.

e Hiew? for small modifications of code in binary files.

e binary grep: the small utility for constants searching (or just any byte sequence) in a big pile of files, including non-
executable: https://github. com/yurichev/bgrep.

Thttp://www.microsoft.com/express/Downloads/
2http://www.hiew.ru/

381

https://github.com/yurichev/bgrep
http://www.microsoft.com/express/Downloads/
http://www.hiew.ru/

Part Vii

More examples

382

CHAPTER 55. DONGLES

Chapter 55

Dongles

Occasionally | do software copy-protection dongle replacements, or “dongle emulators” and here are couple examples of my
work !,
About one of not described cases you may also read here: [36].

55.1 Example #1: MacOS Classic and PowerPC

I’ve got a program for MacOS Classic 2, for PowerPC. The company who developed the software product was disappeared
long time ago, so the (legal) customer was afraid of physical dongle damage.

While running without dongle connected, a message box with a text "Invalid Security Device" appeared. Luckily, this text
string can be found easily in the executable binary file.

| was not very familiar both with Mac OS Classic and PowerPC, but | tried anyway.

IDA opens the executable file smoothly, reported its type as "PEF (Mac OS or Be OS executable)" (indeed, it is a standard
Mac OS Classic file format).

By searching for the text string with error message, I've got into this code fragment:

seg000:000C87FC 38 60 00 01 1i »r3, 1

seg000:000C8800 48 03 93 41 bl checkl

seg000:000C8804 60 00 00 00 nop

seg000:000C8808 54 60 06 3F clrlwi. %r0, %r3, 24

seg000:000C880C 40 82 00 40 bne 0K

seg000:000C8810 80 62 9F D8 1wz %r3, TC_aInvalidSecurityDevice

Yes, this is PowerPC code. The CPU is very typical 32-bit RISC of 1990s era. Each instruction occupies 4 bytes (just as in
MIPS and ARM) and its names are somewhat resembling MIPS instruction names.

check1() is a function name | gave it to lately. BL is Branch Link instruction, e.g., intended for subroutines calling. The
crucial point is BNE instruction jumping if dongle protection check is passed or not jumping if error is occurred: then the
address of the text string being loaded into r3 register for the subsequent passage into message box routine.

From the [33] I've got to know the r3 register is used for values returning (and r4, in case of 64-bit values).

Another yet unknown instruction is CLRLWI. From [13] I've got to know that this instruction do both clearing and loading.
In our case, it clears 24 high bits from the value in r3 and put it to r0, so it is analogical to MOVZX in x86 (13.1), but it also sets
the flags, so the BNE can check them after.

Let’s take a look into check1 () function:

seg000:00101B40 checkl: # CODE XREF: seg000:00063E7Cp
seg000:00101B40 # sub_64070+160p ...
seg000:00101B40

seg000:00101B40 .set arg_ 8, 8

seg000:00101B40

seg000:00101B40 7C 08 02 A6 mflr %r0

seg000:00101B44 90 01 00 08 stw %r0, arg_8(%sp)

'Read more about it: http://yurichev.com/dongles.html
2pre-UNIX MacOS

383

http://yurichev.com/dongles.html

55.1. EXAMPLE #1: MACOS CLASSIC AND POWERPC CHAPTER 55. DONGLES

seg000:00101B48 94 21 FF CO stwu %sp, -0x40(%sp)
seg000:00101B4C 48 01 6B 39 bl check2
seg000:00101B50 60 00 00 00 nop

seg000:00101B54 80 01 00 48 lwz %r0, 0x40+arg_8(%sp)
seg000:00101B58 38 21 00 40 addi hsp, %sp, 0x40
seg000:00101B5C 7C 08 03 A6 mtlr hr0

seg000:00101B60 4E 80 00 20 blr

seg000:00101B60 # End of function checkl

As | can see in IDA, that function is called from many places in program, but only r3 register value is checked right after
each call. All this function does is calling other function, so it is thunk function: there is function prologue and epilogue, but
r3 register is not touched, so checkl () returns what check2() returns.

BLR? is seems return from function, but since IDA does functions layout, we probably do not need to be interesting in this.
It seems, since it is a typical RISC, subroutines are called using link register, just like in ARM.

check2() function is more complex:

seg000:00118684 check2: # CODE XREF: check1+Cp
seg000:00118684

seg000:00118684 .set var_18, -0x18

seg000:00118684 .set var_C, -0xC

seg000:00118684 .set var_8, -8

s5eg000:00118684 .set var_4, -4

seg000:00118684 .set arg_8, 8

seg000:00118684

seg000:00118684 93 E1 FF FC stw %r31, var_4(%sp)
seg000:00118688 7C 08 02 A6 mflr hr0
seg000:0011868C 83 E2 95 A8 lwz %r31, off_1485E8 # dword_24B704
seg000:00118690 .using dword_24B704, %r31
seg000:00118690 93 C1 FF F8 stw %r30, var_8(%sp)
seg000:00118694 93 Al FF F4 stw %r29, var_C(%sp)
seg000:00118698 7C 7D 1B 78 mr »r29, %r3
seg000:0011869C 90 01 00 08 stw %r0, arg_8(%sp)
seg000:001186A0 54 60 06 3E clrlwi %r0, %r3, 24
seg000:001186A4 28 00 00 01 cmplwi %r0, 1
seg000:001186A8 94 21 FF BO stwu %sp, -0x50(%sp)
seg000:001186AC 40 82 00 OC bne loc_1186B8
seg000:001186B0 38 60 00 01 1i %r3, 1
s5eg000:001186B4 48 00 00 6C b exit
seg000:001186B8 #

seg000:001186B8

seg000:001186B8 loc_1186B8: # CODE XREF: check2+28j
seg000:001186B8 48 00 03 D5 bl sub_118A8C

seg000:001186BC 60 00 00 00 nop

seg000:001186C0O 3B CO 00 00 1i %r30, 0

seg000:001186C4

seg000:001186C4 skip: # CODE XREF: check2+94j
seg000:001186C4 57 CO 06 3F clrlwi. %r0, %r30, 24

seg000:001186C8 41 82 00 18 beq loc_1186E0

seg000:001186CC 38 61 00 38 addi %r3, %sp, 0x50+var_18

seg000:001186D0 80 9F 00 00 1wz %rd, dword_24B704

seg000:001186D4 48 00 CO 55 bl .RBEFINDNEXT

seg000:001186D8 60 00 00 00 nop

seg000:001186DC 48 00 00 1C b loc_1186F8

seg000:001186E0 #

seg000:001186E0

seg000:001186E0 loc_1186E0: # CODE XREF: check2+44j
seg000:001186E0 80 BF 00 00 lwz %r5, dword_24B704
seg000:001186E4 38 81 00 38 addi %rd, %sp, 0x50+var_18

3(PowerPC) Branch to Link Register

384

55.1. EXAMPLE #1: MACOS CLASSIC AND POWERPC CHAPTER 55. DONGLES

seg000:001186E8 38 60 08 C2 1li %»r3, 0x1234
seg000:001186EC 48 00 BF 99 bl .RBEFINDFIRST
seg000:001186F0 60 00 00 00 nop

seg000:001186F4 3B CO 00 01 1i %30, 1

seg000:001186F8

seg000:001186F8 loc_1186F8: # CODE XREF: check2+58j
seg000:001186F8 54 60 04 3F clrlwi. %r0, %r3, 16
seg000:001186FC 41 82 00 0C beq must_jump
seg000:00118700 38 60 00 00 1i %r3, 0 # error
seg000:00118704 48 00 00 1C b exit

seg000:00118708 #

seg000:00118708

seg000:00118708 must_jump: # CODE XREF: check2+78j
seg000:00118708 7F A3 EB 78 mr hr3, %r29

seg000:0011870C 48 00 00 31 bl check3

seg000:00118710 60 00 00 00 nop

seg000:00118714 54 60 06 3F clrlwi. %r0, %r3, 24

seg000:00118718 41 82 FF AC beq skip

seg000:0011871C 38 60 00 01 1i 3, 1

seg000:00118720

seg000:00118720 exit: # CODE XREF: check2+30j
seg000:00118720 # check2+80j
seg000:00118720 80 01 00 58 lwz %r0, 0x50+arg_8(%sp)

seg000:00118724 38 21 00 50 addi hsp, %sp, 0x50

seg000:00118728 83 E1 FF FC luz %r31, var_4(%sp)

seg000:0011872C 7C 08 03 A6 mtlr A0

seg000:00118730 83 C1 FF F8 1wz %r30, var_8(%sp)

seg000:00118734 83 Al FF F4 lwz %r29, var_C(%sp)

seg000:00118738 4E 80 00 20 blr

seg000:00118738 # End of function check2

I’m lucky again: some function names are leaved in the executable (debug symbols section? I’'m not sure, since I’m not
very familiar with the file format, maybe itis some kind of PE exports? (50.2.7)), like . RBEFINDNEXT () and .RBEFINDFIRST().
Eventually these functions are calling other functions with names like . GetNextDeviceViaUSB(), .USBSendPKT (), so these
are clearly dealing with USB device.

There are even a function named . GetNextEve3Device () —sounds familiar, there was Sentinel Eve3 dongle for ADB port
(present on Macs) in 1990s.

Let’s first take a look on how r3 register is set before return simultaneously ignoring all we see. We know that “good” r3
value should be non-zero, zero r3 will lead execution flow to the message box with an error message.

There are two instructions 1i %r3, 1 present in the function and one 1i %r3, 0 (Load Immediate, i.e., loading value
into register). The very first instruction at 0x001186B0—frankly speaking, | don’t know what it mean, | need some more time
to learn PowerPC assembly language.

What we see next is, however, easier to understand: .RBEFINDFIRST() is called: in case of its failure, 0 is written into
r3 and we jump to exit, otherwise another function is called (check3()) —if it is failing too, the .RBEFINDNEXT () is called,
probably, in order to look for another USB device.

N.B.: clrlwi. %r0, %r3, 16itisanalogicaltowhatwe already saw, butitclears16 bits, i.e., .RBEFINDFIRST () prob-
ably returns 16-bit value.

B meaning branch is unconditional jump.

BEQ is inverse instruction of BNE.

Let’s see check3():

seg000:0011873C check3: # CODE XREF: check2+88p
seg000:0011873C

seg000:0011873C .set var_18, -0x18

seg000:0011873C .set var_C, -0xC

seg000:0011873C .set var_8, -8

s5eg000:0011873C .set var_4, -4

seg000:0011873C .set arg_8, 8

seg000:0011873C

seg000:0011873C 93 E1 FF FC stw %r31, var_4(%sp)

s5eg000:00118740 7C 08 02 A6 mflr A0

385

55.1. EXAMPLE #1: MACOS CLASSIC AND POWERPC

CHAPTER 55. DONGLES

seg000:
seg000:
seg000:
seg000:
seg000:
seg000:
seg000:
seg000:
seg000:
seg000:
seg000:
seg000:
seg000:
seg000:
seg000:
seg000:
seg000:
seg000:

00118744
00118748
0011874C
00118750
00118750
00118754
00118758
0011875C
00118760
00118764
00118768
0011876C
00118770
00118774
00118778
0011877C
00118780
00118784

38
93
83

93
3B
38
90
94
80
38
48
60
54
41
38
48

AO
C1
Cc2

Al
A3
60
01
21
DE
81
00
00
60
82
60
00

00
FF
95

FF
00
00
00
FF
00
00
co
00
04
00
00
02

00
F8
A8

F4
00
00
08
BO
00
38
5D
00
3F
0C
00
FO

1i
stw
lwz

stw
addi
1i
stw
stwu
lwz
addi
bl
nop
clrlwi.
beq
1i

%r5, 0
%r30, var_8(%sp)

%r30, off_1485E8 # dword_24B704
.using dword_24B704, %r30

%r29, var_C(%sp)
wr29, %r3, 0

%r3, 0

%r0, arg_8(%sp)

%sp, -0x50(%sp)

%r6, dword_24B704
%rd, %sp, 0x50+var_18
.RBEREAD

%r0, %r3, 16
loc_118784
%r3, 0

exit

:00118784
:00118784
:00118784
:00118788
:0011878C
:00118790
100118794
:00118798

AO
28
41
38
48

01
00
82
60
00

00
04
00
00
02

38
B2
0C
00
DC

loc_118784:

1hz
cmplwi
beq

CODE XREF:
%r0, 0x50+var_18(%sp)
%r0, 0x1100
loc_118798
%r3, 0
exit

:00118798
:00118798
:00118798
:0011879C
:001187A0
:001187A4
:001187A8
:001187AC
:001187B0O
:001187B4
:001187B8
:001187BC
:001187CO

80
38
38
38
48
60
54
41
38
48

DE
81
60
AO
00
00
60
82
60
00

00
00
00
00
Cco
00
04
00
00
02

00
38
01
00
21
00
3F
0oC
00
B4

loc_118798:

lwz
addi
1i

1i

bl

nop
clrlwi.
beq

1i

CODE XREF:

%r6, dword_24B704
%rd, %sp, 0x50+var_18
%r3, 1

%r5, 0

.RBEREAD

%r0, %r3, 16
loc_1187CO
%r3, 0

exit

:001187CO
:001187CO
:001187CO
:001187C4
:001187C8
:001187CC
:001187D0O
:001187D4

AO
28
41
38
48

01
00
82
60
00

00
06
00
00
02

38
4B
0C
00
AO

loc_1187C0:

1lhz
cmplwi
beq

CODE XREF:

%r0, 0x50+var_18(%sp)
%r0, 0x09AB
loc_1187D4

%r3, 0

exit

:001187D4
:001187D4
:001187D4
:001187D8
:001187DC
:001187E0
:001187E4
:001187E8
:001187EC
:001187F0

4B
60
54
2C
41
40
2C
40

F9
00
60
00
82
80
00
80

F3
00
06
00
01
00
00
00

D9
00
3E
05
00
10
04
58

loc_1187D4:

bl
nop
clrlwi
cmpwi
beq
bge
cmpwi
bge

386

CODE XREF:

sub_B7BAC

%r0, %r3, 24
%r0, 5
loc_1188E4
loc_1187F8
%r0, 4
loc_118848

check3+3Cj

check3+50]

check3+78j

check3+8Cj

55.1. EXAMPLE #1: MACOS CLASSIC AND POWERPC

CHAPTER 55. DONGLES

seg000
seg000

:001187F4 48 00 01 8C
:001187F8

1loc_118980

:001187F8
:001187F8
:001187F8 2C 00 00 OB
:001187FC 41 82 00 08
:00118800 48 00 01 80
:00118804

CODE XREF:

%r0, 0xB
loc_118804
loc_118980

:00118804

:00118804

:00118804 80 DE 00 00
:00118808 38 81 00 38
:0011880C 38 60 00 08
:00118810 38 A0 00 00
:00118814 48 00 BF B5
:00118818 60 00 00 00
:0011881C 54 60 04 3F
:00118820 41 82 00 OC
:00118824 38 60 00 00
:00118828 48 00 02 48
:0011882C

1wz
addi
1i
1i
bl
nop

clrlwi.

beq
1i

CODE XREF:

%r6, dword_24B704
%rd, %sp, 0x50+var_18
%r3, 8

%r5, 0

.RBEREAD

%r0, %r3, 16
loc_11882C
%r3, 0

exit

:0011882C
:0011882C
:0011882C A0 01 00 38
:00118830 28 00 11 30
:00118834 41 82 00 0OC
:00118838 38 60 00 00
:0011883C 48 00 02 34
100118840

loc_11882C:

1hz
cmplwi
beq

CODE XREF:

%r0, 0x50+var_18(%sp)
%r0, OxFEAO
loc_118840

%r3, 0

exit

:00118840
:00118840
:00118840 38 60 00 01
:00118844 48 00 02 2C
:00118848

:00118848

:00118848

:00118848 80 DE 00 00
:0011884C 38 81 00 38
:00118850 38 60 00 OA
:00118854 38 A0 00 00
:00118858 48 00 BF 71
:0011885C 60 00 00 00
:00118860 54 60 04 3F
:00118864 41 82 00 0OC
:00118868 38 60 00 00
:0011886C 48 00 02 04
:00118870

lwz
addi
1i
1i
bl
nop

clrlwi.

beq

CODE XREF:

%r6, dword_24B704
%rd, %sp, 0x50+var_18
%r3, OxA

%r5, 0

.RBEREAD

%r0, %r3, 16
loc_118870
%r3, 0

exit

:00118870
:00118870
:00118870 A0 01 00 38
:00118874 28 00 03 F3
:00118878 41 82 00 OC
:0011887C 38 60 00 00
:00118880 48 00 01 FO
:00118884

loc_118870:

1hz
cmplwi
beq
1i

387

CODE XREF:
%r0, 0x50+var_18(%sp)
%r0, OxAG6E1
loc_118884
%r3, 0
exit

check3+ACj

check3+C0j

check3+E4j

: check3+F8j

check3+B4j

check3+128j

55.1. EXAMPLE #1: MACOS CLASSIC AND POWERPC

CHAPTER 55. DONGLES

seg000:00118884
seg000:00118884
seg000:00118884
seg000:00118888
seg000:0011888C
seg000:00118890
seg000:00118894
seg000:00118898

57
28
40
38
48

BF
1F
82
60
00

3E
02
0oC
01
DC

loc_118884:

clrlwi
cmplwi
bne

1i

seg000:00118898
seg000:00118898
seg000:00118898
seg000:0011889C
seg000:001188A0
seg000:001188A4
seg000:001188A8
seg000:001188AC
seg000:001188B0
seg000:001188B4
seg000:001188B8
seg000:001188BC
seg000:001188C0O

80
38
38
38
48
60
54
41
38
48

DE
81
60
AO
00
00
60
82
60
00

00
00
00
00
BF
00
04
00
00
01

00
38
0B
00
21
00
3F
0C
00
B4

loc_118898:

1wz
addi
1i
1i
bl
nop

clrlwi.

beq
1i

CODE XREF:
%r31, %r29, 24
%r31, 2
loc_118898
%r3, 1
exit
CODE XREF:

%r6, dword_24B704
%rd, %sp, 0x50+var_18
%r3, 0xB

%r5, 0

.RBEREAD

%r0, %r3, 16
loc_1188C0
%r3, 0

exit

seg000:001188C0O
seg000:001188C0O
seg000:001188C0O
seg000:001188C4
seg000:001188C8
seg000:001188CC
seg000:001188D0
seg000:001188D4

AO
28
41
38
48

01
00
82
60
00

38
1C
0oC
00
AO

loc_1188C0:

1hz
cmplwi
beq

CODE XREF:
%r0, 0x50+var_18(%sp)
%r0, 0x1C20
loc_1188D4
%r3, 0
exit

s5eg000:001188D4
seg000:001188D4
seg000:001188D4
seg000:001188D8
s5eg000:001188DC
seg000:001188E0
seg000:001188E4

28
40
38
48

1F
82
60
00

00
01
00
01

03
94
01
90

loc_1188D4:

CODE XREF:
%r31, 3
error
%r3, 1
exit

seg000:001188E4
seg000:001188E4
seg000:001188E4
seg000:001188E8
seg000:001188EC
seg000:001188F0
seg000:001188F4
seg000:001188F8
s5eg000:001188FC
seg000:00118900
seg000:00118904
seg000:00118908
s5eg000:0011890C

80
38
38
38
48
60
54
41
38
48

DE
81
60
AO
00
00
60
82
60
00

00
38
0C
00
D5
00
3F
0C
00
68

loc_1188E4:

1wz
addi
1i
1i
bl
nop

clrlwi.

beq
1i

CODE XREF:
%r6, dword_24B704
hrd, %sp, 0x50+var_18
%r3, 0xC
%r5, 0
.RBEREAD

%r0, %r3, 16
loc_11890C
%r3, 0

exit

seg000:0011890C
seg000:0011890C
seg000:0011890C
seg000:00118910
seg000:00118914
seg000:00118918

AO
28
41
38

01
00
82
60

00
1F
00
00

38
40
0oC
00

loc_11890C:

1hz
cmplwi
beq
1i

388

CODE XREF:
%r0, 0x50+var_18(%sp)
%r0, O0x40FF
loc_118920
%r3, 0

check3+13Cj

check3+150j

check3+178j

check3+18Cj

check3+A8j

check3+1C4j

55.1. EXAMPLE #1: MACOS CLASSIC AND POWERPC

CHAPTER 55. DONGLES

seg000
seg000

:0011891C 48 00 01 54

:00118920

:00118920
100118920
:00118920
:00118924
:00118928
:0011892C
100118930
:00118934

57
28
40
38
48

BF
1F
82
60
00

3E
02
0C
01
40

loc_118920:

clrlwi
cmplwi
bne

1i

CODE XREF:
%r31, %r29, 24
%r31, 2
loc_118934
%r3, 1
exit

:00118934
:00118934
:00118934
:00118938
:0011893C
:00118940
100118944
:00118948
:0011894C
:00118950
:00118954
100118958
:0011895C

80
38
38
38
48
60
54
41
38
48

DE
81
60
AO
00
00
60
82
60
00

00
00
00
00
BE
00
04
00
00
01

00
38
0D
00
85
00
3F
0oC
00
18

loc_118934:

lwz
addi
1i
1i
bl
nop

clrlwi.

beq
1i

CODE XREF:
dword_24B704
%rd, Y%sp, 0xb50+var_18
%r3, 0xD
%r5, 0
.RBEREAD

%6,

%r0, %r3, 16
loc_11895C
%r3, 0

exit

:0011895C
:0011895C
:0011895C
:00118960
:00118964
:00118968
:0011896C
:00118970

AO
28
41
38
48

01
00
82
60
00

00
07
00
00
01

38
CF
0C
00
04

loc_11895C:

1hz
cmplwi
beq

CODE XREF:
%r0, 0x50+var_18(%sp)
%r0, OxFC7
loc_118970
%r3, 0
exit

:00118970
:00118970
:00118970
:00118974
:00118978
:0011897C
:00118980

28
40
38
48

1F
82
60
00

00
00
00
00

03
F8
01
F4

loc_118970:

CODE XREF:
%r31, 3
error
%r3, 1
exit

:00118980
:00118980
:00118980
:00118980
:00118984
:00118988
:0011898C
:00118990
:00118994
100118998
:0011899C
:001189A0
:001189A4
:001189A8
:001189AC

80
38
3B
38
38
48
60
54
41
38
48

DE
81
EO
60
AO
00
00
60
82
60
00

00
00
00
00
00
BE
00
04
00
00
00

00
38
00
04
00
35
00
3F
0oC
00
Cc8

loc_118980:

lwz
addi
1i
1i
1i
bl
nop

clrlwi.

beq
1i

CODE XREF:
check3+C4j

%r6, dword_24B704

%rd, %sp, 0x50+var_18

%r31, 0

%r3, 4

%r5, 0

.RBEREAD

%r0, %r3, 16
loc_1189AC
%r3, 0

exit

:001189AC
:001189AC

loc_1189AC:

389

CODE XREF:

check3+1D8j

check3+1ECj

check3+214j

check3+228j

check3+B8j

check3+264]

55.1. EXAMPLE #1: MACOS CLASSIC AND POWERPC

CHAPTER 55. DONGLES

seg000:
seg000:
seg000:
seg000:
seg000:
seg000:

001189AC
001189B0
001189B4
001189B8
001189BC
001189C0

AO
28
40
3B
48

01
00
82
EO
00

00
1D
00
00
00

38
6A
0C
01
14

1hz
cmplwi
bne

%r0, 0x50+var_18(%sp)
%r0, OxAEDO
loc_1189C0

%r31, 1

loc_1189D0

:001189C0
:001189C0
:001189C0
:001189C4
:001189C8
:001189CC
:001189D0

28
41
38
48

00
82
60
00

18
00
00
00

28
0oC
00
A4

loc_1189C0:

:001189D0
:001189D0
:001189D0
:001189D0
:001189D4
:001189D8
:001189DC
:001189E0
:001189E4
:001189E8
:001189EC
:001189F0

57
28
40
57
41
48
60
48

AO
00
82
EO
82
00
00
00

06
00
00
06
00
4C
00
00

3E
02
20
3F
10
69
00
84

loc_1189D0:

clrlwi
cmplwi
bne

clrlwi.

beq
bl

CODE XREF
%r0, 0x2818
loc_1189D0
%r3, 0
exit
CODE XREF

: check3+278j

: check3+280j

check3+288j

%r0, %r29, 24
%r0, 2
loc_1189F8
%r0, %r31, 24
good2
sub_11D64C

exit

:001189F0
:001189F0
:001189F0
:001189F4
:001189F8

CODE XREF:

:001189F8
:001189F8
:001189F8
:001189FC
:00118A00
:00118A04
:00118A08
:00118A0C
:00118A10
:00118A14
:00118A18
:00118A1C
:00118A20

80
38
38
38
48
60
54
41
38
48

DE
81
60
AO
00
00
60
82
60
00

00
00
00
00
BD
00
04
00
00
00

00
38
05
00
C1
00
3F
0oC
00
54

loc_1189F8:

lwz
addi
1i
1i
bl
nop

clrlwi.

beq

CODE XREF:

%r6, dword_24B704
%rd, %sp, 0x50+var_18
%r3, 5

%r5, 0

.RBEREAD

%r0, %r3, 16
loc_118A20
%r3, 0

exit

:00118A20
:00118A20
:00118A20
:00118A24
:00118A28
:00118A2C
:00118A30
:00118A34

AO
28
40
3B
48

01
00
82
EO
00

00
11
00
00
00

38
D3
0oC
01
14

loc_118A20:

1hz
cmplwi
bne

CODE XREF:

%r0, 0x50+var_18(%sp)
%r0, 0xD300
loc_118A34

%r31, 1

good1l

:00118A34
:00118A34
:00118A34
:00118A38

28
41

00
82

1A
00

EB
0oC

loc_118A34:

CODE XREF:

%r0, OxEBA1
good1l

check3+2A4j

check3+29Cj

check3+2D8j

check3+2ECj

55.2. EXAMPLE #2: SCO OPENSERVER CHAPTER 55. DONGLES

seg000:00118A3C 38 60 00 00 1li %»r3, 0
seg000:00118A40 48 00 00 30 b exit
seg000:00118A44 #

seg000:00118A44

seg000:00118A44 good1: # CODE XREF: check3+2F4j
5eg000:00118A44 # check3+2FCj
seg000:00118A44 57 A0 06 3E clrlwi %r0, %r29, 24
seg000:00118A48 28 00 00 03 cmplwi %r0, 3

seg000:00118A4C 40 82 00 20 bne error

seg000:00118A50 57 EO 06 3F clrlwi. %r0, %r31, 24
s5eg000:00118A54 41 82 00 10 beq good

s5eg000:00118A58 48 00 4B F5 bl sub_11D64C

seg000:00118A5C 60 00 00 00 nop

seg000:00118A60 48 00 00 10 b exit

seg000:00118A64 #

seg000:00118A64

seg000:00118A64 good: # CODE XREF: check3+318j
seg000:00118A64 38 60 00 01 li 3, 1

seg000:00118A68 48 00 00 08 b exit

seg000:00118A6C #

seg000:00118A6C

seg000:00118A6C error: # CODE XREF: check3+19Cj
seg000:00118A6C # check3+238j
seg000:00118A6C 38 60 00 00 1i 3, 0

seg000:00118A70

seg000:00118A70 exit: # CODE XREF: check3+44j
seg000:00118A70 # check3+58j
seg000:00118A70 80 01 00 58 lwz %r0, 0x50+arg_8(%sp)

seg000:00118A74 38 21 00 50 addi hsp, %sp, 0x50

seg000:00118A78 83 E1 FF FC lwz %r31, var_4(%sp)

seg000:00118A7C 7C 08 03 A6 mtlr hr0

seg000:00118A80 83 C1 FF F8 luz %r30, var_8(%sp)

seg000:00118A84 83 Al FF F4 luz »r29, var_C(%sp)

seg000:00118A88 4E 80 00 20 blr

seg000:00118A88 # End of function check3

There are alot of calls to . RBEREAD (). The function is probably return some values from the dongle, so they are compared
here with hard-coded variables using CMPLWI.

We also see that r3 register is also filled before each call to . RBEREAD () by one of these values: 0, 1, 8, 0xA, 0xB, 0xC, OxD,
4,5. Probably memory address or something like that?

Yes, indeed, by googling these function names it is easy to find Sentinel Eve3 dongle manual!

| probably even do not need to learn other PowerPC instructions: all this function does is just calls . RBEREAD (), compare
its results with constants and returns 1if comparisons are fine or 0 otherwise.

OK, all we’ve got is that check1 () should return always 1 or any other non-zero value. But since I’'m not very confident in
PowerPC instructions, | will be careful: | will patch jumps in check2 () at 0x001186FC and 0x00118718.

At 0x001186FC | wrote bytes 0x48 and 0 thus converting BEQ instruction into B (unconditional jump): | spot its opcode in
the code without even referring to [13].

At 0x00118718 | wrote 0x60 and 3 zero bytes thus converting it to NOP instruction: | spot its opcode in the code too.

Summarizing, such small modifications can be done with IDA and minimal assembly language knowledge.

55.2 Example #2: SCO OpenServer

An ancient software for SCO OpenServer from 1997 developed by a company disappeared long time ago.

Thereis a special dongle driver to be installed in the system, containing text strings: “Copyright 1989, Rainbow Technolo-
gies, Inc., Irvine, CA” and “Sentinel Integrated Driver Ver. 3.0 ”.

After driver installation in SCO OpenServer, these device files are appeared in /dev filesystem:

/dev/rbsl8

391

55.2. EXAMPLE #2: SCO OPENSERVER CHAPTER 55. DONGLES

/dev/rbsl9
/dev/rbsl10

The program without dongle connected reports error, but the error string cannot be found in the executables.
Thanks to IDA, it does its job perfectly working out COFF executable used in SCO OpenServer.
I've tried to find “rbsl” and indeed, found it in this code fragment:

.text :00022AB8 public SSQC

.text:00022AB8 SSQC proc near ; CODE XREF: SSQ+7p
.text:00022AB8

.text:00022AB8 var_44 = byte ptr -44h

.text:00022AB8 var_29 = byte ptr -2%h

.text:00022AB8 arg_O = dword ptr 8

.text :00022AB8

.text :00022AB8 push ebp

.text:00022AB9 mov ebp, esp
.text:00022ABB sub esp, 44h
.text:00022ABE push edi

.text :00022ABF mov edi, offset unk_4035D0
.text:00022AC4 push esi

.text:00022AC5 mov esi, [ebptarg_0]
.text:00022AC8 push ebx

.text :00022AC9 push esi

.text:00022ACA call strlen

.text:00022ACF add esp, 4

.text :00022AD2 cmp eax, 2

.text :00022AD7 jnz loc_22BA4
.text:00022ADD inc esi

.text :00022ADE mov al, [esi-1]
.text:00022AE1 movsx eax, al

.text:00022AE4 cmp eax, ’3°
.text:00022AE9 jz loc_22B84
.text:00022AEF cmp eax, ’4’
.text:00022AF4 jz loc_22B94
.text:00022AFA cmp eax, ’5’
.text:00022AFF jnz short loc_22B6B

.text :00022B01 movsx ebx, byte ptr [esi]
.text:00022B04 sub ebx, ’0?
.text:00022B07 mov eax, 7

.text:00022B0OC add eax, ebx

.text :00022BOE push eax

.text :00022BOF lea eax, [ebptvar_44]
.text:00022B12 push offset aDevS1D ; "/dev/sl¥%d"
.text:00022B17 push eax

.text:00022B18 call nl_sprintf
.text:00022B1D push 0 ; int
.text:00022B1F push offset aDevRbsl8 ; char *
.text:00022B24 call _access

.text:00022B29 add esp, 14h
.text:00022B2C cmp eax, OFFFFFFFFh
.text:00022B31 jz short loc_22B48
.text:00022B33 lea eax, [ebx+7]
.text:00022B36 push eax

.text:00022B37 lea eax, [ebptvar_44]
.text :00022B3A push offset aDevRbslD ; "/dev/rbslyd"
.text :00022B3F push eax

.text :00022B40 call nl_sprintf
.text:00022B45 add esp, OCh
.text:00022B48

.text:00022B48 loc_22B48: ; CODE XREF: SSQC+79j
.text:00022B48 mov edx, [edi]
.text:00022B4A test edx, edx

392

55.2. EXAMPLE #2: SCO OPENSERVER

CHAPTER 55. DONGLES

.text:00022B4C
.text:00022B4E

.text :00022B4F
.text:00022B54
.text:00022B57
.text:00022B57 loc_22B57:
.text:00022B57
.text:00022B59
.text:00022B5C

.text :00022B5D
.text:00022B62
.text:00022B65
.text:00022B67

.text :00022B69
.text:00022B6B
.text:00022B6B loc_22B6B:
.text:00022B6B
.text:00022B70
.text:00022B71
.text:00022B72
.text:00022B73
.text:00022B75
.text:00022B76
.text:00022B76 ;
.text :00022B77
.text :00022B78
.text:00022B78 loc_22B78:
.text:00022B78
.text:00022B79
.text:00022B7A
.text:00022B7B
.text:00022B7D
.text:00022B7F
.text:00022B80
.text:00022B30 ;
.text:00022B81
.text:00022B84
.text:00022B84 loc_22B84:
.text:00022B84
.text:00022B86
.text:00022B87
.text:00022B38
.text:00022B389
.text:00022B3E
.text:00022B90
.text :00022B92
.text:00022B93
.text:00022B94 ;
.text:00022B9%4
.text:00022B94 loc_22B9%4:
.text:00022B94
.text :00022B96
.text :00022B97
.text:00022B98
.text:00022B99
.text :00022B9E
.text :00022BA0
.text :00022BA2
.text:00022BA3
.text:00022BA4 ;
.text:00022BA4

jle
push
call
add

push
lea
push
call
add
test
mov

jge

short loc_22B57
edx 5
_close

esp, 4

int

; CODE XREF:

2 ; int
eax, [ebptvar_44]
eax ; char *
_open

esp, 8

eax, eax

[edi], eax

short loc_22B78

; CODE XREF:

eax, OFFFFFFFFh
ebx

esi

edi

esp, ebp

ebp

; CODE XREF:

ebx
esi
edi
eax,
esp, ebp
ebp

eax

; CODE XREF:

al, [esil

ebx

esi

edi
ds:byte_407224, al
esp, ebp

eax, eax

ebp

; CODE XREF:

al,

esi

edi
ds:byte_407225, al
esp, ebp

eax, eax

ebp

393

SSQC+94

SSQC+47j

SSQC+B1j

SSQC+31j

SSQC+3Cj

55.2. EXAMPLE #2: SCO OPENSERVER

CHAPTER 55. DONGLES

.text:00022BA4 loc_22BA4:
.text:00022BA4
.text:00022BAB
.text:00022BAC
.text:00022BAD
.text:00022BB4
.text:00022BB5
.text:00022BB8
.text :00022BBD
.text :00022BBE
.text:00022BC3
.text:00022BC6
.text:00022BC7
.text :00022BCC
.text :00022BCF
.text:00022BD4
.text:00022BD6
.text :00022BDA
.text :00022BDA
.text:00022BDA
.text:00022BDD
.text :00022BDE
.text:00022BE3
.text :00022BE4
.text :00022BE7
.text :00022BE8
.text:00022BEA
.text:00022BEB
.text :00022BF0
.text:00022BF3
.text:00022BF4
.text:00022BF5
.text:00022BF6
.text:00022BF8
.text :00022BF9
.text :00022BF9 ;
.text :00022BFA

.text:00022BFA SSQC

loc_22BDA:

>

CODE XREF: SSQC+1Fj

movsx eax, ds:byte_407225
push esi
push eax
movsx eax, ds:byte_407224
push eax
lea eax, [ebptvar_44]
push offset a46CCS 5 "46%chchs"
push eax
call nl_sprintf
lea eax, [ebp+var_44]
push eax
call strlen
add esp, 18h
cmp eax, 1Bh
jle short loc_22BDA
mov [ebptvar_29], O
; CODE XREF: SSQC+11Cj
lea eax, [ebp+var_44]
push eax
call strlen
push eax ; unsigned int
lea eax, [ebptvar_44]
push eax ; void *
mov eax, [edi]
push eax ; int
call _write
add esp, 10h
pop ebx
pop esi
pop edi
mov esp, ebp
pop ebp
retn

db OEh dup(90h)
endp

Yes, indeed, the program should communicate with driver somehow and that is how it is.
The only place SSQC() function called is the thunk function:

.text :0000DBES
.text :0000DBES
.text:0000DBE8
.text:0000DBE8
.text :0000DBES8
.text :0000DBES
.text :0000DBES
.text :0000DBE9
.text:0000DBEB
.text :0000DBEE
.text :0000DBEF
.text :0000DBF4
.text :0000DBF7
.text:0000DBF9
.text :0000DBFA
.text :0000DBFA ;
.text :0000DBFB

.text :0000DBFB SSQ

ssQ

arg_0O

public SSQ
proc near g

B

= dword ptr 8
push ebp

mov ebp, esp
mov edx, [ebptarg_0]
push edx

call SSQC

add esp, 4
mov esp, ebp
pop ebp

retn

align 4

endp

CODE XREF: sys_info+A9p

; sys_info+CBp ...

SSQ() is called at least from 2 functions.

394

55.2. EXAMPLE #2: SCO OPENSERVER

CHAPTER 55. DONGLES

One of these is:

.data:0040169C _51_52_53 dd offset
.data:0040169C
.data:0040169C

aPressAnyKeyT_O

; DATA XREF: init_sys+392r
; sys_info+Alr
; "PRESS ANY KEY TO CONTINUE: "

.data:004016A0 dd offset abl ; "b1"

.data:004016A4 dd offset ab2 ; "b52"

.data:004016A8 dd offset ab3 ; "53"

.data:004016B8 _3C_or_3E dd offset a3c ; DATA XREF: sys_info:loc_D67Br
.data:004016B8 ; "3C"

.data:004016BC dd offset a3e ; "3E"

; these names I gave to the labels:

.data:004016C0 answersi dd 6BO5h ; DATA XREF: sys_info+E7r
.data:004016C4 dd 3D87h

.data:004016C8 answers2 dd 3Ch ; DATA XREF: sys_info+F2r
.data:004016CC dd 832h

.data:004016D0 _C_and_B db OCh ; DATA XREF: sys_info+BAr
.data:004016D0 ; sys_info:0Kr
.data:004016D1 byte_4016D1 db OBh ; DATA XREF: sys_info+FDr
.data:004016D2 db 0

.text:0000D652 xor eax, eax

.text:0000D654 mov al, ds:ctl_port

.text :0000D659 mov ecx, _51_52_53[eaxx*4]

.text :0000D660 push ecx

.text:0000D661 call S38Q

.text:0000D666 add esp, 4

.text :0000D669 cmp eax, OFFFFFFFFh

.text :0000D66E jz short loc_D6D1

.text:0000D670 Xor ebx, ebx

.text :0000D672 mov al, _C_and_B

.text :0000D677 test al, al

.text:0000D679 jz short loc_D6CO

.text :0000D67B

.text :0000D67B loc_D67B: ; CODE XREF: sys_info+106j
.text :0000D67B mov eax, _3C_or_3E[ebxx*4]

.text:0000D682 push eax

.text:0000D683 call S38Q

.text :0000D688 push offset adg ; "4G"

.text:0000D68D call sSsQ

.text:0000D692 push offset a0123456789 ; "0123456789"
.text:0000D697 call S38Q

.text :0000D69C add esp, OCh

.text :0000D69F mov edx, answersi[ebx*4]

.text:0000D6A6 cmp eax, edx

.text :0000D6A8 jz short OK

.text:0000D6AA mov ecx, answers2[ebx*4]

.text:0000D6B1 cmp eax, ecx

.text :0000D6B3 jz short OK

.text :0000D6B5 mov al, byte_4016D1 [ebx]

.text:0000D6BB inc ebx

.text:0000D6BC test al, al

.text :0000D6BE jnz short loc_D67B

.text:0000D6CO

.text:0000D6CO loc_D6CO: ; CODE XREF: sys_info+C1j

395

55.2. EXAMPLE #2: SCO OPENSERVER CHAPTER 55. DONGLES

.text :0000D6CO inc ds:ctl_port

.text:0000D6C6 Xor eax, eax

.text :0000D6C8 mov al, ds:ctl_port

.text:0000D6CD cmp eax, edi

.text :0000D6CF jle short loc_D652

.text:0000D6D1

.text:0000D6D1 loc_D6D1: ; CODE XREF: sys_info+98j
.text:0000D6D1 ; sys_info+B6j
.text:0000D6D1 mov edx, [ebp+var_8]

.text:0000D6D4 inc edx

.text :0000D6D5 mov [ebptvar_8], edx

.text:0000D6D8 cmp edx, 3

.text:0000D6DB jle loc_D641

.text:0000D6E1

.text:0000D6E1 loc_D6E1: ; CODE XREF: sys_info+16j
.text:0000D6E1 ; sys_info+b51j
.text:0000D6E1 pop ebx

.text :0000D6E2 pop edi

.text:0000D6E3 mov esp, ebp

.text :0000D6ES pop ebp

.text :0000D6E6 retn

.£ext :0000DBE6 ; —---——— oo oo oo oo -
.text :0000D6E7 align 4

.text :0000D6ES8

.text:0000D6E8 OK: ; CODE XREF: sys_info+FOj
.text :0000D6ES8 ; sys_info+FBj

.text :0000D6ES mov al, _C_and_B[ebx]

.text :0000D6EE pop ebx

.text :0000D6EF pop edi

.text :0000D6F0 mov ds:ctl_model, al

.text:0000D6F5 mov esp, ebp

.text :0000D6F7 pop ebp

.text :0000D6F8 retn

.text:0000D6F8 sys_info endp

“3C” and “3E” are sounds familiar: there was a Sentinel Pro dongle by Rainbow with no memory, providing only one
crypto-hashing secret function.

But what is hash-function? Simplest example is CRC32, an algorithm providing “stronger” checksum for in-
tegrity checking purposes. it is impossible to restore original text from the hash value, it just has much less infor-
mation: there can be long text, but CRC32 result is always limited to 32 bits. But CRC32 is not cryptographically
secure: it is known how to alter a text in that way so the resulting CRC32 hash value will be one we need. Crypto-
graphical hash functions are protected from this. They are widely used to hash user passwords in order to store
them in the database, like MD5, SHA1, etc. Indeed: an internet forum database may not contain user passwords
(stolen database will compromise all user’s passwords) but only hashes (a cracker will not be able to reveal pass-
words). Besides, an internet forum engine is not aware of your password, it should only check if its hash is the
same as in the database, then it will give you access in this case. One of the simplest passwords cracking meth-
ods is just to brute-force all passwords in order to wait when resulting value will be the same as we need. Other
methods are much more complex.

But let’s back to the program. So the program can only check the presence or absence dongle connected. No other
information can be written to such dongle with no memory. Two-character codes are commands (we can see how commands
are handled in SSQC() function) and all other strings are hashed inside the dongle transforming into 16-bit number. The
algorithm was secret, so it was not possible to write driver replacement or to remake dongle hardware emulating it perfectly.
However, it was always possible to intercept all accesses to it and to find what constants the hash function results compared
to. Needless to say it is possible to build a robust software copy protection scheme based on secret cryptographical hash-
function: let it to encrypt/decrypt data files your software dealing with.

But let’s back to the code.

Codes 51/52/53 are used for LPT printer port selection. 3x/4x is for “family” selection (that’s how Sentinel Pro dongles are
differentiated from each other: more than one dongle can be connected to LPT port).

396

55.2. EXAMPLE #2: SCO OPENSERVER CHAPTER 55. DONGLES

The only non-2-character string passed to the hashing function is "0123456789". Then, the result is compared against the
set of valid results. If it is correct, 0xC or OxB is to be written into global variable ct1_model.

Another text string to be passed is "PRESS ANY KEY TO CONTINUE: ", but the result is not checked. | don’t know why,
probably by mistake. (What a strange feeling: to reveal bugs in such ancient software.)

Let’s see where the value from the global variable ct1_mode is used.

One of such places is:

.text:0000D708 prep_sys proc near ; CODE XREF: init_sys+46Ap
.text :0000D708

.text:0000D708 var_14
.text:0000D708 var_10
.text:0000D708 var_8

dword ptr -14h
byte ptr -10h
dword ptr -8

.text:0000D708 var_2 = word ptr -2

.text :0000D708

.text:0000D708 push ebp

.text:0000D709 mov eax, ds:net_env

.text:0000D70E mov ebp, esp

.text:0000D710 sub esp, 1Ch

.text:0000D713 test eax, eax

.text:0000D715 jnz short loc_D734

.text:0000D717 mov al, ds:ctl_model

.text:0000D71C test al, al

.text:0000D71E jnz short loc_D77E

.text :0000D720 mov [ebptvar_8], offset aleCvulnvvOkgT_ ; "Ie-cvulnvV\\\bOKG]
T n

.text:0000D727 mov edx, 7

.text:0000D72C jmp loc_DTET7

.text:0000D7E7 loc_D7ET7: ; CODE XREF: prep_sys+24j

.text:0000D7E7 ; prep_sys+33j

.text:0000D7E7 push edx

.text :0000D7ES8 mov edx, [ebp+var_8]

.text :0000D7EB push 20h

.text :0000D7ED push edx

.text :0000D7EE push 16h

.text:0000D7FO call err_warn

.text :0000D7F5 push offset station_sem

.text:0000D7FA call ClosSem

.text :0000D7FF call startup_err

Ifitis 0, an encrypted error message is passed into decryption routine and printed.
Error strings decryption routine is seems simple xoring:

.text:0000A43C err_warn proc near ; CODE XREF: prep_sys+E8p
.text:0000A43C ; prep_sys2+2Fp ...
.text:0000A43C

.text:0000A43C var_55 = byte ptr -55h

.text:0000A43C var_54 = byte ptr -54h

.text:0000A43C arg_0 = dword ptr 8

.text:0000A43C arg_4 = dword ptr OCh

.text:0000A43C arg_8 = dword ptr 10h

.text:0000A43C arg_C = dword ptr 14h

.text:0000A43C

.text:0000A43C push ebp

.text:0000A43D mov ebp, esp

.text:0000A43F sub esp, 54h

.text :0000A442 push edi

.text :0000A443 mov ecx, [ebptarg_8]

.text:0000A446 xXor edi, edi

.text:0000A448 test ecx, ecx

397

55.2. EXAMPLE #2: SCO OPENSERVER

CHAPTER 55. DONGLES

.text:0000A44A
.text:0000A44B
.text:0000A44D

.text :0000A450
.text:0000A453
.text:0000A453 loc_A453:
.text:0000A453
.text:0000A455
.text:0000A458
.text:0000A45A
.text:0000A45D
.text:0000A45E

.text :0000A460
.text:0000A464

.text :0000A466
.text:0000A466 loc_A466:
.text:0000A466
.text:0000A46B

.text :0000A46E
.text:0000A473
.text:0000A475
.text:0000A478
.text:0000A479

.text :0000A47E
.text:0000A481
.text:0000A481 loc_A481:
.text:0000A481
.text:0000A483
.text:0000A485
.text:0000A488
.text :0000A489
.text:0000A48E
.text:0000A493
.text:0000A496
.text :0000A497
.text :0000A498
.text:0000A49A
.text:0000A49B
.text:0000A49C ;
.text :0000A49C
.text :0000A49C loc_A49C:
.text:0000A49C
.text:0000A49E
.text:0000A4A1
.text:0000A4A4
.text:0000A4A5

.text :0000A4A6
.text:0000A4AB
.text:0000A4AE

.text :0000A4AE err_warn

push
jle
mov
mov

x0T
mov
x0T
add
inc
cmp
mov
jl

mov
mov
cmp
jnz
lea
push
call
add

push
lea
mov
push
push
call
add
Jjmp
endp

esi

short loc_A466

esi, [ebptarg_C] ; key

edx, [ebptarg_4] ; string
; CODE XREF: err_warn+28j

eax, eax

al, [edx+edil]

eax, esi

esi, 3

edi

edi, ecx

[ebpteditvar_55], al

short loc_A453

; CODE XREF:
[ebptedi+var_54], 0O
eax, [ebptarg_0]
eax, 18h
short loc_A49C
eax, [ebp+var_54]

err_warn+Fj

eax
status_line
esp, 4
; CODE XREF: err_warn+72j
50h
0
eax, [ebptvar_54]
eax
memset
pcv_refresh
esp, OCh
esi
edi
esp, ebp
ebp
; CODE XREF: err_warn+37j
0

eax, [ebp+var_54]
edx, [ebp+arg_0]
edx

eax

pcv_lputs

esp, OCh

short loc_A481

That’swhy I was unable to find error messages in the executable files, because they are encrypted, this is popular practice.

Another call to S3Q () hashing function passes “offln” string to it and comparing result with 0xFE81 and 0x12A9. If it not
so, it deals with some timer () function (maybe waiting for poorly connected dongle to be reconnected and check again?)
and then decrypt another error message to dump.

.text :0000DA55 loc_DA55:
.text :0000DA55
.text :0000DA5A
.text :0000DASF
.text:0000DA62
.text:0000DA64

push
call
add
mov
mov

; CODE XREF: sync_sys+24Cj
offset a0ffln ; "offln"
sSS8Q
esp, 4
dl, [ebx]
esi, eax

398

55.2. EXAMPLE #2: SCO OPENSERVER

CHAPTER 55. DONGLES

.text:0000DA66
.text :0000DA69
.text :0000DA6B
.text :0000DA71
.text :0000DA77
.text :0000DA7D
.text:0000DA83
.text :0000DA83 loc_DA83:
.text :0000DA83
.text :0000DA85
.text:0000DA88
.text :0000DABA
.text :0000DA90
.text :0000DA96
.text :0000DA99
.text:0000DASF
.text :0000DA9F loc_DASF:
.text :0000DASF
.text :0000DAA2
.text:0000DAA4
.text:0000DAA6
.text:0000DAA8
.text :0000DAAD
.text :0000DABO
.text :0000DABO loc_DABO:
.text :0000DABO
.text:0000DAB1
.text:0000DAB4
.text :0000DAB6
.text :0000DABB
.text :0000DABD

.text :0000DAF7 error:
.text :0000DAF7
.text :0000DAF7
.text :0000DAFE
.text :0000DB05

; this name I gave to label:

.text:0000D9B6 decrypt_end_print_message:

.text :0000D9B6
.text :0000D9B6
.text :0000D9B9
.text:0000D9BB
.text :0000D9BD
.text :0000D9CO
.text :0000D9C3
.text :0000D9C4
.text :0000D9C6
.text:0000D9C7
.text:0000D9C9
.text :0000D9CE
.text :0000D9DO
.text :0000D9D5
.text:0000D9DA
.text:0000D9E1
.text :0000D9E4

cmp
jnz
cmp
jz
cmp
jz

mov
cmp
jnz
cmp
jz

cmp
jz

mov
test
jz
push
call
add

inc
cmp
jle
mov
test
jz

mov
mov

jmp

mov
test
jnz
mov
mov
push
push
push
push
call
push
push
call
mov
add
call

dl, OBh
short loc_DA83
esi, OFE81h
0K
esi, OFFFFF8EFh
0K
; CODE XREF: sync_sys+201j
cl, [ebx]
cl, 0Ch
short loc_DA9F
esi, 12A%h
0K
esi, OFFFFFFFb5h
0K

; CODE XREF:
eax, [ebp+var_18]
eax, eax
short loc_DABO
24h
timer
esp, 4

sync_sys+220j

; CODE XREF: sync_sys+23Cj
edi, 3

short loc_DAbB5

eax, ds:net_env

eax, eax

short error

; CODE XREF: sync_sys+255j

; sync_sys+274j
[ebptvar_8], offset encrypted_error_message2
[ebptvar_C], 17h ; decrypting key
decrypt_end_print_message

; CODE XREF: sync_sys+29Dj
; sync_sys+2ABj

eax, [ebp+var_18]

eax, eax

short loc_D9FB

edx, [ebp+var_C] ; key
ecx, [ebptvar_8] ; string
edx

20h

ecx

18h

err_warn

OFh

190h

sound

[ebptvar_18], 1

esp, 18h

pcv_kbhit

399

55.2. EXAMPLE #2: SCO OPENSERVER CHAPTER 55. DONGLES

.text:0000D9E9 test eax, eax
.text :0000D9EB jz short loc_D9FB

; this name I gave to label:

.data:00401736 encrypted_error_message2 db 74h, 72h, 78h, 43h, 48h, 6, 5Ah, 49h, 4Ch, 2 dup(47h)
.data:00401736 db 51h, 4Fh, 47h, 61h, 20h, 22h, 3Ch, 24h, 33h, 36h, 76h
.data:00401736 db 3Ah, 33h, 31h, OCh, O, OBh, 1Fh, 7, 1Eh, 1Ah

Dongle bypassing is pretty straightforward: just patch all jumps after CMP the relevant instructions.
Another option is to write our own SCO OpenServer driver.

55.2.1 Decrypting error messages

By the way, we can also try to decrypt all error messages. The algorithm, locating in err_warn() function is very simple,
indeed:

Listing 55.1: Decrypting function

.text :0000A44D mov esi, [ebptarg_C] ; key

.text :0000A450 mov edx, [ebptarg_4] ; string

.text :0000A453 loc_A453:

.text:0000A453 xXor eax, eax

.text:0000A455 mov al, [edx+edi] ; load encrypted byte
.text:0000A458 xor eax, esi ; decrypt it
.text:0000A45A add esi, 3 ; change key for the next byte
.text:0000A45D inc edi

.text:0000A45E cmp edi, ecx

.text:0000A460 mov [ebp+edi+var_55], al

.text:0000A464 jl short loc_A453

As we can see, not just string supplied to the decrypting function, but also the key:

.text :0000DAF7 error: ; CODE XREF: sync_sys+255j
.text :0000DAF7 ; sync_sys+274j

.text :0000DAF7 mov [ebptvar_8], offset encrypted_error_message2
.text :0000DAFE mov [ebptvar_C], 17h ; decrypting key

.text :0000DB0O5 jmp decrypt_end_print_message

; this name I gave to label:

.text:0000D9B6 decrypt_end_print_message: ; CODE XREF: sync_sys+29Dj
.text :0000D9B6 ; sync_sys+2ABj
.text :0000D9B6 mov eax, [ebp+var_18]
.text:0000D9B9 test eax, eax

.text:0000D9BB jnz short loc_D9FB

.text :0000D9BD mov edx, [ebptvar_C] ; key

.text :0000D9CO mov ecx, [ebptvar_8] ; string

.text :0000D9C3 push edx

.text:0000D9C4 push 20h

.text:0000D9C6 push ecx

.text :0000D9C7 push 18h

.text :0000D9C9 call err_warn

The algorithm is simple xoring: each byte is xored with a key, but key is increased by 3 after processing of each byte.
| wrote a simple Python script to check my insights:

Listing 55.2: Python 3.x

#!/usr/bin/python
import sys

400

55.2. EXAMPLE #2: SCO OPENSERVER CHAPTER 55. DONGLES
msg=[0x74, 0x72, 0x78, 0x43, 0x48, 0x6, OxbA, 0x49, 0x4C, 0x47, 0x47,

0x51, Ox4F, 0x47, 0x61, 0x20, 0x22, 0x3C, 0x24, 0x33, 0x36, 0x76,

0x3A, 0x33, 0x31, 0x0C, 0x0, 0xOB, Ox1F, 0x7, Ox1E, Ox1A]

key=0x17

tmp=key

for i in msg:
sys.stdout.write ("%c" % (i~tmp))
tmp=tmp+3

sys.stdout.flush()

And it prints: “check security device connection”. So yes, this is decrypted message.

There are also other encrypted messages with corresponding keys. But needless to say that it is possible to decrypt them
without keys. First, we may observe that key is byte in fact. It is because core decrypting instruction (XOR) works on byte
level. Key is located in EST register, but only byte part of ESI is used. Hence, key may be greater than 255, but its value will
always be rounded.

As a consequence, we can just try brute-force, trying all possible keys in 0..255 range. We will also skip messages contain-
ing unprintable characters.

Listing 55.3: Python 3.x

#!/usr/bin/python
import sys, curses.ascii

msgs=

[0x74, 0x72, 0x78, 0x43, 0x48, 0x6, OxbA, 0x49, 0x4C, 0x47, 0x47,
0x51, Ox4F, 0x47, 0x61, 0x20, 0x22, 0x3C, 0x24, 0x33, 0x36, 0x76,
0x3A, 0x33, 0x31, 0x0C, 0x0, 0xOB, Ox1F, 0x7, Ox1E, Ox1A],

[0x49, 0x65, 0x2D, 0x63, 0x76, 0x75, 0x6C, Ox6E, 0x76, 0x56, 0x5C,
8, O0x4F, 0x4B, 0x47, 0x5D, 0xb54, OxbF, 0x1D, 0x26, 0x2C, 0x33,
0x27, 0x28, O0x6F, 0x72, 0x75, 0x78, 0x7B, Ox7E, O0x41, 0x44],

[0x45, 0x61, 0x31, 0x67, 0x72, 0x79, 0x68, 0x52, Ox4A, 0x52, 0x50,
0x0C, 0x4B, 0x57, 0x43, 0x51, 0x58, 0x5B, 0x61, 0x37, 0x33, 0x2B,
0x39, 0x39, 0x3C, 0x38, 0x79, 0x3A, 0x30, 0x17, 0x0B, 0x0C],

[0x40, 0x64, 0x79, 0x75, Ox7F, 0x6F, 0x0O, 0x4C, 0x40, 0x9, 0x4D, Ox5A,
0x46, 0xbD, 0x57, 0x49, 0x57, 0x3B, 0x21, 0x23, 0x6A, 0x38, 0x23,
0x36, 0x24, 0x2A, 0x7C, O0x3A, Ox1A, 0x6, 0xOD, OxOE, OxOA, Ox14,
0x10],

[0x72, 0x7C, 0x72, 0x79, 0x76, 0xO0,

0x50, 0x43, 0x4A, 0x59, 0xbD, 0xbB, 0x41, 0x41, O0x1B, OxbA,

0x24, 0x32, 0x2E, 0x29, 0x28, 0x70, 0x20, 0x22, 0x38, 0x28, 0x36,
0x0D, 0x0B, 0x48, 0x4B, 0x4E]]

def is_string_printable(s):
return all(list(map(lambda x: curses.ascii.isprint(x), s)))

cnt=1
for msg in msgs:
print ("message #)d" % cnt)
for key in range(0,256):
result=[]
tmp=key
for i in msg:
result.append (i~tmp)
tmp=tmp+3
if is_string_printable (result):
print ("key=", key, "value=",

.join(1list (map(chr, result))))

401

55.3. EXAMPLE #3: MS-DOS CHAPTER 55. DONGLES
cnt=cnt+1

And we getting:

Listing 55.4: Results

message #1

key= 20 value= ‘eb~hy|‘‘hudw|_af{n~f%1jmSbnwlpk
key= 21 value= ajcli"}cawtgv{~bgto}tg"millcmvkgh
key= 22 value= bkd\j#rbbvsfuz!cduh|d#bhomdlujni
key= 23 value= check security device connection
key= 24 value= 1ifbl!pd|tqghsx#ejwjbb! ‘nQofbshlo
message #2

key= 7 value= No security device found

key= 8 value= An#rbbvsVuz!cduhld#ghtme?!#!’!#!
message #3

key= 7 value= Bk<waogqNUpu$‘yreoa\wpmpusj,bkIjh
key= 8 value= Mj?vfnrOjqvigxqd‘‘_vwlstlk/clHii
key= 9 value= Lm>ugasLkvw&fgpgag uvcrwml. ‘mwhj
key= 10 value= 01!td‘tMhwx’efwfbf!tubuvnm!anvok
key= 11 value= No security device station found
key= 12 value= In#rjbvsnuz!{duhdd#r{‘whho#gPtme
message #4

key= 14 value= Number of authorized users exceeded
key= 15 value= Ovlmdq'hg#‘juknuhydk!vrbsp!Zy‘dbefe
message #5

key= 17 value= check security device station
key= 18 value= ‘ijbh!td‘tmhwx’efwfbf!tubuVnm!’!

There are some garbage, but we can quickly find English-language messages!
By the way, since algorithm is simple xoring encryption, the very same function can be used for encrypting messages. If
we need, we can encrypt our own messages, and patch the program by inserting them.

55.3 Example #3: MS-DOS

Another very old software for MS-DOS from 1995 also developed by a company disappeared long time ago.

In the pre-DOS extenders era, all the software for MS-DOS were mostly rely on 16-bit 8086 or 80286 CPUs, so en masse
code was 16-bit. 16-bit code is mostly same as you already saw in this book, but all registers are 16-bit and there are less
number of instructions available.

MS-DOS environment has no any system drivers, any program may deal with bare hardware via ports, so here you may
see OUT/IN instructions, which are mostly presentin drivers in our times (itis impossible to access ports directly in user mode
in all modern 0S).

Given that, the MS-DOS program working with a dongle should access LPT printer port directly. So we can just search for
such instructions. And yes, here it is:

seg030:0034 out_port proc far ; CODE XREF: sent_pro+22p
seg030:0034 ; sent_pro+2Ap ...
seg030:0034

seg030:0034 arg_0 = byte ptr 6

seg030:0034

seg030:0034 55 push bp

seg030:0035 8B EC mov bp, sp

seg030:0037 8B 16 7E E7 mov dx, _out_port ; 0x378

seg030:003B 8A 46 06 mov al, [bpt+arg_O]

seg030:003E EE out dx, al

seg030:003F 5D pop bp

seg030:0040 CB retf

seg030:0040 out_port endp

(All label names in this example were given by me).
out_port () is referenced only in one function:

402

55.3. EXAMPLE #3: MS-DOS

CHAPTER 55. DONGLES

seg030:
seg030:
seg030:
seg030:
seg030:
seg030:
seg030:
seg030:
seg030:
seg030:
seg030:
seg030:
seg030:
seg030:
seg030:
seg030:
seg030:
seg030:
seg030:
seg030:
seg030:
seg030:
seg030:
seg030:
seg030:
seg030:
seg030:
seg030:
seg030:
seg030:

0041
0041
0041
0041
0041
0041
0041
0045
0046
0047
004B
004C
004E
0051
0054
0056
0059
005C
005E
005F
0062
0063
0066
0067
006A
006B
006E
006F
0071
0073

C8
56
57
8B
EC
8A
80
80
8A
88
80
8A
EE
68
OE
E8
59
68
OE
E8
59
33
EB

04

16

D8
E3
CB
C3
46
E3
Cc3

FF

CE

D3

Ccé6

F6
01

00

82

FE

04

FD

1F

00

FF

00

FF

00

Eir

sent_pro

var_3
var_2
arg_0

proc far ; CODE XREF:
= byte ptr -3

= word ptr -2

= dword ptr 6

enter 4, 0

push si

push di

mov dx, _in_port_1 ; 0x37A
in al, dx

mov bl, al

and bl, OFEh

or bl, 4

mov al, bl

mov [bp+var_3], al
and bl, 1Fh

mov al, bl

out dx, al

push OFFh

push cs

call near ptr out_port
pop cx

push 0D3h

push cs

call near ptr out_port
pop cx

Xor si, si

jmp short loc_359D4

check_dongle+34p

46

81
7C
68
OE
E8
59
68
OE
E8
59
68
OE
E8
59
68
OE
E8
59
68
OE
E8
59
68
OE

FE

F9

C3

B3

Cc7

AB

D3

A3

C3

9B

c7

93

D3

96

00

FF

00

FF

00

FF

00

FF

00

FF

00

00

loc_359D3:

loc_359D4:

; CODE XREF:
inc si

; CODE XREF:
cmp si, 96h
jl short loc_359D3
push 0C3h
push cs
call near ptr out_port
pop cx
push 0C7h
push cs
call near ptr out_port
pop cx
push OD3h
push cs
call near ptr out_port
pop cx
push 0C3h
push cs
call near ptr out_port
pop cx
push 0C7h
push cs
call near ptr out_port
pop cx
push OD3h
push cs

403

sent_pro+37]j

sent_pro+30j

55.3. EXAMPLE #3: MS-DOS

CHAPTER 55. DONGLES

seg030:00A6 E8 8B FF
seg030:00A9 59
seg030:00AA BF FF FF
seg030:00AD EB 40
seg030:00AF

call
pop
mov
jmp

near ptr out_port
cx

di, OFFFFh

short loc_35A4F

seg030:00AF BE 04 00

seg030:00B2 D1 E7
seg030:00B4 8B 16 80 E7
seg030:00B8 EC
seg030:00B9 A8 80
seg030:00BB 75 03
seg030:00BD 83 CF 01

seg030:00C0O F7 46 FE 08+
seg030:00C5 74 05
seg030:00C7 68 D7 00
seg030:00CA EB OB

loc_35A0F:

loc_35A12:

loc_35A20:

mov

shl
mov
in
test
jnz
or

test
jz
push
Jjmp

; CODE XREF:

; CODE XREF:

di, 1

dx, _in_port_2 ; 0x379
al, dx

al, 80h

short loc_35A20

di, 1

; CODE XREF:

[bp+var_2], 8
short loc_35A2C
OD7h ; ’+°
short loc_35A37

sent_pro+BDj

sent_pro+ACj

sent_pro+7Aj

seg030:00CC 68 C3 00
seg030:00CF OE
seg030:00D0 E8 61 FF
seg030:00D3 59
seg030:00D4 68 C7 00

seg030:00D7 OE
seg030:00D8 E8 59 FF
seg030:00DB 59
seg030:00DC 68 D3 00
seg030:00DF OE
seg030:00E0 E8 51 FF
seg030:00E3 59
seg030:00E4 8B 46 FE
seg030:00E7 D1 EO
seg030:00E9 89 46 FE
seg030:00EC 4E
seg030:00ED 75 C3

seg030:00EF C4 5E 06
s5eg030:00F2 FF 46 06
s5eg030:00F5 26 8A 07
seg030:00F8 98
seg030:00F9 89 46 FE
seg030:00FC 0B CO
seg030:00FE 75 AF
5eg030:0100 68 FF 00
5eg030:0103 OE
seg030:0104 E8 2D FF
seg030:0107 59
seg030:0108 8B 16 82 E7
5eg030:010C EC

loc_35A2C:

loc_35A37:

loc_35A4F:

push
push
call
POP

push

push
call
ROE
push
push
call
bop
mov
shl
mov
dec
jnz

les
inc
mov
cbw
mov
or
jnz
push
push
call
pop
mov
in

; CODE XREF:

0C3h

cs

near ptr out_port
cx

0C7h

; CODE XREF:

cs
near ptr out_port
CX

0D3h

cs

near ptr out_port
CX

ax, [bp+var_2]
ax, 1

[bp+var_2], ax

si

short loc_35A12

; CODE XREF:

bx, [bpt+arg_0]
word ptr [bp+arg_ 0]
al, es:[bx]

[bp+var_2], ax

ax, ax

short loc_35A0F

OFFh

cs

near ptr out_port

cx

dx, _in_port_1 ; 0x37A
al, dx

404

sent_pro+84j

sent_pro+89j

sent_pro+6Cj

55.3. EXAMPLE #3: MS-DOS CHAPTER 55. DONGLES

seg030:010D 8A C8 mov cl, al

seg030:010F 80 E1 5F and cl, 5Fh

seg030:0112 8A C1 mov al, cl

seg030:0114 EE out dx, al

seg030:0115 EC in al, dx

seg030:0116 8A C8 mov cl, al

seg030:0118 F6 C1 20 test cl, 20h

seg030:011B 74 08 jz short loc_35A85
seg030:011D 8A 5E FD mov bl, [bptvar_3]
seg030:0120 80 E3 DF and bl, ODFh

seg030:0123 EB 03 jmp short loc_35A88
seg030:0125 ;

seg030:0125

seg030:0125 loc_35A85: ; CODE XREF: sent_pro+DAj
seg030:0125 8A 5E FD mov bl, [bp+var_3]
seg030:0128

seg030:0128 loc_35A88: ; CODE XREF: sent_pro+E2j
seg030:0128 F6 C1 80 test cl, 80h

seg030:012B 74 03 jz short loc_35A90
seg030:012D 80 E3 7F and bl, 7Fh

seg030:0130

seg030:0130 loc_35A90: ; CODE XREF: sent_pro+EAj
seg030:0130 8B 16 82 E7 mov dx, _in_port_1 ; Ox37A
seg030:0134 8A C3 mov al, bl

seg030:0136 EE out dx, al

seg030:0137 8B C7 mov ax, di

seg030:0139 5F pop di

s5eg030:013A 5E pop si

seg030:013B C9 leave

seg030:013C CB retf

seg030:013C sent_pro endp

Itis also Sentinel Pro “hashing” dongle as in the previous example. | figured out its type by noticing that a text strings are
also passed here and 16 bit values are also returned and compared with others.

So thatis how Sentinel Prois accessed via ports. Output port address is usually 0x378, i.e., printer port, the data to the old
printers in pre-USB era were passed to it. The port is one-directional, because when it was developed, no one can imagined
someone will need to transfer information from the printer 4. The only way to get information from the printer, is a status
register on port 0x379, it contain such bits as “paper out”, “ack”, “busy” —thus printer may signal to the host computer that it
isready or notand if a paper presentinit. So the dongle return information from one of these bits, by one bit at each iteration.

_in_port_2 has address of status word (0x379) and _in_port_1 has control register address (0x37A).

It seems, the dongle return information via “busy” flag at seg030: 00B9: each bit is stored in the DI register, later returned
at the function end.

What all these bytes sent to output port mean? | don’t know. Probably commands to the dongle. But generally speaking,
itis not necessary to know: it is easy to solve our task without that knowledge.

Here is a dongle checking routine:

00000000 struct_O0 struc ; (sizeof=0x1B)

00000000 field_O db 25 dup(?) ; string(C)
00000019 _A dw 7

0000001B struct_0 ends

dseg:3CBC 61 63 72 75+_Q
dseg:3CBC 6E 00 00 00+

. skipped ...
dseg:3E00 63 6F 66 66+

dseg:3E1B 64 6F 67 00+
dseg:3E36 63 61 74 00+

struct_0 <’hello’, 01122h>

struct_0 <’coffee’, 7EB7h>
struct_0 <’dog’, OFFADh>
struct_0 <’cat’, OFF5Fh>

DATA XREF:

4If to consider Centronics only. Following IEEE 1284 standard allows to transfer information from the printer.

405

check_dongle+2Eo

55.3. EXAMPLE #3: MS-DOS CHAPTER 55. DONGLES

dseg:3E51 70 61 70 65+ struct_O <’paper’, OFFDFh>
dseg:3E6C 63 6F 6B 65+ struct_O0 <’coke’, OF568h>
dseg:3E87 63 6C 6F 63+ struct_0 <’clock’, 55EAh>
dseg:3EA2 64 69 72 00+ struct_0 <’dir’, OFFAEh>
dseg:3EBD 63 6F 70 79+ struct_0 <’copy’, OF557h>
seg030:0145 check_dongle proc far ; CODE XREF: sub_3771D+3EP
s5eg030:0145

seg030:0145 var_6 = dword ptr -6

seg030:0145 var_2 = word ptr -2

seg030:0145

seg030:0145 C8 06 00 00 enter 6, 0

s5eg030:0149 56 push si

seg030:014A 66 6A 00 push large O ; newtime
seg030:014D 6A 00 push 0 ; cmd
seg030:014F 9A C1 18 00+ call _biostime

seg030:0154 52 push dx

seg030:0155 50 push ax

seg030:0156 66 58 pop eax

seg030:0158 83 C4 06 add sp, 6

seg030:015B 66 89 46 FA mov [bp+var_6], eax
seg030:015F 66 3B 06 D8+ cmp eax, _expiration
seg030:0164 7E 44 jle short loc_35BOA
seg030:0166 6A 14 push 14h

seg030:0168 90 nop

seg030:0169 OE push cs

seg030:016A E8 52 00 call near ptr get_rand
seg030:016D 59 pop CX

seg030:016E 8B FO mov si, ax

seg030:0170 6B CO 1B imul ax, 1Bh

seg030:0173 05 BC 3C add ax, offset _Q
seg030:0176 1E push ds

seg030:0177 50 push ax

seg030:0178 OE push cs

seg030:0179 E8 C5 FE call near ptr sent_pro
seg030:017C 83 C4 04 add sp, 4

seg030:017F 89 46 FE mov [bp+var_2], ax
seg030:0182 8B C6 mov ax, si

seg030:0184 6B CO 12 imul ax, 18

seg030:0187 66 OF BF CO movsx eax, ax

seg030:018B 66 8B 56 FA mov edx, [bp+var_6]
seg030:018F 66 03 DO add edx, eax

seg030:0192 66 89 16 D8+ mov _expiration, edx
seg030:0197 8B DE mov bx, si

seg030:0199 6B DB 1B imul bx, 27

seg030:019C 8B 87 D5 3C mov ax, _Q._A[bx]
seg030:01A0 3B 46 FE cmp ax, [bpt+var_2]
seg030:01A3 74 05 jz short loc_35BOA
seg030:01A5 B8 01 00 mov ax, 1

seg030:01A8 EB 02 jmp short loc_35B0OC
seg030:01AA 3

seg030:01AA

seg030:01AA loc_35B0A: ; CODE XREF: check_dongle+1Fj
seg030:01AA ; check_dongle+5Ej
seg030:01AA 33 CO xor ax, ax

seg030:01AC

seg030:01AC loc_35B0C: ; CODE XREF: check_dongle+63j
seg030:01AC 5E pop si

seg030:01AD C9 leave

406

55.3. EXAMPLE #3: MS-DOS CHAPTER 55. DONGLES

seg030:01AE CB retf
seg030:01AE check_dongle endp

Since the routine may be called too frequently, e.g., before each important software feature executing, and the dongle
accessing process is generally slow (because of slow printer port and also slow MCU® in the dongle), so they probably added
a way to skip dongle checking too often, using checking current time in biostime () function.

get_rand () function uses standard C function:

seg030:01BF get_rand proc far ; CODE XREF: check_dongle+25p
seg030:01BF

seg030:01BF arg_0 = word ptr 6
seg030:01BF

seg030:01BF 55 push bp

seg030:01C0O0 8B EC mov bp, sp
seg030:01C2 9A 3D 21 00+ call _rand
seg030:01C7 66 OF BF CO movsx eax, ax
seg030:01CB 66 OF BF 56+ movsx edx, [bp+arg_0]
seg030:01D0 66 OF AF C2 imul eax, edx
seg030:01D4 66 BB 00 80+ mov ebx, 8000h
seg030:01DA 66 99 cdq

seg030:01DC 66 F7 FB idiv ebx
seg030:01DF 5D pop bp

seg030:01E0 CB retf

seg030:01E0 get_rand endp

So the text string is selected randomly, passed into dongle, and then the result of hashing is compared with correct value.
Text strings are seems to be chosen randomly as well.
And that is how the main dongle checking function is called:

seg033:087B 9A 45 01 96+ call check_dongle

seg033:0880 0B CO or ax, ax

seg033:0882 74 62 jz short OK

s5eg033:0884 83 3E 60 42+ cmp word_620E0, O

s5eg033:0889 75 5B jnz short OK

seg033:088B FF 06 60 42 inc word_620EQ

seg033:088F 1E push ds

seg033:0890 68 22 44 push offset aTrupcRequiresA ; "This Software Requires
a Software Lock\n"

seg033:0893 1E push ds

seg033:0894 68 60 E9 push offset byte_6C7E0 ; dest

seg033:0897 9A 79 65 00+ call _strcpy

seg033:089C 83 C4 08 add sp, 8

seg033:089F 1E push ds

seg033:08A0 68 42 44 push offset aPleaseContactA ; "Please Contact ..."

s5eg033:08A3 1E push ds

seg033:08A4 68 60 E9 push offset byte_6C7E0 ; dest

seg033:08A7 9A CD 64 00+ call _strcat

Dongle bypassing is easy, just force the check_dongle () function to always return 0.
For example, by inserting this code at its beginning:

mov ax,0
retf

Observant reader might recall that strcpy () C function usually requires two pointers in arguments, but we saw how 4
values are passed:

seg033:088F 1E push ds

seg033:0890 68 22 44 push offset aTrupcRequiresA ; "This Software Requires
a Software Lock\n"

seg033:0893 1E push ds

seg033:0894 68 60 E9 push offset byte_6C7E0 ; dest

5Microcontroller unit

407

55.3. EXAMPLE #3: MS-DOS CHAPTER 55. DONGLES

seg033:0897 9A 79 65 00+ call _strcpy
s5eg033:089C 83 C4 08 add sp, 8

Read more about it here: 66.

So as you may see, strcpy () and any other function taking pointer(s) in arguments, works with 16-bit pairs.

Let’s back to our example. DS is currently set to data segment located in the executable, that is where the text string is
stored.

In the sent_pro () function, each byte of string is loaded at seg030: 00EF: the LES instruction loads ES:BX pair simulta-
neously from the passed argument. The MOV at seg030: 00F5 loads the byte from the memory to which ES:BX pair points.

At seg030:00F2 only 16-bit word is incremented, not segment value. This means, the string passed to the function cannot
be located on two data segments boundaries.

408

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

Chapter 56

“QR9”: Rubik’s cube inspired amateur
crypto-algorithm

Sometimes amateur cryptosystems appear to be pretty bizarre.
| was asked to reverse engineer an amateur cryptoalgorithm of some data crypting utility, source code of which was lost'.
Here is also IDA exported listing from original crypting utility:

.text:00541000 set_bit proc near ; CODE XREF: rotatel+42
.text:00541000 ; rotate2+42 ...
.text:00541000

.text:00541000 arg_O = dword ptr 4

.text:00541000 arg_4 = dword ptr 8

.text:00541000 arg_8
.text:00541000 arg_C
.text :00541000

dword ptr OCh
byte ptr 10h

.text:00541000 mov al, [esptarg_C]
.text:00541004 mov ecx, [esptarg_8]
.text:00541008 push esi

.text:00541009 mov esi, [esptéd+arg_0]
.text:0054100D test al, al

.text :0054100F mov eax, [esptd+arg_4]
.text:00541013 mov dl, 1

.text:00541015 jz short loc_54102B
.text:00541017 shl dl, cl

.text:00541019 mov cl, cubeb4[eax+esi*8]
.text:00541020 or cl, dl

.text:00541022 mov cubeb4 [eax+esi*8], cl
.text:00541029 pop esi

.text:0054102A retn

.text:0064102B ; ——- oo
.text:0054102B

.text:0054102B loc_54102B: ; CODE XREF: set_bit+15
.text:0054102B shl dl, cl

.text:0054102D mov cl, cubeb4[eax+esi*8]

.text:00541034 not dl

.text:00541036 and cl, dl

.text:00541038 mov cubeb4 [eax+esi*8], cl

.text:0054103F pop esi

.text:00541040 retn

.text:00541040 set_bit endp

.text:00541040
.text:00641040 § ——- oo -

.text:00541041 align 10h
.text:00541050
.text:00541050 ; SUBROUTTINE

.text:00541050

"l also got permit from customer to publish the algorithm details

409

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

.text:00541050

.text:00541050 get_bit proc near ; CODE XREF: rotatel+16
.text:00541050 ; rotate2+16 ...
.text:00541050

.text:00541050 arg_O = dword ptr 4

.text:00541050 arg_4 = dword ptr 8

.text:00541050 arg_8
.text:00541050

byte ptr O0Ch

.text:00541050 mov eax, [esptarg_4]
.text:00541054 mov ecx, [esptarg_0]
.text:00541058 mov al, cube64[eax+ecx*8]
.text :0054105F mov cl, [esptarg_8]
.text:00541063 shr al, cl

.text:00541065 and al, 1

.text:00541067 retn

.text:00541067 get_bit endp

.text:00541067
.text 100541067 ; —- - mmmmm -

.text:00541068 align 10h
.text:00541070
.text:00541070 ; SUBROUTINE

.text:00541070

.text:00541070

.text:00541070 rotatel proc near ; CODE XREF: rotate_all_with_password+8E
.text:00541070

.text:00541070 internal_array_64= byte ptr -40h

.text:00541070 arg_O = dword ptr 4

.text:00541070

.text:00541070 sub esp, 40h

.text:00541073 push ebx

.text:00541074 push ebp

.text:00541075 mov ebp, [esp+48h+arg_0]

.text:00541079 push esi

.text:0054107A push edi

.text:0054107B xXor edi, edi ; EDI is loopl counter
.text:0054107D lea ebx, [esp+b0h+internal_array_64]
.text:00541081

.text:00541081 first_loopl_begin: ; CODE XREF: rotatel+2E
.text:00541081 Xor esi, esi ; ESI is loop2 counter
.text:00541083

.text:00541083 first_loop2_begin: ; CODE XREF: rotatel+25
.text:00541083 push ebp ; arg_0

.text:00541084 push esi

.text:00541085 push edi

.text:00541086 call get_bit

.text:0054108B add esp, OCh

.text:0054108E mov [ebx+esi], al ; store to internal array
.text:00541091 inc esi

.text:00541092 cmp esi, 8

.text:00541095 jl short first_loop2_begin

.text:00541097 inc edi

.text:00541098 add ebx, 8

.text:0054109B cmp edi, 8

.text:0054109E jl short first_loopl_begin

.text :005410A0 lea ebx, [esp+50h+internal_array_64]
.text:005410A4 mov edi, 7 ; EDI is loopl counter, initial state is 7
.text:005410A9

.text:005410A9 second_loopl_begin: ; CODE XREF: rotatel+57
.text:005410A9 Xor esi, esi ; ESI is loop2 counter
.text :005410AB

.text:005410AB second_loop2_begin: ; CODE XREF: rotatel+4E

410

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

.text:
.text:
.text:
StexitE
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
:005410C9
.text:
.text:
.text:
.text:
:005410D0
.text:
.text:
.text:
.text:
:005410E0
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
:005410E9

.text

.text

.text

.text

.text:
:005410EB

.text

.text:
:005410F1
.text:
:005410F1

.text

.text

.text:
:005410F3

.text

Stexitr
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
:00541108B
.text:
.text:
.text:

.text

005410AB
005410AE
005410AF
005410B0
005410B1
005410B2
005410B7
005410BA
005410BB
005410BE
005410C0
005410C1
005410C4
005410C7

005410CA
005410CB
005410CC
005410CD

005410D0
005410D0
005410D0
005410D1

005410E0
005410E0
005410E0
005410E0
005410E0
005410E0
005410E0
005410E0
005410E0
005410E3
005410E4
005410E5

005410EA

005410ED

005410F1

005410F3

005410F3
005410F4
005410F5
005410F6
005410FB
005410FE
00541101
00541102
00541105
00541107
00541108

0054110E
00541110
00541114

mov al, [ebxtesi] ; value from internal array
push eax
push ebp ; arg_0
push edi
push esi
call set_bit
add esp, 10h
inc esi ; increment loop2 counter
cmp esi, 8
jl short second_loop2_begin
dec edi ; decrement loop2 counter
add ebx, 8
cmp edi, OFFFFFFFFh
jg short second_loopl_begin
pop edi
pop esi
pop ebp
pop ebx
add esp, 40h
retn
rotatel endp
align 10h
g SUBROUTINE
rotate2 proc near ; CODE XREF: rotate_all_with_password+7A

internal_array_64= byte ptr -40h

arg_0O

loc_5410F1:

loc_5410F3:

= dword ptr 4

sub esp, 40h

push ebx

push ebp

mov ebp, [esp+48h+arg_0]

push esi

push edi

Xor edi, edi ; loopl counter
lea ebx, [esp+bOh+internal_array_64]

Xor

push
push
push
call
add
mov
inc
cmp
jl
inc
add
cmp
jl
lea
mov

; CODE XREF: rotate2+2E
esi, esi ; loop2 counter

; CODE XREF: rotate2+25

esi ; loop2

edi ; loopl

ebp ; arg 0

get_bit

esp, OCh

[ebx+esi], al ; store to internal array
esi ; increment loopl counter
esi, 8

short loc_5410F3

edi ; increment loop2 counter
ebx, 8

edi, 8

short loc_5410F1
ebx, [esp+50h+internal_array_64]
edi, 7 ; loopl counter is initial state 7

411

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

.text:
.text:
.text:
StexitE
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
:0054112E
.text:
.text:
.text:
.text:
:00541139
.text:
.text:
.text:
.text:
100541140
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
100541150

.text

.text

.text

.text

.text:
100541153

.text

.text:
100541155
.text:
:0054115A

.text

.text

.text:
:0054115D

.text

Stexitr
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
100541171
.text:
.text:
.text:

.text

00541119
00541119
00541119
0054111B
0054111B
0054111B
0054111E
0054111F
00541120
00541121
00541122
00541127
00541124
0054112B

00541130
00541131
00541134
00541137

0054113A
0054113B
0054113C
0054113D

00541140
00541140
00541140
00541141
00541150
00541150
00541150
00541150
00541150
00541150
00541150
00541150

00541150

00541154

00541159

0054115B

00541161
00541161
00541161
00541163
00541163
00541163
00541164
00541165
00541166
00541168
0054116E

00541172
00541175
00541177

loc_541119: ; CODE XREF: rotate2+57
Xor esi, esi ; loop2 counter
loc_54111B: ; CODE XREF: rotate2+4E
mov al, [ebx+esi] ; get byte from internal array
push eax
push edi ; loopl counter
push esi ; loop2 counter
push ebp ; arg_0
call set_bit
add esp, 10h
inc esi ; increment loop2 counter
cmp esi, 8
jl short loc_54111B
dec edi ; decrement loop2 counter
add ebx, 8
cmp edi, OFFFFFFFFh
jg short loc_541119
pop edi
pop esi
pop ebp
pop ebx
add esp, 40h
retn
rotate2 endp
align 10h
g SUBROUTINE
rotate3 proc near ; CODE XREF: rotate_all_with_password+66
var_40 = byte ptr -40h
arg_0 = dword ptr 4
sub esp, 40h
push ebx
push ebp
mov ebp, [esp+48h+arg_0]
push esi
push edi
Xor edi, edi
lea ebx, [esp+50h+var_40]
loc_541161: ; CODE XREF: rotate3+2E
Xor esi, esi
loc_541163: ; CODE XREF: rotate3+25
push esi
push ebp
push edi
call get_bit
add esp, 0Ch
mov [ebx+esi], al
inc esi
cmp esi, 8
jl short loc_541163
inc edi

412

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

.text:
.text:
.text:
StexitE
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
:00541190
.text:
.text:
.text:
.text:
:0054119B
.text:
.text:
.text:
.text:
:005411A6
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
:005411B0
.text:
:005411B0

.text

.text

.text

.text

.text

.text:
:005411B4

.text

.text:
:005411B7

.text

.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
:005411CC
.text:
.text:
.text:

.text

00541178
0054117B
0054117E
00541180
00541182
00541186
00541186
00541186
0054118B
0054118B
0054118B
0054118D
0054118E
0054118F

00541191
00541196
00541199
0054119A

0054119E
005411A0
005411A1
005411A4

005411A7
005411A8
005411A9
005411AA
005411AD
005411AD
005411AD
005411AD
005411AE
005411B0
005411B0
005411B0
005411B0
005411B0
005411B0
005411B0

005411B0

005411B0

005411B5

005411BA
005411C0O
005411C1
005411C5
005411C6
005411C7
005411C7
005411C7
005411CB

005411D1
005411D4
005411D6

add ebx, 8
cmp edi, 8
jl short loc_541161
Xor ebx, ebx
lea edi, [esp+50h+var_40]
loc_541186: ; CODE XREF: rotate3+54
mov esi, 7
loc_54118B: ; CODE XREF: rotate3+4E
mov al, [edi]
push eax
push ebx
push ebp
push esi
call set_bit
add esp, 10h
inc edi
dec esi
cmp esi, OFFFFFFFFh
ig short loc_54118B
inc ebx
cmp ebx, 8
jl short loc_541186
pop edi
pop esi
pop ebp
pop ebx
add esp, 40h
retn
rotate3 endp
align 10h
5 == SUBROUTINE
rotate_all_with_password proc near ; CODE XREF: crypt+1F
; decrypt+36
arg_0 = dword ptr 4
arg_4 = dword ptr 8
mov eax, [esptarg_0]
push ebp
mov ebp, eax
cmp byte ptr [eax], O
jz exit
push ebx
mov ebx, [esp+8+arg_4]
push esi
push edi
loop_begin: ; CODE XREF: rotate_all_with_password+9F
movsx eax, byte ptr [ebp+0]
push eax ; C
call _tolower
add esp, 4
cmp al, ’a’
jl short next_character_in_password

413

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

.text:005411D8 cmp al, ’z’

.text:005411DA g short next_character_in_password
.text:005411DC movsx ecx, al

.text:005411DF sub ecx, ’a’

.text:005411E2 cmp ecx, 24

.text:005411E5 jle short skip_subtracting
.text:005411E7 sub ecx, 24

.text:005411EA

.text:005411EA skip_subtracting: ; CODE XREF: rotate_all_with_password+35
.text:005411EA mov eax, 55555556h

.text:005411EF imul ecx

.text:005411F1 mov eax, edx

.text:005411F3 shr eax, 1Fh

.text:005411F6 add edx, eax

.text:005411F8 mov eax, ecx

.text:005411FA mov esi, edx

.text:005411FC mov ecx, 3

.text:00541201 cdq

.text:00541202 idiv ecx

.text:00541204 sub edx, O

.text:00541207 jz short call_rotatel
.text:00541209 dec edx

.text:0054120A jz short call_rotate2
.text:0054120C dec edx

.text:0054120D jnz short next_character_in_password
.text:0054120F test ebx, ebx

.text:00541211 jle short next_character_in_password
.text:00541213 mov edi, ebx

.text:00541215

.text:00541215 call_rotate3: ; CODE XREF: rotate_all_with_password+6F
.text:00541215 push esi

.text:00541216 call rotate3

.text:0054121B add esp, 4

.text:00564121E dec edi

.text:0054121F jnz short call_rotate3
.text:00541221 jmp short next_character_in_password

.text:00641223 § —-- oo
.text:00541223

.text:00541223 call_rotate2: ; CODE XREF: rotate_all_with_password+5A
.text:00541223 test ebx, ebx

.text:00541225 jle short next_character_in_password

.text:00541227 mov edi, ebx

.text:00541229

.text:00541229 loc_541229: ; CODE XREF: rotate_all_with_password+83
.text:00541229 push esi

.text:0054122A call rotate?2

.text:0054122F add esp, 4

.text:00541232 dec edi

.text:00541233 jnz short loc_541229

.text:00541235 jmp short next_character_in_password

.text 00641237 5 - mm oo
.text:00541237

.text:00541237 call_rotatel: ; CODE XREF: rotate_all_with_password+57
.text:00541237 test ebx, ebx

.text:00541239 jle short next_character_in_password

.text:0054123B mov edi, ebx

.text:0054123D

.text:0054123D loc_54123D: ; CODE XREF: rotate_all_with_password+97
.text:0054123D push esi

.text:0054123E call rotatel

.text:00541243 add esp, 4

414

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

.text:
.text:
.text:
StexitE
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
100541258
.text:
.text:
.text:
.text:
:0054125A
.text:
.text:
.text:
.text:
100541260
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
:0054126A

.text

.text

.text

.text

.text:
:0054126E

.text

.text:
100541275
.text:
:0054127C

.text

.text

.text:
:0054127F

.text

Stexitr
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
:005412A4
.text:
.text:
.text:

.text

00541246
00541247
00541249
00541249
00541249
00541249
0054124C
0054124D
0054124F
00541255
00541256
00541257
00541258
00541258

00541259
00541259
00541259
00541259

00541260
00541260
00541260
00541260

00541260
00541260
00541260
00541260
00541260
00541260
00541261
00541265
00541266
00541267
00541268
0054126A

0054126A

00541273

0054127A

0054127D

00541284
00541288
0054128A
0054128D
00541290
00541295
0054129A
0054129D
0054129F
005412A1
005412A3

005412A5
005412A6
005412A7

edi
short loc_54123D

dec
jnz

next_character_in_password:

; CODE XREF:

rotate_all_with_password+26

; rotate_all_with_password+2A ...

rotate_all_with_password+A

mov al, [ebp+1]
inc ebp
test al, al
jnz loop_begin
pop edi
pop esi
pop ebx
exit: ; CODE XREF:
pop ebp
retn
rotate_all_with_password endp
align 10h
g SUBROUTINE
crypt proc near ; CODE XREF:
arg_0 = dword ptr 4
arg_4 = dword ptr 8
arg_8 = dword ptr O0Ch
push ebx
mov ebx, [esp+d+arg 0]
push ebp
push esi
push edi
xXor ebp, ebp
loc_54126A: ; CODE XREF:
mov eax, [esp+1Oh+arg_8]
mov ecx, 10h
mov esi, ebx
mov edi, offset cubeb4
push 1
push eax
rep movsd
call rotate_all_with_password
mov eax, [esp+18htarg_4]
mov edi, ebx
add ebp, 40h
add esp, 8
mov ecx, 10h
mov esi, offset cubeb4
add ebx, 40h
cmp ebp, eax
rep movsd
jl short loc_54126A
pop edi
pop esi
pop ebp
pop ebx
retn

415

crypt_file+8A

crypt+41

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

.text:
.text:
.text:
StexitE
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
:005412B0
.text:
.text:
.text:
.text:
:005412B7
.text:
.text:
.text:
.text:
:005412C3
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
:005412E6

.text

.text

.text

.text

.text:
:005412EF

.text

.text:
:005412F4
.text:
:005412FC

.text

.text

.text:
:00541304

.text

Stexitr
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
:0054131B
.text:
.text:
.text:

.text

005412A7
005412A7
005412A7
005412A8
005412B0
005412B0
005412B0
005412B0
005412B0
005412B0
005412B0
005412B0
005412B0
005412B0

005412B0
005412B4
005412B5
005412B6

005412B8
005412B9
005412BE
005412BF

005412C8
005412CC
005412CF
005412D1
005412D1
005412D1
005412D6
005412D8
005412DD
005412DF
005412E1
005412E5

005412EB

005412F1

005412F7

00541301

00541306
00541308
0054130A
0054130E
0054130F
00541314
00541317
00541318
00541319
0054131A
0054131B

0054131B
0054131B
0054131C

align 10h

8 SUBROUTINE

; int __cdecl decrypt(int, int, void *Src)

decrypt proc near ; CODE XREF: decrypt_file+99
arg_0 = dword ptr 4
arg_4 = dword ptr 8
Src = dword ptr OCh
mov eax, [esp+Src]
push ebx
push ebp
push esi
push edi
push eax ; Src
call __strdup
push eax ; Str
mov [esp+18h+Src], eax
call __strrev
mov ebx, [esp+18h+arg_0]
add esp, 8
xor ebp, ebp
loc_5412D1: ; CODE XREF: decrypt+58
mov ecx, 10h
mov esi, ebx
mov edi, offset cubeb4
push 3
rep movsd
mov ecx, [esp+14h+Src]
push ecx
call rotate_all_with_password
mov eax, [esp+18h+arg_4]
mov edi, ebx
add ebp, 40h
add esp, 8
mov ecx, 10h
mov esi, offset cubeb4
add ebx, 40h
cmp ebp, eax
rep movsd
jl short loc_5412D1
mov edx, [esp+10h+Src]
push edx ; Memory
call _free
add esp, 4
pop edi
pop esi
pop ebp
pop ebx
retn
decrypt endp
align 10h

416

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

.text:00541320

.text:00541320 ; SUBROUTINE
.text:00541320

.text:00541320

.text:00541320 ; int __cdecl crypt_file(int Str, char *Filename, int password)
.text:00541320 crypt_file proc near ; CODE XREF: _main+42
.text:00541320
.text:00541320 Str
.text:00541320 Filename
.text:00541320 password
.text:00541320

dword ptr 4
dword ptr 8
dword ptr OCh

.text:00541320 mov eax, [esp+Str]
.text:00541324 push ebp

.text:00541325 push offset Mode ; "rb"
.text:0054132A push eax ; Filename
.text:0054132B call _fopen ; open file
.text:00541330 mov ebp, eax

.text:00541332 add esp, 8

.text:00541335 test ebp, ebp

.text:00541337 jnz short loc_541348
.text:00541339 push offset Format ; "Cannot open input file!\n"
.text:0054133E call _printf

.text:00541343 add esp, 4

.text:00541346 pop ebp

.text:00541347 retn

.text:00641348 § —-- oo oo -
.text:00541348

.text:00541348 loc_541348: ; CODE XREF: crypt_file+17
.text:00541348 push ebx

.text:00541349 push esi

.text:0054134A push edi

.text:0054134B push 2 ; Origin

.text:0054134D push 0 ; Offset

.text:0054134F push ebp ; File

.text:00541350 call _fseek

.text:00541355 push ebp ; File

.text:00541356 call _ftell ; get file size
.text:0054135B push 0 ; Origin

.text:0054135D push 0 ; Offset

.text:0054135F push ebp ; File

.text:00541360 mov [esp+2Ch+Str], eax

.text:00541364 call _fseek ; rewind to start
.text:00541369 mov esi, [esp+2Ch+Str]

.text:0054136D and esi, OFFFFFFCOh ; reset all lowest 6 bits
.text:00541370 add esi, 40h ; align size to 64-byte border
.text:00541373 push esi ; Size

.text:00541374 call _malloc

.text:00541379 mov ecx, esi

.text:0054137B mov ebx, eax ; allocated buffer pointer -> to EBX
.text:0054137D mov edx, ecx

.text:0054137F xXor eax, eax

.text:00541381 mov edi, ebx

.text:00541383 push ebp ; File

.text:00541384 shr ecx, 2

.text:00541387 rep stosd

.text:00541389 mov ecx, edx

.text:0054138B push 1 ; Count

.text:0054138D and ecx, 3

.text:00541390 rep stosb ; memset (buffer, 0, aligned_size)
.text:00541392 mov eax, [esp+38h+Str]

.text:00541396 push eax ; ElementSize

417

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

.text:
.text:
.text:
StexitE
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
:005413C1
.text:
.text:
.text:
.text:
:005413CD
.text:
.text:
.text:
.text:
:005413DB
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
:005413FB

.text

.text

.text

.text

.text:
:005413FD

.text

.text:
:005413FE
.text:
:005413FE

.text

.text

.text:
100541400

.text

Stexitr
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
100541404
.text:
.text:
.text:

.text

00541397
00541398
0054139D
0054139E
005413A3
005413A7
005413A8
005413A9
005413AA
005413AF
005413B3
005413B6
005413BB
005413BC

005413C3
005413C4
005413C6
005413C8

005413D2
005413D3
005413D5
005413D9

005413DC
005413E1
005413E2
005413E4
005413E5
005413E6
005413EB
005413EC
005413F1
005413F2
005413F7
005413FA

005413FC

005413FE

005413FE

005413FF

00541400
00541400
00541400
00541400
00541400
00541400
00541400
00541400
00541400
00541400
00541400

00541405
00541406
00541407

push ebx ; DstBuf
call _fread ; read file
push ebp ; File
call _fclose
mov ecx, [esp+44h+password]
push ecx ; password
push esi ; aligned size
push ebx ; buffer
call crypt ; do crypt
mov edx, [esp+50h+Filename]
add esp, 40h
push offset aWb ; "wb"
push edx ; Filename
call _fopen
mov edi, eax
push edi ; File
push 1 ; Count
push 3 ; Size
push offset aQr9 ; "QRO"
call _furite ; write file signature
push edi ; File
push 1 ; Count
lea eax, [esp+30h+Str
push 4 ; Size
push eax ; Str
call _fuwrite ; write original file size
push edi ; File
push 1 ; Count
push esi ; Size
push ebx ; Str
call _furite ; write crypted file
push edi ; File
call _fclose
push ebx ; Memory
call _free
add esp, 40h
pop edi
pop esi
pop ebx
pop ebp
retn

crypt_file endp
align 10h

8 SUBROUTINE

; int __cdecl decrypt_file(char *Filename, int, void *Src)
decrypt_file proc near ; CODE XREF: _main+6E
Filename = dword ptr 4
arg_4 = dword ptr 8
Src = dword ptr O0Ch

mov eax, [esptFilename]

push ebx

push ebp

push esi

push edi

418

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

.text:
.text:
.text:
StexitE
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
:0054142D
.text:
.text:
.text:
.text:
:00541430
.text:
.text:
.text:
.text:
:0054143E
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
:0054145C

.text

.text

.text

.text

.text:
100541462

.text

.text:
:0054146A
.text:
100541471

.text

.text

.text:
100541475

.text

Stexitr
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
100541489
.text:
.text:
.text:

.text

00541408
0054140D
0054140E
00541413
00541415
00541418
0054141A
0054141C
00541421
00541426
00541429
0054142A
0054142B
0054142C

0054142E
0054142E
0054142E
0054142E

00541432
00541433
00541438
00541439

00541440
00541442
00541443
00541445
0054144A
0054144B
00541450
00541451
00541453
00541455
00541456
00541457

0054145D

00541465

0054146F

00541473

00541477
0054147C
00541481
00541484
00541485
00541486
00541487
00541488
00541489
00541489
00541489

0054148D
00541490
00541493

loc_54142E:

loc_541489:

mov
mov
add
lea

offset aRb ; "rb"

eax ; Filename
_fopen

esi, eax

esp, 8

esi, esi

short loc_54142E

offset aCannotOpenIn_O ; "Cannot open input file!\n"
_printf

esp, 4

edi

esi

ebp

ebx

; CODE XREF: decrypt_file+1A

2 ; Origin
0 ; Offset
esi ; File
_fseek

esi ; File
_ftell

0 ; Origin
0 ; Offset
esi ; File
ebp, eax

_fseek

ebp ; Size
_malloc

esi ; File
ebx, eax

1 ; Count
ebp ; ElementSize
ebx ; DstBuf
_fread

esi ; File
_fclose

esp, 34h

ecx, 3

edi, offset aQr9_0 ; "QR9"
esi, ebx

edx, edx

cmpsb

short loc_541489

offset aFileIsNotCrypt ; "File is not crypted!\n"
_printf

esp, 4

edi

esi

ebp

ebx

; CODE XREF: decrypt_file+75
eax, [esp+10h+Src]
edi, [ebx+3]
ebp, OFFFFFFFSh
esi, [ebx+T7]

419

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

.text:00541496
.text:00541497
.text:00541498
.text:00541499
.text:0054149E
.text:005414A2
.text:005414A7
.text:005414A8
.text:005414AD
.text:005414AF
.text:005414B0
.text:005414B2
.text:005414B3
.text:005414B4
.text:005414B9
.text:005414BA
.text:005414BF
.text:005414C0
.text:005414C5
.text:005414C8
.text:005414C9
.text:005414CA
.text:005414CB
.text:005414CC
.text:005414CC decrypt_file

push
push
push
call
mov

push
push
call
mov

push
push
push
push
call
push
call
push
call
add

pop

pop

pop

pop

retn
endp

eax ; Src

ebp ; int
esi ; int
decrypt

ecx, [esp+1Ch+arg_4]
offset aWb_0 "wb"
ecx ; Filename
_fopen

ebp, eax

ebp ; File
1 ; Count
edi ; Size
esi ; Str
_fwrite

ebp ; File
_fclose

ebx ; Memory
_free

esp, 2Ch

edi

esi

ebp

ebx

All function and label names are given by me while analysis.
| started from top. Here is a function taking two file names and password.

.text:00541320 ; int
.text:00541320 crypt_file
.text:00541320
.text:00541320 Str
.text:00541320 Filename
.text:00541320 password
.text:00541320

__cdecl crypt_file(int Str, char *Filename, int password)

proc near

dword ptr 4
dword ptr 8
dword ptr

0Ch

Open file and report error in case of error:

.text:00541320 mov eax, [esp+Str]
.text:00541324 push ebp
.text:00541325 push offset Mode ; "rb"
.text:0054132A push eax ; Filename
.text:0054132B call _fopen ; open file
.text:00541330 mov ebp, eax
.text:00541332 add esp, 8
.text:00541335 test ebp, ebp
.text:00541337 jnz short loc_541348
.text:00541339 push offset Format ; "Cannot open input file!\n"
.text:0054133E call _printf
.text:00541343 add esp, 4
.text:00541346 pop ebp
.text:00541347 retn
.text:00641348 ; —----—--mm oo -
.text:00541348
.text:00541348 loc_541348:

Get file size via fseek () /ftell):
.text:00541348 push ebx
.text:00541349 push esi
.text:0054134A push edi
.text:0054134B push 2 ; Origin

420

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

.text:0054134D push 0 ; Offset
.text:0054134F push ebp ; File

; move current file position to the end

.text:00541350 call _fseek

.text:00541355 push ebp ; File

.text:00541356 call _ftell ; get current file position
.text:0054135B push 0 ; Origin

.text:0054135D push 0 ; Offset

.text:0054135F push ebp ; File

.text:00541360 mov [esp+2Ch+Str], eax

; move current file position to the start
.text:00541364 call _fseek

This fragment of code calculates file size aligned on a 64-byte boundary. This is because this cryptoalgorithm works with
only 64-byte blocks. Its operation is pretty straightforward: divide file size by 64, forget about remainder and add 1, then
multiple by 64. The following code removes remainder as if value was already divided by 64 and adds 64. It is almost the
same.

.text:00541369 mov esi, [esp+2Ch+Str]
.text:0054136D and esi, OFFFFFFCOh ; reset all lowest 6 bits
.text:00541370 add esi, 40h ; align size to 64-byte border

Allocate buffer with aligned size:

.text:00541373 push esi ; Size
.text:00541374 call _malloc

Call memset(), e.g., clears allocated buffer?.

.text:00541379 mov ecx, esi

.text:0054137B mov ebx, eax ; allocated buffer pointer -> to EBX
.text:0054137D mov edx, ecx

.text:0054137F xor eax, eax

.text:00541381 mov edi, ebx

.text:00541383 push ebp ; File

.text:00541384 shr ecx, 2

.text:00541387 rep stosd

.text:00541389 mov ecx, edx

.text:0054138B push 1 ; Count

.text:0054138D and ecx, 3

.text:00541390 rep stosb ; memset (buffer, O, aligned_size)

Read file via standard C function fread ().

.text:00541392 mov eax, [esp+38h+Str]
.text:00541396 push eax ; ElementSize
.text:00541397 push ebx ; DstBuf
.text:00541398 call _fread ; read file
.text:0054139D push ebp ; File
.text:0054139E call _fclose

Call crypt). This function takes buffer, buffer size (aligned) and password string.

.text:005413A3 mov ecx, [esp+44h+password]
.text:005413A7 push ecx ; password
.text:005413A8 push esi ; aligned size
.text:005413A9 push ebx ; buffer
.text:005413AA call crypt ; do crypt

Create output file. By the way, developer forgot to check if it is was created correctly! File opening result is being checked
though.

2malloc() + memset() could be replaced by calloc()

421

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

.text :005413AF mov edx, [esp+50h+Filename]
.text:005413B3 add esp, 40h

.text:005413B6 push offset aWb ; "wb"
.text:005413BB push edx ; Filename
.text:005413BC call _fopen

.text:005413C1 mov edi, eax

Newly created file handle is in the EDI register now. Write signature “QR9”.

.text:005413C3 push edi ; File
.text:005413C4 push 1 ; Count
.text:005413C6 push 3 ; Size
.text:005413C8 push offset aQr9 ; "QRO"
.text:005413CD call _furite ; write file signature

Write actual file size (not aligned):

.text:005413D2 push edi ; File

.text:005413D3 push 1 ; Count

.text:005413D5 lea eax, [esp+30h+Str]

.text:005413D9 push 4 ; Size

.text:005413DB push eax ; Str

.text:005413DC call _fuwrite ; write original file size

Write crypted buffer:

.text:005413E1 push edi ; File

.text:005413E2 push 1 ; Count

.text:005413E4 push esi ; Size

.text:005413E5 push ebx ; Str

.text :005413E6 call _fwrite ; write encrypted file

Close file and free allocated buffer:

.text :005413EB push edi ; File
.text:005413EC call _fclose

.text:005413F1 push ebx ; Memory
.text:005413F2 call _free

.text :005413F7 add esp, 40h
.text:005413FA pop edi

.text:005413FB pop esi

.text:005413FC pop ebx

.text:005413FD pop ebp

.text:005413FE retn

.text:005413FE crypt_file endp

Here is reconstructed C-code:

void crypt_file(char *fin, char* fout, char *pw)

{
FILE *f;
int flen, flen_aligned;
BYTE *buf;

f=fopen(fin, "rb");

if (£==NULL)

{
printf ("Cannot open input file!\n");
return;

};

fseek (f, 0, SEEK_END);
flen=ftell (f);

422

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

fseek (f, 0, SEEK_SET);
flen_aligned=(£f1en&OxFFFFFFCO)+0x40;

buf=(BYTE*)malloc (flen_aligned);
memset (buf, O, flen_aligned);

fread (buf, flen, 1, f);

fclose (£f);

crypt (buf, flen_aligned, pw);
f=fopen(fout, "wb");

fwrite ("QR9", 3, 1, £f);

fwrite (&flen, 4, 1, £f);

fwrite (buf, flen_aligned, 1, f);

fclose (£f);

free (buf);
g

Decrypting procedure is almost the same:

.text:00541400 ; int __cdecl decrypt_file(char *Filename, int, void *Src)
.text:00541400 decrypt_file proc near

.text:00541400

.text:00541400 Filename = dword ptr 4

.text:00541400 arg_4 = dword ptr 8

.text:00541400 Src dword ptr OCh

.text:00541400

.text:00541400 mov eax, [esp+Filename]
.text:00541404 push ebx

.text:00541405 push ebp

.text:00541406 push esi

.text:00541407 push edi

.text:00541408 push offset aRb ; "rb"
.text:0054140D push eax ; Filename
.text:0054140E call _fopen

.text:00541413 mov esi, eax

.text:00541415 add esp, 8

.text:00541418 test esi, esi

.text:0054141A jnz short loc_54142E
.text:0054141C push offset aCannotOpenIn_O ; "Cannot open input file!\n"
.text:00541421 call _printf

.text:00541426 add esp, 4

.text:00541429 pop edi

.text:0054142A pop esi

.text:0054142B pop ebp

.text:0054142C pop ebx

.text:0054142D retn

. text 0054142 ; ————mm e
.text:0054142E
.text:0054142E loc_54142E:

.text:0054142E push 2 ; Origin
.text:00541430 push 0 ; Offset
.text:00541432 push esi ; File
.text:00541433 call _fseek

.text:00541438 push esi ; File
.text:00541439 call _ftell

423

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

.text:0054143E push 0 ; Origin
.text:00541440 push 0 ; Offset
.text:00541442 push esi ; File
.text:00541443 mov ebp, eax
.text:00541445 call _fseek
.text:0054144A push ebp ; Size
.text:0054144B call _malloc
.text:00541450 push esi ; File
.text:00541451 mov ebx, eax
.text:00541453 push 1 ; Count
.text:00541455 push ebp ; ElementSize
.text:00541456 push ebx ; DstBuf
.text:00541457 call _fread
.text:0054145C push esi ; File
.text:0054145D call _fclose

Check signature (first 3 bytes):
.text:00541462 add esp, 34h
.text:00541465 mov ecx, 3
.text:0054146A mov edi, offset aQr9_0 ; "QR9"
.text:0054146F mov esi, ebx
.text:00541471 xXor edx, edx
.text:00541473 repe cmpsb
.text:00541475 jz short loc_541489

Report an error if signature is absent:

.text:00541477 push
.text:0054147C call
.text:00541481 add
.text:00541484 pop
.text:00541485 pop
.text:00541486 pop
.text:00541487 pop
.text:00541488 retn

.text:00541489 ; ----—----————o———

.text:00541489
.text:00541489 loc_541489:

offset aFileIsNotCrypt ; "File is not crypted!\n"
_printf

esp, 4

edi

esi

ebp

ebx

Calldecrypt ().

.text:00541489 mov
.text:0054148D mov
.text:00541490 add
.text:00541493 lea
.text:00541496 push
.text:00541497 push
.text:00541498 push
.text:00541499 call
.text:0054149E mov
.text:005414A2 push
.text:005414A7 push
.text:005414A8 call
.text:005414AD mov
.text:005414AF push
.text:005414B0 push
.text:005414B2 push
.text:005414B3 push
.text:005414B4 call
.text:005414B9 push
.text:005414BA call
.text:005414BF push

eax, [esp+10h+Src]
edi, [ebx+3]

ebp, OFFFFFFFSh
esi, [ebx+T7]

eax ; Src
ebp ; int
esi ; int
decrypt

ecx, [esp+1Ch+arg_4]
offset aWb_0 ; "wb"
ecx ; Filename
_fopen

ebp, eax

ebp ; File

1 ; Count
edi ; Size
esi ; Str
_fwrite

ebp ; File
_fclose

ebx ; Memory

424

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:

005414C0 call _free
005414C5 add esp, 2Ch
005414C8 pop edi
005414C9 pop esi
005414CA pop ebp
005414CB pop ebx
005414CC retn

005414CC decrypt_file endp

Here is reconstructed C-code:

void decrypt_file(char *fin, char* fout, char *pw)

{

};

FILE *f;
int real_flen, flen;
BYTE *buf;

f=fopen(fin, "rb");

if (£f==NULL)

{
printf ("Cannot open input file!\n");
return;

};

fseek (f, 0, SEEK_END);

flen=ftell (f);

fseek (f, 0, SEEK_SET);

buf=(BYTE*)malloc (flen);

fread (buf, flen, 1, £f);

fclose (f);

if (memcmp (buf, "QR9", 3)!=0)

{
printf ("File is not crypted!\n");
return;

};

memcpy (&real_flen, buf+3, 4);

decrypt (buf+(3+4), flen-(3+4), pw);

f=fopen(fout, "wb");

furite (buf+(3+4), real_flen, 1, f);

fclose (f);

free (buf);

OK, now let’s go deeper.
Function crypt ():

.text:
.text:
.text:
.text:
.text:
.text:

00541260
00541260
00541260
00541260
00541260
00541260

crypt

arg_0
arg_4
arg_8

proc near

= dword ptr 4

dword ptr 8
dword ptr OCh

425

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

.text:00541260 push ebx

.text:00541261 mov ebx, [espté+arg_O0]
.text:00541265 push ebp

.text:00541266 push esi

.text:00541267 push edi

.text:00541268 xor ebp, ebp

.text:0054126A
.text:0054126A loc_54126A:

This fragment of code copies part of input buffer to internal array | named later “cube64”. The size is in the ECX register.
MOVSD means move 32-bit dword, so, 16 of 32-bit dwords are exactly 64 bytes.

.text:0054126A mov eax, [esp+10h+arg_8]

.text:0054126E mov ecx, 10h

.text:00541273 mov esi, ebx ; EBX is pointer within input buffer
.text:00541275 mov edi, offset cubeb4

.text:0054127A push 1

.text:0054127C push eax

.text:0054127D rep movsd

Callrotate_all_with_password():

.text:0054127F call rotate_all_with_password

Copy crypted contents back from “cube64” to buffer:

.text:00541284 mov eax, [esp+18h+arg_4]

.text:00541288 mov edi, ebx

.text:0054128A add ebp, 40h

.text:0054128D add esp, 8

.text:00541290 mov ecx, 10h

.text:00541295 mov esi, offset cubeb4

.text:0054129A add ebx, 40h ; add 64 to input buffer pointer
.text:0054129D cmp ebp, eax ; EBP contain amount of crypted data.
.text:0054129F rep movsd

If EBP is not bigger that input argument size, then continue to next block.

.text:005412A1 jl short loc_54126A
.text:005412A3 pop edi
.text:005412A4 pop esi
.text:005412A5 pop ebp
.text:005412A6 pop ebx
.text:005412A7 retn

.text:005412A7 crypt endp

Reconstructed crypt () function:

void crypt (BYTE *buf, int sz, char *pw)

{
int i=0;
do
{
memcpy (cube, buf+i, 8%8);
rotate_all (pw, 1);
memcpy (buf+i, cube, 8%8);
i+=64;
}
while (i<sz);
}s

OK, now let’s go deeper into function rotate_all_with_password(). It takes two arguments: password string and
number. In crypt (), number 1is used, and in the decrypt () function (where rotate_all_with_password() function is
called too), number is 3.

426

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

.text:005411B0 rotate_all_with_password proc near
.text:005411B0
.text:005411B0 arg_O
.text:005411B0 arg_4
.text:005411B0

dword ptr 4
dword ptr 8

.text:005411B0 mov eax, [esptarg_0]
.text:005411B4 push ebp
.text:005411B5 mov ebp, eax

Check for character in password. Ifit is zero, exit:

.text :005411B7 cmp byte ptr [eax], O
.text:005411BA jz exit
.text:005411C0 push ebx
.text:005411C1 mov ebx, [esp+8+arg_4]
.text:005411C5 push esi
.text:005411C6 push edi

.text:005411C7
.text:005411C7 loop_begin:

Call tolower (), standard C function.

.text:005411C7 movsx eax, byte ptr [ebp+0]
.text:005411CB push eax ; C
.text:005411CC call _tolower
.text:005411D1 add esp, 4

Hmm, if password contains non-alphabetical latin character, it is skipped! Indeed, if we run crypting utility and try non-

alphabetical latin characters in password, they seem to be ignored.

.text:005411D4 cmp al, ’a’
.text:005411D6 jl short next_character_in_password
.text:005411D8 cmp al, ’z’
.text:005411DA jg short next_character_in_password
.text:005411DC movsx ecx, al

Subtract “a” value (97) from character.

.text:005411DF sub ecx, ’a’ ; 97

After subtracting, we’ll get 0 for “a” here, 1 for “b”, etc. And 25 for “z”.

.text:005411E2 cmp ecx, 24
.text:005411E5 jle short skip_subtracting
.text:005411E7 sub ecx, 24

It seems, “y” and “z” are exceptional characters too. After that fragment of code, “y” becomes 0 and “z” —1. This means,

26 Latin alphabet symbols will become values in range 0..23, (24 in total).

.text:005411EA

.text:005411EA skip_subtracting: ; CODE XREF: rotate_all_with_password+35

This is actually division via multiplication. Read more about it in the “Division by 9” section (14).

The code actually divides password character value by 3.

.text:005411EA mov eax, 55555556h
.text:005411EF imul ecx
.text:005411F1 mov eax, edx
.text:005411F3 shr eax, 1Fh
.text:005411F6 add edx, eax
.text:005411F8 mov eax, ecx
.text:005411FA mov esi, edx
.text:005411FC mov ecx, 3
.text:00541201 cdq

.text:00541202 idiv ecx

427

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

EDX is the remainder of division.

.text

.text:

.text

.text:
.text:

.text

.text:

.text

.text:

100541204 sub edx, 0

00541207 jz short call_rotatel ; if remainder is zero, go to rotatel
100541209 dec edx

00541204 jz short call_rotate2 ; .. it it is 1, go to rotate2
0054120C dec edx

:0054120D jnz short next_character_in_password

0054120F test ebx, ebx

:00541211 jle short next_character_in_password

00541213 mov edi, ebx

If remainder is 2, call rotate3(). The EDI is a second argument of the rotate_all_with_password() function. As |
already wrote, 1is for crypting operations and 3 is for decrypting. So, here is a loop. When crypting, rotate1/2/3 will be called
the same number of times as given in the first argument.

.text:
:00541215

.text

.text:
:0054121B

.text

.text:
:0054121F
.text:
100541223

.text

.text

.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
:0054122F
.text:
.text:
.text:
.text:
100541237 call_rotatel:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:

.text

.text

00541215 call_rotate3:

00541216

0054121E

00541221

00541223 call_rotate2:
00541223

00541225

00541227

00541229

00541229 loc_541229:
00541229

0054122A

00541232
00541233
00541235
00541237

00541237
00541239
0054123B
0054123D
0054123D loc_54123D:
0054123D
0054123E
00541243
00541246
00541247
00541249

push
call
add
dec
jnz
Jjmp

test
jle
mov

push
call
add
dec
jnz
jmp

test
jle
mov

push
call
add
dec
jnz

esi
rotate3
esp, 4
edi

short call_rotate3
short next_character_in_password

ebx, ebx

short next_character_in_password
edi, ebx

esi

rotate2

esp, 4

edi

short loc_541229
short next_character_in_password

ebx, ebx

short next_character_in_password
edi, ebx

esi

rotatel

esp, 4

edi

short loc_54123D

Fetch next character from password string.

.text:00541249 next_character_in_password:
.text:00541249 mov al, [ebp+1]

Increment character pointer within password string:

.text:0054124C inc ebp
.text:0054124D test al, al
.text:0054124F jnz loop_begin
.text:00541255 pop edi
.text:00541256 pop esi
.text:00541257 pop ebx

.text:00541258

428

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

.text:00541258 exit:

.text:00541258 pop ebp
.text:00541259 retn
.text:00541259 rotate_all_with_password endp

Here is reconstructed C code:

void rotate_all (char *pwd, int v)

{
char *p=pwd;
while (*p)
{
char c=x*p;
int q;
c=tolower (c);
if (c>=’a’ && c<=’z?)
{
q=c—’a’;
if (g>24)
q-=24;
int quotient=q/3;
int remainder=q % 3;
switch (remainder)
{
case 0: for (int i=0; i<v; i++) rotatel (quotient); break;
case 1: for (int i=0; i<v; i++) rotate2 (quotient); break;
case 2: for (int i=0; i<v; i++) rotate3 (quotient); break;
i
i
ptt;
I3
Irg

Now let’s go deeper and investigate rotate1/2/3 functions. Each function calls two another functions. | eventually gave
them names set_bit () and get_bit ().
Let’s start with get_bit):

.text:00541050 get_bit proc near
.text:00541050
.text:00541050 arg_O
.text:00541050 arg_4
.text:00541050 arg_8
.text:00541050

dword ptr 4
dword ptr 8
byte ptr O0Ch

.text :00541050 mov eax, [esptarg_4]
.text:00541054 mov ecx, [esptarg_0]
.text:00541058 mov al, cube64[eax+ecx*8]
.text :0054105F mov cl, [esptarg_8]
.text:00541063 shr al, cl

.text:00541065 and al, 1

.text:00541067 retn

.text:00541067 get_bit endp

...in other words: calculate an index in the array cube64: arg_4 +arg_0 * 8. Then shift a byte from an array by arg_8 bits
right. Isolate lowest bit and return it.
Let’s see another function, set_bit ():

.text:00541000 set_bit proc near

429

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

.text:00541000

.text:00541000 arg_O = dword ptr 4
.text:00541000 arg_4 = dword ptr 8
.text:00541000 arg_8 = dword ptr OCh
.text:00541000 arg_C = byte ptr 10h
.text:00541000

.text :00541000 mov al, [esptarg_C]
.text:00541004 mov ecx, [esptarg_8]
.text:00541008 push esi

.text:00541009 mov esi, [esptéd+arg_0]
.text:0054100D test al, al

.text :0054100F mov eax, [esptd+arg_4]
.text:00541013 mov d1, 1
.text:00541015 jz short loc_54102B

Value in the DL is 1 here. Shift left it by arg_8.
binary form.

For example, if arg_8 is 4, value in the DL register became 0x10 or 1000 in

.text:00541017
.text:00541019

shl
mov

dl, cl
cl, cubeb4[eaxtesix*8]

Get bit from array and explicitly set one.

.text:00541020 or cl, dl
Store it back:
.text:00541022 mov cubeb4 [eax+esi*8], cl
.text:00541029 pop esi
.text:0054102A retn
.texXt:0054102B ; - -
.text:0054102B
.text:0054102B loc_54102B:
.text:0054102B shl dl, cl
If arg_C is not zero...
.text:0054102D mov cl, cubeb4[eax+tesix*8]

...invert DL. For example, if DL state after shift was 0x10 or 1000 in binary form, there will be OxEF after NOT instruction or

11101111 in binary form.

.text:00541034 not

dl

This instruction clears bit, in other words, it

saves all bits in CL which are also set in DL except those in DL which are

cleared. This means thatif DL is e.g. 11101111 in binary form, all bits will be saved except 5th (counting from lowest bit).

.text:00541036 and cl, di
Store it back:
.text:00541038 mov cube64 [eax+esix8], cl
.text:0054103F pop esi
.text:00541040 retn
.text:00541040 set_bit endp

Itis almost the same as get_bit (), except, if arg_C is zero, the function clears specific bit in array, or sets it otherwise.
We also know the array size is 64. First two arguments both in the set_bit () and get_bit () functions could be seen as

2D coordinates. Then array will be 8*8 matrix.

Here is C representation of what we already know:

#define IS_SET(flag, bit)
#define SET_BIT(var, bit)
#define REMOVE_BIT(var, bit)

((var)
((var)

char cube[8][8];

((flag) & (bit))

|= (bit))
&= ~(bit))

430

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

void set_bit (int x, int y, int shift, int bit)

{
if (bit)
SET_BIT (cube[x][y], 1<<shift);
else
REMOVE_BIT (cube[x][y], 1<<shift);
}s
int get_bit (int x, int y, int shift)
{
if ((cubel[x] [yl>>shift)&l1==1)
return 1;
return O;
}s
Now let’s get back to rotatel/2/3 functions.
.text:00541070 rotatel proc near

.text:00541070

Internal array allocation in local stack, its size 64 bytes:

.text:00541070 internal_array_64= byte ptr -40h

.text:00541070 arg_O = dword ptr 4

.text:00541070

.text:00541070 sub esp, 40h

.text:00541073 push ebx

.text:00541074 push ebp

.text :00541075 mov ebp, [esp+48h+arg_0]

.text:00541079 push esi

.text:0054107A push edi

.text:0054107B Xor edi, edi ; EDI is loopl counter

EBX is a pointer to internal array:

.text:0054107D lea ebx, [esp+bOh+internal_array_64]
.text:00541081

Two nested loops are here:

.text:00541081 first_loopl_begin:

.text:00541081 Xor esi, esi ; ESI is loop 2 counter
.text:00541083

.text:00541083 first_loop2_begin:

.text:00541083 push ebp ; arg_0

.text:00541084 push esi ; loop 1 counter

.text:00541085 push edi ; loop 2 counter

.text:00541086 call get_bit

.text:0054108B add esp, OCh

.text:0054108E mov [ebx+esi], al ; store to internal array

.text:00541091 inc esi ; increment loop 1 counter

.text:00541092 cmp esi, 8

.text:00541095 jl short first_loop2_begin

.text:00541097 inc edi ; increment loop 2 counter

.text:00541098 add ebx, 8 ; increment internal array pointer by 8 at each loop 1
iteration

.text:0054109B cmp edi, 8

.text:0054109E jl short first_loopl_begin

...we see that both loop counters are in range 0..7. Also they are used as the first and the second arguments of the
get_bit () function. Third argument of the get_bit () is the only argument of rotate1 (). What get_bit () returns, is
being placed into internal array.

Prepare pointer to internal array again:

431

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
:005410AE
.text:
.text:
.text:
.text:
:005410B7
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:

.text

.text

005410A0
005410A4
005410A9
005410A9
005410A9
005410AB
005410AB
005410AB

005410AF
005410B0
005410B1
005410B2

005410BA
005410BB
005410BE
005410C0
005410C1
005410C4
005410C7
005410C9
005410CA
005410CB
005410CC
005410CD
005410D0
005410D0

lea
mov

second_1
xXor

second_1
mov
push
push
push
push
call
add
inc
cmp
jl
dec
add
cmp
jg
pop
pop
pop
pop
add
retn

rotatel

ebx, [esp+50h+internal_array_64]

edi, 7 ; EDI is loop 1 counter, initial state is 7
oopl_begin:

esi, esi ; ESI is loop 2 counter
oop2_begin:

al, [ebx+esil ; value from internal array

eax

ebp ; arg_0

edi ; loop 1 counter

esi ; loop 2 counter

set_bit

esp, 10h

esi ; increment loop 2 counter

esi, 8

short second_loop2_begin

edi ; decrement loop 2 counter

ebx, 8 ; increment pointer in internal array

edi, OFFFFFFFFh

short second_loopl_begin
edi

esi

ebp

ebx

esp, 40h

endp

...this code is placing contents from internal array to cube global array via set_bit () function, but, in different order!
Now loop 1 counter is in range 7 to 0, decrementing at each iteration!
C code representation looks like:

void rotatel (int v)

{

bool tmp[8][8]; // internal array

int i, j;

for (i=0; i<8; i++)

for (j=0; j<8; j++)
tmp[i] [j1=get_bit (i, j, v);
for (i=0; i<8; i++)
for (j=0; j<8; j++)
set_bit (j, 7-i, v, tmp[x][yl);
};
Not very understandable, but if we will take a look at rotate2() function:

.text:005410E0 rotate2 proc near
.text :005410E0
.text:005410E0 internal_array_64 = byte ptr -40h
.text:005410E0 arg_O = dword ptr 4
.text:005410E0
.text:005410E0 sub esp, 40h
.text:005410E3 push ebx
.text:005410E4 push ebp
.text :005410E5 mov ebp, [esp+48h+arg_O0]
.text:005410E9 push esi
.text:005410EA push edi
.text:005410EB Xor edi, edi ; loop 1 counter
.text :005410ED lea ebx, [esp+50h+internal_array_64]

432

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

.text:
.text:
.text:
.text:

.text

.text:
.text:
.text:
.text:

.text

.text:
.text:
.text:
.text:

.text

.text:
.text:
.text:
.text:

.text

.text:
.text:
.text:
.text:

.text

.text:
.text:

.text

.text:
.text:
.text:
.text:

.text

.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:

.text
.text
.text

.text:
:00541140 rotate2 endp

.text

005410F1

005410F1 loc_5410F1:

005410F1 Xor esi, esi ; loop 2 counter

005410F3

:005410F3 loc_5410F3:

005410F3 push esi ; loop 2 counter

005410F4 push edi ; loop 1 counter

005410F5 push ebp ; arg_0

005410F6 call get_bit

:005410FB add esp, OCh

005410FE mov [ebx+esi], al ; store to internal array
00541101 inc esi ; increment loop 1 counter
00541102 cmp esi, 8

00541105 jl short loc_5410F3

100541107 inc edi ; increment loop 2 counter
00541108 add ebx, 8

0054110B cmp edi, 8

0054110E jl short loc_5410F1

00541110 lea ebx, [esp+bOh+internal_array_64]

:00541114 mov edi, 7 ; loop 1 counter is initial state 7
00541119

00541119 loc_541119:

00541119 Xor esi, esi ; loop 2 counter

0054111B

:0054111B loc_54111B:

0054111B mov al, [ebx+esi] ; get byte from internal array
0054111E push eax

:0054111F push edi ; loop 1 counter

00541120 push esi ; loop 2 counter

00541121 push ebp ; arg_0

00541122 call set_bit

00541127 add esp, 10h

:0054112A inc esi ; increment loop 2 counter
0054112B cmp esi, 8

0054112E jl short loc_54111B

00541130 dec edi ; decrement loop 2 counter
00541131 add ebx, 8

00541134 cmp edi, OFFFFFFFFh

00541137 jg short loc_541119

00541139 pop edi

0054113A pop esi

:0054113B pop ebp

:0054113C pop ebx

:0054113D add esp, 40h

00541140 retn

It is almost the same, except of different order of arguments of the get_bit () and set_bit (). Let’s rewrite it in C-like

code:

void rotate2 (int v)

{

bool tmp[8][8]; // internal array
int i, j;

for (i=0; i<8; i++)
for (j=0; j<8; j++)
tmp[i] [jl=get_bit (v, i, j);
for (i=0; i<8; i++)
for (j=0; j<8; j++)
set_bit (v, j, 7-i, tmpl[il[j1);

433

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

};

Let’s also rewrite rotate3 () function:

void rotate3 (int v)
{
bool tmp[8][8];
int i, j;
for (i=0; i<8; i++)
for (j=0; j<8; j++)
tmp[i] [j1=get_bit (i, v, j);
for (i=0; i<8; i++)
for (j=0; j<8; j++)
set_bit (7-j, v, i, tmp[il[j1);
Jg

Well, now things are simpler. If we consider cube64 as 3D cube 8*8*8, where each elementisbit,get _bit () andset_bit ()
take just coordinates of bit on input.

rotate1/2/3 functions are in fact rotating all bits in specific plane. Three functions are each for each cube side and v
argument is setting plane in range 0..7.

Maybe, algorithm’s author was thinking of 8*8*8 Rubik’s cube?!

Yes, indeed.

Let’s get closer into decrypt () function, | rewrote it here:

void decrypt (BYTE *buf, int sz, char *pw)
{
char *p=strdup (pw);
strrev (p);
int i=0;
do
{
memcpy (cube, buf+i, 8%8);
rotate_all (p, 3);
memcpy (buf+i, cube, 8%8);
i+=64;
}
while (i<sz);
free (p);
}s

Itisalmostthe same exceptof crypt (), but password stringis reversed by strrev() standard C functionand rotate_all ()
is called with argument 3.

This means, in case of decryption, each corresponding rotate1/2/3 call will be performed thrice.

This is almost as in Rubik’c cube! If you want to get back, do the same in reverse order and direction! If you need to undo
effect of rotating one place in clockwise direction, rotate it thrice in counter-clockwise direction.

rotatel() is apparently for rotating “front” plane. rotate2() is apparently for rotating “top” plane. rotate3() is
apparently for rotating “left” plane.

Let’s get back to the core of rotate_all () function:

q:c_ 7a) ’
if (g>24)
q-=24;

int quotient=q/3; // in range 0..7
int remainder=q % 3;

switch (remainder)

{

case 0: for (int i=0; i<v; i++) rotatel (quotient); break; // front

434

http://en.wikipedia.org/wiki/Rubik's_Cube
http://msdn.microsoft.com/en-us/library/9hby7w40(VS.80).aspx

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
case 1: for (int i=0; i<v; i++) rotate2 (quotient); break; // top
case 2: for (int i=0; i<v; i++) rotate3 (quotient); break; // left

};

Now it is much simpler to understand: each password character defines side (one of three) and plane (one of 8). 3*8 = 24,
that is why two last characters of Latin alphabet are remapped to fit an alphabet of exactly 24 elements.

The algorithm is clearly weak: in case of short passwords, one can see, that in crypted file there are an original bytes of
the original file in binary files editor.

Here is reconstructed whole source code:

#include <windows.h>

#include <stdio.h>
#include <assert.h>

#define IS_SET(flag, bit) ((flag) & (bit))
#define SET_BIT(var, bit) ((var) |= (bit))
#define REMOVE_BIT(var, bit) ((var) &= ~(bit))
static BYTE cube[8][8];

void set_bit (int x, int y, int z, bool bit)

{
if (bit)
SET_BIT (cube[x][yl, 1<<z);
else
REMOVE_BIT (cube[x][y], 1<<z);
}s
bool get_bit (int x, int y, int z)
{
if ((cubel[x] [y]l>>z)&1==1)
return true;
return false;
}s
void rotate_f (int row)
{
bool tmp[8][8];
int x, y;
for (x=0; x<8; x++)
for (y=0; y<8; y++)
tmp [x] [yl=get_bit (x, y, row);
for (x=0; x<8; x++)
for (y=0; y<8; y++)
set_bit (y, 7-x, row, tmp[x][yl);
}s

void rotate_t (int row)

{
bool tmp[8][8];
int y, z;

for (y=0; y<8; y++)
for (z=0; z<8; z++)
tmp [y] [z]=get_bit (row, y, z);

for (y=0; y<8; y++)
for (z=0; z<8; z++)

set_bit (row, z, 7-y, tmplyl[z]l);

435

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

g
void rotate_1l (int row)
{
bool tmp[8] [8];
int x, z;
for (x=0; x<8; x++)
for (z=0; z<8; z++)
tmp [x] [z]=get_bit (x, row, z);
for (x=0; x<8; x++)
for (z=0; z<8; z++)
set_bit (7-z, row, x, tmp[x][z]);
}s
void rotate_all (char *pwd, int v)
{
char *p=pwd;
while (*p)
{
char c=x*p;
int q;
c=tolower (c);
if (c>=’a’ && c<=’z’)
{
q=c—’a’;
if (g>24)
q-=24;
int quotient=q/3;
int remainder=q % 3;
switch (remainder)
{
case 0: for (int i=0; i<v; i++) rotatel (quotient); break;
case 1: for (int i=0; i<v; i++) rotate2 (quotient); break;
case 2: for (int i=0; i<v; i++) rotate3 (quotient); break;
e
i
ptt;
}s
}s
void crypt (BYTE *buf, int sz, char *pw)
{
int i=0;
do
{
memcpy (cube, buf+i, 8%8);
rotate_all (pw, 1);
memcpy (buf+i, cube, 8%8);
i+=64;
}
while (i<sz);
I3

436

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

void decrypt (BYTE *buf, int sz, char *pw)
{

char *p=strdup (pw);

strrev (p);

int i=0;

do

{
memcpy (cube, buf+i, 8%8);
rotate_all (p, 3);
memcpy (buf+i, cube, 8%8);
i+=64;

}

while (i<sz);

free (p);
};
void crypt_file(char *fin, char* fout, char *pw)
{
FILE *f;
int flen, flen_aligned;
BYTE *buf;
f=fopen(fin, "rb");
if (£==NULL)
{
printf ("Cannot open input file!\n");
return;
3
fseek (f, 0, SEEK_END);
flen=ftell (f);
fseek (f, 0, SEEK_SET);
flen_aligned=(£f1en&0xFFFFFFCO)+0x40;

buf=(BYTE*)malloc (flen_aligned);
memset (buf, 0, flen_aligned);

fread (buf, flen, 1, £f);
fclose (£);
crypt (buf, flen_aligned, pw);
f=fopen(fout, "wb");
fwrite ("QR9", 3, 1, £);
fwrite (&flen, 4, 1, f);
furite (buf, flen_aligned, 1, f);
fclose (£);
free (buf);
};

void decrypt_file(char *fin, char* fout, char *pw)

437

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

FILE *f;
int real_flen, flen;
BYTE x*buf;

f=fopen(fin, "rb");

if (£f==NULL)

{
printf ("Cannot open input file!\n");
return;

};

fseek (f, 0, SEEK_END);
flen=ftell (f);
fseek (f, 0, SEEK_SET);

buf=(BYTE*)malloc (flen);
fread (buf, flen, 1, £f);
fclose (f);

if (memcmp (buf, "QR9", 3)!=0)

{
printf ("File is not crypted!\n");
return;

};

memcpy (&real_flen, buf+3, 4);
decrypt (buf+(3+4), flen-(3+4), pw);
f=fopen(fout, "wb");

furite (buf+(3+4), real_flen, 1, f);
fclose (f);

free (buf);
I8

// run: input output 0/1 password
// 0 for encrypt, 1 for decrypt

int main(int argc, char *argv[])
{
if (argc!=b)
{
printf ("Incorrect parameters!\n");
return 1;

};

if (strcmp (argv[3], "0")==0)
crypt_file (argv([1], argv([2], argv[4]);
else
if (strcmp (argv[3], "1")==0)
decrypt_file (argv([1], argv[2], argv[4]);
else
printf ("Wrong param %s\n", argv[3]);

438

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

return 0;

439

CHAPTER 57. SAP

Chapter 57

SAP

57.1 About SAP client network traffic compression

(Tracing connection between TDW_NOCOMPRESS SAPGUI' environment variable to the pesky nagging pop-up window and
actual data compression routine.)

Itis known that network traffic between SAPGUI and SAP is not crypted by default, it is rather compressed (read here and
here).

Itis also known that by setting environment variable TDW_NOCOMPRESS to 1, it is possible to turn network packets com-
pression off.

But you will see a nagging pop-up window cannot be closed:

& |« B¢e@@ CHE 8D o0 BRR @
SAP
Mlew password

Client ool Infarmation

Welcome to the IDES ECC B.0incl. EnP4

Uzer &
Fassword FTEEEEREETELE]

Sapgui :’;
Language

Ervvironment information:

.0. data comprezsion switched off

) Faor masxinmurm data security delete
the zetting(z] az soon as pozsible |

Figure 57.1: Screenshot

Let’s see, if we can remove the window somehow.

But before this, let’s see what we already know. First: we know the environment variable TDW_NOCOMPRESS is checked
somewhere inside of SAPGUI client. Second: string like “data compression switched off” must be present somewhere too.
With the help of FAR file manager | found that both of these strings are stored in the SAPguilib.dll file.

So let’s open SAPguilib.dll in IDA and search for “TDW_NOCOMPRESS” string. Yes, it is present and there is only one refer-
enceto it.

We see the following fragment of code (all file offsets are valid for SAPGUI 720 win32, SAPguilib.dll file version 7200,1,0,9009):

.text:6440D51B lea eax, [ebp+2108h+var_211C]

.text:6440D51E push eax ; int

.text :6440D51F push offset aTdw_nocompress ; "TDW_NOCOMPRESS"
TSAP GUI client

440

http://blog.yurichev.com/node/44
http://blog.yurichev.com/node/47

57.1. ABOUT SAP CLIENT NETWORK TRAFFIC COMPRESSION

CHAPTER 57. SAP

.text:
.text:
.text:
StexitE
.text:
.text:

; demangled name: int ATL::CStringT
.text:
.text:
.text:
.text:

6440D524
6440D528
6440D52D
6440D52E
6440D52F
6440D534

6440D537
6440D53D
6440D53F
6440D541

mov
call
pop
pop
push
lea

call
test
jz
lea

byte ptr [edi+15h], O
chk_env

ecx

ecx

offset byte_64443AF8
ecx, [ebp+2108h+var_211C]

: :Compare(char const *)const

ds:mfc90_1603

eax, eax

short loc_6440D55A

ecx, [ebp+2108h+var_211C]

; demangled name: const char* ATL::CSimpleStringT::operator PCXSTR

.text

.text

:6440D544
.text:
.text:
.text:
.text:
:6440D556
.text:

6440D54A
6440D54B
6440D551
6440D553

6440D557

call
push
call
test
setnz
pop
mov

ds:mfc90_910

eax ; Str
ds:atoi

eax, eax

al

ecx

[edi+15h], al

String returned by chk_env () via second argument is then handled by MFC string functions and then atoi ()2 is called.
After that, numerical value is stored to edi+15h.
Also take a look onto chk_env () function (I gave a name to it):

.text:
Stexitr
.text:
.text:
.text:
.text:
.text:
.text:
.text:
:64413F20

.text

.text:
:64413F23
.text:
:64413F2D

.text

.text

.text:
:64413F39

.text

64413F20 ; int __cdecl chk_env(char *VarName, int)
proc near

64413F20
64413F20
64413F20
64413F20
64413F20
64413F20
64413F20
64413F20

64413F21

64413F26

64413F34

chk_env

DstSize
var_8
DstBuf
VarName
arg_4

dword
dword
dword
dword

Il

dword

push
mov
sub
mov
mov
push
mov

ptr -0Ch
ptr -8
ptr -4
ptr 8
ptr OCh

ebp

ebp, esp

esp, OCh
[ebp+DstSize], O
[ebp+DstBuf], O
offset unk_6444C88C
ecx, [ebptarg_4]

; (demangled name) ATL::CStringT::operator=(char const *)

.text:
.text:
.text:
.text:
:64413F49
.text:
.text:
.text:
.text:
.text:
NexitE
.text:
.text:
.text:
.text:
StexitE

.text

64413F3C
64413F42
64413F45
64413F46

64413F4A
64413F4D
64413FAE
64413F51
64413F52
64413F58
64413F5B
64413F5E
64413F62
64413F64
64413F66

call
mov
push
mov
push
mov
push
lea
push
call
add
mov
cmp
jz
xor
Jjmp

ds:mfc90_820
eax, [ebp+VarName]

eax ; VarName
ecx, [ebp+DstSize]

ecx ; DstSize
edx, [ebp+DstBuf]

edx ; DstBuf
eax, [ebp+DstSizel

eax ; ReturnSize
ds:getenv_s

esp, 10h

[ebptvar_8], eax
[ebptvar_8], O
short loc_64413F68
eax, eax

short loc_64413FBC

2standard C library function, coverting number in string into number

441

57.1. ABOUT SAP CLIENT NETWORK TRAFFIC COMPRESSION

CHAPTER 57. SAP

BEXE 1 64418F68 5 - ———m oo oo oo

.text:64413F68
.text:64413F68 loc_64413F68:

.text:64413F68 cmp
.text:64413F6C jnz
.text:64413F6E xor
.text:64413F70 jmp

[ebp+DstSize], O
short loc_64413F72
eax, eax

short loc_64413FBC

EEXE 1BAA13BFT2 § m oo o m o

.text:64413F72
.text:64413F72 loc_64413F72:

.text:64413F72 mov
.text:64413F75 push
.text:64413F76 mov

ecx, [ebp+DstSizel
ecx
ecx, [ebptarg_4]

; demangled name: ATL::CSimpleStringT<char, 1>::Preallocate(int)

.text:64413F79 call
.text:64413F7F mov
.text:64413F82 mov
.text:64413F85 push
.text :64413F86 mov
.text:64413F89 push
.text:64413F8A mov
.text:64413F8D push
.text:64413F8E lea
.text:64413F91 push
.text:64413F92 call
.text:64413F98 add
.text:64413F9B mov
.text:64413F9E push
.text :64413FA0 mov

; demangled name: ATL::CSimpleStringT::

.text:64413FA3 call
.text:64413FA9 cmp
.text :64413FAD jz

.text :64413FAF xor
.text:64413FB1 jmp

ds:mfc90_2691
[ebp+DstBuf], eax
edx, [ebp+VarName]

edx ; VarName
eax, [ebp+DstSize]

eax ; DstSize
ecx, [ebp+DstBuf]

ecx ; DstBuf
edx, [ebp+DstSize]

edx ; ReturnSize
ds:getenv_s

esp, 10h

[ebptvar_8], eax
OFFFFFFFFh

ecx, [ebptarg_4]

ReleaseBuffer (int)
ds:mfc90_5835
[ebptvar_8], O
short loc_64413FB3
eax, eax

short loc_64413FBC

Ltext:164418FB3 ; —m - oo oo oo -

.text:64413FB3
.text:64413FB3 loc_64413FB3:
.text:64413FB3 mov

ecx, [ebp+arg_4]

; demangled name: const char* ATL::CSimpleStringT::operator PCXSTR

.text:64413FB6 call
.text:64413FBC

.text:64413FBC loc_64413FBC:

.text :64413FBC

.text:64413FBC mov
.text:64413FBE pop
.text :64413FBF retn
.text:64413FBF chk_env endp

ds:mfc90_910

esp, ebp
ebp

Yes. getenv_s()® function is Microsoft security-enhanced version of getenv () *.

There is also a MFC string manipulations.

Lots of other environment variables are checked as well. Here is a list of all variables being checked and what SAPGUI
could write to trace log when logging is turned on:

3http://msdn.microsoft.com/en-us/library/tb2sfw2z(VS.80) .aspx

4Standard C library returning environment variable

442

http://msdn.microsoft.com/en-us/library/tb2sfw2z(VS.80).aspx

57.1. ABOUT SAP CLIENT NETWORK TRAFFIC COMPRESSION

CHAPTER 57. SAP

Settings for each variable are written to the array via pointer in the EDI register. EDI is being set before the function call:

DPTRACE

TDW_HEXDUMP
TDW_WORKDIR
TDW_SPLASHSRCEENOFF
TDW_REPLYTIMEOUT
TDW_PLAYBACKTIMEOUT
TDW_NOCOMPRESS
TDW_EXPERT
TDW_PLAYBACKPROGRESS
TDW_PLAYBACKNETTRAFFIC
TDW_PLAYLOG
TDW_PLAYTIME
TDW_LOGFILE

TDW_WAN
TDW_FULLMENU

SAP_CP / SAP_CODEPAGE
UPDOWNLOAD_CP
SNC_PARTNERNAME
SNC_QOP

SNC_LIB
SAPGUI_INPLACE

“GUI-OPTION

“GUI-OPTION:
“GUI-OPTION:
“GUI-OPTION:
“GUI-OPTION:
“GUI-OPTION:
“GUI-OPTION:
“GUI-OPTION:
“GUI-OPTION:
“GUI-OPTION:
“GUI-OPTION:
“GUI-OPTION:

Trace set to %d”

Hexdump enabled”

working directory ‘%s”

Splash Screen Off” / “GUI-OPTION: Splash Screen On”
reply timeout %d milliseconds”
PlaybackTimeout set to %d milliseconds”
no compression read”

expert mode”

PlaybackProgress”

PlaybackNetTraffic”

/PlayLog is YES, file %s”

: /PlayTime set to %d milliseconds”
“GUI-OPTION:
“GUI-OPTION:
“GUI-OPTION:
“GUI-OPTION:
“GUI-OPTION:
“GUI-OPTION:
“GUI-OPTION:
“GUI-OPTION:
“GUI-OPTION:

TDW_LOGFILE “%s”

WAN - low speed connection enabled”
FullMenu enabled”

SAP_CODEPAGE “%d”

UPDOWNLOAD_CP “%d”

SNC name ‘%s”

SNC_QOP “%s”

SNC is set to: %s”

environment variable SAPGUI_INPLACE is on”

.text :6440EE00 lea edi, [ebp+2884h+var_2884] ; options here like +0x15...

.text :6440EE03 lea ecx, [esi+24h]

.text :6440EE06 call load_command_line

.text :6440EEOB mov edi, eax

.text :6440EEQOD Xor ebx, ebx

.text :6440EEQF cmp edi, ebx

.text:6440EE11 jz short loc_6440EE42

.text :6440EE13 push edi

.text:6440EE14 push offset aSapguiStoppedA ; "Sapgui stopped after commandline
interp"...

.text:6440EE19 push dword_644F93E8

.text:6440EE1F call FEWTraceError

Now, can we find “data record mode switched on” string? Yes, and hereisthe only referencein function CDwsGui : : PrepareInfoWind

How do | know class/method names? There is a lot of special debugging calls writing to log-files like:

.text :64405160 push dword ptr [esi+2854h]

.text:64405166 push offset aCdwsguiPrepare ; "\nCDwsGui::PrepareInfoWindow:
sapgui env"...

.text:6440516B push dword ptr [esi+2848h]

.text:64405171 call dbg

.text :64405176 add esp, OCh
..or

.text:6440237A push eax

.text:6440237B push offset aCclientStart_6 ; "CClient::Start: set shortcut
user to ’\%"...

.text:64402380 push dword ptr [edi+4]

.text:64402383 call dbg

.text:64402388 add esp, OCh

Itis very useful.
So let’s see contents of the pesky nagging pop-up window function:

.text :64404F4F CDwsGui__PrepareInfoWindow proc near
.text :64404F4F

.text:64404F4F pvParam
.text:64404F4F var_38

= byte ptr -3Ch

dword ptr -38h

443

57.1. ABOUT SAP CLIENT NETWORK TRAFFIC COMPRESSION CHAPTER 57. SAP
.text:64404F4F var_34 = dword ptr -34h

.text:64404F4F rc = tagRECT ptr -2Ch
.text:64404F4F cy = dword ptr -1Ch

.text:64404F4F h = dword ptr -18h

.text:64404F4F var_14 = dword ptr -14h

.text:64404F4F var_10 = dword ptr -10h

.text:64404F4F var_4 = dword ptr -4

.text :64404F4F

.text :64404F4F push 30h

.text:64404F51 mov eax, offset loc_64438E00
.text :64404F56 call __EH_prolog3
.text:64404F5B mov esi, ecx ; ECX is pointer to object
.text :64404F5D xor ebx, ebx

.text :64404F5F lea ecx, [ebptvar_14]
.text:64404F62 mov [ebp+var_10], ebx

; demangled name: ATL::CStringT(void)

.text :64404F65 call ds:mfc90_316

.text :64404F6B mov [ebptvar_4], ebx

.text :64404F6E lea edi, [esi+2854h]

.text :64404F74 push offset aEnvironmentInf ; "Environment information:\n"
.text:64404F79 mov ecx, edi

; demangled name: ATL::CStringT::operator=(char const *)

.text:64404F7B call ds:mfc90_820
.text:64404F81 cmp [esi+38h], ebx
.text :64404F84 mov ebx, ds:mfc90_2539
.text :64404F8A jbe short loc_64404FA9
.text:64404F8C push dword ptr [esi+34h]
.text :64404F8F lea eax, [ebptvar_14]
.text:64404F92 push offset aWorkingDirecto ; "working directory: ’\%s’\n"
.text :64404F97 push eax

; demangled name: ATL::CStringT::Format(char const *,...)
.text:64404F98 call ebx ; mfc90_2539
.text:64404F9%A add esp, OCh

.text :64404F9D lea eax, [ebp+var_14]
.text :64404FA0 push eax

.text:64404FA1 mov ecx, edi

; demangled name: ATL::CStringT::operator+=(class ATL::CSimpleStringT<char, 1> const &)
.text :64404FA3 call ds:mfc90_941

.text :64404FA9

.text:64404FA9 loc_64404FA9:

.text :64404FA9 mov eax, [esi+38h]
.text :64404FAC test eax, eax
.text:64404FAE jbe short loc_64404FD3
.text :64404FBO push eax

.text :64404FB1 lea eax, [ebptvar_14]
.text :64404FB4 push offset aTracelevelDAct ; "trace level \%d activated\n"
.text :64404FB9 push eax

; demangled name: ATL::CStringT::Format(char const *,...)
.text :64404FBA call ebx ; mfc90_2539
.text :64404FBC add esp, OCh

.text :64404FBF lea eax, [ebptvar_14]
.text:64404FC2 push eax

.text :64404FC3 mov ecx, edi

; demangled name: ATL::CStringT::operator+=(class ATL::CSimpleStringT<char, 1> const &)
.text :64404FC5 call ds:mfc90_941

444

57.1. ABOUT SAP CLIENT NETWORK TRAFFIC COMPRESSION

CHAPTER 57. SAP

.text:
.text:
.text:
.text:
1B4404FD3 ; —-mm e
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
:64404FE2
.text:
.text:

.text

.text

64404FCB
64404FCD
64404FCE
64404FD1

64404FD3
64404FD3 loc_64404FD3:
64404FD3
64404FD5
64404FD6
64404FD6 loc_64404FD6:
64404FD6
64404FD9
64404FDB

64404FE4
64404FE9

Xor
inc
mov

cmp
jbe
cmp
jz
push
mov

ebx, ebx

ebx

[ebp+var_10], ebx
short loc_64404FD6

ebx, ebx
ebx

[esi+38h], ebx
short loc_64404FF1

dword ptr [esi+2978h], O

short loc_64404FF1

offset aHexdumpInTrace ; "hexdump in trace activated\n"

ecx, edi

; demangled name: ATL::CStringT: :operator+=(char const *)

.text

.text

:64404FEB
.text:
.text:
.text:
.text:
:64404FF5
.text:
.text:

64404FF1
64404FF1 loc_64404FF1:
64404FF1
64404FF1

64404FF7
64404FFC

call

cmp
jz
push
mov

ds:mfc90_945

byte ptr [esi+78h], O
short loc_64405007

offset aloggingActivat ;

ecx, edi

; demangled name: ATL::CStringT::operator+=(char const *)

.text:
.text:
.text:
164405007 loc_64405007:
.text:
.text:
.text:
.text:

.text

64404FFE
64405004
64405007

64405007
6440500B
6440500D
64405012

call
mov

cmp
jz
push
mov

ds:mfc90_945
[ebp+var_10], ebx

byte ptr [esi+3Dh], O
short bypass

"logging activated\n"

offset aDataCompressio ; "data compression switched off\n"

ecx, edi

; demangled name: ATL::CStringT::operator+=(char const *)

.text

.text:
:6440501D
:6440501D bypass:
:6440501D

.text
.text
.text

.text:
: 64405022

.text

.text:
.text:
.text:
.text:

164405014

6440501A

64405020

64405024
64405028
6440502A
6440502F

call
mov

mov
test
jz
cmp
jz
push
mov

ds:mfc90_945
[ebp+var_10], ebx

eax, [esi+20h]

eax, eax

short loc_6440503A
dword ptr [eax+28h], O
short loc_6440503A

offset aDataRecordMode ;

ecx, edi

; demangled name: ATL::CStringT::operator+=(char const *)

.text:
.text:
.text:
.text:
.text:
:6440503A
.text:
.text:
.text:

.text

64405031
64405037
6440503A
6440503A loc_6440503A:
6440503A

6440503C
6440503F
64405045

call
mov

mov
cmp
jnz
push

ds :mfc90_945
[ebptvar_10], ebx

ecx, edi
[ebptvar_10], ebx
loc_64405142

"data record mode switched on\n"

offset aForMaximumData ; "\nFor maximum data security

445

57.1. ABOUT SAP CLIENT NETWORK TRAFFIC COMPRESSION

CHAPTER 57. SAP

delete\nthe s"...

; demangled name: ATL::CStringT::operator+=(char const *)

.text :6440504A call
.text :64405050 xor
.text:64405052 push
.text :64405053 lea
.text :64405056 push
.text:64405057 push
.text :64405058 push
.text :6440505A call
.text :64405060 mov
.text :64405063 cmp
.text :64405068 jle
.text:6440506A cdq
.text :6440506B sub
.text :6440506D sar
.text :6440506F mov

.text:64405072
.text:64405072 loc_64405072:

.text :64405072 push
.text:64405073 mov
.text :6440507A call
.text :64405080 mov
.text:64405083 mov
.text :64405088 cmp
.text :6440508A jz
.text :64405090 push
.text :64405092 call
.text :64405098 mov
.text :6440509E push
.text :6440509F push
.text :644050A2 call
.text :644050A4 and
.text :644050A8 and
.text :644050AC mov
.text :644050AF push
.text :644050B4 lea
.text :644050B7 push
.text :644050B8 lea
.text :644050BE mov
.text:644050C1 mov
; demangled name: ATL::CSimpleStringT::
.text :644050C8 call
.text :644050CE push
.text :644050CF lea

ds:mfc90_945

edi, edi

edi ; fWinIni

eax, [ebp+pvParam]

eax ; pvParam

edi ; uiParam

30h ; uilAction

ds:SystemParametersInfoA
eax, [ebp+var_34]

eax, 1600

short loc_64405072

eax, edx
eax, 1
[ebptvar_34], eax

edi ; hiWnd
[ebp+cy]l, OAOh
ds:GetDC
[ebp+var_10], eax
ebx, 12Ch

eax, edi

loc_64405113

11ih ;1
ds:GetStockObject
edi, ds:SelectObject
eax ; h
[ebp+var_10] ; hdc
edi ; SelectObject
[ebptrc.left], O
[ebp+rc.top], O
[ebp+h], eax

401h ; format
eax, [ebp+rc]
eax ; lprc

ecx, [esi+2854h]
[ebp+rc.right], ebx
[ebp+rc.bottom] , OB4h

GetLength(void)
ds:mfc90_3178

eax ; cchText
ecx, [esi+2854h]

; demangled name: const char* ATL::CSimpleStringT::operator PCXSTR

.text :644050D5 call
.text :644050DB push
.text :644050DC push
.text :644050DF call
.text :644050E5 push
.text :644050E7 call
.text :644050ED mov
.text :644050F0 sub

.text :644050F3 cmp

.text :644050F7 lea
.text :644050FB mov
.text :644050FE jz

ds:mfc90_910

eax ; lpchText
[ebp+var_10] ; hdc
ds:DrawTextA

4 ; nIndex

ds:GetSystemMetrics
ecx, [ebp+rc.bottom]
ecx, [ebp+rc.top]
[ebp+h], O

eax, [eax+ecx+28h]
[ebptcyl, eax

short loc_64405108

446

57.1. ABOUT SAP CLIENT NETWORK TRAFFIC COMPRESSION

CHAPTER 57. SAP

.text:
.text:
.text:
StexitE
164405108 loc_64405108:
.text:
.text:
.text:
.text:
164405113 loc_64405113:
.text:
.text:
.text:
.text:
:6440511F
.text:
.text:
.text:
.text:
:6440512A
.text:
.text:
.text:
.text:
164405137
.text:
.text:
.text:
.text:
.text:
.text:
.text:

.text

.text

.text

.text

.text

64405100
64405103
64405106
64405108

64405108
6440510B
6440510D
64405113

64405113
64405116
6440511B
6440511E

64405120
64405121
64405124
64405129

6440512C
6440512E
6440512F
64405131

6440513D
6440513F
64405140

push
push
call

push
push
call

mov
push
push
inc
push
push
mov
add

[ebp+h] ; h
[ebp+var_10] ; hdc
edi ; SelectObject

[ebp+var_10] ; hDC
0 ; hWnd
ds:ReleaseDC

eax, [ebp+var_38]

80h ; uFlags
[ebptcy] 5 Cy
eax

ebx ; CX

eax ;0 Y

eax, [ebp+var_34]
eax, OFFFFFED4h

eax, edx

eax, 1

eax ; X

0 ; hWndInsertAfter

dword ptr [esi+285Ch] ; hWnd
ds:SetWindowPos

ebx, ebx

ebx

short loc_6440514D

BA405142 = - o m o oo o o

64405142
64405142 loc_64405142:
64405142

push

offset byte_64443AF8

; demangled name: ATL::CStringT::operator=(char const *)

.text:
.text:
.text:
:6440514D

.text

.text:
164405155

.text

.text:
164405160
.text:

.text

64405147
6440514D
6440514D loc_6440514D:
64405153
6440515A

64405166

sapgui env"...

.text:
164405171

.text

Stexitr
.text:
.text:
.text:
.text:
.text:
.text:

6440516B

64405176
64405179
64405183
64405188
64405188 loc_64405188:
64405188
6440518C

call

cmp
jl
call
mov
push
push

push
call
add
mov
call

or
lea

ds:mfc90_820

dword_6450B970, ebx

short loc_64405188

sub_6441C910

dword_644F858C, ebx

dword ptr [esi+2854h]

offset aCdwsguiPrepare ; "\nCDwsGui

dword ptr [esi+2848h]
dbg

esp, OCh
dword_644F858C, 2
sub_6441C920

[ebp+var_4], OFFFFFFFFh
ecx, [ebptvar_14]

; demangled name: ATL::CStringT::~CStringT()

.text:
.text:
.text:

6440518F
64405195
6440519A

call
call
retn

ds:mfc90_601
__EH_epilog3

.text:6440519A CDwsGui__PrepareInfoWindow endp

: :PrepareInfoWindow:

ECX at function start gets pointer to object (since it is thiscall (31.1.1)-type of function). In our case, the object obviously

447

57.1. ABOUT SAP CLIENT NETWORK TRAFFIC COMPRESSION CHAPTER 57. SAP

has class type CDwsGui. Depends of option turned on in the object, specific message part will be concatenated to resulting
message.
If value at this+0x3D address is not zero, compression is off:

.text
.text
.text
.text
.text

164405007
164405007
:6440500B
:6440500D
164405012

loc_64405007:

cmp
jz
push
mov

byte ptr [esi+3Dh], O

short bypass

offset aDataCompressio ; "data compression switched off\n"
ecx, edi

; demangled name: ATL::CStringT::operator+=(char const *)

.text
.text
.text

164405014
:6440501A
:6440501D

.text:6440501D bypass:

call
mov

ds:mfc90_945
[ebptvar_10], ebx

It is interesting, that finally, var_10 variable state defines whether the message is to be shown at all:

.text
.text

:6440503C
:6440503F

cmp
jnz

[ebptvar_10], ebx
exit ; bypass drawing

; add strings "For maximum data security delete" / "the setting(s) as soon as possible !":

.text :64405045 push offset aForMaximumData ; "\nFor maximum data security
delete\nthe s"...
.text :6440504A call ds:mfc90_945 ; ATL::CStringT::operator+=(char const *)
.text:64405050 xor edi, edi
.text:64405052 push edi ; fWinIni
.text:64405053 lea eax, [ebp+pvParam]
.text :64405056 push eax ; pvParam
.text:64405057 push edi ; uiParam
.text :64405058 push 30h ; uiAction
.text:6440505A call ds:SystemParametersInfoA
.text:64405060 mov eax, [ebp+var_34]
.text :64405063 cmp eax, 1600
.text :64405068 jle short loc_64405072
.text:6440506A cdq
.text :6440506B sub eax, edx
.text :6440506D sar eax, 1
.text :6440506F mov [ebptvar_34], eax
.text :64405072
.text:64405072 loc_64405072:
start drawing:
.text:64405072 push edi ; hWnd
.text :64405073 mov [ebp+cy]l, O0AOh
.text:6440507A call ds:GetDC
Let’s check our theory on practice.
JNZ at this line...
.text :6440503F jnz exit ; bypass drawing

...replace it with just JMP, and get SAPGUI working without the pesky nagging pop-up window appearing!

Now let’s dig deeper and find connection between 0x15 offset in the 1load_command_line() (I gave the name to the
function) function and this+0x3D variable in the CDwsGui::PreparelnfoWindow. Are we sure the value is the same?

I’m starting to search for all occurrences of 0x15 value in code. For a small programs like SAPGUI, it sometimes works.
Here is the first occurrence | got:

.text:64404C19 sub_64404C19

.text

:64404C19

.text:64404C19 arg_O

.text

:64404C19

proc near

= dword ptr 4

448

57.1. ABOUT SAP CLIENT NETWORK TRAFFIC COMPRESSION

CHAPTER 57. SAP

.text:64404C19
.text :64404C1A
.text:64404C1B
.text:64404C1C
.text :64404C1D
.text:64404C21
.text:64404C23
.text:64404C25
.text :64404C27
.text:64404C2A
.text:64404C2D
.text :64404C30
.text:64404C33
.text :64404C36
.text :64404C37

; demangled name:

.text:64404C3A
.text :64404C40
.text :64404C43
.text:64404C46
.text:64404C49
.text :64404C4C
.text :64404C4AF

push ebx
push ebp
push esi
push edi
mov edi, [esp+1Oh+arg_O]
mov eax, [edi]
mov esi, ecx ; ESI/ECX are pointers to some unknown object.
mov [esi], eax
mov eax, [edi+4]
mov [esi+4], eax
mov eax, [edi+8]
mov [esi+8], eax
lea eax, [edi+OCh]
push eax
lea ecx, [esi+OCh]
ATL: :CStringT: :operator=(class ATL::CStringT ... &)
call ds:mfc90_817
mov eax, [edi+10h]
mov [esi+10h], eax
mov al, [edi+14h]
mov [esi+14h], al
mov al, [edi+15h] ; copy byte from 0x15 offset
mov [esi+15h], al ; to Ox15 offset in CDwsGui object

The function was called from the function named CDwsGui::CopyOptions! And thanks again for debugging information.
But the real answer in the function CDwsGui::Init():

.text :6440BOBF loc_6440BOBF:

.text :6440BOBF
.text :6440B0C2
.text :6440B0OC5
.text :6440B0OCB
.text :6440BOCE
.text :6440BOCF

mov
push
mov
lea
push
call

eax, [ebptarg_0]

[ebptarg_4]

[esi+2844h], eax

eax, [esi+28h] ; ESI is pointer to CDwsGui object
eax

CDwsGui__CopyOptions

Finally, we understand: array filled in the 1oad_command_line () function is actually placed in the CDwsGui class but on
this+0x28 address. 0x15 + 0x28 is exactly 0x3D. OK, we found the point where the value is copied to.

Let’s also find other places where 0x3D offset is used. Here is one of them in the CDwsGui::SapguiRun function (again,
thanks to debugging calls):

.text :64409D58
.text :64409D5B
.text:64409D61
.text:64409D64

CreateNetwork

.text :64409D65

; demangled name:

.text :64409D68
.text :64409D68
.text :64409D6E
.text :64409D6F

; demangled name:

.text :64409D75
.text :64409D75
.text:64409D7B
.text:64409D7C
.text:64409D7D
.text :64409D80

cmp
lea

setz
push

push

[esi+3Dh], bl
ecx, [esi+2B8h]
al

eax ; arg_10 of CConnectionContext::

; ESI is pointer to CDwsGui object

dword ptr [esi+64h]

const char* ATL::CSimpleStringT::operator PCXSTR

call

push
lea

ds:mfc90_910

; no arguments
eax
ecx, [esi+2BCh]

const char* ATL::CSimpleStringT::operator PCXSTR

call

push
push
lea

call

ds:mfc90_910

; no arguments
eax
esi
ecx, [esi+8]
CConnectionContext__CreateNetwork

449

57.1. ABOUT SAP CLIENT NETWORK TRAFFIC COMPRESSION CHAPTER 57. SAP
Let’s check our findings. Replace the setz al here to the xor eax, eax / nop instructions, clear TDW_NOCOMPRESS
environment variable and run SAPGUI. Wow! There is no more pesky nagging window (just as expected, because variable is
not set) but in Wireshark we can see the network packets are not compressed anymore! Obviously, this is the point where
compression flag is to be set in the CConnectionContext object.
So, compression flag is passed in the 5th argument of function CConnectionContext::CreateNetwork. Inside the function,
another one is called:

.text :64403476 push [ebptcompression]

.text:64403479 push [ebp+arg_C]
.text:6440347C push [ebp+arg_8]
.text :6440347F push [ebptarg_4]
.text:64403482 push [ebptarg_0]
.text:64403485 call CNetwork__CNetwork

Compression flag is passing here in the 5th argument to the CNetwork::CNetwork constructor.
And here is how CNetwork constructor sets a flag in the CNetwork object according to the 5th argument and an another
variable which probably could affect network packets compression too.

.text:64411DF1 cmp [ebptcompression], esi

.text:64411DF7 jz short set_EAX_to_0

.text:64411DF9 mov al, [ebx+78h] ; another value may affect compression?
.text:64411DFC cmp al, ’3?

.text:64411DFE jz short set_EAX_ to_1

.text:64411E00 cmp al, ’4’

.text:64411E02 jnz short set_EAX_to_0

.text:64411E04
.text:64411E04 set_EAX_to_1:

.text:64411E04 Xor eax, eax
.text:64411E06 inc eax ; EAX -> 1
.text:64411E07 jmp short loc_64411EOB

.text:64411E09 ; ———-—————
.text:64411E09

.text:64411E09 set_EAX_to_O:

.text:64411E09

.text:64411E09 Xor eax, eax ; EAX -> 0

.text:64411E0B

.text:64411E0B loc_64411E0B:

.text:64411E0B mov [ebx+3A4h], eax ; EBX is pointer to CNetwork object

At this point we know the compression flag is stored in the CNetwork class at this+0x3A4 address.
Now let’s dig across SAPguilib.dll for 0x3A4 value. And here is the second occurrence in the CDwsGui::OnClientMessagelWrite
(endless thanks for debugging information):

.text:64406F76 loc_64406F76:

.text :64406F76 mov ecx, [ebp+7728h+var_7794]
.text:64406F79 cmp dword ptr [ecx+3A4h], 1
.text :64406F80 jnz compression_flag_is_zero
.text :64406F86 mov byte ptr [ebx+7], 1

.text :64406F8A mov eax, [esi+18h]

.text :64406F8D mov ecx, eax

.text :64406F8F test eax, eax

.text:64406F91 ja short loc_64406FFF

.text :64406F93 mov ecx, [esi+14h]

.text :64406F96 mov eax, [esi+20h]

.text :64406F99
.text:64406F99 loc_64406F99:

.text :64406F99 push dword ptr [edi+2868h] ; int
.text :64406F9F lea edx, [ebp+7728h+var_77A4]
.text :64406FA2 push edx ; int

.text :64406FA3 push 30000 ; int

.text :64406FAS8 lea edx, [ebp+7728h+Dst]
.text:64406FAB push edx ; Dst

450

57.2. SAP 6.0 PASSWORD CHECKING FUNCTIONS CHAPTER 57. SAP

.text:64406FAC push ecx ; int

.text:64406FAD push eax ; Src

.text :64406FAE push dword ptr [edi+28COh] ; int

.text:64406FB4 call sub_644055C5 ; actual compression routine

.text :64406FB9 add esp, 1Ch

.text :64406FBC cmp eax, OFFFFFFF6h

.text :64406FBF jz short loc_64407004

.text:64406FC1 cmp eax, 1

.text:64406FC4 jz loc_6440708C

.text :64406FCA cmp eax, 2

.text :64406FCD jz short loc_64407004

.text :64406FCF push eax

.text :64406FDO push offset aCompressionErr ; "compression error [rc = \%d]-
program wi'...

.text :64406FD5 push offset aGui_err_compre ; "GUI_ERR_COMPRESS"

.text :64406FDA push dword ptr [edi+28DOh]

.text :64406FEO call SapPcTxtRead
Let’stake alookinto sub_644055C5. Init we can only see call to memcpy() and an other function named (by IDA) sub_64417440.
And, let’s take a look inside sub_64417440. What we see is:

.text:6441747C push offset aErrorCsrcompre ; "\nERROR: CsRCompress: invalid
handle"

.text:64417481 call eax ; dword_644F94C8

.text:64417483 add esp, 4

Voila! We've found the function which actually compresses data. As | revealed in past, this function is used in SAP and
also open-source MaxDB project. So it is available in sources.
Doing last check here:

.text :64406F79 cmp dword ptr [ecx+3A4h], 1
.text :64406F80 jnz compression_flag_is_zero

Replace JNZ here for unconditional JMP. Remove environment variable TDW_NOCOMPRESS. Voila! In Wireshark we see
the client messages are not compressed. Server responses, however, are compressed.

So we found exact connection between environment variable and the point where data compression routine may be
called or may be bypassed.

57.2 SAP 6.0 password checking functions

While returning again to my SAP 6.0 IDES installed in VMware box, | figured out | forgot the password for SAP* account, then
it back to my memory, but now | got error message «Password logon no longer possible - too many failed attempts», since I've
spent all these attempts in trying to recall it.

First extremely good news is the full disp+twork.pdb file is supplied with SAP, it contain almost everything: function names,
structures, types, local variable and argument names, etc. What a lavish gift!

| got TYPEINFODUMP® utility for converting PDB files into something readable and grepable.

Here is an example of function information + its arguments + its local variables:

FUNCTION ThVmcSysEvent
Address: 10143190 Size: 675 bytes Index: 60483 Typelndex: 60484
Type: int NEAR_C ThVmcSysEvent (unsigned int, unsigned char, unsigned shortx*)

Flags: O

PARAMETER events
Address: Reg335+288 Size: 4 bytes Index: 60488 Typelndex: 60489
Type: unsigned int

Flags: dO

PARAMETER opcode
Address: Reg335+296 Size: 1 bytes Index: 60490 Typelndex: 60491
Type: unsigned char

Flags: d0

PARAMETER serverName

Shttp://www.debuginfo.com/tools/typeinfodump.html

451

http://conus.info/utils/SAP_pkt_decompr.txt
http://www.debuginfo.com/tools/typeinfodump.html

57.2. SAP 6.0 PASSWORD CHECKING FUNCTIONS CHAPTER 57. SAP
Address: Reg335+304 Size: 8 bytes Index: 60492 Typelndex: 60493
Type: unsigned short*
Flags: dO
STATIC_LOCAL_VAR func
Address: 12274af0 Size: 8 bytes Index: 60495 Typelndex: 60496
Type: wchar_tx*
Flags: 80
LOCAL_VAR admhead
Address: Reg335+304 Size: 8 bytes Index: 60498 Typelndex: 60499
Type: unsigned charx*
Flags: 90
LOCAL_VAR record
Address: Reg335+64 Size: 204 bytes Index: 60501 Typelndex: 60502
Type: AD_RECORD
Flags: 90
LOCAL_VAR adlen
Address: Reg335+296 Size: 4 bytes Index: 60508 Typelndex: 60509
Type: int
Flags: 90

And here is an example of some structure:

STRUCT DBSL_STMTID
Size: 120 Variables: 4 Functions: O Base classes: 0
MEMBER moduletype

Type: DBSL_MODULETYPE

Offset: 0 1Index: 3 Typelndex: 38653
MEMBER module

Type: wchar_t module [40]

Offset: 4 Index: 3 Typelndex: 831
MEMBER stmtnum

Type: long

Offset: 84 Index: 3 Typelndex: 440

MEMBER timestamp
Type: wchar_t timestampl[15]
Offset: 88 Index: 3 Typelndex: 6612

Wow!

Another good news is: debugging calls (there are plenty of them) are very useful.
Here you can also notice ct_level global variable®, reflecting current trace level.
There is a lot of such debugging inclusions in the disp+work.exe file:

cmp cs:ct_level, 1

jl short loc_1400375DA

call DpLock

lea rcx, aDpxxtool4_c ; "dpxxtool4d.c"

mov edx, 4Eh ; line

call CTrcSaveLocation

mov r8, cs:func_48

mov rcx, cs:hdl ; hdl

lea rdx, aSDpreadmemvalu ; "Ys: DpReadMemValue (%d)"
mov r9d, ebx

call DpTrcErr
call DpUnlock

If current trace level is bigger or equal to threshold defined in the code here, debugging message will be written to log
files like dev_w0, dev_disp, and other dev* files.
Let’s do grepping on file | got with the help of TYPEINFODUMP utility:

cat "disptwork.pdb.d" | grep FUNCTION | grep -i password

| got:

6More about trace level: http://help.sap.com/saphelp_nwpi71/helpdata/en/46/962416a5a613e8e10000000a155369/content . htm

452

http://help.sap.com/saphelp_nwpi71/helpdata/en/46/962416a5a613e8e10000000a155369/content.htm

57.2. SAP 6.0 PASSWORD CHECKING FUNCTIONS CHAPTER 57. SAP

FUNCTION rcui::AgiPassword::DiaglSelection

FUNCTION ssf_password_encrypt

FUNCTION ssf_password_decrypt

FUNCTION password_logon_disabled

FUNCTION dySignSkipUserPassword

FUNCTION migrate_password_history

FUNCTION password_is_initial

FUNCTION rcui::AgiPassword::IsVisible

FUNCTION password_distance_ok

FUNCTION get_password_downwards_compatibility

FUNCTION dySignUnSkipUserPassword

FUNCTION rcui::AgiPassword: :GetTypeName

FUNCTION ‘rcui::AgiPassword::AgiPassword’::‘1’::dtor$2
FUNCTION ‘rcui::AgiPassword::AgiPassword’::¢1’::dtor$0
FUNCTION ‘rcui::AgiPassword::AgiPassword’::¢1’::dtor$l
FUNCTION usm_set_password

FUNCTION rcui::AgiPassword: :TraceTo

FUNCTION days_since_last_password_change

FUNCTION rsecgrp_generate_random_password

FUNCTION rcui::AgiPassword:: ‘scalar deleting destructor’
FUNCTION password_attempt_limit_exceeded

FUNCTION handle_incorrect_password

FUNCTION ‘rcui::AgiPassword::‘scalar deleting destructor’’::‘1’::dtor$l
FUNCTION calculate_new_password_hash

FUNCTION shift_password_to_history

FUNCTION rcui::AgiPassword: :GetType

FUNCTION found_password_in_history

FUNCTION ‘rcui::AgiPassword::‘scalar deleting destructor’’::¢1’::dtor$0
FUNCTION rcui::AgiObj::IsaPassword

FUNCTION password_idle_check

FUNCTION SlicHwPasswordForDay

FUNCTION rcui::AgiPassword::IsaPassword

FUNCTION rcui::AgiPassword: :AgiPassword

FUNCTION delete_user_password

FUNCTION usm_set_user_password

FUNCTION Password_API

FUNCTION get_password_change_for_SSO

FUNCTION password_in_USR40

FUNCTION rsec_agrp_abap_generate_random_password

Let’s also try to search for debug messages which contain words «password» and «locked». One of them is the string «user
was locked by subsequently failed password logon attempts» referenced in
function password_attempt_limit_exceeded().

Other string this function | found may write to log file are: «password logon attempt will be rejected immediately (prevent-
ing dictionary attacks)», «failed-logon lock: expired (but not removed due to 'read-only’ operation)», «failed-logon lock: expired
=>removed».

After playing for a little with this function, | quickly noticed the problem is exactly in it. It is called from chckpass() func-
tion —one of the password checking functions.

First, | would like to be sure I’'m at the correct point:

Run my tracer:

tracer64.exe -a:disp+work.exe bpf=dispt+work.exe!chckpass,args:3,unicode

PID=2236|TID=2248| (0) disp+work.exe!chckpass (0x202c770, L"Breweredl
", 0x41) (called from 0x1402f1060 (disp+work.exe!usrexist+0x3c0))
PID=2236|TID=2248| (0) disp+work.exe!chckpass -> 0x35

Call pathis: syssigni() -> DylSigni() -> dychkusr() -> usrexist() -> chckpass().
Number 0x35 is an error returning in chckpass() at that point:

.text:00000001402ED567 loc_1402ED567: ; CODE XREF: chckpass+B4

453

57.2. SAP 6.0 PASSWORD CHECKING FUNCTIONS CHAPTER 57. SAP

.text:00000001402ED567 mov rcx, rbx ; usr02

.text :00000001402ED56A call password_idle_check
.text:00000001402ED56F cmp eax, 33h

.text:00000001402ED572 jz loc_1402EDB4E
.text:00000001402ED578 cmp eax, 36h

.text :00000001402ED57B jz loc_1402EDB3D
.text:00000001402ED581 Xor edx, edx ; usr02_readonly
.text :00000001402ED583 mov rcx, rbx ; usr02
.text:00000001402ED586 call password_attempt_limit_exceeded
.text:00000001402ED58B test al, al

.text :00000001402ED58D jz short loc_1402ED5A0

.text :00000001402ED58F mov eax, 35h

.text:00000001402ED594 add rsp, 60h

.text:00000001402ED598 pop ri4

.text:00000001402ED59A pop ri2

.text :00000001402ED59C pop rdi

.text :00000001402ED59D pop rsi

.text:00000001402ED59E pop rbx

.text:00000001402ED59F retn

Fine, let’s check:

tracer64.exe -a:disp+work.exe bpf=dispt+work.exe!password_attempt_limit_exceeded,args:4,unicode,rt
:0

PID=2744|TID=360| (0) disp+work.exe!password_attempt_limit_exceeded (0x202c770, 0, 0x257758, 0) (
called from 0x1402ed58b (disp+work.exe!chckpass+0xeb))

PID=2744|TID=360| (0) disp+work.exe!password_attempt_limit_exceeded -> 1

PID=2744|TID=360|We modify return value (EAX/RAX) of this function to 0

PID=2744|TID=360| (0) disp+work.exe!password_attempt_limit_exceeded (0x202c770, 0, 0, 0) (called
from 0x1402e9794 (disp+work.exe!chngpass+Oxe4))

PID=2744|TID=360] (0) disp+work.exe!password_attempt_limit_exceeded -> 1

PID=2744|TID=360|We modify return value (EAX/RAX) of this function to O

Excellent! I can successfully login now.
By the way, if | try to pretend | forgot the password, fixing chckpass() function return value at 0 is enough to bypass check:

tracer64.exe -a:disp+work.exe bpf=disp+work.exe!chckpass,args:3,unicode,rt:0

PID=2744|TID=360| (0) disp+work.exe!chckpass (0x202c770, L"bogus

", 0x41) (called from 0x1402f1060 (disp+work.exe!usrexist+0x3c0))
PID=2744|TID=360| (0) disp+work.exe!chckpass -> 0x35
PID=2744|TID=360|We modify return value (EAX/RAX) of this function to O

What also can be said while analyzing password_attempt_limit_exceeded() function is that at the very beginning of it, this
call might be seen:

lea rcx, aloginFailed_us ; "login/failed_user_auto_unlock"
call sapgparam

test rax, rax

jz short loc_1402E19DE
movzx eax, word ptr [rax]
cmp ax, N’

jz short loc_1402E19D4
cmp ax, ’n’

jz short loc_1402E19D4
cmp ax, 0’

jnz short loc_1402E19DE

Obviously, function sapgparam() used to query value of some configuration parameter. This function can be called from
1768 different places. It seems, with the help of this information, we can easily find places in code, control flow of which can
be affected by specific configuration parameters.

It is really sweet. Function names are very clear, much clearer than in the Oracle RDBMS. It seems, disp+work process
written in C++. It was apparently rewritten some time ago?

454

CHAPTER 58. ORACLE RDBMS

Chapter 58

Oracle RDBMS

58.1 V$VERSION table in the Oracle RDBMS

Oracle RDBMS 11.2 is a huge program, main module oracle.exe contain approx. 124,000 functions. For comparison, Win-
dows 7 x86 kernel (ntoskrnl.exe) —approx. 11,000 functions and Linux 3.9.8 kernel (with default drivers compiled) —31,000
functions.

Let’s start with an easy question. Where Oracle RDBMS get all this information, when we execute such simple statement
in SQL*Plus:

SQL> select * from V$VERSION;

And we’ve got:

BANNER

Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production
PL/SQL Release 11.2.0.1.0 - Production

CORE 11.2.0.1.0 Production

TNS for 32-bit Windows: Version 11.2.0.1.0 - Production

NLSRTL Version 11.2.0.1.0 - Production

Let’s start. Where in the Oracle RDBMS we may find a string V$VERSION?

As of win32-version, oracle. exe file contain the string, which can be investigated easily. But we can also use object (.0)
files from Linux version of Oracle RDBMS since, unlike win32 version oracle.exe, function names (and global variables as
well) are preserved there.

So, kqf . o file contain VEVERSION string. The object file is in the main Oracle-library 1ibserveril.a.

A reference to this text string we may find in the kqf viw table stored in the same file, kqf . o:

Listing 58.1: kqf.o

.rodata:0800C4A0 kqfviw dd OBh ; DATA XREF: kqfchk:loc_8003A6D
.rodata:0800C4A0 ; kqfgbn+34
.rodata:0800C4A4 dd offset _2__STRING_10102_0 ; "GVSWAITSTAT"
.rodata:0800C4A8 dd 4

.rodata:0800C4AC dd offset _2__STRING_10103_0 ; "NULL"
.rodata:0800C4B0O dd 3

.rodata:0800C4B4 dd 0

.rodata:0800C4B8 dd 195h

.rodata:0800C4BC dd 4

.rodata:0800C4CO dd 0

.rodata:0800C4C4 dd OFFFFC1CBh

.rodata:0800C4C8 dd 3

.rodata:0800C4CC dd O

.rodata:0800C4D0O dd OAh

.rodata:0800C4D4 dd offset _2__STRING_10104_0 ; "V$WAITSTAT"
.rodata:0800C4D8 dd 4

.rodata:0800C4DC dd offset _2__STRING_10103_0 ; "NULL"
.rodata:0800C4E0 dd 3

455

58.1. V$VERSION TABLE IN THE ORACLE RDBMS CHAPTER 58. ORACLE RDBMS

.rodata:0800C4E4 dd 0

.rodata:0800C4E8 dd 4Eh

.rodata:0800C4EC dd 3

.rodata:0800C4F0 dd 0

.rodata:0800C4F4 dd OFFFFCO03h

.rodata:0800C4F8 dd 4

.rodata:0800C4FC dd 0

.rodata:0800C500 dd 5

.rodata:0800C504 dd offset _2__STRING_10105_0 ; "GV$BH"
.rodata:0800C508 dd 4

.rodata:0800C50C dd offset _2__STRING_10103_0 ; "NULL"
.rodata:0800C510 dd 3

.rodata:0800C514 dd 0

.rodata:0800C518 dd 265h

.rodata:0800C51C dd 15h

.rodata:0800C520 dd O

.rodata:0800C524 dd OFFFFC1EDh

.rodata:0800C528 dd 8

.rodata:0800C52C dd 0

.rodata:0800C530 dd 4

.rodata:0800C534 dd offset _2__STRING_10106_0 ; "V$BH"
.rodata:0800C538 dd 4

.rodata:0800C53C dd offset _2__STRING_10103_0 ; "NULL"
.rodata:0800C540 dd 3

.rodata:0800C544 dd 0

.rodata:0800C548 dd OF5h

.rodata:0800C54C dd 14h

.rodata:0800C550 dd 0

.rodata:0800C554 dd OFFFFC1EEh

.rodata:0800C558 dd 5

.rodata:0800C55C dd 0

By the way, often, while analysing Oracle RDBMS internals, you may ask yourself, why functions and global variable names
are so weird. Supposedly, since Oracle RDBMS is very old product and was developed in Cin 1980-s. And that was a time when
C standard guaranteed function names/variables support only up to 6 characters inclusive: «6 significant initial characters
in an external identifier»’

Probably, the table kqfviw contain most (maybe even all) views prefixed with VS, these are fixed views, present all the
time. Superficially, by noticing cyclic recurrence of data, we can easily see that each kqfviw table element has 12 32-bit fields.
It is very simple to create a 12-elements structure in IDA and apply it to all table elements. As of Oracle RDBMS version 11.2,
there are 1023 table elements, i.e., there are described 1023 of all possible fixed views. We will return to this number later.

As we can see, there is not much information in these numbers in fields. The very first number is always equals to name
of view (without terminating zero. This is correct for each element. But this information is not very useful.

We also know that information about all fixed views can be retrieved from fixed view named V$FIXED_VIEW_DEFINITION
(by the way, the information for this view is also taken from kqfviw and kqf vip tables.) By the way, there are 1023 elements
too.

SQL> select * from V$FIXED_VIEW_DEFINITION where view_name=’V$VERSION’;

VIEW_NAME

V$VERSION
select BANNER from GV$VERSION where inst_id = USERENV(’Instance’)

So, VEVERSION is some kind of thunk view for another view, named GV$VERSION, which is, in turn:

SQL> select * from V$FIXED_VIEW_DEFINITION where view_name=’GVSVERSION’;

VIEW_NAME

'Draft ANSI C Standard (ANSI X3J11/88-090) (May 13, 1988)

456

http://yurichev.com/ref/Draft%20ANSI%20C%20Standard%20(ANSI%20X3J11-88-090)%20(May%2013,%201988).txt

58.1. V$VERSION TABLE IN THE ORACLE RDBMS CHAPTER 58. ORACLE RDBMS

GV$VERSION
select inst_id, banner from x$version

Tables prefixed as X$ in the Oracle RDBMS- is service tables too, undocumented, cannot be changed by user and refreshed
dynamically.

Let’s also try to search the text select BANNER from GV$VERSION where inst_id = USERENV(’Instance’) inthe
kqf .o file and we find it in the kqfvip table:

Listing 58.2: kgf.o

rodata:080185A0 kqfvip dd offset _2__STRING_11126_0 ; DATA XREF: kqfgvcn+18

.rodata:080185A0 ; kqfgvt+F

.rodata:080185A0 ; "select inst_id,decode(indx,1,’data
bloc"...

.rodata:080185A4 dd offset kqfv459_c_0

.rodata:080185A8 dd 0

.rodata:080185AC dd 0

.rodata:08019570 dd offset _2__STRING_11378_0 ; "select BANNER from GV$VERSION
where in"...

.rodata:08019574 dd offset kqfv133_c_0

.rodata:08019578 dd 0

.rodata:0801957C dd O

.rodata:08019580 dd offset _2__STRING_11379_0 ; "select inst_id,decode(bitand(
cfflg,1),0"...

.rodata:08019584 dd offset kqfv403_c_0

.rodata:08019588 dd 0

.rodata:0801958C dd O

.rodata: 08019590 dd offset _2__STRING_11380_0 ; "select STATUS , NAME,
IS_RECOVERY_DEST"...

.rodata:08019594 dd offset kqfv199_c_0

The table appear to have 4 fields in each element. By the way, there are 1023 elements too. The second field pointing to
another table, containing table fields for this fixed view. As of V$VERSION, this table contain only two elements, first is 6 and
second is BANNER string (the number (6) is this string length) and after, terminating element contain 0 and null C-string:

Listing 58.3: kgf.o

.rodata:080BBAC4 kqfv133_c_0 dd 6 ; DATA XREF: .rodata:08019574
.rodata:080BBAC8 dd offset _2__STRING_5017_0 ; "BANNER"
.rodata:080BBACC dd 0

.rodata:080BBADO dd offset _2__STRING_0_O

By joining data from both kqfviw and kqfvip tables, we may get SQL-statements which are executed when user wants
to query information from specific fixed view.

So | wrote an oracle tables? program, so to gather all this information from Oracle RDBMS for Linux object files. For
V$VERSION, we may find this:

Listing 58.4: Result of oracle tables

kqfviw_element.viewname: [V$VERSION] 7: Ox3 0x43 Ox1l Oxffffc085 0x4

kqfvip_element.statement: [select BANNER from GV$VERSION where inst_id = USERENV(’Instance’)]
kqfvip_element.params:

[BANNER]

and:

2http://yurichev.com/oracle_tables.html

457

http://yurichev.com/oracle_tables.html

58.1. V$VERSION TABLE IN THE ORACLE RDBMS CHAPTER 58. ORACLE RDBMS
Listing 58.5: Result of oracle tables

kqfviw_element.viewname: [GV$VERSION] 7: 0x3 0x26 0x2 Oxffffc192 Ox1
kqfvip_element.statement: [select inst_id, banner from x$version]
kqfvip_element.params:

[INST_ID] [BANNER]

GV$VERSION fixed view is distinct from V$VERSION in only that way that it contains one more field with instance identifier.
Anyway, we stuck at the table X$VERSION. Just like any other X$-tables, it is undocumented, however, we can query it:

SQL> select * from x$version;

ADDR INDX INST_ID
BANNER
ODBAF574 0 1

Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production

This table has additional fields like ADDR and INDX.
While scrolling kqf . o in IDA we may spot another table containing pointer to the X$VERSION string, this is kqf tab:

Listing 58.6: kgf.o

.rodata:0803CACO dd 9 ; element number 0x1f6
.rodata:0803CAC4 dd offset _2__STRING_13113_0 ; "X$VERSION"
.rodata:0803CACS8 dd 4

.rodata:0803CACC dd offset _2__STRING_13114_0 ; "kqvt"
.rodata:0803CADO dd 4

.rodata:0803CAD4 dd 4

.rodata:0803CAD8 dd 0

.rodata:0803CADC dd 4

.rodata:0803CAEO dd OCh

.rodata:0803CAE4 dd OFFFFCO75h

.rodata:0803CAE8 dd 3

.rodata:0803CAEC dd 0

.rodata:0803CAFO dd 7

.rodata:0803CAF4 dd offset _2__STRING_13115_0 ; "X$KQFSZ"
.rodata:0803CAF8 dd 5

.rodata:0803CAFC dd offset _2__STRING_13116_0 ; "kqfsz"
.rodata:0803CB0O0O dd 1

.rodata:0803CB04 dd 38h

.rodata:0803CB08 dd 0

.rodata:0803CBOC dd 7

.rodata:0803CB10 dd O

.rodata:0803CB14 dd OFFFFCO9Dh

.rodata:0803CB18 dd 2

.rodata:0803CB1C dd 0

There are a lot of references to X$-table names, apparently, to all Oracle RDBMS 11.2 X$-tables. But again, we have not
enough information. | have no idea, what kqvt string means. kq prefix may means kernel and query. v, apparently, means
version and t —type? Frankly speaking, | do not know.

The table named similarly can be found in kqf . o:

Listing 58.7: kqf.o

.rodata:0808C360 kqvt_c_0 kqftap_param <4, offset _2__STRING_19_0, 917h, O, O, O, 4, 0, 0>

.rodata:0808C360 ; DATA XREF: .rodata:080426830

.rodata:0808C360 ; "ADDR"

.rodata:0808C384 kqftap_param <4, offset _2__STRING_20_0, 0BO2h, O, O, O, 4, O,
0> ; "INDX"

458

58.1. V$VERSION TABLE IN THE ORACLE RDBMS CHAPTER 58. ORACLE RDBMS

.rodata:0808C3A8 kqftap_param <7, offset _2__STRING_21_0, OBO2h, O, 0, O, 4, O,
0> ; "INST_ID"

.rodata:0808C3CC kqftap_param <6, offset _2__STRING_5017_0, 601h, 0, 0, 0, 50h,
0, 0> ; "BANNER"

.rodata:0808C3F0 kqftap_param <0, offset _2__STRING_0_0, 0, 0, 0, 0, 0, 0, 0>

It contain information about all fields in the X$VERSION table. The only reference to this table presentin the kqf tap table:

Listing 58.8: kgf.o

.rodata:08042680 kqftap_element <0, offset kqvt_c_0, offset kqvrow, 0> ; element
0x1f6

It is interesting that this element here is 0x1£6th (502nd), just as a pointer to the X$VERSION string in the kqftab table.
Probably, kqftap and kqftab tables are complement each other, just like kqf vip and kqfviw. We also see a pointer to the
kqvrow () function. Finally, we got something useful!

So | added these tables to my oracle tables® utility too. For X$VERSION I’ve got:

Listing 58.9: Result of oracle tables

kqftab_element.name: [X$VERSION] ?7: [kqvt] Ox4 Ox4 0x4 Oxc Oxffffc075 0x3
kqftap_param.name=[ADDR] 7: 0x917 0x0 0xO 0x0O Ox4 0x0 0xO
kqftap_param.name=[INDX] 7: 0xb02 0x0 0x0 0x0O 0x4 0x0 0xO
kqftap_param.name=[INST_ID] 7: 0xb02 0x0 0x0 0x0O 0x4 0x0 0xO
kqftap_param.name=[BANNER] 7: 0x601 0x0 0x0 0xO 0x50 0x0 0xO
kqftap_element.fnl=kqvrow

kqftap_element.fn2=NULL

With the help of tracer, it is easy to check that this function called 6 times in row (from the gerfxFetch () function) while
querying X$VERSION table.
Let’s run tracer in the cc mode (it will comment each executed instruction):

tracer -a:oracle.exe bpf=oracle.exe!_kqvrow,trace:cc

kqvrow proc near

var_7C = byte ptr -7Ch
var_18 = dword ptr -18h
var_14 = dword ptr -14h
Dest = dword ptr -10h
var_C = dword ptr -0Ch
var_8 = dword ptr -8
var_4 = dword ptr -4
arg_8 = dword ptr 10h
arg_C = dword ptr 14h
arg_14 = dword ptr 1Ch
arg_18 = dword ptr 20h

; FUNCTION CHUNK AT .text1:056C11A0 SIZE 00000049 BYTES

push ebp

mov ebp, esp

sub esp, 7Ch

mov eax, [ebptarg_14] ; [EBP+1Ch]=1

mov ecx, TlsIndex ; [69AEBOSh]=0

mov edx, large fs:2Ch

mov edx, [edx+ecx*4] ; [EDX+ECX*4]=0xc98c938
cmp eax, 2 ; EAX=1

mov eax, [ebptarg_8] ; [EBP+10h]=0xcdfeb554
jz loc_2CE1288

mov ecx, [eax] ; [EAX]=0..5

mov [ebptvar_4], edi ; EDI=0xc98c938

Shttp://yurichev.com/oracle_tables.html

459

http://yurichev.com/oracle_tables.html

58.1. V$VERSION TABLE IN THE ORACLE RDBMS CHAPTER 58. ORACLE RDBMS

loc_2CE10F6: ; CODE XREF: _kqvrow_+10A
; _kqvrow_+1A9
cmp ecx, 5 ; ECX=0..5
ja loc_56C11C7
mov edi, [ebptarg_18] ; [EBP+20h]=0
mov [ebptvar_14], edx ; EDX=0xc98c938
mov [ebp+var_8], ebx ; EBX=0
mov ebx, eax ; EAX=0xcdfeb54
mov [ebptvar_C], esi ; ESI=Oxcdfe248
loc_2CE110D: ; CODE XREF: _kqvrow_+29EOOE6
mov edx, ds:off_628B09C[ecx*4] ; [ECX*4+628B09Ch]=0x2cel1116, Ox2cellac, O
x2celldb, 0x2cellf6, 0x2cel236, 0x2cel27a
jmp edx ; EDX=0x2cel1116, Ox2cellac, 0Ox2celldb, 0x2cellf6, O

x2cel1236, 0x2cel27a

loc_2CE1116: ; DATA XREF: .rdata:off_628B09C
push offset aXKqvvsnBuffer ; "x$kqvvsn buffer"
mov ecx, [ebptarg_C] ; [EBP+14h]=0x8al72b4
Xor edx, edx
mov esi, [ebp+var_14] ; [EBP-14h]=0xc98c938
push edx ; EDX=0
push edx ; EDX=0
push 50h
push ecx ; ECX=0x8a172b4
push dword ptr [esi+10494h] ; [ESI+10494h]=0xc98cd58
call _kghalf ; tracing nested maximum level (1) reached, skipping this
CALL
mov esi, ds:__imp__vsnnum ; [59771A8h]=0x61bc49e0
mov [ebptDest], eax ; EAX=0xce2ffb0
mov [ebx+8], eax ; EAX=0xce2ffb0
mov [ebx+4], eax ; EAX=0xce2ffb0
mov edi, [esi] ; [ESI]=0xb200100
mov esi, ds:__imp__vsnstr ; [597D6D4h]=0x65852148, "- Production"
push esi ; ESI=0x65852148, "- Production"
mov ebx, edi ; EDI=0xb200100
shr ebx, 18h ; EBX=0xb200100
mov ecx, edi ; EDI=0xb200100
shr ecx, 14h ; ECX=0xb200100
and ecx, OFh ; ECX=0xb2
mov edx, edi ; EDI=0xb200100
shr edx, OCh ; EDX=0xb200100
movzx edx, dl ; DL=0
mov eax, edi ; EDI=0xb200100
shr eax, 8 ; EAX=0xb200100
and eax, OFh ; EAX=0xb2001
and edi, OFFh ; EDI=0xb200100
push edi ; EDI=0
mov edi, [ebptarg_18] ; [EBP+20h]=0
push eax ; EAX=1
mov eax, ds:__imp__vsnban ; [5697D6D8h]=0x65852100, "Oracle Database 1lg
Enterprise Edition Release %d.%d.%d.%d.%d %s"
push edx ; EDX=0
push ecx ; ECX=2
push ebx ; EBX=0xb
mov ebx, [ebptarg_8] ; [EBP+10h]=0xcdfeb54
push eax ; EAX=0x65852100, "Oracle Database 11g Enterprise Edition
Release %d.%d.%d.%d.%d %s"
mov eax, [ebp+Dest] ; [EBP-10h]=0xce2ffb0

460

58.1. V$VERSION TABLE IN THE ORACLE RDBMS CHAPTER 58. ORACLE RDBMS

push eax ; EAX=0xce2ffb0
call ds:__imp__sprintf ; opl1=MSVCR80.dll!sprintf tracing nested maximum level
(1) reached, skipping this CALL

add esp, 38h
mov dword ptr [ebx], 1
loc_2CE1192: ; CODE XREF: _kqvrow_+FB
; _kqurow_+128 ...
test edi, edi ; EDI=0
jnz __VInfreq__kqvrow
mov esi, [ebp+var_C] ; [EBP-0Ch]=0xcdfe248
mov edi, [ebp+var_4] ; [EBP-4]=0xc98c938
mov eax, ebx ; EBX=0xcdfeb54
mov ebx, [ebp+var_8] ; [EBP-8]=0
lea eax, [eax+4] ; [EAX+4]=0xce2ffb0, "NLSRTL Version 11.2.0.1.0 -

Production", "Oracle Database 1lg Enterprise Edition Release 11.2.0.1.0 - Production", "PL/
SQL Release 11.2.0.1.0 - Production", "TNS for 32-bit Windows: Version 11.2.0.1.0 -

Production"
loc_2CE11A8: ; CODE XREF: _kqvrow_+29EOQ0F6
mov esp, ebp
pop ebp
retn ; EAX=0xcdfeb58
loc_2CE11AC: ; DATA XREF: .rdata:0628B0OA0O
mov edx, [ebx+8] ; [EBX+8]=0xce2ffb0, "Oracle Database 11g Enterprise
Edition Release 11.2.0.1.0 - Production"
mov dword ptr [ebx], 2
mov [ebx+4], edx ; EDX=0xce2ffb0, "Oracle Database 11g Enterprise Edition
Release 11.2.0.1.0 - Production"
push edx ; EDX=0xce2ffb0, "Oracle Database 11g Enterprise Edition
Release 11.2.0.1.0 - Production"
call _kkxvsn ; tracing nested maximum level (1) reached, skipping this
CALL
pop ecx
mov edx, [ebx+4] ; [EBX+4]=0xce2ffb0, "PL/SQL Release 11.2.0.1.0 -
Production"
MOVZX ecx, byte ptr [edx] ; [EDX]=0x50
test ecx, ecx ; ECX=0x50
jnz short loc_2CE1192
mov edx, [ebp+var_14]
mov esi, [ebp+var_C]
mov eax, ebx
mov ebx, [ebp+var_8]
mov ecx, [eax]
jmp loc_2CE10F6
loc_2CE11DB: ; DATA XREF: .rdata:0628B0A4
push 0
push 50h
mov edx, [ebx+8] ; [EBX+8]=0xce2ffb0, "PL/SQL Release 11.2.0.1.0 -
Production"
mov [ebx+4], edx ; EDX=0xce2ffb0, "PL/SQL Release 11.2.0.1.0 - Production"
push edx ; EDX=0xce2ffb0, "PL/SQL Release 11.2.0.1.0 - Production"
call _lmxver ; tracing nested maximum level (1) reached, skipping this
CALL
add esp, OCh
mov dword ptr [ebx], 3
jmp short loc_2CE1192

461

58.1. V$VERSION TABLE IN THE ORACLE RDBMS

CHAPTER 58. ORACLE RDBMS

loc_2CE11F6:

CALL

CALL

loc_2CE122B:

loc_2CE1236:

mov
mov
mov
push
call

POP
test
jnz
mov
lea
push
push
push
call

add

lea
push
push
mov

; DATA XREF: .rdata:0628B0A3

edx, [ebx+8] ; [EBX+8]=0xce2ffb0

[ebptvar_18], 50h

[ebx+4], edx ; EDX=0xce2ffb0

0

_npinli ; tracing nested maximum level (1) reached, skipping this
ecx

eax, eax ; EAX=0

loc_56C11DA

ecx,
edx,
edx

[ebptvar_14] ; [EBP-14h]=0xc98c938
[ebp+var_18] ; [EBP-18h]=0x50
; EDX=0xd76c93c

dword ptr [ebx+8] ; [EBX+8]=0xce2ffb0
dword ptr [ecx+13278h] ; [ECX+13278h]=0xaccel90
_nrtnsvrs ; tracing nested maximum level (1) reached, skipping this

esp,

0Ch

; CODE XREF: _kqvrow_+29E0118

dword ptr [ebx], 4
loc_2CE1192

edx,
edx
0

esi,

11.2.0.1.0 - Production"
[ebx+4], esi ; ESI=0xce2ffb0, "TNS for 32-bit Windows: Version
11.2.0.1.0 - Production"

mov

11.2.0.1.0 - Production"

CALL

loc_2CE127A:

; DATA XREF: .rdata:0628BOAC
[ebptvar_7C] ; [EBP-7Ch]=1
; EDX=0xd76c8d8

[ebx+8] ; [EBX+8]=0xce2ffb0, "TNS for 32-bit Windows: Version

mov ecx, 50h
mov [ebptvar_18], ecx ; ECX=0x50
push ecx ; ECX=0x50
push esi ; ESI=0xce2ffb0, "TNS for 32-bit Windows: Version
call _lxvers ; tracing nested maximum level (1) reached, skipping this
add esp, 10h
mov edx, [ebp+var_18] ; [EBP-18h]=0x50
mov dword ptr [ebx], 5
test edx, edx ; EDX=0x50
jnz loc_2CE1192
mov edx, [ebp+var_14]
mov esi, [ebp+var_C]
mov eax, ebx
mov ebx, [ebp+var_8]
mov ecx, 5
jmp loc_2CE10F6
; DATA XREF: .rdata:0628B0OBO
mov edx, [ebptvar_14] ; [EBP-14h]=0xc98c938
mov esi, [ebpt+var_C] ; [EBP-0Ch]=0xcdfe248
mov edi, [ebp+var_4] ; [EBP-4]=0xc98c938
mov eax, ebx ; EBX=0xcdfeb54
mov ebx, [ebp+var_8] ; [EBP-8]=0

462

58.2. X$KSMLRU TABLE IN ORACLE RDBMS CHAPTER 58. ORACLE RDBMS

loc_2CE1288: ; CODE XREF: _kqvrow_+1F
mov eax, [eax+8] ; [EAX+8]=0xce2ffb0, "NLSRTL Version 11.2.0.1.0 -
Production"
test eax, eax ; EAX=0xce2ffb0, "NLSRTL Version 11.2.0.1.0 - Production"
jz short loc_2CE12A7
push offset aXKqvvsnBuffer ; "x$kqvvsn buffer"
push eax ; EAX=0xce2ffb0, "NLSRTL Version 11.2.0.1.0 - Production"
mov eax, [ebptarg_C] ; [EBP+14h]=0x8al72b4
push eax ; EAX=0x8al172b4
push dword ptr [edx+10494h] ; [EDX+10494h]=0xc98cd58
call _kghfrf ; tracing nested maximum level (1) reached, skipping this
CALL
add esp, 10h
loc_2CE12A7: ; CODE XREF: _kqvrow_+1C1
xor eax, eax
mov esp, ebp
pop ebp
retn ; EAX=0
kqvrow endp

Now it is easy to see that row number is passed from outside of function. The function returns the string constructing it
as follows:

String1 | Using vsnstr, vsnnum, vsnban global variables. Calling sprintf ().
String2 | Calling kkxvsn().

String3 | Calling lmxver ().

String 4 | Callingnpinli (), nrtnsvrs().

String 5 | Calling 1xvers ().

That’s how corresponding functions are called for determining each module’s version.

58.2 X$KSMLRU table in Oracle RDBMS

There is a mention of a special table in the Diagnosing and Resolving Error ORA-04031 on the Shared Pool or Other Memory
Pools [Video] [ID 146599.1] note:

There is a fixed table called XSKSMLRU that tracks allocations in the shared pool that cause other objects
inthe shared pool to be aged out. This fixed table can be used to identify what is causing the large allocation.

If many objects are being periodically flushed from the shared pool then this will cause response time
problems and will likely cause library cache latch contention problems when the objects are reloaded into
the shared pool.

One unusual thing about the XSKSMLRU fixed table is that the contents of the fixed table are erased
whenever someone selects from the fixed table. This is done since the fixed table stores only the largest
allocations that have occurred. The values are reset after being selected so that subsequent large allocations
can be noted even if they were not quite as large as others that occurred previously. Because of this resetting,
the output of selecting from this table should be carefully kept since it cannot be retrieved back after the
query is issued.

However, as it can be easily checked, this table’s contents is cleared each time table querying. Are we able to find why?
Let’s back to tables we already know: kqftab and kqftap which were generated with oracle tables* help, containing all
information about X$-tables, now we can see here, the ksmlrs () function is called to prepare this table’s elements:

Listing 58.10: Result of oracle tables

kqftab_element.name: [X$KSMLRU] 7: [ksmlr] Ox4 0x64 Ox1l Oxc OxffffcObb 0x5
kqftap_param.name=[ADDR] 7: 0x917 0xO 0x0 0x0 0x4 0xO 0xO
kqftap_param.name=[INDX] 7: 0xb02 0x0 0xO 0x0O Ox4 0x0 0xO

“http://yurichev.com/oracle_tables.html

463

http://yurichev.com/oracle_tables.html

58.2. X$KSMLRU TABLE IN ORACLE RDBMS CHAPTER 58. ORACLE RDBMS

kqftap_param.name=[INST_ID] 7: 0xb02 0x0 0x0 0x0O Ox4 0x0 0xO
kqftap_param.name=[KSMLRIDX] 7: 0xb02 0x0 0x0 0x0 0x4 0x0O 0x0
kqftap_param.name=[KSMLRDUR] 7: 0xb02 0x0 0x0 0x0 Ox4 0x4 0xO0
kqftap_param.name=[KSMLRSHRPOOL] ?7: 0xb02 0x0 0x0 0x0 O0x4 0x8 0x0
kqftap_param.name=[KSMLRCOM] 7: 0x501 0xO 0x0 0x0 Ox14 Oxc 0xO0
kqftap_param.name=[KSMLRSIZ] 0x2 0x0 0x0 0x0 0x4 0x20 0x0
kqftap_param.name=[KSMLRNUM] 0x2 0x0 0x0 0x0 0x4 0x24 0x0
kqftap_param.name=[KSMLRHON] 0x501 0x0 0x0 0x0 0x20 0x28 0x0
kqftap_param.name=[KSMLROHV] 0xb02 0x0 0x0 0x0 0x4 0x48 0xO0
kqftap_param.name=[KSMLRSES] 0x17 0x0 0x0 0x0 Ox4 Ox4c 0x0
kqftap_param.name=[KSMLRADU] 0x2 0x0 0x0 0x0 0x4 0x50 0x0
kqftap_param.name=[KSMLRNID] 0x2 0x0 0x0 0x0 0x4 0x54 0x0
kqftap_param.name=[KSMLRNSD] 0x2 0x0 0x0 0x0 0x4 0x58 0x0
kqftap_param.name=[KSMLRNCD] 0x2 0x0 0x0 0x0O 0x4 Ox5c 0xO0
kqftap_param.name=[KSMLRNED] 0x2 0x0 0x0 0x0 0x4 0x60 0x0
kqftap_element.fnl=ksmlrs

kqftap_element.fn2=NULL

N N N N N N N N N N

Indeed, with the tracer help it is easy to see this function is called each time we query the X$KSMLRU table.
Here we see a references to the ksmsplu_sp () and ksmsplu_jp () functions, each of them call the ksmsplu() finally. At
the end of the ksmsplu () function we see a call to the memset ():

Listing 58.11: ksm.o

.text:00434C50 loc_434C50: ; DATA XREF: .rdata:off_5LE5S0EA3
.text:00434C50 mov edx, [ebp-4]
.text:00434C53 mov [eax], esi
.text:00434C55 mov esi, [edi]
.text:00434C57 mov [eax+4], esi
.text:00434C5A mov [edi], eax
.text:00434C5C add edx, 1

.text:00434C5F mov [ebp-4], edx
.text:00434C62 jnz loc_434B7D
.text:00434C68 mov ecx, [ebp+14h]
.text:00434C6B mov ebx, [ebp-10h]

.text :00434C6E mov esi, [ebp-0Ch]
.text:00434C71 mov edi, [ebp-8]
.text:00434C74 lea eax, [ecx+8Ch]
.text:00434C7A push 370h ; Size
.text:00434C7F push 0 ; Val
.text:00434C81 push eax ; Dst
.text:00434C82 call __intel_fast_memset
.text :00434C87 add esp, OCh
.text:00434C8A mov esp, ebp
.text:00434C8C pop ebp

.text:00434C8D retn

.text:00434C8D _ksmsplu endp

Constructions like memset (block, 0, size) are often used just to zero memory block. What if we would take a risk,
block memset () call and see what will happen?

Let’s run tracer with the following options: set breakpoint at 0x434C7A (the point where memset () arguments are to be
passed), thus, that tracer set program counter EIP at this point to the point where passed to the memset () arguments are to
be cleared (at 0x434C8A) It can be said, we just simulate an unconditional jump from the address 0x434C7A to 0x434C8A.

tracer -a:oracle.exe bpx=oracle.exe!0x00434C7A,set(eip,0x00434C8A)

(Important: all these addresses are valid only for win32-version of Oracle RDBMS 11.2)
Indeed, now we can query X$KSMLRU table as many times as we want and it is not clearing anymore!

DBenettry-this-atheme-{"MythBusters™} Do not try this on your production servers.

Itis probably not a very useful or desired system behaviour, but as an experiment of locating piece of code we need, that
is perfectly suit our needs!

464

58.3. V$TIMER TABLE IN ORACLE RDBMS CHAPTER 58. ORACLE RDBMS
58.3 VJ$TIMER table in Oracle RDBMS

V$TIMER is another fixed view, reflecting a rapidly changing value:

VSTIMER displays the elapsed time in hundredths of a second. Time is measured since the beginning of
the epoch, which is operating system specific, and wraps around to 0 again whenever the value overflows
four bytes (roughly 497 days).

(From Oracle RDBMS documentation °)

It is interesting the periods are different for Oracle for win32 and for Linux. Will we able to find a function generating this
value?

As we can see, this information is finally taken from X$KSUTM table.

SQL> select * from V$FIXED_VIEW_DEFINITION where view_name=’V$TIMER’;

VIEW_NAME

V$TIMER
select HSECS from GV$TIMER where inst_id = USERENV(’Instance’)

SQL> select * from V$FIXED_VIEW_DEFINITION where view_name=’GV$TIMER’;

VIEW_NAME

GV$TIMER
select inst_id,ksutmtim from x$ksutm

Now we stuck in a small problem, there are no references to value generating function(s) in the tables kqf tab/kqf tap:

Listing 58.12: Result of oracle tables

kqftab_element.name: [X$KSUTM] 7: [ksutm] Ox1l Ox4 0x4 0x0 Oxffffc09b 0x3
kqftap_param.name=[ADDR] 7: 0x10917 0x0 0x0 0x0O 0Ox4 0x0 0xO
kqftap_param.name=[INDX] 7: 0x20b02 0x0 0x0 0xO Ox4 0x0 0x0
kqftap_param.name=[INST_ID] 7: 0xb02 0x0 0x0O 0x0 0x4 0x0 0xO
kqftap_param.name=[KSUTMTIM] ?7: 0x1302 0x0 0x0 0x0 Ox4 0x0O Oxle
kqftap_element.fn1=NULL

kqftap_element.fn2=NULL

Let’s try to find a string KSUTMTIM, and we find it in this function:

kqfd_DRN_ksutm_c proc near ; DATA XREF: .rodata:0805B4ES8
arg_0 = dword ptr 8
arg_8 = dword ptr 10h
arg_C = dword ptr 14h
push ebp
mov ebp, esp

push [ebp+arg_C]
push offset ksugtm
push offset _2__STRING_1263_0 ; "KSUTMTIM"

push [ebp+arg_8]

Shttp://docs.oracle.com/cd/B28359_01/server.111/b28320/dynviews_3104.htm

465

http://docs.oracle.com/cd/B28359_01/server.111/b28320/dynviews_3104.htm

58.3. V$TIMER TABLE IN ORACLE RDBMS

CHAPTER 58. ORACLE RDBMS

push [ebp+arg_0]
call kqfd_cfui_drain

add esp, 14h
mov esp, ebp
pop ebp

retn

kqfd_DRN_ksutm_c endp

The function kqfd_DRN_ksutm_c () is mentioned in kqfd_tab_registry_0 table:

dd offset _2__STRING_62_0 ; "X$KSUTM"
dd offset kqfd_OPN_ksutm_c

dd offset kqfd_tabl_fetch

dd 0

dd 0

dd offset kqfd_DRN_ksutm_c

There are is a function ksugtm () referenced here. Let’s see what’s in it (Linux x86):

Listing 58.13: ksu.o

ksugtm proc near
var_1C = byte ptr -1Ch
arg_4 = dword ptr OCh
push ebp
mov ebp, esp
sub esp, 1Ch
lea eax, [ebp+var_1C]
push eax
call slgcs
pop ecx
mov edx, [ebptarg_4]
mov [edx], eax
mov eax, 4
mov esp, ebp
pop ebp
retn
ksugtm endp

Almost the same code in win32-version.
Is this the function we are looking for? Let’s see:

tracer -a:oracle.exe bpf=oracle.exe!_ksugtm,args:2,dump_args:0x4

Let’s try again:

SQL> select * from V$TIMER;

27294929

SQL> select * from V$TIMER;

27295006

SQL> select * from V$TIMER;

27295167

466

58.3. V$TIMER TABLE IN ORACLE RDBMS CHAPTER 58. ORACLE RDBMS
Listing 58.14: tracer output

TID=2428| (0) oracle.exe!_ksugtm (0x0, 0xd76c5f0) (called from oracle.exe!__VInfreq__qerfxFetch+0
xfad (0x56bb6d5))

Argument 2/2

OD76C5F0: 38 C9 "8. "

TID=2428| (0) oracle.exe!_ksugtm () -> 0x4 (0x4)

Argument 2/2 difference

00000000: D1 7C AO 01 N I "

TID=2428| (0) oracle.exe!_ksugtm (0x0, 0xd76c5f0) (called from oracle.exe!__VInfreq__gerfxFetch+0
xfad (0x56bb6d5))

Argument 2/2

OD76C5F0: 38 C9 RO "

TID=2428| (0) oracle.exe!_ksugtm () -> 0x4 (0x4)

Argument 2/2 difference

00000000: 1E 7D AO 01 L "

TID=2428| (0) oracle.exe!_ksugtm (0x0, 0xd76c5f0) (called from oracle.exe!__VInfreq__gerfxFetch+0
xfad (0x56bb6d5))

Argument 2/2

OD76C5F0: 38 C9 "8. "

TID=2428| (0) oracle.exe! _ksugtm () -> 0x4 (0x4)

Argument 2/2 difference

00000000: BF 7D A0 01 L "

Indeed —the value is the same we see in SQL*Plus and it is returning via second argument.
Let’s see what isin s1gcs () (Linux x86):

slgcs proc near
var_4 = dword ptr -4
arg_0 = dword ptr 8
push ebp
mov ebp, esp
push esi
mov [ebptvar_4], ebx
mov eax, [ebp+arg_0]
call $+5
pop ebx
nop ; PIC mode
mov ebx, offset _GLOBAL_OFFSET_TABLE_
mov dword ptr [eax], O
call sltrgatime64 ; PIC mode
push 0
push OAh
push edx
push eax
call __udivdi3 ; PIC mode
mov ebx, [ebptvar_4]
add esp, 10h
mov esp, ebp
pop ebp
retn
slgcs endp

(itisjustacallto sltrgatime64 () and division of its result by 10 (14))
And win32-version:

_slgcs proc near ; CODE XREF: _dbgefgHtElResetCount+15
; _dbgerRunActions+1528
db 66h
nop
push ebp

467

58.3. V$TIMER TABLE IN ORACLE RDBMS CHAPTER 58. ORACLE RDBMS

mov
mov
mov
call
mov
mov
mul
shr
mov
mov
pop
retn
_slgcs endp

ebp,
eax,

esp
[ebp+8]

dword ptr [eax], O

ds:
edx,
eax,
edx
edx,
eax,
esp,
ebp

imp__GetTickCount@0 ; GetTickCount ()
eax
0CCCCCCCDh

edx
ebp

Itis just result of GetTickCount () ° divided by 10 (14).
Voila! That’s why win32-version and Linux x86 version show different results, just because they are generated by different

OS functions.

Drain apparently means connecting specific table column to specific function.
| added the table kqfd_tab_registry_0 to oracle tables’, now we can see, how table column’s variables are connected

to specific functions:

[X$KSUTM] [kqfd_OPN_ksutm_c] [kqfd_tabl_fetch] [NULL] [NULL] [kqfd_DRN_ksutm_c]
[X$KSUSGIF] [kqfd_OPN_ksusg_c] [kqfd_tabl_fetch] [NULL] [NULL] [kqfd_DRN_ksusg_c]

OPN, apparently, open, and DRN, apparently, meaning drain.

Shttp://msdn.microsoft.com/en-us/library/windows/desktop/ms724408 (v=vs.85) .aspx
"http://yurichev.com/oracle_tables.html

468

http://msdn.microsoft.com/en-us/library/windows/desktop/ms724408(v=vs.85).aspx
http://yurichev.com/oracle_tables.html

CHAPTER 59. HANDWRITTEN ASSEMBLY CODE

Chapter 59

Handwritten assembly code

59.1 EICAR test file

This .COM-file is intended for antivirus testing, it is possible to run in in MS-DOS and it will print string: “EICAR-STANDARD-

ANTIVIRUS-TEST-FILE!” .

Its important property is that it’s entirely consisting of printable ASCIl-symbols, which, in turn, makes possible to create

itin any text editor:

X50!PY,@AP [4\PZX54 (P~)7CC) 7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE! $H+H*

Let’s decompile it:

; initial conditions: SP=0FFFEh, SS:[SP]=0

0100 58 pop ax

; AX=0, SP=0

0101 35 4F 21 xor ax, 214Fh

; AX = 214Fh and SP = 0O

0104 50 push ax

; AX = 214Fh, SP = FFFEh and SS:[FFFE] = 214Fh

0105 25 40 41 and ax, 4140h

; AX = 140h, SP = FFFEh and SS:[FFFE] = 214Fh

0108 50 push ax

; AX = 140h, SP = FFFCh, SS:[FFFC] = 140h and SS:[FFFE] = 214Fh
0109 5B pop bx

; AX = 140h, BX = 140h, SP = FFFEh and SS:[FFFE] = 214Fh

010A 34 5C Xor al, 5Ch

; AX = 11Ch, BX = 140h, SP = FFFEh and SS:[FFFE] = 214Fh

010C 50 push ax

010D 5A pop dx

; AX = 11Ch, BX = 140h, DX = 11Ch, SP = FFFEh and SS:[FFFE] = 214Fh
010E 58 pop ax

; AX = 214Fh, BX = 140h, DX = 11Ch and SP = 0

010F 35 34 28 xor ax, 2834h

; AX = 97Bh, BX = 140h, DX = 11Ch and SP = 0

0112 50 push ax

0113 5E pop si

; AX = 97Bh, BX = 140h, DX = 11Ch, SI = 97Bh and SP = 0

0114 29 37 sub [bx], si

0116 43 inc bx

0117 43 inc bx

0118 29 37 sub [bx], si

011A 7D 24 jge short near ptr word_10140

011C 45 49 43 ... db ’EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$’
0140 48 2B word_10140 dw 2B48h ; CD 21 (INT 21) will be here
0142 48 2A dw 2A48h ; CD 20 (INT 20) will be here
0144 0D db ODh

0145 OA db OAh

{https://en.wikipedia.org/wiki/EICAR_test_file}

469

 {https://en.wikipedia.org/wiki/EICAR_test_file}

59.1. EICAR TESTFILE CHAPTER 59. HANDWRITTEN ASSEMBLY CODE

I added comments about registers and stack after each instruction.
Essentially, all these instructions are here only to execute this code:

B4 09 MOV AH, 9

BA 1C 01 MOV DX, 11Ch
CD 21 INT 21h

CD 20 INT 20h

INT 21h with 9th function (passed in AH) just prints a string, address of which is passed in DS:DX. By the way, the string
should be terminated with ’$’ sign. Apparently, it’s inherited from CP/M and this function was leaved in DOS for compatibility.
INT 20h exits to DOS.

But as we can see, these instruction’s opcodes are not strictly printable. So the main part of EICAR-file is:

e preparing register (AH and DX) values we need;
e preparing INT 21 and INT 20 opcodes in memory;

e executing INT 21 and INT 20.

By the way, this technique is widely used in shellcode constructing, when one need to pass x86-code in the string form.
Here is also a list of all x86 instructions which has printable opcodes: 80.6.6.

470

CHAPTER 60. DEMOS

Chapter 60

Demos

Demos (or demomaking) was an excellent exercise in mathematics, computer graphics programming and very tight x86 hand
coding.

60.1 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

All examples here are MS-DOS .COM files.
In [9] we can read about one of the most simplest possible random maze generators. It just prints slash or backslash
character randomly and endlessly, resulting something like:

There are some known implementations for 16-bit x86.

60.1.1 Trixter’s 42 byte version

The listing taken from his website', but comments are mine.

00000000: BOO1 mov al,1 ; set 40x25 videomode

00000002: CD10 int 010

00000004 : 30FF xor bh,bh ; set videopage for int 10h call
00000006: B9DOO7 mov cx,007D0 ; 2000 characters to output
00000009: 31CO xor ax,ax

0000000B: 9C pushf ; push flags

; get random value from timer chip

0000000C: FA cli ; disable interrupts

0000000D: E643 out 043,al ; write O to port 43h

Thttp://trixter.oldskool.org/2012/12/17/maze-generation-in-thirteen-bytes/

471

http://trixter.oldskool.org/2012/12/17/maze-generation-in-thirteen-bytes/

60.1. 10 PRINT CHRS(205.5+RND(1)); : GOTO 10 CHAPTER 60. DEMOS
; read 16-bit value from port 40h

0000000F: E440 in al, 040

00000011: 88C4 mov ah,al

00000013: E440 in al, 040

00000015: 9D popt ; enable interrupts by restoring IF flag
00000016: 86C4 xchg ah,al

; here we have 16-bit pseudorandom value

00000018: D1E8 shr ax,1

0000001A: D1ES8 shr ax,1

; CF currently have second bit from the value

0000001C: BO5C mov al,05C ;°\’

; if CF=1, skip the next instruction

0000001E: 7202 jc 000000022

; if CF=0, reload AL register with another character

00000020: BO2F mov al,02F ;’/?

; output character

00000022: B40E mov ah,00E

00000024: CD10 int 010

00000026: E2E1 loop 000000009 ; loop 2000 times
00000028: CD20 int 020 ; exit to DOS

Pseudo-random value hereisin fact the time passed from the system boot, taken from 8253 time chip, the value increases
by one 18.2 times per second.

By writing zero to port 43h, we mean the command is "select counter 0", "counter latch", "binary counter" (not BCD?
value).

Interrupts enabled back with POPF instruction, which restores IF flag as well.

It is not possible to use IN instruction with other registers instead of AL, hence that shuffling.

60.1.2 My attempt to reduce Trixter’s version: 27 bytes

We can say that since we use timer not to get precise time value, but pseudo-random one, so we may not spent time (and
code) to disable interrupts. Another thing we might say that we need only bit from a low 8-bit part, so let’s read only it.
I reduced the code slightly and I’'ve got 27 bytes:

00000000: B9ODOO7 mov cx,007D0 ; limit output to 2000 characters
00000003: 31CO Xor ax,ax ; command to timer chip
00000005: E643 out 043,al

00000007 : E440 in al,040 ; read 8-bit of timer
00000009: D1E8 shr ax,1 ; get second bit to CF flag
0000000B: D1ES8 shr ax,1

0000000D: BO5C mov al,05C ; prepare ’\’

0000000F: 7202 jc 000000013

00000011: BO2F mov al,02F ; prepare ’/’

; output character to screen

00000013: B40OE mov ah,00E

00000015: CD10 int 010

00000017: E2EA loop 000000003

; exit to DOS

00000019: CD20 int 020

60.1.3 Take a random memory garbage as a source of randomness

Since it is MS-DOS, there are no memory protection at all, we can read from whatever address. Even more than that: simple
LODSB instruction will read byte from DS: ST address, but it’s not a problem if register values are not setted up, let it read 1)
random bytes; 2) from random memory place!

So it is suggested in Trixter webpage3to use LODSB without any setup.

It is also suggested that SCASB instruction can be used instead, because it sets flag according to the byte it read.

Another idea to minimize code is to use INT 29h DOS syscall, which just prints character stored in AL register.

2Binary-coded decimal
3http://trixter.oldskool.org/2012/12/17/maze-generation-in-thirteen-bytes/

472

http://trixter.oldskool.org/2012/12/17/maze-generation-in-thirteen-bytes/

60.1. 10 PRINT CHRS(205.5+RND(1)); : GOTO 10 CHAPTER 60. DEMOS
That is what Peter Ferrie and Andrey “herm1t” Baranovich did (11 and 10 bytes) *:

Listing 60.1: Andrey “herm1t” Baranovich: 11 bytes

00000000: BO5C mov al,05C AR

; read AL byte from random place of memory

00000002: AE scasb

; PF = parity(AL - random_memory_byte) = parity(5Ch - random_memory_byte)
00000003: 7A02 jp 000000007

00000005: BO2F mov al,02F 30/°

00000007: CD29 int 029 ; output AL to screen
00000009: EBFb5 jmp 000000000 ; loop endlessly

SCASB also use value in AL register, it subtract random memory byte value from 5Ch value in AL. JP is rare instruction, here
it used for checking parity flag (PF), which is generated by the formulae in the listing. As a consequence, the output character
is determined not by some bit in random memory byte, but by sum of bits, this (hoperfully) makes result more distributed.

It is possible to make this even shorter by using undocumented x86 instruction SALC (AKA SETALC) (“Set AL CF”). It was
introduced in NEC V20 CPU and sets AL to OxFF if CF is 1 or to 0 if otherwise. So this code will not run on 8086/8088.

Listing 60.2: Peter Ferrie: 10 bytes

; AL is random at this point

00000000: AE scasb

; CF is set accoring subtracting random memory byte from AL.
; 80 it is somewhat random at this point

00000001: D6 setalc

; AL is set to OxFF if CF=1 or to O if otherwise

00000002: 242D and al,02D ;’-?

; AL here is 0x2D or O

00000004 : 042F add al,02F ;’/?

; AL here is 0x5C or Ox2F

00000006: CD29 int 029 ; output AL to screen
00000008: EBF6 jmps 000000000 ; loop endlessly

So it is possible to get rid of conditional jumps at all. The ASCII® code of backslash (“\”) is 0x5C and 0x2F for slash (“/”).
So we need to convert one (pseudo-random) bit in CF flag to 0x5C or 0x2F value.

This is done easily: by AND-ing all bits in AL (where all 8 bits are set or cleared) with 0x2D we have just 0 or 0x2D. By adding
0x2F to this value, we get 0x5C or 0x2F. Then just ouptut it to screen.

60.1.4 Conclusion

It is also worth adding that result may be different in DOSBox, Windows NT and even MS-DOS, due to different conditions:
timer chip may be emulated differently, initial register contents may be different as well.

“http://pferrie.host22.com/misc/10print.htm
5American Standard Code for Information Interchange

473

http://pferrie.host22.com/misc/10print.htm

Part Vill

Other things

474

CHAPTER 61. NPAD

Chapter 61
npad

It is an assembly language macro for label aligning by a specific border.

That’s often need for the busy labels to where control flow is often passed, e.g., loop body begin. So the CPU will effectively
load data or code from the memory, through memory bus, cache lines, etc.

Taken from listing.inc (MSVC):

By the way, it is curious example of different NOP variations. All these instructions has no effects whatsoever, but has
different size.

;5 LISTING.INC

This file contains assembler macros and is included by the files created
;3 with the -FA compiler switch to be assembled by MASM (Microsoft Macro

;; Assembler).

LI

E3E)

;3 Copyright (c) 1993-2003, Microsoft Corporation. All rights reserved.

;3 non destructive nops
npad macro size
if size eq 1
nop
else
if size eq 2
mov edi, edi
else
if size eq 3
; lea ecx, [ecx+00]
DB 8DH, 49H, OOH
else
if size eq 4
; lea esp, [esp+00]
DB 8DH, 64H, 24H, OOH
else
if size eq 5
add eax, DWORD PTR O
else
if size eq 6
; lea ebx, [ebx+00000000]
DB 8DH, 9BH, OOH, OOH, OOH, OOH
else
if size eq 7
; lea esp, [esp+00000000]
DB 8DH, OA4H, 24H, OOH, OOH, OOH, OOH
else
if size eq 8
; jmp .+8; .npad 6
DB OEBH, O6H, 8DH, 9BH, OOH, OOH, OOH, OOH
else
if size eq 9

475

CHAPTER 61. NPAD

; jmp .+9; .npad 7
DB OEBH, O7H, 8DH, OA4H, 24H, OOH, OOH, OOH, OOH
else
if size eq 10
; jmp .+A; .npad 7; .npad 1
DB OEBH, O8H, 8DH, OA4H, 24H, OOH, OOH, OOH, OOH, 90H
else
if size eq 11
; jmp .+B; .npad 7; .npad 2
DB OEBH, O9H, 8DH, OA4H, 24H, OOH, OOH, OOH, OOH, 8BH, OFFH
else
if size eq 12
; jmp .+C; .npad 7; .npad 3
DB OEBH, OAH, 8DH, OA4H, 24H, OOH, OOH, OOH, OOH, 8DH, 49H, O0H
else
if size eq 13
; jmp .+D; .npad 7; .npad 4
DB OEBH, OBH, 8DH, OA4H, 24H, OOH, OOH, OOH, OOH, 8DH, 64H, 24H, OOH
else
if size eq 14
; jmp .+E; .npad 7; .npad 5
DB OEBH, OCH, 8DH, OA4H, 24H, OOH, OOH, OOH, OOH, O5H, OOH, OOH, OOH, OOH
else
if size eq 15
; jmp .+F; .npad 7; .npad 6
DB OEBH, ODH, 8DH, OA4H, 24H, OOH, OOH, OOH, OOH, 8DH, 9BH, OOH, OOH, OOH, OOH
else
%out error: unsupported npad size
.err
endif
endif
endif
endif
endif
endif
endif
endif
endif
endif
endif
endif
endif
endif
endif
endm

476

CHAPTER 62. COMPILER INTRINSIC

Chapter 62

Compiler intrinsic

A function specific to a compiler which is not usual library function. Compiler generate a specific machine code instead of
call to it. It is often a pseudofunction for specific CPU instruction.

For example, there are no cyclic shift operations in C/C++ languages, but present in most CPUs. For programmer’s conve-
nience, at least MSVC has pseudofunctions _rotl() and _rotr()' which are translated by compiler directly to the ROL/ROR x86
instructions.

Another example are functions enabling to generate SSE-instructions right in the code.
Full list of MSVC intrinsics: http://msdn.microsoft.com/en-us/library/26td21ds.aspx.

Thttp://msdn.microsoft.com/en-us/library/5cc576c4.aspx

477

http://msdn.microsoft.com/en-us/library/26td21ds.aspx
http://msdn.microsoft.com/en-us/library/5cc576c4.aspx

CHAPTER 63. COMPILER’S ANOMALIES

Chapter 63

Compiler’s anomalies

Intel C++10.1, which was used for Oracle RDBMS 11.2 Linux86 compilation, may emit two JZ in row, and there are no references
to the second JZ. Second JZ is thus senseless.

Listing 63.1: kdli.o from libserveril.a

.text:08114CF1 loc_8114CF1: ; CODE XREF:
__PGOSF539_kdlimemSer+89A

.text:08114CF1 ; __PGOSF539_kdlimemSer
+3994

.text:08114CF1 8B 45 08 mov eax, [ebp+arg_0]

.text:08114CF4 OF B6 50 14 movzx edx, byte ptr [eax+14h]

.text:08114CF8 F6 C2 01 test dl, 1

.text:08114CFB OF 85 17 08 00 00 jnz loc_8115518

.text:08114D01 85 C9 test ecx, ecx

.text:08114D03 OF 84 8A 00 00 00 jz loc_8114D93

.text:08114D09 OF 84 09 08 00 00 jz loc_8115518

.text:08114DOF 8B 53 08 mov edx, [ebx+8]

.text:08114D12 89 55 FC mov [ebptvar_4], edx

.text:08114D15 31 CO Xor eax, eax

.text:08114D17 89 45 F4 mov [ebp+var_C], eax

.text:08114D1A 50 push eax

.text:08114D1B 52 push edx

.text:08114D1C E8 03 54 00 00 call len2nbytes

.text:08114D21 83 C4 08 add esp, 8

Listing 63.2: from the same code

.text:0811A2A5 loc_811A2A5: ; CODE XREF:
kdliSerLengths+11C

.text:0811A2A5 ; kdliSerLengths+1C1

.text:0811A2A5 8B 7D 08 mov edi, [ebptarg_0]

.text:0811A2A8 8B 7F 10 mov edi, [edi+10h]

.text:0811A2AB OF B6 57 14 movzx edx, byte ptr [edi+14h]

.text:0811A2AF F6 C2 01 test dli, 1

.text:0811A2B2 75 3E jnz short loc_811A2F2

.text:0811A2B4 83 EO 01 and eax, 1

.text:0811A2B7 74 1F jz short loc_811A2D8

.text:0811A2B9 74 37 jz short loc_811A2F2

.text:0811A2BB 6A 00 push 0

.text:0811A2BD FF 71 08 push dword ptr [ecx+8]

.text:0811A2C0 E8 5F FE FF FF call len2nbytes

It is probably code generator bug was not found by tests, because, resulting code is working correctly anyway.

Another compiler anomaly | described here (17.2.4).

I demonstrate such cases here, so to understand that such compilers errors are possible and sometimes one should not
to rack one’s brain and think why compiler generated such strange code.

478

CHAPTER 64. OPENMP

Chapter 64

OpenMP

OpenMP is one of the simplest ways to parallelize simple algorithm.

As an example, let’s try to build a program to compute cryptographic nonce. In my simplistic example, nonce is a number
added to the plain unencrypted text in order to produce hash with some specific feature. For example, at some step, Bitcoin
protocol require to find a such nonce so resulting hash will contain specific number of running zeroes. This is also called
“proof of work” ! (i.e., system prove it did some intensive calculations and spent some time for it).

My example is not related to Bitcoin, it will try to add a numbers to the “hello, world!_” string in order to find such number
when “hello, world!_<number>" will contain at least 3 zero bytes after hashing this string by SHA512 algorithm.

Let’s limit our brute-force to the interval in 0..INT32_MAX-1 (i.e., 0x7FFFFFFE or 2147483646).

The algorithm is pretty straightforward:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>

#include "shab12.h"

int found=0;
int32_t checked=0;

int32_t* __min;
int32_t* __max;

time_t start;

#ifdef __GNUC__

#define min(X,Y) ((X) < (Y) 2 (X) : (VD)
#define max(X,Y) ((X) > (V) 7 (X) : (V)
#endif

void check_nonce (int32_t nonce)
{
uint8_t buf[32];
struct shab512_ctx ctx;
uint8_t res[64];

// update statistics
int t=omp_get_thread_num();

if (__min[t]==-1)
__min[t]=nonce;

if (__max[t]==-1)
__max[t]=nonce;

_min[t]=min(__min[t], nonce);
_max[t]=max(__max[t], nonce);

Thttps://en.wikipedia.org/wiki/Proof-of-work_system

479

https://en.wikipedia.org/wiki/Proof-of-work_system

CHAPTER 64. OPENMP

// idle if valid nonce found
if (found)
return;

memset (buf, 0, sizeof (buf));
sprintf (buf, "hello, world!_%d", nonce);

sha512_init_ctx (&ctx);

shab12_process_bytes (buf, strlen(buf), &ctx);

shab512_finish_ctx (&ctx, &res);

if (res[0]==0 && res[1]==0 && res[2]==0)

{
printf ("found (thread %d): [%s]. seconds spent=/d\n", t, buf, time(NULL)-start);
found=1;

};

#pragma omp atomic

checked++;

#pragma omp critical
if ((checked % 100000)==0)
printf ("checked=%d\n", checked);
};

int main()

{
int32_t 1i;
int threads=omp_get_max_threads();
printf ("threads=%d\n", threads);

__min=(int32_t*)malloc(threads*sizeof (int32_t));
__max=(int32_t*)malloc(threads*sizeof (int32_t));
for (i=0; i<threads; i++)

__min[il=__max[i]=-1;

start=time (NULL) ;

#pragma omp parallel for
for (i=0; i<INT32_MAX; i++)
check_nonce (i);

for (i=0; i<threads; i++)

printf ("__min[%d]=0x%08x __max[%d]=0x%08x\n", i, __min[i], i, __max[i]);

free(__min); free(__max);

check_nonce () function is just add a number to the string, hashes it by SHA512 and checks for 3 zero bytes in the result.
Very important part of the code is:

#pragma omp parallel for
for (i=0; i<INT32_MAX; i++)
check_nonce (i);

Yes, that simple, without #pragma we just call check_nonce () for each number from 0 to INT32_MAX (Ox7fffffff or
2147483647). With #pragma, a compiler adds a special code which will slice the loop interval to smaller intervals, to run them
by all CPU cores available 2.

The example may be compiled 3 in MSVC 2012:

cl openmp_example.c shab512.obj /openmp /01 /Zi /Faopenmp_example.asm

2N.B.: l intentionally demonstrate here simplest possible example, but in practice, usage of OpenMP may be harder and more complex
3sha512.(c|h) and u64.h files can be taken from the OpenSSL library: http: //www.openssl.org/source/

480

http://www.openssl.org/source/

64.1. MSVC CHAPTER 64. OPENMP
Orin GCC:

gcc -fopenmp 2.c shabl2.c -S -masm=intel

64.1 MSVC

Now that’s how MSVC 2012 generates main loop:

Listing 64.1: MSVC 2012

push OFFSET _mainompl

push 0

push 1

call __vcomp_fork

add esp, 16 ; 00000010H

All functions prefixed by vcomp are OpenMP-related and stored in the vcomp*.dll file. So here is a group of threads are
started.
Let’s take a look on _mainomp1:

Listing 64.2: MSVC 2012

$T1 = -8 ; size = 4
$T2 = -4 ; size = 4
_mainompl PROC ; COMDAT
push ebp
mov ebp, esp
push ecx
push ecx
push esi
lea eax, DWORD PTR $T2[ebp]
push eax
lea eax, DWORD PTR $T1[ebp]
push eax
push 1
push 1
push 2147483646 ; TffffffeH
push 0
call __vcomp_for_static_simple_init
mov esi, DWORD PTR $T1[ebp]
add esp, 24 ; 00000018H
jmp SHORT $LN6@main$omp$l
$LL2@main$omp$1l:
push esi
call _check_nonce
pop ecx
inc esi
$LN6Cmain$omp$l:
cmp esi, DWORD PTR $T2[ebp]
jle SHORT $LL2@main$omp$l
call __vcomp_for_static_end
pop esi
leave
ret 0

_mainomp1l ENDP

This function will be started n times in parallel, where n is number of CPU cores. vcomp_for_static_simple_init() is
calculating interval for the for() construct for the current thread, depending on the current thread number. Loop begin and
end values are stored in $T1 and $T2 local variables. You may also notice 7ffffffeh (or 2147483646) as an argument to the
veomp_for_static_simple_init () function—thisis a number of iterations of the whole loop to by divided evenly.

Then we see a new loop with a call to check_nonce () function which do all work.

| also added some code in the beginning of check_nonce () function to gather statistics, with which arguments the func-
tion was called.

481

64.1. MSVC CHAPTER 64. OPENMP
This is what we see while run it:

threads=4

checked=2800000

checked=3000000

checked=3200000

checked=3300000

found (thread 3): [hello, world!_1611446522]. seconds spent=3
__min[0]=0x00000000 __max[0]=0x1fffffff

_min[1]=0x20000000 __max[1]=0x3fffffff

__min[2]=0x40000000 __max[2]=0xS5fffffff

__min[3]=0x60000000 __max[3]=0x7ffffffe

Yes, result is correct, first 3 bytes are zeroes:

C:\...\shab12sum test
000000
f4a8facbaded38794dadc1e39£54279ad5d9bb3c5465cdf57adaf60403df6e3fe6019f5764fc9975e505a7395fed78

0feeb0eb38dd4c0279¢cb114672e2 *test

Running time is &~ 2..3 seconds on my 4-core Intel Xeon E3-1220 3.10 GHz. In the task manager | see 5 threads: 1 main
thread + 4 more started. | did not any further optimizations to keep my example as small and clear as possible. But probably
it can be done much faster. My CPU has 4 cores, that is why OpenMP started exactly 4 threads.

By looking at the statistics table we can clearly see how loop was finely sliced by 4 even parts. Oh well, almost even, if not
to consider the last bit.

There are also pragmas for atomic operations.

Let’s see how this code is compiled:

#pragma omp atomic
checked++;

#pragma omp critical
if ((checked % 100000)==0)
printf ("checked=Yd\n", checked);

Listing 64.3: MSVC 2012

push edi
push OFFSET _checked
call __vcomp_atomic_add_i4
; Line 55
push OFFSET _$vcomp$critsect$
call __vcomp_enter_critsect
add esp, 12 ; 0000000cH
; Line 56
mov ecx, DWORD PTR _checked
mov eax, ecx
cdq
mov esi, 100000 ; 000186a0H
idiv esi
test edx, edx
jne SHORT $LN1@check_nonc
; Line 57
push ecx
push OFFSET ?77_C@_OM@GNPNHLIO0@checked?$DN7$CFA767$AAC
call _printf
pop ecx
pop ecx

$LN1@check_nonc:
push DWORD PTR _$vcomp$critsect$
call __vcomp_leave_critsect

482

64.2. GCC

CHAPTER 64. OPENMP

pop ecx

As it turns out, vcomp_atomic_add_i4 () function in the vcomp*.dllis just a a tiny function having LOCK XADD instruc-

tion®.
vcomp_enter_critsect () eventually calling win32 API function EnterCriticalSection() °

64.2 GCC

GCC 4.8.1 produces the program which shows exactly the same statistics table, so, GCC implementation divides the loop by

parts in the same fashion.

Listing 64.4: GCC 4.8.1

mov edi, OFFSET FLAT:main._omp_£fn.0
call GOMP_parallel_start

mov edi, O

call main._omp_£fn.0

call GOMP_parallel_end

Unlike MSVC implementation, what GCC code is doing is starting 3 threads, but also runs fourth in the current thread. So

there will be 4 threads instead of 5 as in MSVC.
Hereisamain._omp_£fn.0 function:

Listing 64.5: GCC 4.8.1

main._omp_fn.0:

push rbp
mov rbp, rsp
push rbx
sub rsp, 40
mov QWORD PTR [rbp-40], rdi
call omp_get_num_threads
mov ebx, eax
call omp_get_thread_num
mov esi, eax
mov eax, 2147483647 ; Ox7FFFFFFF
cdq
idiv ebx
mov ecx, eax
mov eax, 2147483647 ; Ox7FFFFFFF
cdq
idiv ebx
mov eax, edx
cmp esi, eax
jl .L15
.L18:
imul esi, ecx
mov edx, esi
add eax, edx
lea ebx, [rax+rcx]
cmp eax, ebx
jge .L14
mov DWORD PTR [rbp-20], eax
L7
mov eax, DWORD PTR [rbp-20]
mov edi, eax
call check_nonce
add DWORD PTR [rbp-20], 1
cmp DWORD PTR [rbp-20], ebx
jl .L17

“Read more about LOCK prefix: 80.6.1
5Read more about critical sections here: 50.4

483

CHAPTER 64. OPENMP

64.2. GCC
Jjmp .L14
.L15:
mov eax, O
add ecx, 1
Jjmp .L18
.L14:
add rsp, 40
pop rbx
pop rbp
ret

Here we see that division clearly: by calling to omp_get_num_threads() and omp_get_thread_num() we got number
of threads running, and also current thread number, and then determine loop interval. Then run check_nonce ().
GCC also inserted LOCK ADD instruction right in the code, where MSVC generated call to separate DLL function:

Listing 64.6: GCC 4.8.1

lock add DWORD PTR checked[rip], 1
call GOMP_critical_start

mov ecx, DWORD PTR checked[rip]

mov edx, 351843721

mov eax, ecx

imul edx

sar edx, 13

mov eax, ecx

sar eax, 31

sub edx, eax

mov eax, edx

imul eax, eax, 100000

sub ecx, eax

mov eax, ecx

test eax, eax

jne L7

mov eax, DWORD PTR checked[rip]

mov esi, eax

mov edi, OFFSET FLAT:.LC2 ; "checked=%d\n"
mov eax, O

call printf
LL7:
call GOMP_critical_end

Functions prefixed with GOMP are from GNU OpenMP library. Unlike vcomp*.dll, its sources are freely available: https:

//github.com/mirrors/gcc/tree/master/libgomp.

484

https://github.com/mirrors/gcc/tree/master/libgomp
https://github.com/mirrors/gcc/tree/master/libgomp

CHAPTER 65. ITANIUM

Chapter 65

Itanium

Although almost failed, another very interesting architecture is Intel Itanium (IA64). While OOE' CPUs decides how to rear-
range instructions and execute them in parallel, EPIC? was an attempt to shift these decisions to the compiler: to let it group
instructions at the compile stage.

This result in notoriously complex compilers.

Here is one sample of IA64 code: simple cryptoalgorithm from Linux kernel:

Listing 65.1: Linux kernel 3.2.0.4

#define TEA_ROUNDS 32
#define TEA_DELTA 0x9e3779b9

static void tea_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{

u32 y, z, n, sum = 0;

u32 k0, k1, k2, k3;

struct tea_ctx *ctx = crypto_tfm_ctx(tfm);

const __le32 *in = (const __le32 *)src;

__1le32 xout = (__le32 *)dst;

y = 1e32_to_cpu(in[0]);
le32_to_cpu(in[1]);

N
]

kO = ctx->KEY[0];
k1l = ctx->KEY[1];
k2 = ctx->KEY[2];
k3 = ctx->KEY[3];

n = TEA_ROUNDS;

while (n-- > 0) {
sum += TEA_DELTA;
y += ((z << 4) + k0) =~ (z + sum) ~ ((z >> 5) + k1);
z += ((y << 4) +k2) =~ (y + sum) ~ ((y > 5) + k3);
}

out [0] = cpu_to_le32(y);
out [1] cpu_to_le32(z);

Here is how it was compiled:

Listing 65.2: Linux Kernel 3.2.0.4 for Itanium 2 (McKinley)

0090 | tea_encrypt:
0090/08 80 80 41 00 21 adds ri16 = 96, r32 // ptr to ctx->KEY
2]

TOut-of-order execution
2Explicitly parallel instruction computing

485

CHAPTER 65. ITANIUM

0096180 CO 82 00 42 00 adds r8 = 88, r32 // ptr to ctx->KEY
(o]

009C|00 00 04 00 nop.i 0

00A0|09 18 70 41 00 21 adds r3 = 92, r32 // ptr to ctx->KEY
[1]

00A6|FO 20 88 20 28 00 1d4 ri15 = [r34], 4 // load z

00AC|44 06 01 84 adds r32 = 100, r32;; // ptr to ctx->KEY
(3]

00BO|08 98 00 20 10 10 1d4 r19 = [r16] // r19=k2

00B6|00 01 00 00 42 40 mov rl6 = r0 // r0 always
contain zero

00BC|00 08 CA 00 mov.i r2 = ar.lc // save lc
register

00CO|05 70 00 44 10 10 9E FF FF FF 7F 20 1d4 r14 = [r34] // load y

00CC|92 F3 CE 6B movl rl7 = OxFFFFFFFFOE3779B9;; // TEA_DELTA

00D0|08 00 00 00 01 00 nop.m O

00D6|50 01 20 20 20 00 1d4 r21 = [r8] // r21=k0

0ODC|FO 09 2A 00 mov.i ar.lc = 31 // TEA_ROUNDS is
32

OOEO|OA A0 00 06 10 10 1d4 r20 = [r3];; // r20=kl

00E6/20 01 80 20 20 00 1d4 ri18 = [r32] // r18=k3

O00EC|00 00 04 00 nop.i O

00FO0 |

O0FO | loc_FO:

00F0|09 80 40 22 00 20 add ri16 = ri16, ri7 // ri6=sum, ri7=
TEA_DELTA

O00F6|D0O 71 54 26 40 80 shladd r29 = ri4, 4, r21 // rld=y, r21=k0

OOFC|A3 70 68 52 extr.u r28 = ri14, 5, 27;;

0100/03 FO 40 1C 00 20 add r30 = r16, ri4

0106|B0 E1 50 00 40 40 add r27 = r28, r20;; // r20=kl

010C|D3 F1 3C 80 xor r26 = r29, r30;;

0110|/0B C8 6C 34 OF 20 xor r25 = r27, r26;;

0116|F0 78 64 00 40 00 add r15 = ri15, r25 // rib=z

011C|00 00 04 00 nop.i 0;;

012000 00 00 00 01 00 nop.m O

0126180 51 3C 34 29 60 extr.u r24 = r15, 5, 27

012C|F1 98 4C 80 shladd ri11 = ri5, 4, ri19 // r19=k2

0130/0B B8 3C 20 00 20 add r23 = ri15, ri6;;

0136/A0 CO 48 00 40 00 add r10 = r24, ri8 // r18=k3

013C|00 00 04 00 nop.i 0;;

0140|0B 48 28 16 OF 20 xor r9 = r10, rii;;

0146160 B9 24 1E 40 00 xor r22 = r23, r9

014C|00 00 04 00 nop.i 0;;

0150[/11 00 00 00 01 00 nop.m O

0156|E0 70 58 00 40 AO add ri14 = ri14, r22

015C|AO FF FF 48 br.cloop.sptk.few loc_FO;;

0160]09 20 3C 42 90 15 st4 [r33] = ri15, 4 // store z

016600 00 00 02 00 00 nop.m O

016C|20 08 AA 00 mov.i ar.lc = r2;; // restore lc
register

0170]11 00 38 42 90 11 st4 [r33] = ri4 // store y

0176100 00 00 02 00 80 nop.i O

017C|08 00 84 00 br.ret.sptk.many bO0;;

First of all, all IA64 instructions are grouped into 3-instruction bundles. Each bundle has size of 16 bytes and consists of
template code + 3 instructions. IDA shows bundles into 6+6+4 bytes —you may easily spot the pattern.

All 3 instructions from each bundle usually executes simultaneously, unless one of instructions have “stop bit”.

Supposedly, Intel and HP engineers gathered statistics of most occurred instruction patterns and decided to bring bundle
types (AKA “templates”): a bundle code defines instruction types in the bundle. There are 12 of them. For example, zeroth
bundle type isMII, meaning: first instruction is Memory (load or store), second and third are | (integer instructions). Another
example is bundle type 0x1d: MFB: first instruction is Memory (load or store), second is Float (FPU instruction), third is Branch

486

CHAPTER 65. ITANIUM

(branch instruction).

If compiler cannot pick suitable instruction to relevant bundle slot, it may insert NOP: you may see here nop. i instruc-
tions (NOP at the place where integer instructrion might be) or nop.m (a memory instruction might be at this slot). NOPs are
inserted automatically when one use assembly language manually.

And that is not all. Bundles are also grouped. Each bundle may have “stop bit”, so all the consecutive bundles with
terminating bundle which have “stop bit” may be executed simultaneously. In practice, Itanium 2 may execute 2 bundles at
once, resulting execution of 6 instructions at once.

So all instructions inside bundle and bundle group cannot interfere with each other (i.e., should not have data hazards).
If they do, results will be undefined.

Each stop bit is marked in assembly language as ; ; (two semicolons) after instruction. So, instructions at [180-19¢] may
be executed simultaneously: they do not interfere. Next group is [1a0-1bc].

We also see a stop bit at 22¢. The next instruction at 230 have stop bit too. This mean, this instruction is to be executed
as isolated from all others (as in CISC). Indeed: the next instructrion at 236 use result from it (value in register r10), so they
cannot be executed at the same time. Apparently, compiler was not able to find a better way to parallelize instructions, which
is, in other words, to load CPU as much as possible, hence too much stop bits and NOPs. Manual assembly programming is
tedious job as well: programmer should group instructions manually.

Programmer is still able to add stop-bits to each instructions, but this will degrade all performance Itanium was made
for.

Interesting examples of manual IA64 assembly code can be found in Linux kernel sources:

http://1lxr.free-electrons.com/source/arch/ia64/1ib/.

Another introductory Itanium assembly paper: [5].

Another very interesting Itanium feature is speculative execution and NaT (“not a thing”) bit, somewhat resembling NaN
numbers:
http://blogs.msdn.com/b/oldnewthing/archive/2004/01/19/60162.aspx.

487

http://lxr.free-electrons.com/source/arch/ia64/lib/
http://blogs.msdn.com/b/oldnewthing/archive/2004/01/19/60162.aspx

CHAPTER 66. 8086 MEMORY MODEL

Chapter 66

8086 memory model

Dealing with 16-bit programs for MS-DOS or Win16 (55.3 or 30.5), we can see that pointer consisting of two 16-bit values. What
it means? Oh yes, that is another MS-DOS and 8086 weird artefact.

8086/8088 was a 16-bit CPU, but was able to address 20-bit address RAM (thus resulting IMB external memory). External
memory address space was divided between RAM (640KB max), ROM', windows for video memory, EMS cards, etc.

Let’s also recall that 8086/8088 was in fact inheritor of 8-bit 8080 CPU. The 8080 has 16-bit memory spaces, i.e., it was
able to address only 64KB. And probably of old software porting reason?, 8086 can support 64KB windows, many of them
placed simultaneously within IMB address space. This is some kind of toy-level virtualization. All 8086 registers are 16-bit, so
to address more, a special segment registers (CS, DS, ES, SS) were introduced. Each 20-bit pointer is calculated using values
from a segment register and an address register pair (e.g. DS:BX) as follows:

real_address = (segment_register < 4) + address_register

For example, graphics (EGA?, VGA*) video RAM window on old IBM PC-compatibles has size of 64KB. For accessing it, a
0xA000 value should be stored in one of segment registers, e.g. into DS. Then DS:0 will address the very first byte of video
RAM and DS:0xFFFF is the very last byte of RAM. The real address on 20-bit address bus, however, will range from 0xA0000
to OXAFFFF.

The program may contain hardcoded addresses like 0x1234, but OS may need to load program on arbitrary addresses, so
it recalculates segment register values in such a way, so the program will not care about where in the RAM it is placed.

So, any pointer it old MS-DOS environment was in fact consisted of segment address and the address inside segment,
i.e., two 16-bit values. 20-bit was enough for that, though, but one will need to recalculate the addresses very often: passing
more information on stack is seems better space/convenience balance.

By the way, because of all this, it was not possible to allocate the memory block larger than 64KB.

Segment registers were reused at 80286 as selectors, serving different function.

When 80386 CPU and computers with bigger RAM were introduced, MS-DOS was still popular, so the DOS extenders are
emerged: these werein fact a step toward “serious” OS, switching CPU into protected mode and providing much better mem-
ory APIs for the programs which still needs to be runned from MS-DOS. Widely popular examples include DOS/4GW (DOOM
video game was compiled for it), Phar Lap, PMODE.

By the way, the same was of addressing memory was in 16-bit line of Windows 3.x, before Win32.

'Read-only memory

2I’'m not 100% sure here
3Enhanced Graphics Adapter
4Video Graphics Array

488

CHAPTER 67. BASIC BLOCKS REORDERING

Chapter 67

Basic blocks reordering

67.1 Profile-guided optimization

This optimization method may move some basic blocks to another section of the executable binary file.
Obviously, there are partsin function which are executed most often (e.g., loop bodies) and less often (e.g., error reporting

code, exception handlers).

The compiler adding instrumentation code into the executable, then developer run it with a lot of tests for statistics
collecting. Then the compiler, with the help of statistics gathered, prepares final executable file with all infrequently executed

code moved into another section.

As a result, all frequently executed function code is compacted, and that is very important for execution speed and cache

memory.
Example from Oracle RDBMS code, which was compiled by Intel C++:

Listing 67.1: oragenericll.dll (win32)

public _skgfsync

_skgfsync proc near

; address 0x6030D86A

db 66h
nop
push ebp
mov ebp, esp
mov edx, [ebp+0Ch]
test edx, edx
jz short loc_6030D884
mov eax, [edx+30h]
test eax, 400h
jnz __VInfreq__skgfsync ; write to log
continue:
mov eax, [ebp+8]
mov edx, [ebp+10h]
mov dword ptr [eax], O
lea eax, [edx+OFh]
and eax, OFFFFFFFCh
mov ecx, [eax]
cmp ecx, 45726963h
jnz error ; exit with error
mov esp, ebp
pop ebp
retn
_skgfsync endp

; address 0x60B953FO0

489

67.1. PROFILE-GUIDED OPTIMIZATION

CHAPTER 67. BASIC BLOCKS REORDERING

__VInfreq__skgfsync:

mov eax, [edx]
test eax, eax

jz continue

mov ecx, [ebp+10h]
push ecx

mov ecx, [ebp+8]
push edx

push ecx

push offset ...
push dword ptr [edx+4]
call dword ptr [eax] ; write to log

; "skgfsync(se=0x%x, ctx=0x%x, iov=0x%x)\n"

add esp, 14h
jmp continue
error:
mov edx, [ebp+8]
mov dword ptr [edx], 69AAh ; 27050 "function called with invalid FIB/IOV
structure"
mov eax, [eax]
mov [edx+4], eax
mov dword ptr [edx+8], OFA4h ; 4004
mov esp, ebp
pop ebp
retn

; END OF FUNCTION CHUNK FOR _skgfsync

The distance of addresses of these two code fragments is almost 9 MB.

Allinfrequently executed code was placed at the end of the code section of DLL file, among all function parts. This part of
function was marked by Intel C++ compiler with VInfreq prefix. Here we see that a part of function which writes to log-file
(presumably in case of error or warning or something like that) which was probably not executed very often when Oracle
developers gathered statistics (if was executed at all). The writing to log basic block is eventually return control flow into the

“hot” part of the function.

Another “infrequent” part is a basic block returning error code 27050.

In Linux ELF files, all infrequently executed code is moved by Intel C++ into separate text.unlikely section, leaving all

“hot” code in the text .hot section.

From a reverse engineer’s perspective, this information may help to split the function to its core and error handling parts.

490

Part IX

Books/blogs worth reading

491

CHAPTER 68. BOOKS

Chapter 68

Books

68.1 Windows

[30].

68.2 C/C++

[16].

68.3 x86 /x86-64
(14], [1]

68.4 ARM

ARM manuals: http://infocenter.arm.com/help/index. jsp?topic=/com.arm.doc.subset.architecture.reference/
index.html

492

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html

CHAPTER 69. BLOGS

Chapter 69

Blogs

69.1 Windows

e Microsoft: Raymond Chen

e http://www.nynaeve.net/

493

http://blogs.msdn.com/oldnewthing/
http://www.nynaeve.net/

CHAPTER 70. OTHER

Chapter 70

Other

There are two excellent RE'-related subreddits on reddit.com: ReverseEngineering and REMath (for the topics on the inter-
section of RE and mathematics).

There are also RE part of Stack Exchange website:
http://reverseengineering.stackexchange.com/.

Reverse Engineering

494

http://www.reddit.com/r/ReverseEngineering/
http://www.reddit.com/r/remath
http://reverseengineering.stackexchange.com/

Part X

Exercises

495

There are two questions almost for every exercise, if otherwise is not specified:

1) What this function does? Answer in one-sentence form.

2) Rewrite this function into C/C++.

It is allowed to use Google to search for any leads. However, if you like to make your task harder, you may try to solve it
without Google.

Hints and solutions are in the appendix of this book.

496

CHAPTER 71. LEVEL1

Chapter 71

Level 1

Level 1 exercises are ones you may try to solve in mind.

71.1 Exercise 1.1

71.1.1 MSVC 2012 x64 + /0x

a$ = 8

b$ = 16

£ PROC
cmp ecx, edx
cmovg edx, ecx
mov eax, edx
ret 0

f ENDP

71.1.2 Keil (ARM)

CMP r0,rl
MOVLE r0,rl
BX 1r

71.1.3 Keil (thumb)

CMP r0,rl

BGT |LO.6]|

MOVS r0,rl
|L0.6|

BX 1r

71.2 Exercise 1.2

Why LOOP instruction is not used by compilers anymore?

71.3 Exercise 1.3

Take an loop example from “Loops” section (12), compile it in your favorite OS and compiler and modify (patch) executable
file, so the loop range will be [6..20].

497

CHAPTER 72. LEVEL 2

Chapter 72

Level 2

For solving exercises of level 2, you probably will need text editor or paper with pencil.

72.1 Exercise 2.1

This is standard C library function. Source code taken from OpenWatcom.

72.1.1 MSVC 2010

_TEXT SEGMENT

_input$ = 8 ; size = 1
_f PROC
push ebp
mov ebp, esp
movsx eax, BYTE PTR _input$[ebp]
cmp eax, 97 ; 00000061H
jl SHORT $LN1@f
movsx ecx, BYTE PTR _input$[ebp]
cmp ecx, 122 ; 0000007aH
ig SHORT $LN1ef
movsx edx, BYTE PTR _input$[ebp]
sub edx, 32 ; 00000020H
mov BYTE PTR _input$[ebp]l, dl
$LN1Qf:
mov al, BYTE PTR _input$[ebp]
pop ebp
ret 0
_f ENDP
_TEXT ENDS

72.1.2 GCC4.4.1+-03

_f proc near
input = dword ptr 8
push ebp
mov ebp, esp
movzx eax, byte ptr [ebp+input]
lea edx, [eax-61h]
cmp dl, 1%5h
ja short loc_80483F2
sub eax, 20h

498

72.2. EXERCISE 2.2 CHAPTER 72. LEVEL 2
loc_80483F2:

pop ebp
retn
f endp

72.1.3 Keil (ARM) + -03

SUB rl,r0,#0x61
CMP rl,#0x19
SUBLS r0,r0,#0x20
ANDLS r0,r0,#0xff
BX 1r

72.1.4 Keil (thumb) + -03

MOVS rl,r0

SUBS rl,rl1,#0x61

CMP rl,#0x19

BHI |LO.14]|

SUBS r0,r0,#0x20

LSLS r0,r0,#24

LSRS r0,r0,#24
|L0.14]

BX 1r

72.2 Exercise 2.2

. This is also standard C library function. Source code is taken from OpenWatcom and modified slightly.
This function also use these standard C functions: isspace() and isdigit().

72.2.1 MSVC 2010 + /0x

EXTRN _isdigit:PROC
EXTRN _isspace:PROC
EXTRN ___ptr_check:PROC

; Function compile flags: /Ogtpy
_TEXT SEGMENT

_p$ =8 ; size = 4
_f PROC
push ebx

push esi
mov esi, DWORD PTR _p$[esp+4]

push edi

push O

push esi

call ___ptr_check

mov eax, DWORD PTR [esi]
push eax

call _isspace
add esp, 12 ; 0000000cH
test eax, eax
je SHORT $LN6@f
npad 2
$LL7ef:

mov ecx, DWORD PTR [esi+4]
add esi, 4

499

72.2. EXERCISE 2.2

CHAPTER 72. LEVEL 2

push ecx

call _isspace

add esp, 4

test eax, eax

jne SHORT $LL7@f

$LN6OS :
mov bl, BYTE PTR [esil
cmp bl, 43 ; 0000002bH
je SHORT $LN4@f
cmp bl, 45 ; 0000002dH
jne SHORT $LN5Qf
$LN4Of :
add esi, 4
$LN5OF :
mov edx, DWORD PTR [esi]
push edx
Xor edi, edi

call _isdigit
add esp, 4
test eax, eax
je SHORT $LN2@f
$LL30f :
mov ecx, DWORD PTR [esil
mov edx, DWORD PTR [esi+4]
add esi, 4
lea eax, DWORD PTR [edi+edix4]
push edx
lea edi, DWORD PTR [ecx+eax*2-48]
call _isdigit
add esp, 4
test eax, eax
jne SHORT $LL3Qf

$LN20f :
cmp bl, 45 ; 0000002dH
jne SHORT $LN14Qf
neg edi
$LN140f :
mov eax, edi
pop edi
pop esi
pop ebx
ret 0
_f ENDP
_TEXT ENDS

72.2.2 GCC4.4.1

This exercise is slightly harder since GCC compiled isspace() and isdigit() functions as inline-functions and inserted their bod-

ies right into the code.

_f proc near
var_10 = dword ptr -10h
var_9 = byte ptr -9
input = dword ptr 8
push ebp
mov ebp, esp
sub esp, 18h
jmp short loc_8048410

1loc_804840C:

500

72.2. EXERCISE 2.2

CHAPTER 72. LEVEL 2

loc_8048410:

loc_8048444:

loc_8048448:

loc_8048451:

loc_8048471:

loc_804849A:

add

call
mov
mov
mov
add
lea
movzx
movzx
and
test
jnz
mov
mov
mov
cmp
jz
cmp
jnz

add

mov
jmp

mov
mov
shl
add
add
mov
mov
mov
lea
sub
mov
add

call
mov
mov
mov
add
lea
movzx
movzx
and
test
jnz
cmp
jnz
neg

mov

[ebp+input], 4

___ctype_b_loc
edx, [eax]

eax, [ebp+input]
eax, [eax]

eax, eax

eax, [edx+eax]
eax, word ptr [eax]
eax, ax

eax, 2000h

eax, eax

short loc_804840C
eax, [ebp+input]
eax, [eax]
[ebp+var_9], al
[ebptvar_9], ’+°
short loc_8048444
[ebp+var_9], ’-°
short loc_8048448

[ebp+input], 4

[ebptvar_10], O
short loc_8048471

edx, [ebp+var_10]
eax, edx

eax, 2

eax, edx
eax, eax
edx, eax

eax, [ebp+input]
eax, [eax]

eax, [edx+eax]
eax, 30h
[ebp+var_10], eax
[ebp+input], 4

___ctype_b_loc
edx, [eax]

eax, [ebp+input]
eax, [eax]

eax, eax

eax, [edx+eax]
eax, word ptr [eax]
eax, ax

eax, 800h

eax, eax

short loc_8048451
[ebp+var_9], 2Dh
short loc_804849A
[ebp+var_10]

eax, [ebp+var_10]

72.2. EXERCISE 2.2

CHAPTER 72. LEVEL 2

leave
retn
f endp

72.2.3 Keil (ARM) + -03

PUSH {r4,1r}

MOV rd,r0

BL __rt_ctype_table

LDR r2, [r0,#0]
|LO. 16|

LDR r0, [r4,#0]

LDRB r0, [r2,r0]

TST r0,#1

ADDNE rd,r4d,#4

BNE |LO. 16|

LDRB ri, [r4,#0]

MOV r0,#0

CMP rl,#0x2b

CMPNE rl,#0x2d
ADDEQR rd,rd,#4

B |L0.76|
|LO.60]|

ADD r0,r0,r0,LSL #2

ADD r0,r3,r0,LSL #1

SUB r0,r0,#0x30

ADD rd,r4d,#4
|L0.76]|

LDR r3, [r4,#0]

LDRB r12, [r2,r3]

CMP r12,#0x20

BEQ [L0.60]|

CMP rl,#0x2d

RSBEQ r0,r0,#0

POP {r4,pc}

72.2.4 Keil (thumb) + -03

PUSH {r4-r6,1r}

MOVS rd,r0

BL __rt_ctype_table

LDR r2, [r0,#0]

B |LO.14]|
[LO.12]

ADDS rd,rd,#4
|LO.14]|

LDR r0, [r4,#0]

LDRB r0, [r2,r0]

LSLS r0,r0,#31

BNE |LO.12]

LDRB ri, [r4,#0]

CMP rl,#0x2b

BEQ |L0.32]|

CMP rl,#0x2d

BNE |L0.34|
|L0.32|

ADDS rd,r4,#4
|L0.34]|

502

72.3. EXERCISE 2.3

CHAPTER 72. LEVEL 2

MOVS r0,#0

B |L0.48]|
|L0.38]|

MOVS r5,#0xa

MULS r0,r5,r0

ADDS rd,r4,#4

SUBS r0,r0,#0x30

ADDS r0,r3,r0
|LO.48|

LDR r3, [r4,#0]

LDRB r5, [r2,r3]

CMP r5,#0x20

BEQ [L0.38|

CMP rl,#0x2d

BNE [L0.62|

RSBS r0,r0,#0
|L0.62]

POP {r4-r6,pc}

72.3 Exercise 2.3

This is standard C function too, actually, two functions working in pair. Source code taken from MSVC 2010 and modified

slightly.

The matter of modification is that this function can work properly in multi-threaded environment, and | removed its

support for simplification (or for confusion).

72.3.1 MSVC 2010 + /0x

_BSS SEGMENT
_v DD 01H DUP (7)
_BSS ENDS

_TEXT SEGMENT

_s$ =8 ; size = 4
f1 PROC

push ebp

mov ebp, esp

mov eax, DWORD PTR _s$[ebp]
mov DWORD PTR _v, eax
pop ebp
ret 0
f1 ENDP
_TEXT ENDS
PUBLIC £2

_TEXT SEGMENT

£2 PROC
push ebp
mov ebp, esp
mov eax, DWORD PTR _v
imul eax, 214013 ; 000343fdH
add eax, 2531011 ; 00269ec3H

mov DWORD PTR _v, eax
mov eax, DWORD PTR _v

shr eax, 16 ; 00000010H
and eax, 32767 ; 00007fffH
pop ebp
ret 0

£2 ENDP

503

72.3. EXERCISE 2.3

CHAPTER 72. LEVEL 2

_TEXT ENDS
END

72.3.2 GCC4.41

public f1
f1 proc near
arg_0 = dword ptr 8
push ebp
mov ebp, esp
mov eax, [ebp+arg_0]
mov ds:v, eax
pop ebp
retn
f1 endp
public £f2
2 proc near
push ebp
mov ebp, esp
mov eax, ds:v
imul eax, 343FDh
add eax, 269EC3h
mov ds:v, eax
mov eax, ds:v
shr eax, 10h
and eax, TFFFh
pop ebp
retn
£2 endp
bss segment dword public ’BSS’ use32
assume cs:_bss
dd 7
bss ends

72.3.3 Keil (ARM) + -03

f1 PROC
LDR rl,|L0.52]
STR r0, [r1,#0] ; v
BX 1r
ENDP
£2 PROC
LDR r0, |L0.52]
LDR r2,|L0.56|
LDR rl, [r0,#0] ; v
MUL rl,r2,rl
LDR r2,|L0.60]|
ADD rl,rl,r2
STR rl, [r0,#0] ; v
MVN r0,#0x8000
AND r0,r0,r1,LSR #16
BX 1r
ENDP

004

72.4. EXERCISE 2.4

CHAPTER 72. LEVEL 2

|LO.52|

DCD
|L0.56]

DCD
|LO.60|

DCD

| |.datal |
0x000343fd

0x00269ec3

72.3.4 Keil (thumb) + -03

f1 PROC
LDR r1,|L0.28]|
STR r0, [r1,#0] ; v
BX 1r
ENDP
£2 PROC
LDR r0, |L0.28]|
LDR r2,|L0.32]|
LDR rl,[r0,#0] ; v
MULS rl,r2,rl
LDR r2, |L0.36|
ADDS rl,rl,r2
STR rl, [r0,#0] ; v
LSLS r0,rl,#1
LSRS r0,r0,#17
BX 1r
ENDP
|L0.28|
DCD || .datal |
|L0.32|
DCD 0x000343fd
|L0.36]|
DCD 0x00269ec3

72.4 Exercise 2.4

This is standard C library function. Source code taken from MSVC 2010.

72.4.1 MSVC 2010 + /0x

PUBLIC -
_TEXT SE
_argl$ = 8
_arg2$ = 12
_f PROC
push
mov
push
mov
cmp
mov
je
mov
push
test

f
GMENT
; size = 4
; size = 4
esi

esi, DWORD PTR _argil$[esp]
edi

edi, DWORD PTR _arg2$[esp+4]
BYTE PTR [edi], O

eax, esi

SHORT $LN7@f

dl, BYTE PTR [esil

ebx

dl, dl

505

72.4. EXERCISE 2.4

CHAPTER 72. LEVEL 2

je SHORT $LN4Qf
sub esi, edi
npad 6
$LL5ef :
mov ecx, edi
test dl, dl
je SHORT $LN2@f
$LL30f:
mov dl, BYTE PTR [ecx]
test dl, dl
je SHORT $LN14@f
movsx ebx, BYTE PTR [esi+ecx]
movsx edx, dl
sub ebx, edx
jne SHORT $LN2@f
inc ecx
cmp BYTE PTR [esi+ecx], bl
jne SHORT $LL3Qf
$LN20f :
cmp BYTE PTR [ecx], O
je SHORT $LN14@f
mov dl, BYTE PTR [eax+1]
inc eax
inc esi
test dl, dl
jne SHORT $LL5@f
Xor eax, eax
pop ebx
pop edi
pop esi
ret 0
_f ENDP
_TEXT ENDS

END

72.4.2 GCC4.41

var_C
var_8
var_4
arg_0
arg_4

public £
proc near

= dword ptr -0Ch
dword ptr -8
dword ptr -4
dword ptr 8
dword ptr OCh

push ebp

mov ebp, esp

sub esp, 10h

mov eax, [ebp+arg_0]
mov [ebp+var_4], eax
mov eax, [ebptarg_4]

movzx eax, byte ptr [eax]
test al, al

loc_80483F4:

jnz short loc_8048443
mov eax, [ebptarg_0]

jmp short locret_8048453
mov eax, [ebp+var_4]

506

72.4. EXERCISE 2.4

CHAPTER 72. LEVEL 2

mov [ebptvar_8], eax

mov eax, [ebptarg_4]

mov [ebp+var_C], eax

jmp short loc_804840A
loc_8048402:

add [ebptvar_8], 1

add [ebptvar_C], 1
loc_804840A:

mov eax, [ebp+var_8]

movzx eax, byte ptr [eax]
test al, al

jz short loc_804842E

mov eax, [ebptvar_C]

movzx eax, byte ptr [eax]

test al, al

jz short loc_804842E

mov eax, [ebp+var_8]

movzx edx, byte ptr [eax]

mov eax, [ebp+var_C]

movzx eax, byte ptr [eax]

cmp dl, al

jz short loc_8048402
loc_804842E:

mov eax, [ebp+var_C]

movzx eax, byte ptr [eax]
test al, al

jnz short loc_804843D

mov eax, [ebp+var_4]

jmp short locret_8048453
1loc_804843D:

add [ebptvar_4], 1

jmp short loc_8048444
loc_8048443:

nop
loc_8048444:

mov eax, [ebp+var_4]

movzx eax, byte ptr [eax]
test al, al

jnz short loc_80483F4
mov eax, O
locret_8048453:
leave
retn
£ endp

72.4.3 Keil (ARM) + -03

PUSH {r4,1r}
LDRB r2, [r1,#0]
CMP r2,#0
POPEQ {r4,pc}

B |L0.80|

507

72.4. EXERCISE 2.4

CHAPTER 72. LEVEL 2

|L0.20]|

LDRB r12, [r3,#0]

CMP rl12,#0

BEQ [10.64|

LDRB r4, [r2,#0]

CMP r4,#0

POPEQ {r4,pc}

CMP ri2,r4

ADDEQ r3,r3,#1

ADDEQR r2,r2,#1

BEQ [20.20]|

B |L0.76|
|10.64|

LDRB r2, [r2,#0]

CMP r2,#0

POPEQ {r4,pc}
|LO.76]|

ADD r0,r0,#1
|1.0.80]|

LDRB r2, [r0,#0]

CMP r2,#0

MOVNE r3,r0

MOVNE r2,rl

MOVEQ r0,#0

BNE [L0.20]

POP {r4,pc}
72.4.4 Keil (thumb) + -03

PUSH {r4,r5,1r}

LDRB r2, [r1,#0]

CMP r2,#0

BEQ |L0.54|

B |L0.46|
|10.10]|

MOVS r3,r0

MOVS r2,rl

B [20.20]|
|L0.16]|

ADDS r3,r3,#1

ADDS r2,r2,#1
[10.20]|

LDRB r4, [r3,#0]

CMP r4,#0

BEQ |L0.38|

LDRB r5, [r2,#0]

CMP r5,#0

BEQ [LO.54]|

CMP rd,rb5

BEQ |L0.16|

B |L0.44|
|L0.38]|

LDRB r2, [r2,#0]

CMP r2,#0

BEQ |L0.54|
|1.0.44|

ADDS r0,r0,#1
|L0.46|

LDRB r2, [r0,#0]

CMP r2,#0

508

72.5. EXERCISE 2.5

CHAPTER 72. LEVEL 2

BNE |L0.10]|

MOVS r0,#0
|LO.54|

POP {r4,r5,pc}

72.5 Exercise 2.5

This exercise is rather on knowledge than on reading code.
. The function is taken from OpenWatcom.

72.5.1 MSVC 2010 + /0x

_DATA SEGMENT

COMM __v:DWORD

_DATA ENDS

PUBLIC __real@3e45798ee2308c3a

PUBLIC __real@4147f£££80000000

PUBLIC __real@4150017ec0000000

PUBLIC _f

EXTRN __fltused:DWORD

CONST SEGMENT

__real@3e45798ee2308c3a DR 03e45798ee2308c3ar ; 1e-008
__real@4147£ff££80000000 DQ 04147£f££f£80000000r ; 3.14573e+006
__real@4150017ec0000000 DQ 04150017ec0000000r ; 4.19584e+006

CONST ENDS
_TEXT SEGMENT

_vi$ = -16 ; size = 8
_v2$ = -8 ; size = 8
_f PROC

sub esp, 16 ; 00000010H

fld QWORD PTR __real@4150017ec0000000
fstp QWORD PTR _v1$[esp+16]

f1d QWORD PTR __real@4147fff£80000000
fstp QWORD PTR _v2$[esp+16]

f1d QWORD PTR _v1$[esp+16]

f1d QWORD PTR _v1$[esp+16]

fdiv QWORD PTR _v2$[esp+16]

fmul QWORD PTR _v2$[esp+16]

fsubp ST(1), ST(0)

fcomp QWORD PTR __real@3e45798ee2308c3a

fnstsw ax
test ah, 65 ; 00000041H
jne SHORT $LN1@f
or DWORD PTR __v, 1

$LN1@f :
add esp, 16 ; 00000010H
ret 0

_f ENDP

_TEXT ENDS

72.6 Exercise 2.6

72.6.1 MSVC 2010 + /0x

PUBLIC _f
; Function compile flags: /Ogtpy
_TEXT SEGMENT

509

72.6. EXERCISE 2.6

CHAPTER 72. LEVEL 2

_k0$ = -12
_k3$ = -8
k2% = -4
_v$ =8
_k1$ = 12
_k$ = 12
_f PROC
sub
mov
mov
mov
push
push
mov
push
mov
mov
mov
mov
mov
mov
Xor
mov
mov
lea
$LL8ef :
mov
shr
add
mov
shl
add
sub
Xor
lea
x0T
add
mov
shr
add
mov
shl
add
Xor
lea
Xor
add
dec
jne
mov
pop
pop
mov
mov
pop
add
ret
f ENDP

; size =
; size =
; size =
; size =
; size =

N NN NN NN NN

; size =

esp, 12 ; 0000000cH

ecx, DWORD PTR _v$[esp+8]
eax, DWORD PTR [ecx]

ecx, DWORD PTR [ecx+4]

ebx

esi

esi, DWORD PTR _k$[esp+16]
edi

edi, DWORD PTR [esi]

DWORD PTR _kO$[esp+24], edi
edi, DWORD PTR [esi+4]
DWORD PTR _k1$[esp+20], edi
edi, DWORD PTR [esi+8]

esi, DWORD PTR [esi+12]
edx, edx

DWORD PTR _k2$[esp+24], edi
DWORD PTR _k3$[esp+24], esi
edi, DWORD PTR [edx+32]

esi, ecx

esi, 5

esi, DWORD PTR _ki1$[esp+20]
ebx, ecx

ebx, 4

ebx, DWORD PTR _kO$ [esp+24]

edx, 1640531527 ; 61c88647H

esi, ebx

ebx, DWORD PTR [edx+ecx]
esi, ebx

eax, esi

esi, eax

esi, 5

esi, DWORD PTR _k3$[esp+24]
ebx, eax

ebx, 4

ebx, DWORD PTR _k2$[esp+24]
esi, ebx

ebx, DWORD PTR [edx+eax]
esi, ebx

ecx, esi

edi

SHORT $LLBQE

edx, DWORD PTR _v$[esp+20]
edi

esi

DWORD PTR [edx], eax
DWORD PTR [edx+4], ecx
ebx

esp, 12

0

; 0000000cH

510

72.6. EXERCISE 2.6

CHAPTER 72. LEVEL 2

72.6.2 Keil (ARM) + -03

PUSH {r4-r10,1r}
ADD r5,r1,#8
LDM r5,{r5,r7}
LDR r2, [r0,#4]
LDR r3, [r0,#0]
LDR r4,|L0.116]
LDR 16, [r1,#4]
LDR r8, [r1,#0]
MOV r12,#0
MOV rl,r12
|L0.40]|
ADD ri2,r12,r4
ADD r9,r8,r2,LSL #4
ADD r10,r2,r12
EOR r9,r9,r10
ADD r10,r6,r2,LSR #5
EOR r9,r9,r10
ADD r3,r3,r9
ADD r9,r5,r3,LSL #4
ADD r10,r3,r12
EOR r9,r9,r10
ADD rl10,r7,r3,LSR #5
EOR r9,r9,r10
ADD rl,rl,#1
CMP rl,#0x20
ADD r2,r2,r9

STRCS r2, [r0,#4]
STRCS r3, [r0,#0]

BCC |L0.40]|

POP {r4-r10,pc}
|L0.116]

DCD 0x9e3779b9

72.6.3 Keil (thumb) + -03

PUSH {r1-r7,1r}

LDR r5,|L0.84|

LDR r3, [r0,#0]

LDR r2, [r0,#4]

STR r5, [sp, #8]

MOVS ré6,rl

LDM r6,{r6,r7}

LDR r5, [r1,#8]

STR 6, [sp, #4]

LDR r6, [r1,#0xc]

MOVS r4d,#0

MOVS rl,rd

MOV 1r,r5

MOV ril2,r6

STR r7, [sp,#0]
[L0.30]|

LDR r5, [sp,#8]

LSLS r6,r2,#4

ADDS r4d,rd,rb

LDR r5, [sp, #4]

LSRS r7,r2,#5

ADDS r5,r6,r5

72.7. EXERCISE 2.7 CHAPTER 72. LEVEL 2

ADDS r6,r2,rd
EORS r5,r5,r6
LDR r6, [sp,#0]
ADDS rl,rl,#1
ADDS r6,r7,r6
EORS r5,r5,r6
ADDS r3,r5,r3
LSLS r5,r3,#4
ADDS r6,r3,rd
ADD r5,r5,1r
EORS r5,r5,r6
LSRS r6,r3,#5
ADD r6,r6,r12
EORS r5,r5,r6
ADDS r2,r5,r2
CMP rl,#0x20
BCC |L0.30]|
STR r3, [r0,#0]
STR r2, [r0,#4]
POP {r1-r7,pc}
|L0.84|
DCD 0x9e3779b9

72.7 Exercise 2.7

This function is taken from Linux 2.6 kernel.

72.71 MSVC 2010 + /0x

_table db 000h, 080h, 040h, OcOh, 020h, 0aOh, 060h, 0OeOh
db 010h, 090h, 050h, 0dOh, 030h, ObOh, 070h, O0fOh
db 008h, 088h, 048h, 0c8h, 028h, 0a8h, 068h, 0Oe8h
db 018h, 098h, 058h, 0d8h, 038h, Ob8h, 078h, 0£f8h
db 004h, 084h, 044h, Oc4h, 024h, 0Oadh, 064h, Oedh
db 014h, 094h, 054h, 0d4h, 034h, Ob4h, 074h, 0f4h
db 00ch, 08ch, 04ch, Occh, 02ch, Oach, 06ch, Oech
db O1ch, 09ch, 05ch, Odch, 03ch, Obch, 07ch, Ofch
db 002h, 082h, 042h, 0c2h, 022h, 0a2h, 062h, Oe2h
db 012h, 092h, 052h, 0d2h, 032h, Ob2h, 072h, 0f2h
db 00ah, 08ah, 04ah, Ocah, 02ah, Oaah, 06ah, Oeah
db O1lah, 09ah, 05ah, Odah, 03ah, Obah, 07ah, Ofah
db 006h, 086h, 046h, Oc6h, 026h, 0a6h, 066h, Oe6h
db 016h, 096h, 056h, 0d6h, 036h, Ob6h, 076h, Of6h
db 00eh, 08eh, 0O4eh, Oceh, 02eh, Oaeh, 06eh, Oeeh
db Oleh, 09eh, 05eh, Odeh, 03eh, Obeh, 07eh, Ofeh
db 001h, 081h, 041h, Ocih, 021h, Oalh, 061h, Oelh
db 011h, 091h, 051h, Odih, 031h, Oblh, 071h, Ofih
db 0091, 089h, 049h, 0c9h, 029h, 0aSh, 069h, OedSh
db 019h, 099h, 059h, 0d9h, 039h, ObSh, 079h, 0fSh
db 005h, 085h, 045h, Ocb5h, 025h, 0Oabh, 065h, Oebh
db 015h, 095h, 055h, 0d5h, 035h, Ob5h, 075h, Ofb5h
db 00dh, 08dh, 04dh, Ocdh, 02dh, Oadh, 06dh, Oedh
db 01dh, 09dh, 05dh, 0ddh, 03dh, Obdh, 07dh, Ofdh
db 003h, 083h, 043h, 0c3h, 023h, 0a3h, 063h, Oe3h
db 013h, 093h, 053h, 0d3h, 033h, Ob3h, 073h, 0f3h
db 00bh, 08bh, 04bh, Ocbh, 02bh, Oabh, 06bh, Oebh
db 01bh, 09bh, 05bh, Odbh, 03bh, Obbh, 07bh, Ofbh
db 007h, 087h, 047h, Oc7h, 027h, 0a7h, 067h, Oe7h

512

72.7. EXERCISE 2.7

CHAPTER 72. LEVEL 2

db 017h, 097h, 057h, 0d7h, 037h, Ob7h, 077h, O0f7h
db 00fh, 08fh, 04fh, Ocfh, 02fh, Oafh, 06fh, Oefh
db 01fh, 09fh, 05fh, O0dfh, 03fh, Obfh, 07fh, Offh

f proc near
arg_0 = dword ptr 4
mov edx, [esptarg_0]

movzx eax, dl

movzx eax, _table[eax]
mov ecx, edx

shr edx, 8

movzx edx, dl

movzx edx, _tablel[edx]
shl ax, 8

movzx eax, ax

or eax, edx

shr ecx, 10h

movzx edx, cl

movzx edx, _table[edx]
shr ecx, 8

movzx ecx, cl

movzx ecx, _tablelecx]

shl dx, 8
movzx edx, dx
shl eax, 10h
or edx, ecx
or eax, edx
retn

f endp

72.7.2 Keil (ARM) + -03

£2 PROC
LDR rl,|L0.76|
LDRB r2,[r1,r0,LSR #8]
AND r0,r0,#0xff
LDRB r0, [r1,r0]
ORR r0,r2,r0,LSL #8
BX 1r
ENDP
£3 PROC
MOV r3,r0
LSR r0,r0,#16
PUSH {1r}
BL £2
MOV r12,r0
LSL r0,r3,#16
LSR r0,r0,#16
BL £2
ORR r0,r12,r0,LSL #16
POP {pc}
ENDP
|LO.76]|
DCB 0x00,0x80,0x40,0xcO
DCB 0x20,0xa0,0x60,0xe0
DCB 0x10,0x90,0x50,0xd0

013

72.7. EXERCISE 2.7

CHAPTER 72. LEVEL 2

DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB

0x30,0xb0,0x70,0xf0
0x08,0x88,0x48,0xc8
0x28,0xa8,0x68,0xe8
0x18,0x98,0x58,0xd8
0x38,0xb8,0x78,0xf8
0x04,0x84,0x44,0xc4
0x24,0xa4,0x64,0xed
0x14,0x94,0x54,0xd4
0x34,0xb4,0x74,0xf4
0x0c,0x8c,0x4c,0xcc
0x2c,0xac,0x6¢c,0xec
0Ox1c,0x9c,0x5c,0xdc
0x3c,0xbc,0x7c,0xfc
0x02,0x82,0x42,0xc2
0x22,0xa2,0x62,0xe2
0x12,0x92,0x52,0xd2
0x32,0xb2,0x72,0xf2
0x0a,0x8a,0x4a,0xca
0x2a,0xaa,0x6a,0xea
Ox1la,0x9a,0x5a,0xda
0x3a,0xba,0x7a,0xfa
0x06,0x86,0x46,0xc6
0x26,0xa6,0x66,0xeb
0x16,0x96,0x56,0xd6
0x36,0xb6,0x76,0xf6
0x0e,0x8e,0x4e,0xce
0x2e,0xae,0x6e,0xee
Oxle,0x9e,0x5e,0xde
0x3e,0xbe,0x7e,0xfe
0x01,0x81,0x41,0xc1
0x21,0xal,0x61,0xel
0x11,0x91,0x51,0xd1
0x31,0xb1,0x71,0xf1l
0x09,0x89,0x49,0xc9
0x29,0xa9,0x69,0xe9
0x19,0x99,0x59,0xd9
0x39,0xb9,0x79,0xf9
0x05,0x85,0x45,0xch
0x25,0xab,0x65,0xeb
0x15,0x95,0x55,0xd5
0x35,0xb5,0x75,0xf5
0x0d,0x8d,0x4d,0xcd
0x2d,0xad,0x6d,0xed
0x1d,0x9d,0x5d,0xdd
0x3d,0xbd,0x7d,0xfd
0x03,0x83,0x43,0xc3
0x23,0xa3,0x63,0xe3
0x13,0x93,0x53,0xd3
0x33,0xb3,0x73,0xf3
0x0b, 0x8b,0x4b,0xcb
0x2b,0xab,0x6b,0xeb
0x1b,0x9b,0x5b,0xdb
0x3b,0xbb,0x7b,0xfb
0x07,0x87,0x47,0xc7
0x27,0xa’7,0x67,0xe7
0x17,0x97,0x57,0xd7
0x37,0xb7,0x77,0xf7
0x0f ,0x8f,0x4f,0xcf
0x2f ,0xaf,0x6f,0xef
0x1f,0x9f,0x5f,0xdf
0x3f,0xbf,0x7f,0xff

514

72.7. EXERCISE 2.7

CHAPTER 72. LEVEL 2

72.7.3 Keil (thumb) + -03

£2 PROC

LDR
LSLS
LSRS
LDRB
LSLS
LSRS
LDRB
ORRS
BX

ENDP

£3 PROC

MOVS
LSLS
PUSH
LSRS
BL

LSLS
LSRS
BL

ORRS
POP
ENDP

|L0.48|
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB

rl,|L0.48|
r2,r0,#24
r2,r2,#24
r2,[r1,r2]
r2,r2,#8
r0,r0,#8
r0, [r1,r0]
r0,r0,r2
1r

r3,r0
r0,r0,#16
{r4,1r}
r0,r0,#16
f2
rd,r0,#16
r0,r3,#16
£2
r0,r0,r4
{r4,pc}

0x00,0x80,0x40,0xc0
0x20,0xa0,0x60,0xe0
0x10,0x90,0x50,0xd0
0x30,0xb0,0x70,0xf0
0x08,0x88,0x48,0xc8
0x28,0xa8,0x68,0xe8
0x18,0x98,0x58,0xd8
0x38,0xb8,0x78,0xf8
0x04,0x84,0x44,0xc4
0x24,0xa4,0x64,0xed
0x14,0x94,0x54,0xd4
0x34,0xb4,0x74,0xf4
0x0c,0x8c,0x4c,0xcc
0x2c,0xac,0x6c,0Oxec
0Ox1c,0x9c,0x5c,0xdc
0x3c,0xbc,0x7c,0xfc
0x02,0x82,0x42,0xc2
0x22,0xa2,0x62,0xe2
0x12,0x92,0x52,0xd2
0x32,0xb2,0x72,0xf2
0x0a,0x8a,0x4a,0xca
0x2a,0xaa,0x6a,0xea
Oxla,0x9a,0xba,0xda
0x3a,0xba,0x7a,0xfa
0x06,0x86,0x46,0xc6
0x26,0xa6,0x66,0xeb6
0x16,0x96,0x56,0xd6
0x36,0xb6,0x76,0xf6
0x0e,0x8e,0x4e,0xce
0x2e,0xae,0x6e,0xee
Oxle,0x9e,0x5e,0xde
0x3e,0xbe,0x7e,0xfe
0x01,0x81,0x41,0xcl

515

72.8. EXERCISE 2.8

CHAPTER 72. LEVEL 2

DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB

0x21,0xal1,0x61,0xel
0x11,0x91,0x51,0xd1
0x31,0xb1,0x71,0xf1
0x09,0x89,0x49,0xc9
0x29,0xa9,0x69,0xe9
0x19,0x99,0x59,0xd9
0x39,0xb9,0x79,0xf9
0x05,0x85,0x45,0xch
0x25,0xa5,0x65,0xe5
0x15,0x95,0x55,0xd5
0x35,0xb5,0x75,0xf5
0x0d,0x8d,0x4d,0xcd
0x2d,0xad,0x6d,0xed
0Ox1d,0x9d,0x5d,0xdd
0x3d,0xbd,0x7d,0xfd
0x03,0x83,0x43,0xc3
0x23,0xa3,0x63,0xe3
0x13,0x93,0x53,0xd3
0x33,0xb3,0x73,0xf3
0x0b,0x8b,0x4b,0xcb
0x2b,0xab,0x6b,0xeb
0x1b,0x9b,0x5b, 0xdb
0x3b,0xbb,0x7b,0xfb
0x07,0x87,0x47,0xcT
0x27,0xa7,0x67,0xe7
0x17,0x97,0x57,0xd7
0x37,0xb7,0x77,0xf7
0x0f,0x8f,0x4f,0xcf
0x2f,0xaf,0x6f,0xef
0x1f,0x9f,0x5f,0xdf
0x3f,0xbf,0x7f,0xff

72.8

72.8.1

Exercise 2.8

MSVC 2010 + /01

(/O1: minimize space).

_a$ =8 ; size = 4
_b$ = 12 ; size = 4
_c$ = 16 ; size = 4
7s@QYAXPANOOQ@Z PROC ; s, COMDAT
mov eax, DWORD PTR _b$[esp-4]
mov ecx, DWORD PTR _a$[esp-4]
mov edx, DWORD PTR _c$[esp-4]
push esi
push edi
sub ecx, eax
sub edx, eax
mov edi, 200 ; 000000c8H
$LL60s:
push 100 ; 00000064H
pop esi
$LL30s:
fld QWORD PTR [ecx+eax]
fadd QWORD PTR [eax]
fstp QWORD PTR [edx+eax]
add eax, 8
dec esi
jne SHORT $LL3G@s

516

72.8. EXERCISE 2.8

CHAPTER 72. LEVEL 2

dec edi
jne SHORT $LL6@s
pop edi
pop esi
ret 0
?7sQQ@YAXPANOOQZ ENDP ; S

72.8.2 Keil (ARM) + -03

PUSH {r4-r12,1r}
MOV r9,r2
MOV r10,r1
MOV r11,r0
MOV r5,#0
[LO.20]|
ADD rO0,r5,r5,LSL #3
ADD r0,r0,r5,LSL #4
MOV r4 ,#0
ADD r8,r10,r0,LSL #5
ADD r7,r11,r0,LSL #5
ADD r6,r9,r0,LSL #5
[L0.44]|
ADD r0,r8,r4,LSL #3
LDM r0,{r2,r3}
ADD rl,r7,r4,LSL #3
LDM r1,{r0,r1}
BL __aeabi_dadd
ADD r2,r6,r4,LSL #3
ADD rd,rd,#1
STM r2,{r0,r1}
CMP r4 ,#0x64
BLT |L0.44]|
ADD r5,r5,#1
CMP r5,#0xc8
BLT |L0.20]|
POP {r4-r12,pc}

72.8.3 Keil (thumb) + -03

PUSH {r0-r2,r4-r7,1r}

MOVS rd ,#0

SUB sp,sp, #8
|L0.6|

MOVS rl,#0x19

MOVS r0,r4d

LSLS rl,rl,#5

MULS r0,r1,r0

LDR r2, [sp,#8]

LDR rl, [sp,#0xc]

ADDS r2,r0,r2

STR r2, [sp, #0]

LDR r2, [sp,#0x10]

MOVS r5,#0

ADDS r7,r0,r2

ADDS r0,r0,r1

STR r0, [sp, #4]
[L0.32]

LSLS r6,r5,#3

72.9. EXERCISE 2.9

CHAPTER 72. LEVEL 2

ADDS r0,r0,r6
LDM r0!,{r2,r3}
LDR r0, [sp,#0]
ADDS rl,r0,r6
LDM rl,{r0,r1}
BL __aeabi_dadd
ADDS r2,r7,r6
ADDS r5,r5,#1
STM r2!,{r0,r1}
CMP r5,#0x64
BGE |L0.62]|
LDR r0, [sp, #4]
B |L0.32|
|L0.62]
ADDS rd,rd,#1
CMP r4,#0xc8
BLT |LO.6|
ADD sp,sp,#0x14
POP {r4-r7,pc}

72.9 Exercise 2.9

72.9.1 MSVC 2010+ /01

(/O1: minimize space).

tv315 = -8 ; size = 4
tv291 = -4 ; size = 4
_a$ =8 ; size = 4
_b$ = 12 ; size = 4
_c$ = 16 ; size = 4
?m@QYAXPANOOQZ PROC ; m, COMDAT

push ebp

mov ebp, esp

push ecx
push ecx
mov edx, DWORD PTR _a$[ebp]
push ebx
mov ebx, DWORD PTR _c$[ebp]
push esi
mov esi, DWORD PTR _Db$[ebp]

sub edx, esi
push edi
sub esi, ebx

mov DWORD PTR tv315[ebp], 100
$L1L9Cm:

mov eax, ebx

mov DWORD PTR tv291[ebp], 300
$L1L6Cm:

fldz

lea ecx, DWORD PTR [esi+eax]

fstp QWORD PTR [eax]

mov edi, 200
$LL30m:

dec edi

f1d QWORD PTR [ecx+edx]

fmul QWORD PTR [ecx]

fadd QWORD PTR [eax]

fstp QWORD PTR [eax]

jne HORT $LL3Cm

>

>

>

; 00000064H

0000012cH

000000c8H

518

72.9. EXERCISE 2.9

CHAPTER 72. LEVEL 2

add
dec
jne
add
dec
jne
pop
pop
pop

leave

ret

eax, 8

DWORD PTR tv291 [ebp]
SHORT $LL6Gm

ebx, 800

DWORD PTR tv315[ebp]
SHORT $LL9Gm

edi

esi

ebx

0

?m@@YAXPANOOQZ ENDP

>

; 00000320H

72.9.2 Keil (ARM) + -03

|LO.12]|

|LO.52]

|L0.84|

PUS
SUB
MOV

LDR
ADD
ADD
ADD
STR
LDR
MOV
ADD
LDR
ADD

MOV
MOV
ADD
STM
MOV
LDR
ADD
ADD

LDM
LDM
BL

LDM
BL

ADD
STM
CMP
BLT
ADD
CMP
BLT
ADD
CMP
BLT
ADD
POP

H {r0-r2,r4-r11,1r}
sp,sp, #8
r5,#0

rl, [sp,#0xc]
r0,r5,r5,LSL #3
r0,r0,r5,LSL #4
rl,r1,r0,LSL #5
rl, [sp,#0]

rl, [sp,#8]

r4d ,#0
rll,r1,r0,LSL #5
rl, [sp,#0x10]
r10,r1,r0,LSL #5

r0,#0

rl,r0
r7,r10,r4,LSL #3
r7,{r0,r1}

r6,r0

10, [sp,#0]
r8,r11,r4,LSL #3
r9,r0,r4,LSL #3

r9,{r2,r3}
r8,{r0,r1}
__aeabi_dmul
r7,{r2,r3}
__aeabi_dadd
r6,r6,#1
r7,{r0,r1}
r6,#0xc8
[1.0.84|
rd,r4,#1
r4,#0x12cC
|LO.52]
r5,r5,#1
r5,#0x64
[10.12]
sp,sp,#0x14
{r4-ri11,pc}

72.9.3 Keil (thumb) + -03

019

72.10. EXERCISE 2.10

CHAPTER 72. LEVEL 2

PUSH {r0-r2,r4-r7,1r}

MOVS r0,#0

SUB sp,sp,#0x10

STR r0, [sp,#0]
|L0.8]|

MOVS rl,#0x19

LSLS rl,rl,#5

MULS rO0,r1,r0

LDR r2, [sp,#0x10]

LDR rl, [sp,#0x14]

ADDS r2,r0,r2

STR r2, [sp,#4]

LDR r2, [sp,#0x18]

MOVS r5,#0

ADDS r7,r0,r2

ADDS r0,r0,rl

STR r0, [sp, #8]
[LO.32]

LSLS rd,r5,#3

MOVS r0,#0

ADDS r2,r7,r4

STR r0, [r2,#0]

MQOVS r6,r0

STR r0, [r2,#4]
|L0.44|

LDR r0, [sp, #8]

ADDS r0,r0,r4

LDM ro!,{r2,r3}

LDR 10, [sp,#4]

ADDS rl,r0,r4d

LDM rl,{r0,r1}

BL __aeabi_dmul

ADDS r3,r7,r4

LDM r3,{r2,r3}

BL __aeabi_dadd

ADDS r2,r7,r4

ADDS r6,r6,#1

STM r2!,{r0,r1}

CMP r6,#0xc8

BLT |L0.44|

MOVS r0,#0xff

ADDS r5,r5,#1

ADDS r0,r0,#0x2d

CMP r5,r0

BLT |L0.32]|

LDR r0, [sp, #0]

ADDS r0,r0,#1

CMP r0,#0x64

STR r0, [sp, #0]

BLT [L0.8]|

ADD sp,sp,#0xlc

POP {r4-r7,pc}

72.10 Exercise 2.10

If to compile this piece of code and run, a number will be printed. Where it came from? Where it came from if to compile it in

MSVC with optimization (/0x)?

’#include <stdio.h>

520

72.11. EXERCISE 2.11 CHAPTER 72. LEVEL 2

int main()

{
printf ("%d\n");

return O;

72.11 Exercise 2.11

As a practical joke, “fool” your Windows Task Manager to show much more CPUs/CPU cores than your machine actually has:

L] Windows Task Manager

File Options View Help

Applications | Processes | Services Performance Networking | Users

CPL Usage CPU Usage History

Memory Physical Memory Usage History

Figure 72.1: Fooled Windows Task Manager

72.12 Exercise 2.12

This is a well-known algorithm. How it’s called?

72.12.1 MSVC 2012 x64 + /0x

s$ = 8
f PROC
cmp BYTE PTR [rcx], O
mov r9, rcx
je SHORT $LN13@f
npad 8
$LL50Of :
movzx edx, BYTE PTR [rcx]
lea eax, DWORD PTR [rdx-97]
cmp al, 25

521

72.12. EXERCISE 2.12

CHAPTER 72. LEVEL 2

ja SHORT $LN3@f

movsx r8d, dl

mov eax, 1321528399

sub r8d, 84

imul r8d

sar edx, 3

mov eax, edx

shr eax, 31

add edx, eax

imul edx, 26

sub r8d, edx

add r8b, 97

jmp SHORT $LN14@f
$LN3Of :

lea eax, DWORD PTR [rdx-65]

cmp al, 25

ja SHORT $LN1@f

movsx r8d, dl

mov eax, 1321528399

sub r8d, 52

imul r8d

sar edx, 3

mov eax, edx

shr eax, 31

add edx, eax

imul edx, 26

sub r8d, edx

add r8b, 65
$LN140f :

mov BYTE PTR [rcx], r8b
$LN1@f:

inc rcx

cmp BYTE PTR [rcx], O

jne SHORT $LL5Qf
$LN130f:

mov rax, r9

ret 0
f ENDP

; 4ecdecdfH
; 00000054H

; 00000061H

; 4ecdecdfH

; 00000034H

; 00000041H

72.12.2 Keil (ARM)

f PROC
PUSH {r4-r6,1r}
MOV rd,r0
MOV r5,r0
B |L0.84]
|LO.16]|
SUB rl,r0,#0x61
CMP rl,#0x19
BHI |L0.48]|
SUB r0,r0,#0x54
MOV rl,#0xla
BL __aeabi_idivmod
ADD r0,rl,#0x61
B |LO.76]|
|LO.48|
SUB rl,r0,#0x41
CMP rl,#0x19
BHI |L0.80]|
SUB r0,r0,#0x34

522

72.13. EXERCISE 2.13

CHAPTER 72. LEVEL 2

MoV
BL
ADD
|L0.76]|
STRB
|L0.80]|
ADD
|LO.84]|
LDRB
CMP
MOVEQ
BNE
POP
ENDP

rl,#0x1a
__aeabi_idivmod
r0,rl,#0x41

10, [r4,#0]
rd,r4,#1

r0, [r4,#0]
r0,#0
r0,r5
|LO.16]|
{r4-r6,pc}

72.12.3 Keil (thumb)

£ PROC
PUSH
MOVS
MOVS

|L0.8|

MOVS
SUBS
CMP
BHI
SUBS
MOVS
BL
ADDS

|L0.28|
MOVS
SUBS
CMP
BHI
SUBS
MOVS
BL
ADDS
|1.0.46|
STRB
|10.48|
ADDS
|L0.50]|
LDRB
CMP
BNE
MOVS
POP
ENDP

{r4-r6,1r}
rd,r0
r5,r0
|LO.50]

rl,r0
rl,rl,#0x61
rl,#0x19
|LO.28]|
r0,r0,#0x54
rl,#0xla
__aeabi_idivmod
rl,rl1,#0x61
|LO.46]|

rl,r0
ri,rl,#0x41
rl,#0x19
[L0.48|
r0,r0,#0x34
rl,#0xla
__aeabi_idivmod
rl,rl,#0x41

ri, [r4,#0]
rd,r4,#1

r0, [r4,#0]
r0,#0
|LO.8|
r0,r5
{r4-r6,pc}

72.13 Exercise 2.13

This is a well-known cryptoalgorithm of the past. How it’s called?

923

72.14. EXERCISE 2.14

CHAPTER 72. LEVEL 2

72.13.1 MSVC 2012 + /0x

_in$ = 8 ; size = 2
_f PROC
movzx ecx, WORD PTR _in$[esp-4]
lea eax, DWORD PTR [ecx*4]
xor eax, ecx
add eax, eax
xor eax, ecx
shl eax, 2
xor eax, ecx
and eax, 32 ; 00000020H
shl eax, 10 ; 0000000aH
shr ecx, 1
or eax, ecx
ret 0
f ENDP

72.13.2 Keil (ARM)

£ PROC

EOR rl,r0,r0,LSR #2
EOR rl,rl1,r0,LSR #3
EOR rl,rl1,r0,LSR #5
AND rl,rl,#1

LSR r0,r0,#1

ORR r0,r0,r1,LSL #15
BX 1r

ENDP

72.13.3 Keil (thumb)

£ PROC

LSRS rl,r0,#2

EORS rl,rl,r0

LSRS r2,r0,#3

EORS rl,rl,r2

LSRS r2,r0,#5

EORS rl,rl,r2

LSLS rl,rl1,#31
LSRS r0,r0,#1

LSRS rl,rl,#16
ORRS r0,r0,rl

BX 1r

ENDP

72.14 Exercise 2.14

Another well-known algorithm. The function takes two variables and returning one.

72.14.1 MSVC 2012

_rt$1
_rt$2

_x$
_y$

= -4 ; size = 4
=8 ; size = 4
8 ; size = 4
12 ; size = 4

524

72.14. EXERCISE 2.14

CHAPTER 72. LEVEL 2

?fQQYAIIIQZ PROC

push ecx
push esi
mov esi, DWORD PTR _x$[esp+4]
test esi, esi
jne SHORT $LN7Qf
mov eax, DWORD PTR _y$[esp+4]
pop esi
pop ecx
ret 0
$LN7ef:
mov edx, DWORD PTR _y$[esp+4]
mov eax, esi
test edx, edx
je SHORT $LN8e@f
or eax, edx
push edi
bsf edi, eax
bsf eax, esi
mov ecx, eax
mov DWORD PTR _rt$1[esp+12], eax
bsf eax, edx
shr esi, cl
mov ecx, eax
shr edx, cl
mov DWORD PTR _rt$2[esp+8], eax
cmp esi, edx
je SHORT $LN22@f
$LN230f :
jbe SHORT $LN2@f
Xor esi, edx
xXor edx, esi
Xor esi, edx
$LN20f :
cmp esi, 1
je SHORT $LN22@f
sub edx, esi
bsf eax, edx
mov ecx, eax
shr edx, cl
mov DWORD PTR _rt$2[esp+8], eax
cmp esi, edx
jne SHORT $LN23ef
$LN220f :
mov ecx, edi
shl esi, cl
pop edi
mov eax, esi
$LN8ef :
pop esi
pop ecx
ret 0

?fOQYAIIIQZ ENDP

72.14.2 Keil (ARM mode)

[1£1]] PROC
CMP r0,#0
RSB rl,r0,#0
AND r0,r0,r1

525

72.14. EXERCISE 2.14

CHAPTER 72. LEVEL 2

CLZ r0,r0
RSBNE r0,r0,#0x1f
BX 1r
ENDP
f PROC
MOVS r2,r0
MOV r3,rl
MOVEQ r0,rl
CMPNE r3,#0
PUSH {1r}
POPEQ {pc}
ORR r0,r2,r3
BL [1£1]]
MOV r12,r0
MOV r0,r2
BL [1£1] |
LSR r2,r2,r0
|LO.196]
MOV r0,r3
BL | 1£1] |
LSR r0,r3,r0
CMP r2,r0
EORHI rl,r2,r0
EORHI r0,r0,rl
EORHI r2,rl1,r0
BEQ |L0.240]|
CMP r2,#1
SUBNE r3,r0,r2
BNE [L0.196]|
|L0.240]|
LSL r0,r2,r12
POP {pc}
ENDP

72.14.3 GCC 4.6.3 for Raspberry Pi (ARM mode)

f:
subs r3, rO, #0
beq .L162
cmp rl, #0
moveq rl, r3
beq .L162
orr r2, rl, r3
rsb ip, r2, #0
and ip, ip, r2
cmp r2, #0
rsb r2, r3, #0
and r2, r2, r3
clz r2, r2
rsb r2, r2, #31
clz ip, ip
rsbne ip, ip, #31
mov r3, r3, lsr r2
b .L169
L1711

eorhi rl, rl, r2
eorhi r3, rl, r2
cmp r3, #1

rsb rl, r3, rl

526

72.15. EXERCISE 2.15

CHAPTER 72. LEVEL 2

beq
.L169:
rsb
and
cmp
clz
mov
rsbne
mov
cmp
eor
bne
.L167:
mov
.L162:
mov
bx

.L167

r0, rl, #0

r0, r0, ri

rl, #0

r0, r0

r2, r0

r2, r0, #31
rl, rl, lsr r2
r3, ri

r2, rl, r3
.L171

rl, r3, asl ip

r0, ri
1r

72.15 Exercise 2.15

Well-known algorithm again. What it does?
Take also notice that the code for x86 uses FPU, but SIMD-instructions are used instead in x64 code. That’s OK: 24.

72.15.1 MSVC 2012 x64 [Ox

__real@3£800000

tmp$l = 8

tmp$2 = 8

£ PROC
movsdx

movss
mov
Xor
mov
npad
$LLAOS :
imul
add
mov
and
imul
bts
add
mov
mov
and
bts
movss
mov

_real@412e848000000000 DQ 0412e848000000000r
__real©@4010000000000000 DQ 04010000000000000r
_real@4008000000000000 DQ 04008000000000000r

DD 03£800000r

; 1e+006
; 4
g &
;1

xmm3, QWORD PTR __real@4008000000000000

xmm4, DWORD PTR __real@3£800000

edx, DWORD PTR ?RNG_state@?177get_rand@Q@9Q9

ecx, ecx
r8d, 200000
2

edx, 1664525

edx, 1013904223

eax, edx

eax, 8388607

edx, 1664525

eax, 30

edx, 1013904223

DWORD PTR tmp$2[rsp], eax
eax, edx

eax, 8388607

eax, 30

xmmO, DWORD PTR tmp$2[rsp]
DWORD PTR tmp$1[rspl, eax

cvtps2pd xmmO, xmmO

subsd

xmmO, xmm3

cvtpd2ps xmm2, xmmO

movss

xmmO, DWORD PTR tmp$1[rsp]

cvtps2pd xmmO, xmmO

mulss

Xmm2, xmm2

; 00030d40H

; 0019660dH
; 3c6ef35fH

; OO7fffffH
; 0019660dH
; 3c6ef35fH

; O07TfffffH

927

72.15. EXERCISE 2.15

CHAPTER 72. LEVEL 2

$LN3ef :

$LN150f :

subsd xmmO, xmm3
cvtpd2ps xmml, xmmO
mulss xmml, xmml
addss xmml, xmm2
comiss xmm4, xmml
jbe SHORT $LN3@f
inc ecx

imul edx, 1664525

add edx, 1013904223

mov eax, edx

and eax, 8388607

imul edx, 1664525

bts eax, 30

add edx, 1013904223

mov DWORD PTR tmp$2[rspl, eax
mov eax, edx

and eax, 8388607

bts eax, 30

movss xmmO, DWORD PTR tmp$2[rsp]
mov DWORD PTR tmp$1[rsp]l, eax

cvtps2pd xmmO, xmmO
subsd xmmO, xmm3
cvtpd2ps xmm2, xmmO
movss xmmO, DWORD PTR tmp$1[rsp]
cvtps2pd xmm0O, xmmO
mulss xmm2, xmm2
subsd xmmO, xmm3
cvtpd2ps xmml, xmmO
mulss xmml, xmml
addss xmml, xmm2
comiss xmm4, xmml
jbe SHORT $LN150@f
inc ecx

imul edx, 1664525

add edx, 1013904223

mov eax, edx

and eax, 8388607

imul edx, 1664525

bts eax, 30

add edx, 1013904223

mov DWORD PTR tmp$2[rspl, eax
mov eax, edx

and eax, 8388607

bts eax, 30

movss xmmO, DWORD PTR tmp$2[rsp]
mov DWORD PTR tmp$1[rsp]l, eax

cvtps2pd xmmO, xmmO
subsd xmmO, xmm3
cvtpd2ps xmm2, xmmO
movss xmmO, DWORD PTR tmp$1[rsp]
cvtps2pd xmm0O, xmmO
mulss Xxmm2, xmm2
subsd xmmO, xmm3
cvtpd2ps xmml, xmmO
mulss xmml, xmmil
addss xmml, xmm2
comiss xmm4, xmml
jbe SHORT $LN16@f
inc ecx

528

; 0019660dH
; 3c6ef35fH

; OO7TfffffH
; 0019660dH

; 3c6ef35fH

; 007TfffffH

; 0019660dH
; 3c6ef35fH

; OO7TfffffH
; 0019660dH

; 3c6ef35fH

; 007TfffffH

72.15. EXERCISE 2.15

CHAPTER 72. LEVEL 2

$LN160f :

$LN170Qf:

$LN18ef :

imul edx, 1664525 ; 0019660dH
add edx, 1013904223 ; 3c6ef35fH
mov eax, edx

and eax, 8388607 ; O07TfffffH
imul edx, 1664525 ; 0019660dH
bts eax, 30

add edx, 1013904223 ; 3c6ef35fH
mov DWORD PTR tmp$2[rspl, eax

mov eax, edx

and eax, 8388607 ; 007fffffH
bts eax, 30

movss xmmO, DWORD PTR tmp$2[rsp]

mov DWORD PTR tmp$1[rspl, eax

cvtps2pd xmmO, xmmO

subsd xmmO, xmm3

cvtpd2ps xmm2, xmmO

movss xmmO, DWORD PTR tmp$1[rsp]

cvtps2pd xmmO, xmmO

mulss Xxmm2, xXmm2

subsd xmmO, xmm3

cvtpd2ps xmml, xmmO

mulss xmml, xmml

addss xmml, xmm2

comiss xmm4, xmml

jbe SHORT $LN17@f

inc ecx

imul edx, 1664525 ; 0019660dH
add edx, 1013904223 ; 3c6ef35fH
mov eax, edx

and eax, 8388607 ; O07fffffH
imul edx, 1664525 ; 0019660dH
bts eax, 30

add edx, 1013904223 ; 3c6ef35fH
mov DWORD PTR tmp$2[rspl, eax

mov eax, edx

and eax, 8388607 ; 007fffffH
bts eax, 30

movss xmmO, DWORD PTR tmp$2[rsp]

mov DWORD PTR tmp$1[rspl, eax

cvtps2pd xmmO, xmmO

subsd xmmO, xmm3

cvtpd2ps xmm2, xmmO

movss xmmO, DWORD PTR tmp$1[rsp]

cvtps2pd xmmO, xmmO

mulss Xmm2, xmm2

subsd xmmO, xmm3

cvtpd2ps xmml, xmmO

mulss xmml, xmml

addss xmml, xmm2

comiss xmm4, xmmil

jbe SHORT $LN18@f

inc ecx

dec r8

jne $LLAeE

movd xmm0, ecx

mov DWORD PTR 7RNG_state@?177get_rand@@9@9, edx

cvtdq2ps xmm0O, xmmO
cvtps2pd xmml, xmmO

529

72.15. EXERCISE 2.15

CHAPTER 72. LEVEL 2

mulsd xmml, QWORD PTR __real@4010000000000000
divsd xmml, QWORD PTR __real©@412e848000000000
cvtpd2ps xmmO, xmml
ret 0

f ENDP

72.15.2 GCC4.4.6 -03 x64

f1:
mov eax, DWORD PTR v1.2084[rip]
imul eax, eax, 1664525
add eax, 1013904223
mov DWORD PTR v1.2084[rip], eax
and eax, 8388607
or eax, 1073741824
mov DWORD PTR [rsp-4], eax
movss xmmO, DWORD PTR [rsp-4]
subss xmmO, DWORD PTR .LCO[rip]
ret

f:
push rbp
xor ebp, ebp
push rbx
Xor ebx, ebx
sub rsp, 16

.L6:
Xor eax, eax
call f1
xor eax, eax
movss DWORD PTR [rspl, xmmO
call f1
movss xmml, DWORD PTR [rsp]
mulss xmmO, xmmO
mulss xmml, xmml
lea eax, [rbx+1]
addss xmml, xmmO
movss xmmO, DWORD PTR .LC1[rip]
ucomiss xmmO, xmml
cmova ebx, eax
add ebp, 1
cmp ebp, 1000000
jne .L6
cvtsil2ss xmm0, ebx
unpcklps xmm0O, xmmO
cvtps2pd xmm0O, xmmO
mulsd xmmO, QWORD PTR .LC2[rip]
divsd xmmO, QWORD PTR .LC3[rip]
add rsp, 16
pop rbx
pop rbp
unpcklpd xmmO, xmmO
cvtpd2ps xmmO, xmmO
ret

v1.2084:
.long 305419896

.LCO:
.long 1077936128

.LC1:
.long 1065353216

.LC2:

530

72.15. EXERCISE 2.15

CHAPTER 72. LEVEL 2

.LC3:

.long
.long

.long
.long

0
1074790400

0
1093567616

72.15.3 GCC4.8.1-03 x86

f1:

L7

v1.2023:

.LCO:

.LC3:

.LC4:

sub
imul
add
mov
and
or
mov
fld
fsub
add
ret

push
mov
push
xor
sub

call
fstp
call
lea
fld
fmul
fxch
fmul
faddp
fld1

esp, 4

eax, DWORD PTR v1.2023,
eax, 1013904223

DWORD PTR v1.2023, eax
eax, 8388607

eax, 1073741824

DWORD PTR [esp], eax
DWORD PTR [esp]

DWORD PTR .LCO

esp, 4

esi
esi, 1000000

ebx

ebx, ebx

esp, 16

f1

DWORD PTR [esp]
f1

eax, [ebx+1]
DWORD PTR [esp]
st, st(0)

st (1)

st, st(0)
st(1), st

fucomip st, st(1)

fstp
cmova
sub
jne
mov
fild
fmul
fdiv
fstp
fld
add
pop
pop
ret

.long
.long

.long

st (0)

ebx, eax

esi, 1

L7

DWORD PTR [esp+4], ebx
DWORD PTR [esp+4]
DWORD PTR .LC3
DWORD PTR .LC4
DWORD PTR [esp+8]
DWORD PTR [esp+8]
esp, 16

ebx

esi

305419896
1077936128

1082130432

1664525

531

72.15. EXERCISE 2.15

CHAPTER 72. LEVEL 2

.long

1232348160

72.15.4 Keil (ARM mode): Cortex-R4F CPU as target

f1

ILO

ILO
|LO
ILO
|LO

ILO

.68

.184|

.188|

.192|

.196|

.200]|

PROC

LDR

LDR

LDR

VMOV .F32
MUL

LDR

ADD

STR

BFC

ORR
VMOV
VSUB.F32
BX

ENDP

PROC
PUSH
MOV
LDR
MOV

BL

VMOV .F32
BL

VMOV .F32
ADD
VMUL.F32
VMLA.F32
VMOV

CMP
ADDLT
CMP

BLT
VMOV
VMOV .F64

VCVT.F32.
VCVT .F64.

VMUL .F64
VLDR
VDIV.F64

VCVT.F32.

POP

ENDP

DCD

DCD

DCD

DCD

DCFD

rl,|L0.184]|

r0, [r1,#0] ; vi
r2,|L0.188]|
s1,#3.00000000
r0,r0,r2
r2,|L0.192]
r0,r0,r2

r0, [r1,#0] ; vi
r0,#23,#9
r0,r0,#0x40000000
s0,r0

s0,s0,s1

1r

{r4,r5,1r}
rd ,#0
r5,|L0.196]|
r3,r4

f1

s2,s0

f1

sl,s2
r3,r3,#1
sl,s1,s1
s1,s0,s0
r0,s1
r0,#0x3£800000
rd,r4,#1
r3,r5
[1.0.68|
sO,r4d
d1,#4.00000000
S32 s0,s0
F32 d0,s0
d0,do0,d1
d1,|L0.200]|
d2,d0,d1
F64 s0,d2
{r4,r5,pc}

||.datal |
0x0019660d
0x3c6ef35f

0x000£4240

0x412e848000000000 ;

B

1000000

532

72.16. EXERCISE 2.16 CHAPTER 72. LEVEL 2
DCD 0x00000000
AREA ||.datal||, DATA, ALIGN=2

vl
DCD 0x12345678

72.16 Exercise 2.16

Well-known function. What it computes? Why stack overflows if 4 and 2 are supplied at input? Are there any error?

72.16.1 MSVC 2012 x64 /Ox

m$ = 48
n$ = 56
£ PROC
$LN14:
push rbx
sub rsp, 32
mov eax, edx
mov ebx, ecx
test ecx, ecx
e SHORT $LN11@f
$LL5ef :
test eax, eax
jne SHORT $LN1@f
mov eax, 1
Jjmp SHORT $LN126@f
$LN1@f:
lea edx, DWORD PTR [rax-1]
mov ecx, ebx
call f
$LN126f:
dec ebx
test ebx, ebx
jne SHORT $LL5Qf
$LN11@f:
inc eax
add rsp, 32
pop rbx
ret 0
£ ENDP

72.16.2 Keil (ARM) -03

f PROC
PUSH {r4,1r}
MOVS rd,r0
ADDEQ r0,rl,#1
POPEQ {r4,pc}
CMP rl,#0
MOVEQ rl,#1
SUBEQ r0,r0,#1
BEQ |L0.48]|
SUB rl,rl,#1
BL f
MOV rl,r0
SUB r0,r4,#1

|L0.48|

933

72.17. EXERCISE 2.17

CHAPTER 72. LEVEL 2

POP
B
ENDP

{rd4,1r}
f

72.16.3 Keil (thumb) -03

f PROC
PUSH
MOVS
BEQ
CMP
BEQ
SUBS
BL
MOVS
|LO.18]|
SUBS
BL
POP
|LO.26|
ADDS
POP
|L0.30|
MOVS

ENDP

{r4,1r}
rd,r0
[10.26|
rl,#0
[L0.30]|
rl,rl,#1
£

rl,r0

rO0,r4,#1
f
{r4,pc}

rO,r1,#1
{r4,pct

rl,#1
|LO.18|

72.17 Exercise 2.17

This program prints some information to stdout, each time different. What is it?

Compiled binaries:

e Linux x64
e MacOSX x64
e Win32

e Win64

As of Windows versions, you may need to install MSVC 2012 redist.

5934

http://yurichev.com/RE-exercises/2/17/17_Linux_x64.tar
http://yurichev.com/RE-exercises/2/17/17_MacOSX_x64.tar
http://yurichev.com/RE-exercises/2/17/17_win32.exe
http://yurichev.com/RE-exercises/2/17/17_win64.exe
http://www.microsoft.com/en-us/download/details.aspx?id=30679

CHAPTER 73. LEVEL 3

Chapter 73

Level 3

For solving level 3 tasks, you’ll probably need considerable ammount of time, maybe up to one day.

73.1 Exercise 3.1

Well-known algorithm, also included in standard C library. Source code was taken from glibc 2.11.1. Compiled in GCC 4.4.1
with -0s option (code size optimization). Listing was done by IDA 4.9 disassembler from ELF-file generated by GCC and linker.
For those who wants use IDA while learning, here you may find .elf and .idb files, .idb can be opened with freeware IDA
4.9:
http://yurichev.com/RE-exercises/3/1/

f proc near
var_150 = dword ptr -150h
var_14C = dword ptr -14Ch
var_13C = dword ptr -13Ch
var_138 = dword ptr -138h
var_134 = dword ptr -134h
var_130 = dword ptr -130h
var_128 = dword ptr -128h
var_124 = dword ptr -124h
var_120 = dword ptr -120h
var_11C = dword ptr -11Ch
var_118 = dword ptr -118h
var_114 = dword ptr -114h
var_110 = dword ptr -110h
var_C = dword ptr -0Ch
arg_0 = dword ptr 8
arg_4 = dword ptr OCh
arg_8 = dword ptr 10h
arg_C = dword ptr 14h
arg_10 = dword ptr 18h
push ebp
mov ebp, esp
push edi
push esi
push ebx
sub esp, 14Ch
mov ebx, [ebptarg_8]
cmp [ebptarg_4], O
jz 1oc_804877D
cmp [ebpt+arg_4], 4
lea eax, ds:0[ebx*4]
mov [ebptvar_130], eax
jbe loc_804864C
mov eax, [ebptarg_4]

535

http://yurichev.com/RE-exercises/3/1/

73.1. EXERCISE 3.1

CHAPTER 73. LEVEL 3

loc_8048433:

loc_804846D:

loc_8048482:

loc_80484AB:

mov
mov
lea
neg
mov
mov
dec
imul
add
mov
mov
mov
lea
mov
mov

mov
xor
push
push
sub
div
push
shr
imul
lea
push
mov
call
add
mov
test
jns
xor

mov
mov
mov
mov
inc
cmp
jnz

push
push
mov
push
push
call
mov
add
test
jns
mov
xor

movzx

ecx, ebx

esi, [ebp+arg_0]
edx, [ebp+var_110]
ecx

[ebptvar_118], 0
[ebptvar_114], O
eax

eax, ebx

eax, [ebp+arg_0]
[ebptvar_11C], edx
[ebptvar_134], ecx
[ebptvar_124], eax
eax, [ebp+var_118]
[ebptvar_14C], eax
[ebp+var_120], ebx

; CODE XREF:
eax, [ebp+var_124]
edx, edx
edi
[ebptarg_10]
eax, esi
[ebp+var_120]
esi
eax, 1

eax, [ebp+var_120]
edx, [esi+eax]

edx

[ebptvar_138], edx
[ebp+arg_C]

esp, 10h
edx, [ebp+var_138]
eax, eax
short loc_8048482
eax, eax

; CODE XREF:

cl, [edx+eax]

bl, [esi+eax]
[edx+eax], bl
[esiteax], cl

eax

[ebptvar_120], eax
short loc_804846D

; CODE XREF:

ebx

[ebptarg_10]
[ebptvar_138], edx
edx

[ebp+var_124]
[ebptarg_C]

edx, [ebp+var_138]
esp, 10h

eax, eax

short loc_80484F6
ecx, [ebptvar_124]
eax, eax

; CODE XREF:

edi, byte ptr [edx+eax]

536

£+28C

f+CC

f+B5

£+10D

73.1. EXERCISE 3.1

CHAPTER 73. LEVEL 3

loc_80484E1:

loc_80484F6:

loc_804850D:

loc_8048513:

loc_8048531:

loc_8048537:

mov
mov
mov
mov
inc
cmp
jnz
push
push
mov
push
push
call
add
mov
test
jns
xor

mov
mov
mov
mov
inc
cmp
jnz

add

add

push
push

bl, [ecx+eax]
[edx+eax], bl

ebx, edi
[ecx+eax], bl

eax

[ebptvar_120], eax
short loc_80484AB
ecx

[ebptarg_10]
[ebptvar_138], edx
esi

edx

[ebptarg_C]

esp, 10h

edx, [ebptvar_138]
eax, eax

short loc_80484F6
eax, eax

; CODE XREF: £+140
cl, [edx+eax]
bl, [esi+eax]
[edx+eax], bl
[esiteax], cl
eax
[ebptvar_120], eax
short loc_80484E1

; CODE XREF: f+ED
; £+129

eax, [ebptvar_120]

edi, [ebp+var_124]

edi, [ebp+var_134]

ebx, [esiteax]

short loc_8048513

; CODE XREF: f+17B
ebx, [ebp+var_120]

; CODE XREF: f+157
; £+1F9

eax

[ebptarg_10]

[ebptvar_138], edx

edx

ebx

[ebptarg_C]

esp, 10h

edx, [ebp+var_138]

eax, eax

short loc_8048537

short loc_804850D

; CODE XREF: £+19D
edi, [ebp+var_134]

; CODE XREF: £+179

ecx
[ebptarg_10]

037

73.1. EXERCISE 3.1

CHAPTER 73. LEVEL 3

loc_804855F:

loc_8048582:

loc_8048588:

loc_8048596:

loc_80485AB:

loc_80485B3:

mov
push
push
call
add
mov
test
js
cmp
jnb
xor
mov

cmp
jnz
mov

cmp
jbe

mov
sub
cmp
ja

mov
mov

[ebptvar_138], edx
edi

edx

[ebptarg_C]

esp, 10h

edx, [ebp+var_138]
eax, eax

short loc_8048531
ebx, edi

short loc_8048596
eax, eax
[ebptvar_128], edx

; CODE XREF:

cl, [ebx+eax]

dl, [edi+eax]
[ebx+eax], dl
[edi+eax], cl

eax

[ebp+var_120], eax
short loc_804855F
edx, [ebp+var_128]
edx, ebx

short loc_8048582
edx, edi

short loc_8048588

; CODE XREF:
edx, edi
short loc_8048588
edx, ebx
; CODE XREF:
; £+1DO
ebx, [ebp+tvar_120]
edi, [ebp+var_134]
short loc_80485AB
; CODE XREF:
short loc_80485AB
ecx, [ebp+var_134]
eax, [ebp+var_120]
edi, [ebx+ecx]
ebx, eax
short loc_80485B3
; CODE XREF:

f+1BE

£f+1CC

£+1EO

; £:1oc_8048596

ebx, edi
loc_8048513

; CODE XREF:

eax, edi
eax, esi
eax, [ebp+var_130]
short loc_80485EB
eax, [ebp+var_124]
esi, ebx

538

£f+1F5

73.1. EXERCISE 3.1

CHAPTER 73. LEVEL 3

loc_80485EB:

loc_8048617:

loc_804862E:

loc_8048634:

loc_804864C:

loc_804866B:

mov
mov
mov
mov
mov

mov

mov
cmp
ja

mov

mov
mov
add
dec
imul
add
cmp
mov
jbe
mov

mov
mov
add
mov

eax, ebx

eax, [ebp+var_130]
short loc_8048634
[ebptvar_11C], 8
edx, [ebp+var_11C]
ecx, [edx+4]

esi, [edx]
[ebp+var_124], ecx
short loc_8048634

; CODE XREF:

edx, [ebp+var_124]
edx, ebx

edx, [ebp+var_130]
short loc_804862E
eax, edx

edx, [ebp+var_11C]
eax, [edx+8]

short loc_8048617
[edx], esi

esi, ebx

[edx+4], edi
[ebp+var_11C], eax
short loc_8048634

; CODE XREF:

ecx, [ebp+var_11C]
[ebptvar_11C], eax
[ecx], ebx

ebx, [ebp+var_124]
[ecx+4], ebx

; CODE XREF:

[ebptvar_124], edi

; CODE XREF:

; £+235 ...
eax, [ebp+var_14C]
[ebp+var_11C], eax
loc_8048433
ebx, [ebp+var_120]

; CODE XREF:

eax, [ebp+arg_4]
ecx, [ebp+arg_ 0]
ecx, [ebp+var_130]
eax

eax, ebx

eax, [ebp+arg_ 0]
ecx, eax
[ebptvar_120], eax
short loc_804866B
ecx, eax

; CODE XREF:

esi, [ebptarg_0]
edi, [ebptarg_O]
esi, ebx
edx, esi

539

£+245

£+21B

f+2A

£f+2B3

73.1. EXERCISE 3.1

CHAPTER 73. LEVEL 3

loc_8048677:

loc_80486A1:

loc_80486A3:

loc_80486B2:

loc_80486D3:

loc_80486D5:

push
push
mov
mov
push
push
call
add
mov
mov
test
jns
mov

add

cmp
jbe
cmp
jz

xor

add

push
push
mov
push
push
call
add
mov
test
js
add

short loc_80486A3

; CODE XREF:

eax
[ebptarg_10]
[ebptvar_138], edx
[ebp+var_13C], ecx
edi

edx

[ebptarg_C]

esp, 10h

edx, [ebp+var_138]
ecx, [ebp+var_13C]
eax, eax

short loc_80486A1
edi, edx

; CODE XREF:

edx, ebx

; CODE XREF:

edx, ecx

short loc_8048677
edi, [ebp+arg_0]
loc_8048762

eax, eax

; CODE XREF:

ecx, [ebp+arg_0]
dl, [edi+eax]

cl, [ecx+eax]
[edi+eax], cl
ecx, [ebptarg_0]
[ecx+eax], dl

eax

ebx, eax

short loc_80486B2
loc_8048762

; CODE XREF:

edx, [esi+edil
short loc_80486D5

; CODE XREF:

edx, edi

; CODE XREF:

eax
[ebptarg_10]
[ebptvar_138], edx
edx

esi

[ebp+arg_C]

esp, 10h

edx, [ebptvar_138]
eax, eax

short loc_80486D3
edx, ebx

540

f+2E9

£f+2C1

f+313

£+33B

£+31D

73.1. EXERCISE 3.1

CHAPTER 73. LEVEL 3

1oc_8048710:

loc_8048728:

loc_8048733:

loc_804875B:

1loc_8048762:

loc_804876F:

loc_804877D:

mov
mov
mov

mov
add
mov
sub
cmp
jbe
mov
mov
mov
dec

mov
neg
lea
mov

add
cmp
jbe

lea
pop
pop
pop

edx, esi
[ebptvar_124], edx
short loc_804876F
edx, [ebptvar_134]
eax, [esi+ebx]
edx, eax
[ebptvar_11C], edx
short loc_804875B

; CODE XREF:

cl, [eax]

edx, [ebp+var_11C]
[ebp+var_150], eax

byte ptr [ebp+var_130], cl
ecx, eax

short loc_8048733

; CODE XREF:

al, [edx+ebx]
[ecx], al
ecx, [ebp+var_128]

; CODE XREF:

[ebptvar_128], edx

edx, edi

eax, edx

eax, edi

[ebp+var_124], eax

short loc_8048728

dl, byte ptr [ebp+var_130]
eax, [ebp+var_150]

[ecx], dl

[ebp+var_11C]

; CODE XREF:
eax
eax, esi
short loc_8048710
short loc_804876F
; CODE XREF:
; £+315
edi, ebx
edi
ecx, [edi-1]

[ebptvar_134], ecx

; CODE XREF:
; £+3AC
esi, ebx
esi, [ebp+var_120]
loc_80486CE
; CODE XREF:
esp, [ebp-0Ch]
ebx
esi
edi

541

£+3AA

£+391

£+372

f+35A

£+347

£+13

73.2. EXERCISE 3.2 CHAPTER 73. LEVEL 3

pop ebp
retn
f endp

73.2 Exercise 3.2

There is a small executable file with a well-known cryptosystem inside. Try to identify it.
e Windows x86
e Linux x86

e MacOSX (x64)

73.3 Exercise 3.3

There is a small executable file, some utility. It opens another file, reads it, calculate something and prints a float number.
Try to understand what it do.

e Windows x86
e Linux x86

e MacOSX (x64)

73.4 Exercise 3.4

There is an utility which encrypts/decrypts files, by password. There is an encrypted text file, password is unknown. En-
crypted file is a text in English language. The utility uses relatively strong cryptosystem, nevertheless, it was implemented
with a serious blunder. Since the mistake present, it is possible to decrypt the file with a little effort..

Try to find the mistake and decrypt the file.

e Windows x86

o Text file

73.5 Exercise 3.5

Thisis software copy protection imitation, which uses key file. The key file contain user (or customer) name and serial number.
There are two tasks:

e (Easy) with the help of tracer or any other debugger, force the program to accept changed key file.

(Medium) your goal is to modify user name to another, however, it is not allowed to patch the program.
e Windows x86

Linux x86

MacOSX (x64)

Key file

73.6 Exercise 3.6

Here is a very primitive toy web-server, supporting only static files, without CGI', etc. At least 4 vulnerabilities are leaved here
intentionally. Try to find them all and exploit them in order for breaking into a remote host.

e Windows x86
e Linux x86

e MacOSX (x64)

'Common Gateway Interface

542

http://yurichev.com/RE-exercises/3/2/unknown_cryptosystem.exe
http://yurichev.com/RE-exercises/3/2/unknown_encryption_linux86.tar
http://yurichev.com/RE-exercises/3/2/unknown_encryption_MacOSX.tar
http://yurichev.com/RE-exercises/3/3/unknown_utility_2_3.exe
http://yurichev.com/RE-exercises/3/3/unknown_utility_2_3_Linux86.tar
http://yurichev.com/RE-exercises/3/3/unknown_utility_2_3_MacOSX.tar
http://yurichev.com/RE-exercises/3/4/amateur_cryptor.exe
http://yurichev.com/RE-exercises/3/4/text_encrypted
http://yurichev.com/RE-exercises/3/5/super_mega_protection.exe
http://yurichev.com/RE-exercises/3/5/super_mega_protection.tar
http://yurichev.com/RE-exercises/3/5/super_mega_protection_MacOSX.tar
http://yurichev.com/RE-exercises/3/5/sample.key
http://yurichev.com/RE-exercises/3/6/webserv_win32.rar
http://yurichev.com/RE-exercises/3/6/webserv_Linux_x86.tar
http://yurichev.com/RE-exercises/3/6/webserv_MacOSX_x64.tar

73.7. EXERCISE 3.7 CHAPTER 73. LEVEL 3

73.7 Exercise 3.7
With the help of tracer or any other win32 debugger, reveal hidden mines in the MineSweeper standard Widnows game during

play.
Hint: [34] have some insights about MineSweeper’s internals.

043

CHAPTER 74. CRACKME / KEYGENME

Chapter 74

crackme [keygenme

Couple of my keygenmes:
http://crackmes.de/users/yonkie/

044

http://crackmes.de/users/yonkie/

Part Xl

Exercise solutions

545

CHAPTER 75. LEVEL1

Chapter 75

Level 1

75.1 Exercise 1.1

That was a function returning maximal value from two.

546

CHAPTER 76. LEVEL 2

Chapter 76

Level 2

76.1 Exercise 2.1

Solution: toupper ().
C source code:

char toupper (char c)

{
if(¢ >= ’a’ && c <=’z) {
c=c-’a + A
}
return(c);
}

76.2 Exercise 2.2

Solution: atoi ()
C source code:

#include <stdio.h>
#include <string.h>
#include <ctype.h>

int atoi (comnst *p) /* convert ASCII string to integer */

{
int i;
char s;
while(isspace (*p))
++p;
S = *p;
if(s ==+ || 5 =="2)
++p;
i=20;
while(isdigit(*p)) {
i=1x*10+ *p - ’0’;
++p;
¥
if(s == -7)
i=-1;
return(i);
}

047

76.3. EXERCISE 2.3 CHAPTER 76. LEVEL 2
76.3 Exercise 2.3

Solution: srand () /rand ().
C source code:

static unsigned int v;

void srand (unsigned int s)

{

v = 8;
+
int rand ()
{

return(((v = v * 214013L

+ 2531011L) >> 16) & Ox7fff);

}

76.4 Exercise 2.4

Solution: strstr ().
C source code:

char * strstr (
const char * strl,
const char * str2

)
{
char *cp = (char *) stri;
char *sl1, *s2;
if (!*str2)
return((char *)stri);
while (*cp)
{
sl = cp;
s2 = (char *) str2;
while (*s1 && *s2 && !(*sl1-%s2))
sl++, s2++;
if ('xs2)
return(cp) ;
cpt+;
}
return(NULL) ;
}

76.5 Exercise 2.5

Hint #1: Keep in mind that __v—global variable.
Hint #2: The function is called in CRT startup code, beforemain () execution.
Solution: early Pentium CPU FDIV bug checking'.
C source code:

Thttp://en.wikipedia.org/wiki/Pentium_FDIV_bug

548

http://en.wikipedia.org/wiki/Pentium_FDIV_bug

76.6. EXERCISE 2.6 CHAPTER 76. LEVEL 2

unsigned _v; // _v

enum e {
PROB_P5_DIV = 0x0001
};
void f(void) // __verify_pentium_fdiv_bug
{
/%
Verify we have got the Pentium FDIV problem.
The volatiles are to scare the optimizer away.
*/
volatile double vl = 4195835;
volatile double v2 = 3145727;
if((v1 - (v1/v2)*v2) > 1.0e-8) {
_v |= PROB_P5_DIV;
3
3

76.6 Exercise 2.6

Hint: it might be helpful to google a constant used here.
Solution: TEA? encryption algorithm.
C source code (taken from http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm):

void f (unsigned int* v, unsigned int* k) {

unsigned int vO=v[0], vi=v[1], sum=0, i; /* set up */

unsigned int delta=0x9e3779b9; /* a key schedule constant */
unsigned int kO0=k[0], ki1=k[1], k2=k[2], k3=k[3]; /* cache key */

for (i=0; i < 32; i++) { /* basic cycle start */

sum += delta;

v0 += ((v1<<4) + k0) -~ (vl + sum) -~ ((v1>>5) + k1);

vl += ((v0<<4) + k2) = (vO + sum) ~ ((vO>>5) + k3);
} /* end cycle */
v[0]=v0; v[1]=v1;

76.7 Exercise 2.7

Hint: the table contain pre-calculated values. It is possible to implement the function without it, but it will work slower,
though.

Solution: this function reverse all bits in input 32-bit integer. Itis 1ib/bitrev.c from Linux kernel.

C source code:

const unsigned char byte_rev_table[256] = {
0x00, 0x80, 0x40, 0OxcO, 0x20, Oxa0, 0x60, 0OxeO,
0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0O, 0x70, 0xfO,
0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
0x04, 0x84, 0x44, Oxc4, 0x24, Oxa4, 0x64, Oxe4,
Ox14, 0x94, 0x54, Oxd4, 0x34, Oxb4, 0x74, 0xf4,
0x0c, 0x8c, Ox4c, Oxcc, 0x2c, Oxac, Ox6c, Oxec,
Oxlc, 0x9c, 0Oxbc, Oxdc, 0x3c, Oxbc, 0x7c, Oxfc,
0x02, 0x82, 0x42, 0xc2, 0x22, Oxa2, 0x62, Oxe2,
0x12, 0x92, 0x52, 0xd2, 0x32, O0xb2, 0x72, 0xf2,
0x0a, 0x8a, Ox4a, Oxca, 0Ox2a, Oxaa, Ox6a, Oxea,

2Tiny Encryption Algorithm

549

http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm

76.8. EXERCISE 2.8

CHAPTER 76. LEVEL 2

Oxla, 0Ox9a, Oxba, Oxda, 0x3a, Oxba, 0Ox7a, Oxfa,
0x06, 0x86, 0x46, Oxc6, 0x26, Oxa6, 0x66, 0xe6,
0x16, 0x96, 0x56, Oxd6, 0x36, 0xb6, 0x76, Oxf6,
0x0e, 0x8e, Ox4e, Oxce, 0x2e, Oxae, Ox6e, Oxee,
Oxle, 0x9e, Oxbe, Oxde, 0x3e, Oxbe, 0x7e, Oxfe,
0x01, 0x81, 0x41, Oxcl, 0x21, Oxal, 0x61, Oxel,
0x11, 0x91, 0x51, Oxdl, 0x31, Oxbl, 0x71, Oxfl,
0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
0x19, 0x99, 0xb59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
0x05, 0x85, 0x45, Oxch, 0x25, Oxab, 0x65, Oxe5,
0x15, 0x95, 0x55, 0xdb5, 0x35, Oxb5, 0x75, 0xf5,
0x0d, 0x8d, 0x4d, Oxcd, 0x2d, Oxad, 0x6d, Oxed,
0Ox1d, 0x9d, 0x5d, Oxdd, 0x3d, Oxbd, 0x7d, Oxfd,
0x03, 0x83, 0x43, 0xc3, 0x23, 0Oxa3, 0x63, Oxe3,
0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
0x0b, 0x8b, 0x4b, Oxcb, 0x2b, Oxab, 0x6b, Oxeb,
0x1b, 0x9b, 0x5b, Oxdb, 0x3b, Oxbb, 0x7b, 0xfb,
0x07, 0x87, 0x47, Oxc7, 0x27, Oxa7, 0x67, Oxe7,
0x17, 0x97, 0x57, 0xd7, 0x37, Oxb7, 0x77, O0xf7,
0x0f, 0x8f, O0x4f, Oxcf, 0x2f, Oxaf, 0x6f, Oxef,
Ox1f, 0x9f, Ox5f, Oxdf, O0x3f, Oxbf, Ox7f, Oxff,

};
unsigned char bitrev8(unsigned char byte)
{
return byte_rev_table[byte];
}
unsigned short bitrevi6(unsigned short x)
{
return (bitrev8(x & Oxff) << 8) | bitrev8(x >> 8);
}
/%%

* bitrev32 - reverse the order of bits in a unsigned int value
* Ox: value to be bit-reversed

*/
unsigned int bitrev32(unsigned int x)
{
return (bitrevl6(x & Oxffff) << 16) | bitrevi6(x >> 16);
}

76.8 Exercise 2.8

Solution: two 100200 matrices of double type addition.
C/C++ source code:

#define M 100
#define N 200

void s(double *a, double *b, double *c)
{
for(int i=0;i<N;i++)
for(int j=0;j<M;j++)
x(c+isM+j)=(a+tixM+j) + *(b+i*M+j);

};

550

76.9. EXERCISE 2.9 CHAPTER 76. LEVEL 2
76.9 Exercise 2.9

Solution: two matrices (one is 100*200, second is 100*300) of double type multiplication, result: 100*300 matrix.
C/C++ source code:

#define M 100
#tdefine N 200
#tdefine P 300

void m(double *a, double *b, double *c)
{
for(int i=0;i<M;i++)
for(int j=0;j<P;j++)
{
*(c+i*M+3)=0;
for (int k=0;k<N;k++) *(c+i*M+j)+=*(a+ixM+j) * *(b+ixM+j);
}
};

76.10 Exercise 2.11
Hint: Task Manager get CPU/CPU cores count using function call
NtQuerySystemInformation(SystemBasicInformation, ..., ..., ...),itispossible to find thatcall and to substi-

tute resulting number.
And of course, the Task Manager will show incorrect results in CPU usage history.

76.11 Exercise 2.12

This is a primitive cryptographic algorithm named ROT13, once popular in UseNet and mailing lists 3.
Source code.

76.12 Exercise 2.13

The cryptoalgorithm is linear feedback shift register 4.
Source code.

76.13 Exercise 2.14

This is algorithm of finding greater common divisor (GCD).
Source code.

76.14 Exercise 2.15

Pi value calculation using Monte-Carlo method.
Source code.

76.15 Exercise 2.16

It is Ackermann function >.

Shttps://en.wikipedia.org/wiki/ROT13
“https://en.wikipedia.org/wiki/Linear_feedback_shift_register
Shttps://en.wikipedia.org/wiki/Ackermann_function

951

http://yurichev.com/RE-exercise-solutions/2/12/ROT13.c
http://yurichev.com/RE-exercise-solutions/2/13/LFSR.c
http://yurichev.com/RE-exercise-solutions/2/14/GCD.c
http://yurichev.com/RE-exercise-solutions/2/15/monte.c
https://en.wikipedia.org/wiki/ROT13
https://en.wikipedia.org/wiki/Linear_feedback_shift_register
https://en.wikipedia.org/wiki/Ackermann_function

76.16. EXERCISE 2.17

CHAPTER 76. LEVEL 2

int ack (int m, int n)

{
if (m==0)
return n+1;
if (n==0)
return ack (m-1, 1);
return ack(m-1, ack (m, n-1));
e

76.16 Exercise 2.17

This is 1D cellular automation working by Rule 110:

https://en.wikipedia.org/wiki/Rule_110.
Source code.

552

https://en.wikipedia.org/wiki/Rule_110
http://yurichev.com/RE-exercise-solutions/2/17/CA.c

CHAPTER 77. LEVEL 3

Chapter 77

Level 3

77.1 Exercise 3.1

Hint #1: The code has one characteristic thing, if considering it, it may help narrowing search of right function among glibc
functions.
Solution: characteristic —is callback-function calling (20), pointer to which is passed in 4th argument. It is quicksort Q).
C source code.

77.2 Exercise 3.2

Hint: easiest way is to find by values in the tables.
Commented C source code.

77.3 Exercise 3.3

Commented C source code.

77.4 Exercise 3.4

Commented C source code, and also decrypted file.

77.5 Exercise 3.5

Hint: as we can see, the string with user name occupies not the whole file.
Bytes after terminated zero till offset 0x7F are ignored by program.
Commented C source code.

77.6 Exercise 3.6

Commented C source code.
As another exercise, now you may try to fix all vulnerabilities you found in this web-server.

953

http://yurichev.com/RE-exercise-solutions/3/1/2_1.c
http://yurichev.com/RE-exercise-solutions/3/2/gost.c
http://yurichev.com/RE-exercise-solutions/3/3/entropy.c
http://yurichev.com/RE-exercise-solutions/3/4/
http://yurichev.com/RE-exercise-solutions/3/5/crc16_keyfile_check.c
http://yurichev.com/RE-exercise-solutions/3/6/

Afterword

554

CHAPTER 78. QUESTIONS?

Chapter 78

Questions?

Do not hesitate to mail any questions to the author: <dennis@yurichev.com>
Please, also do not hesitate to send me any corrections (including grammar ones (you see how horrible my English is?)),
etc.

555

Part XlI

Appendix

556

CHAPTER 79. COMMON TERMINOLOGY

Chapter 79

Common terminology

word usually is a variable fitting into GPR of CPU. In the computers older than personal, memory size was often measured
in words rather then bytes.

957

CHAPTER 80. X86

Chapter 80

X86

80.1 Terminology

Common for 16-bit (8086/80286), 32-bit (80386, etc), 64-bit.

byte 8-bit. DB assembly directive is used for defining array of bytes.

word 16-bit. DW assembly directive —"—.

double word (“dword”) 32-bit. DD assembly directive —"—.

quad word (“qword”) 64-bit. DQ assembly directive —"—.

tbyte (10 bytes) 80-bit or 10 bytes (used for IEEE 754 FPU registers).

paragraph (16 bytes)—term was popularin MS-DOS environment.

Data types of the same width (BYTE, WORD, DWORD) are also the same in Windows API.

80.2 General purpose registers

Itis possible to access many registers by byte or 16-bit word parts. It is all inheritance from older Intel CPUs (up to 8-bit 8080)

still supported for backward compatibility. For example, this feature is usually not present in RISC CPUs.

Registers prefixed with R- appeared in x86-84, and those prefixed with E- —in 80386. Thus, R-registers are 64-bit, and

E-registers —32-bit.
8 more GPR’s were added in x86-86: R8-R15.

N.B.: In the Intel manuals byte parts of these registers are prefixed by L, e.g.: R8L, but IDA names these registers by adding

B suffix, e.g.: R8B.

80.2.1 RAX/EAX/AX/AL

7th (bytenumben) T 6th [5th | 4th | 3rd | 2nd [1st | Oth

RAxx64

|

EAX

AX

AH

AL

AKA accumulator. The result of function if usually returned via this register.

80.2.2 RBX/EBX/BX/BL

7th Bytenumben) T 6th [5th | 4th | 3rd [2nd [1st | Oth

R Bxx64

|

EBX

BX

BH

BL

558

80.2. GENERAL PURPOSE REGISTERS CHAPTER 80. X86
80.2.3 RCX/ECX/CX/CL

7th (Pytenumben) T 6th [5th | 4th | 3rd | 2nd [1st | Oth
chx64
‘ ECX

X
CH | CL

AKA counter: in this role it is used in REP prefixed instructions and also in shift instructions (SHL/SHR/RXL/RxR).

80.2.4 RDX/EDX/DX/DL

7th (Pytenumben) T 6th [5th | 4th | 3rd | 2nd | 1st | Oth
RDxx64
| EDX

DX
DH [DL

80.2.5 RSI/ESI/SI/SIL

7th ®ytenumben) T 6th [5th | 4th | 3rd | 2nd | st | Oth
RS|X64
| ESI
| Sl
‘ SlLX64

AKA “source”. Used as source in the instructions REP MOVSx, REP CMPSx.

80.2.6 RDI/EDI/DI/DIL

7th (yte number] ‘ 6th ‘ 5th ‘ 4th ‘ 3rd ‘ 2nd ‘ 1st ‘ Oth
RD|X64
‘ EDI
‘ DI
‘ DILX64

AKA “destination”. Used as a pointer to destination place in the instructions REP MOVSx, REP STOSx.

80.2.7 R8/R8D/RSW/RSL
7th (bytenumben) [6th [5th | 4th | 3rd | 2nd [1st | Oth

| R8D

R8W
R8L |

80.2.8 R9/R9D/ROW/RIL

7th ®ytenumben) T 6th [5th | 4th | 3rd [2nd [1st [Oth
R9
\ R9D

ROW
RIL |

80.2.9 R10/R10D/R10W/R10L
7th (bytenumben) - 6th [5th | 4th | 3rd | 2nd [1st | Oth
R10

\ R10D

R10W
R10L

959

80.2. GENERAL PURPOSE REGISTERS CHAPTER 80. X86
80.2.10 R11/R11D/RTIW/RIIL

7th (Pytenumben) T 6th [5th | 4th | 3rd | 2nd [1st | Oth
RN

| R11D

RITW
RIIL |

80.2.11 R12/R12D/R12W/R12L

7th (Pytenumben) T 6th [5th | 4th | 3rd | 2nd [1st | Oth
R12
‘ R12D

R12W
RI2L |

80.2.12 R13/R13D/R13W/R13L

7th ®ytenumber] T-gth T 5th [4th [3rd [2nd [1st [Oth
R13
| R13D

R13W
RI3L |

80.2.13 R14/R14D/R14W/R14L

7th ®ytenumber T-gth [5th [4th [3rd [2nd [1st [Oth
R14
| R14D

R14W
R14L |

80.2.14 R15/R15D/R15W/R15L

7th ®ytenumber] T-gth T 5th [4th [3rd [2nd [1st [Oth
R15
| R15D

R15W
RI5L |

80.2.15 RSP/ESP/SP/SPL

7th (bytenumben) - 6th [5th | 4th | 3rd | 2nd [1st | Oth
RS 64

\ ESP

SP
[SPL®*

AKA stack pointer. Usually points to the current stack except those cases when it is not yet initialized.

80.2.16 RBP/EBP/BP/BPL

7th (bytenumben) - 6th [5th | 4th | 3rd | 2nd [1st | Oth
RBP***

\ EBP

BP
| BPL®*

AKA frame pointer. Usually used for local variables and arguments of function accessing. More about it: (6.2.1).

560

80.2. GENERAL PURPOSE REGISTERS CHAPTER 80. X86
80.2.17 RIPJEIP/IP

7th (Pytenumben) T 6th [5th | 4th | 3rd | 2nd [1st | Oth
RIP***
‘ EIP

AKA “instruction pointer” '. Usually always points to the current instruction. Cannot be modified, however, it is possible
to do (which is equivalent to):

mov eax...
jmp eax

Or:

push val
ret

80.2.18 CS/DS/ES/SS/FS/GS

16-bit registers containing code selector (CS), data selector (DS), stack selector (SS).

FSin win32 points to TLS, GS took this role in Linux. It is done for faster access to the TLS and other structures like TIB.
In the past, these registers were used as segment registers (66).

80.2.19 Flags register

AKA EFLAGS.

Bit (mask) Abbreviation (meaning) Description

0(1) CF (Carry)
The CLC/STC/CMC instructions are used
for setting/resetting/toggling this flag

2 (4) PF (Parity) (15.3.1).

4 (0x10) AF (Adjust)

6 (0x40) ZF (Zero) Settingto 0
if the last operation’s result was 0.

7 (0x80) SF (Sign)

8 (0x100) TF (Trap) Used for debugging.

If turned on, an exception will be

generated after each instruction execution.

9 (0x200) IF (Interrupt enable) Are interrupts enabled.

The CLI/STl instructions are used

for the flag setting/resetting

10 (0x400) DF (Direction) A directions is set for the

REP MOVSx, REP CMPSx, REP LODSx, REP SCASx instructions.
The CLD/STD instructions are used

for the flag setting/resetting

11 (0x800) OF (Overflow)
12,13 (0x3000) | IOPL (I/O privilege level)8928¢

14 (0x4000) NT (Nested task)®02%6

16 (0x10000) RF (Resume)®93 Used for debugging.

CPU will ignore hardware breakpoint in DRx
if the flag is set.

17 (0x20000) | VM (Virtual 8086 mode)®938¢
18 (0x40000) | AC (Alignment check)®048®

19 (0x80000) | VIF (Virtual interrupt)Pentum

20 (0x100000) | VIP (Virtual interrupt pending)Pentium
21(0x200000) | ID (Identification)Pentium

All the rest flags are reserved.

'Sometimes also called “program counter”

561

80.3. FPU-REGISTERS CHAPTER 80. X86
80.3 FPU-registers

8 80-bit registers working as a stack: ST(0)-ST(7). N.B.: IDA calls ST(0) as just ST. Numbers are stored in the IEEE 754 format.
long double value format:

7978 64 63 62 0

S| exponent || mantissa or fraction

(S—sign, I—integer part)

80.3.1 ControlWord

Register controlling behaviour of the FPU.

o]
=

Abbreviation (meaning) Description
IM (Invalid operation Mask)

DM (Denormalized operand Mask)
ZM (Zero divide Mask)

OM (Overflow Mask)

UM (Underflow Mask)

PM (Precision Mask)

IEM (Interrupt Enable Mask) Exceptions enabling, 1 by default (disabled)
PC (Precision Control)

oNO|DlWN|—O

©

00 — 24 bits (REAL4)
10 — 53 bits (REALS)
11 — 64 bits (REAL10)

10,11 | RC (Rounding Control)
00 — (by default) round to nearest

01 — round toward —oo

10 — round toward 400

11 — round toward 0

12 IC (Infinity Control) 0 — (by default) treat 400 and —oc as unsigned
1 —respect both 400 and —oo

The PM, UM, OM, ZM, DM, IM flags are defining if to generate exception in case of corresponding errors.

80.3.2 Status Word

Read-only register.

Bit Abbreviation (meaning) | Description

15 B (Busy) Is FPU do something (1) or results are ready (0)
14 Cc3

13,12,11 | TOP points to the currently zeroth register
10 C2

9 C1

8 Co

7 IR (Interrupt Request)

6 SF (Stack Fault)

5 P (Precision)

4 U (Underflow)

3 O (Overflow)

2 Z (Zero)

1 D (Denormalized)

0 | (Invalid operation)

The SF, P, U, 0, Z, D, | bits are signaling about exceptions.
About the C3, C2, C1, CO read more: (15.3.1).
N.B.: When ST(x) is used, FPU adds « to TOP (by modulo 8) and that is how it gets internal register’s number.

562

80.4. SIMD-REGISTERS

CHAPTER 80. X86

80.3.3 TagWord

The register has current information about number’s registers usage.

For each tag:

Bit Abbreviation (meaning)
15,14 | Tag(7)
13,12 | Tag(6)
11,10 | Tag(5)
98 Tag(4)
7,6 Tag(3)
5,4 Tag(2)
3,2 Tag(1)
1,0 Tag(0)

e 00 — Theregister contains a non-zero value

e 01 — The register contains 0

e 10 — The register contains a special value (NAN2, oo, or denormal)

e 11 — The register is empty

80.4 SIMD-registers

80.4.1 MMX-registers
8 64-bit registers: MM0..MMT.

80.4.2 SSE and AVX-registers

SSE: 8 128-bit registers: XMMO0..XMMT. In the x86-64 8 more registers were added: XMM8..XMM15.
AVX is the extension of all these registers to 256 bits.

80.5 Debugging registers

Used for hardware breakpoints control.

DRO — address of breakpoint #1
DR1 — address of breakpoint #2
DR2 — address of breakpoint #3
DR3 — address of breakpoint #4

DR6 — a cause of break is reflected here

DR7 — breakpoint types are set here

80.5.1 DR6

Description

BO — breakpoint #1 was triggered

B1 — breakpoint #2 was triggered

B2 — breakpoint #3 was triggered

B3 — breakpoint #4 was triggered

BD — modification attempt of one of DRx registers.
may be raised if GD is enabled

14 (0x4000)

BS — single step breakpoint (TF flag was set in EFLAGS).
Highest priority. Other bits may also be set.

15 (0x8000)

BT (task switch flag)

2Not a Number

963

80.6. INSTRUCTIONS CHAPTER 80. X86

N.B. Single step breakpoint is a breakpoint occurring after each instruction. It can be enabled by setting TF in EFLAGS
(80.2.19).

80.5.2 DR7

Breakpoint types are set here.

Bit (mask) Description
0(1) LO — enable breakpoint #1 for the current task
1(2) GO — enable breakpoint #1 for all tasks
2 (4) L1 — enable breakpoint #2 for the current task
3(8) G1 — enable breakpoint #2 for all tasks
4 (0x10) L2 — enable breakpoint #3 for the current task
5 (0x20) G2 — enable breakpoint #3 for all tasks
6 (0x40) L3 — enable breakpoint #4 for the current task
7 (0x80) G3 — enable breakpoint #4 for all tasks
8 (0x100) LE — not supported since P6
9 (0x200) GE — not supported since P6
13 (0x2000) GD — exception will be raised if any MOV instruction
tries to modify one of DRx registers
16,17 (0x30000) breakpoint #1: R/W — type
18,19 (0xC0000) breakpoint #1: LEN — length
20,21 (0x300000) breakpoint #2: R/W — type
22,23 (0xC00000) breakpoint #2: LEN — length
24,25 (0x3000000) breakpoint #3: R/W — type
26,27 (0xC000000) breakpoint #3: LEN — length
28,29 (0x30000000) | breakpoint #4: R/W — type
30,31 (0xC0000000) | breakpoint #4: LEN — length

Breakpoint type is to be set as follows (R/W):

e 00 — instruction execution

e 01— data writes

e 10 — I/O reads or writes (not available in user-mode)

e 11— on data reads or writes

N.B.: breakpoint type for data reads is absent, indeed.

Breakpoint length is to be set as follows (LEN):
e 00 — one-byte
e 01— two-byte
e 10 — undefined for 32-bit mode, eight-byte in 64-bit mode

e 11— four-byte

80.6 Instructions
Instructions marked as (M) are not usually generated by compiler: if you see it, it is probably hand-written piece of assembly

code, or this is compiler intrinsic (62).
Only most frequently used instructions are listed here. Read [14] or [1] for a full documentation.

064

80.6. INSTRUCTIONS CHAPTER 80. X86
80.6.1 Prefixes

LOCK force CPU to make exclusive access to the RAM in multiprocessor environment. For the sake of simplification, it can be
said that when instruction with this prefix is executed, all other CPUs in multiprocessor system is stopped. Most often
it is used for critical sections, semaphores, mutexes. Commonly used with ADD, AND, BTR, BTS, CMPXCHG, OR, XADD,
XOR. Read more about critical sections (50.4).

REP used with MOVSx and STOSx: execute the instruction in loop, counter is located in the CX/ECX/RCX register. For detailed
description, read more about MOVSx (80.6.2) and STOSx (80.6.2) instructions.

Instructions prefixed by REP are sensitive to DF flag, which is used to set direction.

REPE/REPNE (AKAREPZ/REPNZ)used with CMPSx and SCASx: execute the lastinstructioninloop, countis setin the CX/ECX/RCX
register. It will terminate prematurely if ZF is 0 (REPE) or if ZF is 1 (REPNE).

For detailed description, read more about CMPSx (80.6.3) and SCASx (80.6.2) instructions.
Instructions prefixed by REPE/REPNE are sensitive to DF flag, which is used to set direction.

80.6.2 Most frequently used instructions

These can be memorized in the first place.

ADC (add with carry) add values, increment result if CF flag is set. often used for addition of large values, for example, to add
two 64-bit values in 32-bit environment using two ADD and ADC instructions, for example:

; work with 64-bit values: add vall to val2.

; .lo mean lowest 32 bits, .hi means highest.

ADD vall.lo, val2.lo

ADC vall.hi, val2.hi ; use CF set or cleared at the previous instruction

One more example: 21.
ADD add two values
AND logical “and”
CALL call another function: PUSH address_after_CALL_instruction; JMP label
CMP compare values and set flags, the same as SUB but no results writing
DEC decrement. CF flag is not touched.
IMUL signed multiply
INC increment. CF flag is not touched.
JCXZ, JECXZ, JRCXZ (M) jump if CX/ECX/RCX=0
JMP jump to another address. Opcode has jump offset.

Jcc (where cc—condition code)

A lot of instructions has synonyms (denoted with AKA), this was done for convenience. Synonymous instructions are
translating into the same opcode. Opcode has jump offset.

JAE AKA JNC: jump if above or equal (unsigned): CF=0
JA AKA JNBE: jump if greater (unsigned): CF=0 and ZF=0
JBE jump if lesser or equal (unsigned): CF=1 or ZF=1

JB AKA JC: jump if below (unsigned): CF=1

JC AKA JB: jump if CF=1

JE AKA JZ: jump if equal or zero: ZF=1

JGE jump if greater or equal (signed): SF=OF

JG jump if greater (signed): ZF=0 and SF=0OF

JLE jump if lesser or equal (signed): ZF=1 or SF£OF

JL jump if lesser (signed): SF£AOF

565

80.6. INSTRUCTIONS CHAPTER 80. X86
JNAE AKA JC: jump if not above or equal (unsigned) CF=1

JNA jump if not above (unsigned) CF=1and ZF=1
JNBE jump if not below or equal (unsigned): CF=0 and ZF=0
JNB AKA JNC: jump if not below (unsigned): CF=0
JNC AKA JAE: jump CF=0 synonymous to JNB.
JNE AKA JNZ: jump if not equal or not zero: ZF=0
JNGE jump if not greater or equal (signed): SF£OF
JNG jump if not greater (signed): ZF=1 or SF£OF
JNLE jump if not lesser (signed): ZF=0 and SF=OF
JNL jump if not lesser (signed): SF=OF

JNO jump if not overflow: OF=0

JNS jump if SF flag is cleared

JNZ AKA JNE: jump if not equal or not zero: ZF=0
JO jump if overflow: OF=1

JPO jump if PF flag is cleared

JP AKA JPE: jump if PF flag is set

JS jump if SF flag is set

JZ AKA JE: jump if equal or zero: ZF=1

LAHF copy some flag bits to AH

LEAVE equivalentoftheMOV ESP, EBPandPOP EBP instruction pair—in other words, this instruction sets the stack pointer
(ESP) back and restores the EBP register to its initial state.

LEA (Load Effective Address) form address

This instruction was intended not for values summing and multiplication but for address forming, e.g., for forming ad-
dress of array element by adding array address, element index, with multiplication of element size3.

So, the difference between MOV and LEA is that MOV forms memory address and loads value from memory or stores
it there, but LEA just forms an address.

But nevertheless, it is can be used for any other calculations.

LEA is convenient because the computations performing by it is not alter CPU flags.

int f(int a, int b)
{

return ax8+b;
e

Listing 80.1: MSVC 2010 /Ox

_a$ =8 ; size = 4
_b$ = 12 ; size = 4
_f PROC

mov eax, DWORD PTR _Db$[esp-4]

mov ecx, DWORD PTR _a$[esp-4]

lea eax, DWORD PTR [eax+ecx*8]

ret 0
_f ENDP
Intel C++ uses LEA even more:
int fi1(int a)
{

return ax13;
i

3See also: http://en.wikipedia.org/wiki/Addressing_mode

566

http://en.wikipedia.org/wiki/Addressing_mode

80.6. INSTRUCTIONS CHAPTER 80. X86
Listing 80.2: Intel C++ 2011

_f1 PROC NEAR
mov ecx, DWORD PTR [4+esp] ; ecx = a
lea edx, DWORD PTR [ecx+ecx*8] ; edx = ax*x9
lea eax, DWORD PTR [edx+ecx*4] ; eax = a*x9 + a*4 = ax13
ret

These two instructions instead of one IMUL will perform faster.
MOVSB/MOVSW/MOVSD/MOVSQ copy byte/ 16-bit word/ 32-bit word/ 64-bit word address of which is in the SI/ESI/RSI into
the place address of which is in the DI/EDI/RDI.

Together with REP prefix, it will repeated in loop, count is stored in the CX/ECX/RCX register: it works like memcpy() in
C. If block size is known to compiler on compile stage, memcpy() is often inlined into short code fragment using REP
MOVSx, sometimes even as several instructions.

memcpy(EDI, ESI, 15) equivalent is:

; copy 15 bytes from ESI to EDI

CLD ; set direction to "forward"
MOV ECX, 3

REP MOVSD ; copy 12 bytes

MOVSW ; copy 2 more bytes

MOVSB ; copy remaining byte

(Supposedly, it will work faster then copying 15 bytes using just one REP MOVSB).
MOVSX load with sign extension see also: (13.1)
MOVZX load and clear all the rest bits see also: (13.1)

MOV load value. this instruction was named awry resulting confusion (data are not moved), in other architectures the same
instructions is usually named “LOAD” or something like that.

One important thing: if to set low 16-bit part of 32-bit register in 32-bit mode, high 16 bits will remain as they were. But
if to modify low 32-bit of register in 64-bit mode, high 32 bits of registers will be cleared.

Supposedly, it was done for x86-64 code porting simplification.
MUL unsigned multiply
NEG negation: op = —op

NOP NOP. Opcode is 0x90, so itis in fact mean XCHG EAX,EAX idle instruction. This means, x86 do not have dedicated NOP
instruction (as in many RISC). More examples of such operations: (61).

NOP may be generated by compiler for aligning labels on 16-byte boundary. Another very popular usage of NOP is to
replace manually (patch) some instruction like conditional jump to NOP in order to disable its execution.

NOT opl: opl = —opl. logical inversion

OR logical “or”

POP getvalue from the stack: value=SS: [ESP] ; ESP=ESP+4 (or 8)
PUSH push value to stack: ESP=ESP-4 (or 8); SS:[ESP]=value

RET : return from subroutine: POP tmp; JMP tmp.

In fact, RET is a assembly language macro, in Windows and *NIX environment is translating into RETN (“return near”)
or, in MS-DOS times, where memory was addressed differently (66), into RETF (“return far”).

RET may have operand. Its algorithm then will be: POP tmp; ADD ESP opl; JMP tmp.RET with operand usually end
functions with stdcall calling convention, see also: ?2.

SAHF copy bits from AH to flags, see also: 15.3.3

SBB (subtraction with borrow) subtract values, decrement result if CF flag is set. often used for subtraction of large values,
for example, to subtract two 64-bit values in 32-bit environment using two SUB and SBB instructions, for example:

o967

80.6. INSTRUCTIONS CHAPTER 80. X86

; work with 64-bit values: subtract val2 from valil.

; .lo mean lowest 32 bits, .hi means highest.

SUB vall.lo, val2.lo

SBB vall.hi, val2.hi ; use CF set or cleared at the previous instruction

One more example: 21.
SCASB/SCASW/SCASD/SCASQ (M) compare byte/ 16-bit word/ 32-bit word/ 64-bit word stored in the AX/EAX/RAX with a
variable address of which is in the DI/EDI/RDI. Set flags as CMP does.

This instruction is often used with REPNE prefix: continue to scan a buffer until a special value stored in AX/EAX/RAX is
found. Hence “NE” in REPNE: continue to scan if compared values are not equal and stop when equal.

It is often used as strlen() C standard function, to determine ASCIIZ string length:

Example:

lea edi, string

mov ecx, OFFFFFFFFh ; scan 27°32-1 bytes, i.e., almost "infinitely"
Xor eax, eax ; O is the terminator

repne scasb

add edi, OFFFFFFFFh ; correct it

; now EDI points to the last character of the ASCIIZ string.

; let’s determine string length

; current ECX = -1-strlen
not ecx
dec ecx

; now ECX contain string length

If to use different AX/EAX/RAX value, the function will act as memchr() standard C function, i.e., it will find specific byte.
SHL shift value left
SHR shift value right:

IO
NSNS

This instruction is frequently used for multiplication and division by 2™. Another very frequent application is bit fields
processing: 17.

SHRD op1, op2, op3: shift value in op2 right by op3 bits, taking bits from op1.
Example: 21.

STOSB/STOSW/STOSD/STOSQ store byte/ 16-bit word/ 32-bit word/ 64-bit word from AX/EAX/RAX into the place address of
which is in the DI/EDI/RDI.

Together with REP prefix, it will repeated in loop, count is stored in the CX/ECX/RCX register: it works like memset() in
C. If block size is known to compiler on compile stage, memset() is often inlined into short code fragment using REP
MOVSx, sometimes even as several instructions.

memset(EDI, 0XAA, 15) equivalent is:

568

80.6. INSTRUCTIONS CHAPTER 80. X86

; store 15 OxAA bytes to EDI

CLD ; set direction to "forward"
MOV EAX, OAAAAAAAAh

MOV ECX, 3

REP STOSD ; write 12 bytes

STOSW ; write 2 more bytes

STOSB ; write remaining byte

(Supposedly, it will work faster then storing 15 bytes using just one REP STOSB).
SUB subtract values. frequently occurred pattern SUB reg,reg meaning write 0 to reg.
TEST same as AND but without results saving, see also: 17
XCHG exchange values in operands

XOR opl, op2: XOR* values. opl = opl @ op2. frequently occurred pattern XOR reg,reg meaning write 0 to reg.

80.6.3 Less frequently used instructions
BSF bit scan forward, see also: 22.2

BSR bit scan reverse

BSWAP (byte swap), change value endianness.

BTC bit test and complement

BTR bit test and reset

BTS bit test and set

BT bit test

CBW/CWD/CWDE/CDQ/CDQE Sign-extend value:

CBW : convert byte in AL to word in AX

CWD : convert word in AX to doubleword in DX:AX

CWDE : convert word in AX to doubleword in EAX

CDQ : convert doubleword in EAX to quadword in EDX:EAX
CDQE (x64): convert doubleword in EAX to quadword in RAX

These instructions consider value’s sign, extending it to high part of newly constructed value. See also: 21.4.
CLD clear DF flag.
CLI (M) clear IF flag
CMC (M) toggle CF flag
CMOVcc conditional MOV: load if condition is true The condition codes are the same as in Jcc instructions (80.6.2).

CMPSB/CMPSW/CMPSD/CMPSQ (M) compare byte/ 16-bit word/ 32-bit word/ 64-bit word from the place address of which
is in the SI/ESI/RSI with a variable address of which is in the DI/EDI/RDI. Set flags as CMP does.

Together with REP prefix, it will repeated in loop, count is stored in the CX/ECX/RCX register, the process will be running
util ZF flag is zero (e.g., until compared values are equal to each other, hence “E” in REPE).

It works like memcmp() in C.
Example from Windows NT kernel (WRK v1.2):

“eXclusive OR

569

80.6. INSTRUCTIONS

CHAPTER 80. X86

Listing 80.3: base\ntos\rtl\i386\movemem.asm

B
B
B
’

>

’

B

rcmlO: mov

rcm20: mov

ULONG

; RtlCompareMemory (

IN PVOID Sourcel,
IN PVOID Source2,
IN ULONG Length

)

Routine Description:

This function compares two blocks of memory and returns the number

of bytes that compared equal.

Arguments:

Sourcel (esp+4) - Supplies a pointer to the first block of memory to

compare.

Source2 (esp+8) - Supplies a pointer to the second block of memory to

compare.

Length (esp+12) - Supplies the Length, in bytes, of the memory to be

compared.

Return Value:

The number of bytes that compared equal is returned as the function
value. If all bytes compared equal, then the length of the original

block of memory is returned.

RcmSourcel equ [esp+12]
RcmSource2 equ [esp+16]
RcmLength equ [esp+20]

CODE_ALIGNMENT
cPublicProc _RtlCompareMemory,3
cPublicFpo 3,0

push esi

push edi

cld

mov esi,RcmSourcel
mov edi,RcmSource?2

Compare dwords, if any.

ecx,RcmLength

shr ecx,?2
jz rcm20
repe cmpsd
jnz rcm40

Compare residual bytes, if any.

ecx,RcmLength

save registers

clear direction
(esi) -> first block to compare
(edi) -> second block to compare

(ecx) = length in bytes
(ecx) = length in dwords

; no dwords, try bytes

compare dwords

; mismatch, go find byte

(ecx) = length in bytes

970

80.6. INSTRUCTIONS CHAPTER 80. X86

and ecx,3 ; (ecx) = length mod 4

jz rcm30 ; 0 odd bytes, go do dwords

repe cmpsb ; compare odd bytes

jnz rcmb0 ; mismatch, go report how far we got

; All bytes in the block match.

rcm30: mov eax,RcmLength ; set number of matching bytes
pop edi ; restore registers
pop esi 8

stdRET _RtlCompareMemory

; When we come to rcm40, esi (and edi) points to the dword after the
8 one which caused the mismatch. Back up 1 dword and find the byte.
5 Since we know the dword didn’t match, we can assume one byte won’t.

rcm40: sub esi,4 ; back up
sub edi,4 ; back up
mov ecx,b ; ensure that ecx doesn’t count out
repe cmpsb ; find mismatch byte

8 When we come to rcmb0, esi points to the byte after the one that
; did not match, which is TWO after the last byte that did match.

rcm50: dec esi ; back up
sub esi,RcmSourcel ; compute bytes that matched
mov eax,esi ;
pop edi ; restore registers
pop esi 8

stdRET _RtlCompareMemory

stdENDP _RtlCompareMemory

N.B.: this function uses 32-bit words comparison (CMPSD) if block size is multiple of 4, or per-byte comparison (CMPSB)
otherwise.

CPUID get information about CPU features. see also: (18.6.1).
DIV unsigned division
IDIV signed division

INT (M): INT xisanalogoustoPUSHF; CALL dword ptr [x*4] in16-bitenvironment. It waswidely usedin MS-DOS, func-
tioning as syscalls. Registers AX/BX/CX/DX/SI/DI were filled by arguments and jump to the address in the Interrupt
Vector Table (located at the address space beginning) will be occurred. It was popular because INT has short opcode
(2 bytes) and the program which needs some MS-DOS services is not bothering by determining service’s entry point
address. Interrupt handler return control flow to called using IRET instruction.

Most busy MS-DOS interrupt number was 0x21, serving a huge amount of its API. See also: [4] for the most comprehen-
sive interrupt lists and other MS-DOS information.

In post-MS-DOS era, this instruction was still used as syscall both in Linux and Windows (48), but later replaced by
SYSENTER or SYSCALL instruction.

INT 3 (M): this instruction is somewhat standing aside of INT, it has its own 1-byte opcode (0xCC), and actively used while
debugging. Often, debuggers just write 0xCC byte at the address of breakpoint to be set, and when exception is raised,
original byte will be restored and original instruction at this address will be re-executed. As of Windows NT, an EXCEPTION_BREAKP
exception will be raised when CPU executes this instruction. This debugging event may be intercepted and handled

071

80.6. INSTRUCTIONS CHAPTER 80. X86
by a host debugger, if loaded. If it is not loaded, Windows will offer to run one of the registered in the system debug-
gers. If MSVS® is installed, its debugger may be loaded and connected to the process. In order to protect from reverse
engineering, a lot of anti-debugging methods are checking integrity of the code loaded.

MSVC has compiler intrinsic for the instruction: __debugbreak ()®.
There are also a win32 function in kernel32.dll named DebugBreak ()7, which also executes INT 3.

IN (M) input data from port. The instruction is usually can be seen in OS drivers or in old MS-DOS code, for example (55.3).

IRET :wasusedin MS-DOS environment for returning from interrupt handler after it was called by INT instruction. Equivalent
toPOP tmp; POPF; JMP tmp.

LOOP (M) decrement CX/ECX/RCX, jump if it is still not zero.
OUT (M) output data to port. The instruction is usually can be seen in OS drivers or in old MS-DOS code, for example (55.3).
POPA (M) restores values of (R|E)DI, (R|E)SI, (R|E)BP, (R|E)BX, (R|E)DX, (R|E)CX, (R|E)AX registers from stack.

POPCNT population count. counts number of 1 bits in value. AKA “hamming weight”. AKA “NSA instruction” because of
rumors:

This branch of cryptography is fast-paced and very politically charged. Most designs are secret; a
majority of military encryptions systems in use today are based on LFSRs. In fact, most Cray computers
(Cray 1, Cray X-MP, Cray Y-MP) have a rather curious instruction generally known as “population count.”
It counts the 1 bits in a register and can be used both to efficiently calculate the Hamming distance
between two binary words and to implement a vectorized version of a LFSR. I’'ve heard this called the
canonical NSA instruction, demanded by almost all computer contracts.

(31]
POPF restore flags from stack (AKA EFLAGS register)
PUSHA (M) pushes values of (R|E)AX, (R|E)CX, (R|E)DX, (R|E)BX, (R|E)BP, (R|E)SI, (R|E)DI registers to the stack.
PUSHF push flags (AKA EFLAGS register)
RCL (M) rotate left via CF flag:

716|543 |2 1 0 CF
CF 7 6 5 4 3 2 1 0
RCR (M) rotate right via CF flag:
CF 7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0 CF
ROL/ROR (M) cyclic shift
ROL: rotate left:
7 6 5 4 3 2 1 0
CF 7 6 5 4 3 2 1 0

SMicrosoft Visual Studio
Shttp://msdn.microsoft.com/en-us/library/£408bdet .aspx
"http://msdn.microsoft.com/en-us/library/windows/desktop/ms679297 (v=vs.85) .aspx

972

http://msdn.microsoft.com/en-us/library/f408b4et.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms679297(v=vs.85).aspx

80.6. INSTRUCTIONS CHAPTER 80. X86
ROR: rotate right:

7 6 5 4 3 2 1 0
NSNS N N
7 6 5 4 3 2 1 0 CF

Despite the fact that almost all CPUs has these instructions, there are no corresponding operations in the C/C++, so the
compilers of these PLs are usually not generating these instructions.

For programmer’s convenience, at least MSVC has pseudofunctions (compiler intrinsics) _rotl() and _rotr()®, which are
translated by compiler directly to these instructions.

SAL Arithmetic shift left, synonymous to SHL

SAR Arithmetic shift right

PSSO

Hence, sign bit is always stayed at the place of MSB®.

SETcc op: load 1to op (byte only) if condition is true or zero otherwise. The condition codes are the same asin Jccinstructions
(80.6.2).

STC (M) set CF flag

STD (M) set DF flag

STI (M) set IF flag

SYSCALL (AMD) call syscall (48)
SYSENTER (Intel) call syscall (48)

UD2 (M) undefined instruction, raises exception. used for testing.

80.6.4 FPU instructions

-Rin mnemonic usually means that operands are reversed, -P means that one element is popped from the stack after instruc-
tion execution, -PP means that two elements are popped.
-P instructions are often useful when we do not need a value in the FPU stack to be present anymore.

FABS replace value in ST(0) by absolute value in ST(0)

FADD op: ST(0)=0p+ST(0)

FADD ST(0), ST(i): ST(0)=ST(0)+ST(i)

FADDP ST(1)=ST(0)+ST(1); pop one element from the stack, i.e., summed values in the stack are replaced by sum
FCHS : ST(0)=-ST(0)

FCOM compare ST(0) with ST(1)

FCOM op: compare ST(0) with op

FCOMP compare ST(0) with ST(1); pop one element from the stack

FCOMPP compare ST(0) with ST(1); pop two elements from the stack

8http://msdn.microsoft.com/en-us/library/5cc576c4.aspx
9Most significant bit/byte

o973

http://msdn.microsoft.com/en-us/library/5cc576c4.aspx

80.6. INSTRUCTIONS CHAPTER 80. X86
FDIVR op: ST(0)=op/ST(0)

FDIVR ST(i), ST(j): ST(i)=ST(j)/ST(i)

FDIVRP op: ST(0)=op/ST(0); pop one element from the stack

FDIVRP ST(i), ST(j): ST(i)=ST(j)/ST(i); pop one element from the stack
FDIV op: ST(0)=ST(0)/op

FDIV ST(i), ST(j): ST(i)=ST(i)/ST(j)

FDIVP ST(1)=ST(0)/ST(1); pop one element from the stack, i.e., dividend and divisor values in the stack are replaced by quo-
tient

FILD op: convert integer and push it to the stack.

FIST op: convert ST(0) to integer op

FISTP op: convert ST(0) to integer op; pop one element from the stack

FLD1 push 1to stack

FLDCW op: load FPU control word (80.3) from 16-bit op.

FLDZ push zero to stack

FLD op: push op to the stack.

FMUL op: ST(0)=ST(0)*op

FMUL ST(i), ST(j): ST(i)=ST(i)*ST(j)

FMULP op: ST(0)=ST(0)*op; pop one element from the stack

FMULP ST(i), ST(j): ST(i)=ST(i)*ST(j); pop one element from the stack

FSINCOS : tmp=ST(0); ST(1)=sin(tmp); ST(0)=cos(tmp)

FSQRT : ST(0) = /ST(0)

FSTCW op: store FPU control word (80.3) into 16-bit op after checking for pending exceptions.
FNSTCW op: store FPU control word (80.3) into 16-bit op.

FSTSW op: store FPU status word (80.3.2) into 16-bit op after checking for pending exceptions.
FNSTSW op: store FPU status word (80.3.2) into 16-bit op.

FST op: copy ST(0) to op

FSTP op: copy ST(0) to op; pop one element from the stack

FSUBR op: ST(0)=op-ST(0)

FSUBR ST(0), ST(i): ST(0)=ST(i)-ST(0)

FSUBRP ST(1)=ST(0)-ST(1); pop one element from the stack, i.e., summed values in the stack are replaced by difference
FSUB op: ST(0)=ST(0)-op

FSUB ST(0), ST(i): ST(0)=ST(0)-ST(i)

FSUBP ST(1)=ST(1)-ST(0); pop one element from the stack, i.e., summed values in the stack are replaced by difference
FUCOM ST(i): compare ST(0) and ST(i)

FUCOM : compare ST(0) and ST(1)

FUCOMP : compare ST(0) and ST(1); pop one element from stack.

FUCOMPP : compare ST(0) and ST(1); pop two elements from stack.

The instructions performs just like FCOM, but exception is raised only if one of operands is SNaN, while QNaN numbers
are processed smoothly.

FXCH ST(i) exchange valuesin ST(0) and ST(i)
FXCH exchange valuesin ST(0) and ST(1)

074

80.6. INSTRUCTIONS

CHAPTER 80. X86

80.6.5 SIMD instructions

80.6.6 Instructions having printable ASCIl opcode

(In 32-bit mode).

It can be suitable for shellcode constructing. See also: 59.1.

ASCII character

hexadecimal code

x86 instruction

O oo~ pbhWN—O

VT TN XS<CcCHOVODOUVOZZICNrXC " IOTMMOO®Z@RE ™I A

~ 1

il «V]

30
31

32
33
34
35
37
38
39
3a
3b
3c
3d
3f

40
41

42
43
44
45
46
47
48
49
4a
4b
4c
4d
4e
4f

50
51

52
53
54
55
56
57
58
59
5a
5b
5c¢
5d
5e
5f

60
61

66

67

68

975

XOR
XOR
XOR
XOR
XOR
XOR
AAA
CMP
CMP
CMP
CMP
CMP
CMP
AAS
INC
INC
INC
INC
INC
INC
INC
INC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
POP
POP
POP
POP
POP
POP
POP
POP
PUSHA
POPA
(in 32-bit mode) switch to
16-bit operand size
in 32-bit mode) switch to
16-bit address size
PUSH

80.6. INSTRUCTIONS

CHAPTER 80. X86

N Xs<c+wSTao0DsT X" —

69
6a
6b
70
7

72
73
74
75
76
77
78
79
7a

IMUL
PUSH
IMUL
JO
JNO
JB
JAE
JE
JNE
JBE
JA
JS
JNS
JP

Summarizing: AAA, AAS, CMP, DEC, IMUL, INC, JA, JAE, JB, JBE, JE, JNE, JNO, JNS, JO, JP, JS, POP, POPA, PUSH, PUSHA,

XOR.

o976

CHAPTER 81. ARM

Chapter 81

ARM

81.1 General purpose registers

e RO — function result is usually returned using RO
e RI1

e R2

e R3

e R4

e R5

e R6

e R7

e R8

e R9

e R10

e RN

e R12

e R13 — AKA SP (stack pointer)
e R14 — AKALR (link register)

e R15 — AKA PC (program counter)

RO-R3 are also called “scratch registers”: function arguments are usually passed in them, and values in them are not
necessary to restore upon function exit.

77

81.2. CURRENT PROGRAM STATUS REGISTER (CPSR)

CHAPTER 81. ARM

81.2 Current Program Status Register (CPSR)

Bit Description

0.4 M — processor mode

5 T — Thumb state

6 F — FIQ disable

7 | — IRQ disable

8 A — imprecise data abort disable
9 E — data endianness

10..15, 25,26 | IT — if-then state

16..19 GE — greater-than-or-equal-to
20..23 DNM — do not modify

24 J — Java state

27 Q — sticky overflow

28 V — overflow

29 C — carry/borrow/extend

30 Z — zero bit

31 N — negative/less than

81.3 VFP (floating point) and NEON registers

0.31°% | 32..64 | 65..96 | 97.127
Q0128bits
D064bits D1
S0%2P | 51 2 |3

S-registers are 32-bit ones, used for single precision numbers storage.
D-registers are 64-bit ones, used for double precision numbers storage.
D- and S-registers share the same physical space in CPU—it is possible to access D-register via S-registers (it is senseless

though).

Likewise, NEON Q-registers are 128-bit ones and share the same physical space in CPU with other floating point registers.

In VFP 32 S-registers are present: S0..S31.

In VFPV2 there are 16 D-registers added, which are, in fact, occupy the same space as S0..S31.

In VFPv3 (NEON or “Advanced SIMD”) there are 16 more D-registers added, resulting D0..D31, but D16..D31 registers are

not sharing a space with other S-registers.

In NEON or “Advanced SIMD” there are also 16 128-bit Q-registers added, which share the same space as D0..D31.

978

CHAPTER 82. SOME GCC LIBRARY FUNCTIONS

Chapter 82

Some GCC library functions

name meaning

__divdi3 | signed division

__moddi3 | getting remainder (modulo) of signed division
__udivdi3 | unsigned division

__umoddi3 | getting remainder (modulo) of unsigned division

979

CHAPTER 83. SOME MSVC LIBRARY FUNCTIONS

Chapter 83

Some MSVC library functions

11 in function name mean “long long”, e.g., 64-bit data type.

name meaning

__alldiv | signed division

__allmul multiplication

__allrem | remainder of signed division
__allshl | shiftleft

__allshr | signed shiftright

__aulldiv | unsigned division

__aullrem | remainder of unsigned division
__aullshr | unsigned shift right

Multiplication and shift left procedures are the same for both signed and unsigned numbers, hence only one function for
each operation here.

The source code of these function can be founded in the installed MSVS, in VC/crt/src/intel/*.asm.

580

Acronyms used

581

CHAPTER 83. SOME MSVC LIBRARY FUNCTIONS

08 OPerating SY S oM . .ottt ettt e e e e e e e e e e e et Xiv
FAQ Frequently Asked QUEStiONS\ttt e e ettt et e e et et e ettt e i e e Xiv
OOP Object-Oriented Programmingttt ettt et et 252
PL Programming lanGUage . . .ottt ettt ettt et et 3
PRNG Pseudorandom NUMbDer GeNerator. vttt et et ettt e e et 170
RA REtUIMN AdArESS . ..ottt ettt ettt ettt et e e e e e e e e e e e e e e e e e e et e e e e 12
PE Portable EXxecutable: 50.2. ... e e e e i 345
P StACK PO NEET . ettt e e e e e e 9
DLL DynamicC-linK lrary ..o e e e e e 345
PC Program COUNTEr. ..ottt e e e e et e et e e e 9
I 2 IR0 2 =T~ =T P 9
IDA Interactive DisassembDlerot e e 5
IAT IMpPort Address Tableot et et et et et e e et et e e 346
INT ImMport Name Table. ... e et et et et et et et e et et aeeaneas 346
RVA Relative Virtual Addressottt e et e e e e e et e e e e e e aeens 346
VA VirtUGLAAAIESS ..ottt ettt e e e e e e e e e e e e e e e e e 346
OEP Original ENtry POiNt. . ..ottt ettt e e e et et et e et e e e e e e e e 342

MSVC Microsoft Visual C++

MSVS Microsoft Visual StUAIO e e e e e 572
ASLR Address Space Layout Randomizationuiitiiii et et et et e e 346
MFC Microsoft FOUNation ClasSesttt ettt et ettt e e e e e e et e e et enes 348
TLS Thread LOCal STOrage . ..o ettt ettt et et e e e e e e e e e e e et e e e Xiv

AKA Also Known As

582

CHAPTER 83. SOME MSVC LIBRARY FUNCTIONS

CRT Cruntime lbrary: SECiCRT ..ottt ettt et et ettt et et e et e et et et 5
CPU Central proCessing UNitttt ettt ettt e e et e e ettt Xiv
FPU Floating-point UNit.t e et e e e et e e e e e e e eaeens 108
CISC Complex inStruction SEt COMPULINGottt e e e e e e e e e e e e a e e 10
RISC Reduced inStruction Set COMPULINGo\ttt e e e e ettt e et e e e e e e e eneans 10
GUI Graphical Userinterfaceot i i e e et e e et et et 342
RTTI Run-time type information. i it et et et et et et aieeaieans 267
BSS Block Started by Symbolo e e e 64
SIMD Singleinstruction, multiple data. e 183
BSOD Black SCreen of Deatht e e e 334
DBMS Database Management SYStemMSttt ettt ettt e e e e Xiv
ISA InStruction Set ArChiteCtUIE e e e e e e e Xiv
CGl Common Gateway INterface. ... oot i et i et et et e et e 542
HPC High-Performance CompPULINGttt ettt ettt et e et et e et e et e e i e ieaens 212
SOC SYSTEM ON D ettt e et et et et e e e e e e 9
SEH Structured Exception Handling: 50.3 e 19
ELF Executable file format widely used in *NIX system including Linuxcouiiuiiii e Xiv
TIB Thread Information BIOCKot e e e e e et et e e e e e e e 131
TEA Tiny Encryption Algorithm . ..o e e e 549
PIC Position Independent Code: 40,1ttt ettt et e et et et e, Xiv
NAN Nota NUMD T . . e et e e e e e e e e e e 563
NOP NO OPEration . ..ottt ettt e e e e et ettt 49
BEQ (PowerPC, ARM) Branch if EQUAlovuit ittt e et et et et e e e e e a e 52

o83

CHAPTER 83. SOME MSVC LIBRARY FUNCTIONS

BNE (PowerPC, ARM) Branch if NOT EQUAL.ottt i e e et et et et et 101
BLR (PowerPC) Branch t0 LiNK REGISTr . . .ottt ettt e ettt ettt et e et e e e e 384
XOR XCIUSIVE OR . ettt e e ettt et e e et et e e e e e e e e 569
MCU Microcontroller UNit. e e e e e e et a e 407
RAM RaNdOM-@CCESS MEIMOIY . .. e\t ettt ettt et et e e et et et et e e et et e et et e e et et et et et e et et e e a e eenens 43
L2001 IS =T Vo R o o 1Y =T 0 o o 488
EGA Enhanced Graphics Adapter. ... oottt et e et et e et et et et e i 488
VGA Vide0 Graphics ArTay ..ottt ettt et et e et e et e ettt ettt e et e et e et e e 488
API Application programming iNterfacettt e e e e e 316
ASCIl American Standard Code for Information Interchange. i e 473
ASCHZ ASCIIl Zero (null-terminated ASCH STrNE) . . oo vttt ettt e ettt e e e e e e e e e eaeans 49
IAGA Intel ArchitectUre B4 (HaniUm) B5 ..ottt it e et e et e et et e e 310
EPIC Explicitly parallelinstruction CompuUtingt e e e e e 485
OOE OUL-0f-0rder @XECULION . . .ottt ettt et ettt et ettt e et e e et et e e et e e et e et 485
MSDN Microsoft Developer NetWOrKttt ettt e et et et et et et et et ettt e e e e e aneans XV
MSB Most significant bit/byte 573
STL (C++) Standard Template Library: 34o e e e et et 277
PODT (CH+) Plain Old Data Ty e . o vttt ettt ettt e et ettt et e et e e e et et e et et e ettt eee e 289
HDD Hard disk drive e e e e e et et e e e e 301

VM Virtual Memory

WRK Windows Research Kernel e e e e e et 328
GPR General PUIPOSE REGISTISottt e ettt e ettt 3
SSDT System Service Dispatch Table e e e e e e e e e e 334

o84

CHAPTER 83. SOME MSVC LIBRARY FUNCTIONS

RE ReVeISE ENgiNeering . .ottt ettt et et e e e et e e e e e e 494
SSE Streaming SIMD EXEENSIONS . . .o u ettt ettt e et e e e e e e e e e 201
BCD Binary-coded deCimalottt it e e e e e 472
BOM Byte Order MarK . .ottt ettt ettt et et et e e e e e e e e e e e 319
(10 = T €] LU 1= o U= o] 24

585

BIBLIOGRAPHY

Bibliography

2]

(3]

(8]

(9]

(10]

(1]

[12]

[13]

(14]

[15]

[16]

(17]

[18]

[19]

[t}

AMD. AMD®64 Architecture Programmer’s Manual. 2013. Also available as http://developer.amd.com/resources/
documentation-articles/developer-guides-manuals/.

Apple. i0OS ABI Function Call Guide. 2010. Also available as http://developer.apple.com/library/ios/
documentation/Xcode/Conceptual/iPhone0SABIReference/iPhone0SABIReference. pdf.

blexim. Basic integer overflows. Phrack, 2002. Also available ashttp://yurichev. com/mirrors/phrack/p60-0x0a.
txt.

Ralf Brown. The x86 interrupt list. Also available ashttp://www.cs.cmu.edu/ " ralf/files.html.

Mike Burrell. Writing effcient itanium 2 assembly code. Also available as http://yurichev.com/mirrors/RE/
itanium.pdf.

Marshall Cline. C++ faq. Also available ashttp://www.parashift.com/c++-faq-lite/index.html.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Third Edition.
The MIT Press, 3rd edition, 2009.

Stephen Dolan. mov is turing-complete. 2013. Also available as http://www.cl.cam.ac.uk/~sd601/papers/mov.
pdf.

Nick Montfort et al. 10 PRINT CHR$(205.5+RND(1)); : GOTO 10. The MIT Press, 2012. Also available as http:
//trope-tank.mit.edu/10_PRINT_121114.pdf.

Agner Fog. The microarchitecture of Intel, AMD and VIA CPUs / An optimization guide for assembly programmers and
compiler makers. 2013. http://agner.org/optimize/microarchitecture.pdf.

Agner Fog. Optimizing software in C++: An optimization guide for Windows, Linux and Mac platforms. 2013. http:
//agner.org/optimize/optimizing_cpp.pdf.

Agner Fog. Calling conventions. 2014. http://www.agner.org/optimize/calling_conventions.pdf.

IBM. PowerPC(tm) Microprocessor Family: The Programming Environments for 32-Bit Microprocessors. 2000. Also
available ashttp://yurichev.com/mirrors/PowerPC/6xx_pem.pdf.

Intel. Intel® 64 and 1A-32 Architectures Software Developer’s Manual Combined Volumes:1, 2A, 2B, 2C, 3A, 3B,

and 3C. 2013. Also available as http://www.intel.com/content/dam/www/public/us/en/documents/manuals/

64-ia-32-architectures-software-developer-manual-325462.pdf.

ISO. ISO/IEC 9899:TC3 (C C99 standard). 2007. Also available ashttp://www.open-std.org/jtcl/sc22/WG14/www/
docs/n1256.pdf.

ISO. ISO/IEC 14882:2011 (C++ 11 standard). 2013. Also available as http://www.open-std.org/jtcl/sc22/ug2l/
docs/papers/2013/n3690. pdf.

Brian W. Kernighan. The C Programming Language. Prentice Hall Professional Technical Reference, 2nd edition, 1988.

Donald E. Knuth. The Art of Computer Programming Volumes 1-3 Boxed Set. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2nd edition, 1998.

Eugene Loh. The ideal hpc programming language. Queue, 8(6):30:30-30:38, June 2010.

Advanced RISC Machines Ltd. The ARM Cookbook. 1994. Also available as http://yurichev.com/ref/ARMY),
20Cookbook%20(1994).

586

http://developer.amd.com/resources/documentation-articles/developer-guides-manuals/
http://developer.amd.com/resources/documentation-articles/developer-guides-manuals/
http://developer.apple.com/library/ios/documentation/Xcode/Conceptual/iPhoneOSABIReference/iPhoneOSABIReference.pdf
http://developer.apple.com/library/ios/documentation/Xcode/Conceptual/iPhoneOSABIReference/iPhoneOSABIReference.pdf
http://yurichev.com/mirrors/phrack/p60-0x0a.txt
http://yurichev.com/mirrors/phrack/p60-0x0a.txt
http://www.cs.cmu.edu/~ralf/files.html
http://yurichev.com/mirrors/RE/itanium.pdf
http://yurichev.com/mirrors/RE/itanium.pdf
http://www.parashift.com/c++-faq-lite/index.html
http://www.cl.cam.ac.uk/~sd601/papers/mov.pdf
http://www.cl.cam.ac.uk/~sd601/papers/mov.pdf
http://trope-tank.mit.edu/10_PRINT_121114.pdf
http://trope-tank.mit.edu/10_PRINT_121114.pdf
http://agner.org/optimize/microarchitecture.pdf
http://agner.org/optimize/optimizing_cpp.pdf
http://agner.org/optimize/optimizing_cpp.pdf
http://www.agner.org/optimize/calling_conventions.pdf
http://yurichev.com/mirrors/PowerPC/6xx_pem.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3690.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3690.pdf
http://yurichev.com/ref/ARM%20Cookbook%20(1994)
http://yurichev.com/ref/ARM%20Cookbook%20(1994)

BIBLIOGRAPHY BIBLIOGRAPHY
[21] Michael Matz / Jan Hubicka / Andreas Jaeger / Mark Mitchell. System v application binary interface. amd64 architecture
processor supplement, 2013. Also available ashttp://x86-64.org/documentation/abi.pdf.

[22] Aleph One. Smashing the stack for fun and profit. Phrack, 1996. Also available as http://yurichev.com/mirrors/
phrack/p49-0x0e.txt.

[23

—_—

Matt Pietrek. A crash course on the depths of win32™ structured exception handling. MSDN magazine.
[24] Matt Pietrek. Anin-depth look into the win32 portable executable file format. MSDN magazine, 2002.

[25] Eric S. Raymond. The Art of UNIX Programming. Pearson Education, 2003. Also available ashttp://catb.org/esr/
writings/taoup/html/.

[26] D.M.Ritchie and K. Thompson. The unix time sharing system. 1974. Also available ashttp://d1l.acm.org/citation.
cfm?id=361061.

[27] Dennis M. Ritchie. The evolution of the unix time-sharing system. 1979.

[28] Dennis M. Ritchie. Where did ++ come from? (net.lang.c). http://yurichev.com/mirrors/C/c_dmr_
postincrement.txt,1986. [Online; accessed 2013].

[29] Dennis M. Ritchie. The development of the c language. SIGPLAN Not., 28(3):201-208, March 1993. Also available as
http://yurichev.com/mirrors/C/dmr-The%20Development?200f%20the’%20C%20Language-1993. pdf.

[30] Mark E. Russinovich and David A. Solomon with Alex lonescu. Windows(®) Internals: Including Windows Server 2008
and Windows Vista, Fifth Edition. 2009.

[31] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C. 1994.

[32] Igor Skochinsky. Compilerinternals: Exceptions and rtti, 2012. Also available ashttp://yurichev.com/mirrors/RE/
Recon-2012-8kochinsky-Compiler-Internals.pdf.

[33] SunSoft Steve Zucker and IBM Kari Karhi. SYSTEM V APPLICATION BINARY INTERFACE: PowerPC Processor Supplement.
1995. Also available ashttp://yurichev.com/mirrors/PowerPC/elfspec_ppc.pdf.

[34] trew. Introduction to reverse engineering win32 applications. uninformed. Also available ashttp://yurichev.com/
mirrors/RE/uninformed_v1a7.pdf.

[35] Henry S. Warren. Hacker’s Delight. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[36] Dennis Yurichev. Finding unknown algorithm using only input/output pairs and z3 smt solver. 2012. Also available as
http://yurichev.com/writings/z3_rockey.pdf.

[37] Dennis Yurichev. C/C++ programming language notes. 2013. Also available as http://yurichev.com/writings/
C-notes-en.pdf.

o87

http://x86-64.org/documentation/abi.pdf
http://yurichev.com/mirrors/phrack/p49-0x0e.txt
http://yurichev.com/mirrors/phrack/p49-0x0e.txt
http://catb.org/esr/writings/taoup/html/
http://catb.org/esr/writings/taoup/html/
http://dl.acm.org/citation.cfm?id=361061
http://dl.acm.org/citation.cfm?id=361061
http://yurichev.com/mirrors/C/c_dmr_postincrement.txt
http://yurichev.com/mirrors/C/c_dmr_postincrement.txt
http://yurichev.com/mirrors/C/dmr-The%20Development%20of%20the%20C%20Language-1993.pdf
http://yurichev.com/mirrors/RE/Recon-2012-Skochinsky-Compiler-Internals.pdf
http://yurichev.com/mirrors/RE/Recon-2012-Skochinsky-Compiler-Internals.pdf
http://yurichev.com/mirrors/PowerPC/elfspec_ppc.pdf
http://yurichev.com/mirrors/RE/uninformed_v1a7.pdf
http://yurichev.com/mirrors/RE/uninformed_v1a7.pdf
http://yurichev.com/writings/z3_rockey.pdf
http://yurichev.com/writings/C-notes-en.pdf
http://yurichev.com/writings/C-notes-en.pdf

Glossary

Glossary

decrement Decrease by 1.9, 89, 99, 101, 331, 432, 565, 567, 572
increment Increase by 1. 10, 89, 92, 99-101, 408, 428, 565
product Multiplication result. 184

stack pointer A register pointing to the place in the stack. SP/ESP/RSP in x86. 5, 6,10, 14,17, 20, 30, 31, 39, 55, 239, 254, 560,
566, 577

tail call It is when compiler (or interpreter) transforms recursion (with which it is possible: tail recursion) into iteration for
efficiency: http://en.wikipedia.org/wiki/Tail_call. 13

quotient Division result. 146

anti-pattern Generally considered as bad practice. 16, 39

atomic operation “aropoc” mean “indivisible” in Greek, so atomic operation is what guaranteed not to be broke up during
operation by other threads. 376, 482

basic block a group of instructions not having jump/branch instructions, and also not having jumps inside block from the
outside. In IDA it looks just like as a list of instructions without breaking empty lines . 489, 490

callee Afunction being called by another. 13,16, 45, 53, 55, 58, 81,193, 239, 254
caller A function calling another. 5, 45, 53, 54, 57, 61, 81,193, 200, 205, 254

compiler intrinsic Afunction specific to a compiler whichis not usual library function. Compiler generate a specific machine
code instead of call to it. It is often a pseudofunction for specific CPU instruction. Read more: (62). 572

CP/M Control Program for Microcomputers: a very basic disk OS used before MS-DOS. 470

debuggee A program being debugged. 127

dongle Dongleisasmall piece of hardware connected to LPT printer port (in past) or to USB. Its function was akin to security
token, it has some memory and, sometimes, secret (crypto-)hashing algorithm.. 383

endianness Byte order: 36. 12, 41,569
GiB Gibibyte: 230 or 1024 mebibytes or 1073741824 bytes. 8

heap usually, a big chunk of memory provided by OS so that applications can divide it by themselves as they wish. mal-
loc()/free() works with heap.. 14,16, 152, 273, 275, 289, 290, 345, 346

jump offset a part of JMP or Jcc instruction opcode, it just to be added to the address of the next instruction, and thus is
how new PC is calculated. May be negative as well.. 49, 50, 73, 565

kernel mode A restrictions-free CPU mode in which it executes OS kernel and drivers. cf. user mode.. 589

keygenme A program which imitates fictional software protection, for which one needs to make a keys/licenses generator.
544

leaf function A function which is not calling any other function. 16

588

http://en.wikipedia.org/wiki/Tail_call

Glossary Glossary
link register (RISC) A register where return address is usually stored. This makes calling leaf functions without stack usage,
i.e., faster.. 16, 384, 577

loop unwinding It is when a compiler instead of generation loop code of n iteration, generates just n copies of the loop
body, in order to get rid of loop maintenance instructions. 91

name mangling used at least in C++, where compiler need to encode name of class, method and argument types in the one
string, which will become internal name of the function. read more here: 31.1.1. 252, 313, 314

NaN not a number: special cases of floating point numbers, usually signaling about errors . 117, 487
NEON AKA “Advanced SIMD”—SIMD from ARM. 578

NOP “no operation”, idle instruction. 331
POKE BASIC language instruction writing byte on specific address. 331

register allocator Compiler’s function assigning local variables to CPU registers. 98,139, 193

reverse engineering act of understanding, how the thing works, sometimes, in order to clone it. xiv, 572

security cookie Arandom value, different at each execution. Read more about it: 16.3. 365

stack frame Part of stack containing information specific to the current functions: local variables, function arguments, RA,
etc. 35, 54, 365

thunk function Tiny function with a single role: call another function.. 12,176, 384, 394

tracer My own simple debugging tool. Read more about it: 52. 93, 94,127, 317, 325, 329, 361, 371, 453, 459, 464, 467, 542,543
user mode A restricted CPU mode in which it executes all applied software code. cf. kernel mode.. 402, 588
Windows NT Windows NT, 2000, XP, Vista, 7, 8. 191, 238, 320, 334, 346, 375, 473, 571

xoring often used in English language, meaning applying XOR operation. 365, 397, 400

589

Index

.NET, 350 ostream, 269
AT&T syntax, 7,18 References, 271
Buffer Overflow, 126, 365 STL
Clanguage elements std::forward_list, 289
Pointers, 34, 39, 63,173,193 std::list, 279
Post-decrement, 101 std::map, 297
Post-increment, 101 std::set, 297
Pre-decrement, 101 std::string, 272
Pre-increment, 101 std::vector, 289
C99, 61 grep usage, 94, 119, 312, 325, 329, 452
bool, 137 Intel syntax, 7,9
restrict, 210 position-independent code, 9, 336
variable length arrays, 133 RAM, 43
const, 4, 44 ROM, 43, 44
for, 89, 148 Recursion, 13, 15
if, 69, 80 Tail recursion, 13
restrict, 210 Stack, 14, 53, 81
return, 5, 45, 61 Syntactic Sugar, 80, 157
switch, 79-81 iPod/iPhone/iPad, 9
while, 97 OllyDbg, 21, 36, 41, 64, 71,92
Cstandard library Oracle RDBMS, 5, 183, 321, 353, 455, 463, 465, 478, 489
alloca(), 17,133
assert(), 322 8080, 100
atexit(), 278 8086, 402
atoi(), 547 8253, 472
Ca[[oc()’ 421 80286, 402,488
c[ose(), 339 80386, 488
localtime(), 248)
longjmp!(), 81 Angry Birds, 119
malloc(), 153 ARM, 100, 229, 233, 383
memchr(), 568 ARM que, S
memcmp(), 323, 569 Instructions

memcpy(), 7, 34, 567 ADD, 11,77, 81,95, 105, 146

memset(), 464, 568 ADDAL, 77
open(), 339 ADDCC, 86
gsort(), 173, 553 ADDS, 59, 81
rand(), 316, 407, 548 ADR, 9, 77
read(), 339 ADREQ, 77, 81
scanf(), 34 ADRGT, 77
srand(), 548 ADRHI, 77
ADRNE, 81

stremp(), 339

strcpy(), 7, 407 ASRS, 105, 143

strlen(), 97,189, 568 B,30,77,78
strstr(), 548 BCS, 78, 121
time(), 248 BEQ, 52, 81
tolower(), 427 glGCE,lzé
toupper(), 547 ’

Ppert BL, 10,12, 77

Compiler’s anomalies, 143, 478
C++, 454 BLE, 78

C++11, 289, 333 BLEQ, 77
BLGT, 77

590

INDEX INDEX
BLHI, 77 Z,52,578
BLS, 78 thumb mode, 9, 78, 87
BLT, 95 thumb-2 mode, 9, 87,119
BLX, 12 armel, 1M
BNE, 78 armhf, 111
BX, 59, 87 Condition codes, 77
CLZ, 524,525 Data processing instructions, 105

CMP, 52, 77, 81, 86, 95, 146
IDIV, 103

IT, 119, 132
LDMCSFD, 77
LDMEA, 14
LDMED, 14
LDMFA, 14
LDMFD, 10, 14, 77
LDMGEFD, 77
LDR, 32, 39,125
LDR.W, 136
LDRB, 161
LDRB.W, 101
LDRSB, 100

LSL, 146

LSL.W, 146
LSLS, 125

MLA, 59

MOV, 10, 105, 146
MOVT, 11,105
MOVT.W, 12
MOVW, 12
MULS, 59
MVNS, 101

ORR, 143

POP, 9,10, 14, 16
PUSH, 14, 16
RSB, 136, 146
SMMUL, 105
STMEA, 14
STMED, 14
STMFA, 14, 33
STMFD, 9, 14
STMIA, 31
STMIB, 33

STR, 31,125
SUB, 31, 136, 146
SUBEQ, 102
SXTB, 162

TEST, 98

TST, 140, 146
VADD, 111

VDIV, 111

VLDR, 111

VMOV, 111, 118
VMOVGT, 118
VMRS, 118
VMUL, 111

Registers

APSR, 118
FPSCR, 118

Link Register, 10, 16, 30, 87, 577

RO, 60, 577
scratch registers, 100, 577

DCB, 10
hard float, 111
if-then block, 119
Leaf function, 16
Optional operators
ASR, 105,146
LSL, 125, 136, 146
LSR, 105, 146
ROR, 146
RRX, 146
soft float, 111

ASLR, 346
AWK, 327

bash, 61
BASIC

POKE, 331

binary grep, 324, 381
BIND.EXE, 350

Bitcoin, 479

Borland C++Builder, 314
Borland Delphi, 314
BSoD, 334

BSS, 347

C11,333

Callbacks, 173

Canary, 129

cdecl, 20

COFF, 392
column-major order, 133
Compiler intrinsic, 17, 477
CRC32, 146, 396

CRT, 342, 361

Cygwin, 313

cygwin, 317, 351, 380

Delphi, 318
DES, 183,193
dlopen(), 339
dlsym(), 339
DOSBox, 473
DosBox, 329
double, 108
dtruss, 380

EICAR, 469
ELF, 42
Error messages, 321

fastcall, 8, 33,138
float, 108
FORTRAN, 133, 210, 313

Function epilogue, 13, 30, 31,77, 161, 327
Function prologue, 6, 13, 16, 31, 129, 327

991

INDEX

INDEX

Fused multiply-add, 59

GCC, 313,579
GDB, 24, 27,128

Hiew, 49, 73, 318, 347, 348, 351

IAT, 346
IDA, 45, 320

var_?,31,39
IEEE 754,108, 170, 201, 558
Inline code, 96, 143, 213, 258
INT, 346
int Ox2e, 335
int 0x80, 334
Intel C++, 5,184, 478, 489, 566
Itanium, 485

jumptable, 83, 87

Keil, 9
kernel panic, 334
kernel space, 334

LD_PRELOAD, 338
Linux, 455

libc.so.6, 138,176
LLVM, 9
long double, 108
Loop unwinding, 91

Mac OS Classic, 383

MacOSX, 380

MD5, 323, 396

MFC, 348

MIDI, 323

MinGW, 313

MIPS, 231, 234, 347, 383

MS-DOS, 130, 323, 329, 331, 345, 402, 469, 471, 558, 571
DOS extenders, 488

MSVC, 580

Name mangling, 252
NEC V20, 473

objdump, 338, 351

OEP, 345, 350

opaque predicate, 236

OpenMP, 315, 479

OpenWatcom, 314, 498, 499, 509
Ordinal, 348

Page (memory), 191
Pascal, 318

PDB, 312, 347, 451
PDP-11, 101
PowerPC, 383

Raspberry Pi, 9,112
ReactOS, 359

Register allocation, 193
Relocation, 12
row-major order, 133

RTTI, 267
RVA, 346

SAP, 312, 451
SCO OpenServer, 391
Security cookie, 129, 365
SHAT, 396

SHA512, 479

Shadow space, 56, 58, 202
Shellcode, 470, 575
shellcode, 235, 334, 346
Signed numbers, 71, 309
SIMD, 201

SSE, 201

SSE2, 201

strace, 338, 380

syscall, 334

syscalls, 138, 380

TCP/IP, 310

thiscall, 252, 254

ThumbTwoMode, 11

TLS, 130, 333, 347, 350, 561
Callbacks, 351

Unicode, 319
Unrolled loop, 96,132
uptime, 338

user space, 334
UTF-16LE, 319

UTF-8, 319

VA, 346

Watcom, 314
Win32, 319, 488
RaiseException(), 351
SetUnhandledExceptionFilter(), 353
Windows
GetProcAddress, 350
KERNEL32.DLL, 137
LoadLibrary, 350
MSVCR80.DLL, 174
ntoskrnl.exe, 455
Structured Exception Handling, 19, 351
TIB, 130, 351, 561
Windows 2000, 346
Windows NT4, 346
Windows Vista, 345
Windows XP, 346, 350
Windows 3.x, 238, 488
Windows API, 558
Wine, 359
Wolfram Mathematica, 106, 107

x86
Instructions
AAA, 576
AAS, 576
ADC, 178, 243, 565
ADD, 5, 20, 54, 243, 565
ADDSD, 201

592

INDEX

INDEX

ADDSS, 204

AND, 6,138, 141, 144, 165, 565
BSF, 192, 526, 569
BSR, 569

BSWAP, 310, 569
BT, 569

BTC, 569

BTR, 376, 569

BTS, 569

CALL, 5, 15, 349, 565
CBW, 569

CDQ, 182, 569
CDQE, 569

CLD, 569

CLI, 569

CMC, 569
CMOVc, 77, 497, 569
CMP, 45, 565, 576
CMPSB, 323, 569
CMPSD, 569
CMPSQ, 569
CMPSW, 569
COMISD, 203
COMISS, 204
CPUID, 163, 571
CWD, 243, 569
CWDE, 569

DEC, 99, 565, 576
DIV, 571

DIVSD, 201, 326
FABS, 573

FADD, 573

FADDP, 109, 110, 573
FCHS, 573

FCOM, 115, 117, 573
FCOMP, 114, 573
FCOMPP, 573

FDIV, 109, 325, 548, 574
FDIVP, 109, 574
FDIVR, 110, 573
FDIVRP, 573

FILD, 574

FIST, 574

FISTP, 574

FLD, 112, 114, 574
FLD1, 574

FLDCW, 574

FLDZ, 574

FMUL, 109, 574
FMULP, 574
FNSTCW, 574
FNSTSW, 114, 117, 574
FSINCOS, 574
FSQRT, 574

FST, 574

FSTCW, 574

FSTP, 112, 574
FSTSW, 574

FSUB, 574

FSUBP, 574
FSUBR, 574

993

FSUBRP, 574
FUCOM, 117, 574
FUCOMP, 574
FUCOMPP, 117, 574
FWAIT, 108

FXCH, 574

IDIV, 571

IMUL, 54, 565, 576
IN, 402, 472, 572
INC, 99, 565, 576
INT, 470, 571

IRET, 571, 572

JA, 71,309, 565, 576
JAE, 71,565, 576

JB, 71,309, 565, 576
JBE, 71,565, 576
JC, 565

JCXZ, 565

JE, 80, 565, 576
JECXZ, 565

JG, 71,3009, 565
JGE, 70, 565

JL, 71,309, 565

JLE, 70, 565

JMP, 15, 30, 349, 565
JINA, 565

JNAE, 565

JINB, 565

JNBE, 117, 565

INC, 565

INE, 45,70, 565, 576
JING, 565

JNGE, 565

JINL, 565

JINLE, 565

JNO, 565, 576

NS, 565, 576

JINZ, 565

JO, 565,576

JP, 115, 473, 565, 576
JPO, 565

JRCXZ, 565

JS, 565,576

JZ,52, 80, 478, 565
LAHF, 566

LEA, 35, 56, 149, 155, 566
LEAVE, 6, 566

LES, 408

LOCK, 375

LODSB, 472

LOOP, 89, 327, 497, 572
MAXSD, 204

MOV, 5, 7, 348, 567
MOVDQA, 187
MOVDQU, 187
MOVSB, 567
MOVSD, 202, 426, 567
MOVSDX, 202
MOVSQ, 567
MOVSS, 204
MOVSW, 567

INDEX

INDEX

MOVSX, 98, 100, 161, 162, 567
MOVZX, 98, 153, 383, 567
MUL, 567

MULSD, 201

NEG, 567

NOP, 149, 475, 567
NOT, 99, 101, 430, 567
OR, 141,567

OUT, 402, 572

PADDD, 187
PCMPEQB, 192
PLMULHW, 183
PLMULLD, 183
PMOVMSKB, 192

POP, 5,14, 15, 567, 576
POPA, 572, 576
POPCNT, 572

POPF, 472, 572

PUSH, 5, 6, 14, 15, 35, 567, 576
PUSHA, 572, 576
PUSHF, 572

PXOR, 192

RCL, 327, 572

RCR, 572

RET, 5, 15, 129, 254, 567
ROL, 477, 572

ROR, 477, 572

SAHF, 117, 567

SAL, 573

SALC, 473

SAR, 573

SBB, 178, 567

SCASB, 472, 473, 568
SCASD, 568

SCASQ, 568

SCASW, 568

SETALG, 473

SETcc, 117, 573
SETNBE, 117

SETNZ, 98

SHL, 123, 144, 568
SHR, 145,165, 568
SHRD, 181, 568

STC, 573

STD, 573

STI, 573

STOSB, 568

STOSD, 568

STOSQ, 568

STOSW, 568

SUB, 5, 6, 45, 80, 569
SYSCALL, 571, 573
SYSENTER, 335, 571, 573
TEST, 98, 138, 140, 569
uD2, 573

XADD, 376

XCHG, 569

XOR, 5, 45, 99, 327, 397, 569, 576

Registers

Flags, 45
EAX, 45, 60

EBP, 35, 54
ECX, 252
ESP, 20, 35
JMP, 84
RIP, 338
ZF, 45,138
8086,100, 142
80386, 142
80486,108
AVX, 183
FPU, 108, 562
MMX, 183
SSE, 183
SSE2,183
x86-64, 7, 8, 26, 34, 38, 51, 55,193, 201, 222, 338, 558, 563
Xcode, 9

994

	Preface
	I Code patterns
	Short introduction to the CPU
	Hello, world!
	x86
	MSVC—x86
	GCC—x86
	GCC: AT&T syntax

	x86-64
	MSVC—x86-64
	GCC—x86-64

	ARM
	Non-optimizing Keil + ARM mode
	Non-optimizing Keil: thumb mode
	Optimizing Xcode (LLVM) + ARM mode
	Optimizing Xcode (LLVM) + thumb-2 mode

	Function prologue and epilogue
	Stack
	Why stack grows backward?
	What is the stack used for?
	Save the return address where a function must return control after execution
	Passing function arguments
	Local variable storage
	x86: alloca() function
	(Windows) SEH
	Buffer overflow protection

	Typical stack layout

	printf() with several arguments
	x86: 3 arguments
	MSVC
	MSVC and OllyDbg
	GCC
	GCC and GDB

	x64: 8 arguments
	MSVC
	GCC
	GCC + GDB

	ARM: 3 arguments
	Non-optimizing Keil + ARM mode
	Optimizing Keil + ARM mode
	Optimizing Keil + thumb mode

	ARM: 8 arguments
	Optimizing Keil: ARM mode
	Optimizing Keil: thumb mode
	Optimizing Xcode (LLVM): ARM mode
	Optimizing Xcode (LLVM): thumb-2 mode

	By the way

	scanf()
	About pointers
	x86
	MSVC
	MSVC + OllyDbg
	GCC

	x64
	MSVC
	GCC

	ARM
	Optimizing Keil + thumb mode

	Global variables
	MSVC: x86
	MSVC: x86 + OllyDbg
	GCC: x86
	MSVC: x64
	ARM: Optimizing Keil + thumb mode

	scanf() result checking
	MSVC: x86
	MSVC: x86: IDA
	MSVC: x86 + OllyDbg
	MSVC: x86 + Hiew
	GCC: x86
	MSVC: x64
	ARM: Optimizing Keil + thumb mode

	Accessing passed arguments
	x86
	MSVC
	MSVC + OllyDbg
	GCC

	x64
	MSVC
	GCC
	GCC: uint64_t instead int

	ARM
	Non-optimizing Keil + ARM mode
	Optimizing Keil + ARM mode
	Optimizing Keil + thumb mode

	One more word about results returning.
	Pointers
	Global variables example
	Local variables example
	Conclusion

	Conditional jumps
	x86
	x86 + MSVC
	x86 + MSVC + OllyDbg
	x86 + MSVC + Hiew
	Non-optimizing GCC
	Optimizing GCC

	ARM
	Optimizing Keil + ARM mode
	Optimizing Keil + thumb mode

	switch()/case/default
	Few number of cases
	x86
	ARM: Optimizing Keil + ARM mode
	ARM: Optimizing Keil + thumb mode

	A lot of cases
	x86
	ARM: Optimizing Keil + ARM mode
	ARM: Optimizing Keil + thumb mode

	Loops
	x86
	OllyDbg
	tracer

	ARM
	Non-optimizing Keil + ARM mode
	Optimizing Keil + thumb mode
	Optimizing Xcode (LLVM) + thumb-2 mode

	One more thing

	strlen()
	x86
	ARM
	Non-optimizing Xcode (LLVM) + ARM mode
	Optimizing Xcode (LLVM) + thumb mode
	Optimizing Keil + ARM mode

	Division by 9
	x86
	ARM
	Optimizing Xcode (LLVM) + ARM mode
	Optimizing Xcode (LLVM) + thumb-2 mode
	Non-optimizing Xcode (LLVM) and Keil

	How it works
	Getting divisor
	Variant #1
	Variant #2

	Working with FPU
	Simple example
	x86
	ARM: Optimizing Xcode (LLVM) + ARM mode
	ARM: Optimizing Keil + thumb mode

	Passing floating point number via arguments
	x86
	ARM + Non-optimizing Xcode (LLVM) + thumb-2 mode
	ARM + Non-optimizing Keil + ARM mode

	Comparison example
	x86
	Now let's compile it with MSVC 2010 with optimization option /Ox
	GCC 4.4.1
	GCC 4.4.1 with -O3 optimization turned on
	ARM + Optimizing Xcode (LLVM) + ARM mode
	ARM + Optimizing Xcode (LLVM) + thumb-2 mode
	ARM + Non-optimizing Xcode (LLVM) + ARM mode
	ARM + Optimizing Keil + thumb mode

	x64

	Arrays
	Simple example
	x86
	ARM + Non-optimizing Keil + ARM mode
	ARM + Optimizing Keil + thumb mode

	Buffer overflow
	Buffer overflow protection methods
	Optimizing Xcode (LLVM) + thumb-2 mode

	One more word about arrays
	Multidimensional arrays
	x86
	ARM + Non-optimizing Xcode (LLVM) + thumb mode
	ARM + Optimizing Xcode (LLVM) + thumb mode

	Bit fields
	Specific bit checking
	x86
	ARM

	Specific bit setting/clearing
	x86
	ARM + Optimizing Keil + ARM mode
	ARM + Optimizing Keil + thumb mode
	ARM + Optimizing Xcode (LLVM) + ARM mode

	Shifts
	x86
	ARM + Optimizing Xcode (LLVM) + ARM mode
	ARM + Optimizing Xcode (LLVM) + thumb-2 mode

	CRC32 calculation example

	Structures
	SYSTEMTIME example
	Let's allocate space for structure using malloc()
	struct tm
	Linux
	ARM + Optimizing Keil + thumb mode
	ARM + Optimizing Xcode (LLVM) + thumb-2 mode

	Fields packing in structure
	x86
	ARM + Optimizing Keil + thumb mode
	ARM + Optimizing Xcode (LLVM) + thumb-2 mode

	Nested structures
	Bit fields in structure
	CPUID example
	Working with the float type as with a structure

	Unions
	Pseudo-random number generator example

	Pointers to functions
	GCC

	64-bit values in 32-bit environment
	Arguments passing, addition, subtraction
	Multiplication, division
	Shifting right
	Converting of 32-bit value into 64-bit one

	SIMD
	Vectorization
	Intel C++
	GCC

	SIMD strlen() implementation

	64 bits
	x86-64
	ARM
	Float point numbers

	Working with float point numbers using SIMD in x64
	Simple example
	Passing floating point number via arguments
	Comparison example
	Summary

	Temperature converting
	Integer values
	MSVC 2012 x86 /Ox
	MSVC 2012 x64 /Ox

	Float point values

	C99 restrict
	Inline functions
	Incorrectly disassembled code
	Disassembling started incorrectly (x86)
	How random noise looks disassembled?
	Information entropy of average code
	x86
	ARM (Thumb)
	ARM (ARM mode)
	MIPS (little endian)

	Obfuscation
	Text strings
	Executable code
	Inserting garbage
	Replacing instructions to bloated equivalents
	Always executed/never executed code
	Making a lot of mess
	Using indirect pointers

	Virtual machine / pseudo-code
	Other thing to mention

	Windows 16-bit
	Example#1
	Example #2
	Example #3
	Example #4
	Example #5
	Example #6
	Global variables

	II C++
	Classes
	Simple example
	MSVC—x86
	MSVC—x86-64
	GCC—x86
	GCC—x86-64

	Class inheritance
	Encapsulation
	Multiple inheritance
	Virtual methods

	ostream
	References
	STL
	std::string
	Internals
	More complex example
	std::string as a global variable

	std::list
	GCC
	MSVC
	C++11 std::forward_list

	std::vector
	std::map and std::set
	MSVC
	GCC
	Rebalancing demo (GCC)

	III Important fundamentals
	Signed number representations
	Integer overflow

	Endianness
	Big-endian
	Little-endian
	Bi-endian
	Converting data

	IV Finding important/interesting stuff in the code
	Identification of executable files
	Microsoft Visual C++
	Name mangling

	GCC
	Name mangling
	Cygwin
	MinGW

	Intel FORTRAN
	Watcom, OpenWatcom
	Name mangling

	Borland
	Delphi

	Other known DLLs

	Communication with the outer world (win32)
	Often used functions in Windows API
	tracer: Intercepting all functions in specific module

	Strings
	Text strings
	Unicode

	Error/debug messages

	Calls to assert()
	Constants
	Magic numbers
	DHCP

	Constant searching

	Finding the right instructions
	Suspicious code patterns
	XOR instructions
	Hand-written assembly code

	Using magic numbers while tracing
	Other things
	Old-school techniques, nevertheless, interesting to know
	Memory ``snapshots'' comparing

	V OS-specific
	Thread Local Storage
	System calls (syscall-s)
	Linux
	Windows

	Linux
	Position-independent code
	Windows

	LD_PRELOAD hack in Linux

	Windows NT
	CRT (win32)
	Win32 PE
	Terminology
	Base address
	Subsystem
	OS version
	Sections
	Relocations (relocs)
	Exports and imports
	Resources
	.NET
	TLS
	Tools
	Further reading

	Windows SEH
	Let's forget about MSVC
	Now let's get back to MSVC
	Windows x64
	Read more about SEH

	Windows NT: Critical section

	VI Tools
	Disassembler
	IDA

	Debugger
	System calls tracing
	strace / dtruss

	Other tools

	VII More examples
	Dongles
	Example #1: MacOS Classic and PowerPC
	Example #2: SCO OpenServer
	Decrypting error messages

	Example #3: MS-DOS

	``QR9'': Rubik's cube inspired amateur crypto-algorithm
	SAP
	About SAP client network traffic compression
	SAP 6.0 password checking functions

	Oracle RDBMS
	V$VERSION table in the Oracle RDBMS
	X$KSMLRU table in Oracle RDBMS
	V$TIMER table in Oracle RDBMS

	Handwritten assembly code
	 EICAR test file

	Demos
	10 PRINT CHR$(205.5+RND(1)); : GOTO 10
	Trixter's 42 byte version
	My attempt to reduce Trixter's version: 27 bytes
	Take a random memory garbage as a source of randomness
	Conclusion

	VIII Other things
	npad
	Compiler intrinsic
	Compiler's anomalies
	OpenMP
	MSVC
	GCC

	Itanium
	8086 memory model
	Basic blocks reordering
	Profile-guided optimization

	IX Books/blogs worth reading
	Books
	Windows
	C/C++
	x86 / x86-64
	ARM

	Blogs
	Windows

	Other

	X Exercises
	Level 1
	Exercise 1.1
	MSVC 2012 x64 + /Ox
	Keil (ARM)
	Keil (thumb)

	Exercise 1.2
	Exercise 1.3

	Level 2
	Exercise 2.1
	MSVC 2010
	GCC 4.4.1 + -O3
	Keil (ARM) + -O3
	Keil (thumb) + -O3

	Exercise 2.2
	MSVC 2010 + /Ox
	GCC 4.4.1
	Keil (ARM) + -O3
	Keil (thumb) + -O3

	Exercise 2.3
	MSVC 2010 + /Ox
	GCC 4.4.1
	Keil (ARM) + -O3
	Keil (thumb) + -O3

	Exercise 2.4
	MSVC 2010 + /Ox
	GCC 4.4.1
	Keil (ARM) + -O3
	Keil (thumb) + -O3

	Exercise 2.5
	MSVC 2010 + /Ox

	Exercise 2.6
	MSVC 2010 + /Ox
	Keil (ARM) + -O3
	Keil (thumb) + -O3

	Exercise 2.7
	MSVC 2010 + /Ox
	Keil (ARM) + -O3
	Keil (thumb) + -O3

	Exercise 2.8
	MSVC 2010 + /O1
	Keil (ARM) + -O3
	Keil (thumb) + -O3

	Exercise 2.9
	MSVC 2010 + /O1
	Keil (ARM) + -O3
	Keil (thumb) + -O3

	Exercise 2.10
	Exercise 2.11
	Exercise 2.12
	MSVC 2012 x64 + /Ox
	Keil (ARM)
	Keil (thumb)

	Exercise 2.13
	MSVC 2012 + /Ox
	Keil (ARM)
	Keil (thumb)

	Exercise 2.14
	MSVC 2012
	Keil (ARM mode)
	GCC 4.6.3 for Raspberry Pi (ARM mode)

	Exercise 2.15
	MSVC 2012 x64 /Ox
	GCC 4.4.6 -O3 x64
	GCC 4.8.1 -O3 x86
	Keil (ARM mode): Cortex-R4F CPU as target

	Exercise 2.16
	MSVC 2012 x64 /Ox
	Keil (ARM) -O3
	Keil (thumb) -O3

	Exercise 2.17

	Level 3
	Exercise 3.1
	Exercise 3.2
	Exercise 3.3
	Exercise 3.4
	Exercise 3.5
	Exercise 3.6
	Exercise 3.7

	crackme / keygenme

	XI Exercise solutions
	Level 1
	Exercise 1.1

	Level 2
	Exercise 2.1
	Exercise 2.2
	Exercise 2.3
	Exercise 2.4
	Exercise 2.5
	Exercise 2.6
	Exercise 2.7
	Exercise 2.8
	Exercise 2.9
	Exercise 2.11
	Exercise 2.12
	Exercise 2.13
	Exercise 2.14
	Exercise 2.15
	Exercise 2.16
	Exercise 2.17

	Level 3
	Exercise 3.1
	Exercise 3.2
	Exercise 3.3
	Exercise 3.4
	Exercise 3.5
	Exercise 3.6

	Afterword
	Questions?

	XII Appendix
	Common terminology
	x86
	Terminology
	General purpose registers
	RAX/EAX/AX/AL
	RBX/EBX/BX/BL
	RCX/ECX/CX/CL
	RDX/EDX/DX/DL
	RSI/ESI/SI/SIL
	RDI/EDI/DI/DIL
	R8/R8D/R8W/R8L
	R9/R9D/R9W/R9L
	R10/R10D/R10W/R10L
	R11/R11D/R11W/R11L
	R12/R12D/R12W/R12L
	R13/R13D/R13W/R13L
	R14/R14D/R14W/R14L
	R15/R15D/R15W/R15L
	RSP/ESP/SP/SPL
	RBP/EBP/BP/BPL
	RIP/EIP/IP
	CS/DS/ES/SS/FS/GS
	Flags register

	FPU-registers
	Control Word
	Status Word
	Tag Word

	SIMD-registers
	MMX-registers
	SSE and AVX-registers

	Debugging registers
	DR6
	DR7

	Instructions
	Prefixes
	Most frequently used instructions
	Less frequently used instructions
	FPU instructions
	SIMD instructions
	Instructions having printable ASCII opcode

	ARM
	General purpose registers
	Current Program Status Register (CPSR)
	VFP (floating point) and NEON registers

	Some GCC library functions
	Some MSVC library functions

	Acronyms used
	Bibliography
	Glossary
	Index

