
Reverse Engineering for Beginners

Dennis Yurichev
<dennis@yurichev.com>

cbnd

c○2013-2014, Dennis Yurichev.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/3.0/.

Text version (March 17, 2014).
There is probably a newer version of this text, and also Russian language version also accessible at

http://yurichev.com/RE-book.html
Youmay also subscribe to my twitter, to get information about updates of this text, etc: @yurichev, or

to subscribe to mailing list.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://yurichev.com/RE-book.html
https://twitter.com/yurichev
http://yurichev.com/mailing_lists.html

Please donate!

I worked more than year on this book, here are more than 600 pages, and it’s free.
Same level books has price tag from $20 to $50.

More about it: 0.1.

i

CONTENTS CONTENTS

Contents

0.1 Preface . xiv

I Code patterns 1

1 Short introduction to the CPU 3

2 Hello, world! 4
2.1 x86 . 4

2.1.1 MSVC—x86 . 4
2.1.2 GCC—x86 . 5
2.1.3 GCC: AT&T syntax . 6

2.2 x86-64 . 7
2.2.1 MSVC—x86-64 . 7
2.2.2 GCC—x86-64 . 8

2.3 ARM . 9
2.3.1 Non-optimizing Keil + ARMmode . 9
2.3.2 Non-optimizing Keil: thumbmode . 10
2.3.3 Optimizing Xcode (LLVM) + ARMmode . 11
2.3.4 Optimizing Xcode (LLVM) + thumb-2 mode . 11

3 Function prologue and epilogue 13

4 Stack 14
4.1 Why stack grows backward? . 14
4.2 What is the stack used for? . 15

4.2.1 Save the return address where a function must return control a�er execution 15
4.2.2 Passing function arguments . 16
4.2.3 Local variable storage . 17
4.2.4 x86: alloca() function . 17
4.2.5 (Windows) SEH . 19
4.2.6 Bu�er overflow protection . 19

4.3 Typical stack layout . 19

5 printf()with several arguments 20
5.1 x86: 3 arguments . 20

5.1.1 MSVC . 20
5.1.2 MSVC and OllyDbg . 21
5.1.3 GCC . 23
5.1.4 GCC and GDB . 24

5.2 x64: 8 arguments . 26
5.2.1 MSVC . 26
5.2.2 GCC . 27
5.2.3 GCC + GDB . 27

5.3 ARM: 3 arguments . 29
5.3.1 Non-optimizing Keil + ARMmode . 30
5.3.2 Optimizing Keil + ARMmode . 30
5.3.3 Optimizing Keil + thumbmode . 30

5.4 ARM: 8 arguments . 30
5.4.1 Optimizing Keil: ARMmode . 31
5.4.2 Optimizing Keil: thumbmode . 32

ii

CONTENTS
5.4.3 Optimizing Xcode (LLVM): ARMmode . 32
5.4.4 Optimizing Xcode (LLVM): thumb-2 mode . 33

5.5 By the way . 33

6 scanf() 34
6.1 About pointers . 34
6.2 x86 . 34

6.2.1 MSVC . 34
6.2.2 MSVC + OllyDbg . 36
6.2.3 GCC . 37

6.3 x64 . 38
6.3.1 MSVC . 38
6.3.2 GCC . 38

6.4 ARM . 39
6.4.1 Optimizing Keil + thumbmode . 39

6.5 Global variables . 39
6.5.1 MSVC: x86 . 40
6.5.2 MSVC: x86 + OllyDbg . 41
6.5.3 GCC: x86 . 42
6.5.4 MSVC: x64 . 42
6.5.5 ARM: Optimizing Keil + thumbmode . 43

6.6 scanf() result checking . 44
6.6.1 MSVC: x86 . 44
6.6.2 MSVC: x86: IDA . 45
6.6.3 MSVC: x86 + OllyDbg . 48
6.6.4 MSVC: x86 + Hiew . 49
6.6.5 GCC: x86 . 51
6.6.6 MSVC: x64 . 51
6.6.7 ARM: Optimizing Keil + thumbmode . 52

7 Accessing passed arguments 53
7.1 x86 . 53

7.1.1 MSVC . 53
7.1.2 MSVC + OllyDbg . 54
7.1.3 GCC . 54

7.2 x64 . 55
7.2.1 MSVC . 55
7.2.2 GCC . 57
7.2.3 GCC: uint64_t instead int . 58

7.3 ARM . 58
7.3.1 Non-optimizing Keil + ARMmode . 58
7.3.2 Optimizing Keil + ARMmode . 59
7.3.3 Optimizing Keil + thumbmode . 59

8 Onemore word about results returning. 60

9 Pointers 63
9.1 Global variables example . 63
9.2 Local variables example . 66
9.3 Conclusion . 68

10 Conditional jumps 69
10.1 x86 . 69

10.1.1 x86 + MSVC . 69
10.1.2 x86 + MSVC + OllyDbg . 71
10.1.3 x86 + MSVC + Hiew . 73
10.1.4 Non-optimizing GCC . 75
10.1.5 Optimizing GCC . 75

10.2 ARM . 76
10.2.1 Optimizing Keil + ARMmode . 76
10.2.2 Optimizing Keil + thumbmode . 77

iii

CONTENTS
11 switch()/case/default 79

11.1 Few number of cases . 79
11.1.1 x86 . 79
11.1.2 ARM: Optimizing Keil + ARMmode . 81
11.1.3 ARM: Optimizing Keil + thumbmode . 81

11.2 A lot of cases . 82
11.2.1 x86 . 82
11.2.2 ARM: Optimizing Keil + ARMmode . 85
11.2.3 ARM: Optimizing Keil + thumbmode . 86

12 Loops 89
12.1 x86 . 89

12.1.1 OllyDbg . 92
12.1.2 tracer . 93

12.2 ARM . 95
12.2.1 Non-optimizing Keil + ARMmode . 95
12.2.2 Optimizing Keil + thumbmode . 95
12.2.3 Optimizing Xcode (LLVM) + thumb-2 mode . 95

12.3 Onemore thing . 96

13 strlen() 97
13.1 x86 . 97
13.2 ARM . 100

13.2.1 Non-optimizing Xcode (LLVM) + ARMmode . 100
13.2.2 Optimizing Xcode (LLVM) + thumbmode . 101
13.2.3 Optimizing Keil + ARMmode . 101

14 Division by 9 103
14.1 x86 . 103
14.2 ARM . 104

14.2.1 Optimizing Xcode (LLVM) + ARMmode . 104
14.2.2 Optimizing Xcode (LLVM) + thumb-2 mode . 105
14.2.3 Non-optimizing Xcode (LLVM) and Keil . 105

14.3 How it works . 105
14.4 Getting divisor . 106

14.4.1 Variant #1 . 106
14.4.2 Variant #2 . 107

15 Working with FPU 108
15.1 Simple example . 108

15.1.1 x86 . 109
15.1.2 ARM: Optimizing Xcode (LLVM) + ARMmode . 110
15.1.3 ARM: Optimizing Keil + thumbmode . 111

15.2 Passing floating point number via arguments . 112
15.2.1 x86 . 112
15.2.2 ARM + Non-optimizing Xcode (LLVM) + thumb-2 mode . 113
15.2.3 ARM + Non-optimizing Keil + ARMmode . 113

15.3 Comparison example . 114
15.3.1 x86 . 114
15.3.2 Now let’s compile it with MSVC 2010 with optimization option /Ox . 115
15.3.3 GCC 4.4.1 . 116
15.3.4 GCC 4.4.1 with -O3 optimization turned on . 117
15.3.5 ARM + Optimizing Xcode (LLVM) + ARMmode . 118
15.3.6 ARM + Optimizing Xcode (LLVM) + thumb-2 mode . 118
15.3.7 ARM + Non-optimizing Xcode (LLVM) + ARMmode . 120
15.3.8 ARM + Optimizing Keil + thumbmode . 120

15.4 x64 . 121

iv

CONTENTS
16 Arrays 122

16.1 Simple example . 122
16.1.1 x86 . 122
16.1.2 ARM + Non-optimizing Keil + ARMmode . 124
16.1.3 ARM + Optimizing Keil + thumbmode . 125

16.2 Bu�er overflow . 126
16.3 Bu�er overflow protection methods . 129

16.3.1 Optimizing Xcode (LLVM) + thumb-2 mode . 131
16.4 Onemore word about arrays . 133
16.5 Multidimensional arrays . 133

16.5.1 x86 . 134
16.5.2 ARM + Non-optimizing Xcode (LLVM) + thumbmode . 135
16.5.3 ARM + Optimizing Xcode (LLVM) + thumbmode . 135

17 Bit fields 137
17.1 Specific bit checking . 137

17.1.1 x86 . 137
17.1.2 ARM . 139

17.2 Specific bit setting/clearing . 141
17.2.1 x86 . 141
17.2.2 ARM + Optimizing Keil + ARMmode . 143
17.2.3 ARM + Optimizing Keil + thumbmode . 143
17.2.4 ARM + Optimizing Xcode (LLVM) + ARMmode . 143

17.3 Shi�s . 143
17.3.1 x86 . 144
17.3.2 ARM + Optimizing Xcode (LLVM) + ARMmode . 146
17.3.3 ARM + Optimizing Xcode (LLVM) + thumb-2 mode . 146

17.4 CRC32 calculation example . 146

18 Structures 150
18.1 SYSTEMTIME example . 150
18.2 Let’s allocate space for structure using malloc() . 152
18.3 struct tm . 154

18.3.1 Linux . 154
18.3.2 ARM + Optimizing Keil + thumbmode . 157
18.3.3 ARM + Optimizing Xcode (LLVM) + thumb-2 mode . 158

18.4 Fields packing in structure . 159
18.4.1 x86 . 159
18.4.2 ARM + Optimizing Keil + thumbmode . 161
18.4.3 ARM + Optimizing Xcode (LLVM) + thumb-2 mode . 162

18.5 Nested structures . 162
18.6 Bit fields in structure . 163

18.6.1 CPUID example . 163
18.6.2 Working with the float type as with a structure . 166

19 Unions 170
19.1 Pseudo-random number generator example . 170

20 Pointers to functions 173
20.1 GCC . 175

21 64-bit values in 32-bit environment 177
21.1 Arguments passing, addition, subtraction . 177
21.2 Multiplication, division . 178
21.3 Shi�ing right . 180
21.4 Converting of 32-bit value into 64-bit one . 181

22 SIMD 183
22.1 Vectorization . 183

22.1.1 Intel C++ . 184
22.1.2 GCC . 187

22.2 SIMD strlen() implementation . 189

v

CONTENTS
23 64 bits 193

23.1 x86-64 . 193
23.2 ARM . 200
23.3 Float point numbers . 200

24 Working with float point numbers using SIMD in x64 201
24.1 Simple example . 201
24.2 Passing floating point number via arguments . 202
24.3 Comparison example . 203
24.4 Summary . 204

25 Temperature converting 205
25.1 Integer values . 205

25.1.1 MSVC 2012 x86 /Ox . 205
25.1.2 MSVC 2012 x64 /Ox . 207

25.2 Float point values . 207

26 C99 restrict 210

27 Inline functions 213

28 Incorrectly disassembled code 216
28.1 Disassembling started incorrectly (x86) . 216
28.2 How random noise looks disassembled? . 217
28.3 Information entropy of average code . 233

28.3.1 x86 . 233
28.3.2 ARM (Thumb) . 233
28.3.3 ARM (ARMmode) . 234
28.3.4 MIPS (little endian) . 234

29 Obfuscation 235
29.1 Text strings . 235
29.2 Executable code . 236

29.2.1 Inserting garbage . 236
29.2.2 Replacing instructions to bloated equivalents . 236
29.2.3 Always executed/never executed code . 236
29.2.4 Making a lot of mess . 236
29.2.5 Using indirect pointers . 237

29.3 Virtual machine / pseudo-code . 237
29.4 Other thing to mention . 237

30 Windows 16-bit 238
30.1 Example#1 . 238
30.2 Example #2 . 238
30.3 Example #3 . 239
30.4 Example #4 . 240
30.5 Example #5 . 243
30.6 Example #6 . 247

30.6.1 Global variables . 248

II C++ 250

31 Classes 251
31.1 Simple example . 251

31.1.1 MSVC—x86 . 251
31.1.2 MSVC—x86-64 . 254
31.1.3 GCC—x86 . 255
31.1.4 GCC—x86-64 . 257

31.2 Class inheritance . 257
31.3 Encapsulation . 260
31.4 Multiple inheritance . 262

vi

CONTENTS
31.5 Virtual methods . 265

32 ostream 269

33 References 271

34 STL 272
34.1 std::string . 272

34.1.1 Internals . 272
34.1.2 More complex example . 274
34.1.3 std::string as a global variable . 277

34.2 std::list . 279
34.2.1 GCC . 281
34.2.2 MSVC . 285
34.2.3 C++11 std::forward_list . 289

34.3 std::vector . 289
34.4 std::map and std::set . 297

34.4.1 MSVC . 297
34.4.2 GCC . 301
34.4.3 Rebalancing demo (GCC) . 305

III Important fundamentals 308

35 Signed number representations 309
35.1 Integer overflow . 309

36 Endianness 310
36.1 Big-endian . 310
36.2 Little-endian . 310
36.3 Bi-endian . 310
36.4 Converting data . 310

IV Finding important/interesting stu� in the code 311

37 Identification of executable files 313
37.1 Microso� Visual C++ . 313

37.1.1 Namemangling . 313
37.2 GCC . 313

37.2.1 Namemangling . 313
37.2.2 Cygwin . 313
37.2.3 MinGW . 313

37.3 Intel FORTRAN . 313
37.4 Watcom, OpenWatcom . 314

37.4.1 Namemangling . 314
37.5 Borland . 314

37.5.1 Delphi . 314
37.6 Other known DLLs . 315

38 Communication with the outer world (win32) 316
38.1 O�en used functions in Windows API . 316
38.2 tracer: Intercepting all functions in specific module . 317

39 Strings 318
39.1 Text strings . 318

39.1.1 Unicode . 319
39.2 Error/debug messages . 321

40 Calls to assert() 322

vii

CONTENTS
41 Constants 323

41.1 Magic numbers . 323
41.1.1 DHCP . 324

41.2 Constant searching . 324

42 Finding the right instructions 325

43 Suspicious code patterns 327
43.1 XOR instructions . 327
43.2 Hand-written assembly code . 327

44 Using magic numbers while tracing 329

45 Other things 330

46 Old-school techniques, nevertheless, interesting to know 331
46.1 Memory “snapshots” comparing . 331

V OS-specific 332

47 Thread Local Storage 333

48 System calls (syscall-s) 334
48.1 Linux . 334
48.2 Windows . 335

49 Linux 336
49.1 Position-independent code . 336

49.1.1 Windows . 338
49.2 LD_PRELOAD hack in Linux . 338

50 Windows NT 342
50.1 CRT (win32) . 342
50.2 Win32 PE . 345

50.2.1 Terminology . 346
50.2.2 Base address . 346
50.2.3 Subsystem . 346
50.2.4 OS version . 346
50.2.5 Sections . 347
50.2.6 Relocations (relocs) . 348
50.2.7 Exports and imports . 348
50.2.8 Resources . 350
50.2.9 .NET . 350
50.2.10 TLS . 351
50.2.11 Tools . 351
50.2.12 Further reading . 351

50.3 Windows SEH . 351
50.3.1 Let’s forget about MSVC . 351
50.3.2 Now let’s get back to MSVC . 356
50.3.3 Windows x64 . 371
50.3.4 Readmore about SEH . 375

50.4 Windows NT: Critical section . 375

VI Tools 377

51 Disassembler 378
51.1 IDA . 378

52 Debugger 379

viii

CONTENTS
53 System calls tracing 380

53.0.1 strace / dtruss . 380

54 Other tools 381

VII More examples 382

55 Dongles 383
55.1 Example #1: MacOS Classic and PowerPC . 383
55.2 Example #2: SCO OpenServer . 391

55.2.1 Decrypting error messages . 400
55.3 Example #3: MS-DOS . 402

56 “QR9”: Rubik’s cube inspired amateur crypto-algorithm 409

57 SAP 440
57.1 About SAP client network tra�ic compression . 440
57.2 SAP 6.0 password checking functions . 451

58 Oracle RDBMS 455
58.1 V$VERSION table in the Oracle RDBMS . 455
58.2 X$KSMLRU table in Oracle RDBMS . 463
58.3 V$TIMER table in Oracle RDBMS . 465

59 Handwritten assembly code 469
59.1 EICAR test file . 469

60 Demos 471
60.1 10 PRINT CHR$(205.5+RND(1)); : GOTO 10 . 471

60.1.1 Trixter’s 42 byte version . 471
60.1.2 My attempt to reduce Trixter’s version: 27 bytes . 472
60.1.3 Take a randommemory garbage as a source of randomness . 472
60.1.4 Conclusion . 473

VIII Other things 474

61 npad 475

62 Compiler intrinsic 477

63 Compiler’s anomalies 478

64 OpenMP 479
64.1 MSVC . 481
64.2 GCC . 483

65 Itanium 485

66 8086memory model 488

67 Basic blocks reordering 489
67.1 Profile-guided optimization . 489

IX Books/blogs worth reading 491

68 Books 492
68.1 Windows . 492
68.2 C/C++ . 492
68.3 x86 / x86-64 . 492
68.4 ARM . 492

ix

CONTENTS
69 Blogs 493

69.1 Windows . 493

70 Other 494

X Exercises 495

71 Level 1 497
71.1 Exercise 1.1 . 497

71.1.1 MSVC 2012 x64 + /Ox . 497
71.1.2 Keil (ARM) . 497
71.1.3 Keil (thumb) . 497

71.2 Exercise 1.2 . 497
71.3 Exercise 1.3 . 497

72 Level 2 498
72.1 Exercise 2.1 . 498

72.1.1 MSVC 2010 . 498
72.1.2 GCC 4.4.1 + -O3 . 498
72.1.3 Keil (ARM) + -O3 . 499
72.1.4 Keil (thumb) + -O3 . 499

72.2 Exercise 2.2 . 499
72.2.1 MSVC 2010 + /Ox . 499
72.2.2 GCC 4.4.1 . 500
72.2.3 Keil (ARM) + -O3 . 502
72.2.4 Keil (thumb) + -O3 . 502

72.3 Exercise 2.3 . 503
72.3.1 MSVC 2010 + /Ox . 503
72.3.2 GCC 4.4.1 . 504
72.3.3 Keil (ARM) + -O3 . 504
72.3.4 Keil (thumb) + -O3 . 505

72.4 Exercise 2.4 . 505
72.4.1 MSVC 2010 + /Ox . 505
72.4.2 GCC 4.4.1 . 506
72.4.3 Keil (ARM) + -O3 . 507
72.4.4 Keil (thumb) + -O3 . 508

72.5 Exercise 2.5 . 509
72.5.1 MSVC 2010 + /Ox . 509

72.6 Exercise 2.6 . 509
72.6.1 MSVC 2010 + /Ox . 509
72.6.2 Keil (ARM) + -O3 . 511
72.6.3 Keil (thumb) + -O3 . 511

72.7 Exercise 2.7 . 512
72.7.1 MSVC 2010 + /Ox . 512
72.7.2 Keil (ARM) + -O3 . 513
72.7.3 Keil (thumb) + -O3 . 515

72.8 Exercise 2.8 . 516
72.8.1 MSVC 2010 + /O1 . 516
72.8.2 Keil (ARM) + -O3 . 517
72.8.3 Keil (thumb) + -O3 . 517

72.9 Exercise 2.9 . 518
72.9.1 MSVC 2010 + /O1 . 518
72.9.2 Keil (ARM) + -O3 . 519
72.9.3 Keil (thumb) + -O3 . 519

72.10 Exercise 2.10 . 520
72.11 Exercise 2.11 . 521
72.12 Exercise 2.12 . 521

72.12.1 MSVC 2012 x64 + /Ox . 521
72.12.2 Keil (ARM) . 522
72.12.3 Keil (thumb) . 523

x

CONTENTS
72.13 Exercise 2.13 . 523

72.13.1 MSVC 2012 + /Ox . 524
72.13.2 Keil (ARM) . 524
72.13.3 Keil (thumb) . 524

72.14 Exercise 2.14 . 524
72.14.1 MSVC 2012 . 524
72.14.2 Keil (ARMmode) . 525
72.14.3 GCC 4.6.3 for Raspberry Pi (ARMmode) . 526

72.15 Exercise 2.15 . 527
72.15.1 MSVC 2012 x64 /Ox . 527
72.15.2 GCC 4.4.6 -O3 x64 . 530
72.15.3 GCC 4.8.1 -O3 x86 . 531
72.15.4 Keil (ARMmode): Cortex-R4F CPU as target . 532

72.16 Exercise 2.16 . 533
72.16.1 MSVC 2012 x64 /Ox . 533
72.16.2 Keil (ARM) -O3 . 533
72.16.3 Keil (thumb) -O3 . 534

72.17 Exercise 2.17 . 534

73 Level 3 535
73.1 Exercise 3.1 . 535
73.2 Exercise 3.2 . 542
73.3 Exercise 3.3 . 542
73.4 Exercise 3.4 . 542
73.5 Exercise 3.5 . 542
73.6 Exercise 3.6 . 542
73.7 Exercise 3.7 . 543

74 crackme / keygenme 544

XI Exercise solutions 545

75 Level 1 546
75.1 Exercise 1.1 . 546

76 Level 2 547
76.1 Exercise 2.1 . 547
76.2 Exercise 2.2 . 547
76.3 Exercise 2.3 . 548
76.4 Exercise 2.4 . 548
76.5 Exercise 2.5 . 548
76.6 Exercise 2.6 . 549
76.7 Exercise 2.7 . 549
76.8 Exercise 2.8 . 550
76.9 Exercise 2.9 . 551
76.10 Exercise 2.11 . 551
76.11 Exercise 2.12 . 551
76.12 Exercise 2.13 . 551
76.13 Exercise 2.14 . 551
76.14 Exercise 2.15 . 551
76.15 Exercise 2.16 . 551
76.16 Exercise 2.17 . 552

77 Level 3 553
77.1 Exercise 3.1 . 553
77.2 Exercise 3.2 . 553
77.3 Exercise 3.3 . 553
77.4 Exercise 3.4 . 553
77.5 Exercise 3.5 . 553
77.6 Exercise 3.6 . 553

xi

CONTENTS
A�erword 555

78 Questions? 555

XII Appendix 556

79 Common terminology 557

80 x86 558
80.1 Terminology . 558
80.2 General purpose registers . 558

80.2.1 RAX/EAX/AX/AL . 558
80.2.2 RBX/EBX/BX/BL . 558
80.2.3 RCX/ECX/CX/CL . 559
80.2.4 RDX/EDX/DX/DL . 559
80.2.5 RSI/ESI/SI/SIL . 559
80.2.6 RDI/EDI/DI/DIL . 559
80.2.7 R8/R8D/R8W/R8L . 559
80.2.8 R9/R9D/R9W/R9L . 559
80.2.9 R10/R10D/R10W/R10L . 559
80.2.10 R11/R11D/R11W/R11L . 560
80.2.11 R12/R12D/R12W/R12L . 560
80.2.12 R13/R13D/R13W/R13L . 560
80.2.13 R14/R14D/R14W/R14L . 560
80.2.14 R15/R15D/R15W/R15L . 560
80.2.15 RSP/ESP/SP/SPL . 560
80.2.16 RBP/EBP/BP/BPL . 560
80.2.17 RIP/EIP/IP . 561
80.2.18 CS/DS/ES/SS/FS/GS . 561
80.2.19 Flags register . 561

80.3 FPU-registers . 562
80.3.1 Control Word . 562
80.3.2 Status Word . 562
80.3.3 Tag Word . 563

80.4 SIMD-registers . 563
80.4.1 MMX-registers . 563
80.4.2 SSE and AVX-registers . 563

80.5 Debugging registers . 563
80.5.1 DR6 . 563
80.5.2 DR7 . 564

80.6 Instructions . 564
80.6.1 Prefixes . 565
80.6.2 Most frequently used instructions . 565
80.6.3 Less frequently used instructions . 569
80.6.4 FPU instructions . 573
80.6.5 SIMD instructions . 575
80.6.6 Instructions having printable ASCII opcode . 575

81 ARM 577
81.1 General purpose registers . 577
81.2 Current Program Status Register (CPSR) . 578
81.3 VFP (floating point) and NEON registers . 578

82 Some GCC library functions 579

83 Some MSVC library functions 580

Acronyms used 582

Bibliography 586

xii

CONTENTS
Glossary 588

Index 590

xiii

0.1. PREFACE CONTENTS
0.1 Preface
Here are some of my notes about reverse engineering in English language for those beginners who would like to learn to
understand x86 (which accounts for almost all executable so�ware in the world) and ARM code created by C/C++ compilers.

There are several popular meanings of the term “reverse engineering”: 1) reverse engineering of so�ware: researching of
compiled programs; 2) 3Dmodel scanning and reworking in order to make a copy of it; 3) recreating DBMS1 structure. These
notes are related to the first meaning.

Topics discussed
x86, ARM.

Topics touched
Oracle RDBMS (58), Itanium (65), copy-protection dongles (55), LD_PRELOAD (49.2), stack overflow, ELF2, win32 PE file for-
mat (50.2), x86-64 (23.1), critical sections (50.4), syscalls (48), TLS3, position-independent code (PIC4) (49.1), profile-guided
optimization (67.1), C++ STL (34), OpenMP (64), SEH ().

Mini-FAQ
5

∙ Q: Should one learn to understand assembly language these days?
A: Yes: in order to have deeper understanding of the internals and to debug your so�ware better and faster.

∙ Q: Should one learn to write in assembly language these days?
A: Unless one writes low-level OS6 code, probably no.

∙ Q: But what about writing highly optimized routines?
A: No, modern C/C++ compilers do this job better.

∙ Q: Should I learn microprocessor internals?
A:ModernCPU7-s are very complex. If youdonot plan towrite highly optimized codeor if youdonotworkon compiler’s
code generator then you may still learn internals in bare outlines. 8. At the same time, in order to understand and
analyze compiled code it is enough to know only ISA9, register’s descriptions, i.e., the “outside” part of a CPU that is
available to an application programmer.

∙ Q: So why should I learn assembly language anyway?
A: Mostly to better understand what is going on while debugging and for reverse engineering without source code,
including, but not limited to, malware.

∙ Q: Howwould I search for a reverse engineering job?
A: There are hiring threads that appear from time to time on reddit devoted to RE10 (2013 Q3, 2014). Try to take a look
there.

About the author

Dennis Yurichev is an experienced reverse engineer and programmer. Also available as a freelance teacher of assembly
language, reverse engineering, C/C++. Can teach remotely via E-Mail, Skype, any other messengers, or personally in Kiev,
Ukraine. His CV is available here.

1Database management systems
2Executable file format widely used in *NIX system including Linux
3Thread Local Storage
4Position Independent Code: 49.1
5Frequently Asked Questions
6Operating System
7Central processing unit
8Very good text about it: [10]
9Instruction Set Architecture
10http://www.reddit.com/r/ReverseEngineering/

xiv

http://www.reddit.com/r/ReverseEngineering/comments/1hywvr/rreverseengineerings_q3_2013_hiring_thread/
http://www.reddit.com/r/ReverseEngineering/comments/1vui22/rreverseengineerings_2014_hiring_thread/
http://yurichev.com/Dennis_Yurichev.pdf
http://www.reddit.com/r/ReverseEngineering/

0.1. PREFACE CONTENTS
Thanks
Andrey “herm1t” Baranovich, Slava ”Avid” Kazakov, Stanislav ”Beaver” Bobrytskyy, Alexander Lysenko, Alexander ”Lstar”
Chernenkiy, Andrew Zubinski, Vladimir Botov, Mark “Logxen” Cooper, Shell Rocket, Arnaud Patard (rtp on #debian-arm IRC),
and all the folks on github.comwho have contributed notes and corrections.

A lot of LATEX packages were used: I would thank their authors as well.

Praise for Reverse Engineering for Beginners
∙ “It’s very well done .. and for free .. amazing.”11 Daniel Bilar, Siege Technologies, LLC.

∙ “...excellent and free”12 Pete Finnigan, Oracle RDBMS security guru.

∙ “... book is interesting, great job!” Michael Sikorski, author of Practical Malware Analysis: The Hands-On Guide to Dis-
secting Malicious So�ware.

∙ “... my compliments for the very nice tutorial!” Herbert Bos, full professor at the Vrije Universiteit Amsterdam.

∙ “... It is amazing and unbelievable.” Luis Rocha, CISSP / ISSAP, Technical Manager, Network & Information Security at
Verizon Business.

Donate
As it turns out, (technical) writing takes a lot of e�ort and work.

This book is free, available freely and available in source code form 13 (LaTeX), and it will be so forever.
My current plan for this book is to add lots of information about: PLANS.
If you want me to continue writing on all these topics youmay consider donating.
I worked more than year on this book 14, there are more than 500 pages. There are ≈ 300 TEX-files, ≈ 90 C/C++ source

codes,≈ 350 various listings.
Price of other books on the same subject varies between $20 and $50 on amazon.com.
Ways to donate are available on the page: http://yurichev.com/donate.html
Every donor’s namewill be included in the book! Donors also have a right to askme to rearrange items inmywriting plan.
Why not try to publish? Because it’s technical literature which, as I believe, cannot be finished or frozen in paper state.

Such technical references akin toWikipedia or MSDN15 library. They can evolve and grow indefinitely. Someone can sit down
and write everything from the begin to the end, publish it and forget about it. As it turns out, it’s not me. I have everyday
thoughts like “that was written badly and can be rewritten better”, “that was a bad example, I know a better one”, “that is
also a thing I can explain better and shorter”, etc. As youmay see in commit history of this book’s source code, I make a lot of
small changes almost every day: https://github.com/dennis714/RE-for-beginners/commits/master.

So the book will probably be a “rolling release” as they say about Linux distros like Gentoo. No fixed releases (and dead-
lines) at all, but continuous development. I don’t know how long it will take to write all I know. Maybe 10 years or more. Of
course, it is not very convenient for readers who want something stable, but all I can o�er is a ChangeLog file serving as a
“what’s new” section. Those who are interested may check it from time to time, or my blog/twitter 16 .

Donors

6 * anonymous, Oleg Vygovsky, Daniel Bilar, James Truscott, Luis Rocha.

About illustrations
Those readers who are used to read a lot in the Internet, expects seeing illustrations at the places where they should be. It’s
because there are no pages at all, only single one. It’s not possible to place illustrations in the book at the suitable context.
So, in this book, illustrations can be at the end of section, and a referenceses in the text may be present, like “fig.1.1”.

11https://twitter.com/daniel_bilar/status/436578617221742593
12https://twitter.com/petefinnigan/status/400551705797869568
13https://github.com/dennis714/RE-for-beginners
14Initial git commit fromMarch 2013:

https://github.com/dennis714/RE-for-beginners/tree/1e57ef540d827c7f7a92fcb3a4626af3e13c7ee4
15Microso� Developer Network
16http://blog.yurichev.com/ https://twitter.com/yurichev

xv

https://github.com/dennis714/RE-for-beginners/blob/master/PLANS
http://yurichev.com/donate.html
https://github.com/dennis714/RE-for-beginners/commits/master
https://github.com/dennis714/RE-for-beginners/blob/master/ChangeLog
https://twitter.com/daniel_bilar/status/436578617221742593
https://twitter.com/petefinnigan/status/400551705797869568
https://github.com/dennis714/RE-for-beginners
https://github.com/dennis714/RE-for-beginners/tree/1e57ef540d827c7f7a92fcb3a4626af3e13c7ee4
http://blog.yurichev.com/
https://twitter.com/yurichev

Part I

Code patterns

1

When I first learned C and then C++, I wrote small pieces of code, compiled them, and saw what was produced in the
assembly language. Thiswas easy forme. I did itmany times and the relation between the C/C++ code andwhat the compiler
produced was imprinted in my mind so deep that I can quickly understand what was in the original C code when I look at
produced x86 code. Perhaps this technique may be helpful for someone else so I will try to describe some examples here.

2

CHAPTER 1. SHORT INTRODUCTION TO THE CPU

Chapter 1

Short introduction to the CPU

The CPU is the unit which executes all of the programs.
Short glossary:

Instruction : a primitive command to the CPU. Simplest examples: moving data between registers, working with memory,
arithmetic primitives. As a rule, each CPU has its own instruction set architecture (ISA).

Machine code : code for the CPU. Each instruction is usually encoded by several bytes.

Assembly language : mnemonic code and some extensions like macros which are intended to make a programmer’s life
easier.

CPU register : Each CPU has a fixed set of general purpose registers (GPR1). ≈ 8 in x86, ≈ 16 in x86-64, ≈ 16 in ARM. The
easiest way to understand a register is to think of it as an untyped temporary variable. Imagine you are working with a
high-level PL2 and you have only 8 32-bit variables. A lot of things can be done using only these!

What is the di�erence between machine code and a PL? It is much easier for humans to use a high-level PL like C/C++,
Java, Python, etc., but it is easier for a CPU to use a much lower level of abstraction. Perhaps, it would be possible to invent
a CPUwhich can execute high-level PL code, but it would bemuchmore complex. On the contrary, it is very inconvenient for
humans to use assembly language due to its low-levelness. Besides, it is very hard to do it withoutmaking a huge amount of
annoying mistakes. The programwhich converts high-level PL code into assembly is called a compiler.

1General Purpose Registers
2Programming language

3

CHAPTER 2. HELLO, WORLD!

Chapter 2

Hello, world!

Let’s start with the famous example from the book “The C programming Language” [17]:

#include <stdio.h>

int main()
{

printf("hello, world");
return 0;

};

2.1 x86

2.1.1 MSVC—x86
Let’s compile it in MSVC 2010:

cl 1.cpp /Fa1.asm

(/Fa option means generate assembly listing file)

Listing 2.1: MSVC 2010
CONST SEGMENT
$SG3830 DB ’hello, world’, 00H
CONST ENDS
PUBLIC _main
EXTRN _printf:PROC
; Function compile flags: /Odtp
_TEXT SEGMENT
_main PROC

push ebp
mov ebp, esp
push OFFSET $SG3830
call _printf
add esp, 4
xor eax, eax
pop ebp
ret 0

_main ENDP
_TEXT ENDS

MSVC produces assembly listings in Intel-syntax. The di�erence between Intel-syntax and AT&T-syntax will be discussed
herea�er.

The compiler generated 1.obj file will be linked into 1.exe.
In our case, the file contain two segments: CONST (for data constants) and _TEXT (for code).
The string “hello, world” in C/C++ has type const char*, however it does not have its own name.
The compiler needs to deal with the string somehow so it defines the internal name $SG3830 for it.
So the example may be rewritten as:

4

2.1. X86 CHAPTER 2. HELLO, WORLD!

#include <stdio.h>

const char *$SG3830="hello, world";

int main()
{

printf($SG3830);
return 0;

};

Let’s back to the assembly listing. Aswe can see, the string is terminatedbya zerobytewhich is standard for C/C++ strings.
More about C strings: 39.1.

In the code segment, _TEXT, there is only one function so far: main().
The function main() starts with prologue code and ends with epilogue code (like almost any function) 1.
A�er the function prologue we see the call to the printf() function: CALL _printf.
Before the call the string address (or a pointer to it) containing our greeting is placed on the stack with the help of the

PUSH instruction.
When the printf() function returns flow control to the main() function, string address (or pointer to it) is still in stack.
Since we do not need it anymore the stack pointer (the ESP register) needs to be corrected.
ADD ESP, 4means add 4 to the value in the ESP register.
Why 4? Since it is 32-bit code we need exactly 4 bytes for address passing through the stack. It is 8 bytes in x64-code.
“ADD ESP, 4” is e�ectively equivalent to “POP register” but without using any register2.
Some compilers (like Intel C++ Compiler) in the same situationmay emit POP ECX instead of ADD (e.g. such a pattern can

be observed in the Oracle RDBMS code as it is compiled by Intel C++ compiler). This instruction has almost the same e�ect
but the ECX register contents will be rewritten.

The Intel C++ compiler probably uses POP ECX since this instruction’s opcode is shorter then ADD ESP, x (1 byte against
3).

Readmore about the stack in section (4).
A�er the call to printf(), in the original C/C++ code was return 0—return 0 as the result of the main() function.
In the generated code this is implemented by instruction XOR EAX, EAX
XOR is in fact, just “eXclusiveOR” 3 but compilers o�en use it instead of MOV EAX, 0—again because it is a slightly shorter

opcode (2 bytes against 5).
Some compilers emit SUB EAX, EAX, whichmeans SUBtract the value in the EAX from the value in EAX, which in any case

will result zero.
The last instruction RET returns control flow to the caller. Usually, it is C/C++ CRT4 code which in turn returns control to

the OS.

2.1.2 GCC—x86
Now let’s try to compile the same C/C++ code in the GCC 4.4.1 compiler in Linux: gcc 1.c -o 1

A�er, with the assistance of the IDA5 disassembler, let’s see how the main() function was created.
(IDA, like MSVC, shows code in Intel-syntax).
N.B. We could also have GCC produce assembly listings in Intel-syntax by applying the options -S -masm=intel

Listing 2.2: GCC
main proc near

var_10 = dword ptr -10h

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 10h
mov eax, offset aHelloWorld ; "hello, world"
mov [esp+10h+var_10], eax
call _printf

1Readmore about it in section about function prolog and epilog (3).
2CPU flags, however, are modified
3http://en.wikipedia.org/wiki/Exclusive_or
4C runtime library: sec:CRT
5Interactive Disassembler

5

http://en.wikipedia.org/wiki/Exclusive_or

2.1. X86 CHAPTER 2. HELLO, WORLD!
mov eax, 0
leave
retn

main endp

The result is almost the same. The address of the “hello, world” string (stored in the data segment) is saved in the EAX
register first and then it is stored on the stack. Also in the function prologuewe see AND ESP, 0FFFFFFF0h—this instruction
aligns the value in the ESP register on a 16-byte boundary. This results in all values in the stack being aligned. (The CPU
performs better if the values it is dealing with are located in memory at addresses aligned on a 4- or 16-byte boundary)6.

SUB ESP, 10h allocates 16 bytes on the stack. Although, as we can see herea�er, only 4 are necessary here.
This is because the size of the allocated stack is also aligned on a 16-byte boundary.
The string address (or a pointer to the string) is thenwritten directly onto the stack space without using the PUSH instruc-

tion. var_10—is a local variable and is also an argument for printf(). Read about it below.
Then the printf() function is called.
Unlike MSVC, when GCC is compiling without optimization turned on, it emits MOV EAX, 0 instead of a shorter opcode.
The last instruction, LEAVE—is the equivalent of the MOV ESP, EBP and POP EBP instruction pair —in other words, this

instruction sets the stack pointer (ESP) back and restores the EBP register to its initial state.
This is necessary since we modified these register values (ESP and EBP) at the beginning of the function (executing MOV

EBP, ESP / AND ESP, ...).

2.1.3 GCC: AT&T syntax
Let’s see how this can be represented in the AT&T syntax of assembly language. This syntax is much more popular in the
UNIX-world.

Listing 2.3: let’s compile in GCC 4.7.3
gcc -S 1_1.c

We get this:

Listing 2.4: GCC 4.7.3
.file "1_1.c"
.section .rodata

.LC0:
.string "hello, world"
.text
.globl main
.type main, @function

main:
.LFB0:

.cfi_startproc
pushl %ebp
.cfi_def_cfa_offset 8
.cfi_offset 5, -8
movl %esp, %ebp
.cfi_def_cfa_register 5
andl $-16, %esp
subl $16, %esp
movl $.LC0, (%esp)
call printf
movl $0, %eax
leave
.cfi_restore 5
.cfi_def_cfa 4, 4
ret
.cfi_endproc

.LFE0:
.size main, .-main
.ident "GCC: (Ubuntu/Linaro 4.7.3-1ubuntu1) 4.7.3"
.section .note.GNU-stack,"",@progbits

6Wikipedia: Data structure alignment

6

http://en.wikipedia.org/wiki/Data_structure_alignment

2.2. X86-64 CHAPTER 2. HELLO, WORLD!
There are a lot of macros (beginning with dot). These are not very interesting to us so far. For now, for the sake of sim-

plification, we can ignore them (except the .string macro which encodes a null-terminated character sequence just like a
C-string). Then we’ll see this 7:

Listing 2.5: GCC 4.7.3
.LC0:

.string "hello, world"
main:

pushl %ebp
movl %esp, %ebp
andl $-16, %esp
subl $16, %esp
movl $.LC0, (%esp)
call printf
movl $0, %eax
leave
ret

Some of the major di�erences between Intel and AT&T syntax are:

∙ Operands are written backwards.
In Intel-syntax: <instruction> <destination operand> <source operand>.
In AT&T syntax: <instruction> <source operand> <destination operand>.
Here is a way to think about them: when you deal with Intel-syntax, you can put in equality sign (=) in your mind
between operands and when you deal with AT&T-syntax put in a right arrow (→) 8.

∙ AT&T: Before register names a percent sign must be written (%) and before numbers a dollar sign ($). Parentheses are
used instead of brackets.

∙ AT&T: A special symbol is to be added to each instruction defining the type of data:

– l — long (32 bits)
– w—word (16 bits)
– b— byte (8 bits)

Let’s go back to the compiled result: it is identical to what we saw in IDA. With one subtle di�erence: 0FFFFFFF0h is
written as $-16. It is the same: 16 in the decimal system is 0x10 in hexadecimal. -0x10 is equal to 0xFFFFFFF0 (for a 32-bit
data type).

One more thing: the return value is to be set to 0 by using usual MOV, not XOR. MOV just loads value to a register. Its name
is not felicitous (data are not moved), this instruction in other architectures has name “load” or something like that.

2.2 x86-64

2.2.1 MSVC—x86-64
Let’s also try 64-bit MSVC:

Listing 2.6: MSVC 2012 x64
$SG2989 DB ’hello, world’, 00H

main PROC
sub rsp, 40
lea rcx, OFFSET FLAT:$SG2923
call printf
xor eax, eax
add rsp, 40
ret 0

main ENDP

7This GCC option can be used to eliminate “unnecessary” macros: -fno-asynchronous-unwind-tables
8 By the way, in some C standard functions (e.g., memcpy(), strcpy()) arguments are listed in the same way as in Intel-syntax: pointer to destination

memory block at the beginning and then pointer to source memory block.

7

2.2. X86-64 CHAPTER 2. HELLO, WORLD!
As of x86-64, all registers were extended to 64-bit and now have R- prefix. In order to use stack not that o�en (in other

words, to access externalmemory not that o�en), there exist a popularway to pass function arguments via registers (fastcall:
??). I.e., one part of function arguments are passed in registers, other part—via stack. In Win64, 4 function arguments are
passed in RCX, RDX, R8, R9 registers. That is what we see here: a pointer to the string for printf() is now passed not in stack,
but in RCX register.

Pointers are 64-bit now, so they are passed in 64-bit part of registers (which have R- prefix). But for the backward com-
patibility, it is still possible to access 32-bit parts, using E- prefix.

That is how RAX/EAX/AX/AL looks like in 64-bit x86-compatible CPUs:

7th (byte number) 6th 5th 4th 3rd 2nd 1st 0th
RAXx64

EAX
AX

AH AL

main() function returns int-typed value, which is, in C PL, for the better backward compatibility and portability, is still
32-bit, so that is why EAX register is cleared at the function end (i.e., 32-bit part of register) instead of RAX.

2.2.2 GCC—x86-64

Let’s also try GCC in 64-bit Linux:

Listing 2.7: GCC 4.4.6 x64
.string "hello, world"

main:
sub rsp, 8
mov edi, OFFSET FLAT:.LC0 ; "hello, world"
xor eax, eax ; number of vector registers passed
call printf
xor eax, eax
add rsp, 8
ret

A method to pass function arguments in registers are also used in Linux, *BSD and MacOSX [21]. 6 first arguments are
passed in RDI, RSI, RDX, RCX, R8, R9 registers, and others—via stack.

So the pointer to the string is passed in EDI (32-bit part of register). But why not to use 64-bit part, RDI?
It is important to keep in mind that all MOV instructions in 64-bit mode writing something into lower 32-bit register part,

clearing higher 32-bits [14]. I.e., the MOV EAX, 011223344hwill write a value correctly into RAX, higher bits will be cleared.
If to open compiled object file (.o), we will also see all instruction’s opcodes 9:

Listing 2.8: GCC 4.4.6 x64
.text:00000000004004D0 main proc near
.text:00000000004004D0 48 83 EC 08 sub rsp, 8
.text:00000000004004D4 BF E8 05 40 00 mov edi, offset format ; "hello, world"
.text:00000000004004D9 31 C0 xor eax, eax
.text:00000000004004DB E8 D8 FE FF FF call _printf
.text:00000000004004E0 31 C0 xor eax, eax
.text:00000000004004E2 48 83 C4 08 add rsp, 8
.text:00000000004004E6 C3 retn
.text:00000000004004E6 main endp

As we can see, the instruction writing into EDI at 0x4004D4 occupies 5 bytes. The same instruction, writing 32-bit value
into RDI will occupy 7 bytes. Apparently, GCC tries to save some space. Besides, it can be sure that the data segment con-
taining the string will not be allocated at the addresses higher than 4GiB.

We also see EAX register clearance before printf() function call. This is done because a number of used vector registers
is passed in EAX by standard: “with variable arguments passes information about the number of vector registers used” [21].

9This should be enabled in Options→ Disassembly→ Number of opcode bytes

8

2.3. ARM CHAPTER 2. HELLO, WORLD!
2.3 ARM
For my experiments with ARM processors I chose two compilers: popular in the embedded area Keil Release 6/2013 and Ap-
ple Xcode 4.6.3 IDE (with LLVM-GCC 4.2 compiler), which produces code for ARM-compatible processors and SOC10 in iPod/i-
Phone/iPad, Windows 8 and Window RT tables11 and also such devices as Raspberry Pi.

32-bit ARM code is used in all cases in this book, if not mentioned otherwise.

2.3.1 Non-optimizing Keil + ARMmode
Let’s start by compiling our example in Keil:

armcc.exe --arm --c90 -O0 1.c

The armcc compiler produces assembly listings in Intel-syntax but it has high-level ARM-processor related macros12, but
it is more important for us to see the instructions “as is” so let’s see the compiled result in IDA.

Listing 2.9: Non-optimizing Keil + ARMmode + IDA
.text:00000000 main
.text:00000000 10 40 2D E9 STMFD SP!, {R4,LR}
.text:00000004 1E 0E 8F E2 ADR R0, aHelloWorld ; "hello, world"
.text:00000008 15 19 00 EB BL __2printf
.text:0000000C 00 00 A0 E3 MOV R0, #0
.text:00000010 10 80 BD E8 LDMFD SP!, {R4,PC}

.text:000001EC 68 65 6C 6C+aHelloWorld DCB "hello, world",0 ; DATA XREF: main+4

Here are a couple of ARM-related facts that we should know in order to proceed. An ARMprocessor has at least twomajor
modes: ARM mode and thumb mode. In the first (ARM) mode, all instructions are enabled and each is 32 bits (4 bytes) in
size. In the second (thumb) mode each instruction is 16 bits (2 bytes) in size 13. Thumb mode may look attractive because
programs that use it may 1) be compact and 2) execute faster onmicrocontrollers having a 16-bit memory datapath. Nothing
comes for free. In thumbmode, there is a reduced instruction set, only 8 registers are accessible andoneneeds several thumb
instructions for doing some operations when you only need one in ARMmode.

Starting at ARMv7 the thumb-2 instruction set is also present. This is an extended thumb which supports a much larger
instruction set. There is a common misconception that thumb-2 is a mix of ARM and thumb. This is not correct. Rather,
thumb-2 was extended to fully support processor features so it could compete with ARMmode. A program for the ARM pro-
cessor may be a mix of procedures compiled for both modes. The majority of iPod/iPhone/iPad applications are compiled
for the thumb-2 instruction set because Xcode does this by default.

In the example we can easily see each instruction has a size of 4 bytes. Indeed, we compiled our code for ARMmode, not
for thumb.

The very first instruction, “STMFD SP!, {R4,LR}”14, works as an x86 PUSH instruction, writing the values of two registers
(R4 and LR15) into the stack. Indeed, in the output listing from the armcc compiler, for the sake of simplification, actually
shows the “PUSH {r4,lr}” instruction. But it is not quite correct. PUSH instruction are only available in thumb mode. So,
to make things less messy, I o�ered to work in IDA.

This instruction writes the values of the R4 and LR registers at the address in memory to which SP1617 is pointing, then it
decrements SP so it will point to the place in the stack that is free for new entries.

This instruction (like the PUSH instruction in thumbmode) is able to save several register values at once and this may be
useful. By theway, there is no such thing in x86. It can also be noted that the STMFD instruction is a generalization of the PUSH
instruction (extending its features), since it can work with any register, not just with SP, and this can be very useful.

The “ADR R0, aHelloWorld” instruction adds the value in the PC18 register to the o�set where the “hello, world” string
is located. How is the PC register used here, onemight ask? This is so-called “position-independent code”. 19 It is intended to
be executed at a non-fixed address in memory. In the opcode of the ADR instruction, the di�erence between the address of
this instruction and the place where the string is located is encoded. The di�erence will always be the same, independent of

10System on Chip
11http://en.wikipedia.org/wiki/List_of_Windows_8_and_RT_tablet_devices
12e.g. ARMmode lacks PUSH/POP instructions
13By the way, fixed-length instructions are handy in a way that one can calculate the next (or previous) instruction’s address without e�ort. This feature

will be discussed in switch() (11.2.2) section.
14Store Multiple Full Descending
15Link Register
16Stack Pointer
17ESP, RSP in x86
18Program Counter
19Readmore about it in relevant section (49.1)

9

http://en.wikipedia.org/wiki/List_of_Windows_8_and_RT_tablet_devices

2.3. ARM CHAPTER 2. HELLO, WORLD!
the address where the code is loaded by the OS. That’s why all we need is to add the address of the current instruction (from
PC) in order to get the absolute address of our C-string in memory.

“BL __2printf”20 instruction calls the printf() function. Here’s how this instruction works:

∙ write the address following the BL instruction (0xC) into the LR;

∙ then pass control flow into printf() by writing its address into the PC21 register.

When printf() finishes its work it must have information about where it must return control. That’s why each function
passes control to the address stored in the LR register.

That is the di�erence between “pure” RISC22-processors like ARM and CISC23-processors like x86, where the return ad-
dress is stored on the stack24.

By the way, an absolute 32-bit address or o�set cannot be encoded in the 32-bit BL instruction because it only has space
for 24 bits. It is also worth noting all ARM-mode instructions have a size of 4 bytes (32 bits). Hence they can only be located
on 4-byte boundary addresses. This means the the last 2 bits of the instruction address (which are always zero bits) may be
omitted. In summary, we have 26 bits for o�set encoding. This is enough to represent o�set± ≈ 32𝑀 .

Next, the “MOV R0, #0”25 instruction just writes 0 into the R0 register. That’s because our C-function returns 0 and the
return value is to be placed in the R0 register.

The last instruction “LDMFD SP!, R4,PC”26 is an inverse instruction of STMFD. It loads values from the stack in order to
save them into R4 and PC, and increments the stack pointer SP. It can be said that it is similar to POP. N.B. The very first
instruction STMFD saves the R4 and LR registers pair on the stack, but R4 and PC are restored during execution of LDMFD.

As I wrote before, the address of the place to where each function must return control is usually saved in the LR register.
The very first function saves its value in the stack because our main() functionwill use the register in order to call printf().
In the function end this value can be written to the PC register, thus passing control to where our function was called. Since
our main() function is usually the primary function in C/C++, control will be returned to the OS loader or to a point in CRT,
or something like that.

DCB —assembly language directive defining an array of bytes or ASCII strings, akin to the DB directive in x86-assembly
language.

2.3.2 Non-optimizing Keil: thumbmode
Let’s compile the same example using Keil in thumbmode:

armcc.exe --thumb --c90 -O0 1.c

Wewill get (in IDA):

Listing 2.10: Non-optimizing Keil + thumbmode + IDA
.text:00000000 main
.text:00000000 10 B5 PUSH {R4,LR}
.text:00000002 C0 A0 ADR R0, aHelloWorld ; "hello, world"
.text:00000004 06 F0 2E F9 BL __2printf
.text:00000008 00 20 MOVS R0, #0
.text:0000000A 10 BD POP {R4,PC}

.text:00000304 68 65 6C 6C+aHelloWorld DCB "hello, world",0 ; DATA XREF: main+2

We can easily spot the 2-byte (16-bit) opcodes. This is, as I mentioned, thumb. The BL instruction however consists of
two 16-bit instructions. This is because it is impossible to load an o�set for the printf() function into PC while using the
small space in one 16-bit opcode. That’s why the first 16-bit instruction loads the higher 10 bits of the o�set and the second
instruction loads the lower 11 bits of the o�set. As I mentioned, all instructions in thumb mode have a size of 2 bytes (or 16
bits). Thismean it is impossible for a thumb-instruction tobeat anoddaddresswhatsoever. Given theabove, the last address
bit may be omitted while encoding instructions. Summarizing, in the BL thumb-instruction± ≈ 2𝑀 can be encoded as the
o�set from the current address.

As for the other instructions in the function: PUSH and POP work just like the described STMFD/LDMFD but the SP register
is not mentioned explicitly here. ADRworks just like in previous example. MOVSwrites 0 into the R0 register in order to return
zero.
20Branch with Link
21EIP, RIP in x86
22Reduced instruction set computing
23Complex instruction set computing
24Readmore about this in next section (4)
25MOVe
26Load Multiple Full Descending

10

2.3. ARM CHAPTER 2. HELLO, WORLD!
2.3.3 Optimizing Xcode (LLVM) + ARMmode
Xcode 4.6.3without optimization turned onproduces a lot of redundant code sowe’ll study the versionwhere the instruction
count is as small as possible: -O3.

Listing 2.11: Optimizing Xcode (LLVM) + ARMmode
__text:000028C4 _hello_world
__text:000028C4 80 40 2D E9 STMFD SP!, {R7,LR}
__text:000028C8 86 06 01 E3 MOV R0, #0x1686
__text:000028CC 0D 70 A0 E1 MOV R7, SP
__text:000028D0 00 00 40 E3 MOVT R0, #0
__text:000028D4 00 00 8F E0 ADD R0, PC, R0
__text:000028D8 C3 05 00 EB BL _puts
__text:000028DC 00 00 A0 E3 MOV R0, #0
__text:000028E0 80 80 BD E8 LDMFD SP!, {R7,PC}

__cstring:00003F62 48 65 6C 6C+aHelloWorld_0 DCB "Hello world!",0

The instructions STMFD and LDMFD are familiar to us.
The MOV instruction just writes the number 0x1686 into the R0 register. This is the o�set pointing to the “Hello world!”

string.
The R7 register as it is standardized in [2] is a frame pointer. More on it below.
The MOVT R0, #0 instruction writes 0 into higher 16 bits of the register. The issue here is that the generic MOV instruction

in ARM mode may write only the lower 16 bits of the register. Remember, all instruction opcodes in ARM mode are limited
in size to 32 bits. Of course, this limitation is not related to moving between registers. That’s why an additional instruction
MOVT exists for writing into the higher bits (from 16 to 31 inclusive). However, its usage here is redundant because the “MOV
R0, #0x1686” instruction above cleared the higher part of the register. This is probably a shortcoming of the compiler.

The “ADD R0, PC, R0” instruction adds the value in the PC to the value in the R0, to calculate absolute address of the
“Hello world!” string. As we already know, it is “position-independent code” so this correction is essential here.

The BL instruction calls the puts() function instead of printf().
GCC replaced the firstprintf() callwithputs(). Indeed: printf()witha soleargument is almost analogous toputs().
Almost becausewe need to be sure the string will not contain printf-control statements starting with%: then the e�ect of

these two functions would be di�erent 27.
Why did the compiler replace the printf()with puts()? Because puts() is faster 28.
puts()works faster because it just passes characters to stdout without comparing each to the% symbol.
Next, we see the familiar “MOV R0, #0”instruction intended to set the R0 register to 0.

2.3.4 Optimizing Xcode (LLVM) + thumb-2 mode
By default Xcode 4.6.3 generates code for thumb-2 in this manner:

Listing 2.12: Optimizing Xcode (LLVM) + thumb-2 mode
__text:00002B6C _hello_world
__text:00002B6C 80 B5 PUSH {R7,LR}
__text:00002B6E 41 F2 D8 30 MOVW R0, #0x13D8
__text:00002B72 6F 46 MOV R7, SP
__text:00002B74 C0 F2 00 00 MOVT.W R0, #0
__text:00002B78 78 44 ADD R0, PC
__text:00002B7A 01 F0 38 EA BLX _puts
__text:00002B7E 00 20 MOVS R0, #0
__text:00002B80 80 BD POP {R7,PC}

...

__cstring:00003E70 48 65 6C 6C 6F 20+aHelloWorld DCB "Hello world!",0xA,0

The BL and BLX instructions in thumb mode, as we recall, are encoded as a pair of 16-bit instructions. In thumb-2 these
surrogate opcodes are extended in such a way so that new instructions may be encoded here as 32-bit instructions. That’s
easily observable —opcodes of thumb-2 instructions also begin with 0xFx or 0xEx. But in the IDA listings two opcode bytes

27It should also be noted the puts() does not require a ’\n’ new line symbol at the end of a string, so we do not see it here.
28http://www.ciselant.de/projects/gcc_printf/gcc_printf.html

11

http://www.ciselant.de/projects/gcc_printf/gcc_printf.html

2.3. ARM CHAPTER 2. HELLO, WORLD!
are swapped (for thumband thumb-2modes). For instructions in ARMmode, the order is the fourth byte, then the third, then
the second and finally the first (due to di�erent endianness). So as we can see, the MOVW, MOVT.W and BLX instructions begin
with 0xFx.

One of the thumb-2 instructions is “MOVW R0, #0x13D8”—it writes a 16-bit value into the lower part of the R0 register.
Also, “MOVT.W R0, #0”—this instruction works just like MOVT from the previous example but it works in thumb-2.
Among other di�erences, here BLX instruction is used instead of BL. The di�erence is that, besides saving the RA29 in the

LR register and passing control to the puts() function, the processor is also switching from thumb mode to ARM (or back).
This instruction is placed here since the instruction to which control is passed looks like (it is encoded in ARMmode):

__symbolstub1:00003FEC _puts ; CODE XREF: _hello_world+E
__symbolstub1:00003FEC 44 F0 9F E5 LDR PC, =__imp__puts

So, the observant reader may ask: why not call puts() right at the point in the code where it needed?
Because it is not very space-e�icient.
Almost any program uses external dynamic libraries (like DLL in Windows, .so in *NIX or .dylib in Mac OS X). O�en used

library functions are stored in dynamic libraries, including the standard C-function puts().
In an executable binary file (Windows PE .exe, ELF or Mach-O) an import section is present. This is a list of symbols (func-

tions or global variables) being imported from external modules along with the names of these modules.
The OS loader loads all modules it needs and, while enumerating import symbols in the primarymodule, determines the

correct addresses of each symbol.
Inour case, __imp__puts is a32-bit variablewhere theOS loaderwillwrite thecorrect addressof the function inanexternal

library. Then the LDR instruction just takes the 32-bit value from this variable andwrites it into thePC register, passing control
to it.

So, in order to reduce the time that an OS loader needs for doing this procedure, it is good idea for it to write the address
of each symbol only once to a specially-allocated place just for it.

Besides, as we have already figured out, it is impossible to load a 32-bit value into a register while using only one instruc-
tion without a memory access. So, it is optimal to allocate a separate function working in ARMmode with only one goal —to
pass control to the dynamic library and then to jump to this short one-instruction function (the so-called thunk function)
from thumb-code.

By theway, in theprevious example (compiled for ARMmode) control passedby theBL instruction goes to the same thunk
function. However the processor mode is not switched (hence the absence of an “X” in the instruction mnemonic).

29Return Address

12

CHAPTER 3. FUNCTION PROLOGUE AND EPILOGUE

Chapter 3

Function prologue and epilogue

Function prologue is instructions at function start. It is o�en something like the following code fragment:

push ebp
mov ebp, esp
sub esp, X

What these instruction do: saves the value in the EBP register, set value of the EBP register to the value of the ESP and
then allocates space on the stack for local variables.

Value in the EBP is fixed over a period of function execution and it is to be used for local variables and arguments access.
One can use ESP, but it changing over time and it is not convenient.

Function epilogue annulled allocated space in stack, returns value in the EBP register back to initial state and returns flow
control to callee:

mov esp, ebp
pop ebp
ret 0

Epilogue and prologue canmake recursion performance worse.
For example, once upon a time I wrote a function to seek right node in binary tree. As a recursive function it would look

stylish but since an additional time is to be spend at each function call for prologue/epilogue, it was working couple of times
slower than iterative (recursion-free) implementation.

By the way, that is the reason of tail call existence.

13

CHAPTER 4. STACK

Chapter 4

Stack

A stack is one of the most fundamental data structures in computer science 1.
Technically, it is just a block of memory in process memory along with the ESP or RSP register in x86 or x64, or the SP

register in ARM, as a pointer within the block.
Themost frequently used stack access instructions are PUSH and POP (in both x86 and ARM thumb-mode). PUSH subtracts

4 in 32-bitmode (or8 in64-bitmode) fromESP/RSP/SPand thenwrites thecontentsof its soleoperand to thememoryaddress
pointed to by ESP/RSP/SP.

POP is the reverse operation: get the data frommemory pointed to by SP, put it in the operand (o�en a register) and then
add 4 (or 8) to the stack pointer.

A�er stack allocation the stack pointer points to the end of stack. PUSH increases the stack pointer and POP decreases it.
The end of the stack is actually at the beginning of the memory allocated for the stack block. It seems strange, but it is so.

Nevertheless ARM has not only instructions supporting ascending stacks but also descending stacks.
For example the STMFD2/LDMFD3, STMED4/LDMED5 instructions are intended to deal with a descending stack. The

STMFA6/LMDFA7, STMEA8/LDMEA9 instructions are intended to deal with an ascending stack.

4.1 Why stack grows backward?

Intuitively, we might think that, like any other data structure, the stack may grow upward, i.e., towards higher addresses.
The reason the stack grows backward is probably historical. When computers were big and occupied a whole room, it

was easy to divide memory into two parts, one for the heap and one for the stack. Of course, it was unknown how big the
heap and the stack would be during program execution, so this solution was simplest possible.

Heap Stack

Start of heap Start of stack

In [26] we can read:

The user-core part of an image is divided into three logical segments. The program text segment begins
at location 0 in the virtual address space. During execution, this segment is write-protected and a single
copy of it is shared among all processes executing the same program. At the first 8K byte boundary above
the program text segment in the virtual address space begins a nonshared, writable data segment, the size

1http://en.wikipedia.org/wiki/Call_stack
2Store Multiple Full Descending
3Load Multiple Full Descending
4Store Multiple Empty Descending
5Load Multiple Empty Descending
6Store Multiple Full Ascending
7Load Multiple Full Ascending
8Store Multiple Empty Ascending
9Load Multiple Empty Ascending

14

http://en.wikipedia.org/wiki/Call_stack

4.2. WHAT IS THE STACK USED FOR? CHAPTER 4. STACK

of which may be extended by a system call. Starting at the highest address in the virtual address space is a
stack segment, which automatically grows downward as the hardware’s stack pointer fluctuates.

4.2 What is the stack used for?

4.2.1 Save the return address where a function must return control a�er execution
x86

While calling another function with a CALL instruction the address of the point exactly a�er the CALL instruction is saved to
the stack and then an unconditional jump to the address in the CALL operand is executed.

The CALL instruction is equivalent to a PUSH address_after_call / JMP operand instruction pair.
RET fetches a value from the stack and jumps to it —it is equivalent to a POP tmp / JMP tmp instruction pair.
Overflowing the stack is straightforward. Just run eternal recursion:

void f()
{

f();
};

MSVC 2008 reports the problem:

c:\tmp6>cl ss.cpp /Fass.asm
Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 15.00.21022.08 for 80x86
Copyright (C) Microsoft Corporation. All rights reserved.

ss.cpp
c:\tmp6\ss.cpp(4) : warning C4717: ’f’ : recursive on all control paths, function will cause

runtime stack overflow

. . .but generates the right code anyway:

?f@@YAXXZ PROC ; f
; File c:\tmp6\ss.cpp
; Line 2

push ebp
mov ebp, esp

; Line 3
call ?f@@YAXXZ ; f

; Line 4
pop ebp
ret 0

?f@@YAXXZ ENDP ; f

. . .Also if we turn on optimization (/Ox option) the optimized code will not overflow the stack but will work correctly10:

?f@@YAXXZ PROC ; f
; File c:\tmp6\ss.cpp
; Line 2
$LL3@f:
; Line 3

jmp SHORT $LL3@f
?f@@YAXXZ ENDP ; f

GCC 4.4.1 generates likewise code in both cases, although without issuing any warning about the problem.
10irony here

15

4.2. WHAT IS THE STACK USED FOR? CHAPTER 4. STACK
ARM

ARM programs also use the stack for saving return addresses, but di�erently. As it wasmentioned in “Hello, world!” (2.3), the
RA is saved to the LR (link register). However, if one needs to call another function and use the LR register one more time its
value should be saved. Usually it is saved in the function prologue. O�en, we see instructions like “PUSH R4-R7,LR” along
with this instruction in epilogue “POP R4-R7,PC” —thus register values to be used in the function are saved in the stack,
including LR.

Nevertheless, if a function never calls any other function, in ARM terminology it is called a leaf function11. As a conse-
quence, leaf functions do not use the LR register. If this function is small and uses a small number of registers, it may not
use the stack at all. Thus, it is possible to call leaf functions without using the stack. This can be faster than on x86 because
external RAM is not used for the stack 12. It can be useful for such situations when memory for the stack is not yet allocated
or not available.

4.2.2 Passing function arguments
Themost popular way to pass parameters in x86 is called “cdecl”:

push arg3
push arg2
push arg1
call f
add esp, 4*3

Callee functions get their arguments via the stack pointer.
Consequently, this is howvalueswill be located in the stackbefore executionof the very first instructionof the f() function:

ESP return address
ESP+4 argument#1, marked in IDA as arg_0
ESP+8 argument#2, marked in IDA as arg_4
ESP+0xC argument#3, marked in IDA as arg_8
.

See also the section about other calling conventions (??). It is worth noting that nothing obliges programmers to pass
arguments through the stack. It is not a requirement. One could implement any other method without using the stack at all.

For example, it is possible to allocate a space for arguments in the heap, fill it and pass it to a function via a pointer to this
block in the EAX register. This will work. 13. However, it is convenient tradition in x86 and ARM to use the stack for this.

By the way, the callee function does not have any information about how many arguments were passed. Functions with a
variable number of arguments (like printf()) determine the number by specifiers (which begin with a% sign) in the format
string. If we write something like

printf("%d %d %d", 1234);

printf()will dump 1234, and then also two random numbers, which were laying near it in the stack, by chance.
That’s why it is not very important how we declare the main() function: as main(), main(int argc, char *argv[]) or
main(int argc, char *argv[], char *envp[]).

In fact, CRT-code is calling main() roughly as:

push envp
push argv
push argc
call main
...

If you’ll declare main() as main() without arguments, they are, nevertheless, still present in the stack, but not used. If
you declare main() as main(int argc, char *argv[]), you will use two arguments, and third will remain “invisible” for
your function. Even more than that, it is possible to declare main(int argc), and it will work.

11http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka13785.html
12Some time ago, on PDP-11 and VAX, CALL instruction (calling other functions) was expensive, up to 50% of execution timemight be spent on it, so it was

common sense that big number of small function is anti-pattern [25, Chapter 4, Part II].
13For example, in the “The Art of Computer Programming” book by Donald Knuth, in section 1.4.1 dedicated to subroutines [18, section 1.4.1], we can read

about one way to supply arguments to subroutine is simply to list them a�er the JMP instruction passing control to subroutine. Knuth writes this method
was particularly convenient on System/360.

16

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka13785.html

4.2. WHAT IS THE STACK USED FOR? CHAPTER 4. STACK
4.2.3 Local variable storage
A function could allocate space in the stack for its local variables just by shi�ing the stack pointer towards the stack bottom.

It is also not a requirement. You could store local variables wherever you like, but traditionally this is how it’s done.

4.2.4 x86: alloca() function
It is worth noting the alloca() function.14.

This function works like malloc() but allocates memory just on the stack.
The allocated memory chunk does not need to be freed via a free() function call since the function epilogue (3) will

return ESP back to its initial state and the allocated memory will be just annulled.
It is worth noting how alloca() is implemented.
This function, if to simplify, just shi�s ESP downwards toward the stack bottomby the number of bytes you need and sets

ESP as a pointer to the allocated block. Let’s try:

#include <malloc.h>
#include <stdio.h>

void f()
{

char *buf=(char*)alloca (600);
_snprintf (buf, 600, "hi! %d, %d, %d\n", 1, 2, 3);

puts (buf);
};

(_snprintf() function works just like printf(), but instead of dumping the result into stdout (e.g., to terminal or con-
sole), it writes to the buf bu�er. puts() copies buf contents to stdout. Of course, these two function calls might be replaced
by one printf() call, but I would like to illustrate small bu�er usage.)

MSVC

Let’s compile (MSVC 2010):

Listing 4.1: MSVC 2010
...

mov eax, 600 ; 00000258H
call __alloca_probe_16
mov esi, esp

push 3
push 2
push 1
push OFFSET $SG2672
push 600 ; 00000258H
push esi
call __snprintf

push esi
call _puts
add esp, 28 ; 0000001cH

...

The sole alloca() argument passed via EAX (instead of pushing into stack) 15. A�er the alloca() call, ESP points to the
block of 600 bytes and we can use it as memory for the buf array.

14In MSVC, the function implementation can be found in alloca16.asm and chkstk.asm in C:\Program Files (x86)\Microsoft Visual Studio
10.0\VC\crt\src\intel

15It is because alloca() is rather compiler intrinsic (??) than usual function.
One of the reason there is a separate function instead of couple instructions just in the code, becauseMSVC16 implementation of the alloca() function also

has a code which reads from the memory just allocated, in order to let OS to map physical memory to this VM17 region.

17

4.2. WHAT IS THE STACK USED FOR? CHAPTER 4. STACK
GCC + Intel syntax

GCC 4.4.1 can do the same without calling external functions:

Listing 4.2: GCC 4.7.3
.LC0:

.string "hi! %d, %d, %d\n"
f:

push ebp
mov ebp, esp
push ebx
sub esp, 660
lea ebx, [esp+39]
and ebx, -16 ; align pointer by 16-bit border
mov DWORD PTR [esp], ebx ; s
mov DWORD PTR [esp+20], 3
mov DWORD PTR [esp+16], 2
mov DWORD PTR [esp+12], 1
mov DWORD PTR [esp+8], OFFSET FLAT:.LC0 ; "hi! %d, %d, %d\n"
mov DWORD PTR [esp+4], 600 ; maxlen
call _snprintf
mov DWORD PTR [esp], ebx ; s
call puts
mov ebx, DWORD PTR [ebp-4]
leave
ret

GCC + AT&T syntax

Let’s see the same code, but in AT&T syntax:

Listing 4.3: GCC 4.7.3
.LC0:

.string "hi! %d, %d, %d\n"
f:

pushl %ebp
movl %esp, %ebp
pushl %ebx
subl $660, %esp
leal 39(%esp), %ebx
andl $-16, %ebx
movl %ebx, (%esp)
movl $3, 20(%esp)
movl $2, 16(%esp)
movl $1, 12(%esp)
movl $.LC0, 8(%esp)
movl $600, 4(%esp)
call _snprintf
movl %ebx, (%esp)
call puts
movl -4(%ebp), %ebx
leave
ret

The code is the same as in the previous listing.
N.B. E.g. movl $3, 20(%esp) is analogous tomov DWORD PTR [esp+20], 3 in Intel-syntax—whenaddressingmemory

in form register+o�set, it is written in AT&T syntax as offset(%register).

18

4.3. TYPICAL STACK LAYOUT CHAPTER 4. STACK
4.2.5 (Windows) SEH
SEH18 records are also stored on the stack (if they present)..

Readmore about it: (50.3).

4.2.6 Bu�er overflow protection
More about it here (16.2).

4.3 Typical stack layout
A very typical stack layout in a 32-bit environment at the start of a function:

.
ESP-0xC local variable #2, marked in IDA as var_8
ESP-8 local variable #1, marked in IDA as var_4
ESP-4 saved value of EBP
ESP return address
ESP+4 argument#1, marked in IDA as arg_0
ESP+8 argument#2, marked in IDA as arg_4
ESP+0xC argument#3, marked in IDA as arg_8
.

18Structured Exception Handling: 50.3

19

CHAPTER 5. PRINTF()WITH SEVERAL ARGUMENTS

Chapter 5

printf()with several arguments

Now let’s extend the Hello, world! (2) example, replacing printf() in the main() function body by this:

#include <stdio.h>

int main()
{

printf("a=%d; b=%d; c=%d", 1, 2, 3);
return 0;

};

5.1 x86: 3 arguments

5.1.1 MSVC
Let’s compile it by MSVC 2010 Express and we got:

$SG3830 DB ’a=%d; b=%d; c=%d’, 00H

...

push 3
push 2
push 1
push OFFSET $SG3830
call _printf
add esp, 16 ; 00000010H

Almost the same, but now we can see the printf() arguments are pushed onto the stack in reverse order. The first
argument is pushed last.

By the way, variables of int type in 32-bit environment have 32-bit width, that is 4 bytes.
So, we have here 4 arguments. 4 * 4 = 16—they occupy exactly 16 bytes in the stack: a 32-bit pointer to a string and 3

numbers of type int.
When the stack pointer (ESP register) is corrected by “ADD ESP, X” instruction a�er a function call, o�en, the number

of function arguments can be deduced here: just divide X by 4.
Of course, this is related only to cdecl calling convention.
See also the section about calling conventions (??).
It is also possible for the compiler to merge several “ADD ESP, X” instructions into one, a�er the last call:

push a1
push a2
call ...
...
push a1
call ...
...
push a1

20

5.1. X86: 3 ARGUMENTS CHAPTER 5. PRINTF()WITH SEVERAL ARGUMENTS
push a2
push a3
call ...
add esp, 24

5.1.2 MSVC and OllyDbg
Now let’s try to load this example in OllyDbg. It is one of the most popular user-land win32 debugger. We can try to compile
our example in MSVC 2012 with /MD option, meaning, to link against MSVCR*.DLL, so we will able to see imported functions
clearly in debugger.

Then load executable in OllyDbg. The very first breakpoint is in ntdll.dll, press F9 (run). The second breakpoint is in
CRT-code. Now we should find main() function.

Find this code by scrolling the code to the very bottom (MSVC allocates main() function at the very beginning of the code
section): fig.5.3.

Click on PUSH EBP instruction, press F2 (set breakpoint) and press F9 (run). We need to do thesemanupulations in order
to skip CRT-code, because, we don’t really interesting in it yet.

Press F8 (step over) 6 times, i.e., skip 6 instructions: fig.5.4.
Now the PC points to the CALL printf instruction. OllyDbg, like other debuggers, highlights value of registers which

were changed. So each time you press F8, EIP is changing and its value looking red. ESP is changing as well, because values
are pushed into the stack.

Where are the values in the stack? Take a look into right/bottomwindow of debugger:

Figure 5.1: OllyDbg: stack a�er values pushed (I made round red mark here in graphics editor)

So we can see there 3 columns: address in the stack, value in the stack and some additional OllyDbg comments. OllyDbg
understands printf()-like strings, so it reports the string here and 3 values attached to it.

It is possible to right-click on the format string, click on “Follow in dump”, and the format stringwill appear in thewindow
at the le�-bottompart, where somememory part is always seen. Thesememory values canbe edited. It is possible to change
the format string, and then the result of our example will be di�erent. It is probably not very useful now, but it’s very good
idea for doing it as exercise, to get feeling how everything is works here.

Press F8 (step over).
In the console we’ll see the output:

Figure 5.2: printf() function executed

Let’s see how registers and stack state are changed: fig.5.5.
EAX register now contains 0xD (13). That’s correct, printf() returns number of characters printed. EIP value is changed:

indeed, now there is address of the instruction a�er CALL printf. ECX and EDX values are changed as well. Apparently,
printf() function’s hiddenmachinery used them for its own needs.

A very important thing is that ESP value is not changed. And stack state too! We clearly see that format string and cor-
responding 3 values are still there. Indeed, that’s cdecl calling convention, calling function doesn’t clear arguments in stack.
It’s caller’s duty to do so.

Press F8 again to execute ADD ESP, 10 instruction: fig.5.6.
ESP is changed, but values are still in the stack! Yes, of course, no one needs to fill these values by zero or something like

that. Because, everything above stack pointer (SP) is noise or garbage, it has no value at all. It would be time consuming to
clear unused stack entries, besides, no one really needs to.

21

5.1. X86: 3 ARGUMENTS CHAPTER 5. PRINTF()WITH SEVERAL ARGUMENTS

Figure 5.3: OllyDbg: the very start of the main() function

Figure 5.4: OllyDbg: before printf() execution

22

5.1. X86: 3 ARGUMENTS CHAPTER 5. PRINTF()WITH SEVERAL ARGUMENTS

Figure 5.5: OllyDbg: a�er printf() execution

Figure 5.6: OllyDbg: a�er ADD ESP, 10 instruction execution

5.1.3 GCC

Now let’s compile the same program in Linux using GCC 4.4.1 and take a look in IDA what we got:

main proc near

23

5.1. X86: 3 ARGUMENTS CHAPTER 5. PRINTF()WITH SEVERAL ARGUMENTS

var_10 = dword ptr -10h
var_C = dword ptr -0Ch
var_8 = dword ptr -8
var_4 = dword ptr -4

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 10h
mov eax, offset aADBDCD ; "a=%d; b=%d; c=%d"
mov [esp+10h+var_4], 3
mov [esp+10h+var_8], 2
mov [esp+10h+var_C], 1
mov [esp+10h+var_10], eax
call _printf
mov eax, 0
leave
retn

main endp

It can be said that the di�erence between code fromMSVC and code fromGCC is only in themethod of placing arguments
on the stack. Here GCC is working directly with the stack without PUSH/POP.

5.1.4 GCC and GDB
Let’s try this example also in GDB1 in Linux.

-gmean produce debug information into executable file.

$ gcc 1.c -g -o 1

$ gdb 1
GNU gdb (GDB) 7.6.1-ubuntu
Copyright (C) 2013 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "i686-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
Reading symbols from /home/dennis/polygon/1...done.

Listing 5.1: let’s set breakpoint on printf()
(gdb) b printf
Breakpoint 1 at 0x80482f0

Run. There are no printf() function source code here, so GDB can’t show its source, but may do so.

(gdb) run
Starting program: /home/dennis/polygon/1

Breakpoint 1, __printf (format=0x80484f0 "a=%d; b=%d; c=%d") at printf.c:29
29 printf.c: No such file or directory.

Print 10 stack elements. Le� column is an address in stack.

(gdb) x/10w $esp
0xbffff11c: 0x0804844a 0x080484f0 0x00000001 0x00000002
0xbffff12c: 0x00000003 0x08048460 0x00000000 0x00000000
0xbffff13c: 0xb7e29905 0x00000001

1GNU debugger

24

5.1. X86: 3 ARGUMENTS CHAPTER 5. PRINTF()WITH SEVERAL ARGUMENTS
The very first element is RA (0x0804844a). We can be sure in it by disassembling the memory at this address:

(gdb) x/5i 0x0804844a
0x804844a <main+45>: mov $0x0,%eax
0x804844f <main+50>: leave
0x8048450 <main+51>: ret
0x8048451: xchg %ax,%ax
0x8048453: xchg %ax,%ax

Two XCHG instructions, apparently, is some random garbage, which we can ignore so far.
The second element (0x080484f0) is an address of format string:

(gdb) x/s 0x080484f0
0x80484f0: "a=%d; b=%d; c=%d"

Other 3 elements (1, 2, 3) are printf() arguments. Other elements may be just “garbage” present in stack, but alsomay
be values from other functions, their local variables, etc. We can ignore it yet.

Execute “finish”. This mean, execute till function end. Here it means: execute till the finish of printf().

(gdb) finish
Run till exit from #0 __printf (format=0x80484f0 "a=%d; b=%d; c=%d") at printf.c:29
main () at 1.c:6
6 return 0;
Value returned is $2 = 13

GDB shows what printf() returned in EAX (13). This is number of characters printed, just like in the example with Olly-
Dbg.

Wealso see “return0;” and the information that this expression is in the1.c file at the line 6. Indeed, the1.c file is located
in the current directory, and GDB finds the string there. How GDB knows, which C-code line is being executed now? This is
related to the fact that compiler, while generating debugging information, also saves a table of relations between source
code line numbers and instruction addresses. GDB is source-level debugger, a�er all.

Let’s examine registers. 13 in EAX:

(gdb) info registers
eax 0xd 13
ecx 0x0 0
edx 0x0 0
ebx 0xb7fc0000 -1208221696
esp 0xbffff120 0xbffff120
ebp 0xbffff138 0xbffff138
esi 0x0 0
edi 0x0 0
eip 0x804844a 0x804844a <main+45>
...

Let’s disassemble current instructions. Arrow points to the instruction being executed next.

(gdb) disas
Dump of assembler code for function main:

0x0804841d <+0>: push %ebp
0x0804841e <+1>: mov %esp,%ebp
0x08048420 <+3>: and $0xfffffff0,%esp
0x08048423 <+6>: sub $0x10,%esp
0x08048426 <+9>: movl $0x3,0xc(%esp)
0x0804842e <+17>: movl $0x2,0x8(%esp)
0x08048436 <+25>: movl $0x1,0x4(%esp)
0x0804843e <+33>: movl $0x80484f0,(%esp)
0x08048445 <+40>: call 0x80482f0 <printf@plt>

=> 0x0804844a <+45>: mov $0x0,%eax
0x0804844f <+50>: leave
0x08048450 <+51>: ret

End of assembler dump.

GDB shows disassembly in AT&T syntax by default. It’s possible to switch to Intel syntax:

25

5.2. X64: 8 ARGUMENTS CHAPTER 5. PRINTF()WITH SEVERAL ARGUMENTS

(gdb) set disassembly-flavor intel
(gdb) disas
Dump of assembler code for function main:

0x0804841d <+0>: push ebp
0x0804841e <+1>: mov ebp,esp
0x08048420 <+3>: and esp,0xfffffff0
0x08048423 <+6>: sub esp,0x10
0x08048426 <+9>: mov DWORD PTR [esp+0xc],0x3
0x0804842e <+17>: mov DWORD PTR [esp+0x8],0x2
0x08048436 <+25>: mov DWORD PTR [esp+0x4],0x1
0x0804843e <+33>: mov DWORD PTR [esp],0x80484f0
0x08048445 <+40>: call 0x80482f0 <printf@plt>

=> 0x0804844a <+45>: mov eax,0x0
0x0804844f <+50>: leave
0x08048450 <+51>: ret

End of assembler dump.

Execute next instruction. GDB shows ending bracket, meaning, this is ending block of function.

(gdb) step
7 };

Let’s see registers a�er MOV EAX, 0 instruction execution. EAX here is zero indeed.

(gdb) info registers
eax 0x0 0
ecx 0x0 0
edx 0x0 0
ebx 0xb7fc0000 -1208221696
esp 0xbffff120 0xbffff120
ebp 0xbffff138 0xbffff138
esi 0x0 0
edi 0x0 0
eip 0x804844f 0x804844f <main+50>
...

5.2 x64: 8 arguments

To see how other arguments will be passed via the stack, let’s change our example again by increasing the number of argu-
ments to be passed to 9 (printf() format string + 8 int variables):

#include <stdio.h>

int main()
{

printf("a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\n", 1, 2, 3, 4, 5, 6, 7, 8);
return 0;

};

5.2.1 MSVC
As we saw before, the first 4 arguments are passed in the RCX, RDX, R8, R9 registers inWin64, while all the rest—via the stack.
That is what we see here. However, the MOV instruction, instead of PUSH, is used for preparing the stack, so the values are
written to the stack in a straightforward manner.

Listing 5.2: MSVC 2012 x64
$SG2923 DB ’a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d’, 0aH, 00H

main PROC
sub rsp, 88

26

5.2. X64: 8 ARGUMENTS CHAPTER 5. PRINTF()WITH SEVERAL ARGUMENTS

mov DWORD PTR [rsp+64], 8
mov DWORD PTR [rsp+56], 7
mov DWORD PTR [rsp+48], 6
mov DWORD PTR [rsp+40], 5
mov DWORD PTR [rsp+32], 4
mov r9d, 3
mov r8d, 2
mov edx, 1
lea rcx, OFFSET FLAT:$SG2923
call printf

; return 0
xor eax, eax

add rsp, 88
ret 0

main ENDP
_TEXT ENDS
END

5.2.2 GCC
In *NIX OS-es, it’s the same story for x86-64, except that the first 6 arguments are passed in the RDI, RSI, RDX, RCX, R8, R9
registers. All the rest—via the stack. GCC generates the code writing string pointer into EDI instead if RDI—we saw this thing
before: 2.2.2.

We also saw before the EAX register being cleared before a printf() call: 2.2.2.

Listing 5.3: GCC 4.4.6 -O3 x64
.LC0:

.string "a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\n"

main:
sub rsp, 40

mov r9d, 5
mov r8d, 4
mov ecx, 3
mov edx, 2
mov esi, 1
mov edi, OFFSET FLAT:.LC0
xor eax, eax ; number of vector registers passed
mov DWORD PTR [rsp+16], 8
mov DWORD PTR [rsp+8], 7
mov DWORD PTR [rsp], 6
call printf

; return 0

xor eax, eax
add rsp, 40
ret

5.2.3 GCC + GDB
Let’s try this example in GDB.

$ gcc -g 2.c -o 2

27

5.2. X64: 8 ARGUMENTS CHAPTER 5. PRINTF()WITH SEVERAL ARGUMENTS

$ gdb 2
GNU gdb (GDB) 7.6.1-ubuntu
Copyright (C) 2013 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
Reading symbols from /home/dennis/polygon/2...done.

Listing 5.4: let’s set breakpoint to printf(), and run
(gdb) b printf
Breakpoint 1 at 0x400410
(gdb) run
Starting program: /home/dennis/polygon/2

Breakpoint 1, __printf (format=0x400628 "a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\n") at
printf.c:29

29 printf.c: No such file or directory.

Registers RSI/RDX/RCX/R8/R9 has the values which are should be there. RIP has an address of the very first instruction of
the printf() function.

(gdb) info registers
rax 0x0 0
rbx 0x0 0
rcx 0x3 3
rdx 0x2 2
rsi 0x1 1
rdi 0x400628 4195880
rbp 0x7fffffffdf60 0x7fffffffdf60
rsp 0x7fffffffdf38 0x7fffffffdf38
r8 0x4 4
r9 0x5 5
r10 0x7fffffffdce0 140737488346336
r11 0x7ffff7a65f60 140737348263776
r12 0x400440 4195392
r13 0x7fffffffe040 140737488347200
r14 0x0 0
r15 0x0 0
rip 0x7ffff7a65f60 0x7ffff7a65f60 <__printf>
...

Listing 5.5: let’s inspect format string
(gdb) x/s $rdi
0x400628: "a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\n"

Let’s dump stack with x/g command this time—gmeans giant words, i.e., 64-bit words.

(gdb) x/10g $rsp
0x7fffffffdf38: 0x0000000000400576 0x0000000000000006
0x7fffffffdf48: 0x0000000000000007 0x00007fff00000008
0x7fffffffdf58: 0x0000000000000000 0x0000000000000000
0x7fffffffdf68: 0x00007ffff7a33de5 0x0000000000000000
0x7fffffffdf78: 0x00007fffffffe048 0x0000000100000000

The very first stack element, just like in previous case, is RA. 3 values are also passed in stack: 6, 7, 8. We also see that 8
is passed with high 32-bits not cleared: 0x00007fff00000008. That’s OK, because, values has int type, which is 32-bit type.
So, high register or stack element part may contain “random garbage”.

28

5.3. ARM: 3 ARGUMENTS CHAPTER 5. PRINTF()WITH SEVERAL ARGUMENTS
If to take a look, where control flow will return a�er printf() execution, GDB will show the whole main() function:

(gdb) set disassembly-flavor intel
(gdb) disas 0x0000000000400576
Dump of assembler code for function main:

0x000000000040052d <+0>: push rbp
0x000000000040052e <+1>: mov rbp,rsp
0x0000000000400531 <+4>: sub rsp,0x20
0x0000000000400535 <+8>: mov DWORD PTR [rsp+0x10],0x8
0x000000000040053d <+16>: mov DWORD PTR [rsp+0x8],0x7
0x0000000000400545 <+24>: mov DWORD PTR [rsp],0x6
0x000000000040054c <+31>: mov r9d,0x5
0x0000000000400552 <+37>: mov r8d,0x4
0x0000000000400558 <+43>: mov ecx,0x3
0x000000000040055d <+48>: mov edx,0x2
0x0000000000400562 <+53>: mov esi,0x1
0x0000000000400567 <+58>: mov edi,0x400628
0x000000000040056c <+63>: mov eax,0x0
0x0000000000400571 <+68>: call 0x400410 <printf@plt>
0x0000000000400576 <+73>: mov eax,0x0
0x000000000040057b <+78>: leave
0x000000000040057c <+79>: ret

End of assembler dump.

Let’s finish printf() execution, execute the instruction zeroing EAX, take a notice that EAX register has exactly zero. RIP
now points to the LEAVE instruction, i.e., penultimate in main() function.

(gdb) finish
Run till exit from #0 __printf (format=0x400628 "a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\

n") at printf.c:29
a=1; b=2; c=3; d=4; e=5; f=6; g=7; h=8
main () at 2.c:6
6 return 0;
Value returned is $1 = 39
(gdb) next
7 };
(gdb) info registers
rax 0x0 0
rbx 0x0 0
rcx 0x26 38
rdx 0x7ffff7dd59f0 140737351866864
rsi 0x7fffffd9 2147483609
rdi 0x0 0
rbp 0x7fffffffdf60 0x7fffffffdf60
rsp 0x7fffffffdf40 0x7fffffffdf40
r8 0x7ffff7dd26a0 140737351853728
r9 0x7ffff7a60134 140737348239668
r10 0x7fffffffd5b0 140737488344496
r11 0x7ffff7a95900 140737348458752
r12 0x400440 4195392
r13 0x7fffffffe040 140737488347200
r14 0x0 0
r15 0x0 0
rip 0x40057b 0x40057b <main+78>
...

5.3 ARM: 3 arguments
Traditionally, ARM’s scheme for passing arguments (calling convention) is as follows: the first 4 arguments are passed in the
R0-R3 registers; the remaining arguments, via the stack. This resembles the arguments passing scheme in fastcall (??) or
win64 (??).

29

5.4. ARM: 8 ARGUMENTS CHAPTER 5. PRINTF()WITH SEVERAL ARGUMENTS
5.3.1 Non-optimizing Keil + ARMmode

Listing 5.6: Non-optimizing Keil + ARMmode
.text:00000014 printf_main1
.text:00000014 10 40 2D E9 STMFD SP!, {R4,LR}
.text:00000018 03 30 A0 E3 MOV R3, #3
.text:0000001C 02 20 A0 E3 MOV R2, #2
.text:00000020 01 10 A0 E3 MOV R1, #1
.text:00000024 1D 0E 8F E2 ADR R0, aADBDCD ; "a=%d; b=%d; c=%d\n"
.text:00000028 0D 19 00 EB BL __2printf
.text:0000002C 10 80 BD E8 LDMFD SP!, {R4,PC}

So, the first 4 arguments are passed via the R0-R3 registers in this order: a pointer to the printf() format string in R0,
then 1 in R1, 2 in R2 and 3 in R3.

There is nothing unusual so far.

5.3.2 Optimizing Keil + ARMmode

Listing 5.7: Optimizing Keil + ARMmode
.text:00000014 EXPORT printf_main1
.text:00000014 printf_main1
.text:00000014 03 30 A0 E3 MOV R3, #3
.text:00000018 02 20 A0 E3 MOV R2, #2
.text:0000001C 01 10 A0 E3 MOV R1, #1
.text:00000020 1E 0E 8F E2 ADR R0, aADBDCD ; "a=%d; b=%d; c=%d\n"
.text:00000024 CB 18 00 EA B __2printf

This is optimized (-O3) version for ARMmode and here we see B as the last instruction instead of the familiar BL. Another
di�erence between this optimized version and the previous one (compiledwithout optimization) is also in the fact that there
is no function prologue and epilogue (instructions that save R0 and LR registers values). The B instruction just jumps to
another address, without anymanipulation of the LR register, that is, it is analogous toJMP in x86. Whydoes itwork? Because
this code is, in fact, e�ectively equivalent to the previous. There are two main reasons: 1) neither the stack nor SP, the stack
pointer, is modified; 2) the call to printf() is the last instruction, so there is nothing going on a�er it. A�er finishing, the
printf() function will just return control to the address stored in LR. But the address of the point from where our function
was called is now in LR! Consequently, control from printf() will be returned to that point. As a consequence, we do not
need to save LR sincewedonot need tomodify LR. Wedonot need tomodify LR since there are no other function calls except
printf(). Furthermore, a�er this call we do not to do anything! That’s why this optimization is possible.

Another similar example was described in “switch()/case/default” section, here (11.1.1).

5.3.3 Optimizing Keil + thumbmode

Listing 5.8: Optimizing Keil + thumbmode
.text:0000000C printf_main1
.text:0000000C 10 B5 PUSH {R4,LR}
.text:0000000E 03 23 MOVS R3, #3
.text:00000010 02 22 MOVS R2, #2
.text:00000012 01 21 MOVS R1, #1
.text:00000014 A4 A0 ADR R0, aADBDCD ; "a=%d; b=%d; c=%d\n"
.text:00000016 06 F0 EB F8 BL __2printf
.text:0000001A 10 BD POP {R4,PC}

There is no significant di�erence from the non-optimized code for ARMmode.

5.4 ARM: 8 arguments
Let’s use again the example with 9 arguments from the previous section: 5.2.

30

5.4. ARM: 8 ARGUMENTS CHAPTER 5. PRINTF()WITH SEVERAL ARGUMENTS

void printf_main2()
{

printf("a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\n", 1, 2, 3, 4, 5, 6, 7, 8);
};

5.4.1 Optimizing Keil: ARMmode

.text:00000028 printf_main2

.text:00000028

.text:00000028 var_18 = -0x18

.text:00000028 var_14 = -0x14

.text:00000028 var_4 = -4

.text:00000028

.text:00000028 04 E0 2D E5 STR LR, [SP,#var_4]!

.text:0000002C 14 D0 4D E2 SUB SP, SP, #0x14

.text:00000030 08 30 A0 E3 MOV R3, #8

.text:00000034 07 20 A0 E3 MOV R2, #7

.text:00000038 06 10 A0 E3 MOV R1, #6

.text:0000003C 05 00 A0 E3 MOV R0, #5

.text:00000040 04 C0 8D E2 ADD R12, SP, #0x18+var_14

.text:00000044 0F 00 8C E8 STMIA R12, {R0-R3}

.text:00000048 04 00 A0 E3 MOV R0, #4

.text:0000004C 00 00 8D E5 STR R0, [SP,#0x18+var_18]

.text:00000050 03 30 A0 E3 MOV R3, #3

.text:00000054 02 20 A0 E3 MOV R2, #2

.text:00000058 01 10 A0 E3 MOV R1, #1

.text:0000005C 6E 0F 8F E2 ADR R0, aADBDCDDDEDFDGD ; "a=%d; b=%d; c=%d; d=%d;
e=%d; f=%d; g=%"...

.text:00000060 BC 18 00 EB BL __2printf

.text:00000064 14 D0 8D E2 ADD SP, SP, #0x14

.text:00000068 04 F0 9D E4 LDR PC, [SP+4+var_4],#4

This code can be divided into several parts:

∙ Function prologue:

The very first “STR LR, [SP,#var_4]!” instruction saves LR on the stack, because we will use this register for the
printf() call.

The second “SUB SP, SP, #0x14” instruction decreases SP, the stack pointer, in order to allocate 0x14 (20) bytes
on the stack. Indeed, we need to pass 5 32-bit values via the stack to the printf() function, and each one occupies 4
bytes, that is 5 * 4 = 20—exactly. The other 4 32-bit values will be passed in registers.

∙ Passing 5, 6, 7 and 8 via stack:

Then, the values 5, 6, 7 and 8 are written to the R0, R1, R2 and R3 registers respectively. Then, the “ADD R12, SP,
#0x18+var_14” instructionwrites an address of the point in the stack, where these 4 variables will bewritten, into the
R12 register. var_14 is an assembly macro, equal to−0𝑥14, such macros are created by IDA to succinctly denote code
accessing the stack. var_?macros created by IDA reflecting local variables in the stack. So, 𝑆𝑃 + 4will be written into
the R12 register. The next “STMIA R12, R0-R3” instruction writes R0-R3 registers contents at the point in memory to
which R12 pointing. STMIA instruction meaning Store Multiple Increment A�er. Increment A�er means that R12 will be
increased by 4 a�er each register value is written.

∙ Passing 4 via stack: 4 is stored in R0 and then, this value, with the help of “STR R0, [SP,#0x18+var_18]” instruction,
is saved on the stack. var_18 is−0𝑥18, o�set will be 0, so, the value from the R0 register (4) will be written to the point
where SP is pointing to.

∙ Passing 1, 2 and 3 via registers:

Values of the first 3 numbers (a, b, c) (1, 2, 3 respectively) are passed in the R1, R2 and R3 registers right before the
printf() call, and the other 5 values are passed via the stack:

∙ printf() call:

31

5.4. ARM: 8 ARGUMENTS CHAPTER 5. PRINTF()WITH SEVERAL ARGUMENTS
∙ Function epilogue:

The “ADD SP, SP, #0x14” instruction returns the SP pointer back to its former point, thus cleaning the stack. Of
course, what was written on the stack will stay there, but it all will be rewritten during the execution of subsequent
functions.

The “LDR PC, [SP+4+var_4],#4” instruction loads the saved LR value from the stack into the PC register, thus caus-
ing the function to exit.

5.4.2 Optimizing Keil: thumbmode

.text:0000001C printf_main2

.text:0000001C

.text:0000001C var_18 = -0x18

.text:0000001C var_14 = -0x14

.text:0000001C var_8 = -8

.text:0000001C

.text:0000001C 00 B5 PUSH {LR}

.text:0000001E 08 23 MOVS R3, #8

.text:00000020 85 B0 SUB SP, SP, #0x14

.text:00000022 04 93 STR R3, [SP,#0x18+var_8]

.text:00000024 07 22 MOVS R2, #7

.text:00000026 06 21 MOVS R1, #6

.text:00000028 05 20 MOVS R0, #5

.text:0000002A 01 AB ADD R3, SP, #0x18+var_14

.text:0000002C 07 C3 STMIA R3!, {R0-R2}

.text:0000002E 04 20 MOVS R0, #4

.text:00000030 00 90 STR R0, [SP,#0x18+var_18]

.text:00000032 03 23 MOVS R3, #3

.text:00000034 02 22 MOVS R2, #2

.text:00000036 01 21 MOVS R1, #1

.text:00000038 A0 A0 ADR R0, aADBDCDDDEDFDGD ; "a=%d; b=%d; c=%d; d=%d;
e=%d; f=%d; g=%"...

.text:0000003A 06 F0 D9 F8 BL __2printf

.text:0000003E

.text:0000003E loc_3E ; CODE XREF: example13_f+16

.text:0000003E 05 B0 ADD SP, SP, #0x14

.text:00000040 00 BD POP {PC}

Almost same as in previous example, however, this is thumb code and values are packed into stack di�erently: 8 for the
first time, then 5, 6, 7 for the second and 4 for the third.

5.4.3 Optimizing Xcode (LLVM): ARMmode

__text:0000290C _printf_main2
__text:0000290C
__text:0000290C var_1C = -0x1C
__text:0000290C var_C = -0xC
__text:0000290C
__text:0000290C 80 40 2D E9 STMFD SP!, {R7,LR}
__text:00002910 0D 70 A0 E1 MOV R7, SP
__text:00002914 14 D0 4D E2 SUB SP, SP, #0x14
__text:00002918 70 05 01 E3 MOV R0, #0x1570
__text:0000291C 07 C0 A0 E3 MOV R12, #7
__text:00002920 00 00 40 E3 MOVT R0, #0
__text:00002924 04 20 A0 E3 MOV R2, #4
__text:00002928 00 00 8F E0 ADD R0, PC, R0
__text:0000292C 06 30 A0 E3 MOV R3, #6
__text:00002930 05 10 A0 E3 MOV R1, #5
__text:00002934 00 20 8D E5 STR R2, [SP,#0x1C+var_1C]
__text:00002938 0A 10 8D E9 STMFA SP, {R1,R3,R12}

32

5.5. BY THEWAY CHAPTER 5. PRINTF()WITH SEVERAL ARGUMENTS
__text:0000293C 08 90 A0 E3 MOV R9, #8
__text:00002940 01 10 A0 E3 MOV R1, #1
__text:00002944 02 20 A0 E3 MOV R2, #2
__text:00002948 03 30 A0 E3 MOV R3, #3
__text:0000294C 10 90 8D E5 STR R9, [SP,#0x1C+var_C]
__text:00002950 A4 05 00 EB BL _printf
__text:00002954 07 D0 A0 E1 MOV SP, R7
__text:00002958 80 80 BD E8 LDMFD SP!, {R7,PC}

Almost the same what we already figured out, with the exception of STMFA (Store Multiple Full Ascending) instruction, it
is synonym to STMIB (Store Multiple Increment Before) instruction. This instruction increasing value in the SP register and
only then writing next register value into memory, but not vice versa.

Another thing we easily spot is the instructions are ostensibly located randomly. For instance, value in the R0 register is
prepared in three places, at addresses 0x2918, 0x2920 and 0x2928, when it would be possible to do it in one single point.
However, optimizing compiler has its own reasons about how to place instructions better. Usually, processor attempts to
simultaneously execute instructions located side-by-side. For example, instructions like“MOVT R0, #0”and“ADD R0, PC,
R0” cannot be executed simultaneously since they both modifying the R0 register. On the other hand, “MOVT R0, #0” and
“MOV R2, #4” instructions can be executed simultaneously since e�ects of their execution are not conflicting with each
other. Presumably, compiler tries to generate code in such a way, where it is possible, of course.

5.4.4 Optimizing Xcode (LLVM): thumb-2 mode

__text:00002BA0 _printf_main2
__text:00002BA0
__text:00002BA0 var_1C = -0x1C
__text:00002BA0 var_18 = -0x18
__text:00002BA0 var_C = -0xC
__text:00002BA0
__text:00002BA0 80 B5 PUSH {R7,LR}
__text:00002BA2 6F 46 MOV R7, SP
__text:00002BA4 85 B0 SUB SP, SP, #0x14
__text:00002BA6 41 F2 D8 20 MOVW R0, #0x12D8
__text:00002BAA 4F F0 07 0C MOV.W R12, #7
__text:00002BAE C0 F2 00 00 MOVT.W R0, #0
__text:00002BB2 04 22 MOVS R2, #4
__text:00002BB4 78 44 ADD R0, PC ; char *
__text:00002BB6 06 23 MOVS R3, #6
__text:00002BB8 05 21 MOVS R1, #5
__text:00002BBA 0D F1 04 0E ADD.W LR, SP, #0x1C+var_18
__text:00002BBE 00 92 STR R2, [SP,#0x1C+var_1C]
__text:00002BC0 4F F0 08 09 MOV.W R9, #8
__text:00002BC4 8E E8 0A 10 STMIA.W LR, {R1,R3,R12}
__text:00002BC8 01 21 MOVS R1, #1
__text:00002BCA 02 22 MOVS R2, #2
__text:00002BCC 03 23 MOVS R3, #3
__text:00002BCE CD F8 10 90 STR.W R9, [SP,#0x1C+var_C]
__text:00002BD2 01 F0 0A EA BLX _printf
__text:00002BD6 05 B0 ADD SP, SP, #0x14
__text:00002BD8 80 BD POP {R7,PC}

Almost the same as in previous example, with the exception the thumb-instructions are used here instead.

5.5 By the way

By theway, this di�erencebetweenpassing arguments in x86, x64, fastcall andARM is a good illustration theCPU is not aware
of how arguments is passed to functions. It is also possible to create hypothetical compiler which is able to pass arguments
via a special structure not using stack at all.

33

CHAPTER 6. SCANF()

Chapter 6

scanf()

Now let’s use scanf().

#include <stdio.h>

int main()
{

int x;
printf ("Enter X:\n");

scanf ("%d", &x);

printf ("You entered %d...\n", x);

return 0;
};

OK, I agree, it is not clever to use scanf() today. But I wanted to illustrate passing pointer to int.

6.1 About pointers

It is one of the most fundamental things in computer science. O�en, large array, structure or object, it is too costly to pass
to other function, while passing its address is much easier. More than that: if calling function must modify something in the
large array or structure, to return it as a whole is absurdly as well. So the simplest thing to do is to pass an address of array
or structure to function, and let it change what must be changed.

In C/C++ it is just an address of some point in memory.
In x86, address is represented as 32-bit number (i.e., occupying 4 bytes), while in x86–64 it is 64-bit number (occupying

8 bytes). By the way, that is the reason of some people’s indignation related to switching to x86-64 —all pointers on x64-
architecture will require twice as more space.

With some e�ort, it is possible to work only with untyped pointers; e.g. standard C function memcpy(), copying a block
fromone place inmemory to another, takes 2 pointers of void* type on input, since it is impossible to predict block type you
would like to copy. And it is not even important to know, only block size is important.

Also pointers arewidely usedwhen functionneeds to returnmore thanone value (wewill back to this in future (9)). scanf()
is just that case. In addition to the function’s need to show howmany values were read successfully, it also should return all
these values.

In C/C++ pointer type is needed only for type checking on compiling stage. Internally, in compiled code, there is no infor-
mation about pointers types.

6.2 x86

6.2.1 MSVC

What we got a�er compiling in MSVC 2010:

CONST SEGMENT
$SG3831 DB ’Enter X:’, 0aH, 00H
$SG3832 DB ’%d’, 00H

34

6.2. X86 CHAPTER 6. SCANF()
$SG3833 DB ’You entered %d...’, 0aH, 00H
CONST ENDS
PUBLIC _main
EXTRN _scanf:PROC
EXTRN _printf:PROC
; Function compile flags: /Odtp
_TEXT SEGMENT
_x$ = -4 ; size = 4
_main PROC

push ebp
mov ebp, esp
push ecx
push OFFSET $SG3831 ; ’Enter X:’
call _printf
add esp, 4
lea eax, DWORD PTR _x$[ebp]
push eax
push OFFSET $SG3832 ; ’%d’
call _scanf
add esp, 8
mov ecx, DWORD PTR _x$[ebp]
push ecx
push OFFSET $SG3833 ; ’You entered %d...’
call _printf
add esp, 8

; return 0
xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP
_TEXT ENDS

Variable x is local.
C/C++ standard tell us it must be visible only in this function and not from any other point. Traditionally, local variables

are placed in the stack. Probably, there could be other ways, but in x86 it is so.
Next instruction a�er function prologue, PUSH ECX, has not a goal to save ECX state (notice absence of corresponding

POP ECX at the function end).
In fact, this instruction just allocates 4 bytes on the stack for x variable storage.
xwill be accessed with the assistance of the _x$macro (it equals to -4) and the EBP register pointing to current frame.
Over a span of function execution, EBP is pointing to current stack frame and it is possible to have an access to local

variables and function arguments via EBP+offset.
It is also possible to use ESP, but it is o�en changing and not very convenient. So it can be said, the value of the EBP is

frozen state of the value of the ESP at the moment of function execution start.
A very typical stack frame layout in 32-bit environment is:

.
EBP-8 local variable #2, marked in IDA as var_8
EBP-4 local variable #1, marked in IDA as var_4
EBP saved value of EBP
EBP+4 return address
EBP+8 argument#1, marked in IDA as arg_0
EBP+0xC argument#2, marked in IDA as arg_4
EBP+0x10 argument#3, marked in IDA as arg_8
.

Function scanf() in our example has two arguments.
First is pointer to the string containing “%d” and second —address of variable x.
First of all, address of the x variable is placed into the EAX register by lea eax, DWORD PTR _x$[ebp] instruction
LEAmeaning load e�ective address but over a time it changed its primary application (80.6.2).

35

6.2. X86 CHAPTER 6. SCANF()
It can be said, LEA here just stores sum of the value in the EBP register and _x$macro to the EAX register.
It is the same as lea eax, [ebp-4].
So, 4 subtracting from value in the EBP register and result is placed to the EAX register. And then value in the EAX register

is pushing into stack and scanf() is called.
A�er that, printf() is called. First argument is pointer to string: “You entered %d...\n”.
Second argument is prepared as: mov ecx, [ebp-4], this instruction places to the ECX not address of the x variable, but

its contents.
A�er, value in the ECX is placed on the stack and the last printf() called.

6.2.2 MSVC + OllyDbg

Let’s try this example in OllyDbg. Let’s load, press F8 (step over) until we get into our executable file instead of ntdll.dll.
Scroll up until main() appears. Let’s click on the first instruction (PUSH EBP), press F2, then F9 (Run) and breakpoint triggers
on the main() begin.

Let’s trace to the place where the address of 𝑥 variable is prepared: fig.6.2.
It is possible to right-click onEAX in registerswindowand then “Follow in stack”. This addresswill appear in stackwindow.

Look, this is a variable in the local stack. I drawed a red arrow there. And there are some garbage (0x77D478). Nowaddress of
the stack element, with the help of PUSH, will be written to the same stack, nearly. Let’s trace by F8 until scanf() execution
finished. During the moment of scanf() execution, we enter, for example, 123, in the console window:

Figure 6.1: Console output

scanf() executed here: fig.6.3. scanf() returns 1 in EAX, whichmeans, it have read one value successfully. The element
of stack of our attention now contain 0x7B (123).

Further, this value is copied from the stack to the ECX register and passed into printf(): fig.6.4.

Figure 6.2: OllyDbg: address of the local variable is computed

36

6.2. X86 CHAPTER 6. SCANF()

Figure 6.3: OllyDbg: scanf() executed

Figure 6.4: OllyDbg: preparing the value for passing into printf()

6.2.3 GCC

Let’s try to compile this code in GCC 4.4.1 under Linux:

main proc near

var_20 = dword ptr -20h
var_1C = dword ptr -1Ch
var_4 = dword ptr -4

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 20h
mov [esp+20h+var_20], offset aEnterX ; "Enter X:"
call _puts
mov eax, offset aD ; "%d"
lea edx, [esp+20h+var_4]
mov [esp+20h+var_1C], edx
mov [esp+20h+var_20], eax

37

6.3. X64 CHAPTER 6. SCANF()
call ___isoc99_scanf
mov edx, [esp+20h+var_4]
mov eax, offset aYouEnteredD___ ; "You entered %d...\n"
mov [esp+20h+var_1C], edx
mov [esp+20h+var_20], eax
call _printf
mov eax, 0
leave
retn

main endp

GCC replaced first the printf() call to the puts(), it was already described (2.3.3) why it was done.
As before —arguments are placed on the stack by MOV instruction.

6.3 x64
All the same, but registers are used instead of stack for arguments passing.

6.3.1 MSVC

Listing 6.1: MSVC 2012 x64
_DATA SEGMENT
$SG1289 DB ’Enter X:’, 0aH, 00H
$SG1291 DB ’%d’, 00H
$SG1292 DB ’You entered %d...’, 0aH, 00H
_DATA ENDS

_TEXT SEGMENT
x$ = 32
main PROC
$LN3:

sub rsp, 56
lea rcx, OFFSET FLAT:$SG1289 ; ’Enter X:’
call printf
lea rdx, QWORD PTR x$[rsp]
lea rcx, OFFSET FLAT:$SG1291 ; ’%d’
call scanf
mov edx, DWORD PTR x$[rsp]
lea rcx, OFFSET FLAT:$SG1292 ; ’You entered %d...’
call printf

; return 0
xor eax, eax
add rsp, 56
ret 0

main ENDP
_TEXT ENDS

6.3.2 GCC

Listing 6.2: GCC 4.4.6 -O3 x64
.LC0:

.string "Enter X:"
.LC1:

.string "%d"
.LC2:

.string "You entered %d...\n"

38

6.4. ARM CHAPTER 6. SCANF()

main:
sub rsp, 24
mov edi, OFFSET FLAT:.LC0 ; "Enter X:"
call puts
lea rsi, [rsp+12]
mov edi, OFFSET FLAT:.LC1 ; "%d"
xor eax, eax
call __isoc99_scanf
mov esi, DWORD PTR [rsp+12]
mov edi, OFFSET FLAT:.LC2 ; "You entered %d...\n"
xor eax, eax
call printf

; return 0
xor eax, eax
add rsp, 24
ret

6.4 ARM

6.4.1 Optimizing Keil + thumbmode

.text:00000042 scanf_main

.text:00000042

.text:00000042 var_8 = -8

.text:00000042

.text:00000042 08 B5 PUSH {R3,LR}

.text:00000044 A9 A0 ADR R0, aEnterX ; "Enter X:\n"

.text:00000046 06 F0 D3 F8 BL __2printf

.text:0000004A 69 46 MOV R1, SP

.text:0000004C AA A0 ADR R0, aD ; "%d"

.text:0000004E 06 F0 CD F8 BL __0scanf

.text:00000052 00 99 LDR R1, [SP,#8+var_8]

.text:00000054 A9 A0 ADR R0, aYouEnteredD___ ; "You entered %d...\n"

.text:00000056 06 F0 CB F8 BL __2printf

.text:0000005A 00 20 MOVS R0, #0

.text:0000005C 08 BD POP {R3,PC}

A pointer to a int-typed variable must be passed to a scanf() so it can return value via it. int is 32-bit value, so we need
4 bytes for storing it somewhere in memory, and it fits exactly in 32-bit register. A place for the local variable x is allocated in
the stack and IDA named it var_8, however, it is not necessary to allocate it since SP stack pointer is already pointing to the
space may be used instantly. So, SP stack pointer value is copied to the R1 register and, together with format-string, passed
into scanf(). Later, with the help of the LDR instruction, this value is moved from stack into the R1 register in order to be
passed into printf().

Examples compiled for ARM-mode and also examples compiledwith Xcode LLVMare not di�er significantly fromwhatwe
saw here, so they are omitted.

6.5 Global variables
What if x variable from previous example will not be local but global variable? Then it will be accessible from any point, not
only from function body. Global variables are considered as anti-pattern, but for the sake of experiment we could do this.

#include <stdio.h>

int x;

int main()
{

39

6.5. GLOBAL VARIABLES CHAPTER 6. SCANF()
printf ("Enter X:\n");

scanf ("%d", &x);

printf ("You entered %d...\n", x);

return 0;
};

6.5.1 MSVC: x86

_DATA SEGMENT
COMM _x:DWORD
$SG2456 DB ’Enter X:’, 0aH, 00H
$SG2457 DB ’%d’, 00H
$SG2458 DB ’You entered %d...’, 0aH, 00H
_DATA ENDS
PUBLIC _main
EXTRN _scanf:PROC
EXTRN _printf:PROC
; Function compile flags: /Odtp
_TEXT SEGMENT
_main PROC

push ebp
mov ebp, esp
push OFFSET $SG2456
call _printf
add esp, 4
push OFFSET _x
push OFFSET $SG2457
call _scanf
add esp, 8
mov eax, DWORD PTR _x
push eax
push OFFSET $SG2458
call _printf
add esp, 8
xor eax, eax
pop ebp
ret 0

_main ENDP
_TEXT ENDS

Now x variable is defined in the _DATA segment. Memory in local stack is not allocated anymore. All accesses to it are not
via stack but directly to process memory. Not initialized global variables takes no place in the executable file (indeed, why
we should allocate a place in the executable file for initially zeroed variables?), but when someone will access this place in
memory, OS will allocate a block of zeroes there1.

Now let’s assign value to variable explicitly:

int x=10; // default value

We got:

_DATA SEGMENT
_x DD 0aH

...

Here we see value 0xA of DWORD type (DDmeaning DWORD = 32 bit).
1That is how VM behaves

40

6.5. GLOBAL VARIABLES CHAPTER 6. SCANF()
If you will open compiled .exe in IDA, you will see the x variable placed at the beginning of the _DATA segment, and a�er

you’ll see text strings.
If you will open compiled .exe in IDA from previous example where x value is not defined, you’ll see something like this:

.data:0040FA80 _x dd ? ; DATA XREF: _main+10

.data:0040FA80 ; _main+22

.data:0040FA84 dword_40FA84 dd ? ; DATA XREF: _memset+1E

.data:0040FA84 ; unknown_libname_1+28

.data:0040FA88 dword_40FA88 dd ? ; DATA XREF: ___sbh_find_block+5

.data:0040FA88 ; ___sbh_free_block+2BC

.data:0040FA8C ; LPVOID lpMem

.data:0040FA8C lpMem dd ? ; DATA XREF: ___sbh_find_block+B

.data:0040FA8C ; ___sbh_free_block+2CA

.data:0040FA90 dword_40FA90 dd ? ; DATA XREF: _V6_HeapAlloc+13

.data:0040FA90 ; __calloc_impl+72

.data:0040FA94 dword_40FA94 dd ? ; DATA XREF: ___sbh_free_block+2FE

_xmarkedas? amongother variablesnot required tobe initialized. Thismeans that a�er loading .exe tomemory, a space
for all these variables will be allocated and a random garbage will be here. But in an .exe file these not initialized variables
are not occupy anything. E.g. it is suitable for large arrays.

6.5.2 MSVC: x86 + OllyDbg
Things are even simpler here: fig.6.5. Variable is located in the data segment. By the way, a�er PUSH instruction, pushing 𝑥
address, is executed, the address will appear in stack, and it is possible to right-click on that element and select “Follow in
dump”. And the variable will appear in the memory window at le�.

A�er we enter 123 in the console, 0x7Bwill appear here.
But why the very first byte is 7B? Thinking logically, a 00 00 00 7B should be there. This is what called endianness, and

little-endian is used in x86. This mean that lowest byte is written first, and highest written last. More about it: 36.
Some time a�er, 32-bit value from this place of memory is loaded into EAX and passed into printf().
𝑥 variable address in the memory is 0xDC3390. In OllyDbg we can see process memory map (Alt-M) and we will see that

this address is inside of .data PE-segment of our program: fig.6.6.

Figure 6.5: OllyDbg: a�er scanf() execution

41

6.5. GLOBAL VARIABLES CHAPTER 6. SCANF()

Figure 6.6: OllyDbg: process memory map

6.5.3 GCC: x86
It is almost the same inLinux, except segmentnamesandproperties: not initializedvariablesare located in the_bss segment.
In ELF file format this segment has such attributes:

; Segment type: Uninitialized
; Segment permissions: Read/Write

If to statically assign a value to variable, e.g. 10, it will be placed in the _data segment, this is segment with the following
attributes:

; Segment type: Pure data
; Segment permissions: Read/Write

6.5.4 MSVC: x64

Listing 6.3: MSVC 2012 x64
_DATA SEGMENT
COMM x:DWORD
$SG2924 DB ’Enter X:’, 0aH, 00H
$SG2925 DB ’%d’, 00H
$SG2926 DB ’You entered %d...’, 0aH, 00H
_DATA ENDS

_TEXT SEGMENT
main PROC
$LN3:

sub rsp, 40

lea rcx, OFFSET FLAT:$SG2924 ; ’Enter X:’
call printf
lea rdx, OFFSET FLAT:x
lea rcx, OFFSET FLAT:$SG2925 ; ’%d’
call scanf
mov edx, DWORD PTR x

42

6.5. GLOBAL VARIABLES CHAPTER 6. SCANF()
lea rcx, OFFSET FLAT:$SG2926 ; ’You entered %d...’
call printf

; return 0
xor eax, eax

add rsp, 40
ret 0

main ENDP
_TEXT ENDS

Almost the same code as in x86. Take a notice that 𝑥 variable address is passed to scanf() using LEA instruction, while
the value of variable is passed to the second printf() using MOV instruction. “DWORD PTR”—is a part of assembly language
(no related to machine codes), showing that the variable data type is 32-bit and the MOV instruction should be encoded ac-
cordingly.

6.5.5 ARM: Optimizing Keil + thumbmode

.text:00000000 ; Segment type: Pure code

.text:00000000 AREA .text, CODE

...

.text:00000000 main

.text:00000000 PUSH {R4,LR}

.text:00000002 ADR R0, aEnterX ; "Enter X:\n"

.text:00000004 BL __2printf

.text:00000008 LDR R1, =x

.text:0000000A ADR R0, aD ; "%d"

.text:0000000C BL __0scanf

.text:00000010 LDR R0, =x

.text:00000012 LDR R1, [R0]

.text:00000014 ADR R0, aYouEnteredD___ ; "You entered %d...\n"

.text:00000016 BL __2printf

.text:0000001A MOVS R0, #0

.text:0000001C POP {R4,PC}

...

.text:00000020 aEnterX DCB "Enter X:",0xA,0 ; DATA XREF: main+2

.text:0000002A DCB 0

.text:0000002B DCB 0

.text:0000002C off_2C DCD x ; DATA XREF: main+8

.text:0000002C ; main+10

.text:00000030 aD DCB "%d",0 ; DATA XREF: main+A

.text:00000033 DCB 0

.text:00000034 aYouEnteredD___ DCB "You entered %d...",0xA,0 ; DATA XREF: main+14

.text:00000047 DCB 0

.text:00000047 ; .text ends

.text:00000047

...

.data:00000048 ; Segment type: Pure data

.data:00000048 AREA .data, DATA

.data:00000048 ; ORG 0x48

.data:00000048 EXPORT x

.data:00000048 x DCD 0xA ; DATA XREF: main+8

.data:00000048 ; main+10

.data:00000048 ; .data ends

So, x variable is now global and somehow, it is now located in another segment, namely data segment (.data). One
could ask, why text strings are located in code segment (.text) and x can be located right here? Since this is variable, and
by its definition, it can be changed. And probably, can be changed very o�en. Segment of code not infrequently can be
located inmicrocontroller ROM (remember, we now deal with embeddedmicroelectronics, andmemory scarcity is common
here), and changeable variables—inRAM2. It is not very economically to store constant variables in RAMwhenonehaveROM.

2Random-access memory

43

6.6. SCANF() RESULT CHECKING CHAPTER 6. SCANF()
Furthermore, data segmentwith constants in RAMmust be initialized before, since a�er RAM turning on, obviously, it contain
random information.

Onwards, we see, in code segment, a pointer to the x (off_2C) variable, and all operations with variable occurred via
this pointer. This is because x variable can be located somewhere far from this code fragment, so its address must be saved
somewhere in close proximity to the code. LDR instruction in thumb mode can address only variable in range of 1020 bytes
from the point it is located. Same instruction in ARM-mode —variables in range±4095 bytes, this, address of the x variable
must be located somewhere in close proximity, because, there is no guarantee the linker will able to place this variable near
the code, it could be even in external memory chip!

Onemore thing: if variable will be declared as const, Keil compiler shall allocate it in the .constdata segment. Perhaps,
therea�er, linker will able to place this segment in ROM too, along with code segment.

6.6 scanf() result checking
As I noticed before, it is slightly old-fashioned to use scanf() today. But if we have to, we need at least check if scanf()
finished correctly without error.

#include <stdio.h>

int main()
{

int x;
printf ("Enter X:\n");

if (scanf ("%d", &x)==1)
printf ("You entered %d...\n", x);

else
printf ("What you entered? Huh?\n");

return 0;
};

By standard, scanf()3 function returns number of fields it successfully read.
In our case, if everything went fine and user entered a number, scanf()will return 1 or 0 or EOF in case of error.
I added C code for scanf() result checking and printing error message in case of error.
This works predictably:

C:\...>ex3.exe
Enter X:
123
You entered 123...

C:\...>ex3.exe
Enter X:
ouch
What you entered? Huh?

6.6.1 MSVC: x86
What we got in assembly language (MSVC 2010):

lea eax, DWORD PTR _x$[ebp]
push eax
push OFFSET $SG3833 ; ’%d’, 00H
call _scanf
add esp, 8
cmp eax, 1
jne SHORT $LN2@main
mov ecx, DWORD PTR _x$[ebp]
push ecx

3MSDN: scanf, wscanf

44

http://msdn.microsoft.com/en-us/library/9y6s16x1(VS.71).aspx

6.6. SCANF() RESULT CHECKING CHAPTER 6. SCANF()
push OFFSET $SG3834 ; ’You entered %d...’, 0aH, 00H
call _printf
add esp, 8
jmp SHORT $LN1@main

$LN2@main:
push OFFSET $SG3836 ; ’What you entered? Huh?’, 0aH, 00H
call _printf
add esp, 4

$LN1@main:
xor eax, eax

Caller function (main()) must have access to the result of callee function (scanf()), so callee leaves this value in the EAX
register.

A�er, we check itwith the help of instructionCMP EAX, 1 (CoMPare), in otherwords, we compare value in theEAX register
with 1.

JNE conditional jump follows CMP instruction. JNEmeans Jump if Not Equal.
So, if value in the EAX register not equals to 1, then the processorwill pass execution to the addressmentioned in operand

of JNE, in our case it is $LN2@main. Passing control to this address, CPU will execute function printf() with argument
“What you entered? Huh?”. But if everything is fine, conditional jump will not be taken, and another printf() call will
be executed, with two arguments: ’You entered %d...’ and value of variable x.

Since secondsubsequentprintf()notneeded tobeexecuted, there isJMPa�er (unconditional jump), itwill pass control
to the point a�er second printf() and before XOR EAX, EAX instruction, which implement return 0.

So, it can be said that comparing a value with another is usually implemented by CMP/Jcc instructions pair, where cc is
condition code. CMP comparing two values and set processor flags4. Jcc check flags needed to be checked and pass control
to mentioned address (or not pass).

But in fact, this could be perceived paradoxical, but CMP instruction is in fact SUB (subtract). All arithmetic instructions
set processor flags too, not only CMP. If we compare 1 and 1, 1− 1will be 0 in result, ZF flag will be set (meaning the last result
was 0). There is no any other circumstances when it is possible except when operands are equal. JNE checks only ZF flag
and jumping only if it is not set. JNE is in fact a synonymof JNZ (Jump if Not Zero) instruction. Assembler translating both JNE
and JNZ instructions into one single opcode. So, CMP instruction can be replaced to SUB instruction and almost everything
will be fine, but the di�erence is in the SUB alter the value of the first operand. CMP is “SUB without saving result”.

6.6.2 MSVC: x86: IDA

It’s time to run IDA and try to do something in it. By the way, it is good idea to use /MD option in MSVC for beginners: this
mean that all these standard functions will not be linked with executable file, but will be imported from the MSVCR*.DLL file
instead. Thus it will be easier to see which standard function used and where.

While analysing code in IDA, it is very advisable to do notes for oneself (and others). For example, analysing this example,
we see thatJNZwill be triggered in case of error. So it’s possible tomove cursor to the label, press “n” and rename it to “error”.
Another label—into “exit”. What I’ve got:

.text:00401000 _main proc near

.text:00401000

.text:00401000 var_4 = dword ptr -4

.text:00401000 argc = dword ptr 8

.text:00401000 argv = dword ptr 0Ch

.text:00401000 envp = dword ptr 10h

.text:00401000

.text:00401000 push ebp

.text:00401001 mov ebp, esp

.text:00401003 push ecx

.text:00401004 push offset Format ; "Enter X:\n"

.text:00401009 call ds:printf

.text:0040100F add esp, 4

.text:00401012 lea eax, [ebp+var_4]

.text:00401015 push eax

.text:00401016 push offset aD ; "%d"

.text:0040101B call ds:scanf

.text:00401021 add esp, 8

.text:00401024 cmp eax, 1

4About x86 flags, see also: http://en.wikipedia.org/wiki/FLAGS_register_(computing).

45

http://en.wikipedia.org/wiki/FLAGS_register_(computing)

6.6. SCANF() RESULT CHECKING CHAPTER 6. SCANF()
.text:00401027 jnz short error
.text:00401029 mov ecx, [ebp+var_4]
.text:0040102C push ecx
.text:0040102D push offset aYou ; "You entered %d...\n"
.text:00401032 call ds:printf
.text:00401038 add esp, 8
.text:0040103B jmp short exit
.text:0040103D ; ---
.text:0040103D
.text:0040103D error: ; CODE XREF: _main+27
.text:0040103D push offset aWhat ; "What you entered? Huh?\n"
.text:00401042 call ds:printf
.text:00401048 add esp, 4
.text:0040104B
.text:0040104B exit: ; CODE XREF: _main+3B
.text:0040104B xor eax, eax
.text:0040104D mov esp, ebp
.text:0040104F pop ebp
.text:00401050 retn
.text:00401050 _main endp

Now it’s slightly easier to understand the code. However, it’s not good idea to comment every instruction excessively.
A part of function can also be hidden in IDA: a block should be marked, then “-” on numerical pad is pressed and text to

be entered.
I’ve hide two parts and gave names to them:

.text:00401000 _text segment para public ’CODE’ use32

.text:00401000 assume cs:_text

.text:00401000 ;org 401000h

.text:00401000 ; ask for X

.text:00401012 ; get X

.text:00401024 cmp eax, 1

.text:00401027 jnz short error

.text:00401029 ; print result

.text:0040103B jmp short exit

.text:0040103D ; ---

.text:0040103D

.text:0040103D error: ; CODE XREF: _main+27

.text:0040103D push offset aWhat ; "What you entered? Huh?\n"

.text:00401042 call ds:printf

.text:00401048 add esp, 4

.text:0040104B

.text:0040104B exit: ; CODE XREF: _main+3B

.text:0040104B xor eax, eax

.text:0040104D mov esp, ebp

.text:0040104F pop ebp

.text:00401050 retn

.text:00401050 _main endp

To unhide these parts, “+” on numerical pad can be used.
By pressing “space”, we can see how IDA can represent a function as a graph: fig. 6.7. There are two arrows a�er each

conditional jump: green and red. Green arrow pointing to the block which will be executed if jump is triggered, and red if
otherwise.

It is possible to fold nodes is this mode and give them names as well (“group nodes”). I did it for 3 blocks: fig. 6.8.
It’s very useful. It can be said, a very important part of reverse engineer’s job is to reduce information he/she have.

46

6.6. SCANF() RESULT CHECKING CHAPTER 6. SCANF()

Figure 6.7: Graphmode in IDA

47

6.6. SCANF() RESULT CHECKING CHAPTER 6. SCANF()

Figure 6.8: Graphmode in IDA with 3 nodes folded

6.6.3 MSVC: x86 + OllyDbg
Let’s try to hack our program in OllyDbg, forcing it to think scanf()working always without error.

Whenaddressof local variable ispassed intoscanf(), initially this variable contain somerandomgarbage, that is0x4CD478
in case: fig.6.10.

When scanf() is executing, I enter in the console something definitely not a number, like “asdasd”. scanf() finishing
with 0 in EAX, which mean, an error occurred: fig.6.11.

We can also see to the local variable in the stack and notice that it’s not changed. Indeed, what scanf() would write
there? It just did nothing except returning zero.

Now let’s try to “hack” our program. Let’s right-click on EAX, therewill also be “Set to 1” among other options. This is what
we need.

1 now in EAX, so the following check will executed as we need, and printf()will print value of variable in the stack.
Let’s run (F9) and we will see this in console window:

Figure 6.9: console window

Indeed, 5035128 is a decimal representation of the number in stack (0x4CD478)!

48

6.6. SCANF() RESULT CHECKING CHAPTER 6. SCANF()

Figure 6.10: OllyDbg: passing variable address into scanf()

Figure 6.11: OllyDbg: scanf() returning error

6.6.4 MSVC: x86 + Hiew

This can be also a simple example of executable file patching. We may try to patch executable, so the program will always
print numbers, no matter what we entered.

Assuming the executable compiled against external MSVCR*.DLL (i.e., with /MD option)5, wemay find main() function at
the very beginning of .text section. Let’s open executable in Hiew, find the very beginning of .text section (Enter, F8, F6,
Enter, Enter).

We will see this: fig.6.12.
Hiew finds ASCIIZ6 strings and displays them, as well as imported function names.
Move cursor to the address .00401027 (with the JNZ instruction we should bypass), press F3, and then type “9090”

(meaning two NOP7-s): fig.6.13.
Then F9 (update). Now the executable saved to disk. It will behave as we wanted.
Two NOP-s are probably not quite æsthetically as it could be. Other way to patch this instruction is to write just 0 to the

second opcode byte (jump o�set), so that JNZwill always jump to the next instruction.
5that’s what also called “dynamic linking”
6ASCII Zero (null-terminated ASCII string)
7No OPeration

49

6.6. SCANF() RESULT CHECKING CHAPTER 6. SCANF()
We can do the opposite: replace first byte to EB while not touching the second byte (jump o�set). We’ll got here always

triggered unconditional jump. The error message will be printed always, no matter what number was entered.

Figure 6.12: Hiew: main() function

50

6.6. SCANF() RESULT CHECKING CHAPTER 6. SCANF()

Figure 6.13: Hiew: replacing JNZ by two NOP-s

6.6.5 GCC: x86
Code generated by GCC 4.4.1 in Linux is almost the same, except di�erences we already considered.

6.6.6 MSVC: x64

Since wework here with int-typed variables, which are still 32-bit in x86-64, we see how 32-bit part of registers (prefixedwith
E-) are used here as well. While working with pointers, however, 64-bit register parts are used, prefied with R-.

Listing 6.4: MSVC 2012 x64
_DATA SEGMENT
$SG2924 DB ’Enter X:’, 0aH, 00H
$SG2926 DB ’%d’, 00H
$SG2927 DB ’You entered %d...’, 0aH, 00H
$SG2929 DB ’What you entered? Huh?’, 0aH, 00H
_DATA ENDS

_TEXT SEGMENT
x$ = 32
main PROC
$LN5:

sub rsp, 56
lea rcx, OFFSET FLAT:$SG2924 ; ’Enter X:’
call printf
lea rdx, QWORD PTR x$[rsp]
lea rcx, OFFSET FLAT:$SG2926 ; ’%d’
call scanf

51

6.6. SCANF() RESULT CHECKING CHAPTER 6. SCANF()
cmp eax, 1
jne SHORT $LN2@main
mov edx, DWORD PTR x$[rsp]
lea rcx, OFFSET FLAT:$SG2927 ; ’You entered %d...’
call printf
jmp SHORT $LN1@main

$LN2@main:
lea rcx, OFFSET FLAT:$SG2929 ; ’What you entered? Huh?’
call printf

$LN1@main:
; return 0
xor eax, eax
add rsp, 56
ret 0

main ENDP
_TEXT ENDS
END

6.6.7 ARM: Optimizing Keil + thumbmode

Listing 6.5: Optimizing Keil + thumbmode
var_8 = -8

PUSH {R3,LR}
ADR R0, aEnterX ; "Enter X:\n"
BL __2printf
MOV R1, SP
ADR R0, aD ; "%d"
BL __0scanf
CMP R0, #1
BEQ loc_1E
ADR R0, aWhatYouEntered ; "What you entered? Huh?\n"
BL __2printf

loc_1A ; CODE XREF: main+26
MOVS R0, #0
POP {R3,PC}

loc_1E ; CODE XREF: main+12
LDR R1, [SP,#8+var_8]
ADR R0, aYouEnteredD___ ; "You entered %d...\n"
BL __2printf
B loc_1A

New instructions here are CMP and BEQ8.
CMP is akin to the x86 instruction bearing the same name, it subtracts one argument from another and saves flags.
BEQ is jumping to another address if operandswhile comparingwere equal to each other, or, if result of last computation

was 0, or if Z flag is 1. Same thing as JZ in x86.
Everythingelse is simple: execution flow is forking into twobranches, then thebranchesare convergingat thepointwhere

0 is written into the R0, as a value returned from the function, and then function finishing.

8(PowerPC, ARM) Branch if Equal

52

CHAPTER 7. ACCESSING PASSED ARGUMENTS

Chapter 7

Accessing passed arguments

Nowwe figured out the caller function passing arguments to the callee via stack. But how callee access them?

Listing 7.1: simple example
#include <stdio.h>

int f (int a, int b, int c)
{

return a*b+c;
};

int main()
{

printf ("%d\n", f(1, 2, 3));
return 0;

};

7.1 x86

7.1.1 MSVC
What we have a�er compilation (MSVC 2010 Express):

Listing 7.2: MSVC 2010 Express
_TEXT SEGMENT
_a$ = 8 ; size = 4
_b$ = 12 ; size = 4
_c$ = 16 ; size = 4
_f PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _a$[ebp]
imul eax, DWORD PTR _b$[ebp]
add eax, DWORD PTR _c$[ebp]
pop ebp
ret 0

_f ENDP

_main PROC
push ebp
mov ebp, esp
push 3 ; 3rd argument
push 2 ; 2nd argument
push 1 ; 1st argument
call _f
add esp, 12

53

7.1. X86 CHAPTER 7. ACCESSING PASSED ARGUMENTS
push eax
push OFFSET $SG2463 ; ’%d’, 0aH, 00H
call _printf
add esp, 8
; return 0
xor eax, eax
pop ebp
ret 0

_main ENDP

What we see is the 3 numbers are pushing to stack in function main() and f(int,int,int) is called then. Argument
access inside f() is organized with the help of macros like: _a$ = 8, in the same way as local variables accessed, but the
di�erence in that these o�sets are positive (addressed with plus sign). So, adding _a$macro to the value in the EBP register,
outer side of stack frame is addressed.

Then a value is stored into EAX. A�er IMUL instruction execution, value in the EAX is a product1of value in EAX and what
is stored in _b. A�er IMUL execution, ADD is summing value in EAX and what is stored in _c. Value in the EAX is not needed
to be moved: it is already in place it must be. Now return to caller —it will take value from the EAX and used it as printf()
argument.

7.1.2 MSVC + OllyDbg
Let’s illustrate this in OllyDbg. When we trace until the very first instruction in f() that uses one of the arguments (first one),
we see that EBP is pointing to the stack frame, I marked its begin with red arrow. The first element of stack frame is saved
EBP value, second is RA, third is first function argument, then second argument and third one. To access the first function
argument, one need to add exactly 8 (2 32-bit words) to EBP.

Figure 7.1: OllyDbg: inside of f() function

7.1.3 GCC

Let’s compile the same in GCC 4.4.1 and let’s see results in IDA:

Listing 7.3: GCC 4.4.1
public f

f proc near

arg_0 = dword ptr 8

1result of multiplication

54

7.2. X64 CHAPTER 7. ACCESSING PASSED ARGUMENTS
arg_4 = dword ptr 0Ch
arg_8 = dword ptr 10h

push ebp
mov ebp, esp
mov eax, [ebp+arg_0] ; 1st argument
imul eax, [ebp+arg_4] ; 2nd argument
add eax, [ebp+arg_8] ; 3rd argument
pop ebp
retn

f endp

public main
main proc near

var_10 = dword ptr -10h
var_C = dword ptr -0Ch
var_8 = dword ptr -8

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 10h
mov [esp+10h+var_8], 3 ; 3rd argument
mov [esp+10h+var_C], 2 ; 2nd argument
mov [esp+10h+var_10], 1 ; 1st argument
call f
mov edx, offset aD ; "%d\n"
mov [esp+10h+var_C], eax
mov [esp+10h+var_10], edx
call _printf
mov eax, 0
leave
retn

main endp

Almost the same result.
The stack pointer is not returning back a�er both function exeuction, because penultimate LEAVE (80.6.2) instructionwill

do this, at the end.

7.2 x64

The story is a bit di�erent in x86-64, function arguments (4 or 6) are passed in registers, and a callee reading them from there
instead of stack accessing.

7.2.1 MSVC

Optimizing MSVC:

Listing 7.4: MSVC 2012 /Ox x64
$SG2997 DB ’%d’, 0aH, 00H

main PROC
sub rsp, 40
mov edx, 2
lea r8d, QWORD PTR [rdx+1] ; R8D=3
lea ecx, QWORD PTR [rdx-1] ; ECX=1
call f
lea rcx, OFFSET FLAT:$SG2997 ; ’%d’
mov edx, eax

55

7.2. X64 CHAPTER 7. ACCESSING PASSED ARGUMENTS
call printf
xor eax, eax
add rsp, 40
ret 0

main ENDP

f PROC
; ECX - 1st argument
; EDX - 2nd argument
; R8D - 3rd argument
imul ecx, edx
lea eax, DWORD PTR [r8+rcx]
ret 0

f ENDP

As we can see, very compact f() function takes arguments right from the registers. LEA instruction is used here for addi-
tion, apparently, compiler considered this instruction here faster then ADD. LEA is also used in main() for the first and third
arguments preparing, apparently, compiler thinks that it will work faster than usual value loading to the register using MOV
instruction.

Let’s try to take a look on output of non-optimizing MSVC:

Listing 7.5: MSVC 2012 x64
f proc near

; shadow space:
arg_0 = dword ptr 8
arg_8 = dword ptr 10h
arg_10 = dword ptr 18h

; ECX - 1st argument
; EDX - 2nd argument
; R8D - 3rd argument
mov [rsp+arg_10], r8d
mov [rsp+arg_8], edx
mov [rsp+arg_0], ecx
mov eax, [rsp+arg_0]
imul eax, [rsp+arg_8]
add eax, [rsp+arg_10]
retn

f endp

main proc near
sub rsp, 28h
mov r8d, 3 ; 3rd argument
mov edx, 2 ; 2nd argument
mov ecx, 1 ; 1st argument
call f
mov edx, eax
lea rcx, $SG2931 ; "%d\n"
call printf

; return 0
xor eax, eax
add rsp, 28h
retn

main endp

Somewhat puzzling: all 3 arguments from registers are saved to the stack for some reason. This is called “shadow space”
2: every Win64 may (but not required to) save all 4 register values there. This is done by two reasons: 1) it is too lavish to

2http://msdn.microsoft.com/en-us/library/zthk2dkh(v=vs.80).aspx

56

http://msdn.microsoft.com/en-us/library/zthk2dkh(v=vs.80).aspx

7.2. X64 CHAPTER 7. ACCESSING PASSED ARGUMENTS
allocate the whole register (or even 4 registers) for the input argument, so it will be accessed via stack; 2) debugger is always
aware where to find function arguments at a break 3.

It is duty of caller to allocate “shadow space” in stack.

7.2.2 GCC
Optimizing GCC does more or less understanable code:

Listing 7.6: GCC 4.4.6 -O3 x64
f:

; EDI - 1st argument
; ESI - 2nd argument
; EDX - 3rd argument
imul esi, edi
lea eax, [rdx+rsi]
ret

main:
sub rsp, 8
mov edx, 3
mov esi, 2
mov edi, 1
call f
mov edi, OFFSET FLAT:.LC0 ; "%d\n"
mov esi, eax
xor eax, eax ; number of vector registers passed
call printf
xor eax, eax
add rsp, 8
ret

Non-optimizing GCC:

Listing 7.7: GCC 4.4.6 x64
f:

; EDI - 1st argument
; ESI - 2nd argument
; EDX - 3rd argument
push rbp
mov rbp, rsp
mov DWORD PTR [rbp-4], edi
mov DWORD PTR [rbp-8], esi
mov DWORD PTR [rbp-12], edx
mov eax, DWORD PTR [rbp-4]
imul eax, DWORD PTR [rbp-8]
add eax, DWORD PTR [rbp-12]
leave
ret

main:
push rbp
mov rbp, rsp
mov edx, 3
mov esi, 2
mov edi, 1
call f
mov edx, eax
mov eax, OFFSET FLAT:.LC0 ; "%d\n"
mov esi, edx
mov rdi, rax
mov eax, 0 ; number of vector registers passed

3http://msdn.microsoft.com/en-us/library/ew5tede7(v=VS.90).aspx

57

http://msdn.microsoft.com/en-us/library/ew5tede7(v=VS.90).aspx

7.3. ARM CHAPTER 7. ACCESSING PASSED ARGUMENTS
call printf
mov eax, 0
leave
ret

There are no “shadow space” requirement in System V *NIX [21], but callee may need to save arguments somewhere,
because, again, it may be regsiters shortage.

7.2.3 GCC: uint64_t instead int
Our example worked with 32-bit int, that is why 32-bit register parts were used (prefixed by E-).

It can be altered slightly in order to use 64-bit values:

#include <stdio.h>
#include <stdint.h>

uint64_t f (uint64_t a, uint64_t b, uint64_t c)
{

return a*b+c;
};

int main()
{

printf ("%lld\n", f(0x1122334455667788,
0x1111111122222222,
0x3333333344444444));

return 0;
};

Listing 7.8: GCC 4.4.6 -O3 x64
f proc near

imul rsi, rdi
lea rax, [rdx+rsi]
retn

f endp

main proc near
sub rsp, 8
mov rdx, 3333333344444444h ; 3rd argument
mov rsi, 1111111122222222h ; 2nd argument
mov rdi, 1122334455667788h ; 1st argument
call f
mov edi, offset format ; "%lld\n"
mov rsi, rax
xor eax, eax ; number of vector registers passed
call _printf
xor eax, eax
add rsp, 8
retn

main endp

The code is very same, but registers (prefixed by R-) are used as a whole.

7.3 ARM

7.3.1 Non-optimizing Keil + ARMmode

.text:000000A4 00 30 A0 E1 MOV R3, R0

.text:000000A8 93 21 20 E0 MLA R0, R3, R1, R2

.text:000000AC 1E FF 2F E1 BX LR

58

7.3. ARM CHAPTER 7. ACCESSING PASSED ARGUMENTS
...
.text:000000B0 main
.text:000000B0 10 40 2D E9 STMFD SP!, {R4,LR}
.text:000000B4 03 20 A0 E3 MOV R2, #3
.text:000000B8 02 10 A0 E3 MOV R1, #2
.text:000000BC 01 00 A0 E3 MOV R0, #1
.text:000000C0 F7 FF FF EB BL f
.text:000000C4 00 40 A0 E1 MOV R4, R0
.text:000000C8 04 10 A0 E1 MOV R1, R4
.text:000000CC 5A 0F 8F E2 ADR R0, aD_0 ; "%d\n"
.text:000000D0 E3 18 00 EB BL __2printf
.text:000000D4 00 00 A0 E3 MOV R0, #0
.text:000000D8 10 80 BD E8 LDMFD SP!, {R4,PC}

In main() function, two other functions are simply called, and three values are passed to the first one (f).
As I mentioned before, in ARM, first 4 values are usually passed in first 4 registers (R0-R3).
ffunction, as it seems, use first 3 registers (R0-R2) as arguments.
MLA (Multiply Accumulate) instruction multiplicates two first operands (R3 and R1), adds third operand (R2) to product

and places result into zeroth operand (R0), via which, by standard, values are returned from functions.
Multiplication and addition at once4 (Fusedmultiply–add) is very useful operation, by theway, there is no such instruction

in x86, if not to count new FMA-instruction5 in SIMD.
The very first MOV R3, R0, instruction, apparently, redundant (single MLA instruction could be used here instead), com-

piler was not optimized it, since this is non-optimizing compilation.
BX instruction returns control to the address stored in the LR register and, if it is necessary, switches processormode from

thumb to ARM or vice versa. This can be necessary since, as we can see, f function is not aware, from which code it may be
called, from ARM or thumb. This, if it will be called from thumb code, BX will not only return control to the calling function,
but also will switch processor mode to thumbmode. Or not switch, if the function was called from ARM code.

7.3.2 Optimizing Keil + ARMmode

.text:00000098 f

.text:00000098 91 20 20 E0 MLA R0, R1, R0, R2

.text:0000009C 1E FF 2F E1 BX LR

And here is f function compiled by Keil compiler in full optimization mode (-O3). MOV instruction was optimized (or re-
duced) and now MLA uses all input registers and also places result right into R0, exactly where calling functionwill read it and
use.

7.3.3 Optimizing Keil + thumbmode

.text:0000005E 48 43 MULS R0, R1

.text:00000060 80 18 ADDS R0, R0, R2

.text:00000062 70 47 BX LR

MLA instruction is not available in thumbmode, so, compiler generates the code doing these two operations separately.
First MULS instructionmultiply R0 by R1 leaving result in the R1 register. Second (ADDS) instruction adds result and R2 leaving
result in the R0 register.

4wikipedia: Multiply–accumulate operation
5https://en.wikipedia.org/wiki/FMA_instruction_set

59

http://en.wikipedia.org/wiki/Multiply%E2%80%93accumulate_operation
https://en.wikipedia.org/wiki/FMA_instruction_set

CHAPTER 8. ONE MOREWORD ABOUT RESULTS RETURNING.

Chapter 8

Onemore word about results returning.

As of x86, function execution result is usually returned1 in the EAX register. If it is byte type or character (char) —then in the
lowest register EAX part —AL. If function returns float number, the FPU register ST(0) is to be used instead. In ARM, result is
usually returned in the R0 register.

By the way, what if returning value of the main() function will be declared not as int but as void?
so-called startup-code is calling main() roughly as:

push envp
push argv
push argc
call main
push eax
call exit

In other words:

exit(main(argc,argv,envp));

If you declare main() as void and nothing will be returned explicitly (by return statement), then something random, that
was stored in the EAX register at the moment of the main() finish, will come into the sole exit() function argument. Most
likely, there will be a random value, leaved from your function execution. So, exit code of programwill be pseudorandom.

I can illustrate this fact. Please notice, the main() function has void type:

#include <stdio.h>

void main()
{

printf ("Hello, world!\n");
};

Let’s compile it in Linux.
GCC 4.8.1 replaced printf() to puts() (we saw this before: 2.3.3), but that’s OK, since puts() returns number of char-

acters printed, just like printf(). Please notice that EAX is not zeroed before main() finish. This means, EAX value at the
main() finish will contain what puts() leaved there.

Listing 8.1: GCC 4.8.1
.LC0:

.string "Hello, world!"
main:

push ebp
mov ebp, esp
and esp, -16
sub esp, 16
mov DWORD PTR [esp], OFFSET FLAT:.LC0
call puts

1See also: MSDN: Return Values (C++)

60

http://msdn.microsoft.com/en-us/library/7572ztz4.aspx

CHAPTER 8. ONE MOREWORD ABOUT RESULTS RETURNING.
leave
ret

Let’ s write bash script, showing exit status:

Listing 8.2: tst.sh
#!/bin/sh
./hello_world
echo $?

And run it:

$ tst.sh
Hello, world!
14

14 is a number of characters printed.

Let’s back to the fact the returning value is leaved in the EAX register. That is why old C compilers cannot create functions
capable of returning something not fitting in one register (usually type int) but if one needs it, one should return information
via pointers passed in function arguments. Now it is possible, to return, let’s say, whole structure, but still it is not very pop-
ular. If function must return a large structure, caller must allocate it and pass pointer to it via first argument, transparently
for programmer. That is almost the same as to pass pointer in first argument manually, but compiler hide this.

Small example:

struct s
{

int a;
int b;
int c;

};

struct s get_some_values (int a)
{

struct s rt;

rt.a=a+1;
rt.b=a+2;
rt.c=a+3;

return rt;
};

. . .what we got (MSVC 2010 /Ox):

$T3853 = 8 ; size = 4
_a$ = 12 ; size = 4
?get_some_values@@YA?AUs@@H@Z PROC ; get_some_values

mov ecx, DWORD PTR _a$[esp-4]
mov eax, DWORD PTR $T3853[esp-4]
lea edx, DWORD PTR [ecx+1]
mov DWORD PTR [eax], edx
lea edx, DWORD PTR [ecx+2]
add ecx, 3
mov DWORD PTR [eax+4], edx
mov DWORD PTR [eax+8], ecx
ret 0

?get_some_values@@YA?AUs@@H@Z ENDP ; get_some_values

Macro name for internal variable passing pointer to structure is $T3853 here.
This example can be rewritten using C99 language extensions:

struct s
{

61

CHAPTER 8. ONE MOREWORD ABOUT RESULTS RETURNING.
int a;
int b;
int c;

};

struct s get_some_values (int a)
{

return (struct s){.a=a+1, .b=a+2, .c=a+3};
};

Listing 8.3: GCC 4.8.1
_get_some_values proc near

ptr_to_struct = dword ptr 4
a = dword ptr 8

mov edx, [esp+a]
mov eax, [esp+ptr_to_struct]
lea ecx, [edx+1]
mov [eax], ecx
lea ecx, [edx+2]
add edx, 3
mov [eax+4], ecx
mov [eax+8], edx
retn

_get_some_values endp

As wemay see, the function is just filling fields in the structure, allocated by caller function. So there are no performance
drawbacks.

62

CHAPTER 9. POINTERS

Chapter 9

Pointers

Pointers are o�en used to return values from function (recall scanf() case (6)). For example, when function should return
two values.

9.1 Global variables example

#include <stdio.h>

void f1 (int x, int y, int *sum, int *product)
{

*sum=x+y;
*product=x*y;

};

int sum, product;

void main()
{

f1(123, 456, &sum, &product);
printf ("sum=%d, product=%d\n", sum, product);

};

This compiling into:

Listing 9.1: Optimizing MSVC 2010 (/Ox /Ob0)
COMM _product:DWORD
COMM _sum:DWORD
$SG2803 DB ’sum=%d, product=%d’, 0aH, 00H

_x$ = 8 ; size = 4
_y$ = 12 ; size = 4
_sum$ = 16 ; size = 4
_product$ = 20 ; size = 4
_f1 PROC

mov ecx, DWORD PTR _y$[esp-4]
mov eax, DWORD PTR _x$[esp-4]
lea edx, DWORD PTR [eax+ecx]
imul eax, ecx
mov ecx, DWORD PTR _product$[esp-4]
push esi
mov esi, DWORD PTR _sum$[esp]
mov DWORD PTR [esi], edx
mov DWORD PTR [ecx], eax
pop esi
ret 0

_f1 ENDP

63

9.1. GLOBAL VARIABLES EXAMPLE CHAPTER 9. POINTERS

_main PROC
push OFFSET _product
push OFFSET _sum
push 456 ; 000001c8H
push 123 ; 0000007bH
call _f1
mov eax, DWORD PTR _product
mov ecx, DWORD PTR _sum
push eax
push ecx
push OFFSET $SG2803
call DWORD PTR __imp__printf
add esp, 28 ; 0000001cH
xor eax, eax
ret 0

_main ENDP

Let’s see this inOllyDbg: fig.9.1. At first, global variables addresses are passed intof1(). We can click “Follow in dump”on
the stack element, and we will see a place in data segment allocated for two variables. These variables are cleared, because
non-initialized data (BSS1) are cleared before execution begin. They are residing in data segment, we can be sure it is so, by
pressing Alt-M and seeing memory map: fig.9.5.

Let’s trace (F7) until execution of f1()fig.9.2. Two values are seen in the stack 456 (0x1C8) and 123 (0x7B), and two global
variables addresses as well.

Let’s trace until the end of f1(). At the window at le� we see how calculation results are appeared in the gloval variables
fig.9.3.

Now values of global variables are loaded into registers for passing into printf(): fig.9.4.

Figure 9.1: OllyDbg: global variables addresses are passing into f1()
1Block Started by Symbol

64

9.1. GLOBAL VARIABLES EXAMPLE CHAPTER 9. POINTERS

Figure 9.2: OllyDbg: f1()is started

Figure 9.3: OllyDbg: f1()finishes

65

9.2. LOCAL VARIABLES EXAMPLE CHAPTER 9. POINTERS

Figure 9.4: OllyDbg: global variables addresses are passed into printf()

Figure 9.5: OllyDbg: memory map

9.2 Local variables example

Let’s rework our example slightly:

Listing 9.2: now variables are local
void main()
{

int sum, product; // now variables are here

f1(123, 456, &sum, &product);
printf ("sum=%d, product=%d\n", sum, product);

};

f1()function code will not changed. Only main() code will:

Listing 9.3: Optimizing MSVC 2010 (/Ox /Ob0)
_product$ = -8 ; size = 4
_sum$ = -4 ; size = 4
_main PROC
; Line 10

sub esp, 8
; Line 13

66

9.2. LOCAL VARIABLES EXAMPLE CHAPTER 9. POINTERS
lea eax, DWORD PTR _product$[esp+8]
push eax
lea ecx, DWORD PTR _sum$[esp+12]
push ecx
push 456 ; 000001c8H
push 123 ; 0000007bH
call _f1

; Line 14
mov edx, DWORD PTR _product$[esp+24]
mov eax, DWORD PTR _sum$[esp+24]
push edx
push eax
push OFFSET $SG2803
call DWORD PTR __imp__printf

; Line 15
xor eax, eax
add esp, 36 ; 00000024H
ret 0

Let’s again take a look into OllyDbg. Local variable addresses in the stack are 0x35FCF4 and 0x35FCF8. We see how these
are pushed into the stack: fig.9.6.

f1()is started. Random garbage are at 0x35FCF4 and 0x35FCF8 so far fig.9.7.
f1()finished. There are 0xDB18 and 0x243 now at 0x35FCF4 and 0x35FCF8 addresses, these values are f1()function

result.

Figure 9.6: OllyDbg: addresses of local variables are pushed into the stack

67

9.3. CONCLUSION CHAPTER 9. POINTERS

Figure 9.7: OllyDbg: f1()starting

Figure 9.8: OllyDbg: f1()finished

9.3 Conclusion
f1()can return results to any place in memory, located anywhere. This is essence and usefulness of pointers.

By the way, C++ referencesworks just in the same way. Readmore about them: (33).

68

CHAPTER 10. CONDITIONAL JUMPS

Chapter 10

Conditional jumps

Now about conditional jumps.

#include <stdio.h>

void f_signed (int a, int b)
{

if (a>b)
printf ("a>b\n");

if (a==b)
printf ("a==b\n");

if (a<b)
printf ("a<b\n");

};

void f_unsigned (unsigned int a, unsigned int b)
{

if (a>b)
printf ("a>b\n");

if (a==b)
printf ("a==b\n");

if (a<b)
printf ("a<b\n");

};

int main()
{

f_signed(1, 2);
f_unsigned(1, 2);
return 0;

};

10.1 x86

10.1.1 x86 + MSVC
What we have in the f_signed() function:

Listing 10.1: Non-optimizing MSVC 2010
_a$ = 8
_b$ = 12
_f_signed PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _a$[ebp]
cmp eax, DWORD PTR _b$[ebp]

69

10.1. X86 CHAPTER 10. CONDITIONAL JUMPS
jle SHORT $LN3@f_signed
push OFFSET $SG737 ; ’a>b’
call _printf
add esp, 4

$LN3@f_signed:
mov ecx, DWORD PTR _a$[ebp]
cmp ecx, DWORD PTR _b$[ebp]
jne SHORT $LN2@f_signed
push OFFSET $SG739 ; ’a==b’
call _printf
add esp, 4

$LN2@f_signed:
mov edx, DWORD PTR _a$[ebp]
cmp edx, DWORD PTR _b$[ebp]
jge SHORT $LN4@f_signed
push OFFSET $SG741 ; ’a<b’
call _printf
add esp, 4

$LN4@f_signed:
pop ebp
ret 0

_f_signed ENDP

First instruction JLEmeans Jump if Less or Equal. In other words, if second operand is larger than first or equal, control
flow will be passed to address or label mentioned in instruction. But if this condition will not trigger (second operand less
than first), control flow will not be altered and first printf() will be called. The second check is JNE: Jump if Not Equal.
Control flow will not altered if operands are equals to each other. The third check is JGE: Jump if Greater or Equal—jump if
the first operand is larger than the second or if they are equals to each other. By the way, if all three conditional jumps are
triggered, no printf()will be called whatsoever. But, without special intervention, it is nearly impossible.

f_unsigned() function is likewise, with the exception the JBE and JAE instructions are usedhere instead of JLE and JGE,
see below about it:

Now let’s take a look to the f_unsigned() function

Listing 10.2: GCC
_a$ = 8 ; size = 4
_b$ = 12 ; size = 4
_f_unsigned PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _a$[ebp]
cmp eax, DWORD PTR _b$[ebp]
jbe SHORT $LN3@f_unsigned
push OFFSET $SG2761 ; ’a>b’
call _printf
add esp, 4

$LN3@f_unsigned:
mov ecx, DWORD PTR _a$[ebp]
cmp ecx, DWORD PTR _b$[ebp]
jne SHORT $LN2@f_unsigned
push OFFSET $SG2763 ; ’a==b’
call _printf
add esp, 4

$LN2@f_unsigned:
mov edx, DWORD PTR _a$[ebp]
cmp edx, DWORD PTR _b$[ebp]
jae SHORT $LN4@f_unsigned
push OFFSET $SG2765 ; ’a<b’
call _printf
add esp, 4

$LN4@f_unsigned:
pop ebp

70

10.1. X86 CHAPTER 10. CONDITIONAL JUMPS
ret 0

_f_unsigned ENDP

Almost the same, with exception of instructions: JBE—Jump if Below or Equal and JAE—Jump if Above or Equal. These
instructions (JA/JAE/JBE/JBE) are distinct from JG/JGE/JL/JLE in that way, they works with unsigned numbers.

See also section about signed number representations (35). So, where we see usage of JG/JL instead of JA/JBE or other-
wise, we can almost be sure about signed or unsigned type of variable.

Here is also main() function, where nothing much new to us:

Listing 10.3: main()
_main PROC

push ebp
mov ebp, esp
push 2
push 1
call _f_signed
add esp, 8
push 2
push 1
call _f_unsigned
add esp, 8
xor eax, eax
pop ebp
ret 0

_main ENDP

10.1.2 x86 + MSVC + OllyDbg

We can see how flags are set by running this example in OllyDbg. Let’s begin with f_unsigned() function, which works with
unsigned number. CMP executed thrice here, but for the same arguments, so flags will be the same each time.

First comparison results: fig.10.1. So, the flags are: C=1, P=1, A=1, Z=0, S=1, T=0, D=0, O=0. Flags are named by one charac-
ters in OllyDbg for brevity.

OllyDbg gives a hint that (JBE) jump will be triggered. Indeed, if to take a look into [14], we will read there that JBE will
trigger if CF=1 or ZF=1. Condition is true here, so jump is triggered.

The next conditional jump:fig.10.2. OllyDbg gives a hint that JNZwill trigger. Indeed, JNZwill trigger if ZF=0 (zero flag).
The third conditional jump JNB: fig.10.3. In [14] we may find that JNB will trigger if CF=0 (carry flag). It’s not true in our

case, so the third printf()will execute.

Figure 10.1: OllyDbg: f_unsigned(): first conditional jump

71

10.1. X86 CHAPTER 10. CONDITIONAL JUMPS

Figure 10.2: OllyDbg: f_unsigned(): second conditional jump

Figure 10.3: OllyDbg: f_unsigned(): third conditional jump

Nowwe can try in OllyDbg the f_signed() function working with signed values.
Flags are set in the same way: C=1, P=1, A=1, Z=0, S=1, T=0, D=0, O=0.
The first conditional jump JLEwill trigger. fig.10.4. In [14] we may find that this instruction is triggering if ZF=1 or SF ̸=OF.

SF̸=OF in our case, so jump is triggering.
The next JNZ conditional jump will trigger: it does if ZF=0 (zero flag): fig.10.5.
The third conditional jump JGEwill not trigger because it will only if SF=OF, and that is not true in our case: fig.10.6.

Figure 10.4: OllyDbg: f_unsigned(): first conditional jump

72

10.1. X86 CHAPTER 10. CONDITIONAL JUMPS

Figure 10.5: OllyDbg: f_unsigned(): second conditional jump

Figure 10.6: OllyDbg: f_unsigned(): third conditional jump

10.1.3 x86 + MSVC + Hiew
We can try patch executable file in that way, that f_unsigned() function will always print “a==b”, for any input values.

Here is how it looks in Hiew: fig.10.7.
Essentially, we’ve got three tasks:

∙ force first jump to be always triggered;

∙ force second jump to be never triggered;

∙ force third jump to be always triggered.

Thus we can point code flow into the second printf(), and it always print “a==b”.
Three instructions (or bytes) should be patched:

∙ The first jump will now be JMP, but jump o�set will be same.

∙ The second jumpmaybe triggered sometimes, but in any case itwill jump to the next instruction, because, we set jump
o�set to 0. Jump o�set is just to be added to the address of the next instruction in these instructions. So if o�set is 0,
jump will be done to the next instruction.

∙ The third jump we convert into JMP just as the first one, so it will be triggered always.

That’s what we do: fig.10.8.
If we could forget about any of these jumps, then several printf() calls may execute, but this behaviour is not we’re

need.

73

10.1. X86 CHAPTER 10. CONDITIONAL JUMPS

Figure 10.7: Hiew: f_unsigned() function

74

10.1. X86 CHAPTER 10. CONDITIONAL JUMPS

Figure 10.8: Hiew: let’s modify f_unsigned() function

10.1.4 Non-optimizing GCC
Non-optimizing GCC 4.4.1 produce almost the same code, but with puts() (2.3.3) instead of printf().

10.1.5 Optimizing GCC

Observant readermay ask, why to execute CMP somany times, if flags are same all the time? Perhaps, optimizing MSVC can’t
do this, but optimizing GCC 4.8.1 can do deep optimization:

Listing 10.4: GCC 4.8.1 f_signed()
f_signed:

mov eax, DWORD PTR [esp+8]
cmp DWORD PTR [esp+4], eax
jg .L6
je .L7
jge .L1
mov DWORD PTR [esp+4], OFFSET FLAT:.LC2 ; "a<b"
jmp puts

.L6:
mov DWORD PTR [esp+4], OFFSET FLAT:.LC0 ; "a>b"
jmp puts

.L1:
rep ret

.L7:
mov DWORD PTR [esp+4], OFFSET FLAT:.LC1 ; "a==b"
jmp puts

75

10.2. ARM CHAPTER 10. CONDITIONAL JUMPS
We also see JMP puts here instead of CALL puts / RETN. This kind of trick will be described later: 11.1.1.
Needless to say, that type of x86 code is rare. MSVC 2012, as it seems, can’t do that. On the other case, assembly language

programmers are fully aware of the fact that Jcc instructions can be stacked. So if you see it somewhere, it may be a good
probability that the code is hand-written.

f_unsigned() function is not that æsthetically short:

Listing 10.5: GCC 4.8.1 f_unsigned()
f_unsigned:

push esi
push ebx
sub esp, 20
mov esi, DWORD PTR [esp+32]
mov ebx, DWORD PTR [esp+36]
cmp esi, ebx
ja .L13
cmp esi, ebx ; instruction may be removed
je .L14

.L10:
jb .L15
add esp, 20
pop ebx
pop esi
ret

.L15:
mov DWORD PTR [esp+32], OFFSET FLAT:.LC2 ; "a<b"
add esp, 20
pop ebx
pop esi
jmp puts

.L13:
mov DWORD PTR [esp], OFFSET FLAT:.LC0 ; "a>b"
call puts
cmp esi, ebx
jne .L10

.L14:
mov DWORD PTR [esp+32], OFFSET FLAT:.LC1 ; "a==b"
add esp, 20
pop ebx
pop esi
jmp puts

So, optimization algorithms of GCC 4.8.1 are probably not always perfect yet.

10.2 ARM

10.2.1 Optimizing Keil + ARMmode

Listing 10.6: Optimizing Keil + ARMmode
.text:000000B8 EXPORT f_signed
.text:000000B8 f_signed ; CODE XREF: main+C
.text:000000B8 70 40 2D E9 STMFD SP!, {R4-R6,LR}
.text:000000BC 01 40 A0 E1 MOV R4, R1
.text:000000C0 04 00 50 E1 CMP R0, R4
.text:000000C4 00 50 A0 E1 MOV R5, R0
.text:000000C8 1A 0E 8F C2 ADRGT R0, aAB ; "a>b\n"
.text:000000CC A1 18 00 CB BLGT __2printf
.text:000000D0 04 00 55 E1 CMP R5, R4
.text:000000D4 67 0F 8F 02 ADREQ R0, aAB_0 ; "a==b\n"
.text:000000D8 9E 18 00 0B BLEQ __2printf
.text:000000DC 04 00 55 E1 CMP R5, R4

76

10.2. ARM CHAPTER 10. CONDITIONAL JUMPS
.text:000000E0 70 80 BD A8 LDMGEFD SP!, {R4-R6,PC}
.text:000000E4 70 40 BD E8 LDMFD SP!, {R4-R6,LR}
.text:000000E8 19 0E 8F E2 ADR R0, aAB_1 ; "a<b\n"
.text:000000EC 99 18 00 EA B __2printf
.text:000000EC ; End of function f_signed

A lot of instructions in ARMmode can be executed only when specific flags are set. E.g. this is o�en used while numbers
comparing.

For instance, ADD instruction is ADDAL internally in fact, where AL meaning Always, i.e., execute always. Predicates are
encoded in 4 high bits of 32-bit ARM instructions (condition field). B instruction of unconditional jump is in fact conditional
and encoded just like any other conditional jumps, but has AL in the condition field, and what it means, executing always,
ignoring flags.

ADRGT instructions works just like ADR but will execute only in the case when previous CMP instruction, while comparing
two numbers, found one number greater than another (Greater Than).

The next BLGT instruction behaves exactly as BL and will be triggered only if result of comparison was the same (Greater
Than). ADRGTwrites a pointer to the string “a>b\n”, into R0 and BLGT calls printf(). Consequently, these instructions with
-GT su�ix, will be executed only in the case when value in the R0 (𝑎 is there) was bigger than value in the R4 (𝑏 is there).

Then we see ADREQ and BLEQ instructions. They behave just like ADR and BL but is to be executed only in the case when
operands were equal to each other while comparison. Another CMP is before them (since printf() call may tamper state of
flags).

Then we see LDMGEFD, this instruction works just like LDMFD1, but will be triggered only in the case when one value was
greater or equal to another while comparison (Greater or Equal).

The sense of “LDMGEFD SP!, {R4-R6,PC}” instruction is that is like function epilogue, but it will be triggered only if
𝑎 >= 𝑏, only then function execution will be finished. But if it is not true, i.e., 𝑎 < 𝑏, then control flow come to next “LDMFD
SP!, {R4-R6,LR}” instruction, this is one more function epilogue, this instruction restores R4-R6 registers state, but also
LR instead of PC, thus, it does not returns from function. Last two instructions calls printf() with the string «a<b\n» as
sole argument. Unconditional jump to the printf() function instead of function return, is what we already examined in
«printf()with several arguments» section, here (5.3.2).

f_unsigned is likewise, but ADRHI, BLHI, and LDMCSFD instructions are used there, these predicates (HI = Unsigned
higher, CS = Carry Set (greater than or equal)) are analogical to those examined before, but serving for unsigned values.

There is not much new in the main() function for us:

Listing 10.7: main()
.text:00000128 EXPORT main
.text:00000128 main
.text:00000128 10 40 2D E9 STMFD SP!, {R4,LR}
.text:0000012C 02 10 A0 E3 MOV R1, #2
.text:00000130 01 00 A0 E3 MOV R0, #1
.text:00000134 DF FF FF EB BL f_signed
.text:00000138 02 10 A0 E3 MOV R1, #2
.text:0000013C 01 00 A0 E3 MOV R0, #1
.text:00000140 EA FF FF EB BL f_unsigned
.text:00000144 00 00 A0 E3 MOV R0, #0
.text:00000148 10 80 BD E8 LDMFD SP!, {R4,PC}
.text:00000148 ; End of function main

That’s how to get rid of conditional jumps in ARMmode.
Why it is so good? Since ARM is RISC-processor with pipeline for instructions executing. In short, pipelined processor is

not very good on jumps at all, so that is why branch predictor units are critical here. It is very good if the program has as few
jumps as possible, conditional and unconditional, so that is why, predicated instructions can help in reducing conditional
jumps count.

There is no such feature in x86, if not to count CMOVcc instruction, it is the same as MOV, but triggered only when specific
flags are set, usually set while value comparison by CMP.

10.2.2 Optimizing Keil + thumbmode

Listing 10.8: Optimizing Keil + thumbmode
.text:00000072 f_signed ; CODE XREF: main+6
.text:00000072 70 B5 PUSH {R4-R6,LR}

1Load Multiple Full Descending

77

10.2. ARM CHAPTER 10. CONDITIONAL JUMPS
.text:00000074 0C 00 MOVS R4, R1
.text:00000076 05 00 MOVS R5, R0
.text:00000078 A0 42 CMP R0, R4
.text:0000007A 02 DD BLE loc_82
.text:0000007C A4 A0 ADR R0, aAB ; "a>b\n"
.text:0000007E 06 F0 B7 F8 BL __2printf
.text:00000082
.text:00000082 loc_82 ; CODE XREF: f_signed+8
.text:00000082 A5 42 CMP R5, R4
.text:00000084 02 D1 BNE loc_8C
.text:00000086 A4 A0 ADR R0, aAB_0 ; "a==b\n"
.text:00000088 06 F0 B2 F8 BL __2printf
.text:0000008C
.text:0000008C loc_8C ; CODE XREF: f_signed+12
.text:0000008C A5 42 CMP R5, R4
.text:0000008E 02 DA BGE locret_96
.text:00000090 A3 A0 ADR R0, aAB_1 ; "a<b\n"
.text:00000092 06 F0 AD F8 BL __2printf
.text:00000096
.text:00000096 locret_96 ; CODE XREF: f_signed+1C
.text:00000096 70 BD POP {R4-R6,PC}
.text:00000096 ; End of function f_signed

Only B instructions in thumbmodemay be supplemented by condition codes, so the thumb code looks more ordinary.
BLE is usual conditional jump Less than or Equal, BNE—Not Equal, BGE—Greater than or Equal.
f_unsigned function is just likewise, but other instructions are used while dealing with unsigned values:BLS (Unsigned

lower or same) and BCS (Carry Set (Greater than or equal)).

78

CHAPTER 11. SWITCH()/CASE/DEFAULT

Chapter 11

switch()/case/default

11.1 Few number of cases

void f (int a)
{

switch (a)
{
case 0: printf ("zero\n"); break;
case 1: printf ("one\n"); break;
case 2: printf ("two\n"); break;
default: printf ("something unknown\n"); break;
};

};

11.1.1 x86
Result (MSVC 2010):

Listing 11.1: MSVC 2010
tv64 = -4 ; size = 4
_a$ = 8 ; size = 4
_f PROC

push ebp
mov ebp, esp
push ecx
mov eax, DWORD PTR _a$[ebp]
mov DWORD PTR tv64[ebp], eax
cmp DWORD PTR tv64[ebp], 0
je SHORT $LN4@f
cmp DWORD PTR tv64[ebp], 1
je SHORT $LN3@f
cmp DWORD PTR tv64[ebp], 2
je SHORT $LN2@f
jmp SHORT $LN1@f

$LN4@f:
push OFFSET $SG739 ; ’zero’, 0aH, 00H
call _printf
add esp, 4
jmp SHORT $LN7@f

$LN3@f:
push OFFSET $SG741 ; ’one’, 0aH, 00H
call _printf
add esp, 4
jmp SHORT $LN7@f

$LN2@f:
push OFFSET $SG743 ; ’two’, 0aH, 00H

79

11.1. FEW NUMBER OF CASES CHAPTER 11. SWITCH()/CASE/DEFAULT
call _printf
add esp, 4
jmp SHORT $LN7@f

$LN1@f:
push OFFSET $SG745 ; ’something unknown’, 0aH, 00H
call _printf
add esp, 4

$LN7@f:
mov esp, ebp
pop ebp
ret 0

_f ENDP

Out function with a few cases in switch(), in fact, is analogous to this construction:

void f (int a)
{

if (a==0)
printf ("zero\n");

else if (a==1)
printf ("one\n");

else if (a==2)
printf ("two\n");

else
printf ("something unknown\n");

};

When few cases in switch(), and we see such code, it is impossible to say with certainty, was it switch() in source code, or
just pack of if(). This means, switch() is syntactic sugar for large number of nested checks constructed using if().

Nothing especially new to us in generated code, with the exception the compiler moving input variable a to temporary
local variable tv64.

If to compile the same in GCC 4.4.1, we’ll get almost the same, even with maximal optimization turned on (-O3 option).
Now let’s turn on optimization in MSVC (/Ox): cl 1.c /Fa1.asm /Ox

Listing 11.2: MSVC
_a$ = 8 ; size = 4
_f PROC

mov eax, DWORD PTR _a$[esp-4]
sub eax, 0
je SHORT $LN4@f
sub eax, 1
je SHORT $LN3@f
sub eax, 1
je SHORT $LN2@f
mov DWORD PTR _a$[esp-4], OFFSET $SG791 ; ’something unknown’, 0aH, 00H
jmp _printf

$LN2@f:
mov DWORD PTR _a$[esp-4], OFFSET $SG789 ; ’two’, 0aH, 00H
jmp _printf

$LN3@f:
mov DWORD PTR _a$[esp-4], OFFSET $SG787 ; ’one’, 0aH, 00H
jmp _printf

$LN4@f:
mov DWORD PTR _a$[esp-4], OFFSET $SG785 ; ’zero’, 0aH, 00H
jmp _printf

_f ENDP

Here we can see even dirty hacks.
First: the value of the a variable is placed into EAX and 0 subtracted from it. Sounds absurdly, but it may needs to check

if 0was in the EAX register before? If yes, flag ZFwill be set (this also means that subtracting from 0 is 0) and first conditional
jump JE (Jump if Equal or synonym JZ—Jump if Zero) will be triggered and control flow passed to the $LN4@f label, where
’zero’message is begin printed. If first jumpwas not triggered, 1 subtracted from the input value and if at some stage 0will
be resulted, corresponding jump will be triggered.

80

11.1. FEW NUMBER OF CASES CHAPTER 11. SWITCH()/CASE/DEFAULT
And if no jump triggered at all, control flow passed to the printf()with argument ’something unknown’.
Second: we see unusual thing for us: string pointer is placed into the a variable, and then printf() is called not via

CALL, but via JMP. This could be explained simply. Caller pushing to stack a value and calling our function via CALL. CALL
itself pushing returning address to stack and do unconditional jump to our function address. Our function at any point of
execution (since it do not contain any instruction moving stack pointer) has the following stack layout:

∙ ESP—pointing to RA

∙ ESP+4—pointing to the a variable

On the other side, when we need to call printf() here, we need exactly the same stack layout, except of first printf()
argument pointing to string. And that is what our code does.

It replaces function’s first argument to di�erent and jumping to the printf(), as if not our function f()was called firstly,
but immediately printf(). printf() printing a string to stdout and then execute RET instruction, which POPping RA from
stack and control flow is returned not to f() but to the f()’s callee, escaping f().

All this is possible since printf() is called right at the end of the f() function in any case. In someway, it is all similar to
the longjmp()1 function. And of course, it is all done for the sake of speed.

Similar case with ARM compiler described in “printf()with several arguments”, section, here (5.3.2).

11.1.2 ARM: Optimizing Keil + ARMmode

.text:0000014C f1

.text:0000014C 00 00 50 E3 CMP R0, #0

.text:00000150 13 0E 8F 02 ADREQ R0, aZero ; "zero\n"

.text:00000154 05 00 00 0A BEQ loc_170

.text:00000158 01 00 50 E3 CMP R0, #1

.text:0000015C 4B 0F 8F 02 ADREQ R0, aOne ; "one\n"

.text:00000160 02 00 00 0A BEQ loc_170

.text:00000164 02 00 50 E3 CMP R0, #2

.text:00000168 4A 0F 8F 12 ADRNE R0, aSomethingUnkno ; "something unknown\n"

.text:0000016C 4E 0F 8F 02 ADREQ R0, aTwo ; "two\n"

.text:00000170

.text:00000170 loc_170 ; CODE XREF: f1+8

.text:00000170 ; f1+14

.text:00000170 78 18 00 EA B __2printf

Again, by investigating this code, we cannot say, was it switch() in the original source code, or pack of if() statements.
Anyway, we see here predicated instructions again (like ADREQ (Equal)) which will be triggered only in𝑅0 = 0 case, and

the, address of the «zero\n» string will be loaded into the R0. The next instruction BEQ will redirect control flow to loc_170,
if 𝑅0 = 0. By the way, astute reader may ask, will BEQ triggered right since ADREQ before it is already filled the R0 register
with another value. Yes, it will since BEQ checking flags set by CMP instruction, and ADREQ not modifying flags at all.

By the way, there is -S su�ix for some instructions in ARM, indicating the instruction will set the flags according to the
result, and without it —the flags will not be touched. For example ADD unlike ADDS will add two numbers, but flags will not
be touched. Such instructions are convenient to use between CMP where flags are set and, e.g. conditional jumps, where
flags are used.

Other instructions are already familiar to us. There is only one call to printf(), at the end, andwe already examined this
trick here (5.3.2). There are three paths to printf()at the end.

Also pay attention to what is going on if 𝑎 = 2 and if 𝑎 is not in range of constants it is comparing against. “CMP R0,
#2” instruction is needed here to know, if 𝑎 = 2 or not. If it is not true, then ADRNEwill load pointer to the string «something
unknown \n» into R0 since 𝑎was already checked before to be equal to 0 or 1, so we can be assured the 𝑎 variable is not equal
to these numbers at this point. And if𝑅0 = 2, a pointer to string «two\n»will be loaded by ADREQ into R0.

11.1.3 ARM: Optimizing Keil + thumbmode

.text:000000D4 f1

.text:000000D4 10 B5 PUSH {R4,LR}

.text:000000D6 00 28 CMP R0, #0

.text:000000D8 05 D0 BEQ zero_case

.text:000000DA 01 28 CMP R0, #1

1http://en.wikipedia.org/wiki/Setjmp.h

81

http://en.wikipedia.org/wiki/Setjmp.h

11.2. A LOT OF CASES CHAPTER 11. SWITCH()/CASE/DEFAULT
.text:000000DC 05 D0 BEQ one_case
.text:000000DE 02 28 CMP R0, #2
.text:000000E0 05 D0 BEQ two_case
.text:000000E2 91 A0 ADR R0, aSomethingUnkno ; "something unknown\n"
.text:000000E4 04 E0 B default_case
.text:000000E6 ;

.text:000000E6 zero_case ; CODE XREF: f1+4
.text:000000E6 95 A0 ADR R0, aZero ; "zero\n"
.text:000000E8 02 E0 B default_case
.text:000000EA ;

.text:000000EA one_case ; CODE XREF: f1+8
.text:000000EA 96 A0 ADR R0, aOne ; "one\n"
.text:000000EC 00 E0 B default_case
.text:000000EE ;

.text:000000EE two_case ; CODE XREF: f1+C
.text:000000EE 97 A0 ADR R0, aTwo ; "two\n"
.text:000000F0 default_case ; CODE XREF: f1+10
.text:000000F0 ; f1+14
.text:000000F0 06 F0 7E F8 BL __2printf
.text:000000F4 10 BD POP {R4,PC}
.text:000000F4 ; End of function f1

As I already mentioned, there is no feature of connecting predicates to majority of instructions in thumb mode, so the
thumb-code here is somewhat similar to the easily understandable x86 CISC-code

11.2 A lot of cases

If switch() statement contain a lot of case’s, it is not very convenient for compiler to emit too large code with a lot JE/JNE
instructions.

void f (int a)
{

switch (a)
{
case 0: printf ("zero\n"); break;
case 1: printf ("one\n"); break;
case 2: printf ("two\n"); break;
case 3: printf ("three\n"); break;
case 4: printf ("four\n"); break;
default: printf ("something unknown\n"); break;
};

};

11.2.1 x86

We got (MSVC 2010):

Listing 11.3: MSVC 2010
tv64 = -4 ; size = 4
_a$ = 8 ; size = 4
_f PROC

push ebp
mov ebp, esp
push ecx
mov eax, DWORD PTR _a$[ebp]
mov DWORD PTR tv64[ebp], eax
cmp DWORD PTR tv64[ebp], 4

82

11.2. A LOT OF CASES CHAPTER 11. SWITCH()/CASE/DEFAULT
ja SHORT $LN1@f
mov ecx, DWORD PTR tv64[ebp]
jmp DWORD PTR $LN11@f[ecx*4]

$LN6@f:
push OFFSET $SG739 ; ’zero’, 0aH, 00H
call _printf
add esp, 4
jmp SHORT $LN9@f

$LN5@f:
push OFFSET $SG741 ; ’one’, 0aH, 00H
call _printf
add esp, 4
jmp SHORT $LN9@f

$LN4@f:
push OFFSET $SG743 ; ’two’, 0aH, 00H
call _printf
add esp, 4
jmp SHORT $LN9@f

$LN3@f:
push OFFSET $SG745 ; ’three’, 0aH, 00H
call _printf
add esp, 4
jmp SHORT $LN9@f

$LN2@f:
push OFFSET $SG747 ; ’four’, 0aH, 00H
call _printf
add esp, 4
jmp SHORT $LN9@f

$LN1@f:
push OFFSET $SG749 ; ’something unknown’, 0aH, 00H
call _printf
add esp, 4

$LN9@f:
mov esp, ebp
pop ebp
ret 0
npad 2

$LN11@f:
DD $LN6@f ; 0
DD $LN5@f ; 1
DD $LN4@f ; 2
DD $LN3@f ; 3
DD $LN2@f ; 4

_f ENDP

OK, what we see here is: there is a set of the printf() calls with various arguments. All they has not only addresses
in process memory, but also internal symbolic labels assigned by compiler. Besides, all these labels are also places into
$LN11@f internal table.

At the function beginning, if a is greater than 4, control flow is passed to label $LN1@f, where printf() with argument
’something unknown’ is called.

And if a value is less or equals to 4, let’smultiply it by 4 and add $LN1@f table address. That is how address inside of table
is constructed, pointing exactly to the element we need. For example, let’s say a is equal to 2. 2 * 4 = 8 (all table elements
are addresses within 32-bit process that is why all elements contain 4 bytes). Address of the $LN11@f table + 8 —it will be
table element where $LN4@f label is stored. JMP fetches $LN4@f address from the table and jump to it.

This table called sometimes jumptable.
Then corresponding printf() is called with argument ’two’. Literally, jmp DWORD PTR $LN11@f[ecx*4] instruction

means jump to DWORD, which is stored at address $LN11@f + ecx * 4.
npad (61) is assembly language macro, aligning next label so that it will be stored at address aligned on a 4 byte (or 16

byte) border. This is very suitable for processor since it is able to fetch 32-bit values frommemory throughmemorybus, cache
memory, etc, in much e�ective way if it is aligned.

Let’s see what GCC 4.4.1 generates:

83

11.2. A LOT OF CASES CHAPTER 11. SWITCH()/CASE/DEFAULT
Listing 11.4: GCC 4.4.1

public f
f proc near ; CODE XREF: main+10

var_18 = dword ptr -18h
arg_0 = dword ptr 8

push ebp
mov ebp, esp
sub esp, 18h ; char *
cmp [ebp+arg_0], 4
ja short loc_8048444
mov eax, [ebp+arg_0]
shl eax, 2
mov eax, ds:off_804855C[eax]
jmp eax

loc_80483FE: ; DATA XREF: .rodata:off_804855C
mov [esp+18h+var_18], offset aZero ; "zero"
call _puts
jmp short locret_8048450

loc_804840C: ; DATA XREF: .rodata:08048560
mov [esp+18h+var_18], offset aOne ; "one"
call _puts
jmp short locret_8048450

loc_804841A: ; DATA XREF: .rodata:08048564
mov [esp+18h+var_18], offset aTwo ; "two"
call _puts
jmp short locret_8048450

loc_8048428: ; DATA XREF: .rodata:08048568
mov [esp+18h+var_18], offset aThree ; "three"
call _puts
jmp short locret_8048450

loc_8048436: ; DATA XREF: .rodata:0804856C
mov [esp+18h+var_18], offset aFour ; "four"
call _puts
jmp short locret_8048450

loc_8048444: ; CODE XREF: f+A
mov [esp+18h+var_18], offset aSomethingUnkno ; "something unknown"
call _puts

locret_8048450: ; CODE XREF: f+26
; f+34...

leave
retn

f endp

off_804855C dd offset loc_80483FE ; DATA XREF: f+12
dd offset loc_804840C
dd offset loc_804841A
dd offset loc_8048428
dd offset loc_8048436

It is almost the same, except little nuance: argument arg_0 ismultiplied by 4with by shi�ing it to le� by 2 bits (it is almost
the same asmultiplication by 4) (17.3.1). Then label address is taken from off_804855C array, address calculated and stored
into EAX, then “JMP EAX” do actual jump.

84

11.2. A LOT OF CASES CHAPTER 11. SWITCH()/CASE/DEFAULT
11.2.2 ARM: Optimizing Keil + ARMmode

00000174 f2
00000174 05 00 50 E3 CMP R0, #5 ; switch 5 cases
00000178 00 F1 8F 30 ADDCC PC, PC, R0,LSL#2 ; switch jump
0000017C 0E 00 00 EA B default_case ; jumptable 00000178 default case
00000180 ; ---
00000180
00000180 loc_180 ; CODE XREF: f2+4
00000180 03 00 00 EA B zero_case ; jumptable 00000178 case 0
00000184 ; ---
00000184
00000184 loc_184 ; CODE XREF: f2+4
00000184 04 00 00 EA B one_case ; jumptable 00000178 case 1
00000188 ; ---
00000188
00000188 loc_188 ; CODE XREF: f2+4
00000188 05 00 00 EA B two_case ; jumptable 00000178 case 2
0000018C ; ---
0000018C
0000018C loc_18C ; CODE XREF: f2+4
0000018C 06 00 00 EA B three_case ; jumptable 00000178 case 3
00000190 ; ---
00000190
00000190 loc_190 ; CODE XREF: f2+4
00000190 07 00 00 EA B four_case ; jumptable 00000178 case 4
00000194 ; ---
00000194
00000194 zero_case ; CODE XREF: f2+4
00000194 ; f2:loc_180
00000194 EC 00 8F E2 ADR R0, aZero ; jumptable 00000178 case 0
00000198 06 00 00 EA B loc_1B8
0000019C ; ---
0000019C
0000019C one_case ; CODE XREF: f2+4
0000019C ; f2:loc_184
0000019C EC 00 8F E2 ADR R0, aOne ; jumptable 00000178 case 1
000001A0 04 00 00 EA B loc_1B8
000001A4 ; ---
000001A4
000001A4 two_case ; CODE XREF: f2+4
000001A4 ; f2:loc_188
000001A4 01 0C 8F E2 ADR R0, aTwo ; jumptable 00000178 case 2
000001A8 02 00 00 EA B loc_1B8
000001AC ; ---
000001AC
000001AC three_case ; CODE XREF: f2+4
000001AC ; f2:loc_18C
000001AC 01 0C 8F E2 ADR R0, aThree ; jumptable 00000178 case 3
000001B0 00 00 00 EA B loc_1B8
000001B4 ; ---
000001B4
000001B4 four_case ; CODE XREF: f2+4
000001B4 ; f2:loc_190
000001B4 01 0C 8F E2 ADR R0, aFour ; jumptable 00000178 case 4
000001B8
000001B8 loc_1B8 ; CODE XREF: f2+24
000001B8 ; f2+2C
000001B8 66 18 00 EA B __2printf
000001BC ; ---
000001BC

85

11.2. A LOT OF CASES CHAPTER 11. SWITCH()/CASE/DEFAULT
000001BC default_case ; CODE XREF: f2+4
000001BC ; f2+8
000001BC D4 00 8F E2 ADR R0, aSomethingUnkno ; jumptable 00000178 default case
000001C0 FC FF FF EA B loc_1B8
000001C0 ; End of function f2

This code makes use of the ARM feature in which all instructions in the ARMmode has size of 4 bytes.
Let’s keep inmind themaximumvalue for 𝑎 is 4 and any greater valuemust cause «something unknown\n» string printing.
The very first “CMP R0, #5” instruction compares 𝑎 input value with 5.
The next “ADDCC PC, PC, R0,LSL#2” 2 instruction will execute only if 𝑅0 < 5 (CC=Carry clear / Less than). Conse-

quently, if ADDCCwill not trigger (it is a𝑅0 ≥ 5 case), a jump to default_caselabel will be occurred.
But if𝑅0 < 5 and ADDCCwill trigger, following events will happen:
Value in the R0 is multiplied by 4. In fact, LSL#2 at the instruction’s ending means “shi� le� by 2 bits”. But as we will see

later (17.3.1) in “Shi�s” section, shi� le� by 2 bits is just equivalently to multiplying by 4.
Then, 𝑅0 * 4 value we got, is added to current value in the PC, thus jumping to one of B (Branch) instructions located

below.
At the moment of ADDCC execution, value in the PC is 8 bytes ahead (0x180) than address at which ADDCC instruction is

located (0x178), or, in other words, 2 instructions ahead.
This is howARMprocessor pipelineworks: when ADDCC instruction is executed, the processor at themoment is beginning

to process instruction a�er the next one, so that is why PC pointing there.
If 𝑎 = 0, then nothing will be added to the value in the PC, and actual value in the PC is to be written into the PC (which

is 8 bytes ahead) and jump to the label loc_180will happen, this is 8 bytes ahead of the point where ADDCC instruction is.
In case of 𝑎 = 1, then 𝑃𝐶 + 8+ 𝑎 * 4 = 𝑃𝐶 + 8+ 1 * 4 = 𝑃𝐶 + 16 = 0𝑥184will be written to the PC, this is the address

of the loc_184 label.
With every 1 added to 𝑎, resulting PC increasing by 4. 4 is also instruction length in ARMmode and also, length of each B

instruction length, there are 5 of them in row.
Each of these five B instructions passing control further, where something is going on, what was programmed in switch().

Pointer loading to corresponding string occurring there, etc.

11.2.3 ARM: Optimizing Keil + thumbmode

000000F6 EXPORT f2
000000F6 f2
000000F6 10 B5 PUSH {R4,LR}
000000F8 03 00 MOVS R3, R0
000000FA 06 F0 69 F8 BL __ARM_common_switch8_thumb ; switch 6 cases
000000FA ;

000000FE 05 DCB 5
000000FF 04 06 08 0A 0C 10 DCB 4, 6, 8, 0xA, 0xC, 0x10 ; jump table for switch

statement
00000105 00 ALIGN 2
00000106
00000106 zero_case ; CODE XREF: f2+4
00000106 8D A0 ADR R0, aZero ; jumptable 000000FA case 0
00000108 06 E0 B loc_118
0000010A ;

0000010A
0000010A one_case ; CODE XREF: f2+4
0000010A 8E A0 ADR R0, aOne ; jumptable 000000FA case 1
0000010C 04 E0 B loc_118
0000010E ;

0000010E
0000010E two_case ; CODE XREF: f2+4
0000010E 8F A0 ADR R0, aTwo ; jumptable 000000FA case 2
00000110 02 E0 B loc_118

2ADD—addition

86

11.2. A LOT OF CASES CHAPTER 11. SWITCH()/CASE/DEFAULT
00000112 ;

00000112
00000112 three_case ; CODE XREF: f2+4
00000112 90 A0 ADR R0, aThree ; jumptable 000000FA case 3
00000114 00 E0 B loc_118
00000116 ;

00000116
00000116 four_case ; CODE XREF: f2+4
00000116 91 A0 ADR R0, aFour ; jumptable 000000FA case 4
00000118
00000118 loc_118 ; CODE XREF: f2+12
00000118 ; f2+16
00000118 06 F0 6A F8 BL __2printf
0000011C 10 BD POP {R4,PC}
0000011E ;

0000011E
0000011E default_case ; CODE XREF: f2+4
0000011E 82 A0 ADR R0, aSomethingUnkno ; jumptable 000000FA default

case
00000120 FA E7 B loc_118

000061D0 EXPORT __ARM_common_switch8_thumb
000061D0 __ARM_common_switch8_thumb ; CODE XREF: example6_f2+4
000061D0 78 47 BX PC
000061D0 ;

000061D2 00 00 ALIGN 4
000061D2 ; End of function __ARM_common_switch8_thumb
000061D2
000061D4 CODE32
000061D4
000061D4 ; =============== S U B R O U T I N E

=======================================
000061D4
000061D4
000061D4 __32__ARM_common_switch8_thumb ; CODE XREF:

__ARM_common_switch8_thumb
000061D4 01 C0 5E E5 LDRB R12, [LR,#-1]
000061D8 0C 00 53 E1 CMP R3, R12
000061DC 0C 30 DE 27 LDRCSB R3, [LR,R12]
000061E0 03 30 DE 37 LDRCCB R3, [LR,R3]
000061E4 83 C0 8E E0 ADD R12, LR, R3,LSL#1
000061E8 1C FF 2F E1 BX R12
000061E8 ; End of function __32__ARM_common_switch8_thumb

One cannot be sure all instructions in thumb and thumb-2 modes will have same size. It is even can be said that in these
modes instructions has variable length, just like in x86.

So there is a special table added, containing information about how much cases are there, not including default-case,
and o�set, for each, each encoding a label, to which control must be passed in corresponding case.

A special function here present in order to deal with the table and pass control, named
__ARM_common_switch8_thumb. It is beginning with “BX PC” instruction, which function is to switch processor to ARM-
mode. Then you may see the function for table processing. It is too complex for describing it here now, so I will omit elabo-
rations.

But it is interesting to note the function uses LR register as a pointer to the table. Indeed, a�er this function calling, LR
will contain address a�er
“BL __ARM_common_switch8_thumb” instruction, and the table is beginning right there.

87

11.2. A LOT OF CASES CHAPTER 11. SWITCH()/CASE/DEFAULT
It is also worth noting the code is generated as a separate function in order to reuse it, in similar places, in similar cases,

for switch() processing, so compiler will not generate same code at each point.
IDAsuccessfullyperceived it asa service functionand table, automatically, andaddedcommentaries to labels likejumptable

000000FA case 0.

88

CHAPTER 12. LOOPS

Chapter 12

Loops

12.1 x86
There is a special LOOP instruction in x86 instruction set, it is checking value in the ECX register and if it is not 0, do ECX decre-
ment and pass control flow to the label mentioned in the LOOP operand. Probably, this instruction is not very convenient,
so, I did not ever see any modern compiler emit it automatically. So, if you see the instruction somewhere in code, it is most
likely this is manually written piece of assembly code.

By the way, as home exercise, you could try to explain, why this instruction is not very convenient.
In C/C++ loops are constructed using for(), while(), do/while() statements.
Let’s start with for().
This statement defines loop initialization (set loop counter to initial value), loop condition (is counter is bigger than a

limit?), what is done at each iteration (increment/decrement) and of course loop body.

for (initialization; condition; at each iteration)
{

loop_body;
}

So, generated code will be consisted of four parts too.
Let’s start with simple example:

#include <stdio.h>

void f(int i)
{

printf ("f(%d)\n", i);
};

int main()
{

int i;

for (i=2; i<10; i++)
f(i);

return 0;
};

Result (MSVC 2010):

Listing 12.1: MSVC 2010
_i$ = -4
_main PROC

push ebp
mov ebp, esp
push ecx
mov DWORD PTR _i$[ebp], 2 ; loop initialization
jmp SHORT $LN3@main

89

12.1. X86 CHAPTER 12. LOOPS
$LN2@main:

mov eax, DWORD PTR _i$[ebp] ; here is what we do after each iteration:
add eax, 1 ; add 1 to i value
mov DWORD PTR _i$[ebp], eax

$LN3@main:
cmp DWORD PTR _i$[ebp], 10 ; this condition is checked *before* each iteration
jge SHORT $LN1@main ; if i is biggest or equals to 10, let’s finish loop
mov ecx, DWORD PTR _i$[ebp] ; loop body: call f(i)
push ecx
call _f
add esp, 4
jmp SHORT $LN2@main ; jump to loop begin

$LN1@main: ; loop end
xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP

Nothing very special, as we see.
GCC 4.4.1 emits almost the same code, with one subtle di�erence:

Listing 12.2: GCC 4.4.1
main proc near ; DATA XREF: _start+17

var_20 = dword ptr -20h
var_4 = dword ptr -4

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 20h
mov [esp+20h+var_4], 2 ; i initializing
jmp short loc_8048476

loc_8048465:
mov eax, [esp+20h+var_4]
mov [esp+20h+var_20], eax
call f
add [esp+20h+var_4], 1 ; i increment

loc_8048476:
cmp [esp+20h+var_4], 9
jle short loc_8048465 ; if i<=9, continue loop
mov eax, 0
leave
retn

main endp

Now let’s see what we will get if optimization is turned on (/Ox):

Listing 12.3: Optimizing MSVC
_main PROC

push esi
mov esi, 2

$LL3@main:
push esi
call _f
inc esi
add esp, 4
cmp esi, 10 ; 0000000aH
jl SHORT $LL3@main

90

12.1. X86 CHAPTER 12. LOOPS
xor eax, eax
pop esi
ret 0

_main ENDP

What is going on here is: space for the i variable is not allocated in local stack anymore, but even individual register: the
ESI. This is possible in such small functions where not so many local variables are present.

One very important property is the f() function must not change the value in the ESI. Our compiler is sure here. And if
compiler decided to use the ESI register in f() too, its valuewould be saved then at the f() function’s prologue and restored
at the f() function’s epilogue. Almost like in our listing: please note PUSH ESI/POP ESI at the function begin and end.

Let’s try GCC 4.4.1 with maximal optimization turned on (-O3 option):

Listing 12.4: Optimizing GCC 4.4.1
main proc near

var_10 = dword ptr -10h

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 10h
mov [esp+10h+var_10], 2
call f
mov [esp+10h+var_10], 3
call f
mov [esp+10h+var_10], 4
call f
mov [esp+10h+var_10], 5
call f
mov [esp+10h+var_10], 6
call f
mov [esp+10h+var_10], 7
call f
mov [esp+10h+var_10], 8
call f
mov [esp+10h+var_10], 9
call f
xor eax, eax
leave
retn

main endp

Huh, GCC just unwind our loop.
Loopunwindinghasadvantage in thesecaseswhen there isnot somuch iterationsandwecouldeconomysomeexecution

speed by removing all loop supporting instructions. On the other side, resulting code is obviously larger.
OK, let’s increase maximal value of the i variable to 100 and try again. GCC resulting:

Listing 12.5: GCC
public main

main proc near

var_20 = dword ptr -20h

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
push ebx
mov ebx, 2 ; i=2
sub esp, 1Ch
nop ; aligning label loc_80484D0 (loop body begin) by 16-byte border

loc_80484D0:

91

12.1. X86 CHAPTER 12. LOOPS
mov [esp+20h+var_20], ebx ; pass i as first argument to f()
add ebx, 1 ; i++
call f
cmp ebx, 64h ; i==100?
jnz short loc_80484D0 ; if not, continue
add esp, 1Ch
xor eax, eax ; return 0
pop ebx
mov esp, ebp
pop ebp
retn

main endp

It is quite similar to what MSVC 2010 with optimization (/Ox) produce. With the exception the EBX register will be fixed
to the i variable. GCC is sure this register will not be modified inside of the f() function, and if it will, it will be saved at the
function prologue and restored at epilogue, just like here in the main() function.

12.1.1 OllyDbg
Let’s compile our example in MSVC 2010 with /Ox and /Ob0 options and load it into OllyDbg.

It seems, OllyDbg is able to detect simple loops and show them in square brackets, for convenience: fig.12.1.
By tracing (F8 (step over)) we see how ESI incrementing. Here, for instance, ESI =i=6: fig.12.2.
9 is a last loop value. That’s why JLwill not trigger a�er increment, and function finishing: fig.12.3.

Figure 12.1: OllyDbg: main() begin

Figure 12.2: OllyDbg: loop body just executed with i=6

92

12.1. X86 CHAPTER 12. LOOPS

Figure 12.3: OllyDbg: ESI =10, loop end

12.1.2 tracer

As wemight see, it is not very convenient to trace in debugger manually. That’s one of the reasons I write tracer for myself.
I open compiled example in IDA, I find the address of the instruction PUSH ESI (passing sole argument into f()) and this

is 0x401026 for me and I run tracer:

tracer.exe -l:loops_2.exe bpx=loops_2.exe!0x00401026

BPX just sets breakpoint at address and then will print registers state.
In the tracer.log I see a�er running:

PID=12884|New process loops_2.exe
(0) loops_2.exe!0x401026
EAX=0x00a328c8 EBX=0x00000000 ECX=0x6f0f4714 EDX=0x00000000
ESI=0x00000002 EDI=0x00333378 EBP=0x0024fbfc ESP=0x0024fbb8
EIP=0x00331026
FLAGS=PF ZF IF
(0) loops_2.exe!0x401026
EAX=0x00000005 EBX=0x00000000 ECX=0x6f0a5617 EDX=0x000ee188
ESI=0x00000003 EDI=0x00333378 EBP=0x0024fbfc ESP=0x0024fbb8
EIP=0x00331026
FLAGS=CF PF AF SF IF
(0) loops_2.exe!0x401026
EAX=0x00000005 EBX=0x00000000 ECX=0x6f0a5617 EDX=0x000ee188
ESI=0x00000004 EDI=0x00333378 EBP=0x0024fbfc ESP=0x0024fbb8
EIP=0x00331026
FLAGS=CF PF AF SF IF
(0) loops_2.exe!0x401026
EAX=0x00000005 EBX=0x00000000 ECX=0x6f0a5617 EDX=0x000ee188
ESI=0x00000005 EDI=0x00333378 EBP=0x0024fbfc ESP=0x0024fbb8
EIP=0x00331026
FLAGS=CF AF SF IF
(0) loops_2.exe!0x401026
EAX=0x00000005 EBX=0x00000000 ECX=0x6f0a5617 EDX=0x000ee188
ESI=0x00000006 EDI=0x00333378 EBP=0x0024fbfc ESP=0x0024fbb8
EIP=0x00331026
FLAGS=CF PF AF SF IF
(0) loops_2.exe!0x401026
EAX=0x00000005 EBX=0x00000000 ECX=0x6f0a5617 EDX=0x000ee188
ESI=0x00000007 EDI=0x00333378 EBP=0x0024fbfc ESP=0x0024fbb8
EIP=0x00331026
FLAGS=CF AF SF IF
(0) loops_2.exe!0x401026
EAX=0x00000005 EBX=0x00000000 ECX=0x6f0a5617 EDX=0x000ee188
ESI=0x00000008 EDI=0x00333378 EBP=0x0024fbfc ESP=0x0024fbb8
EIP=0x00331026
FLAGS=CF AF SF IF

93

12.1. X86 CHAPTER 12. LOOPS
(0) loops_2.exe!0x401026
EAX=0x00000005 EBX=0x00000000 ECX=0x6f0a5617 EDX=0x000ee188
ESI=0x00000009 EDI=0x00333378 EBP=0x0024fbfc ESP=0x0024fbb8
EIP=0x00331026
FLAGS=CF PF AF SF IF
PID=12884|Process loops_2.exe exited. ExitCode=0 (0x0)

We see how value of ESI register is changed from 2 to 9.
Even more than that, tracer can collect register values on all addresses within function. This is called trace there. Each

instruction is being traced, all interesting register values are noticed and collected. .idc-script for IDA is then generated. So,
in the IDA I’ve learned that main() function address is 0x00401020 and I run:

tracer.exe -l:loops_2.exe bpf=loops_2.exe!0x00401020,trace:cc

BPFmean set breakpoint on function.
As a result, I have got loops_2.exe.idc and loops_2.exe_clear.idc scripts. I’m loading loops_2.exe.idc into IDA

and I see: fig.12.4
We see that ESI can be from 2 to 9 at the begin of loop body, but from 3 to 0xA (10) a�er increment. We can also see that

main() is finishing with 0 in EAX.
tracer also generates loops_2.exe.txt, containing information about how many times each instruction was executed

and register values:

Listing 12.6: loops_2.exe.txt
0x401020 (.text+0x20), e= 1 [PUSH ESI] ESI=1
0x401021 (.text+0x21), e= 1 [MOV ESI, 2]
0x401026 (.text+0x26), e= 8 [PUSH ESI] ESI=2..9
0x401027 (.text+0x27), e= 8 [CALL 8D1000h] tracing nested maximum level (1) reached,

skipping this CALL 8D1000h=0x8d1000
0x40102c (.text+0x2c), e= 8 [INC ESI] ESI=2..9
0x40102d (.text+0x2d), e= 8 [ADD ESP, 4] ESP=0x38fcbc
0x401030 (.text+0x30), e= 8 [CMP ESI, 0Ah] ESI=3..0xa
0x401033 (.text+0x33), e= 8 [JL 8D1026h] SF=false,true OF=false
0x401035 (.text+0x35), e= 1 [XOR EAX, EAX]
0x401037 (.text+0x37), e= 1 [POP ESI]
0x401038 (.text+0x38), e= 1 [RETN] EAX=0

grep can be used here.

Figure 12.4: IDA with .idc-script loaded

94

12.2. ARM CHAPTER 12. LOOPS
12.2 ARM

12.2.1 Non-optimizing Keil + ARMmode

main
STMFD SP!, {R4,LR}
MOV R4, #2
B loc_368

; ---

loc_35C ; CODE XREF: main+1C
MOV R0, R4
BL f
ADD R4, R4, #1

loc_368 ; CODE XREF: main+8
CMP R4, #0xA
BLT loc_35C
MOV R0, #0
LDMFD SP!, {R4,PC}

Iteration counter i is to be stored in the R4 register.
“MOV R4, #2” instruction just initializing i.
“MOV R0, R4”and“BL f” instructions are compose loopbody, the first instructionpreparing argument forf() function

and the second is calling it.
“ADD R4, R4, #1” instruction is just adding 1 to the i variable during each iteration.
“CMP R4, #0xA” comparing iwith 0xA (10). Next instruction BLT (Branch Less Than) will jump if i is less than 10.
Otherwise, 0will be written into R0 (since our function returns 0) and function execution ended.

12.2.2 Optimizing Keil + thumbmode

_main
PUSH {R4,LR}
MOVS R4, #2

loc_132 ; CODE XREF: _main+E
MOVS R0, R4
BL example7_f
ADDS R4, R4, #1
CMP R4, #0xA
BLT loc_132
MOVS R0, #0
POP {R4,PC}

Practically, the same.

12.2.3 Optimizing Xcode (LLVM) + thumb-2 mode

_main
PUSH {R4,R7,LR}
MOVW R4, #0x1124 ; "%d\n"
MOVS R1, #2
MOVT.W R4, #0
ADD R7, SP, #4
ADD R4, PC
MOV R0, R4
BLX _printf
MOV R0, R4
MOVS R1, #3
BLX _printf

95

12.3. ONE MORE THING CHAPTER 12. LOOPS
MOV R0, R4
MOVS R1, #4
BLX _printf
MOV R0, R4
MOVS R1, #5
BLX _printf
MOV R0, R4
MOVS R1, #6
BLX _printf
MOV R0, R4
MOVS R1, #7
BLX _printf
MOV R0, R4
MOVS R1, #8
BLX _printf
MOV R0, R4
MOVS R1, #9
BLX _printf
MOVS R0, #0
POP {R4,R7,PC}

In fact, this was in my f() function:

void f(int i)
{

// do something here
printf ("%d\n", i);

};

So, LLVM not just unrolled the loop, but also represented my very simple function f() as inlined, and inserted its body
8 times instead of loop. This is possible when function is so primitive (like mine) and when it is called not many times (like
here).

12.3 Onemore thing

On the code generatedwe can see: a�er iinitialization, loop bodywill not be executed, but i condition checked first, and only
a�er loop body is to be executed. And that is correct. Because, if loop condition is not met at the beginning, loop bodymust
not be executed. For example, this is possible in the following case:

for (i=0; i<total_entries_to_process; i++)
loop_body;

If total_entries_to_process equals to 0, loop body must not be executed whatsoever. So that is why condition checked
before loop body execution.

However, optimizing compiler may swap condition check and loop body, if it sure that the situation described here is not
possible (like in case of our very simple example and Keil, Xcode (LLVM), MSVC in optimization mode).

96

CHAPTER 13. STRLEN()

Chapter 13

strlen()

Now let’s talk about loops onemore time. O�en, strlen() function1 is implemented using while() statement. Here is how
it is done in MSVC standard libraries:

int strlen (const char * str)
{

const char *eos = str;

while(*eos++) ;

return(eos - str - 1);
}

13.1 x86

Let’s compile:

_eos$ = -4 ; size = 4
_str$ = 8 ; size = 4
_strlen PROC

push ebp
mov ebp, esp
push ecx
mov eax, DWORD PTR _str$[ebp] ; place pointer to string from str
mov DWORD PTR _eos$[ebp], eax ; place it to local varuable eos

$LN2@strlen_:
mov ecx, DWORD PTR _eos$[ebp] ; ECX=eos

; take 8-bit byte from address in ECX and place it as 32-bit value to EDX with sign extension

movsx edx, BYTE PTR [ecx]
mov eax, DWORD PTR _eos$[ebp] ; EAX=eos
add eax, 1 ; increment EAX
mov DWORD PTR _eos$[ebp], eax ; place EAX back to eos
test edx, edx ; EDX is zero?
je SHORT $LN1@strlen_ ; yes, then finish loop
jmp SHORT $LN2@strlen_ ; continue loop

$LN1@strlen_:

; here we calculate the difference between two pointers

mov eax, DWORD PTR _eos$[ebp]
sub eax, DWORD PTR _str$[ebp]
sub eax, 1 ; subtract 1 and return result
mov esp, ebp

1counting characters in string in C language

97

13.1. X86 CHAPTER 13. STRLEN()
pop ebp
ret 0

strlen ENDP

Two new instructions here: MOVSX (13.1) and TEST.
About first: MOVSX (13.1) is intended to take byte from a point in memory and store value in a 32-bit register. MOVSX (13.1)

meaning MOV with Sign-Extent. Rest bits starting at 8th till 31th MOVSX (13.1) will set to 1 if source byte in memory hasminus
sign or to 0 if plus.

And here is why all this.
C/C++ standard defines char type as signed. If we have two values, one is char and another is int, (int is signed too), and

if first value contain−2 (it is coded as 0xFE) and we just copying this byte into int container, there will be 0x000000FE, and
this, from the point of signed int view is 254, but not−2. In signed int,−2 is coded as 0xFFFFFFFE. So if we need to transfer
0xFE value from variable of char type to int, we need to identify its sign and extend it. That is what MOVSX (13.1) does.

See also in section “Signed number representations” (35).
I’mnot sure if the compiler needs to store char variable in theEDX, it could take8-bit register part (let’s sayDL). Apparently,

compiler’s register allocator works like that.
Thenwe see TEST EDX, EDX. About TEST instruction, readmore in section about bit fields (17). But here, this instruction

just checking value in the EDX, if it is equals to 0.
Let’s try GCC 4.4.1:

public strlen
strlen proc near

eos = dword ptr -4
arg_0 = dword ptr 8

push ebp
mov ebp, esp
sub esp, 10h
mov eax, [ebp+arg_0]
mov [ebp+eos], eax

loc_80483F0:
mov eax, [ebp+eos]
movzx eax, byte ptr [eax]
test al, al
setnz al
add [ebp+eos], 1
test al, al
jnz short loc_80483F0
mov edx, [ebp+eos]
mov eax, [ebp+arg_0]
mov ecx, edx
sub ecx, eax
mov eax, ecx
sub eax, 1
leave
retn

strlen endp

The result almost the same as MSVC did, but here we see MOVZX instead of MOVSX (13.1). MOVZX means MOV with Zero-
Extent. This instruction copies 8-bit or 16-bit value into 32-bit register and sets the rest bits to 0. In fact, this instruction is
convenient only since it enable us to replace two instructions at once: xor eax, eax / mov al, [...].

On the other hand, it is obvious to us the compiler could produce the code: mov al, byte ptr [eax] / test al,
al —it is almost the same, however, the highest EAX register bits will contain random noise. But let’s think it is compiler’s
drawback—it cannot producemore understandable code. Strictly speaking, compiler is not obliged to emit understandable
(to humans) code at all.

Next new instruction for us isSETNZ. Here, if AL contain not zero, test al, alwill set 0 to theZF flag, butSETNZ, if ZF==0
(NZ means not zero) will set 1 to the AL. Speaking in natural language, if AL is not zero, let’s jump to loc_80483F0. Compiler
emitted slightly redundant code, but let’s not forget the optimization is turned o�.

Now let’s compile all this in MSVC 2010, with optimization turned on (/Ox):

98

13.1. X86 CHAPTER 13. STRLEN()
_str$ = 8 ; size = 4
_strlen PROC

mov ecx, DWORD PTR _str$[esp-4] ; ECX -> pointer to the string
mov eax, ecx ; move to EAX

$LL2@strlen_:
mov dl, BYTE PTR [eax] ; DL = *EAX
inc eax ; EAX++
test dl, dl ; DL==0?
jne SHORT $LL2@strlen_ ; no, continue loop
sub eax, ecx ; calculate pointers difference
dec eax ; decrement EAX
ret 0

strlen ENDP

Now it is all simpler. But it is needless to say the compiler could use registers such e�iciently only in small functions with
small number of local variables.

INC/DEC—are increment/decrement instruction, in other words: add 1 to variable or subtract.
Let’s check GCC 4.4.1 with optimization turned on (-O3 key):

public strlen
strlen proc near

arg_0 = dword ptr 8

push ebp
mov ebp, esp
mov ecx, [ebp+arg_0]
mov eax, ecx

loc_8048418:
movzx edx, byte ptr [eax]
add eax, 1
test dl, dl
jnz short loc_8048418
not ecx
add eax, ecx
pop ebp
retn

strlen endp

Here GCC is almost the same as MSVC, except of MOVZX presence.
However, MOVZX could be replaced here to mov dl, byte ptr [eax].
Probably, it is simpler for GCC compiler’s code generator to remember thewhole register is allocated for char variable and

it can be sure the highest bits will not contain any noise at any point.
A�er, we also see new instruction NOT. This instruction inverts all bits in operand. It can be said, it is synonym to the XOR

ECX, 0ffffffffh instruction. NOT and following ADD calculating pointer di�erence and subtracting 1. At the beginning ECX,
where pointer to str is stored, inverted and 1 is subtracted from it.

See also: “Signed number representations” (35).
In other words, at the end of function, just a�er loop body, these operations are executed:

ecx=str;
eax=eos;
ecx=(-ecx)-1;
eax=eax+ecx
return eax

. . .and this is e�ectively equivalent to:

ecx=str;
eax=eos;
eax=eax-ecx;
eax=eax-1;
return eax

99

13.2. ARM CHAPTER 13. STRLEN()
WhyGCCdecided itwouldbebetter? I cannotbe sure. But I’msure theboth variants are e�ectively equivalent in e�iciency

sense.

13.2 ARM

13.2.1 Non-optimizing Xcode (LLVM) + ARMmode

Listing 13.1: Non-optimizing Xcode (LLVM) + ARMmode
_strlen

eos = -8
str = -4

SUB SP, SP, #8 ; allocate 8 bytes for local variables
STR R0, [SP,#8+str]
LDR R0, [SP,#8+str]
STR R0, [SP,#8+eos]

loc_2CB8 ; CODE XREF: _strlen+28
LDR R0, [SP,#8+eos]
ADD R1, R0, #1
STR R1, [SP,#8+eos]
LDRSB R0, [R0]
CMP R0, #0
BEQ loc_2CD4
B loc_2CB8

; --

loc_2CD4 ; CODE XREF: _strlen+24
LDR R0, [SP,#8+eos]
LDR R1, [SP,#8+str]
SUB R0, R0, R1 ; R0=eos-str
SUB R0, R0, #1 ; R0=R0-1
ADD SP, SP, #8 ; deallocate 8 bytes for local variables
BX LR

Non-optimizing LLVM generates toomuch code, however, here we can see how function works with local variables in the
stack. There are only two local variables in our function, eos and str.

In this listing, generated by IDA, I renamed var_8 and var_4 into eos and strmanually.
So, first instructions are just saves input value in str and eos.
Loop body is beginning at loc_2CB8 label.
First three instruction in loop body (LDR, ADD, STR) loads eos value into R0, then value is incremented and it is saved back

into eos local variable located in the stack.
The next “LDRSB R0, [R0]” (Load Register Signed Byte) instruction loading byte frommemory at R0 address and sign-

extends it to 32-bit. This is similar to MOVSX (13.1) instruction in x86. The compiler treating this byte as signed since char type
in C standard is signed. I already wrote about it (13.1) in this section, but related to x86.

It is shouldbenoted, it is impossible inARMtouse8-bit part or 16-bit part of 32-bit register separately of thewhole register,
as it is in x86. Apparently, it is because x86 has a huge history of compatibility with its ancestors like 16-bit 8086 and even
8-bit 8080, but ARM was developed from scratch as 32-bit RISC-processor. Consequently, in order to process separate bytes
in ARM, one have to use 32-bit registers anyway.

So, LDRSB loads symbol from string into R0, one by one. Next CMP and BEQ instructions checks, if loaded symbol is 0. If
not 0, control passing to loop body begin. And if 0, loop is finishing.

At the end of function, a di�erence between eos and str is calculated, 1 is also subtracting, and resulting value is returned
via R0.

N.B. Registers was not saved in this function. That’s because by ARM calling convention, R0-R3 registers are “scratch
registers”, they are intended for arguments passing, its values may not be restored upon function exit since calling function
will not use them anymore. Consequently, theymay be used for anything wewant. Other registers are not used here, so that
is why we have nothing to save on the stack. Thus, control may be returned back to calling function by simple jump (BX), to
address in the LR register.

100

13.2. ARM CHAPTER 13. STRLEN()
13.2.2 Optimizing Xcode (LLVM) + thumbmode

Listing 13.2: Optimizing Xcode (LLVM) + thumbmode
_strlen

MOV R1, R0

loc_2DF6 ; CODE XREF: _strlen+8
LDRB.W R2, [R1],#1
CMP R2, #0
BNE loc_2DF6
MVNS R0, R0
ADD R0, R1
BX LR

As optimizing LLVM concludes, space on the stack for eos and str may not be allocated, and these variables may always
be stored right in registers. Before loop body beginning, str will always be in R0, and eos—in R1.

“LDRB.W R2, [R1],#1” instruction loads byte frommemory at the address R1 into R2, sign-extending it to 32-bit value,
but not only that. #1 at the instruction’s end calling “Post-indexed addressing”, this means, 1 is to be added to the R1 a�er
byte load. That’s convenient when accessing arrays.

There is no such addressingmode in x86, but it is present in some other processors, even on PDP-11. There is a legend the
pre-increment, post-increment, pre-decrement and post-decrement modes in PDP-11, were “guilty” in appearance such C
language (which developed on PDP-11) constructs as *ptr++, *++ptr, *ptr--, *--ptr. By the way, this is one of hard tomemorize
C feature. This is how it is:

C term ARM term C statement how it works
Post-increment post-indexed addressing *ptr++ use *ptr value,

then increment ptr pointer
Post-decrement post-indexed addressing *ptr-- use *ptr value,

then decrement ptr pointer
Pre-increment pre-indexed addressing *++ptr increment ptr pointer,

then use *ptr value
Pre-decrement post-indexed addressing *--ptr decrement ptr pointer,

then use *ptr value

Dennis Ritchie (one of C language creators) mentioned that it is, probably, was invented by Ken Thompson (another C
creator) because this processor feature was present in PDP-7 [28] [29]. Thus, C language compilers may use it, if it is present
in target processor.

Then one may spot CMP and BNE2 in loop body, these instructions continue operation until 0will be met in string.
MVNS3 (inverting all bits, NOT in x86 analogue) instructions and ADD computes 𝑒𝑜𝑠−𝑠𝑡𝑟−1. In fact, these two instructions

computes𝑅0 = 𝑠𝑡𝑟 + 𝑒𝑜𝑠, which is e�ectively equivalent to what was in source code, and why it is so, I already described
here (13.1).

Apparently, LLVM, just like GCC, concludes this code will be shorter, or faster.

13.2.3 Optimizing Keil + ARMmode

Listing 13.3: Optimizing Keil + ARMmode
_strlen

MOV R1, R0

loc_2C8 ; CODE XREF: _strlen+14
LDRB R2, [R1],#1
CMP R2, #0
SUBEQ R0, R1, R0
SUBEQ R0, R0, #1
BNE loc_2C8
BX LR

2(PowerPC, ARM) Branch if Not Equal
3MoVe Not

101

13.2. ARM CHAPTER 13. STRLEN()
Almost the same what we saw before, with the exception the 𝑠𝑡𝑟 − 𝑒𝑜𝑠 − 1 expression may be computed not at the

function’s end, but right in loop body. -EQsu�ix, as wemay recall, means the instruction will be executed only if operands in
executed before CMPwere equal to each other. Thus, if 0will be in the R0 register, both SUBEQ instructions are to be executed
and result is leaving in the R0 register.

102

CHAPTER 14. DIVISION BY 9

Chapter 14

Division by 9

Very simple function:

int f(int a)
{

return a/9;
};

14.1 x86
. . . is compiled in a very predictable way:

Listing 14.1: MSVC
_a$ = 8 ; size = 4
_f PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _a$[ebp]
cdq ; sign extend EAX to EDX:EAX
mov ecx, 9
idiv ecx
pop ebp
ret 0

_f ENDP

IDIV divides 64-bit number stored in the EDX:EAX register pair by value in the ECX register. As a result, EAX will contain
quotient1, and EDX —remainder. Result is returning from the f() function in the EAX register, so, the value is not moved
anymore a�er division operation, it is in right place already. Since IDIV requires value in the EDX:EAX register pair, CDQ
instruction (before IDIV) extending value in the EAX to 64-bit value taking value sign into account, just as MOVSX (13.1) does.
If we turn optimization on (/Ox), we got:

Listing 14.2: Optimizing MSVC
_a$ = 8 ; size = 4
_f PROC

mov ecx, DWORD PTR _a$[esp-4]
mov eax, 954437177 ; 38e38e39H
imul ecx
sar edx, 1
mov eax, edx
shr eax, 31 ; 0000001fH
add eax, edx
ret 0

_f ENDP

1result of division

103

14.2. ARM CHAPTER 14. DIVISION BY 9
This is —division by multiplication. Multiplication operation works much faster. And it is possible to use the trick 2 to

produce a code which is e�ectively equivalent and faster.
This is also called “strength reduction” in compiler optimization.
GCC 4.4.1 even without optimization turned on, generates almost the same code as MSVC with optimization turned on:

Listing 14.3: Non-optimizing GCC 4.4.1
public f

f proc near

arg_0 = dword ptr 8

push ebp
mov ebp, esp
mov ecx, [ebp+arg_0]
mov edx, 954437177 ; 38E38E39h
mov eax, ecx
imul edx
sar edx, 1
mov eax, ecx
sar eax, 1Fh
mov ecx, edx
sub ecx, eax
mov eax, ecx
pop ebp
retn

f endp

14.2 ARM

ARM processor, just like in any other ”pure” RISC-processors, lacks division instruction It lacks also a single instruction for
multiplication by 32-bit constant. By taking advantage of the one clever trick (or hack), it is possible to do division using only
three instructions: addition, subtraction and bit shi�s (17).

Here is an example of 32-bit number division by 10 from [20, 3.3 Division by a Constant]. Quotient and remainder on
output.

; takes argument in a1
; returns quotient in a1, remainder in a2
; cycles could be saved if only divide or remainder is required

SUB a2, a1, #10 ; keep (x-10) for later
SUB a1, a1, a1, lsr #2
ADD a1, a1, a1, lsr #4
ADD a1, a1, a1, lsr #8
ADD a1, a1, a1, lsr #16
MOV a1, a1, lsr #3
ADD a3, a1, a1, asl #2
SUBS a2, a2, a3, asl #1 ; calc (x-10) - (x/10)*10
ADDPL a1, a1, #1 ; fix-up quotient
ADDMI a2, a2, #10 ; fix-up remainder
MOV pc, lr

14.2.1 Optimizing Xcode (LLVM) + ARMmode

__text:00002C58 39 1E 08 E3 E3 18 43 E3 MOV R1, 0x38E38E39
__text:00002C60 10 F1 50 E7 SMMUL R0, R0, R1
__text:00002C64 C0 10 A0 E1 MOV R1, R0,ASR#1
__text:00002C68 A0 0F 81 E0 ADD R0, R1, R0,LSR#31
__text:00002C6C 1E FF 2F E1 BX LR

2Readmore about division by multiplication in [35, 10-3]

104

14.3. HOW IT WORKS CHAPTER 14. DIVISION BY 9
This code is mostly the same to what was generated by optimizing MSVC and GCC. Apparently, LLVM use the same algo-

rithm for constants generating.
Observant readermay ask, how MOVwrites 32-bit value in register, while this is not possible in ARMmode. it is impossible

indeed, but, aswe see, there are 8 bytes per instruction instead of standard 4, in fact, there are two instructions. First instruc-
tion loading 0x8E39 value into low 16 bit of register and second instruction is in fact MOVT, it loading 0x383E into high 16-bit
of register. IDA is aware of such sequences, and for the sake of compactness, reduced it to one single “pseudo-instruction”.

SMMUL (SignedMost SignificantWordMultiply) instructionmultiply numbers treating themas signednumbers, and leaving
high 32-bit part of result in the R0 register, dropping low 32-bit part of result.

“MOV R1, R0,ASR#1” instruction is arithmetic shi� right by one bit.
“ADD R0, R1, R0,LSR#31” is𝑅0 = 𝑅1 +𝑅0 >> 31
Asamatter of fact, there is no separate shi�ing instruction inARMmode. Instead, an instructions like (MOV,ADD,SUB,RSB)3

may be supplied by option, is the second operand must be shi�ed, if yes, by what value and how. ASRmeaning Arithmetic
Shi� Right, LSR—Logican Shi� Right.

14.2.2 Optimizing Xcode (LLVM) + thumb-2 mode

MOV R1, 0x38E38E39
SMMUL.W R0, R0, R1
ASRS R1, R0, #1
ADD.W R0, R1, R0,LSR#31
BX LR

There are separate instructions for shi�ing in thumbmode, and one of them is used here—ASRS (arithmetic shi� right).

14.2.3 Non-optimizing Xcode (LLVM) and Keil
Non-optimizing LLVM does not generate code we saw before in this section, but inserts a call to library function ___divsi3
instead.

What about Keil: it inserts call to library function __aeabi_idivmod in all cases.

14.3 How it works

That’s how division can be replaced by multiplication and division by 2𝑛 numbers:

𝑟𝑒𝑠𝑢𝑙𝑡 =
𝑖𝑛𝑝𝑢𝑡

𝑑𝑖𝑣𝑖𝑠𝑜𝑟
=

𝑖𝑛𝑝𝑢𝑡 · 2𝑛

𝑑𝑖𝑣𝑖𝑠𝑜𝑟

2𝑛
=

𝑖𝑛𝑝𝑢𝑡 ·𝑀
2𝑛

Where𝑀 ismagic-coe�icient.
That’s how𝑀 can be computed:

𝑀 =
2𝑛

𝑑𝑖𝑣𝑖𝑠𝑜𝑟

So these code snippets are usually have this form:

𝑟𝑒𝑠𝑢𝑙𝑡 =
𝑖𝑛𝑝𝑢𝑡 ·𝑀

2𝑛

𝑛 can be arbitrary number, it may be 32 (then high part of multiplication result is taked from EDX or RDX register), or 31
(then high part of multiplication result is shi�ed right additionally).

𝑛 is choosen in order to minimize error.
When doing signed division, sign of multiplication result also added to the output result.
Take a look at the di�erence:

int f3_32_signed(int a)
{

return a/3;
};

unsigned int f3_32_unsigned(unsigned int a)
{

return a/3;

3These instructions are also called “data processing instructions”

105

14.4. GETTING DIVISOR CHAPTER 14. DIVISION BY 9
};

In the unsigned version of function,magic-coe�icient is 0xAAAAAAAB andmultiplication result is divided by 233.
In the signed version of function, magic-coe�icient is 0x55555556 and multiplication result is divided by 232. Sign also

taken from multiplication result: high 32 bits of result is shi�ed by 31 (leaving sign in least significant bit of EAX). 1 is added
to the final result if sign is negative.

Listing 14.4: MSVC 2012 /Ox
_f3_32_unsigned PROC

mov eax, -1431655765 ; aaaaaaabH
mul DWORD PTR _a$[esp-4] ; unsigned multiply
shr edx, 1
mov eax, edx
ret 0

_f3_32_unsigned ENDP

_f3_32_signed PROC
mov eax, 1431655766 ; 55555556H
imul DWORD PTR _a$[esp-4] ; signed multiply
mov eax, edx
shr eax, 31 ; 0000001fH
add eax, edx ; add 1 if sign is negative
ret 0

_f3_32_signed ENDP

Readmore about it in [35, 10-3].

14.4 Getting divisor

14.4.1 Variant #1

O�en, the code has a form of:

mov eax, MAGICAL CONSTANT
imul input value
sar edx, SHIFTING COEFFICIENT ; signed division by 2^x using arithmetic shift right
mov eax, edx
shr eax, 31
add eax, edx

Let’s denote 32-bitmagic-coe�icient as𝑀 , shi�ing coe�icient by𝐶 and divisor by𝐷.
The divisor we need to get is:

𝐷 =
232+𝐶

𝑀

For example:

Listing 14.5: Optimizing MSVC 2012
mov eax, 2021161081 ; 78787879H
imul DWORD PTR _a$[esp-4]
sar edx, 3
mov eax, edx
shr eax, 31 ; 0000001fH
add eax, edx

This is:

𝐷 =
232+3

2021161081

Numbers are larger than 32-bit ones, so I use WolframMathematica for convenience:

106

14.4. GETTING DIVISOR CHAPTER 14. DIVISION BY 9
Listing 14.6: WolframMathematica

In[1]:=N[2^(32+3)/2021161081]
Out[1]:=17.

So the divisor from the code I used for example is 17.
As of x64 division, things are the same, but 264 should be used instead of 232:

uint64_t f1234(uint64_t a)
{

return a/1234;
};

Listing 14.7: MSVC 2012 x64 /Ox
f1234 PROC

mov rax, 7653754429286296943 ; 6a37991a23aead6fH
mul rcx
shr rdx, 9
mov rax, rdx
ret 0

f1234 ENDP

Listing 14.8: WolframMathematica
In[1]:=N[2^(64+9)/16^^6a37991a23aead6f]
Out[1]:=1234.

14.4.2 Variant #2
A variant with omitted arithmetic shi� is also exist:

mov eax, 55555556h ; 1431655766
imul ecx
mov eax, edx
shr eax, 1Fh

Themethod of getting divisor is simplified:

𝐷 =
232

𝑀

As of my example, this is:

𝐷 =
232

1431655766

And again I use WolframMathematica:

Listing 14.9: WolframMathematica
In[1]:=N[2^32/16^^55555556]
Out[1]:=3.

The divisor is 3.

107

CHAPTER 15. WORKINGWITH FPU

Chapter 15

Working with FPU

FPU1—is a device within main CPU specially designed to deal with floating point numbers.

It was called coprocessor in past. It stay aside of the main CPU and looks like programmable calculator in some way and.

It is worth to study stack machines2 before FPU studying, or learn Forth language basics3.

It is interesting to know that in past (before 80486 CPU) coprocessor was a separate chip and it was not always settled
onmotherboard. It was possible to buy it separately and install 4.

Starting at 80486 DX CPU, FPU is always present in it.

FWAIT instruction may remind us that fact—it switches CPU to waiting state, so it can wait until FPU finishes its work. An-
other rudiment is the fact that FPU-instruction opcodes are started with so called “escape”-opcodes (D8..DF), i.e., opcodes
passed into FPU.

FPU has a stack capable to hold 8 80-bit registers, each register can hold a number in IEEE 7545format.

C/C++ language o�er at least two floating number types, float (single-precision6, 32 bits) 7 and double (double-precision8,
64 bits).

GCC also supports long double type (extended precision9, 80 bit) but MSVC is not.

float type requires the same number of bits as int type in 32-bit environment, but number representation is completely dif-
ferent.

Number consisting of sign, significand (also called fraction) and exponent.

Function having float or double among argument list is getting the value via stack. If function returns float or double value, it
leaves the value in the ST(0) register —at top of FPU stack.

15.1 Simple example
Let’s consider simple example:

double f (double a, double b)
{

return a/3.14 + b*4.1;

1Floating-point unit
2http://en.wikipedia.org/wiki/Stack_machine
3http://en.wikipedia.org/wiki/Forth_(programming_language)
4For example, John Carmack used fixed-point arithmetic values in his Doom video game, stored in 32-bit GPR registers (16 bit for intergral part and

another 16 bit for fractional part), so the Doom could work on 32-bit computer without FPU, i.e., 80386 and 80486 SX
5http://en.wikipedia.org/wiki/IEEE_754-2008
6http://en.wikipedia.org/wiki/Single-precision_floating-point_format
7single precision float numbers format is also addressed in theWorking with the float type as with a structure (18.6.2) section
8http://en.wikipedia.org/wiki/Double-precision_floating-point_format
9http://en.wikipedia.org/wiki/Extended_precision

108

http://en.wikipedia.org/wiki/Stack_machine
http://en.wikipedia.org/wiki/Forth_(programming_language)
http://en.wikipedia.org/wiki/IEEE_754-2008
http://en.wikipedia.org/wiki/Single-precision_floating-point_format
http://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/wiki/Extended_precision

15.1. SIMPLE EXAMPLE CHAPTER 15. WORKINGWITH FPU
};

15.1.1 x86

Compile it in MSVC 2010:

Listing 15.1: MSVC 2010
CONST SEGMENT
__real@4010666666666666 DQ 04010666666666666r ; 4.1
CONST ENDS
CONST SEGMENT
__real@40091eb851eb851f DQ 040091eb851eb851fr ; 3.14
CONST ENDS
_TEXT SEGMENT
_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_f PROC

push ebp
mov ebp, esp
fld QWORD PTR _a$[ebp]

; current stack state: ST(0) = _a

fdiv QWORD PTR __real@40091eb851eb851f

; current stack state: ST(0) = result of _a divided by 3.13

fld QWORD PTR _b$[ebp]

; current stack state: ST(0) = _b; ST(1) = result of _a divided by 3.13

fmul QWORD PTR __real@4010666666666666

; current stack state: ST(0) = result of _b * 4.1; ST(1) = result of _a divided by 3.13

faddp ST(1), ST(0)

; current stack state: ST(0) = result of addition

pop ebp
ret 0

_f ENDP

FLD takes 8 bytes from stack and load the number into the ST(0) register, automatically converting it into internal 80-bit
format extended precision).

FDIV divides value in the ST(0) register by number storing at address __real@40091eb851eb851f—3.14 value is coded
there. Assembler syntax missing floating point numbers, so, what we see here is hexadecimal representation of 3.14 number
in 64-bit IEEE 754 encoded.

A�er FDIV execution, ST(0)will hold quotient10.
By the way, there is also FDIVP instruction, which divides ST(1) by ST(0), popping both these values from stack and

then pushing result. If you know Forth language11, you will quickly understand that this is stack machine12.
Next FLD instruction pushing b value into stack.
A�er that, quotient is placed to the ST(1) register, and the ST(0)will hold b value.
Next FMUL instruction do multiplication: b from the ST(0) register by value at __real@4010666666666666 (4.1 number

is there) and leaves result in the ST(0) register.
Very last FADDP instruction adds two values at top of stack, storing result to the ST(1) register and then popping value

at ST(1), hereby leaving result at top of stack in the ST(0).
10result of division
11http://en.wikipedia.org/wiki/Forth_(programming_language)
12http://en.wikipedia.org/wiki/Stack_machine

109

http://en.wikipedia.org/wiki/Forth_(programming_language)
http://en.wikipedia.org/wiki/Stack_machine

15.1. SIMPLE EXAMPLE CHAPTER 15. WORKINGWITH FPU
The functionmust return result in theST(0) register, so, a�er FADDP there are noanyother instructions except of function

epilogue.
GCC 4.4.1 (with -O3 option) emits the same code, however, slightly di�erent:

Listing 15.2: Optimizing GCC 4.4.1
public f

f proc near

arg_0 = qword ptr 8
arg_8 = qword ptr 10h

push ebp
fld ds:dbl_8048608 ; 3.14

; stack state now: ST(0) = 3.13

mov ebp, esp
fdivr [ebp+arg_0]

; stack state now: ST(0) = result of division

fld ds:dbl_8048610 ; 4.1

; stack state now: ST(0) = 4.1, ST(1) = result of division

fmul [ebp+arg_8]

; stack state now: ST(0) = result of multiplication, ST(1) = result of division

pop ebp
faddp st(1), st

; stack state now: ST(0) = result of addition

retn
f endp

The di�erence is that, first of all, 3.14 is pushed to stack (into ST(0)), and then value in arg_0 is divided by value in the
ST(0) register.

FDIVR meaning Reverse Divide —to divide with divisor and dividend swapped with each other. There is no likewise in-
struction for multiplication since multiplication is commutative operation, so we have just FMULwithout its -R counterpart.

FADDP adding two values but also popping one value from stack. A�er that operation, ST(0) holds the sum.
This fragment of disassembled code was produced using IDA which named the ST(0) register as ST for short.

15.1.2 ARM: Optimizing Xcode (LLVM) + ARMmode
Until ARM has floating standardized point support, several processor manufacturers may add their own instructions exten-
sions. Then, VFP (Vector Floating Point) was standardized.

One important di�erence from x86, there youworking with FPU-stack, but here, in ARM, there are no any stack, youwork
just with registers.

f
VLDR D16, =3.14
VMOV D17, R0, R1 ; load a
VMOV D18, R2, R3 ; load b
VDIV.F64 D16, D17, D16 ; a/3.14
VLDR D17, =4.1
VMUL.F64 D17, D18, D17 ; b*4.1
VADD.F64 D16, D17, D16 ; +
VMOV R0, R1, D16
BX LR

110

15.1. SIMPLE EXAMPLE CHAPTER 15. WORKINGWITH FPU
dbl_2C98 DCFD 3.14 ; DATA XREF: f
dbl_2CA0 DCFD 4.1 ; DATA XREF: f+10

So, we see here new registers used, with D prefix. These are 64-bit registers, there are 32 of them, and these can be used
both for floating-point numbers (double) but also for SIMD (it is called NEON here in ARM).

There are also 32 32-bit S-registers, they are intended to be used for single precision floating pointer numbers (float).
It is easy to remember: D-registers are intended for double precision numbers, while S-registers —for single precision

numbers.
Both (3.14 and 4.1) constants are stored in memory in IEEE 754 form.
VLDR and VMOV instructions, as it can be easily deduced, are analogous to the LDR and MOV instructions, but they works

with D-registers. It should be noted that these instructions, just like D-registers, are intended not only for floating point
numbers, but can be also used for SIMD (NEON) operations and this will also be revealed soon.

Arguments are passed to function in common way, via R-registers, however, each number having double precision has
size 64-bits, so, for passing each, two R-registers are needed.

“VMOV D17, R0, R1” at the very beginning, composing two 32-bit values from R0 and R1 into one 64-bit value and saves
it to D17.

“VMOV R0, R1, D16” is inverse operation, what was in D16 leaving in two R0 and R1 registers, since double-precision
number, needing 64 bits for storage, is returning in the R0 and R1 registers pair.

VDIV, VMUL and VADD, are instruction for floating point numbers processing, computing, quotient13, product14and sum15,
respectively.

The code for thumb-2 is same.

15.1.3 ARM: Optimizing Keil + thumbmode

f
PUSH {R3-R7,LR}
MOVS R7, R2
MOVS R4, R3
MOVS R5, R0
MOVS R6, R1
LDR R2, =0x66666666
LDR R3, =0x40106666
MOVS R0, R7
MOVS R1, R4
BL __aeabi_dmul
MOVS R7, R0
MOVS R4, R1
LDR R2, =0x51EB851F
LDR R3, =0x40091EB8
MOVS R0, R5
MOVS R1, R6
BL __aeabi_ddiv
MOVS R2, R7
MOVS R3, R4
BL __aeabi_dadd
POP {R3-R7,PC}

dword_364 DCD 0x66666666 ; DATA XREF: f+A
dword_368 DCD 0x40106666 ; DATA XREF: f+C
dword_36C DCD 0x51EB851F ; DATA XREF: f+1A
dword_370 DCD 0x40091EB8 ; DATA XREF: f+1C

Keil generates for processors not supporting FPU or NEON. So, double-precision floating numbers are passed via generic
R-registers, and insteadofFPU-instructions, service library functionsarecalled (like__aeabi_dmul,__aeabi_ddiv,__aeabi_dadd
)whichemulatesmultiplication, divisionandaddition floating-pointnumbers. Of course, that is slower thanFPU-coprocessor,
but it is better than nothing.

By the way, similar FPU-emulating libraries were very popular in x86 world when coprocessors were rare and expensive,
and were installed only on expensive computers.

13result of division
14result of multiplication
15result of addition

111

15.2. PASSING FLOATING POINT NUMBER VIA ARGUMENTS CHAPTER 15. WORKINGWITH FPU
FPU-coprocessor emulating called so� float orarmel in ARMworld,while using coprocessor’s FPU-instructions calledhard

float or armhf.
For example, Linux kernel for Raspberry Pi is compiled in two variants. In so� float case, arguments will be passed via

R-registers, and in hard float case —via D-registers.
And that is what do not let you use e.g. armhf-libraries from armel-code or vice versa, so that is why all code in Linux

distribution must be compiled according to the chosen calling convention.

15.2 Passing floating point number via arguments

#include <math.h>
#include <stdio.h>

int main ()
{

printf ("32.01 ^ 1.54 = %lf\n", pow (32.01,1.54));

return 0;
}

15.2.1 x86
Let’s see what we got in (MSVC 2010):

Listing 15.3: MSVC 2010
CONST SEGMENT
__real@40400147ae147ae1 DQ 040400147ae147ae1r ; 32.01
__real@3ff8a3d70a3d70a4 DQ 03ff8a3d70a3d70a4r ; 1.54
CONST ENDS

_main PROC
push ebp
mov ebp, esp
sub esp, 8 ; allocate place for the first variable
fld QWORD PTR __real@3ff8a3d70a3d70a4
fstp QWORD PTR [esp]
sub esp, 8 ; allocate place for the second variable
fld QWORD PTR __real@40400147ae147ae1
fstp QWORD PTR [esp]
call _pow
add esp, 8 ; "return back" place of one variable.

; in local stack here 8 bytes still reserved for us.
; result now in ST(0)

fstp QWORD PTR [esp] ; move result from ST(0) to local stack for printf()
push OFFSET $SG2651
call _printf
add esp, 12
xor eax, eax
pop ebp
ret 0

_main ENDP

FLD and FSTP are moving variables from/to data segment to FPU stack. pow()16 taking both values from FPU-stack and
returns result in the ST(0) register. printf() takes 8 bytes from local stack and interpret them as double type variable.

16standard C function, raises a number to the given power

112

15.2. PASSING FLOATING POINT NUMBER VIA ARGUMENTS CHAPTER 15. WORKINGWITH FPU
15.2.2 ARM + Non-optimizing Xcode (LLVM) + thumb-2 mode

_main

var_C = -0xC

PUSH {R7,LR}
MOV R7, SP
SUB SP, SP, #4
VLDR D16, =32.01
VMOV R0, R1, D16
VLDR D16, =1.54
VMOV R2, R3, D16
BLX _pow
VMOV D16, R0, R1
MOV R0, 0xFC1 ; "32.01 ^ 1.54 = %lf\n"
ADD R0, PC
VMOV R1, R2, D16
BLX _printf
MOVS R1, 0
STR R0, [SP,#0xC+var_C]
MOV R0, R1
ADD SP, SP, #4
POP {R7,PC}

dbl_2F90 DCFD 32.01 ; DATA XREF: _main+6
dbl_2F98 DCFD 1.54 ; DATA XREF: _main+E

As Iwrotebefore, 64-bit floatingpointernumberspassing inR-registerspairs. This is code is redundant for a little (certainly
because optimization is turned o�), because, it is actually possible to load values into R-registers straightforwardly without
touching D-registers.

So, as we see, _pow function receiving first argument in R0 and R1, and the second one in R2 and R3. Function leaves
result in R0 and R1. Result of _pow is moved into D16, then in R1 and R2 pair, fromwhere printf()will take this number.

15.2.3 ARM + Non-optimizing Keil + ARMmode

_main
STMFD SP!, {R4-R6,LR}
LDR R2, =0xA3D70A4 ; y
LDR R3, =0x3FF8A3D7
LDR R0, =0xAE147AE1 ; x
LDR R1, =0x40400147
BL pow
MOV R4, R0
MOV R2, R4
MOV R3, R1
ADR R0, a32_011_54Lf ; "32.01 ^ 1.54 = %lf\n"
BL __2printf
MOV R0, #0
LDMFD SP!, {R4-R6,PC}

y DCD 0xA3D70A4 ; DATA XREF: _main+4
dword_520 DCD 0x3FF8A3D7 ; DATA XREF: _main+8
; double x
x DCD 0xAE147AE1 ; DATA XREF: _main+C
dword_528 DCD 0x40400147 ; DATA XREF: _main+10
a32_011_54Lf DCB "32.01 ^ 1.54 = %lf",0xA,0

; DATA XREF: _main+24

D-registers are not used here, only R-register pairs are used.

113

15.3. COMPARISON EXAMPLE CHAPTER 15. WORKINGWITH FPU
15.3 Comparison example
Let’s try this:

double d_max (double a, double b)
{

if (a>b)
return a;

return b;
};

15.3.1 x86
Despite simplicity of the function, it will be harder to understand how it works.

MSVC 2010 generated:

Listing 15.4: MSVC 2010
PUBLIC _d_max
_TEXT SEGMENT
_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_d_max PROC

push ebp
mov ebp, esp
fld QWORD PTR _b$[ebp]

; current stack state: ST(0) = _b
; compare _b (ST(0)) and _a, and pop register

fcomp QWORD PTR _a$[ebp]

; stack is empty here

fnstsw ax
test ah, 5
jp SHORT $LN1@d_max

; we are here only if a>b

fld QWORD PTR _a$[ebp]
jmp SHORT $LN2@d_max

$LN1@d_max:
fld QWORD PTR _b$[ebp]

$LN2@d_max:
pop ebp
ret 0

_d_max ENDP

So, FLD loading _b into the ST(0) register.
FCOMP compares the value in the ST(0) register withwhat is in _a value and set C3/C2/C0 bits in FPU status word register.

This is 16-bit register reflecting current state of FPU.
For now C3/C2/C0 bits are set, but unfortunately, CPU before Intel P6 17 has not any conditional jumps instructions which

are checking these bits. Probably, it is a matter of history (remember: FPU was separate chip in past). Modern CPU starting
at Intel P6 has FCOMI/FCOMIP/FUCOMI/FUCOMIP instructions —which does the same, but modifies CPU flags ZF/PF/CF.

A�er bits are set, the FCOMP instruction popping one variable from stack. This is what distinguish it from FCOM, which is
just comparing values, leaving the stack at the same state.

FNSTSW copies FPU status word register to the AX. Bits C3/C2/C0 are placed at positions 14/10/8, they will be at the same
positions in the AX register and all they are placed in high part of the AX—AH.

17Intel P6 is Pentium Pro, Pentium II, etc

114

15.3. COMPARISON EXAMPLE CHAPTER 15. WORKINGWITH FPU
∙ If b>a in our example, then C3/C2/C0 bits will be set as following: 0, 0, 0.

∙ If a>b, then bits will be set: 0, 0, 1.

∙ If a=b, then bits will be set: 1, 0, 0.

A�er test ah, 5 execution, bits C3 and C1 will be set to 0, but at positions 0 and 2 (in the AH registers) C0 and C2 bits
will be leaved.

Now let’s talk about parity flag. Another notable epoch rudiment:

One common reason to test the parity flag actually has nothing to do with parity. The FPU has four
condition flags (C0 to C3), but they can not be tested directly, and must instead be first copied to the flags
register. When this happens, C0 is placed in the carry flag, C2 in the parity flag and C3 in the zero flag. The
C2 flag is set when e.g. incomparable floating point values (NaN or unsupported format) are compared with
the FUCOM instructions.18

This flag is to be set to 1 if ones number is even. And to 0 if odd.
Thus, PF flag will be set to 1 if both C0 and C2 are set to 0 or both are 1. And then following JP (jump if PF==1) will be trig-

gered. If we recall values of the C3/C2/C0 for various cases, we will see the conditional jump JPwill be triggered in two cases:
if b>a or a==b (C3 bit is already not considering here since it was cleared while execution of the test ah, 5 instruction).

It is all simple therea�er. If conditional jumpwas triggered, FLDwill load the _b value to the ST(0) register, and if it is not
triggered, the value of the _a variable will be loaded.

But it is not over yet!

15.3.2 Now let’s compile it with MSVC 2010 with optimization option /Ox

Listing 15.5: Optimizing MSVC 2010
_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_d_max PROC

fld QWORD PTR _b$[esp-4]
fld QWORD PTR _a$[esp-4]

; current stack state: ST(0) = _a, ST(1) = _b

fcom ST(1) ; compare _a and ST(1) = (_b)
fnstsw ax
test ah, 65 ; 00000041H
jne SHORT $LN5@d_max
fstp ST(1) ; copy ST(0) to ST(1) and pop register, leave (_a) on top

; current stack state: ST(0) = _a

ret 0
$LN5@d_max:

fstp ST(0) ; copy ST(0) to ST(0) and pop register, leave (_b) on top

; current stack state: ST(0) = _b

ret 0
_d_max ENDP

FCOM is distinguished fromFCOMP in that sense that it just comparing values and leaves FPUstack in the samestate. Unlike
previous example, operands here in reversed order. And that is why result of comparison in the C3/C2/C0will be di�erent:

∙ If a>b in our example, then C3/C2/C0 bits will be set as: 0, 0, 0.

∙ If b>a, then bits will be set as: 0, 0, 1.

∙ If a=b, then bits will be set as: 1, 0, 0.

115

15.3. COMPARISON EXAMPLE CHAPTER 15. WORKINGWITH FPU
It can be said, test ah, 65 instruction just leaves two bits —C3 and C0. Both will be zeroes if a>b: in that case JNE jump

will not be triggered. Then FSTP ST(1) is following —this instruction copies value in the ST(0) into operand and popping
one value from FPU stack. In other words, the instruction copies ST(0) (where _a value is now) into the ST(1). A�er that,
two values of the _a are at the top of stack now. A�er that, one value is popping. A�er that, ST(0)will contain _a and function
is finished.

Conditional jump JNE is triggered in two cases: of b>a or a==b. ST(0) into ST(0) will be copied, it is just like idle (NOP)
operation, then one value is popping from stack and top of stack (ST(0)) will contain what was in the ST(1) before (that is
_b). Then function finishes. The instruction used here probably since FPU has no instruction to pop value from stack and not
to store it anywhere.

Well, but it is still not over.

15.3.3 GCC 4.4.1

Listing 15.6: GCC 4.4.1
d_max proc near

b = qword ptr -10h
a = qword ptr -8
a_first_half = dword ptr 8
a_second_half = dword ptr 0Ch
b_first_half = dword ptr 10h
b_second_half = dword ptr 14h

push ebp
mov ebp, esp
sub esp, 10h

; put a and b to local stack:

mov eax, [ebp+a_first_half]
mov dword ptr [ebp+a], eax
mov eax, [ebp+a_second_half]
mov dword ptr [ebp+a+4], eax
mov eax, [ebp+b_first_half]
mov dword ptr [ebp+b], eax
mov eax, [ebp+b_second_half]
mov dword ptr [ebp+b+4], eax

; load a and b to FPU stack:

fld [ebp+a]
fld [ebp+b]

; current stack state: ST(0) - b; ST(1) - a

fxch st(1) ; this instruction swapping ST(1) and ST(0)

; current stack state: ST(0) - a; ST(1) - b

fucompp ; compare a and b and pop two values from stack, i.e., a and b
fnstsw ax ; store FPU status to AX
sahf ; load SF, ZF, AF, PF, and CF flags state from AH
setnbe al ; store 1 to AL if CF=0 and ZF=0
test al, al ; AL==0 ?
jz short loc_8048453 ; yes
fld [ebp+a]
jmp short locret_8048456

loc_8048453:
fld [ebp+b]

116

15.3. COMPARISON EXAMPLE CHAPTER 15. WORKINGWITH FPU

locret_8048456:
leave
retn

d_max endp

FUCOMPP—is almost like FCOM, but popping both values from stack and handling “not-a-numbers” di�erently.
More about not-a-numbers:
FPU is able to deal with a special values which are not-a-numbers or NaNs19. These are infinity, result of dividing by 0, etc.

Not-a-numbers can be “quiet” and “signaling”. It is possible to continue to work with “quiet” NaNs, but if one try to do any
operation with “signaling” NaNs —an exception will be raised.

FCOMwill raise exception if any operand —NaN. FUCOMwill raise exception only if any operand —signaling NaN (SNaN).
The following instruction is SAHF—this is rare instruction in the code which is not use FPU. 8 bits from AH is movinto into

lower 8 bits of CPU flags in the following order: SF:ZF:-:AF:-:PF:-:CF <- AH.
Let’s remember the FNSTSW is moving interesting for us bits C3/C2/C0 into the AH and they will be in positions 6, 2, 0 in

the AH register.
In other words, fnstsw ax / sahf instruction pair is moving C3/C2/C0 into ZF, PF, CF CPU flags.
Now let’s also recall, what values of the C3/C2/C0 bits will be set:

∙ If a is greater than b in our example, then C3/C2/C0 bits will be set as: 0, 0, 0.

∙ if a is less than b, then bits will be set as: 0, 0, 1.

∙ If a=b, then bits will be set: 1, 0, 0.

In other words, a�er FUCOMPP/FNSTSW/SAHF instructions, we will have these CPU flags states:

∙ If a>b, CPU flags will be set as: ZF=0, PF=0, CF=0.

∙ If a<b, then CPU flags will be set as: ZF=0, PF=0, CF=1.

∙ If a=b, then CPU flags will be set as: ZF=1, PF=0, CF=0.

How SETNBE instruction will store 1 or 0 to AL: it is depends of CPU flags. It is almost JNBE instruction counterpart, with
the exception the SETcc20 is storing 1 or 0 to the AL, but Jcc do actual jump or not. SETNBE store 1 only if CF=0 and ZF=0. If
it is not true, 0will be stored into AL.

Both CF is 0 and ZF is 0 simultaneously only in one case: if a>b.
Then one will be stored to the AL and the following JZwill not be triggered and function will return _a. In all other cases,

_b will be returned.
But it is still not over.

15.3.4 GCC 4.4.1 with -O3 optimization turned on

Listing 15.7: Optimizing GCC 4.4.1
public d_max

d_max proc near

arg_0 = qword ptr 8
arg_8 = qword ptr 10h

push ebp
mov ebp, esp
fld [ebp+arg_0] ; _a
fld [ebp+arg_8] ; _b

; stack state now: ST(0) = _b, ST(1) = _a
fxch st(1)

; stack state now: ST(0) = _a, ST(1) = _b
fucom st(1) ; compare _a and _b

19http://en.wikipedia.org/wiki/NaN
20cc is condition code

117

http://en.wikipedia.org/wiki/NaN

15.3. COMPARISON EXAMPLE CHAPTER 15. WORKINGWITH FPU
fnstsw ax
sahf
ja short loc_8048448

; store ST(0) to ST(0) (idle operation), pop value at top of stack, leave _b at top
fstp st
jmp short loc_804844A

loc_8048448:
; store _a to ST(0), pop value at top of stack, leave _a at top

fstp st(1)

loc_804844A:
pop ebp
retn

d_max endp

It is almost the same except one: JA usage instead of SAHF. Actually, conditional jump instructions checking “larger”,
“lesser” or “equal” for unsigned number comparison (JA, JAE, JBE, JBE, JE/JZ, JNA, JNAE, JNB, JNBE, JNE/JNZ) are checking
only CF and ZF flags. And C3/C2/C0 bits a�er comparison are moving into these flags exactly in the same fashion so condi-
tional jumps will work here. JAwill work if both CF are ZF zero.

Thereby, conditional jumps instructions listed here can be used a�er FNSTSW/SAHF instructions pair.
It seems, FPU C3/C2/C0 status bits was placed there intentionally so to map them to base CPU flags without additional

permutations.

15.3.5 ARM + Optimizing Xcode (LLVM) + ARMmode

Listing 15.8: Optimizing Xcode (LLVM) + ARMmode
VMOV D16, R2, R3 ; b
VMOV D17, R0, R1 ; a
VCMPE.F64 D17, D16
VMRS APSR_nzcv, FPSCR
VMOVGT.F64 D16, D17 ; copy b to D16
VMOV R0, R1, D16
BX LR

A very simple case. Input values are placed into the D17 and D16 registers and then compared with the help of VCMPE
instruction. Just like in x86 coprocessor, ARM coprocessor has its own status and flags register, (FPSCR), since there is a need
to store coprocessor-specific flags.

And just like in x86, there are no conditional jump instruction in ARM, checking bits in coprocessor status register, so there
is VMRS instruction, copying 4 bits (N, Z, C, V) from the coprocessor status word into bits of general status (APSR register).

VMOVGT is analogue of MOVGT, instruction, to be executed if one operand is greater than other while comparing (GT—
Greater Than).

If it will be executed, 𝑏 value will be written into D16, stored at the moment in D17.
And if it will not be triggered, then 𝑎 value will stay in the D16 register.
Penultimate instruction VMOVwill prepare value in the D16 register for returning via R0 and R1 registers pair.

15.3.6 ARM + Optimizing Xcode (LLVM) + thumb-2 mode

Listing 15.9: Optimizing Xcode (LLVM) + thumb-2 mode
VMOV D16, R2, R3 ; b
VMOV D17, R0, R1 ; a
VCMPE.F64 D17, D16
VMRS APSR_nzcv, FPSCR
IT GT
VMOVGT.F64 D16, D17
VMOV R0, R1, D16
BX LR

118

15.3. COMPARISON EXAMPLE CHAPTER 15. WORKINGWITH FPU
Almost the same as in previous example, howeverm slightly di�erent. As amatter of fact, many instructions in ARMmode

can be supplied by condition predicate, and the instruction is to be executed if condition is true.
But there is no such thing in thumbmode. There is no place in 16-bit instructions for spare 4 bits where condition can be

encoded.
However, thumb-2 was extended to make possible to specify predicates to old thumb instructions.
Here, is the IDA-generated listing, we see VMOVGT instruction, the same as in previous example.
But in fact, usual VMOV is encoded there, but IDA added -GT su�ix to it, since there is “IT GT” instruction placed right

before.
IT instruction defines so-called if-then block. A�er the instruction, it is possible to place up to 4 instructions, to which

predicate su�ix will be added. In our example, “IT GT”meaning, the next instruction will be executed, if GT (Greater Than)
condition is true.

Nowmore complex code fragment, by the way, from “Angry Birds” (for iOS):

Listing 15.10: Angry Birds Classic
ITE NE
VMOVNE R2, R3, D16
VMOVEQ R2, R3, D17

ITEmeaning if-then-elseand it encodesu�ixes for twonext instructions. First instructionwill execute if conditionencoded
in ITE (NE, not equal) will be true at the moment, and the second —if the condition will not be true. (Inverse condition of NE
is EQ (equal)).

Slightly harder, and this fragment from “Angry Birds” as well:

Listing 15.11: Angry Birds Classic
ITTTT EQ
MOVEQ R0, R4
ADDEQ SP, SP, #0x20
POPEQ.W {R8,R10}
POPEQ {R4-R7,PC}

4 “T” symbols in instructionmnemonicmeans the 4 next instructions will be executed if condition is true. That’s why IDA
added -EQ su�ix to each 4 instructions.

And if there will be e.g. ITEEE EQ (if-then-else-else-else), then su�ixes will be set as follows:

-EQ
-NE
-NE
-NE

Another fragment from “Angry Birds”:

Listing 15.12: Angry Birds Classic
CMP.W R0, #0xFFFFFFFF
ITTE LE
SUBLE.W R10, R0, #1
NEGLE R0, R0
MOVGT R10, R0

ITTE (if-then-then-else) means the 1st and 2nd instructions will be executed, if LE (Less or Equal) condition is true, and
3rd—if inverse condition (GT—Greater Than) is true.

Compilers usually are not generating all possible combinations. For example, it mentioned “Angry Birds” game (classic
version for iOS) only these cases of IT instruction are used: IT, ITE, ITT, ITTE, ITTT, ITTTT. How I learnt this? In IDA it is
possible to produce listing files, so I did it, but I also set in options to show 4 bytes of each opcodes . Then, knowing the high
part of 16-bit opcode IT is 0xBF, I did this with grep:

cat AngryBirdsClassic.lst | grep " BF" | grep "IT" > results.lst

By the way, if to program in ARM assembly language manually for thumb-2 mode, with adding conditional su�ixes, as-
sembler will add IT instructions automatically, with respectable flags, where it is necessary.

119

15.3. COMPARISON EXAMPLE CHAPTER 15. WORKINGWITH FPU
15.3.7 ARM + Non-optimizing Xcode (LLVM) + ARMmode

Listing 15.13: Non-optimizing Xcode (LLVM) + ARMmode
b = -0x20
a = -0x18
val_to_return = -0x10
saved_R7 = -4

STR R7, [SP,#saved_R7]!
MOV R7, SP
SUB SP, SP, #0x1C
BIC SP, SP, #7
VMOV D16, R2, R3
VMOV D17, R0, R1
VSTR D17, [SP,#0x20+a]
VSTR D16, [SP,#0x20+b]
VLDR D16, [SP,#0x20+a]
VLDR D17, [SP,#0x20+b]
VCMPE.F64 D16, D17
VMRS APSR_nzcv, FPSCR
BLE loc_2E08
VLDR D16, [SP,#0x20+a]
VSTR D16, [SP,#0x20+val_to_return]
B loc_2E10

loc_2E08
VLDR D16, [SP,#0x20+b]
VSTR D16, [SP,#0x20+val_to_return]

loc_2E10
VLDR D16, [SP,#0x20+val_to_return]
VMOV R0, R1, D16
MOV SP, R7
LDR R7, [SP+0x20+b],#4
BX LR

Almost the same we already saw, but too much redundant code because of 𝑎 and 𝑏 variables storage in local stack, as
well as returning value.

15.3.8 ARM + Optimizing Keil + thumbmode

Listing 15.14: Optimizing Keil + thumbmode
PUSH {R3-R7,LR}
MOVS R4, R2
MOVS R5, R3
MOVS R6, R0
MOVS R7, R1
BL __aeabi_cdrcmple
BCS loc_1C0
MOVS R0, R6
MOVS R1, R7
POP {R3-R7,PC}

loc_1C0
MOVS R0, R4
MOVS R1, R5
POP {R3-R7,PC}

Keil not generates special instruction for float numbers comparing since it cannot rely it will be supported on the target
CPU, and it cannot be done by straightforward bitwise comparing. So there is called external library function for comparing:

120

15.4. X64 CHAPTER 15. WORKINGWITH FPU
__aeabi_cdrcmple. N.B. Comparison result is to be leaved in flags, so the following BCS (Carry set - Greater than or equal)
instruction may work without any additional code.

15.4 x64
Readmore here24 about how float point numbers are processed in x86-64.

121

CHAPTER 16. ARRAYS

Chapter 16

Arrays

Array is just a set of variables in memory, always lying next to each other, always has same type 1.

16.1 Simple example

#include <stdio.h>

int main()
{

int a[20];
int i;

for (i=0; i<20; i++)
a[i]=i*2;

for (i=0; i<20; i++)
printf ("a[%d]=%d\n", i, a[i]);

return 0;
};

16.1.1 x86
Let’s compile:

Listing 16.1: MSVC
_TEXT SEGMENT
_i$ = -84 ; size = 4
_a$ = -80 ; size = 80
_main PROC

push ebp
mov ebp, esp
sub esp, 84 ; 00000054H
mov DWORD PTR _i$[ebp], 0
jmp SHORT $LN6@main

$LN5@main:
mov eax, DWORD PTR _i$[ebp]
add eax, 1
mov DWORD PTR _i$[ebp], eax

$LN6@main:
cmp DWORD PTR _i$[ebp], 20 ; 00000014H
jge SHORT $LN4@main
mov ecx, DWORD PTR _i$[ebp]

1AKA2 “homogeneous container”

122

16.1. SIMPLE EXAMPLE CHAPTER 16. ARRAYS
shl ecx, 1
mov edx, DWORD PTR _i$[ebp]
mov DWORD PTR _a$[ebp+edx*4], ecx
jmp SHORT $LN5@main

$LN4@main:
mov DWORD PTR _i$[ebp], 0
jmp SHORT $LN3@main

$LN2@main:
mov eax, DWORD PTR _i$[ebp]
add eax, 1
mov DWORD PTR _i$[ebp], eax

$LN3@main:
cmp DWORD PTR _i$[ebp], 20 ; 00000014H
jge SHORT $LN1@main
mov ecx, DWORD PTR _i$[ebp]
mov edx, DWORD PTR _a$[ebp+ecx*4]
push edx
mov eax, DWORD PTR _i$[ebp]
push eax
push OFFSET $SG2463
call _printf
add esp, 12 ; 0000000cH
jmp SHORT $LN2@main

$LN1@main:
xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP

Nothing very special, just two loops: first is filling loop and second is printing loop. shl ecx, 1 instruction is used for
value multiplication by 2 in the ECX, more about below 17.3.1.

80 bytes are allocated on the stack for array, that is 20 elements of 4 bytes.
Here is what GCC 4.4.1 does:

Listing 16.2: GCC 4.4.1
public main

main proc near ; DATA XREF: _start+17

var_70 = dword ptr -70h
var_6C = dword ptr -6Ch
var_68 = dword ptr -68h
i_2 = dword ptr -54h
i = dword ptr -4

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 70h
mov [esp+70h+i], 0 ; i=0
jmp short loc_804840A

loc_80483F7:
mov eax, [esp+70h+i]
mov edx, [esp+70h+i]
add edx, edx ; edx=i*2
mov [esp+eax*4+70h+i_2], edx
add [esp+70h+i], 1 ; i++

loc_804840A:
cmp [esp+70h+i], 13h

123

16.1. SIMPLE EXAMPLE CHAPTER 16. ARRAYS
jle short loc_80483F7
mov [esp+70h+i], 0
jmp short loc_8048441

loc_804841B:
mov eax, [esp+70h+i]
mov edx, [esp+eax*4+70h+i_2]
mov eax, offset aADD ; "a[%d]=%d\n"
mov [esp+70h+var_68], edx
mov edx, [esp+70h+i]
mov [esp+70h+var_6C], edx
mov [esp+70h+var_70], eax
call _printf
add [esp+70h+i], 1

loc_8048441:
cmp [esp+70h+i], 13h
jle short loc_804841B
mov eax, 0
leave
retn

main endp

By the way, a variable has int* type (the pointer to int) —you can try to pass a pointer to array to another function, but it
much correctly to say the pointer to the first array element is passed (addresses of another element’s places are calculated
in obvious way). If to index this pointer as a[idx], idx just to be added to the pointer and the element placed there (to which
calculated pointer is pointing) returned.

An interesting example: string of characters like “string” is array of characters and it has const char* type.Index can be
applied to this pointer. And that is why it is possible to write like “string”[i]—this is correct C/C++ expression!

16.1.2 ARM + Non-optimizing Keil + ARMmode

EXPORT _main
_main

STMFD SP!, {R4,LR}
SUB SP, SP, #0x50 ; allocate place for 20 int variables

; first loop

MOV R4, #0 ; i
B loc_4A0

loc_494
MOV R0, R4,LSL#1 ; R0=R4*2
STR R0, [SP,R4,LSL#2] ; store R0 to SP+R4<<2 (same as SP+R4*4)
ADD R4, R4, #1 ; i=i+1

loc_4A0
CMP R4, #20 ; i<20?
BLT loc_494 ; yes, run loop body again

; second loop

MOV R4, #0 ; i
B loc_4C4

loc_4B0
LDR R2, [SP,R4,LSL#2] ; (second printf argument) R2=*(SP+R4<<4) (same as *(

SP+R4*4))
MOV R1, R4 ; (first printf argument) R1=i
ADR R0, aADD ; "a[%d]=%d\n"
BL __2printf
ADD R4, R4, #1 ; i=i+1

124

16.1. SIMPLE EXAMPLE CHAPTER 16. ARRAYS

loc_4C4
CMP R4, #20 ; i<20?
BLT loc_4B0 ; yes, run loop body again
MOV R0, #0 ; value to return
ADD SP, SP, #0x50 ; deallocate place, allocated for 20 int variables
LDMFD SP!, {R4,PC}

int type requires 32 bits for storage, or 4 bytes, so for storage of 20 int variables, 80 (0x50) bytes are needed, so that is why
“SUB SP, SP, #0x50” instruction in function epilogue allocates exactly this amount of space in local stack.

In both first and second loops, 𝑖 loop iterator will be placed in the R4 register.
A number to be written into array, is calculating as 𝑖 * 2which is e�ectively equivalent to shi�ing le� by one bit, so “MOV

R0, R4,LSL#1” instruction do this.
“STR R0, [SP,R4,LSL#2]”writes R0 contents into array. Here is how a pointer to array element is to be calculated: SP

pointing to array begin, R4 is 𝑖. So shi� 𝑖 le� by 2 bits, that is e�ectively equivalent to multiplication by 4 (since each array
element has size of 4 bytes) and add it to address of array begin.

The second loop has inverse “LDR R2, [SP,R4,LSL#2]”, instruction, it loads fromarray valuewe need, and the pointer
to it is calculated likewise.

16.1.3 ARM + Optimizing Keil + thumbmode

_main
PUSH {R4,R5,LR}

; allocate place for 20 int variables + one more variable
SUB SP, SP, #0x54

; first loop

MOVS R0, #0 ; i
MOV R5, SP ; pointer to first array element

loc_1CE
LSLS R1, R0, #1 ; R1=i<<1 (same as i*2)
LSLS R2, R0, #2 ; R2=i<<2 (same as i*4)
ADDS R0, R0, #1 ; i=i+1
CMP R0, #20 ; i<20?
STR R1, [R5,R2] ; store R1 to *(R5+R2) (same R5+i*4)
BLT loc_1CE ; yes, i<20, run loop body again

; second loop

MOVS R4, #0 ; i=0
loc_1DC

LSLS R0, R4, #2 ; R0=i<<2 (same as i*4)
LDR R2, [R5,R0] ; load from *(R5+R0) (same as R5+i*4)
MOVS R1, R4
ADR R0, aADD ; "a[%d]=%d\n"
BL __2printf
ADDS R4, R4, #1 ; i=i+1
CMP R4, #20 ; i<20?
BLT loc_1DC ; yes, i<20, run loop body again
MOVS R0, #0 ; value to return

; deallocate place, allocated for 20 int variables + one more variable
ADD SP, SP, #0x54
POP {R4,R5,PC}

Thumb code is very similar. Thumbmode has special instructions for bit shi�ing (like LSLS), which calculates value to be
written into array and address of each element in array as well.

Compiler allocates slightly more space in local stack, however, last 4 bytes are not used.

125

16.2. BUFFER OVERFLOW CHAPTER 16. ARRAYS
16.2 Bu�er overflow
So, array indexing is just array[index]. If you study generated code closely, you’ll probably note missing index bounds check-
ing, which could check index, if it is less than 20. What if index will be greater than 20? That’s the one C/C++ feature it is o�en
blamed for.

Here is a code successfully compiling and working:

#include <stdio.h>

int main()
{

int a[20];
int i;

for (i=0; i<20; i++)
a[i]=i*2;

printf ("a[100]=%d\n", a[100]);

return 0;
};

Compilation results (MSVC 2010):

_TEXT SEGMENT
_i$ = -84 ; size = 4
_a$ = -80 ; size = 80
_main PROC

push ebp
mov ebp, esp
sub esp, 84 ; 00000054H
mov DWORD PTR _i$[ebp], 0
jmp SHORT $LN3@main

$LN2@main:
mov eax, DWORD PTR _i$[ebp]
add eax, 1
mov DWORD PTR _i$[ebp], eax

$LN3@main:
cmp DWORD PTR _i$[ebp], 20 ; 00000014H
jge SHORT $LN1@main
mov ecx, DWORD PTR _i$[ebp]
shl ecx, 1
mov edx, DWORD PTR _i$[ebp]
mov DWORD PTR _a$[ebp+edx*4], ecx
jmp SHORT $LN2@main

$LN1@main:
mov eax, DWORD PTR _a$[ebp+400]
push eax
push OFFSET $SG2460
call _printf
add esp, 8
xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP

I’m running it, and I got:

a[100]=760826203

It is just something, occasionally lying in the stack near to array, 400 bytes from its first element.

126

16.2. BUFFER OVERFLOW CHAPTER 16. ARRAYS
Indeed, how it could be done di�erently? Compiler may generate some additional code for checking index value to be

always in array’s bound (like in higher-level programming languages3) but this makes running code slower.
OK, we read some values from the stack illegally but what if we could write something to it?
Here is what we will write:

#include <stdio.h>

int main()
{

int a[20];
int i;

for (i=0; i<30; i++)
a[i]=i;

return 0;
};

And what we’ve got:

_TEXT SEGMENT
_i$ = -84 ; size = 4
_a$ = -80 ; size = 80
_main PROC
push ebp
mov ebp, esp
sub esp, 84 ; 00000054H
mov DWORD PTR _i$[ebp], 0
jmp SHORT $LN3@main

$LN2@main:
mov eax, DWORD PTR _i$[ebp]
add eax, 1
mov DWORD PTR _i$[ebp], eax

$LN3@main:
cmp DWORD PTR _i$[ebp], 30 ; 0000001eH
jge SHORT $LN1@main
mov ecx, DWORD PTR _i$[ebp]
mov edx, DWORD PTR _i$[ebp] ; that instruction is obviously redundant
mov DWORD PTR _a$[ebp+ecx*4], edx ; ECX could be used as second operand here instead
jmp SHORT $LN2@main

$LN1@main:
xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP

Run compiled program and its crashing. No wonder. Let’s see, where exactly it is crashing.
I’m not using debugger anymore since I tried to run it each time, move mouse, etc, when I need just to spot a register’s

state at the specific point. That’s why I wrote very minimalistic tool for myself, tracer, which is enough for my tasks.
I can also use it just to see, where debuggee is crashed. So let’s see:

generic tracer 0.4 (WIN32), http://conus.info/gt

New process: C:\PRJ\...\1.exe, PID=7988
EXCEPTION_ACCESS_VIOLATION: 0x15 (<symbol (0x15) is in unknown module>), ExceptionInformation

[0]=8
EAX=0x00000000 EBX=0x7EFDE000 ECX=0x0000001D EDX=0x0000001D
ESI=0x00000000 EDI=0x00000000 EBP=0x00000014 ESP=0x0018FF48
EIP=0x00000015
FLAGS=PF ZF IF RF
PID=7988|Process exit, return code -1073740791

3Java, Python, etc

127

16.2. BUFFER OVERFLOW CHAPTER 16. ARRAYS
Now please keep your eyes on registers.
Exception occurred at address 0x15. It is not legal address for code—at least for win32 code! We trapped there somehow

against our will. It is also interesting fact the EBP register contain 0x14, ECX and EDX—0x1D.
Let’s study stack layout more.
A�er control flow was passed into main(), the value in the EBP register was saved on the stack. Then, 84 bytes was

allocated for array and i variable. That’s (20+1)*sizeof(int). The ESP pointing now to the _i variable in the local stack
and a�er execution of next PUSH something, somethingwill be appeared next to _i.

That’s stack layout while control is inside main():

ESP 4 bytes for i
ESP+4 80 bytes for a[20] array
ESP+84 saved EBP value
ESP+88 returning address

Instruction a[19]=somethingwrites last int in array bounds (in bounds so far!)
Instruction a[20]=somethingwrites something to the place where value from the EBP is saved.
Please take a look at registers state at the crash moment. In our case, number 20 was written to 20th element. By the

function ending, function epilogue restores original EBP value. (20 in decimal system is 0x14 in hexadecimal). Then, RET
instruction was executed, which is e�ectively equivalent to POP EIP instruction.

RET instruction taking returning address from the stack (that is the address inside of CRT), whichwas called main()), and
21was stored there (0x15 in hexadecimal). The CPU trapped at the address 0x15, but there is no executable code, so exception
was raised.

Welcome! It is called bu�er overflow4.
Replace int array by string (char array), create a long string deliberately, and pass it to the program, to the functionwhich

is not checking string length and copies it to short bu�er, and you’ll able to point to a program an address to which it must
jump. Not that simple in reality, but that is how it was emerged 5

Let’s try the same code in GCC 4.4.1. We got:

public main
main proc near

a = dword ptr -54h
i = dword ptr -4

push ebp
mov ebp, esp
sub esp, 60h
mov [ebp+i], 0
jmp short loc_80483D1

loc_80483C3:
mov eax, [ebp+i]
mov edx, [ebp+i]
mov [ebp+eax*4+a], edx
add [ebp+i], 1

loc_80483D1:
cmp [ebp+i], 1Dh
jle short loc_80483C3
mov eax, 0
leave
retn

main endp

Running this in Linux will produce: Segmentation fault.
If we run this in GDB debugger, we getting this:

(gdb) r
Starting program: /home/dennis/RE/1

Program received signal SIGSEGV, Segmentation fault.
0x00000016 in ?? ()

4http://en.wikipedia.org/wiki/Stack_buffer_overflow
5Classic article about it: [22].

128

http://en.wikipedia.org/wiki/Stack_buffer_overflow

16.3. BUFFER OVERFLOW PROTECTION METHODS CHAPTER 16. ARRAYS
(gdb) info registers
eax 0x0 0
ecx 0xd2f96388 -755407992
edx 0x1d 29
ebx 0x26eff4 2551796
esp 0xbffff4b0 0xbffff4b0
ebp 0x15 0x15
esi 0x0 0
edi 0x0 0
eip 0x16 0x16
eflags 0x10202 [IF RF]
cs 0x73 115
ss 0x7b 123
ds 0x7b 123
es 0x7b 123
fs 0x0 0
gs 0x33 51
(gdb)

Register values are slightly di�erent then in win32 example since stack layout is slightly di�erent too.

16.3 Bu�er overflow protection methods

There are several methods to protect against it, regardless of C/C++ programmers’ negligence. MSVC has options like6:

/RTCs Stack Frame runtime checking
/GZ Enable stack checks (/RTCs)

Oneof themethods is towrite randomvalueamong local variables to stackat functionprologueand tocheck it in function
epilogue before function exiting. And if value is not the same, do not execute last instruction RET, but halt (or hang). Process
will hang, but that is much better then remote attack to your host.

This random value is called “canary” sometimes, it is related to miner’s canary7, they were used byminers in these days,
in order to detect poisonous gases quickly. Canaries are very sensetive to mine gases, they become very agitated in case of
danger, or even dead.

If to compileour very simplearrayexample (16.1) inMSVCwithRTC1andRTCsoption, youwill seecall to@_RTC_CheckStackVars@8
function at the function end, checking “canary” correctness.

Let’s see how GCC handles this. Let’s take alloca() (4.2.4) example:

#include <malloc.h>
#include <stdio.h>

void f()
{

char *buf=(char*)alloca (600);
_snprintf (buf, 600, "hi! %d, %d, %d\n", 1, 2, 3);

puts (buf);
};

By default, without any additional options, GCC 4.7.3 will insert “canary” check into code:

Listing 16.3: GCC 4.7.3
.LC0:

.string "hi! %d, %d, %d\n"
f:

push ebp
mov ebp, esp
push ebx
sub esp, 676

6Wikipedia: compiler-side bu�er overflow protection methods
7Wikipedia: Miner’s canary

129

http://en.wikipedia.org/wiki/Buffer_overflow_protection
http://en.wikipedia.org/wiki/Domestic_Canary#Miner.27s_canary

16.3. BUFFER OVERFLOW PROTECTION METHODS CHAPTER 16. ARRAYS
lea ebx, [esp+39]
and ebx, -16
mov DWORD PTR [esp+20], 3
mov DWORD PTR [esp+16], 2
mov DWORD PTR [esp+12], 1
mov DWORD PTR [esp+8], OFFSET FLAT:.LC0 ; "hi! %d, %d, %d\n"
mov DWORD PTR [esp+4], 600
mov DWORD PTR [esp], ebx
mov eax, DWORD PTR gs:20 ; canary
mov DWORD PTR [ebp-12], eax
xor eax, eax
call _snprintf
mov DWORD PTR [esp], ebx
call puts
mov eax, DWORD PTR [ebp-12]
xor eax, DWORD PTR gs:20 ; canary
jne .L5
mov ebx, DWORD PTR [ebp-4]
leave
ret

.L5:
call __stack_chk_fail

Random value is located in gs:20. It is to be written on the stack and then, at the function end, value in the stack is
compared with correct “canary” in gs:20. If values are not equal to each other, __stack_chk_fail function will be called
and we will see something like that in console (Ubuntu 13.04 x86):

*** buffer overflow detected ***: ./2_1 terminated
======= Backtrace: =========
/lib/i386-linux-gnu/libc.so.6(__fortify_fail+0x63)[0xb7699bc3]
/lib/i386-linux-gnu/libc.so.6(+0x10593a)[0xb769893a]
/lib/i386-linux-gnu/libc.so.6(+0x105008)[0xb7698008]
/lib/i386-linux-gnu/libc.so.6(_IO_default_xsputn+0x8c)[0xb7606e5c]
/lib/i386-linux-gnu/libc.so.6(_IO_vfprintf+0x165)[0xb75d7a45]
/lib/i386-linux-gnu/libc.so.6(__vsprintf_chk+0xc9)[0xb76980d9]
/lib/i386-linux-gnu/libc.so.6(__sprintf_chk+0x2f)[0xb7697fef]
./2_1[0x8048404]
/lib/i386-linux-gnu/libc.so.6(__libc_start_main+0xf5)[0xb75ac935]
======= Memory map: ========
08048000-08049000 r-xp 00000000 08:01 2097586 /home/dennis/2_1
08049000-0804a000 r--p 00000000 08:01 2097586 /home/dennis/2_1
0804a000-0804b000 rw-p 00001000 08:01 2097586 /home/dennis/2_1
094d1000-094f2000 rw-p 00000000 00:00 0 [heap]
b7560000-b757b000 r-xp 00000000 08:01 1048602 /lib/i386-linux-gnu/libgcc_s.so.1
b757b000-b757c000 r--p 0001a000 08:01 1048602 /lib/i386-linux-gnu/libgcc_s.so.1
b757c000-b757d000 rw-p 0001b000 08:01 1048602 /lib/i386-linux-gnu/libgcc_s.so.1
b7592000-b7593000 rw-p 00000000 00:00 0
b7593000-b7740000 r-xp 00000000 08:01 1050781 /lib/i386-linux-gnu/libc-2.17.so
b7740000-b7742000 r--p 001ad000 08:01 1050781 /lib/i386-linux-gnu/libc-2.17.so
b7742000-b7743000 rw-p 001af000 08:01 1050781 /lib/i386-linux-gnu/libc-2.17.so
b7743000-b7746000 rw-p 00000000 00:00 0
b775a000-b775d000 rw-p 00000000 00:00 0
b775d000-b775e000 r-xp 00000000 00:00 0 [vdso]
b775e000-b777e000 r-xp 00000000 08:01 1050794 /lib/i386-linux-gnu/ld-2.17.so
b777e000-b777f000 r--p 0001f000 08:01 1050794 /lib/i386-linux-gnu/ld-2.17.so
b777f000-b7780000 rw-p 00020000 08:01 1050794 /lib/i386-linux-gnu/ld-2.17.so
bff35000-bff56000 rw-p 00000000 00:00 0 [stack]
Aborted (core dumped)

gs—is so-called segment register, these registers were used widely in MS-DOS and DOS-extenders times. Today, its func-
tion is di�erent. If to say briefly, the gs register in Linux is always pointing to the TLS (47) —various information specific to

130

16.3. BUFFER OVERFLOW PROTECTION METHODS CHAPTER 16. ARRAYS
thread is stored there (by the way, in win32 environment, the fs register plays the same role, it pointing to TIB8 9).

More information can be found in Linux source codes (at least in 3.11 version), in arch/x86/include/asm/stackprotector.h
file this variable is described in comments.

16.3.1 Optimizing Xcode (LLVM) + thumb-2 mode
Let’s back to our simple array example (16.1), again, now we can see how LLVM will check “canary” correctness:

_main

var_64 = -0x64
var_60 = -0x60
var_5C = -0x5C
var_58 = -0x58
var_54 = -0x54
var_50 = -0x50
var_4C = -0x4C
var_48 = -0x48
var_44 = -0x44
var_40 = -0x40
var_3C = -0x3C
var_38 = -0x38
var_34 = -0x34
var_30 = -0x30
var_2C = -0x2C
var_28 = -0x28
var_24 = -0x24
var_20 = -0x20
var_1C = -0x1C
var_18 = -0x18
canary = -0x14
var_10 = -0x10

PUSH {R4-R7,LR}
ADD R7, SP, #0xC
STR.W R8, [SP,#0xC+var_10]!
SUB SP, SP, #0x54
MOVW R0, #aObjc_methtype ; "objc_methtype"
MOVS R2, #0
MOVT.W R0, #0
MOVS R5, #0
ADD R0, PC
LDR.W R8, [R0]
LDR.W R0, [R8]
STR R0, [SP,#0x64+canary]
MOVS R0, #2
STR R2, [SP,#0x64+var_64]
STR R0, [SP,#0x64+var_60]
MOVS R0, #4
STR R0, [SP,#0x64+var_5C]
MOVS R0, #6
STR R0, [SP,#0x64+var_58]
MOVS R0, #8
STR R0, [SP,#0x64+var_54]
MOVS R0, #0xA
STR R0, [SP,#0x64+var_50]
MOVS R0, #0xC
STR R0, [SP,#0x64+var_4C]
MOVS R0, #0xE

8Thread Information Block
9https://en.wikipedia.org/wiki/Win32_Thread_Information_Block

131

https://en.wikipedia.org/wiki/Win32_Thread_Information_Block

16.3. BUFFER OVERFLOW PROTECTION METHODS CHAPTER 16. ARRAYS
STR R0, [SP,#0x64+var_48]
MOVS R0, #0x10
STR R0, [SP,#0x64+var_44]
MOVS R0, #0x12
STR R0, [SP,#0x64+var_40]
MOVS R0, #0x14
STR R0, [SP,#0x64+var_3C]
MOVS R0, #0x16
STR R0, [SP,#0x64+var_38]
MOVS R0, #0x18
STR R0, [SP,#0x64+var_34]
MOVS R0, #0x1A
STR R0, [SP,#0x64+var_30]
MOVS R0, #0x1C
STR R0, [SP,#0x64+var_2C]
MOVS R0, #0x1E
STR R0, [SP,#0x64+var_28]
MOVS R0, #0x20
STR R0, [SP,#0x64+var_24]
MOVS R0, #0x22
STR R0, [SP,#0x64+var_20]
MOVS R0, #0x24
STR R0, [SP,#0x64+var_1C]
MOVS R0, #0x26
STR R0, [SP,#0x64+var_18]
MOV R4, 0xFDA ; "a[%d]=%d\n"
MOV R0, SP
ADDS R6, R0, #4
ADD R4, PC
B loc_2F1C

; second loop begin

loc_2F14
ADDS R0, R5, #1
LDR.W R2, [R6,R5,LSL#2]
MOV R5, R0

loc_2F1C
MOV R0, R4
MOV R1, R5
BLX _printf
CMP R5, #0x13
BNE loc_2F14
LDR.W R0, [R8]
LDR R1, [SP,#0x64+canary]
CMP R0, R1
ITTTT EQ ; canary still correct?
MOVEQ R0, #0
ADDEQ SP, SP, #0x54
LDREQ.W R8, [SP+0x64+var_64],#4
POPEQ {R4-R7,PC}
BLX ___stack_chk_fail

First of all, as we see, LLVM made loop “unrolled” and all values are written into array one-by-one, already calculated
since LLVM concluded it will be faster. By the way, ARM mode instructions may help to do this even faster, and finding this
way could be your homework.

At the function end wee see “canaries” comparison —that laying in local stack and correct one, to which the R8 register
pointing. If they are equal to each other, 4-instruction block is triggered by “ITTTT EQ”, it is writing 0 into R0, function
epilogue and exit. If “canaries” are not equal, block will not be triggered, and jump to ___stack_chk_fail function will be
occurred, which, as I suppose, will halt execution.

132

16.4. ONE MOREWORD ABOUT ARRAYS CHAPTER 16. ARRAYS
16.4 Onemore word about arrays
Nowwe understand, why it is impossible to write something like that in C/C++ code 10:

void f(int size)
{

int a[size];
...
};

That’s just because compiler must know exact array size to allocate space for it in local stack layout or in data segment
(in case of global variable) on compiling stage.

If you need array of arbitrary size, allocate it by malloc(), then access allocated memory block as array of variables of
type you need. Or use C99 standard feature [15, 6.7.5/2], but it will be looks like alloca() (4.2.4) internally.

16.5 Multidimensional arrays
Internally, multidimensional array is essentially the same thing as linear array.

Since computer memory in linear, it is one-dimensional array. But this one-dimensional array can be easily represented
as multidimensional for convenience.

For example, that is how 𝑎[3][4] array elements will be placed in one-dimensional array of 12 cells:

[0][0]
[0][1]
[0][2]
[0][3]
[1][0]
[1][1]
[1][2]
[1][3]
[2][0]
[2][1]
[2][2]
[2][3]

That is how two-dimensional array with one-dimensional (memory) array index numbers can be represented:

0 1 2 3
4 5 6 7
8 9 10 11

So, in order to address elements we need, first multiply first index by 4 (matrix width) and then add second index. That’s
called row-major order, and thismethod of arrays andmatrices representation is used in at least in C/C++, Python. row-major
order term in plain English languagemeans: “first, write elements of first row, then second row .. .and finally elements of last
row”.

Anothermethod of representation called column-major order (array indices used in reverse order) and it is used at least in
FORTRAN, MATLAB, R. column-major order term in plain English language means: “first, write elements of first column, then
second column . . .and finally elements of last column”.

Same thing about multidimensional arrays.
Let’s see:

Listing 16.4: simple example
#include <stdio.h>

int a[10][20][30];

void insert(int x, int y, int z, int value)
{

a[x][y][z]=value;
};

10However, it is possible in C99 standard [15, 6.7.5/2]: GCC is actually do this by allocating array dynammically on the stack (like alloca() (4.2.4))

133

16.5. MULTIDIMENSIONAL ARRAYS CHAPTER 16. ARRAYS
16.5.1 x86
We got (MSVC 2010):

Listing 16.5: MSVC 2010
_DATA SEGMENT
COMM _a:DWORD:01770H
_DATA ENDS
PUBLIC _insert
_TEXT SEGMENT
_x$ = 8 ; size = 4
_y$ = 12 ; size = 4
_z$ = 16 ; size = 4
_value$ = 20 ; size = 4
_insert PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _x$[ebp]
imul eax, 2400 ; eax=600*4*x
mov ecx, DWORD PTR _y$[ebp]
imul ecx, 120 ; ecx=30*4*y
lea edx, DWORD PTR _a[eax+ecx] ; edx=a + 600*4*x + 30*4*y
mov eax, DWORD PTR _z$[ebp]
mov ecx, DWORD PTR _value$[ebp]
mov DWORD PTR [edx+eax*4], ecx ; *(edx+z*4)=value
pop ebp
ret 0

_insert ENDP
_TEXT ENDS

Nothing special. For index calculation, three input argumentsaremultiplyingby formula𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 600·4·𝑥+30·4·𝑦+4𝑧
to represent array as multidimensional. Do not forget the int type is 32-bit (4 bytes), so all coe�icients must bemultiplied by
4.

Listing 16.6: GCC 4.4.1
public insert

insert proc near

x = dword ptr 8
y = dword ptr 0Ch
z = dword ptr 10h
value = dword ptr 14h

push ebp
mov ebp, esp
push ebx
mov ebx, [ebp+x]
mov eax, [ebp+y]
mov ecx, [ebp+z]
lea edx, [eax+eax] ; edx=y*2
mov eax, edx ; eax=y*2
shl eax, 4 ; eax=(y*2)<<4 = y*2*16 = y*32
sub eax, edx ; eax=y*32 - y*2=y*30
imul edx, ebx, 600 ; edx=x*600
add eax, edx ; eax=eax+edx=y*30 + x*600
lea edx, [eax+ecx] ; edx=y*30 + x*600 + z
mov eax, [ebp+value]
mov dword ptr ds:a[edx*4], eax ; *(a+edx*4)=value
pop ebx
pop ebp
retn

insert endp

134

16.5. MULTIDIMENSIONAL ARRAYS CHAPTER 16. ARRAYS
GCC compiler does it di�erently. For one of operations calculating (30𝑦), GCC produced a code without multiplication

instruction. This is how it done: (𝑦 + 𝑦) ≪ 4− (𝑦 + 𝑦) = (2𝑦) ≪ 4− 2𝑦 = 2 · 16 · 𝑦 − 2𝑦 = 32𝑦 − 2𝑦 = 30𝑦. Thus, for 30𝑦
calculation, only one addition operation used, one bitwise shi� operation and one subtraction operation. That works faster.

16.5.2 ARM + Non-optimizing Xcode (LLVM) + thumbmode

Listing 16.7: Non-optimizing Xcode (LLVM) + thumbmode
_insert

value = -0x10
z = -0xC
y = -8
x = -4

; allocate place in local stack for 4 values of int type
SUB SP, SP, #0x10
MOV R9, 0xFC2 ; a
ADD R9, PC
LDR.W R9, [R9]
STR R0, [SP,#0x10+x]
STR R1, [SP,#0x10+y]
STR R2, [SP,#0x10+z]
STR R3, [SP,#0x10+value]
LDR R0, [SP,#0x10+value]
LDR R1, [SP,#0x10+z]
LDR R2, [SP,#0x10+y]
LDR R3, [SP,#0x10+x]
MOV R12, 2400
MUL.W R3, R3, R12
ADD R3, R9
MOV R9, 120
MUL.W R2, R2, R9
ADD R2, R3
LSLS R1, R1, #2 ; R1=R1<<2
ADD R1, R2
STR R0, [R1] ; R1 - address of array element
; deallocate place in local stack, allocated for 4 values of int type
ADD SP, SP, #0x10
BX LR

Non-optimizing LLVM saves all variables in local stack, however, it is redundant. Address of array element is calculated
by formula we already figured out.

16.5.3 ARM + Optimizing Xcode (LLVM) + thumbmode

Listing 16.8: Optimizing Xcode (LLVM) + thumbmode
_insert
MOVW R9, #0x10FC
MOV.W R12, #2400
MOVT.W R9, #0
RSB.W R1, R1, R1,LSL#4 ; R1 - y. R1=y<<4 - y = y*16 - y = y*15
ADD R9, PC ; R9 = pointer to a array
LDR.W R9, [R9]
MLA.W R0, R0, R12, R9 ; R0 - x, R12 - 2400, R9 - pointer to a. R0=x*2400 + ptr to a
ADD.W R0, R0, R1,LSL#3 ; R0 = R0+R1<<3 = R0+R1*8 = x*2400 + ptr to a + y*15*8 =

; ptr to a + y*30*4 + x*600*4
STR.W R3, [R0,R2,LSL#2] ; R2 - z, R3 - value. address=R0+z*4 =

; ptr to a + y*30*4 + x*600*4 + z*4
BX LR

135

16.5. MULTIDIMENSIONAL ARRAYS CHAPTER 16. ARRAYS
Here is used tricks for replacing multiplication by shi�, addition and subtraction we already considered.
Here we also see new instruction for us: RSB (Reverse Subtract). It works just as SUB, but swapping operands with each

other. Why? SUB, RSB, are those instructions, to the second operand of which shi� coe�icient may be applied: (LSL#4). But
this coe�icientmaybeappliedonly to secondoperand. That’s fine for commutativeoperations likeadditionormultiplication,
operandsmay be swapped therewithout result a�ecting. But subtraction is non-commutative operation, so, for these cases,
RSB exist.

“LDR.W R9, [R9]” works like LEA (80.6.2) in x86, but here it does nothing, it is redundant. Apparently, compiler not
optimized it.

136

CHAPTER 17. BIT FIELDS

Chapter 17

Bit fields

A lot of functions defining input flags in arguments using bit fields. Of course, it could be substituted by bool-typed variables
set, but it is not frugally.

17.1 Specific bit checking

17.1.1 x86
Win32 API example:

HANDLE fh;

fh=CreateFile ("file", GENERIC_WRITE | GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_ALWAYS,
FILE_ATTRIBUTE_NORMAL, NULL);

We got (MSVC 2010):

Listing 17.1: MSVC 2010
push 0
push 128 ; 00000080H
push 4
push 0
push 1
push -1073741824 ; c0000000H
push OFFSET $SG78813
call DWORD PTR __imp__CreateFileA@28
mov DWORD PTR _fh$[ebp], eax

Let’s take a look into WinNT.h:

Listing 17.2: WinNT.h
#define GENERIC_READ (0x80000000L)
#define GENERIC_WRITE (0x40000000L)
#define GENERIC_EXECUTE (0x20000000L)
#define GENERIC_ALL (0x10000000L)

Everything is clear,GENERIC_READ | GENERIC_WRITE = 0x80000000 | 0x40000000 = 0xC0000000, and that is value
is used as the second argument for CreateFile()1 function.

How CreateFile()will check flags?
Let’s takea look intoKERNEL32.DLL inWindowsXPSP3x86andwe’ll find this fragmentof code in the functionCreateFileW:

Listing 17.3: KERNEL32.DLL (Windows XP SP3 x86)
.text:7C83D429 test byte ptr [ebp+dwDesiredAccess+3], 40h
.text:7C83D42D mov [ebp+var_8], 1
.text:7C83D434 jz short loc_7C83D417
.text:7C83D436 jmp loc_7C810817

1MSDN: CreateFile function

137

http://msdn.microsoft.com/en-us/library/aa363858(VS.85).aspx

17.1. SPECIFIC BIT CHECKING CHAPTER 17. BIT FIELDS
HereweseeTEST instruction, it takes, however, not thewhole secondargument, butonlymost significantbyte (ebp+dwDesiredAccess+3)

and checks it for 0x40 flag (meaning GENERIC_WRITE flag here)
TEST is merely the same instruction as AND, but without result saving (recall the fact CMP instruction is merely the same

as SUB, but without result saving (6.6.1)).
This fragment of code logic is as follows:

if ((dwDesiredAccess&0x40000000) == 0) goto loc_7C83D417

If AND instruction leaving this bit, ZF flag is to be cleared and JZ conditional jumpwill not be triggered. Conditional jump
will be triggered only if 0x40000000 bit is absent in the dwDesiredAccess variable—then AND result will be 0, ZF flag will be
set and conditional jump is to be triggered.

Let’s try GCC 4.4.1 and Linux:

#include <stdio.h>
#include <fcntl.h>

void main()
{

int handle;

handle=open ("file", O_RDWR | O_CREAT);
};

We got:

Listing 17.4: GCC 4.4.1
public main

main proc near

var_20 = dword ptr -20h
var_1C = dword ptr -1Ch
var_4 = dword ptr -4

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 20h
mov [esp+20h+var_1C], 42h
mov [esp+20h+var_20], offset aFile ; "file"
call _open
mov [esp+20h+var_4], eax
leave
retn

main endp

Let’s take a look into open() function in the libc.so.6 library, but there is only syscall calling:

Listing 17.5: open() (libc.so.6)
.text:000BE69B mov edx, [esp+4+mode] ; mode
.text:000BE69F mov ecx, [esp+4+flags] ; flags
.text:000BE6A3 mov ebx, [esp+4+filename] ; filename
.text:000BE6A7 mov eax, 5
.text:000BE6AC int 80h ; LINUX - sys_open

So, open() bit fields apparently checked somewhere in Linux kernel.
Of course, it is easily to download both Glibc and Linux kernel source code, but we are interesting to understand the

matter without it.
So, as of Linux 2.6, when sys_open syscall is called, control eventually passed into do_sys_open kernel function. From

there —to the do_filp_open() function (this function located in kernel source tree in the file fs/namei.c).
N.B. Aside from common passing arguments via stack, there is also a method of passing some of them via registers. This

is also called fastcall (??). This works faster since CPU not needed to access a stack inmemory to read argument values. GCC
has option regparm2, and it is possible to set a number of arguments which might be passed via registers.

2http://ohse.de/uwe/articles/gcc-attributes.html#func-regparm

138

http://ohse.de/uwe/articles/gcc-attributes.html#func-regparm

17.1. SPECIFIC BIT CHECKING CHAPTER 17. BIT FIELDS
Linux 2.6 kernel compiled with -mregparm=3 option 3 4.
What it means to us, the first 3 arguments will be passed via EAX, EDX and ECX registers, the rest ones via stack. Of course,

if arguments number is less than 3, only part of registers are to be used.
So, let’s download Linux Kernel 2.6.31, compile it in Ubuntu: make vmlinux, open it in IDA, find the do_filp_open()

function. At the beginning, we will see (comments are mine):

Listing 17.6: do_filp_open() (linux kernel 2.6.31)
do_filp_open proc near
...

push ebp
mov ebp, esp
push edi
push esi
push ebx
mov ebx, ecx
add ebx, 1
sub esp, 98h
mov esi, [ebp+arg_4] ; acc_mode (5th arg)
test bl, 3
mov [ebp+var_80], eax ; dfd (1th arg)
mov [ebp+var_7C], edx ; pathname (2th arg)
mov [ebp+var_78], ecx ; open_flag (3th arg)
jnz short loc_C01EF684
mov ebx, ecx ; ebx <- open_flag

GCC saves first 3 arguments values in local stack. Otherwise, if compiler would not touch these registers, it would be too
tight environment for compiler’s register allocator.

Let’s find this fragment of code:

Listing 17.7: do_filp_open() (linux kernel 2.6.31)
loc_C01EF6B4: ; CODE XREF: do_filp_open+4F

test bl, 40h ; O_CREAT
jnz loc_C01EF810
mov edi, ebx
shr edi, 11h
xor edi, 1
and edi, 1
test ebx, 10000h
jz short loc_C01EF6D3
or edi, 2

0x40—iswhatO_CREATmacroequals to. open_flagchecked for0x40bitpresence, and if thisbit is1, nextJNZ instruction
is triggered.

17.1.2 ARM
O_CREAT bit is checked di�erently in Linux kernel 3.8.0.

Listing 17.8: linux kernel 3.8.0
struct file *do_filp_open(int dfd, struct filename *pathname,

const struct open_flags *op)
{
...

filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
...
}

static struct file *path_openat(int dfd, struct filename *pathname,
struct nameidata *nd, const struct open_flags *op, int flags)

3http://kernelnewbies.org/Linux_2_6_20#head-042c62f290834eb1fe0a1942bbf5bb9a4accbc8f
4See also arch\x86\include\asm\calling.h file in kernel tree

139

http://kernelnewbies.org/Linux_2_6_20#head-042c62f290834eb1fe0a1942bbf5bb9a4accbc8f

17.1. SPECIFIC BIT CHECKING CHAPTER 17. BIT FIELDS
{
...

error = do_last(nd, &path, file, op, &opened, pathname);
...
}

static int do_last(struct nameidata *nd, struct path *path,
struct file *file, const struct open_flags *op,
int *opened, struct filename *name)

{
...

if (!(open_flag & O_CREAT)) {
...

error = lookup_fast(nd, path, &inode);
...

} else {
...

error = complete_walk(nd);
}

...
}

Here is how kernel compiled for ARMmode looks like in IDA:

Listing 17.9: do_last() (vmlinux)
...
.text:C0169EA8 MOV R9, R3 ; R3 - (4th argument) open_flag
...
.text:C0169ED4 LDR R6, [R9] ; R6 - open_flag
...
.text:C0169F68 TST R6, #0x40 ; jumptable C0169F00 default case
.text:C0169F6C BNE loc_C016A128
.text:C0169F70 LDR R2, [R4,#0x10]
.text:C0169F74 ADD R12, R4, #8
.text:C0169F78 LDR R3, [R4,#0xC]
.text:C0169F7C MOV R0, R4
.text:C0169F80 STR R12, [R11,#var_50]
.text:C0169F84 LDRB R3, [R2,R3]
.text:C0169F88 MOV R2, R8
.text:C0169F8C CMP R3, #0
.text:C0169F90 ORRNE R1, R1, #3
.text:C0169F94 STRNE R1, [R4,#0x24]
.text:C0169F98 ANDS R3, R6, #0x200000
.text:C0169F9C MOV R1, R12
.text:C0169FA0 LDRNE R3, [R4,#0x24]
.text:C0169FA4 ANDNE R3, R3, #1
.text:C0169FA8 EORNE R3, R3, #1
.text:C0169FAC STR R3, [R11,#var_54]
.text:C0169FB0 SUB R3, R11, #-var_38
.text:C0169FB4 BL lookup_fast
...
.text:C016A128 loc_C016A128 ; CODE XREF: do_last.isra.14+DC
.text:C016A128 MOV R0, R4
.text:C016A12C BL complete_walk
...

TST is analogical to a TEST instruction in x86.
Wecan“spot” visually this code fragmentby the fact thelookup_fast()will beexecuted inonecaseand thecomplete_walk()

in another case. This is corresponding to the do_last() function source code.
O_CREATmacro is equals to 0x40 here too.

140

17.2. SPECIFIC BIT SETTING/CLEARING CHAPTER 17. BIT FIELDS
17.2 Specific bit setting/clearing
For example:

#define IS_SET(flag, bit) ((flag) & (bit))
#define SET_BIT(var, bit) ((var) |= (bit))
#define REMOVE_BIT(var, bit) ((var) &= ~(bit))

int f(int a)
{

int rt=a;

SET_BIT (rt, 0x4000);
REMOVE_BIT (rt, 0x200);

return rt;
};

17.2.1 x86

We got (MSVC 2010):

Listing 17.10: MSVC 2010
_rt$ = -4 ; size = 4
_a$ = 8 ; size = 4
_f PROC

push ebp
mov ebp, esp
push ecx
mov eax, DWORD PTR _a$[ebp]
mov DWORD PTR _rt$[ebp], eax
mov ecx, DWORD PTR _rt$[ebp]
or ecx, 16384 ; 00004000H
mov DWORD PTR _rt$[ebp], ecx
mov edx, DWORD PTR _rt$[ebp]
and edx, -513 ; fffffdffH
mov DWORD PTR _rt$[ebp], edx
mov eax, DWORD PTR _rt$[ebp]
mov esp, ebp
pop ebp
ret 0

_f ENDP

OR instruction adds one more bit to value while ignoring the rest ones.
AND resetting one bit. It can be said, AND just copies all bits except one. Indeed, in the second AND operand only those

bits are set, which are needed to be saved, except one bit we would not like to copy (which is 0 in bitmask). It is easier way to
memorize the logic.

If we compile it in MSVC with optimization turned on (/Ox), the code will be even shorter:

Listing 17.11: Optimizing MSVC
_a$ = 8 ; size = 4
_f PROC

mov eax, DWORD PTR _a$[esp-4]
and eax, -513 ; fffffdffH
or eax, 16384 ; 00004000H
ret 0

_f ENDP

Let’s try GCC 4.4.1 without optimization:

Listing 17.12: Non-optimizing GCC

141

17.2. SPECIFIC BIT SETTING/CLEARING CHAPTER 17. BIT FIELDS
public f

f proc near

var_4 = dword ptr -4
arg_0 = dword ptr 8

push ebp
mov ebp, esp
sub esp, 10h
mov eax, [ebp+arg_0]
mov [ebp+var_4], eax
or [ebp+var_4], 4000h
and [ebp+var_4], 0FFFFFDFFh
mov eax, [ebp+var_4]
leave
retn

f endp

There is a redundant code present, however, it is shorter then MSVC version without optimization.
Now let’s try GCC with optimization turned on -O3:

Listing 17.13: Optimizing GCC
public f

f proc near

arg_0 = dword ptr 8

push ebp
mov ebp, esp
mov eax, [ebp+arg_0]
pop ebp
or ah, 40h
and ah, 0FDh
retn

f endp

That’s shorter. It is worth noting the compiler works with the EAX register part via the AH register —that is the EAX register
part from 8th to 15th bits inclusive.

7th (byte number) 6th 5th 4th 3rd 2nd 1st 0th
RAXx64

EAX
AX

AH AL

N.B. 16-bit CPU 8086 accumulator was named AX and consisted of two 8-bit halves—AL (lower byte) and AH (higher byte).
In 80386 almost all registers were extended to 32-bit, accumulator was named EAX, but for the sake of compatibility, its older
partsmay be still accessed as AX/AH/AL registers.

Since all x86 CPUs are 16-bit 8086 CPU successors, these older 16-bit opcodes are shorter than newer 32-bit opcodes.
That’s why “or ah, 40h” instruction occupying only 3 bytes. It would bemore logical way to emit here “or eax, 04000h”
but that is 5 bytes, or even 6 (in case if register in first operand is not EAX).

It would be even shorter if to turn on -O3 optimization flag and also set regparm=3.

Listing 17.14: Optimizing GCC
public f

f proc near
push ebp
or ah, 40h
mov ebp, esp
and ah, 0FDh
pop ebp
retn

142

17.3. SHIFTS CHAPTER 17. BIT FIELDS
f endp

Indeed —first argument is already loaded into EAX, so it is possible to work with it in-place. It is worth noting that both
function prologue (“push ebp / mov ebp,esp”) and epilogue (“pop ebp”) can easily be omitted here, but GCC probably
is not good enough for such code size optimizations. However, such short functions are better to be inlined functions (27).

17.2.2 ARM + Optimizing Keil + ARMmode

Listing 17.15: Optimizing Keil + ARMmode
02 0C C0 E3 BIC R0, R0, #0x200
01 09 80 E3 ORR R0, R0, #0x4000
1E FF 2F E1 BX LR

BIC is “logical and”, analogical to AND in x86. ORR is “logical or”, analogical to OR in x86.
So far, so easy.

17.2.3 ARM + Optimizing Keil + thumbmode

Listing 17.16: Optimizing Keil + thumbmode
01 21 89 03 MOVS R1, 0x4000
08 43 ORRS R0, R1
49 11 ASRS R1, R1, #5 ; generate 0x200 and place to R1
88 43 BICS R0, R1
70 47 BX LR

Apparently, Keil concludes the code in thumbmode,making0x200 from0x4000, will bemore compact than code,writing
0x200 to arbitrary register.

So that is why, with the help of ASRS (arithmetic shi� right), this value is calculating as 0x4000 ≫ 5.

17.2.4 ARM + Optimizing Xcode (LLVM) + ARMmode

Listing 17.17: Optimizing Xcode (LLVM) + ARMmode
42 0C C0 E3 BIC R0, R0, #0x4200
01 09 80 E3 ORR R0, R0, #0x4000
1E FF 2F E1 BX LR

The code was generated by LLVM, in source code form, in fact, could be looks like:

REMOVE_BIT (rt, 0x4200);
SET_BIT (rt, 0x4000);

And it does exactly the same we need. But why 0x4200? Perhaps, that is the LLVM optimizer’s artifact 5. Probably, com-
piler’s optimizer error, but generated code works correct anyway.

More about compiler’s anomalies, read here (63).
For thumbmode, Optimizing Xcode (LLVM) generates likewise code.

17.3 Shi�s
Bit shi�s in C/C++ are implemented via≪ and≫ operators.

Here is a simple example of function, calculating number of 1 bits in input variable:

#define IS_SET(flag, bit) ((flag) & (bit))

int f(unsigned int a)
{

int i;
int rt=0;

5It was LLVM build 2410.2.00 bundled with Apple Xcode 4.6.3

143

17.3. SHIFTS CHAPTER 17. BIT FIELDS

for (i=0; i<32; i++)
if (IS_SET (a, 1<<i))

rt++;

return rt;
};

In this loop, iteration count value i counting from0 to31, 1 ≪ 𝑖 statementwill be counting from1 to0x80000000. Describ-
ing this operation in natural language, we would say shi� 1 by n bits le�. In other words, 1 ≪ 𝑖 statement will consequently
produce all possible bit positions in 32-bit number. By the way, freed bit at right is always cleared. IS_SETmacro is checking
bit presence in the a.

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0CF 0

The IS_SETmacro is in fact logical and operation (AND) and it returns 0 if specific bit is absent there, or bit mask, if the
bit is present. if() operator triggered in C/C++ if expression in it is not a zero, it might be even 123456, that is why it always
working correctly.

17.3.1 x86
Let’s compile (MSVC 2010):

Listing 17.18: MSVC 2010
_rt$ = -8 ; size = 4
_i$ = -4 ; size = 4
_a$ = 8 ; size = 4
_f PROC

push ebp
mov ebp, esp
sub esp, 8
mov DWORD PTR _rt$[ebp], 0
mov DWORD PTR _i$[ebp], 0
jmp SHORT $LN4@f

$LN3@f:
mov eax, DWORD PTR _i$[ebp] ; increment of 1
add eax, 1
mov DWORD PTR _i$[ebp], eax

$LN4@f:
cmp DWORD PTR _i$[ebp], 32 ; 00000020H
jge SHORT $LN2@f ; loop finished?
mov edx, 1
mov ecx, DWORD PTR _i$[ebp]
shl edx, cl ; EDX=EDX<<CL
and edx, DWORD PTR _a$[ebp]
je SHORT $LN1@f ; result of AND instruction was 0?

; then skip next instructions
mov eax, DWORD PTR _rt$[ebp] ; no, not zero
add eax, 1 ; increment rt
mov DWORD PTR _rt$[ebp], eax

$LN1@f:
jmp SHORT $LN3@f

$LN2@f:
mov eax, DWORD PTR _rt$[ebp]
mov esp, ebp
pop ebp
ret 0

_f ENDP

144

17.3. SHIFTS CHAPTER 17. BIT FIELDS
That’s how SHL (SHi� Le�) working.
Let’s compile it in GCC 4.4.1:

Listing 17.19: GCC 4.4.1
public f

f proc near

rt = dword ptr -0Ch
i = dword ptr -8
arg_0 = dword ptr 8

push ebp
mov ebp, esp
push ebx
sub esp, 10h
mov [ebp+rt], 0
mov [ebp+i], 0
jmp short loc_80483EF

loc_80483D0:
mov eax, [ebp+i]
mov edx, 1
mov ebx, edx
mov ecx, eax
shl ebx, cl
mov eax, ebx
and eax, [ebp+arg_0]
test eax, eax
jz short loc_80483EB
add [ebp+rt], 1

loc_80483EB:
add [ebp+i], 1

loc_80483EF:
cmp [ebp+i], 1Fh
jle short loc_80483D0
mov eax, [ebp+rt]
add esp, 10h
pop ebx
pop ebp
retn

f endp

Shi� instructions are o�en used in division andmultiplications by power of two numbers (1, 2, 4, 8, etc).
For example:

unsigned int f(unsigned int a)
{

return a/4;
};

We got (MSVC 2010):

Listing 17.20: MSVC 2010
_a$ = 8 ; size = 4
_f PROC

mov eax, DWORD PTR _a$[esp-4]
shr eax, 2
ret 0

_f ENDP

SHR (SHi� Right) instruction in this example is shi�ing a number by 2 bits right. Two freed bits at le� (e.g., two most
significant bits) are set to zero. Two least significant bits are dropped. In fact, these two dropped bits —division operation
remainder.

SHR instruction works just like as SHL but in other direction.

145

17.4. CRC32 CALCULATION EXAMPLE CHAPTER 17. BIT FIELDS

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 00 CF

It can be easily understood if to imagine decimal numeral system and number 23. 23 can be easily divided by 10 just by
dropping last digit (3—is division remainder). 2 is leaving a�er operation as a quotient.

The same story about multiplication. Multiplication by 4 is just shi�ing the number to the le� by 2 bits, while inserting 2
zero bits at right (as the last two bits). It is just like to multiply 3 by 100—we need just to add two zeroes at the right.

17.3.2 ARM + Optimizing Xcode (LLVM) + ARMmode

Listing 17.21: Optimizing Xcode (LLVM) + ARMmode
MOV R1, R0
MOV R0, #0
MOV R2, #1
MOV R3, R0

loc_2E54
TST R1, R2,LSL R3 ; set flags according to R1 & (R2<<R3)
ADD R3, R3, #1 ; R3++
ADDNE R0, R0, #1 ; if ZF flag is cleared by TST, R0++
CMP R3, #32
BNE loc_2E54
BX LR

TST is the same things as TEST in x86.
As I mentioned before (14.2.1), there are no separate shi�ing instructions in ARMmode. However, there are modifiers LSL

(Logical Shi� Le�), LSR (Logical Shi� Right), ASR (Arithmetic Shi� Right), ROR (Rotate Right) and RRX (Rotate Right with Extend)
, which may be added to such instructions as MOV, TST, CMP, ADD, SUB, RSB6.

These modificators are defines, how to shi� second operand and by howmany bits.
Thus “TST R1, R2,LSL R3” instruction works here as𝑅1 ∧ (𝑅2 ≪ 𝑅3).

17.3.3 ARM + Optimizing Xcode (LLVM) + thumb-2 mode
Almost the same, but here are two LSL.W/TST instructions are used instead of single TST, because, in thumbmode, it is not
possible to define LSLmodifier right in TST.

MOV R1, R0
MOVS R0, #0
MOV.W R9, #1
MOVS R3, #0

loc_2F7A
LSL.W R2, R9, R3
TST R2, R1
ADD.W R3, R3, #1
IT NE
ADDNE R0, #1
CMP R3, #32
BNE loc_2F7A
BX LR

17.4 CRC32 calculation example
This is very popular table-based CRC32 hash calculation technique7.

6These instructions are also called “data processing instructions”
7Source code was taken here: http://burtleburtle.net/bob/c/crc.c

146

http://burtleburtle.net/bob/c/crc.c

17.4. CRC32 CALCULATION EXAMPLE CHAPTER 17. BIT FIELDS

/* By Bob Jenkins, (c) 2006, Public Domain */

#include <stdio.h>
#include <stddef.h>
#include <string.h>

typedef unsigned long ub4;
typedef unsigned char ub1;

static const ub4 crctab[256] = {
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d,

};

/* how to derive the values in crctab[] from polynomial 0xedb88320 */
void build_table()
{

ub4 i, j;
for (i=0; i<256; ++i) {

147

17.4. CRC32 CALCULATION EXAMPLE CHAPTER 17. BIT FIELDS
j = i;
j = (j>>1) ^ ((j&1) ? 0xedb88320 : 0);
j = (j>>1) ^ ((j&1) ? 0xedb88320 : 0);
j = (j>>1) ^ ((j&1) ? 0xedb88320 : 0);
j = (j>>1) ^ ((j&1) ? 0xedb88320 : 0);
j = (j>>1) ^ ((j&1) ? 0xedb88320 : 0);
j = (j>>1) ^ ((j&1) ? 0xedb88320 : 0);
j = (j>>1) ^ ((j&1) ? 0xedb88320 : 0);
j = (j>>1) ^ ((j&1) ? 0xedb88320 : 0);
printf("0x%.8lx, ", j);
if (i%6 == 5) printf("\n");

}
}

/* the hash function */
ub4 crc(const void *key, ub4 len, ub4 hash)
{

ub4 i;
const ub1 *k = key;
for (hash=len, i=0; i<len; ++i)

hash = (hash >> 8) ^ crctab[(hash & 0xff) ^ k[i]];
return hash;

}

/* To use, try "gcc -O crc.c -o crc; crc < crc.c" */
int main()
{

char s[1000];
while (gets(s)) printf("%.8lx\n", crc(s, strlen(s), 0));
return 0;

}

We are interesting in the crc() function only. By the way, pay attention to two loop initializers in the for() statement:
hash=len, i=0. C/C++ standard allows this, of course. Emitted code will contain two operations in loop initialization part
instead of usual one.

Let’s compile it in MSVC with optimization (/Ox). For the sake of brevity, only crc() function is listed here, with my
comments.

_key$ = 8 ; size = 4
_len$ = 12 ; size = 4
_hash$ = 16 ; size = 4
_crc PROC

mov edx, DWORD PTR _len$[esp-4]
xor ecx, ecx ; i will be stored in ECX
mov eax, edx
test edx, edx
jbe SHORT $LN1@crc
push ebx
push esi
mov esi, DWORD PTR _key$[esp+4] ; ESI = key
push edi

$LL3@crc:

; work with bytes using only 32-bit registers. byte from address key+i we store into EDI

movzx edi, BYTE PTR [ecx+esi]
mov ebx, eax ; EBX = (hash = len)
and ebx, 255 ; EBX = hash & 0xff

; XOR EDI, EBX (EDI=EDI^EBX) - this operation uses all 32 bits of each register
; but other bits (8-31) are cleared all time, so it’s OK

148

17.4. CRC32 CALCULATION EXAMPLE CHAPTER 17. BIT FIELDS
; these are cleared because, as for EDI, it was done by MOVZX instruction above
; high bits of EBX was cleared by AND EBX, 255 instruction above (255 = 0xff)

xor edi, ebx

; EAX=EAX>>8; bits 24-31 taken "from nowhere" will be cleared
shr eax, 8

; EAX=EAX^crctab[EDI*4] - choose EDI-th element from crctab[] table
xor eax, DWORD PTR _crctab[edi*4]
inc ecx ; i++
cmp ecx, edx ; i<len ?
jb SHORT $LL3@crc ; yes
pop edi
pop esi
pop ebx

$LN1@crc:
ret 0

_crc ENDP

Let’s try the same in GCC 4.4.1 with -O3 option:

public crc
crc proc near

key = dword ptr 8
hash = dword ptr 0Ch

push ebp
xor edx, edx
mov ebp, esp
push esi
mov esi, [ebp+key]
push ebx
mov ebx, [ebp+hash]
test ebx, ebx
mov eax, ebx
jz short loc_80484D3
nop ; padding
lea esi, [esi+0] ; padding; ESI doesn’t changing here

loc_80484B8:
mov ecx, eax ; save previous state of hash to ECX
xor al, [esi+edx] ; AL=*(key+i)
add edx, 1 ; i++
shr ecx, 8 ; ECX=hash>>8
movzx eax, al ; EAX=*(key+i)
mov eax, dword ptr ds:crctab[eax*4] ; EAX=crctab[EAX]
xor eax, ecx ; hash=EAX^ECX
cmp ebx, edx
ja short loc_80484B8

loc_80484D3:
pop ebx
pop esi
pop ebp
retn

crc endp
\

GCC aligned loop start on a 8-byte boundary by adding NOP and lea esi, [esi+0] (that is the idle operation too). Read
more about it in npad section (61).

149

CHAPTER 18. STRUCTURES

Chapter 18

Structures

It can be defined the C/C++ structure, with some assumptions, just a set of variables, always stored in memory together, not
necessary of the same type 1.

18.1 SYSTEMTIME example
Let’s take SYSTEMTIME2 win32 structure describing time.

That’s how it is defined:

Listing 18.1: WinBase.h
typedef struct _SYSTEMTIME {

WORD wYear;
WORD wMonth;
WORD wDayOfWeek;
WORD wDay;
WORD wHour;
WORD wMinute;
WORD wSecond;
WORD wMilliseconds;

} SYSTEMTIME, *PSYSTEMTIME;

Let’s write a C function to get current time:

#include <windows.h>
#include <stdio.h>

void main()
{

SYSTEMTIME t;
GetSystemTime (&t);

printf ("%04d-%02d-%02d %02d:%02d:%02d\n",
t.wYear, t.wMonth, t.wDay,
t.wHour, t.wMinute, t.wSecond);

return;
};

We got (MSVC 2010):

Listing 18.2: MSVC 2010
_t$ = -16 ; size = 16
_main PROC

push ebp
mov ebp, esp

1AKA “heterogeneous container”
2MSDN: SYSTEMTIME structure

150

http://msdn.microsoft.com/en-us/library/ms724950(VS.85).aspx

18.1. SYSTEMTIME EXAMPLE CHAPTER 18. STRUCTURES
sub esp, 16 ; 00000010H
lea eax, DWORD PTR _t$[ebp]
push eax
call DWORD PTR __imp__GetSystemTime@4
movzx ecx, WORD PTR _t$[ebp+12] ; wSecond
push ecx
movzx edx, WORD PTR _t$[ebp+10] ; wMinute
push edx
movzx eax, WORD PTR _t$[ebp+8] ; wHour
push eax
movzx ecx, WORD PTR _t$[ebp+6] ; wDay
push ecx
movzx edx, WORD PTR _t$[ebp+2] ; wMonth
push edx
movzx eax, WORD PTR _t$[ebp] ; wYear
push eax
push OFFSET $SG78811 ; ’%04d-%02d-%02d %02d:%02d:%02d’, 0aH, 00H
call _printf
add esp, 28 ; 0000001cH
xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP

16 bytes are allocated for this structure in local stack —that is exactly sizeof(WORD)*8 (there are 8 WORD variables in
the structure).

Pay attention to the fact the structure beginning with wYear field. It can be said, an pointer to SYSTEMTIME structure
is passed to the GetSystemTime()3, but it is also can be said, pointer to the wYear field is passed, and that is the same!
GetSystemTime()writes current year to theWORDpointer pointing to, then shi�s 2 bytes ahead, thenwrites currentmonth,
etc, etc.

The fact the structure fields are just variables located side-by-side, I candemonstrate by the following technique. Keeping
in ming SYSTEMTIME structure description, I can rewrite this simple example like this:

#include <windows.h>
#include <stdio.h>

void main()
{

WORD array[8];
GetSystemTime (array);

printf ("%04d-%02d-%02d %02d:%02d:%02d\n",
array[0] /* wYear */, array[1] /* wMonth */, array[3] /* wDay */,
array[4] /* wHour */, array[5] /* wMinute */, array[6] /* wSecond */);

return;
};

Compiler will grumble for a little:

systemtime2.c(7) : warning C4133: ’function’ : incompatible types - from ’WORD [8]’ to ’
LPSYSTEMTIME’

But nevertheless, it will produce this code:

Listing 18.3: MSVC 2010
$SG78573 DB ’%04d-%02d-%02d %02d:%02d:%02d’, 0aH, 00H

_array$ = -16 ; size = 16
_main PROC

3MSDN: SYSTEMTIME structure

151

http://msdn.microsoft.com/en-us/library/ms724950(VS.85).aspx

18.2. LET’S ALLOCATE SPACE FOR STRUCTURE USING MALLOC() CHAPTER 18. STRUCTURES
push ebp
mov ebp, esp
sub esp, 16 ; 00000010H
lea eax, DWORD PTR _array$[ebp]
push eax
call DWORD PTR __imp__GetSystemTime@4
movzx ecx, WORD PTR _array$[ebp+12] ; wSecond
push ecx
movzx edx, WORD PTR _array$[ebp+10] ; wMinute
push edx
movzx eax, WORD PTR _array$[ebp+8] ; wHoure
push eax
movzx ecx, WORD PTR _array$[ebp+6] ; wDay
push ecx
movzx edx, WORD PTR _array$[ebp+2] ; wMonth
push edx
movzx eax, WORD PTR _array$[ebp] ; wYear
push eax
push OFFSET $SG78573
call _printf
add esp, 28 ; 0000001cH
xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP

And it works just as the same!
It is very interesting fact the result in assembly form cannot be distinguished from the result of previous compilation. So

by looking at this code, one cannot say for sure, was there structure declared, or just pack of variables.
Nevertheless, no one will do it in sane state of mind. Since it is not convenient. Also structure fields may be changed by

developers, swapped, etc.

18.2 Let’s allocate space for structure using malloc()

However, sometimes it is simpler to place structures not in local stack, but in heap:

#include <windows.h>
#include <stdio.h>

void main()
{

SYSTEMTIME *t;

t=(SYSTEMTIME *)malloc (sizeof (SYSTEMTIME));

GetSystemTime (t);

printf ("%04d-%02d-%02d %02d:%02d:%02d\n",
t->wYear, t->wMonth, t->wDay,
t->wHour, t->wMinute, t->wSecond);

free (t);

return;
};

Let’s compile it now with optimization (/Ox) so to easily see what we need.

Listing 18.4: Optimizing MSVC
_main PROC

152

18.2. LET’S ALLOCATE SPACE FOR STRUCTURE USING MALLOC() CHAPTER 18. STRUCTURES
push esi
push 16 ; 00000010H
call _malloc
add esp, 4
mov esi, eax
push esi
call DWORD PTR __imp__GetSystemTime@4
movzx eax, WORD PTR [esi+12] ; wSecond
movzx ecx, WORD PTR [esi+10] ; wMinute
movzx edx, WORD PTR [esi+8] ; wHour
push eax
movzx eax, WORD PTR [esi+6] ; wDay
push ecx
movzx ecx, WORD PTR [esi+2] ; wMonth
push edx
movzx edx, WORD PTR [esi] ; wYear
push eax
push ecx
push edx
push OFFSET $SG78833
call _printf
push esi
call _free
add esp, 32 ; 00000020H
xor eax, eax
pop esi
ret 0

_main ENDP

So, sizeof(SYSTEMTIME) = 16, that is exact number of bytes to be allocated by malloc(). It returns the pointer to
freshly allocatedmemory block in the EAX register, which is thenmoved into the ESI register. GetSystemTime()win32 func-
tion undertake to save value in the ESI, and that is why it is not saved here and continue to be used a�er GetSystemTime()
call.

New instruction—MOVZX (Movewith Zero eXtent). It may be used almost in those cases as MOVSX (13.1), but, it clears other
bits to 0. That’s because printf() requires 32-bit int, butwe gotWORD in structure—that is 16-bit unsigned type. That’swhy
by copying value fromWORD into int, bits from 16 to 31 must also be cleared, because there will be random noise otherwise,
leaved there from previous operations on registers.

In this example, I can represent structure as array of WORD-s:

#include <windows.h>
#include <stdio.h>

void main()
{

WORD *t;

t=(WORD *)malloc (16);

GetSystemTime (t);

printf ("%04d-%02d-%02d %02d:%02d:%02d\n",
t[0] /* wYear */, t[1] /* wMonth */, t[3] /* wDay */,
t[4] /* wHour */, t[5] /* wMinute */, t[6] /* wSecond */);

free (t);

return;
};

We got:

Listing 18.5: Optimizing MSVC

153

18.3. STRUCT TM CHAPTER 18. STRUCTURES
$SG78594 DB ’%04d-%02d-%02d %02d:%02d:%02d’, 0aH, 00H

_main PROC
push esi
push 16 ; 00000010H
call _malloc
add esp, 4
mov esi, eax
push esi
call DWORD PTR __imp__GetSystemTime@4
movzx eax, WORD PTR [esi+12]
movzx ecx, WORD PTR [esi+10]
movzx edx, WORD PTR [esi+8]
push eax
movzx eax, WORD PTR [esi+6]
push ecx
movzx ecx, WORD PTR [esi+2]
push edx
movzx edx, WORD PTR [esi]
push eax
push ecx
push edx
push OFFSET $SG78594
call _printf
push esi
call _free
add esp, 32 ; 00000020H
xor eax, eax
pop esi
ret 0

_main ENDP

Again, we got the code cannot be distinguished from the previous. And again I should note, one should not do this in
practice.

18.3 struct tm

18.3.1 Linux
As of Linux, let’s take tm structure from time.h for example:

#include <stdio.h>
#include <time.h>

void main()
{

struct tm t;
time_t unix_time;

unix_time=time(NULL);

localtime_r (&unix_time, &t);

printf ("Year: %d\n", t.tm_year+1900);
printf ("Month: %d\n", t.tm_mon);
printf ("Day: %d\n", t.tm_mday);
printf ("Hour: %d\n", t.tm_hour);
printf ("Minutes: %d\n", t.tm_min);
printf ("Seconds: %d\n", t.tm_sec);

};

Let’s compile it in GCC 4.4.1:

154

18.3. STRUCT TM CHAPTER 18. STRUCTURES
Listing 18.6: GCC 4.4.1

main proc near
push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 40h
mov dword ptr [esp], 0 ; first argument for time()
call time
mov [esp+3Ch], eax
lea eax, [esp+3Ch] ; take pointer to what time() returned
lea edx, [esp+10h] ; at ESP+10h struct tm will begin
mov [esp+4], edx ; pass pointer to the structure begin
mov [esp], eax ; pass pointer to result of time()
call localtime_r
mov eax, [esp+24h] ; tm_year
lea edx, [eax+76Ch] ; edx=eax+1900
mov eax, offset format ; "Year: %d\n"
mov [esp+4], edx
mov [esp], eax
call printf
mov edx, [esp+20h] ; tm_mon
mov eax, offset aMonthD ; "Month: %d\n"
mov [esp+4], edx
mov [esp], eax
call printf
mov edx, [esp+1Ch] ; tm_mday
mov eax, offset aDayD ; "Day: %d\n"
mov [esp+4], edx
mov [esp], eax
call printf
mov edx, [esp+18h] ; tm_hour
mov eax, offset aHourD ; "Hour: %d\n"
mov [esp+4], edx
mov [esp], eax
call printf
mov edx, [esp+14h] ; tm_min
mov eax, offset aMinutesD ; "Minutes: %d\n"
mov [esp+4], edx
mov [esp], eax
call printf
mov edx, [esp+10h]
mov eax, offset aSecondsD ; "Seconds: %d\n"
mov [esp+4], edx ; tm_sec
mov [esp], eax
call printf
leave
retn

main endp

Somehow, IDA did not created local variables names in local stack. But since we already experienced reverse engineers
:-) we may do it without this information in this simple example.

Please also pay attention to the lea edx, [eax+76Ch]—this instruction just adding 0x76C to value in the EAX, but not
modifies any flags. See also relevant section about LEA (80.6.2).

In order to illustrate the structure is just variables laying side-by-side in one place, let’s rework example, while looking at
the file time.h:

Listing 18.7: time.h
struct tm
{

int tm_sec;
int tm_min;

155

18.3. STRUCT TM CHAPTER 18. STRUCTURES
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

};

#include <stdio.h>
#include <time.h>

void main()
{

int tm_sec, tm_min, tm_hour, tm_mday, tm_mon, tm_year, tm_wday, tm_yday, tm_isdst;
time_t unix_time;

unix_time=time(NULL);

localtime_r (&unix_time, &tm_sec);

printf ("Year: %d\n", tm_year+1900);
printf ("Month: %d\n", tm_mon);
printf ("Day: %d\n", tm_mday);
printf ("Hour: %d\n", tm_hour);
printf ("Minutes: %d\n", tm_min);
printf ("Seconds: %d\n", tm_sec);

};

N.B. The pointer to the exactly tm_sec field is passed into localtime_r, i.e., to the first “structure” element.
Compiler will warn us:

Listing 18.8: GCC 4.7.3
GCC_tm2.c: In function ’main’:
GCC_tm2.c:11:5: warning: passing argument 2 of ’localtime_r’ from incompatible pointer type [

enabled by default]
In file included from GCC_tm2.c:2:0:
/usr/include/time.h:59:12: note: expected ’struct tm *’ but argument is of type ’int *’

But nevertheless, will generate this:

Listing 18.9: GCC 4.7.3
main proc near

var_30 = dword ptr -30h
var_2C = dword ptr -2Ch
unix_time = dword ptr -1Ch
tm_sec = dword ptr -18h
tm_min = dword ptr -14h
tm_hour = dword ptr -10h
tm_mday = dword ptr -0Ch
tm_mon = dword ptr -8
tm_year = dword ptr -4

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 30h
call __main
mov [esp+30h+var_30], 0 ; arg 0
call time

156

18.3. STRUCT TM CHAPTER 18. STRUCTURES
mov [esp+30h+unix_time], eax
lea eax, [esp+30h+tm_sec]
mov [esp+30h+var_2C], eax
lea eax, [esp+30h+unix_time]
mov [esp+30h+var_30], eax
call localtime_r
mov eax, [esp+30h+tm_year]
add eax, 1900
mov [esp+30h+var_2C], eax
mov [esp+30h+var_30], offset aYearD ; "Year: %d\n"
call printf
mov eax, [esp+30h+tm_mon]
mov [esp+30h+var_2C], eax
mov [esp+30h+var_30], offset aMonthD ; "Month: %d\n"
call printf
mov eax, [esp+30h+tm_mday]
mov [esp+30h+var_2C], eax
mov [esp+30h+var_30], offset aDayD ; "Day: %d\n"
call printf
mov eax, [esp+30h+tm_hour]
mov [esp+30h+var_2C], eax
mov [esp+30h+var_30], offset aHourD ; "Hour: %d\n"
call printf
mov eax, [esp+30h+tm_min]
mov [esp+30h+var_2C], eax
mov [esp+30h+var_30], offset aMinutesD ; "Minutes: %d\n"
call printf
mov eax, [esp+30h+tm_sec]
mov [esp+30h+var_2C], eax
mov [esp+30h+var_30], offset aSecondsD ; "Seconds: %d\n"
call printf
leave
retn

main endp

This code is identical to what we saw previously and it is not possible to say, was it structure in original source code or
just pack of variables.

And this works. However, it is not recommended to do this in practice. Usually, compiler allocated variables in local stack
in the same order as they were declared in function. Nevertheless, there is no any guarantee.

By the way, some other compiler may warn the tm_year, tm_mon, tm_mday, tm_hour, tm_min variables, but not tm_sec
are used without being initialized. Indeed, compiler do not know these will be filled when calling to localtime_r().

I chose exactly this example for illustration, since all structure fields has int type, and SYSTEMTIME structure fields —16-
bit WORD, and if to declare them as a local variables, they will be aligned on a 32-bit border, and nothing will work (because
GetSystemTime()will fill them incorrectly). Readmore about it in next section: “Fields packing in structure”.

So, structure is just variables pack laying ononeplace, side-by-side. I could say the structure is a syntactic sugar, directing
compiler to hold them in one place. However, I’m not programming languages expert, so, most likely, I’m wrong with this
term. By the way, there were a times, in very early C versions (before 1972), in which there were no structures at all [29].

18.3.2 ARM + Optimizing Keil + thumbmode
Same example:

Listing 18.10: Optimizing Keil + thumbmode
var_38 = -0x38
var_34 = -0x34
var_30 = -0x30
var_2C = -0x2C
var_28 = -0x28
var_24 = -0x24
timer = -0xC

157

18.3. STRUCT TM CHAPTER 18. STRUCTURES
PUSH {LR}
MOVS R0, #0 ; timer
SUB SP, SP, #0x34
BL time
STR R0, [SP,#0x38+timer]
MOV R1, SP ; tp
ADD R0, SP, #0x38+timer ; timer
BL localtime_r
LDR R1, =0x76C
LDR R0, [SP,#0x38+var_24]
ADDS R1, R0, R1
ADR R0, aYearD ; "Year: %d\n"
BL __2printf
LDR R1, [SP,#0x38+var_28]
ADR R0, aMonthD ; "Month: %d\n"
BL __2printf
LDR R1, [SP,#0x38+var_2C]
ADR R0, aDayD ; "Day: %d\n"
BL __2printf
LDR R1, [SP,#0x38+var_30]
ADR R0, aHourD ; "Hour: %d\n"
BL __2printf
LDR R1, [SP,#0x38+var_34]
ADR R0, aMinutesD ; "Minutes: %d\n"
BL __2printf
LDR R1, [SP,#0x38+var_38]
ADR R0, aSecondsD ; "Seconds: %d\n"
BL __2printf
ADD SP, SP, #0x34
POP {PC}

18.3.3 ARM + Optimizing Xcode (LLVM) + thumb-2 mode
IDA “get to know” tm structure (because IDA “knows” argument types of library functions like localtime_r()), so it shows
here structure elements accesses and also names are assigned to them.

Listing 18.11: Optimizing Xcode (LLVM) + thumb-2 mode
var_38 = -0x38
var_34 = -0x34

PUSH {R7,LR}
MOV R7, SP
SUB SP, SP, #0x30
MOVS R0, #0 ; time_t *
BLX _time
ADD R1, SP, #0x38+var_34 ; struct tm *
STR R0, [SP,#0x38+var_38]
MOV R0, SP ; time_t *
BLX _localtime_r
LDR R1, [SP,#0x38+var_34.tm_year]
MOV R0, 0xF44 ; "Year: %d\n"
ADD R0, PC ; char *
ADDW R1, R1, #0x76C
BLX _printf
LDR R1, [SP,#0x38+var_34.tm_mon]
MOV R0, 0xF3A ; "Month: %d\n"
ADD R0, PC ; char *
BLX _printf
LDR R1, [SP,#0x38+var_34.tm_mday]
MOV R0, 0xF35 ; "Day: %d\n"

158

18.4. FIELDS PACKING IN STRUCTURE CHAPTER 18. STRUCTURES
ADD R0, PC ; char *
BLX _printf
LDR R1, [SP,#0x38+var_34.tm_hour]
MOV R0, 0xF2E ; "Hour: %d\n"
ADD R0, PC ; char *
BLX _printf
LDR R1, [SP,#0x38+var_34.tm_min]
MOV R0, 0xF28 ; "Minutes: %d\n"
ADD R0, PC ; char *
BLX _printf
LDR R1, [SP,#0x38+var_34]
MOV R0, 0xF25 ; "Seconds: %d\n"
ADD R0, PC ; char *
BLX _printf
ADD SP, SP, #0x30
POP {R7,PC}

...

00000000 tm struc ; (sizeof=0x2C, standard type)
00000000 tm_sec DCD ?
00000004 tm_min DCD ?
00000008 tm_hour DCD ?
0000000C tm_mday DCD ?
00000010 tm_mon DCD ?
00000014 tm_year DCD ?
00000018 tm_wday DCD ?
0000001C tm_yday DCD ?
00000020 tm_isdst DCD ?
00000024 tm_gmtoff DCD ?
00000028 tm_zone DCD ? ; offset
0000002C tm ends

18.4 Fields packing in structure

One important thing is fields packing in structures4.
Let’s take a simple example:

#include <stdio.h>

struct s
{

char a;
int b;
char c;
int d;

};

void f(struct s s)
{

printf ("a=%d; b=%d; c=%d; d=%d\n", s.a, s.b, s.c, s.d);
};

As we see, we have two char fields (each is exactly one byte) and twomore —int (each - 4 bytes).

18.4.1 x86
That’s all compiling into:

4See also: Wikipedia: Data structure alignment

159

http://en.wikipedia.org/wiki/Data_structure_alignment

18.4. FIELDS PACKING IN STRUCTURE CHAPTER 18. STRUCTURES

_s$ = 8 ; size = 16
?f@@YAXUs@@@Z PROC ; f

push ebp
mov ebp, esp
mov eax, DWORD PTR _s$[ebp+12]
push eax
movsx ecx, BYTE PTR _s$[ebp+8]
push ecx
mov edx, DWORD PTR _s$[ebp+4]
push edx
movsx eax, BYTE PTR _s$[ebp]
push eax
push OFFSET $SG3842
call _printf
add esp, 20 ; 00000014H
pop ebp
ret 0

?f@@YAXUs@@@Z ENDP ; f
_TEXT ENDS

As we can see, each field’s address is aligned on a 4-bytes border. That’s why each char occupies 4 bytes here (like int).
Why? Thus it is easier for CPU to access memory at aligned addresses and to cache data from it.

However, it is not very economical in size sense.
Let’s try to compile it with option (/Zp1) (/Zp[n] pack structures on n-byte boundary).

Listing 18.12: MSVC /Zp1
_TEXT SEGMENT
_s$ = 8 ; size = 10
?f@@YAXUs@@@Z PROC ; f

push ebp
mov ebp, esp
mov eax, DWORD PTR _s$[ebp+6]
push eax
movsx ecx, BYTE PTR _s$[ebp+5]
push ecx
mov edx, DWORD PTR _s$[ebp+1]
push edx
movsx eax, BYTE PTR _s$[ebp]
push eax
push OFFSET $SG3842
call _printf
add esp, 20 ; 00000014H
pop ebp
ret 0

?f@@YAXUs@@@Z ENDP ; f

Now the structure takes only 10 bytes and each char value takes 1 byte. What it give to us? Size economy. And as draw-
back —CPU will access these fields without maximal performance it can.

As it can be easily guessed, if the structure is used in many source and object files, all these must be compiled with the
same convention about structures packing.

Aside from MSVC /Zp option which set how to align each structure field, here is also #pragma pack compiler option, it
can be defined right in source code. It is available in both MSVC5and GCC6.

Let’s back to the SYSTEMTIME structure consisting in 16-bit fields. How our compiler know to pack them on 1-byte align-
ment boundary?

WinNT.h file has this:

Listing 18.13: WinNT.h
#include "pshpack1.h"

5MSDN: Working with Packing Structures
6Structure-Packing Pragmas

160

http://msdn.microsoft.com/en-us/library/ms253935.aspx
http://gcc.gnu.org/onlinedocs/gcc/Structure_002dPacking-Pragmas.html

18.4. FIELDS PACKING IN STRUCTURE CHAPTER 18. STRUCTURES
And this:

Listing 18.14: WinNT.h
#include "pshpack4.h" // 4 byte packing is the default

The file PshPack1.h looks like:

Listing 18.15: PshPack1.h
#if ! (defined(lint) || defined(RC_INVOKED))
#if (_MSC_VER >= 800 && !defined(_M_I86)) || defined(_PUSHPOP_SUPPORTED)
#pragma warning(disable:4103)
#if !(defined(MIDL_PASS)) || defined(__midl)
#pragma pack(push,1)
#else
#pragma pack(1)
#endif
#else
#pragma pack(1)
#endif
#endif /* ! (defined(lint) || defined(RC_INVOKED)) */

That’s how compiler will pack structures defined a�er #pragma pack.

18.4.2 ARM + Optimizing Keil + thumbmode

Listing 18.16: Optimizing Keil + thumbmode
.text:0000003E exit ; CODE XREF: f+16
.text:0000003E 05 B0 ADD SP, SP, #0x14
.text:00000040 00 BD POP {PC}

.text:00000280 f

.text:00000280

.text:00000280 var_18 = -0x18

.text:00000280 a = -0x14

.text:00000280 b = -0x10

.text:00000280 c = -0xC

.text:00000280 d = -8

.text:00000280

.text:00000280 0F B5 PUSH {R0-R3,LR}

.text:00000282 81 B0 SUB SP, SP, #4

.text:00000284 04 98 LDR R0, [SP,#16] ; d

.text:00000286 02 9A LDR R2, [SP,#8] ; b

.text:00000288 00 90 STR R0, [SP]

.text:0000028A 68 46 MOV R0, SP

.text:0000028C 03 7B LDRB R3, [R0,#12] ; c

.text:0000028E 01 79 LDRB R1, [R0,#4] ; a

.text:00000290 59 A0 ADR R0, aADBDCDDD ; "a=%d; b=%d; c=%d; d=%d\n"

.text:00000292 05 F0 AD FF BL __2printf

.text:00000296 D2 E6 B exit

As wemay recall, here a structure passed instead of pointer to structure, and since first 4 function arguments in ARM are
passed via registers, so then structure fields are passed via R0-R3.

LDRB loads one byte from memory and extending it to 32-bit, taking into account its sign. This is akin to MOVSX (13.1)
instruction in x86. Here it is used for loading fields 𝑎 and 𝑐 from structure.

Onemore thingwe spot easily, instead of function epilogue, here is jump to another function’s epilogue! Indeed, thatwas
quite di�erent function, not related in anyway to our function, however, it has exactly the same epilogue (probably because,
it hold 5 local variables too (5 * 4 = 0𝑥14)). Also it is located nearly (take a look on addresses). Indeed, there is no di�erence,
which epilogue to execute, if it works just aswe need. Apparently, Keil decides to reuse a part of another function by a reason
of economy. Epilogue takes 4 bytes while jump—only 2.

161

18.5. NESTED STRUCTURES CHAPTER 18. STRUCTURES
18.4.3 ARM + Optimizing Xcode (LLVM) + thumb-2 mode

Listing 18.17: Optimizing Xcode (LLVM) + thumb-2 mode
var_C = -0xC

PUSH {R7,LR}
MOV R7, SP
SUB SP, SP, #4
MOV R9, R1 ; b
MOV R1, R0 ; a
MOVW R0, #0xF10 ; "a=%d; b=%d; c=%d; d=%d\n"
SXTB R1, R1 ; prepare a
MOVT.W R0, #0
STR R3, [SP,#0xC+var_C] ; place d to stack for printf()
ADD R0, PC ; format-string
SXTB R3, R2 ; prepare c
MOV R2, R9 ; b
BLX _printf
ADD SP, SP, #4
POP {R7,PC}

SXTB (Signed Extend Byte) is analogous to MOVSX (13.1) in x86 as well, but works not with memory, but with register. All
the rest —just the same.

18.5 Nested structures

Nowwhat about situations when one structure defines another structure inside?

#include <stdio.h>

struct inner_struct
{

int a;
int b;

};

struct outer_struct
{

char a;
int b;
struct inner_struct c;
char d;
int e;

};

void f(struct outer_struct s)
{

printf ("a=%d; b=%d; c.a=%d; c.b=%d; d=%d; e=%d\n",
s.a, s.b, s.c.a, s.c.b, s.d, s.e);

};

. . . in this case, both inner_struct fields will be placed between a,b and d,e fields of outer_struct.
Let’s compile (MSVC 2010):

Listing 18.18: MSVC 2010
_s$ = 8 ; size = 24
_f PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _s$[ebp+20] ; e
push eax

162

18.6. BIT FIELDS IN STRUCTURE CHAPTER 18. STRUCTURES
movsx ecx, BYTE PTR _s$[ebp+16] ; d
push ecx
mov edx, DWORD PTR _s$[ebp+12] ; c.b
push edx
mov eax, DWORD PTR _s$[ebp+8] ; c.a
push eax
mov ecx, DWORD PTR _s$[ebp+4] ; b
push ecx
movsx edx, BYTE PTR _s$[ebp] ;a
push edx
push OFFSET $SG2466
call _printf
add esp, 28 ; 0000001cH
pop ebp
ret 0

_f ENDP

One curious point here is that by looking onto this assembly code, we do not even see that another structure was used
inside of it! Thus, we would say, nested structures are finally unfolds into linear or one-dimensional structure.

Of course, if to replace struct inner_struct c; declaration to struct inner_struct *c; (thus making a pointer
here) situation will be quite di�erent.

18.6 Bit fields in structure

18.6.1 CPUID example
C/C++ language allow to define exact number of bits for each structure fields. It is very useful if one needs to save memory
space. For example, one bit is enough for variable of bool type. But of course, it is not rational if speed is important.

Let’s consider CPUID7instruction example. This instruction returning information about current CPU and its features.
If the EAX is set to 1 before instruction execution, CPUIDwill return this information packed into the EAX register:

3:0 Stepping
7:4 Model
11:8 Family
13:12 Processor Type
19:16 Extended Model
27:20 Extended Family

MSVC 2010 has CPUIDmacro, but GCC 4.4.1 —has not. So let’s make this function by yourself for GCC with the help of its
built-in assembler8.

#include <stdio.h>

#ifdef __GNUC__
static inline void cpuid(int code, int *a, int *b, int *c, int *d) {

asm volatile("cpuid":"=a"(*a),"=b"(*b),"=c"(*c),"=d"(*d):"a"(code));
}
#endif

#ifdef _MSC_VER
#include <intrin.h>
#endif

struct CPUID_1_EAX
{

unsigned int stepping:4;
unsigned int model:4;
unsigned int family_id:4;
unsigned int processor_type:2;

7http://en.wikipedia.org/wiki/CPUID
8More about internal GCC assembler

163

http://en.wikipedia.org/wiki/CPUID
http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html

18.6. BIT FIELDS IN STRUCTURE CHAPTER 18. STRUCTURES
unsigned int reserved1:2;
unsigned int extended_model_id:4;
unsigned int extended_family_id:8;
unsigned int reserved2:4;

};

int main()
{

struct CPUID_1_EAX *tmp;
int b[4];

#ifdef _MSC_VER
__cpuid(b,1);

#endif

#ifdef __GNUC__
cpuid (1, &b[0], &b[1], &b[2], &b[3]);

#endif

tmp=(struct CPUID_1_EAX *)&b[0];

printf ("stepping=%d\n", tmp->stepping);
printf ("model=%d\n", tmp->model);
printf ("family_id=%d\n", tmp->family_id);
printf ("processor_type=%d\n", tmp->processor_type);
printf ("extended_model_id=%d\n", tmp->extended_model_id);
printf ("extended_family_id=%d\n", tmp->extended_family_id);

return 0;
};

A�er CPUID will fill EAX/EBX/ECX/EDX, these registers will be reflected in the b[] array. Then, we have a pointer to the
CPUID_1_EAX structure and we point it to the value in the EAX from b[] array.

In other words, we treat 32-bit int value as a structure.
Then we read from the stucture.
Let’s compile it in MSVC 2008 with /Ox option:

Listing 18.19: Optimizing MSVC 2008
_b$ = -16 ; size = 16
_main PROC

sub esp, 16 ; 00000010H
push ebx

xor ecx, ecx
mov eax, 1
cpuid
push esi
lea esi, DWORD PTR _b$[esp+24]
mov DWORD PTR [esi], eax
mov DWORD PTR [esi+4], ebx
mov DWORD PTR [esi+8], ecx
mov DWORD PTR [esi+12], edx

mov esi, DWORD PTR _b$[esp+24]
mov eax, esi
and eax, 15 ; 0000000fH
push eax
push OFFSET $SG15435 ; ’stepping=%d’, 0aH, 00H
call _printf

mov ecx, esi

164

18.6. BIT FIELDS IN STRUCTURE CHAPTER 18. STRUCTURES
shr ecx, 4
and ecx, 15 ; 0000000fH
push ecx
push OFFSET $SG15436 ; ’model=%d’, 0aH, 00H
call _printf

mov edx, esi
shr edx, 8
and edx, 15 ; 0000000fH
push edx
push OFFSET $SG15437 ; ’family_id=%d’, 0aH, 00H
call _printf

mov eax, esi
shr eax, 12 ; 0000000cH
and eax, 3
push eax
push OFFSET $SG15438 ; ’processor_type=%d’, 0aH, 00H
call _printf

mov ecx, esi
shr ecx, 16 ; 00000010H
and ecx, 15 ; 0000000fH
push ecx
push OFFSET $SG15439 ; ’extended_model_id=%d’, 0aH, 00H
call _printf

shr esi, 20 ; 00000014H
and esi, 255 ; 000000ffH
push esi
push OFFSET $SG15440 ; ’extended_family_id=%d’, 0aH, 00H
call _printf
add esp, 48 ; 00000030H
pop esi

xor eax, eax
pop ebx

add esp, 16 ; 00000010H
ret 0

_main ENDP

SHR instruction shi�ing value in the EAX register by number of bits must be skipped, e.g., we ignore a bits at right.
AND instruction clears bits not needed at le�, or, in other words, leaves only those bits in the EAX register we need now.
Let’s try GCC 4.4.1 with -O3 option.

Listing 18.20: Optimizing GCC 4.4.1
main proc near ; DATA XREF: _start+17

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
push esi
mov esi, 1
push ebx
mov eax, esi
sub esp, 18h
cpuid
mov esi, eax
and eax, 0Fh
mov [esp+8], eax
mov dword ptr [esp+4], offset aSteppingD ; "stepping=%d\n"

165

18.6. BIT FIELDS IN STRUCTURE CHAPTER 18. STRUCTURES
mov dword ptr [esp], 1
call ___printf_chk
mov eax, esi
shr eax, 4
and eax, 0Fh
mov [esp+8], eax
mov dword ptr [esp+4], offset aModelD ; "model=%d\n"
mov dword ptr [esp], 1
call ___printf_chk
mov eax, esi
shr eax, 8
and eax, 0Fh
mov [esp+8], eax
mov dword ptr [esp+4], offset aFamily_idD ; "family_id=%d\n"
mov dword ptr [esp], 1
call ___printf_chk
mov eax, esi
shr eax, 0Ch
and eax, 3
mov [esp+8], eax
mov dword ptr [esp+4], offset aProcessor_type ; "processor_type=%d\n"
mov dword ptr [esp], 1
call ___printf_chk
mov eax, esi
shr eax, 10h
shr esi, 14h
and eax, 0Fh
and esi, 0FFh
mov [esp+8], eax
mov dword ptr [esp+4], offset aExtended_model ; "extended_model_id=%d\n"
mov dword ptr [esp], 1
call ___printf_chk
mov [esp+8], esi
mov dword ptr [esp+4], offset unk_80486D0
mov dword ptr [esp], 1
call ___printf_chk
add esp, 18h
xor eax, eax
pop ebx
pop esi
mov esp, ebp
pop ebp
retn

main endp

Almost the same. The only thing worth noting is the GCC somehow united calculation of extended_model_id and
extended_family_id into one block, instead of calculating them separately, before corresponding each printf() call.

18.6.2 Working with the float type as with a structure

As it was already noted in section about FPU (15), both float and double types consisted of sign, significand (or fraction) and
exponent. But will we able to work with these fields directly? Let’s try with float.

022233031

S exponent mantissa or fraction

(S—sign)

#include <stdio.h>
#include <assert.h>

166

18.6. BIT FIELDS IN STRUCTURE CHAPTER 18. STRUCTURES
#include <stdlib.h>
#include <memory.h>

struct float_as_struct
{

unsigned int fraction : 23; // fractional part
unsigned int exponent : 8; // exponent + 0x3FF
unsigned int sign : 1; // sign bit

};

float f(float _in)
{

float f=_in;
struct float_as_struct t;

assert (sizeof (struct float_as_struct) == sizeof (float));

memcpy (&t, &f, sizeof (float));

t.sign=1; // set negative sign
t.exponent=t.exponent+2; // multiple d by 2^n (n here is 2)

memcpy (&f, &t, sizeof (float));

return f;
};

int main()
{

printf ("%f\n", f(1.234));
};

float_as_struct structure occupies as much space is memory as float, e.g., 4 bytes or 32 bits.
Nowwesettingnegative sign in input value andalsobyadding 2 to exponentwe therebymultiplicating thewhole number

by 22, e.g., by 4.
Let’s compile in MSVC 2008 without optimization:

Listing 18.21: Non-optimizing MSVC 2008
_t$ = -8 ; size = 4
_f$ = -4 ; size = 4
__in$ = 8 ; size = 4
?f@@YAMM@Z PROC ; f

push ebp
mov ebp, esp
sub esp, 8

fld DWORD PTR __in$[ebp]
fstp DWORD PTR _f$[ebp]

push 4
lea eax, DWORD PTR _f$[ebp]
push eax
lea ecx, DWORD PTR _t$[ebp]
push ecx
call _memcpy
add esp, 12 ; 0000000cH

mov edx, DWORD PTR _t$[ebp]
or edx, -2147483648 ; 80000000H - set minus sign
mov DWORD PTR _t$[ebp], edx

167

18.6. BIT FIELDS IN STRUCTURE CHAPTER 18. STRUCTURES
mov eax, DWORD PTR _t$[ebp]
shr eax, 23 ; 00000017H - drop significand
and eax, 255 ; 000000ffH - leave here only exponent
add eax, 2 ; add 2 to it
and eax, 255 ; 000000ffH
shl eax, 23 ; 00000017H - shift result to place of bits 30:23
mov ecx, DWORD PTR _t$[ebp]
and ecx, -2139095041 ; 807fffffH - drop exponent
or ecx, eax ; add original value without exponent with new calculated exponent
mov DWORD PTR _t$[ebp], ecx

push 4
lea edx, DWORD PTR _t$[ebp]
push edx
lea eax, DWORD PTR _f$[ebp]
push eax
call _memcpy
add esp, 12 ; 0000000cH

fld DWORD PTR _f$[ebp]

mov esp, ebp
pop ebp
ret 0

?f@@YAMM@Z ENDP ; f

Redundant for a bit. If it is compiled with /Ox flag there is no memcpy() call, f variable is used directly. But it is easier to
understand it all considering unoptimized version.

What GCC 4.4.1 with -O3will do?

Listing 18.22: Optimizing GCC 4.4.1
; f(float)

public _Z1ff
_Z1ff proc near

var_4 = dword ptr -4
arg_0 = dword ptr 8

push ebp
mov ebp, esp
sub esp, 4
mov eax, [ebp+arg_0]
or eax, 80000000h ; set minus sign
mov edx, eax
and eax, 807FFFFFh ; leave only significand and exponent in EAX
shr edx, 23 ; prepare exponent
add edx, 2 ; add 2
movzx edx, dl ; clear all bits except 7:0 in EAX
shl edx, 23 ; shift new calculated exponent to its place
or eax, edx ; add new exponent and original value without exponent
mov [ebp+var_4], eax
fld [ebp+var_4]
leave
retn

_Z1ff endp

public main
main proc near

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h

168

18.6. BIT FIELDS IN STRUCTURE CHAPTER 18. STRUCTURES
sub esp, 10h
fld ds:dword_8048614 ; -4.936
fstp qword ptr [esp+8]
mov dword ptr [esp+4], offset asc_8048610 ; "%f\n"
mov dword ptr [esp], 1
call ___printf_chk
xor eax, eax
leave
retn

main endp

The f() function is almost understandable. However, what is interesting, GCC was able to calculate f(1.234) result
during compilation stage despite all this hodge-podge with structure fields and prepared this argument to the printf() as
precalculated!

169

CHAPTER 19. UNIONS

Chapter 19

Unions

19.1 Pseudo-random number generator example
If we need float randomnumbers from0 to 1, themost simplest thing is to use PRNG1 likeMersenne twister produces random
32-bit values in DWORD form, transform this value to float and then dividing it by RAND_MAX (0xFFFFFFFF in our case)—value
we got will be in 0..1 interval.

But as we know, division operation is slow. Will it be possible to get rid of it, as in case of division by multiplication? (14)
Let’s recall what float number consisted of: sign bit, significand bits and exponent bits. We need just to store randombits

to all significand bits for getting random float number!
Exponent cannot be zero (numberwill be denormalized in this case), sowewill store 01111111 to exponent—thismeans

exponentwill be 1. Then fill significandwith randombits, set signbit to0 (whichmeanspositivenumber) andvoilà. Generated
numbers will be in 1 to 2 interval, so we also must subtract 1 from it.

Very simple linear congruential randomnumbers generator is used inmy example2, produces 32-bit numbers. The PRNG
initializing by current time in UNIX-style.

Then, float type represented as union—it is the C/C++ construction enabling us to interpret piece ofmemory as di�erently
typed. In our case, we are able to create a variable of union type and then access to it as it is float or as it is uint32_t. It can
be said, it is just a hack. A dirty one.

#include <stdio.h>
#include <stdint.h>
#include <time.h>

union uint32_t_float
{

uint32_t i;
float f;

};

// from the Numerical Recipes book
const uint32_t RNG_a=1664525;
const uint32_t RNG_c=1013904223;

int main()
{

uint32_t_float tmp;

uint32_t RNG_state=time(NULL); // initial seed
for (int i=0; i<100; i++)
{

RNG_state=RNG_state*RNG_a+RNG_c;
tmp.i=RNG_state & 0x007fffff | 0x3F800000;
float x=tmp.f-1;
printf ("%f\n", x);

};
return 0;

1Pseudorandom number generator
2idea was taken from: http://xor0110.wordpress.com/2010/09/24/how-to-generate-floating-point-random-numbers-efficiently

170

http://xor0110.wordpress.com/2010/09/24/how-to-generate-floating-point-random-numbers-efficiently

19.1. PSEUDO-RANDOM NUMBER GENERATOR EXAMPLE CHAPTER 19. UNIONS
};

Listing 19.1: MSVC 2010 (/Ox)

$SG4232 DB ’%f’, 0aH, 00H

__real@3ff0000000000000 DQ 03ff0000000000000r ; 1

tv140 = -4 ; size = 4
_tmp$ = -4 ; size = 4
_main PROC

push ebp
mov ebp, esp
and esp, -64 ; ffffffc0H
sub esp, 56 ; 00000038H
push esi
push edi
push 0
call __time64
add esp, 4
mov esi, eax
mov edi, 100 ; 00000064H

$LN3@main:

; let’s generate random 32-bit number

imul esi, 1664525 ; 0019660dH
add esi, 1013904223 ; 3c6ef35fH
mov eax, esi

; leave bits for significand only

and eax, 8388607 ; 007fffffH

; set exponent to 1

or eax, 1065353216 ; 3f800000H

; store this value as int

mov DWORD PTR _tmp$[esp+64], eax
sub esp, 8

; load this value as float

fld DWORD PTR _tmp$[esp+72]

; subtract one from it

fsub QWORD PTR __real@3ff0000000000000
fstp DWORD PTR tv140[esp+72]
fld DWORD PTR tv140[esp+72]
fstp QWORD PTR [esp]
push OFFSET $SG4232
call _printf
add esp, 12 ; 0000000cH
dec edi
jne SHORT $LN3@main
pop edi
xor eax, eax

171

19.1. PSEUDO-RANDOM NUMBER GENERATOR EXAMPLE CHAPTER 19. UNIONS
pop esi
mov esp, ebp
pop ebp
ret 0

_main ENDP
_TEXT ENDS
END

GCC produces very similar code.

172

CHAPTER 20. POINTERS TO FUNCTIONS

Chapter 20

Pointers to functions

Pointer to function, as any other pointer, is just an address of function beginning in its code segment.
It is o�en used in callbacks 1.
Well-known examples are:

∙ qsort()2, atexit()3 from the standard C library;

∙ signals in *NIX OS4;

∙ thread starting: CreateThread() (win32), pthread_create() (POSIX);

∙ a lot of win32 functions, e.g. EnumChildWindows()5.

So, qsort() function is a C/C++ standard library quicksort implementation. The functions is able to sort anything, any
types of data, if you have a function for two elements comparison and qsort() is able to call it.

The comparison function can be defined as:

int (*compare)(const void *, const void *)

Let’s use slightly modified example I found here:

/* ex3 Sorting ints with qsort */

#include <stdio.h>
#include <stdlib.h>

int comp(const void * _a, const void * _b)
{

const int *a=(const int *)_a;
const int *b=(const int *)_b;

if (*a==*b)
return 0;

else
if (*a < *b)

return -1;
else
return 1;

}

int main(int argc, char* argv[])
{

int numbers[10]={1892,45,200,-98,4087,5,-12345,1087,88,-100000};
int i;

1http://en.wikipedia.org/wiki/Callback_(computer_science)
2http://en.wikipedia.org/wiki/Qsort_(C_standard_library)
3http://www.opengroup.org/onlinepubs/009695399/functions/atexit.html
4http://en.wikipedia.org/wiki/Signal.h
5http://msdn.microsoft.com/en-us/library/ms633494(VS.85).aspx

173

http://cplus.about.com/od/learningc/ss/pointers2_8.htm
http://en.wikipedia.org/wiki/Callback_(computer_science)
http://en.wikipedia.org/wiki/Qsort_(C_standard_library)
http://www.opengroup.org/onlinepubs/009695399/functions/atexit.html
http://en.wikipedia.org/wiki/Signal.h
http://msdn.microsoft.com/en-us/library/ms633494(VS.85).aspx

CHAPTER 20. POINTERS TO FUNCTIONS
/* Sort the array */
qsort(numbers,10,sizeof(int),comp) ;
for (i=0;i<9;i++)

printf("Number = %d\n",numbers[i]) ;
return 0;

}

Let’s compile it in MSVC 2010 (I omitted some parts for the sake of brevity) with /Ox option:

Listing 20.1: Optimizing MSVC 2010
__a$ = 8 ; size = 4
__b$ = 12 ; size = 4
_comp PROC

mov eax, DWORD PTR __a$[esp-4]
mov ecx, DWORD PTR __b$[esp-4]
mov eax, DWORD PTR [eax]
mov ecx, DWORD PTR [ecx]
cmp eax, ecx
jne SHORT $LN4@comp
xor eax, eax
ret 0

$LN4@comp:
xor edx, edx
cmp eax, ecx
setge dl
lea eax, DWORD PTR [edx+edx-1]
ret 0

_comp ENDP

...

_numbers$ = -44 ; size = 40
_i$ = -4 ; size = 4
_argc$ = 8 ; size = 4
_argv$ = 12 ; size = 4
_main PROC

push ebp
mov ebp, esp
sub esp, 44 ; 0000002cH
mov DWORD PTR _numbers$[ebp], 1892 ; 00000764H
mov DWORD PTR _numbers$[ebp+4], 45 ; 0000002dH
mov DWORD PTR _numbers$[ebp+8], 200 ; 000000c8H
mov DWORD PTR _numbers$[ebp+12], -98 ; ffffff9eH
mov DWORD PTR _numbers$[ebp+16], 4087 ; 00000ff7H
mov DWORD PTR _numbers$[ebp+20], 5
mov DWORD PTR _numbers$[ebp+24], -12345 ; ffffcfc7H
mov DWORD PTR _numbers$[ebp+28], 1087 ; 0000043fH
mov DWORD PTR _numbers$[ebp+32], 88 ; 00000058H
mov DWORD PTR _numbers$[ebp+36], -100000 ; fffe7960H
push OFFSET _comp
push 4
push 10 ; 0000000aH
lea eax, DWORD PTR _numbers$[ebp]
push eax
call _qsort
add esp, 16 ; 00000010H

...

Nothing surprising so far. As a fourth argument, an address of label _comp is passed, that is just a place where function
comp() located.

How qsort() calling it?

174

20.1. GCC CHAPTER 20. POINTERS TO FUNCTIONS
Let’s take a look into this function located in MSVCR80.DLL (a MSVC DLL module with C standard library functions):

Listing 20.2: MSVCR80.DLL
.text:7816CBF0 ; void __cdecl qsort(void *, unsigned int, unsigned int, int (__cdecl *)(const

void *, const void *))
.text:7816CBF0 public _qsort
.text:7816CBF0 _qsort proc near
.text:7816CBF0
.text:7816CBF0 lo = dword ptr -104h
.text:7816CBF0 hi = dword ptr -100h
.text:7816CBF0 var_FC = dword ptr -0FCh
.text:7816CBF0 stkptr = dword ptr -0F8h
.text:7816CBF0 lostk = dword ptr -0F4h
.text:7816CBF0 histk = dword ptr -7Ch
.text:7816CBF0 base = dword ptr 4
.text:7816CBF0 num = dword ptr 8
.text:7816CBF0 width = dword ptr 0Ch
.text:7816CBF0 comp = dword ptr 10h
.text:7816CBF0
.text:7816CBF0 sub esp, 100h

....

.text:7816CCE0 loc_7816CCE0: ; CODE XREF: _qsort+B1

.text:7816CCE0 shr eax, 1

.text:7816CCE2 imul eax, ebp

.text:7816CCE5 add eax, ebx

.text:7816CCE7 mov edi, eax

.text:7816CCE9 push edi

.text:7816CCEA push ebx

.text:7816CCEB call [esp+118h+comp]

.text:7816CCF2 add esp, 8

.text:7816CCF5 test eax, eax

.text:7816CCF7 jle short loc_7816CD04

comp—is fourth function argument. Here the control is just passed to the address in the comp argument. Before it, two
arguments prepared for comp(). Its result is checked a�er its execution.

That’s why it is dangerous to use pointers to functions. First of all, if you call qsort()with incorrect pointer to function,
qsort()may pass control to incorrect point, a process may crash and this bug will be hard to find.

Second reason is the callback function typesmust comply strictly, callingwrong functionwithwrong arguments ofwrong
types may lead to serious problems, however, process crashing is not a big problem—big problem is to determine a reason
of crashing —because compiler may be silent about potential trouble while compiling.

20.1 GCC

Not a big di�erence:

Listing 20.3: GCC
lea eax, [esp+40h+var_28]
mov [esp+40h+var_40], eax
mov [esp+40h+var_28], 764h
mov [esp+40h+var_24], 2Dh
mov [esp+40h+var_20], 0C8h
mov [esp+40h+var_1C], 0FFFFFF9Eh
mov [esp+40h+var_18], 0FF7h
mov [esp+40h+var_14], 5
mov [esp+40h+var_10], 0FFFFCFC7h
mov [esp+40h+var_C], 43Fh
mov [esp+40h+var_8], 58h
mov [esp+40h+var_4], 0FFFE7960h

175

20.1. GCC CHAPTER 20. POINTERS TO FUNCTIONS
mov [esp+40h+var_34], offset comp
mov [esp+40h+var_38], 4
mov [esp+40h+var_3C], 0Ah
call _qsort

comp() function:

public comp
comp proc near

arg_0 = dword ptr 8
arg_4 = dword ptr 0Ch

push ebp
mov ebp, esp
mov eax, [ebp+arg_4]
mov ecx, [ebp+arg_0]
mov edx, [eax]
xor eax, eax
cmp [ecx], edx
jnz short loc_8048458
pop ebp
retn

loc_8048458:
setnl al
movzx eax, al
lea eax, [eax+eax-1]
pop ebp
retn

comp endp

qsort() implementation is located in the libc.so.6 and it is in fact just a wrapper 6 for qsort_r().
It will call then quicksort(), where our defined function will be called via passed pointer:

Listing 20.4: (File libc.so.6, glibc version —2.10.1)

.text:0002DDF6 mov edx, [ebp+arg_10]

.text:0002DDF9 mov [esp+4], esi

.text:0002DDFD mov [esp], edi

.text:0002DE00 mov [esp+8], edx

.text:0002DE04 call [ebp+arg_C]

...

6a concept like thunk function

176

CHAPTER 21. 64-BIT VALUES IN 32-BIT ENVIRONMENT

Chapter 21

64-bit values in 32-bit environment

In the 32-bit environment GPR’s are 32-bit, so 64-bit values are passed as 32-bit value pairs 1.

21.1 Arguments passing, addition, subtraction

#include <stdint.h>

uint64_t f1 (uint64_t a, uint64_t b)
{

return a+b;
};

void f1_test ()
{
#ifdef __GNUC__

printf ("%lld\n", f1(12345678901234, 23456789012345));
#else

printf ("%I64d\n", f1(12345678901234, 23456789012345));
#endif
};

uint64_t f2 (uint64_t a, uint64_t b)
{

return a-b;
};

Listing 21.1: MSVC 2012 /Ox /Ob1
_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_f1 PROC

mov eax, DWORD PTR _a$[esp-4]
add eax, DWORD PTR _b$[esp-4]
mov edx, DWORD PTR _a$[esp]
adc edx, DWORD PTR _b$[esp]
ret 0

_f1 ENDP

_f1_test PROC
push 5461 ; 00001555H
push 1972608889 ; 75939f79H
push 2874 ; 00000b3aH
push 1942892530 ; 73ce2ff2H
call _f1
push edx

1By the way, 32-bit values are passed as pairs in 16-bit environment just as the same

177

21.2. MULTIPLICATION, DIVISION CHAPTER 21. 64-BIT VALUES IN 32-BIT ENVIRONMENT
push eax
push OFFSET $SG1436 ; ’%I64d’, 0aH, 00H
call _printf
add esp, 28 ; 0000001cH
ret 0

_f1_test ENDP

_f2 PROC
mov eax, DWORD PTR _a$[esp-4]
sub eax, DWORD PTR _b$[esp-4]
mov edx, DWORD PTR _a$[esp]
sbb edx, DWORD PTR _b$[esp]
ret 0

_f2 ENDP

Wemay see in the f1_test() function as each 64-bit value is passed by two 32-bit values, high part first, then low part.

Addition and subtraction occurring by pairs as well.

While addition, low 32-bit part are added first. If carry was occurred while addition, CF flag is set. The next ADC instruc-
tion adds high parts of values, but also adding 1 if CF=1.

Subtraction is also occurred by pairs. The very first SUBmay also turn CF flag on, which will be checked in the subsequent
SBB instruction: if carry flag is on, then 1 will also be subtracted from the result.

In a 32-bit environment, 64-bit values are returned from a functions in EDX:EAX registers pair. It is easily can be seen how
f1() function is then passed to printf().

Listing 21.2: GCC 4.8.1 -O1 -fno-inline
_f1:

mov eax, DWORD PTR [esp+12]
mov edx, DWORD PTR [esp+16]
add eax, DWORD PTR [esp+4]
adc edx, DWORD PTR [esp+8]
ret

_f1_test:
sub esp, 28
mov DWORD PTR [esp+8], 1972608889 ; 75939f79H
mov DWORD PTR [esp+12], 5461 ; 00001555H
mov DWORD PTR [esp], 1942892530 ; 73ce2ff2H
mov DWORD PTR [esp+4], 2874 ; 00000b3aH
call _f1
mov DWORD PTR [esp+4], eax
mov DWORD PTR [esp+8], edx
mov DWORD PTR [esp], OFFSET FLAT:LC0 ; "%lld\12\0"
call _printf
add esp, 28
ret

_f2:
mov eax, DWORD PTR [esp+4]
mov edx, DWORD PTR [esp+8]
sub eax, DWORD PTR [esp+12]
sbb edx, DWORD PTR [esp+16]
ret

GCC code is the same.

21.2 Multiplication, division

178

21.2. MULTIPLICATION, DIVISION CHAPTER 21. 64-BIT VALUES IN 32-BIT ENVIRONMENT

#include <stdint.h>

uint64_t f3 (uint64_t a, uint64_t b)
{

return a*b;
};

uint64_t f4 (uint64_t a, uint64_t b)
{

return a/b;
};

uint64_t f5 (uint64_t a, uint64_t b)
{

return a % b;
};

Listing 21.3: MSVC 2012 /Ox /Ob1
_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_f3 PROC

push DWORD PTR _b$[esp]
push DWORD PTR _b$[esp]
push DWORD PTR _a$[esp+8]
push DWORD PTR _a$[esp+8]
call __allmul ; long long multiplication
ret 0

_f3 ENDP

_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_f4 PROC

push DWORD PTR _b$[esp]
push DWORD PTR _b$[esp]
push DWORD PTR _a$[esp+8]
push DWORD PTR _a$[esp+8]
call __aulldiv ; unsigned long long division
ret 0

_f4 ENDP

_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_f5 PROC

push DWORD PTR _b$[esp]
push DWORD PTR _b$[esp]
push DWORD PTR _a$[esp+8]
push DWORD PTR _a$[esp+8]
call __aullrem ; unsigned long long remainder
ret 0

_f5 ENDP

Multiplication and division is more complex operation, so usually, the compiler embedds calls to the library functions
doing that.

These functions meaning are here: 83.

Listing 21.4: GCC 4.8.1 -O3 -fno-inline
_f3:

push ebx
mov edx, DWORD PTR [esp+8]

179

21.3. SHIFTING RIGHT CHAPTER 21. 64-BIT VALUES IN 32-BIT ENVIRONMENT
mov eax, DWORD PTR [esp+16]
mov ebx, DWORD PTR [esp+12]
mov ecx, DWORD PTR [esp+20]
imul ebx, eax
imul ecx, edx
mul edx
add ecx, ebx
add edx, ecx
pop ebx
ret

_f4:
sub esp, 28
mov eax, DWORD PTR [esp+40]
mov edx, DWORD PTR [esp+44]
mov DWORD PTR [esp+8], eax
mov eax, DWORD PTR [esp+32]
mov DWORD PTR [esp+12], edx
mov edx, DWORD PTR [esp+36]
mov DWORD PTR [esp], eax
mov DWORD PTR [esp+4], edx
call ___udivdi3 ; unsigned division
add esp, 28
ret

_f5:
sub esp, 28
mov eax, DWORD PTR [esp+40]
mov edx, DWORD PTR [esp+44]
mov DWORD PTR [esp+8], eax
mov eax, DWORD PTR [esp+32]
mov DWORD PTR [esp+12], edx
mov edx, DWORD PTR [esp+36]
mov DWORD PTR [esp], eax
mov DWORD PTR [esp+4], edx
call ___umoddi3 ; unsigned modulo
add esp, 28
ret

GCC doing almost the same, but multiplication code is inlined right in the function, thinking it could be more e�icient.
GCC has di�erent library function names: 82.

21.3 Shi�ing right

#include <stdint.h>

uint64_t f6 (uint64_t a)
{

return a>>7;
};

Listing 21.5: MSVC 2012 /Ox /Ob1
_a$ = 8 ; size = 8
_f6 PROC

mov eax, DWORD PTR _a$[esp-4]
mov edx, DWORD PTR _a$[esp]
shrd eax, edx, 7
shr edx, 7
ret 0

180

21.4. CONVERTING OF 32-BIT VALUE INTO 64-BIT ONE CHAPTER 21. 64-BIT VALUES IN 32-BIT ENVIRONMENT
_f6 ENDP

Listing 21.6: GCC 4.8.1 -O3 -fno-inline
_f6:

mov edx, DWORD PTR [esp+8]
mov eax, DWORD PTR [esp+4]
shrd eax, edx, 7
shr edx, 7
ret

Shi�ing also occurring in two passes: first lower part is shi�ing, then higher part. But the lower part is shi�ing with the
help of SHRD instruction, it shi�ing EDX value by 7 bits, but pulling new bits from EAX, i.e., from the higher part. Higher part is
shi�ing using more popular SHR instruction: indeed, freed bits in the higher part should be just filled with zeroes.

21.4 Converting of 32-bit value into 64-bit one

#include <stdint.h>

int64_t f7 (int64_t a, int64_t b, int32_t c)
{

return a*b+c;
};

int64_t f7_main ()
{

return f7(12345678901234, 23456789012345, 12345);
};

Listing 21.7: MSVC 2012 /Ox /Ob1
_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_c$ = 24 ; size = 4
_f7 PROC

push esi
push DWORD PTR _b$[esp+4]
push DWORD PTR _b$[esp+4]
push DWORD PTR _a$[esp+12]
push DWORD PTR _a$[esp+12]
call __allmul ; long long multiplication
mov ecx, eax
mov eax, DWORD PTR _c$[esp]
mov esi, edx
cdq ; input: 32-bit value in EAX; output: 64-bit value in EDX:EAX
add eax, ecx
adc edx, esi
pop esi
ret 0

_f7 ENDP

_f7_main PROC
push 12345 ; 00003039H
push 5461 ; 00001555H
push 1972608889 ; 75939f79H
push 2874 ; 00000b3aH
push 1942892530 ; 73ce2ff2H
call _f7
add esp, 20 ; 00000014H
ret 0

_f7_main ENDP

181

21.4. CONVERTING OF 32-BIT VALUE INTO 64-BIT ONE CHAPTER 21. 64-BIT VALUES IN 32-BIT ENVIRONMENT
Here we also run into necessity to extend 32-bit signed value from 𝑐 into 64-bit signed. Unsigned values are converted

straightforwardly: all bits in higher part should be set to 0. But it is not appropriate for signed data types: sign should be
copied into higher part of resulting number. An instruction CDQ doing that here, it takes input value in EAX, extending value
to 64-bit and leaving it in the EDX:EAX registers pair. In other words, CDQ instruction getting number sign in EAX (by getting
just most significant bit in EAX), and depending of it, setting all 32-bits in EDX to 0 or 1. Its operation is somewhat similar to
the MOVSX (13.1) instruction.

Listing 21.8: GCC 4.8.1 -O3 -fno-inline
_f7:

push edi
push esi
push ebx
mov esi, DWORD PTR [esp+16]
mov edi, DWORD PTR [esp+24]
mov ebx, DWORD PTR [esp+20]
mov ecx, DWORD PTR [esp+28]
mov eax, esi
mul edi
imul ebx, edi
imul ecx, esi
mov esi, edx
add ecx, ebx
mov ebx, eax
mov eax, DWORD PTR [esp+32]
add esi, ecx
cdq ; input: 32-bit value in EAX; output: 64-bit value in EDX:EAX
add eax, ebx
adc edx, esi
pop ebx
pop esi
pop edi
ret

_f7_main:
sub esp, 28
mov DWORD PTR [esp+16], 12345 ; 00003039H
mov DWORD PTR [esp+8], 1972608889 ; 75939f79H
mov DWORD PTR [esp+12], 5461 ; 00001555H
mov DWORD PTR [esp], 1942892530 ; 73ce2ff2H
mov DWORD PTR [esp+4], 2874 ; 00000b3aH
call _f7
add esp, 28
ret

GCC generates just the same code as MSVC, but inlines multiplication code right in the function.
See also: 32-bit values in 16-bit environment: 30.4.

182

CHAPTER 22. SIMD

Chapter 22

SIMD

SIMD1 is just acronym: Single Instruction, Multiple Data.
As it is said, it is multiple data processing using only one instruction.
Just as FPU, that CPU subsystem looks like separate processor inside x86.
SIMD began as MMX in x86. 8 new 64-bit registers appeared: MM0-MM7.
Each MMX register may hold 2 32-bit values, 4 16-bit values or 8 bytes. For example, it is possible to add 8 8-bit values

(bytes) simultaneously by adding two values in MMX-registers.
One simple example is graphics editor, representing image as a two dimensional array. When user change image bright-

ness, the editormust add a coe�icient to each pixel value, or to subtract. For the sake of brevity, our imagemay be grayscale
and each pixel defined by one 8-bit byte, then it is possible to change brightness of 8 pixels simultaneously.

When MMX appeared, these registers was actually located in FPU registers. It was possible to use either FPU or MMX at
the same time. One might think, Intel saved on transistors, but in fact, the reason of such symbiosis is simpler —older OS
may not aware of additional CPU registers would not save them at the context switching, but will save FPU registers. Thus,
MMX-enabled CPU + old OS + process utilizing MMX features = that all will work together.

SSE—is extension of SIMD registers up to 128 bits, now separately from FPU.
AVX—another extension to 256 bits.
Now about practical usage.
Of course, memory copying (memcpy), memory comparing (memcmp) and so on.
One more example: we got DES encryption algorithm, it takes 64-bit block, 56-bit key, encrypt block and produce 64-bit

result. DES algorithmmay be considered as a very large electronic circuit, with wires and AND/OR/NOT gates.
Bitslice DES2 —is an idea of processing group of blocks and keys simultaneously. Let’s say, variable of type unsigned int

on x86 may hold up to 32 bits, so, it is possible to store there intermediate results for 32 blocks-keys pairs simultaneously,
using 64+56 variables of unsigned int type.

I wrote an utility to brute-force Oracle RDBMS passwords/hashes (ones based on DES), slightly modified bitslice DES al-
gorithm for SSE2 and AVX —now it is possible to encrypt 128 or 256 block-keys pairs simultaneously.

http://conus.info/utils/ops_SIMD/

22.1 Vectorization
Vectorization3, for example, is when you have a loop taking couple of arrays at input and produces one array. Loop body
takes values from input arrays, do something and put result into output array. It is important that there is only one single
operation applied to each element. Vectorization —is to process several elements simultaneously.

Vectorization is not very fresh technology: author of this textbook saw it at least on Cray Y-MP supercomputer line from
1988 when played with its “lite” version Cray Y-MP EL 4.

For example:

for (i = 0; i < 1024; i++)
{

C[i] = A[i]*B[i];
}

This fragment of code takes elements from A and B, multiplies them and save result into C.
1Single instruction, multiple data
2http://www.darkside.com.au/bitslice/
3Wikipedia: vectorization
4Remotely. It is installed in the museum of supercomputers: http://www.cray-cyber.org

183

http://conus.info/utils/ops_SIMD/
http://www.darkside.com.au/bitslice/
http://en.wikipedia.org/wiki/Vectorization_(computer_science)
http://www.cray-cyber.org

22.1. VECTORIZATION CHAPTER 22. SIMD
If each array elementwe have is 32-bit int, then it is possible to load 4 elements fromA into 128-bit XMM-register, fromB to

another XMM-registers, and by executing PMULLD (Multiply Packed Signed Dword Integers and Store Low Result) and PMULHW
(Multiply Packed Signed Integers and Store High Result), it is possible to get 4 64-bit products at once.

Thus, loop body count is 1024/4 instead of 1024, that is 4 times less and, of course, faster.
Some compilers can do vectorization automatically in a simple cases, e.g., Intel C++5.
I wrote tiny function:

int f (int sz, int *ar1, int *ar2, int *ar3)
{

for (int i=0; i<sz; i++)
ar3[i]=ar1[i]+ar2[i];

return 0;
};

22.1.1 Intel C++
Let’s compile it with Intel C++ 11.1.051 win32:

icl intel.cpp /QaxSSE2 /Faintel.asm /Ox

We got (in IDA):

; int __cdecl f(int, int *, int *, int *)
public ?f@@YAHHPAH00@Z

?f@@YAHHPAH00@Z proc near

var_10 = dword ptr -10h
sz = dword ptr 4
ar1 = dword ptr 8
ar2 = dword ptr 0Ch
ar3 = dword ptr 10h

push edi
push esi
push ebx
push esi
mov edx, [esp+10h+sz]
test edx, edx
jle loc_15B
mov eax, [esp+10h+ar3]
cmp edx, 6
jle loc_143
cmp eax, [esp+10h+ar2]
jbe short loc_36
mov esi, [esp+10h+ar2]
sub esi, eax
lea ecx, ds:0[edx*4]
neg esi
cmp ecx, esi
jbe short loc_55

loc_36: ; CODE XREF: f(int,int *,int *,int *)+21
cmp eax, [esp+10h+ar2]
jnb loc_143
mov esi, [esp+10h+ar2]
sub esi, eax
lea ecx, ds:0[edx*4]
cmp esi, ecx
jb loc_143

5More about Intel C++ automatic vectorization: Excerpt: E�ective Automatic Vectorization

184

http://www.intel.com/intelpress/sum_vmmx.htm

22.1. VECTORIZATION CHAPTER 22. SIMD

loc_55: ; CODE XREF: f(int,int *,int *,int *)+34
cmp eax, [esp+10h+ar1]
jbe short loc_67
mov esi, [esp+10h+ar1]
sub esi, eax
neg esi
cmp ecx, esi
jbe short loc_7F

loc_67: ; CODE XREF: f(int,int *,int *,int *)+59
cmp eax, [esp+10h+ar1]
jnb loc_143
mov esi, [esp+10h+ar1]
sub esi, eax
cmp esi, ecx
jb loc_143

loc_7F: ; CODE XREF: f(int,int *,int *,int *)+65
mov edi, eax ; edi = ar1
and edi, 0Fh ; is ar1 16-byte aligned?
jz short loc_9A ; yes
test edi, 3
jnz loc_162
neg edi
add edi, 10h
shr edi, 2

loc_9A: ; CODE XREF: f(int,int *,int *,int *)+84
lea ecx, [edi+4]
cmp edx, ecx
jl loc_162
mov ecx, edx
sub ecx, edi
and ecx, 3
neg ecx
add ecx, edx
test edi, edi
jbe short loc_D6
mov ebx, [esp+10h+ar2]
mov [esp+10h+var_10], ecx
mov ecx, [esp+10h+ar1]
xor esi, esi

loc_C1: ; CODE XREF: f(int,int *,int *,int *)+CD
mov edx, [ecx+esi*4]
add edx, [ebx+esi*4]
mov [eax+esi*4], edx
inc esi
cmp esi, edi
jb short loc_C1
mov ecx, [esp+10h+var_10]
mov edx, [esp+10h+sz]

loc_D6: ; CODE XREF: f(int,int *,int *,int *)+B2
mov esi, [esp+10h+ar2]
lea esi, [esi+edi*4] ; is ar2+i*4 16-byte aligned?
test esi, 0Fh
jz short loc_109 ; yes!
mov ebx, [esp+10h+ar1]
mov esi, [esp+10h+ar2]

185

22.1. VECTORIZATION CHAPTER 22. SIMD

loc_ED: ; CODE XREF: f(int,int *,int *,int *)+105
movdqu xmm1, xmmword ptr [ebx+edi*4]
movdqu xmm0, xmmword ptr [esi+edi*4] ; ar2+i*4 is not 16-byte aligned, so load

it to xmm0
paddd xmm1, xmm0
movdqa xmmword ptr [eax+edi*4], xmm1
add edi, 4
cmp edi, ecx
jb short loc_ED
jmp short loc_127

; ---

loc_109: ; CODE XREF: f(int,int *,int *,int *)+E3
mov ebx, [esp+10h+ar1]
mov esi, [esp+10h+ar2]

loc_111: ; CODE XREF: f(int,int *,int *,int *)+125
movdqu xmm0, xmmword ptr [ebx+edi*4]
paddd xmm0, xmmword ptr [esi+edi*4]
movdqa xmmword ptr [eax+edi*4], xmm0
add edi, 4
cmp edi, ecx
jb short loc_111

loc_127: ; CODE XREF: f(int,int *,int *,int *)+107
; f(int,int *,int *,int *)+164

cmp ecx, edx
jnb short loc_15B
mov esi, [esp+10h+ar1]
mov edi, [esp+10h+ar2]

loc_133: ; CODE XREF: f(int,int *,int *,int *)+13F
mov ebx, [esi+ecx*4]
add ebx, [edi+ecx*4]
mov [eax+ecx*4], ebx
inc ecx
cmp ecx, edx
jb short loc_133
jmp short loc_15B

; ---

loc_143: ; CODE XREF: f(int,int *,int *,int *)+17
; f(int,int *,int *,int *)+3A ...

mov esi, [esp+10h+ar1]
mov edi, [esp+10h+ar2]
xor ecx, ecx

loc_14D: ; CODE XREF: f(int,int *,int *,int *)+159
mov ebx, [esi+ecx*4]
add ebx, [edi+ecx*4]
mov [eax+ecx*4], ebx
inc ecx
cmp ecx, edx
jb short loc_14D

loc_15B: ; CODE XREF: f(int,int *,int *,int *)+A
; f(int,int *,int *,int *)+129 ...

xor eax, eax
pop ecx
pop ebx

186

22.1. VECTORIZATION CHAPTER 22. SIMD
pop esi
pop edi
retn

; ---

loc_162: ; CODE XREF: f(int,int *,int *,int *)+8C
; f(int,int *,int *,int *)+9F

xor ecx, ecx
jmp short loc_127

?f@@YAHHPAH00@Z endp

SSE2-related instructions are:

∙ MOVDQU (Move Unaligned Double Quadword)—it just load 16 bytes frommemory into a XMM-register.

∙ PADDD (Add Packed Integers)—adding 4 pairs of 32-bit numbers and leaving result in first operand. By the way, no
exception raised in case of overflow and no flags will be set, just low 32-bit of result will be stored. If one of PADDD
operands is address of value in memory, then address must be aligned on a 16-byte boundary. If it is not aligned,
exception will be occurred 6.

∙ MOVDQA (Move Aligned Double Quadword)—the same as MOVDQU, but requires address of value inmemory to be aligned
on a 16-bit border. If it is not aligned, exceptionwill be raised. MOVDQAworks faster than MOVDQU, but requires aforesaid.

So, these SSE2-instructions will be executed only in case if there are more 4 pairs to work on plus pointer ar3 is aligned
on a 16-byte boundary.

More than that, if ar2 is aligned on a 16-byte boundary as well, this fragment of code will be executed:

movdqu xmm0, xmmword ptr [ebx+edi*4] ; ar1+i*4
paddd xmm0, xmmword ptr [esi+edi*4] ; ar2+i*4
movdqa xmmword ptr [eax+edi*4], xmm0 ; ar3+i*4

Otherwise, value fromar2will be loaded intoXMM0usingMOVDQU, it doesnot requirealignedpointer, butmaywork slower:

movdqu xmm1, xmmword ptr [ebx+edi*4] ; ar1+i*4
movdqu xmm0, xmmword ptr [esi+edi*4] ; ar2+i*4 is not 16-byte aligned, so load it to xmm0
paddd xmm1, xmm0
movdqa xmmword ptr [eax+edi*4], xmm1 ; ar3+i*4

In all other cases, non-SSE2 code will be executed.

22.1.2 GCC

GCCmay also vectorize in a simple cases7, if to use -O3 option and to turn on SSE2 support: -msse2.
What we got (GCC 4.4.1):

; f(int, int *, int *, int *)
public _Z1fiPiS_S_

_Z1fiPiS_S_ proc near

var_18 = dword ptr -18h
var_14 = dword ptr -14h
var_10 = dword ptr -10h
arg_0 = dword ptr 8
arg_4 = dword ptr 0Ch
arg_8 = dword ptr 10h
arg_C = dword ptr 14h

push ebp
mov ebp, esp
push edi
push esi
push ebx

6More about data aligning: Wikipedia: Data structure alignment
7More about GCC vectorization support: http://gcc.gnu.org/projects/tree-ssa/vectorization.html

187

http://en.wikipedia.org/wiki/Data_structure_alignment
http://gcc.gnu.org/projects/tree-ssa/vectorization.html

22.1. VECTORIZATION CHAPTER 22. SIMD
sub esp, 0Ch
mov ecx, [ebp+arg_0]
mov esi, [ebp+arg_4]
mov edi, [ebp+arg_8]
mov ebx, [ebp+arg_C]
test ecx, ecx
jle short loc_80484D8
cmp ecx, 6
lea eax, [ebx+10h]
ja short loc_80484E8

loc_80484C1: ; CODE XREF: f(int,int *,int *,int *)+4B
; f(int,int *,int *,int *)+61 ...

xor eax, eax
nop
lea esi, [esi+0]

loc_80484C8: ; CODE XREF: f(int,int *,int *,int *)+36
mov edx, [edi+eax*4]
add edx, [esi+eax*4]
mov [ebx+eax*4], edx
add eax, 1
cmp eax, ecx
jnz short loc_80484C8

loc_80484D8: ; CODE XREF: f(int,int *,int *,int *)+17
; f(int,int *,int *,int *)+A5

add esp, 0Ch
xor eax, eax
pop ebx
pop esi
pop edi
pop ebp
retn

; ---
align 8

loc_80484E8: ; CODE XREF: f(int,int *,int *,int *)+1F
test bl, 0Fh
jnz short loc_80484C1
lea edx, [esi+10h]
cmp ebx, edx
jbe loc_8048578

loc_80484F8: ; CODE XREF: f(int,int *,int *,int *)+E0
lea edx, [edi+10h]
cmp ebx, edx
ja short loc_8048503
cmp edi, eax
jbe short loc_80484C1

loc_8048503: ; CODE XREF: f(int,int *,int *,int *)+5D
mov eax, ecx
shr eax, 2
mov [ebp+var_14], eax
shl eax, 2
test eax, eax
mov [ebp+var_10], eax
jz short loc_8048547
mov [ebp+var_18], ecx
mov ecx, [ebp+var_14]

188

22.2. SIMD STRLEN() IMPLEMENTATION CHAPTER 22. SIMD
xor eax, eax
xor edx, edx
nop

loc_8048520: ; CODE XREF: f(int,int *,int *,int *)+9B
movdqu xmm1, xmmword ptr [edi+eax]
movdqu xmm0, xmmword ptr [esi+eax]
add edx, 1
paddd xmm0, xmm1
movdqa xmmword ptr [ebx+eax], xmm0
add eax, 10h
cmp edx, ecx
jb short loc_8048520
mov ecx, [ebp+var_18]
mov eax, [ebp+var_10]
cmp ecx, eax
jz short loc_80484D8

loc_8048547: ; CODE XREF: f(int,int *,int *,int *)+73
lea edx, ds:0[eax*4]
add esi, edx
add edi, edx
add ebx, edx
lea esi, [esi+0]

loc_8048558: ; CODE XREF: f(int,int *,int *,int *)+CC
mov edx, [edi]
add eax, 1
add edi, 4
add edx, [esi]
add esi, 4
mov [ebx], edx
add ebx, 4
cmp ecx, eax
jg short loc_8048558
add esp, 0Ch
xor eax, eax
pop ebx
pop esi
pop edi
pop ebp
retn

; ---

loc_8048578: ; CODE XREF: f(int,int *,int *,int *)+52
cmp eax, esi
jnb loc_80484C1
jmp loc_80484F8

_Z1fiPiS_S_ endp

Almost the same, however, not as meticulously as Intel C++ doing it.

22.2 SIMD strlen() implementation
It should be noted the SIMD-instructionsmay be inserted into C/C++ code via special macros8. As of MSVC, some of them are
located in the intrin.h file.

It is possible to implement strlen() function9 using SIMD-instructions, working 2-2.5 times faster than common imple-
mentation. This function will load 16 characters into a XMM-register and check each against zero.

8MSDN: MMX, SSE, and SSE2 Intrinsics
9strlen() —standard C library function for calculating string length

189

http://msdn.microsoft.com/en-us/library/y0dh78ez(VS.80).aspx

22.2. SIMD STRLEN() IMPLEMENTATION CHAPTER 22. SIMD

size_t strlen_sse2(const char *str)
{

register size_t len = 0;
const char *s=str;
bool str_is_aligned=(((unsigned int)str)&0xFFFFFFF0) == (unsigned int)str;

if (str_is_aligned==false)
return strlen (str);

__m128i xmm0 = _mm_setzero_si128();
__m128i xmm1;
int mask = 0;

for (;;)
{

xmm1 = _mm_load_si128((__m128i *)s);
xmm1 = _mm_cmpeq_epi8(xmm1, xmm0);
if ((mask = _mm_movemask_epi8(xmm1)) != 0)
{

unsigned long pos;
_BitScanForward(&pos, mask);
len += (size_t)pos;

break;
}
s += sizeof(__m128i);
len += sizeof(__m128i);

};

return len;
}

(the example is based on source code from there).
Let’s compile in MSVC 2010 with /Ox option:

_pos$75552 = -4 ; size = 4
_str$ = 8 ; size = 4
?strlen_sse2@@YAIPBD@Z PROC ; strlen_sse2

push ebp
mov ebp, esp
and esp, -16 ; fffffff0H
mov eax, DWORD PTR _str$[ebp]
sub esp, 12 ; 0000000cH
push esi
mov esi, eax
and esi, -16 ; fffffff0H
xor edx, edx
mov ecx, eax
cmp esi, eax
je SHORT $LN4@strlen_sse
lea edx, DWORD PTR [eax+1]
npad 3

$LL11@strlen_sse:
mov cl, BYTE PTR [eax]
inc eax
test cl, cl
jne SHORT $LL11@strlen_sse
sub eax, edx
pop esi
mov esp, ebp

190

http://www.strchr.com/sse2_optimised_strlen

22.2. SIMD STRLEN() IMPLEMENTATION CHAPTER 22. SIMD
pop ebp
ret 0

$LN4@strlen_sse:
movdqa xmm1, XMMWORD PTR [eax]
pxor xmm0, xmm0
pcmpeqb xmm1, xmm0
pmovmskb eax, xmm1
test eax, eax
jne SHORT $LN9@strlen_sse

$LL3@strlen_sse:
movdqa xmm1, XMMWORD PTR [ecx+16]
add ecx, 16 ; 00000010H
pcmpeqb xmm1, xmm0
add edx, 16 ; 00000010H
pmovmskb eax, xmm1
test eax, eax
je SHORT $LL3@strlen_sse

$LN9@strlen_sse:
bsf eax, eax
mov ecx, eax
mov DWORD PTR _pos$75552[esp+16], eax
lea eax, DWORD PTR [ecx+edx]
pop esi
mov esp, ebp
pop ebp
ret 0

?strlen_sse2@@YAIPBD@Z ENDP ; strlen_sse2

First of all, we check str pointer, if it is aligned on a 16-byte boundary. If not, let’s call generic strlen() implementation.
Then, load next 16 bytes into the XMM1 register using MOVDQA instruction.
Observant readermight ask, why MOVDQU cannot be used here since it can load data from thememory regardless the fact

if the pointer aligned or not.
Yes, it might be done in this way: if pointer is aligned, load data using MOVDQA, if not —use slower MOVDQU.
But here we are may stick into hard to notice caveat:
In Windows NT line of OS but not limited to it, memory allocated by pages of 4 KiB (4096 bytes). Each win32-process has

ostensibly 4GiB, but in fact, only someparts of address space are connected to real physicalmemory. If the process accessing
to the absent memory block, exception will be raised. That’s how virtual memory works10.

So, a function loading 16 bytes at once, may step over a border of allocated memory block. Let’s consider, OS allocated
8192 (0x2000) bytes at the address 0x008c0000. Thus, the block is the bytes starting from address 0x008c0000 to 0x008c1�f
inclusive.

A�er the block, that is, starting fromaddress 0x008c2000 there is nothing at all, e.g., OS not allocated anymemory there.
Attempt to access a memory starting from the address will raise exception.

And let’s consider, the programholding a string containing 5 characters almost at the endof block, and that is not a crime.

0x008c1�8 ’h’
0x008c1�9 ’e’
0x008c1�a ’l’
0x008c1�b ’l’
0x008c1�c ’o’
0x008c1�d ’\x00’
0x008c1�e random noise
0x008c1�f random noise

So, in commonconditions theprogramcallingstrlen()passing it apointer to string’hello’ lying inmemoryat address
0x008c1�8. strlen()will read one byte at a time until 0x008c1�d, where zero-byte, and so here it will stop working.

Now if we implement our own strlen() reading 16 byte at once, starting at any address, will it be aligned or not, MOVDQU
may attempt to load 16 bytes at once at address 0x008c1�8 up to 0x008c2008, and then exception will be raised. That’s the
situation to be avoided, of course.

So then we’ll work only with the addresses aligned on a 16 byte boundary, what in combination with a knowledge of OS
page size is usually aligned on a 16-byte boundary too, give us some warranty our function will not read from unallocated
memory.

10http://en.wikipedia.org/wiki/Page_(computer_memory)

191

http://en.wikipedia.org/wiki/Page_(computer_memory)

22.2. SIMD STRLEN() IMPLEMENTATION CHAPTER 22. SIMD
Let’s back to our function.
_mm_setzero_si128()—is a macro generating pxor xmm0, xmm0—instruction just clears the XMM0 register
_mm_load_si128()—is a macro for MOVDQA, it just loading 16 bytes from the address in the XMM1 register.
_mm_cmpeq_epi8()—is a macro for PCMPEQB, is an instruction comparing two XMM-registers bytewise.
And if some byte was equals to other, there will be 0xff at this point in the result or 0 if otherwise.
For example.

XMM1: 11223344556677880000000000000000
XMM0: 11ab3444007877881111111111111111

A�er pcmpeqb xmm1, xmm0 execution, the XMM1 register shall contain:

XMM1: ff0000ff0000ffff0000000000000000

In our case, this instruction comparing each 16-byte block with the block of 16 zero-bytes, was set in the XMM0 register by
pxor xmm0, xmm0.

The next macro is _mm_movemask_epi8()—that is PMOVMSKB instruction.
It is very useful if to use it with PCMPEQB.
pmovmskb eax, xmm1
This instructionwill set first EAX bit into 1 if most significant bit of the first byte in the XMM1 is 1. In other words, if first byte

of the XMM1 register is 0xff, first EAX bit will be set to 1 too.
If secondbyte in the XMM1 register is 0xff, then second EAXbitwill be set to 1 too. In otherwords, the instruction is answer

to the question which bytes in the XMM1 are 0xff? And will prepare 16 bits in the EAX register. Other bits in the EAX register
are to be cleared.

By the way, do not forget about this feature of our algorithm:
There might be 16 bytes on input like hello\x00garbage\x00ab
It is a ’hello’ string, terminating zero, and also a random noise in memory.
If we load these 16 bytes into XMM1 and compare themwith zeroed XMM0, we will get something like (I use here order from

MSB11to LSB12):

XMM1: 0000ff00000000000000ff0000000000

This means, the instruction found two zero bytes, and that is not surprising.
PMOVMSKB in our case will prepare EAX like (in binary representation): 0010000000100000b.
Obviously, our function must consider only first zero bit and ignore the rest ones.
Thenext instruction—BSF (Bit ScanForward). This instruction find first bit set to 1 and stores its position into first operand.

EAX=0010000000100000b

A�er bsf eax, eax instruction execution, EAXwill contain 5, this means, 1 found at 5th bit position (starting from zero).
MSVC has a macro for this instruction: _BitScanForward.
Now it is simple. If zero byte found, its position added towhatwealready counted andnowwehave ready to return result.
Almost all.
By the way, it is also should be noted, MSVC compiler emitted two loop bodies side by side, for optimization.
By the way, SSE 4.2 (appeared in Intel Core i7) o�ers more instructions where these string manipulations might be even

easier: http://www.strchr.com/strcmp_and_strlen_using_sse_4.2

11most significant bit
12least significant bit

192

http://www.strchr.com/strcmp_and_strlen_using_sse_4.2

CHAPTER 23. 64 BITS

Chapter 23

64 bits

23.1 x86-64
It is a 64-bit extension to x86-architecture.

From the reverse engineer’s perspective, most important di�erences are:

∙ Almost all registers (except FPU and SIMD) are extended to 64 bits and got r- prefix. 8 additional registers added. Now
GPR’s are: RAX, RBX, RCX, RDX, RBP, RSP, RSI, RDI, R8, R9, R10, R11, R12, R13, R14, R15.

It is still possible to access to older register parts as usual. For example, it is possible to access lower 32-bit part of the
RAX register using EAX.

New r8-r15 registers also has its lower parts: r8d-r15d (lower 32-bit parts), r8w-r15w (lower 16-bit parts), r8b-r15b
(lower 8-bit parts).

SIMD-registers number are doubled: from 8 to 16: XMM0-XMM15.

∙ In Win64, function calling convention is slightly di�erent, somewhat resembling fastcall (??). First 4 arguments stored
in the RCX, RDX, R8, R9 registers, others—in the stack. Caller functionmust also allocate 32 bytes so the calleemay save
there 4 first arguments and use these registers for own needs. Short functions may use arguments just from registers,
but larger may save their values on the stack.

System V AMD64 ABI (Linux, *BSD, MacOSX) [21] also somewhat resembling fastcall, it uses 6 registers RDI, RSI, RDX,
RCX, R8, R9 for the first 6 arguments. All the rest are passed in the stack.

See also section about calling conventions (??).

∙ C int type is still 32-bit for compatibility.

∙ All pointers are 64-bit now.

This provokes irritation sometimes: now one need twice as muchmemory for storing pointers, including, cachemem-
ory, despite the fact x64 CPUs addresses only 48 bits of external RAM.

Sincenow registers number aredoubled, compilers hasmore spacenow formaneuvering calling register allocation. What
it meanings for us, emitted code will contain less local variables.

For example, function calculating first S-box of DES encryption algorithm, it processing 32/64/128/256 values at once
(depending on DES_type type (uint32, uint64, SSE2 or AVX)) using bitslice DESmethod (readmore about this technique here
(22)):

/*
* Generated S-box files.
*
* This software may be modified, redistributed, and used for any purpose,
* so long as its origin is acknowledged.
*
* Produced by Matthew Kwan - March 1998
*/

#ifdef _WIN64
#define DES_type unsigned __int64
#else
#define DES_type unsigned int

193

23.1. X86-64 CHAPTER 23. 64 BITS
#endif

void
s1 (

DES_type a1,
DES_type a2,
DES_type a3,
DES_type a4,
DES_type a5,
DES_type a6,
DES_type *out1,
DES_type *out2,
DES_type *out3,
DES_type *out4

) {
DES_type x1, x2, x3, x4, x5, x6, x7, x8;
DES_type x9, x10, x11, x12, x13, x14, x15, x16;
DES_type x17, x18, x19, x20, x21, x22, x23, x24;
DES_type x25, x26, x27, x28, x29, x30, x31, x32;
DES_type x33, x34, x35, x36, x37, x38, x39, x40;
DES_type x41, x42, x43, x44, x45, x46, x47, x48;
DES_type x49, x50, x51, x52, x53, x54, x55, x56;

x1 = a3 & ~a5;
x2 = x1 ^ a4;
x3 = a3 & ~a4;
x4 = x3 | a5;
x5 = a6 & x4;
x6 = x2 ^ x5;
x7 = a4 & ~a5;
x8 = a3 ^ a4;
x9 = a6 & ~x8;
x10 = x7 ^ x9;
x11 = a2 | x10;
x12 = x6 ^ x11;
x13 = a5 ^ x5;
x14 = x13 & x8;
x15 = a5 & ~a4;
x16 = x3 ^ x14;
x17 = a6 | x16;
x18 = x15 ^ x17;
x19 = a2 | x18;
x20 = x14 ^ x19;
x21 = a1 & x20;
x22 = x12 ^ ~x21;
*out2 ^= x22;
x23 = x1 | x5;
x24 = x23 ^ x8;
x25 = x18 & ~x2;
x26 = a2 & ~x25;
x27 = x24 ^ x26;
x28 = x6 | x7;
x29 = x28 ^ x25;
x30 = x9 ^ x24;
x31 = x18 & ~x30;
x32 = a2 & x31;
x33 = x29 ^ x32;
x34 = a1 & x33;
x35 = x27 ^ x34;
*out4 ^= x35;
x36 = a3 & x28;

194

23.1. X86-64 CHAPTER 23. 64 BITS
x37 = x18 & ~x36;
x38 = a2 | x3;
x39 = x37 ^ x38;
x40 = a3 | x31;
x41 = x24 & ~x37;
x42 = x41 | x3;
x43 = x42 & ~a2;
x44 = x40 ^ x43;
x45 = a1 & ~x44;
x46 = x39 ^ ~x45;
*out1 ^= x46;
x47 = x33 & ~x9;
x48 = x47 ^ x39;
x49 = x4 ^ x36;
x50 = x49 & ~x5;
x51 = x42 | x18;
x52 = x51 ^ a5;
x53 = a2 & ~x52;
x54 = x50 ^ x53;
x55 = a1 | x54;
x56 = x48 ^ ~x55;
*out3 ^= x56;

}

There is a lot of local variables. Of course, not all those will be in local stack. Let’s compile it with MSVC 2008 with /Ox
option:

Listing 23.1: Optimizing MSVC 2008
PUBLIC _s1
; Function compile flags: /Ogtpy
_TEXT SEGMENT
_x6$ = -20 ; size = 4
_x3$ = -16 ; size = 4
_x1$ = -12 ; size = 4
_x8$ = -8 ; size = 4
_x4$ = -4 ; size = 4
_a1$ = 8 ; size = 4
_a2$ = 12 ; size = 4
_a3$ = 16 ; size = 4
_x33$ = 20 ; size = 4
_x7$ = 20 ; size = 4
_a4$ = 20 ; size = 4
_a5$ = 24 ; size = 4
tv326 = 28 ; size = 4
_x36$ = 28 ; size = 4
_x28$ = 28 ; size = 4
_a6$ = 28 ; size = 4
_out1$ = 32 ; size = 4
_x24$ = 36 ; size = 4
_out2$ = 36 ; size = 4
_out3$ = 40 ; size = 4
_out4$ = 44 ; size = 4
_s1 PROC

sub esp, 20 ; 00000014H
mov edx, DWORD PTR _a5$[esp+16]
push ebx
mov ebx, DWORD PTR _a4$[esp+20]
push ebp
push esi
mov esi, DWORD PTR _a3$[esp+28]
push edi

195

23.1. X86-64 CHAPTER 23. 64 BITS
mov edi, ebx
not edi
mov ebp, edi
and edi, DWORD PTR _a5$[esp+32]
mov ecx, edx
not ecx
and ebp, esi
mov eax, ecx
and eax, esi
and ecx, ebx
mov DWORD PTR _x1$[esp+36], eax
xor eax, ebx
mov esi, ebp
or esi, edx
mov DWORD PTR _x4$[esp+36], esi
and esi, DWORD PTR _a6$[esp+32]
mov DWORD PTR _x7$[esp+32], ecx
mov edx, esi
xor edx, eax
mov DWORD PTR _x6$[esp+36], edx
mov edx, DWORD PTR _a3$[esp+32]
xor edx, ebx
mov ebx, esi
xor ebx, DWORD PTR _a5$[esp+32]
mov DWORD PTR _x8$[esp+36], edx
and ebx, edx
mov ecx, edx
mov edx, ebx
xor edx, ebp
or edx, DWORD PTR _a6$[esp+32]
not ecx
and ecx, DWORD PTR _a6$[esp+32]
xor edx, edi
mov edi, edx
or edi, DWORD PTR _a2$[esp+32]
mov DWORD PTR _x3$[esp+36], ebp
mov ebp, DWORD PTR _a2$[esp+32]
xor edi, ebx
and edi, DWORD PTR _a1$[esp+32]
mov ebx, ecx
xor ebx, DWORD PTR _x7$[esp+32]
not edi
or ebx, ebp
xor edi, ebx
mov ebx, edi
mov edi, DWORD PTR _out2$[esp+32]
xor ebx, DWORD PTR [edi]
not eax
xor ebx, DWORD PTR _x6$[esp+36]
and eax, edx
mov DWORD PTR [edi], ebx
mov ebx, DWORD PTR _x7$[esp+32]
or ebx, DWORD PTR _x6$[esp+36]
mov edi, esi
or edi, DWORD PTR _x1$[esp+36]
mov DWORD PTR _x28$[esp+32], ebx
xor edi, DWORD PTR _x8$[esp+36]
mov DWORD PTR _x24$[esp+32], edi
xor edi, ecx
not edi
and edi, edx

196

23.1. X86-64 CHAPTER 23. 64 BITS
mov ebx, edi
and ebx, ebp
xor ebx, DWORD PTR _x28$[esp+32]
xor ebx, eax
not eax
mov DWORD PTR _x33$[esp+32], ebx
and ebx, DWORD PTR _a1$[esp+32]
and eax, ebp
xor eax, ebx
mov ebx, DWORD PTR _out4$[esp+32]
xor eax, DWORD PTR [ebx]
xor eax, DWORD PTR _x24$[esp+32]
mov DWORD PTR [ebx], eax
mov eax, DWORD PTR _x28$[esp+32]
and eax, DWORD PTR _a3$[esp+32]
mov ebx, DWORD PTR _x3$[esp+36]
or edi, DWORD PTR _a3$[esp+32]
mov DWORD PTR _x36$[esp+32], eax
not eax
and eax, edx
or ebx, ebp
xor ebx, eax
not eax
and eax, DWORD PTR _x24$[esp+32]
not ebp
or eax, DWORD PTR _x3$[esp+36]
not esi
and ebp, eax
or eax, edx
xor eax, DWORD PTR _a5$[esp+32]
mov edx, DWORD PTR _x36$[esp+32]
xor edx, DWORD PTR _x4$[esp+36]
xor ebp, edi
mov edi, DWORD PTR _out1$[esp+32]
not eax
and eax, DWORD PTR _a2$[esp+32]
not ebp
and ebp, DWORD PTR _a1$[esp+32]
and edx, esi
xor eax, edx
or eax, DWORD PTR _a1$[esp+32]
not ebp
xor ebp, DWORD PTR [edi]
not ecx
and ecx, DWORD PTR _x33$[esp+32]
xor ebp, ebx
not eax
mov DWORD PTR [edi], ebp
xor eax, ecx
mov ecx, DWORD PTR _out3$[esp+32]
xor eax, DWORD PTR [ecx]
pop edi
pop esi
xor eax, ebx
pop ebp
mov DWORD PTR [ecx], eax
pop ebx
add esp, 20 ; 00000014H
ret 0

_s1 ENDP

197

23.1. X86-64 CHAPTER 23. 64 BITS
5 variables was allocated in local stack by compiler.
Now let’s try the same thing in 64-bit version of MSVC 2008:

Listing 23.2: Optimizing MSVC 2008
a1$ = 56
a2$ = 64
a3$ = 72
a4$ = 80
x36$1$ = 88
a5$ = 88
a6$ = 96
out1$ = 104
out2$ = 112
out3$ = 120
out4$ = 128
s1 PROC
$LN3:

mov QWORD PTR [rsp+24], rbx
mov QWORD PTR [rsp+32], rbp
mov QWORD PTR [rsp+16], rdx
mov QWORD PTR [rsp+8], rcx
push rsi
push rdi
push r12
push r13
push r14
push r15
mov r15, QWORD PTR a5$[rsp]
mov rcx, QWORD PTR a6$[rsp]
mov rbp, r8
mov r10, r9
mov rax, r15
mov rdx, rbp
not rax
xor rdx, r9
not r10
mov r11, rax
and rax, r9
mov rsi, r10
mov QWORD PTR x36$1$[rsp], rax
and r11, r8
and rsi, r8
and r10, r15
mov r13, rdx
mov rbx, r11
xor rbx, r9
mov r9, QWORD PTR a2$[rsp]
mov r12, rsi
or r12, r15
not r13
and r13, rcx
mov r14, r12
and r14, rcx
mov rax, r14
mov r8, r14
xor r8, rbx
xor rax, r15
not rbx
and rax, rdx
mov rdi, rax
xor rdi, rsi

198

23.1. X86-64 CHAPTER 23. 64 BITS
or rdi, rcx
xor rdi, r10
and rbx, rdi
mov rcx, rdi
or rcx, r9
xor rcx, rax
mov rax, r13
xor rax, QWORD PTR x36$1$[rsp]
and rcx, QWORD PTR a1$[rsp]
or rax, r9
not rcx
xor rcx, rax
mov rax, QWORD PTR out2$[rsp]
xor rcx, QWORD PTR [rax]
xor rcx, r8
mov QWORD PTR [rax], rcx
mov rax, QWORD PTR x36$1$[rsp]
mov rcx, r14
or rax, r8
or rcx, r11
mov r11, r9
xor rcx, rdx
mov QWORD PTR x36$1$[rsp], rax
mov r8, rsi
mov rdx, rcx
xor rdx, r13
not rdx
and rdx, rdi
mov r10, rdx
and r10, r9
xor r10, rax
xor r10, rbx
not rbx
and rbx, r9
mov rax, r10
and rax, QWORD PTR a1$[rsp]
xor rbx, rax
mov rax, QWORD PTR out4$[rsp]
xor rbx, QWORD PTR [rax]
xor rbx, rcx
mov QWORD PTR [rax], rbx
mov rbx, QWORD PTR x36$1$[rsp]
and rbx, rbp
mov r9, rbx
not r9
and r9, rdi
or r8, r11
mov rax, QWORD PTR out1$[rsp]
xor r8, r9
not r9
and r9, rcx
or rdx, rbp
mov rbp, QWORD PTR [rsp+80]
or r9, rsi
xor rbx, r12
mov rcx, r11
not rcx
not r14
not r13
and rcx, r9
or r9, rdi

199

23.2. ARM CHAPTER 23. 64 BITS
and rbx, r14
xor r9, r15
xor rcx, rdx
mov rdx, QWORD PTR a1$[rsp]
not r9
not rcx
and r13, r10
and r9, r11
and rcx, rdx
xor r9, rbx
mov rbx, QWORD PTR [rsp+72]
not rcx
xor rcx, QWORD PTR [rax]
or r9, rdx
not r9
xor rcx, r8
mov QWORD PTR [rax], rcx
mov rax, QWORD PTR out3$[rsp]
xor r9, r13
xor r9, QWORD PTR [rax]
xor r9, r8
mov QWORD PTR [rax], r9
pop r15
pop r14
pop r13
pop r12
pop rdi
pop rsi
ret 0

s1 ENDP

Nothing allocated in local stack by compiler, x36 is synonym for a5.
By the way, we can see here, the function saved RCX and RDX registers in allocated by caller space, but R8 and R9 are not

saved but used from the beginning.
By the way, there are CPUs with muchmore GPR’s, e.g. Itanium (128 registers).

23.2 ARM
In ARM, 64-bit instructions are appeared in ARMv8.

23.3 Float point numbers
Readmore here24 about how float point numbers are processed in x86-64.

200

CHAPTER 24. WORKINGWITH FLOAT POINT NUMBERS USING SIMD IN X64

Chapter 24

Working with float point numbers using SIMD
in x64

Of course, FPU remained in x86-compatible processors, when x64 extension was added. But at the time, SIMD-extensions
(SSE1, SSE2, etc) were already present, which canworkwith float point numbers aswell. Number format remaining the same
(IEEE 754).

So, x86-64 compilers are usually use SIMD-instructions. It can be said, it’s a good news, because it’s easier to work with
them.

We will reuse here examples from the FPU section 15.

24.1 Simple example

double f (double a, double b)
{

return a/3.14 + b*4.1;
};

Listing 24.1: MSVC 2012 x64 /Ox
__real@4010666666666666 DQ 04010666666666666r ; 4.1
__real@40091eb851eb851f DQ 040091eb851eb851fr ; 3.14

a$ = 8
b$ = 16
f PROC

divsd xmm0, QWORD PTR __real@40091eb851eb851f
mulsd xmm1, QWORD PTR __real@4010666666666666
addsd xmm0, xmm1
ret 0

f ENDP

Input floating point values are passed in XMM0-XMM3 registers, all the rest—via stack 2.
𝑎 is passed in XMM0, 𝑏—via XMM1. XMM-registers are 128-bit (as we know from the section about SIMD22), but double

values—64 bit ones, so only lower register half is used.
DIVSD is SSE-instruction, meaning “Divide Scalar Double-Precision Floating-Point Values”, it just divides one value of

double type by another, stored in the lower halves of operands.
Constants are encoded by compiler in IEEE 754 format.
MULSD and ADDSDworks just as the same, but doing multiplication and addition.
The result of double type the function leaves in XMM0 register.

That is how non-optimizing MSVC works:

Listing 24.2: MSVC 2012 x64

1Streaming SIMD Extensions
2MSDN: Parameter Passing

201

http://msdn.microsoft.com/en-us/library/zthk2dkh.aspx

24.2. PASSING FLOATING POINT NUMBER VIA ARGUMENTSCHAPTER 24. WORKINGWITH FLOAT POINT NUMBERS USING SIMD IN X64
__real@4010666666666666 DQ 04010666666666666r ; 4.1
__real@40091eb851eb851f DQ 040091eb851eb851fr ; 3.14

a$ = 8
b$ = 16
f PROC

movsdx QWORD PTR [rsp+16], xmm1
movsdx QWORD PTR [rsp+8], xmm0
movsdx xmm0, QWORD PTR a$[rsp]
divsd xmm0, QWORD PTR __real@40091eb851eb851f
movsdx xmm1, QWORD PTR b$[rsp]
mulsd xmm1, QWORD PTR __real@4010666666666666
addsd xmm0, xmm1
ret 0

f ENDP

Slightly redundant. Input arguments are saved in “shadow space” (7.2.1), but only lower register halves, i.e., only 64-bit
values of double type.

GCC produces very same code.

24.2 Passing floating point number via arguments

#include <math.h>
#include <stdio.h>

int main ()
{

printf ("32.01 ^ 1.54 = %lf\n", pow (32.01,1.54));

return 0;
}

They are passed in lower halves of the XMM0-XMM3 registers.

Listing 24.3: MSVC 2012 x64 /Ox
$SG1354 DB ’32.01 ^ 1.54 = %lf’, 0aH, 00H

__real@40400147ae147ae1 DQ 040400147ae147ae1r ; 32.01
__real@3ff8a3d70a3d70a4 DQ 03ff8a3d70a3d70a4r ; 1.54

main PROC
sub rsp, 40 ; 00000028H
movsdx xmm1, QWORD PTR __real@3ff8a3d70a3d70a4
movsdx xmm0, QWORD PTR __real@40400147ae147ae1
call pow
lea rcx, OFFSET FLAT:$SG1354
movaps xmm1, xmm0
movd rdx, xmm1
call printf
xor eax, eax
add rsp, 40 ; 00000028H
ret 0

main ENDP

TherearenoMOVSDX instruction in Intel [14] andAMD[1]manuals, it is called there justMOVSD. So thereare two instructions
sharing the same name in x86 (about other: 80.6.2). Apparently, Microso� developers wanted to get rid of mess, so they
renamed it into MOVSDX. It just loads a value into lower half of XMM-register.

pow() takes arguments from XMM0 and XMM1, and returning result in XMM0. It is then moved into RDX for printf(). Why?
Honestly speaking, I don’t know, maybe because printf()—is a variable arguments function?

202

24.3. COMPARISON EXAMPLE CHAPTER 24. WORKINGWITH FLOAT POINT NUMBERS USING SIMD IN X64
Listing 24.4: GCC 4.4.6 x64 -O3

.LC2:
.string "32.01 ^ 1.54 = %lf\n"

main:
sub rsp, 8
movsd xmm1, QWORD PTR .LC0[rip]
movsd xmm0, QWORD PTR .LC1[rip]
call pow
; result is now in XMM0
mov edi, OFFSET FLAT:.LC2
mov eax, 1 ; number of vector registers passed
call printf
xor eax, eax
add rsp, 8
ret

.LC0:
.long 171798692
.long 1073259479

.LC1:
.long 2920577761
.long 1077936455

GCCmakingmore clear result. Value for printf() is passed in XMM0. By the way, here is a case when 1 is written into EAX
for printf()—this mean that one argument will be passed in vector registers, just as the standard requires [21].

24.3 Comparison example

double d_max (double a, double b)
{

if (a>b)
return a;

return b;
};

Listing 24.5: MSVC 2012 x64 /Ox
a$ = 8
b$ = 16
d_max PROC

comisd xmm0, xmm1
ja SHORT $LN2@d_max
movaps xmm0, xmm1

$LN2@d_max:
fatret 0

d_max ENDP

Optimizing MSVC generates very easy code to understand.
COMISD is “Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS”. Essentially, that is what it

does.

Non-optimizing MSVC generates more redundant code, but it is still not hard to understand:

Listing 24.6: MSVC 2012 x64
a$ = 8
b$ = 16
d_max PROC

movsdx QWORD PTR [rsp+16], xmm1
movsdx QWORD PTR [rsp+8], xmm0
movsdx xmm0, QWORD PTR a$[rsp]

203

24.4. SUMMARY CHAPTER 24. WORKINGWITH FLOAT POINT NUMBERS USING SIMD IN X64
comisd xmm0, QWORD PTR b$[rsp]
jbe SHORT $LN1@d_max
movsdx xmm0, QWORD PTR a$[rsp]
jmp SHORT $LN2@d_max

$LN1@d_max:
movsdx xmm0, QWORD PTR b$[rsp]

$LN2@d_max:
fatret 0

d_max ENDP

However, GCC 4.4.6 did more optimizing and used the MAXSD (“Return Maximum Scalar Double-Precision Floating-Point
Value”) instruction, which just choose maximal value!

Listing 24.7: GCC 4.4.6 x64 -O3
d_max:

maxsd xmm0, xmm1
ret

24.4 Summary
Only lower half of XMM-registers are used in all examples here, a number in IEEE 754 format is stored there.

Essentially, all instructions prefixed by -SD (“Scalar Double-Precision”)—are instructions working with float point num-
bers in IEEE 754 format stored in the lower 64-bit half of XMM-register.

And it is easier than FPU, apparently because SIMD extensions were evolved not as chaotic as FPU in the past. Stack
register model is not used.

If you would try to replace double to float in these examples, the same instructions will be used, but prefixed with -SS
(“Scalar Single-Precision”), for example, MOVSS, COMISS, ADDSS, etc.

“Scalar” mean that SIMD-register will contain only one value instead of several. Instructions working with several values
in a register simultaneously, has “Packed” in the name.

204

CHAPTER 25. TEMPERATURE CONVERTING

Chapter 25

Temperature converting

Another very popular example in programming books for beginners, is a small program converting Fahrenheit temperature
to Celsius or back.

𝐶 =
5 · (𝐹 − 32)

9

I also added simple error handling: 1) we should check if user enters correct number; 2) we should check if Celsius tem-
perature is not below−273 number (which is below absolute zero, as wemay remember from school physics lessons).

exit() function terminates program instantly, without returning to the caller function.

25.1 Integer values

#include <stdio.h>
#include <stdlib.h>

int main()
{

int celsius, fahr;
printf ("Enter temperature in Fahrenheit:\n");
if (scanf ("%d", &fahr)!=1)
{

printf ("Error while parsing your input\n");
exit(0);

};

celsius = 5 * (fahr-32) / 9;

if (celsius<-273)
{

printf ("Error: incorrect temperature!\n");
exit(0);

};
printf ("Celsius: %d\n", celsius);

};

25.1.1 MSVC 2012 x86 /Ox

Listing 25.1: MSVC 2012 x86 /Ox
$SG4228 DB ’Enter temperature in Fahrenheit:’, 0aH, 00H
$SG4230 DB ’%d’, 00H
$SG4231 DB ’Error while parsing your input’, 0aH, 00H
$SG4233 DB ’Error: incorrect temperature!’, 0aH, 00H
$SG4234 DB ’Celsius: %d’, 0aH, 00H

205

25.1. INTEGER VALUES CHAPTER 25. TEMPERATURE CONVERTING
_fahr$ = -4 ; size = 4
_main PROC

push ecx
push esi
mov esi, DWORD PTR __imp__printf
push OFFSET $SG4228 ; ’Enter temperature in Fahrenheit:’
call esi ; call printf()
lea eax, DWORD PTR _fahr$[esp+12]
push eax
push OFFSET $SG4230 ; ’%d’
call DWORD PTR __imp__scanf
add esp, 12 ; 0000000cH
cmp eax, 1
je SHORT $LN2@main
push OFFSET $SG4231 ; ’Error while parsing your input’
call esi ; call printf()
add esp, 4
push 0
call DWORD PTR __imp__exit

$LN9@main:
$LN2@main:

mov eax, DWORD PTR _fahr$[esp+8]
add eax, -32 ; ffffffe0H
lea ecx, DWORD PTR [eax+eax*4]
mov eax, 954437177 ; 38e38e39H
imul ecx
sar edx, 1
mov eax, edx
shr eax, 31 ; 0000001fH
add eax, edx
cmp eax, -273 ; fffffeefH
jge SHORT $LN1@main
push OFFSET $SG4233 ; ’Error: incorrect temperature!’
call esi ; call printf()
add esp, 4
push 0
call DWORD PTR __imp__exit

$LN10@main:
$LN1@main:

push eax
push OFFSET $SG4234 ; ’Celsius: %d’
call esi ; call printf()
add esp, 8
; return 0 - at least by C99 standard
xor eax, eax
pop esi
pop ecx
ret 0

$LN8@main:
_main ENDP

What we can say about it:

∙ Address of printf() is first loaded into ESI register, so the subsequent printf() calls are processed just by CALL
ESI instruction. It’s a very popular compiler technique, possible if several consequent calls to the same function are
present in the code, and/or, if there are free register which can be used for this.

∙ We see ADD EAX, -32 instruction at the place where 32 should be subtracted from the value. 𝐸𝐴𝑋 = 𝐸𝐴𝑋 +(−32)
is equivalent to𝐸𝐴𝑋 = 𝐸𝐴𝑋 − 32 and somehow, compiler decide to use ADD instead of SUB. Maybe it’s worth it.

∙ LEA instruction is used when value should be multiplied by 5: lea ecx, DWORD PTR [eax+eax*4]. Yes, 𝑖 + 𝑖 * 4 is
equivalent to 𝑖 * 5 and LEAworks faster then IMUL. By the way, SHL EAX, 2 / ADD EAX, EAX instructions pair could
be also used here instead— some compilers do it in this way.

206

25.2. FLOAT POINT VALUES CHAPTER 25. TEMPERATURE CONVERTING
∙ Division by multiplication trick (14) is also used here.

∙ main() function returns 0 while we haven’t return 0 at its end. C99 standard tells us [15, 5.1.2.2.3] that main() will
return 0 in case of return statement absence. This ruleworks only for main() function. Though,MSVCdoesn’t support
C99, but maybe partly it does?

25.1.2 MSVC 2012 x64 /Ox
The code is almost the same, but I’ve found INT 3 instructions a�er each exit() call:

xor ecx, ecx
call QWORD PTR __imp_exit
int 3

INT 3 is a debugger breakpoint.
It is known that exit() is one of functions which never can return 1, so if it does, something really odd happens and it’s

time to load debugger.

25.2 Float point values

#include <stdio.h>
#include <stdlib.h>

int main()
{

double celsius, fahr;
printf ("Enter temperature in Fahrenheit:\n");
if (scanf ("%lf", &fahr)!=1)
{

printf ("Error while parsing your input\n");
exit(0);

};

celsius = 5 * (fahr-32) / 9;

if (celsius<-273)
{

printf ("Error: incorrect temperature!\n");
exit(0);

};
printf ("Celsius: %lf\n", celsius);

};

MSVC 2010 x86 use FPU instructions...

Listing 25.2: MSVC 2010 x86 /Ox
$SG4038 DB ’Enter temperature in Fahrenheit:’, 0aH, 00H
$SG4040 DB ’%lf’, 00H
$SG4041 DB ’Error while parsing your input’, 0aH, 00H
$SG4043 DB ’Error: incorrect temperature!’, 0aH, 00H
$SG4044 DB ’Celsius: %lf’, 0aH, 00H

__real@c071100000000000 DQ 0c071100000000000r ; -273
__real@4022000000000000 DQ 04022000000000000r ; 9
__real@4014000000000000 DQ 04014000000000000r ; 5
__real@4040000000000000 DQ 04040000000000000r ; 32

_fahr$ = -8 ; size = 8
_main PROC

1another popular one is longjmp()

207

25.2. FLOAT POINT VALUES CHAPTER 25. TEMPERATURE CONVERTING
sub esp, 8
push esi
mov esi, DWORD PTR __imp__printf
push OFFSET $SG4038 ; ’Enter temperature in Fahrenheit:’
call esi ; call printf
lea eax, DWORD PTR _fahr$[esp+16]
push eax
push OFFSET $SG4040 ; ’%lf’
call DWORD PTR __imp__scanf
add esp, 12 ; 0000000cH
cmp eax, 1
je SHORT $LN2@main
push OFFSET $SG4041 ; ’Error while parsing your input’
call esi ; call printf
add esp, 4
push 0
call DWORD PTR __imp__exit

$LN2@main:
fld QWORD PTR _fahr$[esp+12]
fsub QWORD PTR __real@4040000000000000 ; 32
fmul QWORD PTR __real@4014000000000000 ; 5
fdiv QWORD PTR __real@4022000000000000 ; 9
fld QWORD PTR __real@c071100000000000 ; -273
fcomp ST(1)
fnstsw ax
test ah, 65 ; 00000041H
jne SHORT $LN1@main
push OFFSET $SG4043 ; ’Error: incorrect temperature!’
fstp ST(0)
call esi ; call printf
add esp, 4
push 0
call DWORD PTR __imp__exit

$LN1@main:
sub esp, 8
fstp QWORD PTR [esp]
push OFFSET $SG4044 ; ’Celsius: %lf’
call esi
add esp, 12 ; 0000000cH
; return 0
xor eax, eax
pop esi
add esp, 8
ret 0

$LN10@main:
_main ENDP

... but MSVC from year 2012 use SIMD instructions instead:

Listing 25.3: MSVC 2010 x86 /Ox
$SG4228 DB ’Enter temperature in Fahrenheit:’, 0aH, 00H
$SG4230 DB ’%lf’, 00H
$SG4231 DB ’Error while parsing your input’, 0aH, 00H
$SG4233 DB ’Error: incorrect temperature!’, 0aH, 00H
$SG4234 DB ’Celsius: %lf’, 0aH, 00H
__real@c071100000000000 DQ 0c071100000000000r ; -273
__real@4040000000000000 DQ 04040000000000000r ; 32
__real@4022000000000000 DQ 04022000000000000r ; 9
__real@4014000000000000 DQ 04014000000000000r ; 5

_fahr$ = -8 ; size = 8

208

25.2. FLOAT POINT VALUES CHAPTER 25. TEMPERATURE CONVERTING
_main PROC

sub esp, 8
push esi
mov esi, DWORD PTR __imp__printf
push OFFSET $SG4228 ; ’Enter temperature in Fahrenheit:’
call esi ; call printf
lea eax, DWORD PTR _fahr$[esp+16]
push eax
push OFFSET $SG4230 ; ’%lf’
call DWORD PTR __imp__scanf
add esp, 12 ; 0000000cH
cmp eax, 1
je SHORT $LN2@main
push OFFSET $SG4231 ; ’Error while parsing your input’
call esi ; call printf
add esp, 4
push 0
call DWORD PTR __imp__exit

$LN9@main:
$LN2@main:

movsd xmm1, QWORD PTR _fahr$[esp+12]
subsd xmm1, QWORD PTR __real@4040000000000000 ; 32
movsd xmm0, QWORD PTR __real@c071100000000000 ; -273
mulsd xmm1, QWORD PTR __real@4014000000000000 ; 5
divsd xmm1, QWORD PTR __real@4022000000000000 ; 9
comisd xmm0, xmm1
jbe SHORT $LN1@main
push OFFSET $SG4233 ; ’Error: incorrect temperature!’
call esi ; call printf
add esp, 4
push 0
call DWORD PTR __imp__exit

$LN10@main:
$LN1@main:

sub esp, 8
movsd QWORD PTR [esp], xmm1
push OFFSET $SG4234 ; ’Celsius: %lf’
call esi ; call printf
add esp, 12 ; 0000000cH
; return 0
xor eax, eax
pop esi
add esp, 8
ret 0

$LN8@main:
_main ENDP

Of course, SIMD instructions are available in x86 mode, including those working with floating point numbers. It’s some-
what easier to use them for calculations, so the new Microso� compiler use them.

We may also notice that −273 value is loaded into XMM0 register too early. And that’s OK, because, compiler may emit
instructions not in the order they are in source code.

209

CHAPTER 26. C99 RESTRICT

Chapter 26

C99 restrict

Here is a reason why FORTRAN programs, in some cases, works faster than C/C++ ones.

void f1 (int* x, int* y, int* sum, int* product, int* sum_product, int* update_me, size_t s)
{

for (int i=0; i<s; i++)
{

sum[i]=x[i]+y[i];
product[i]=x[i]*y[i];
update_me[i]=i*123; // some dummy value
sum_product[i]=sum[i]+product[i];

};
};

That’s very simple example with one specific thing in it: pointer to update_me array could be a pointer to sum array,
product array, or even sum_product array—since it is not a crime in it, right?

Compiler is fully aware about it, so it generates a code with four stages in loop body:

∙ calculate next sum[i]

∙ calculate next product[i]

∙ calculate next update_me[i]

∙ calculatenextsum_product[i]—onthis stage,weneed to load frommemoryalreadycalculatedsum[i]andproduct[i]

Is it possible to optimize the last stage? Since already calculated sum[i] and product[i] are not necessary to load from
memory again, becausewe already calculated them. Yes, but compiler is not sure that nothingwas overwritten on 3rd stage!
This is called “pointer aliasing”, a situation, when compiler cannot be sure that amemory to which a pointer is pointing, was
not changed.

restrict in C99 standard [15, 6.7.3/1] is a promise, given by programmer to compiler the function argumentsmarked by this
keyword will always be pointing to di�erent memory locations and never be crossed.

If to bemore precise and describe this formally, restrict shows that only this pointer is to be used to access an object, with
which we are working via this pointer, and no other pointer will be used for it. It can be even said the object will be accessed
only via one single pointer, if it is marked as restrict.

Let’s add this keyword to each argument-pointer:

void f2 (int* restrict x, int* restrict y, int* restrict sum, int* restrict product, int*
restrict sum_product,

int* restrict update_me, size_t s)
{

for (int i=0; i<s; i++)
{

sum[i]=x[i]+y[i];
product[i]=x[i]*y[i];
update_me[i]=i*123; // some dummy value
sum_product[i]=sum[i]+product[i];

};
};

Let’s see results:

210

CHAPTER 26. C99 RESTRICT
Listing 26.1: GCC x64: f1()

f1:
push r15 r14 r13 r12 rbp rdi rsi rbx
mov r13, QWORD PTR 120[rsp]
mov rbp, QWORD PTR 104[rsp]
mov r12, QWORD PTR 112[rsp]
test r13, r13
je .L1
add r13, 1
xor ebx, ebx
mov edi, 1
xor r11d, r11d
jmp .L4

.L6:
mov r11, rdi
mov rdi, rax

.L4:
lea rax, 0[0+r11*4]
lea r10, [rcx+rax]
lea r14, [rdx+rax]
lea rsi, [r8+rax]
add rax, r9
mov r15d, DWORD PTR [r10]
add r15d, DWORD PTR [r14]
mov DWORD PTR [rsi], r15d ; store to sum[]
mov r10d, DWORD PTR [r10]
imul r10d, DWORD PTR [r14]
mov DWORD PTR [rax], r10d ; store to product[]
mov DWORD PTR [r12+r11*4], ebx ; store to update_me[]
add ebx, 123
mov r10d, DWORD PTR [rsi] ; reload sum[i]
add r10d, DWORD PTR [rax] ; reload product[i]
lea rax, 1[rdi]
cmp rax, r13
mov DWORD PTR 0[rbp+r11*4], r10d ; store to sum_product[]
jne .L6

.L1:
pop rbx rsi rdi rbp r12 r13 r14 r15
ret

Listing 26.2: GCC x64: f2()
f2:

push r13 r12 rbp rdi rsi rbx
mov r13, QWORD PTR 104[rsp]
mov rbp, QWORD PTR 88[rsp]
mov r12, QWORD PTR 96[rsp]
test r13, r13
je .L7
add r13, 1
xor r10d, r10d
mov edi, 1
xor eax, eax
jmp .L10

.L11:
mov rax, rdi
mov rdi, r11

.L10:
mov esi, DWORD PTR [rcx+rax*4]
mov r11d, DWORD PTR [rdx+rax*4]
mov DWORD PTR [r12+rax*4], r10d ; store to update_me[]

211

CHAPTER 26. C99 RESTRICT
add r10d, 123
lea ebx, [rsi+r11]
imul r11d, esi
mov DWORD PTR [r8+rax*4], ebx ; store to sum[]
mov DWORD PTR [r9+rax*4], r11d ; store to product[]
add r11d, ebx
mov DWORD PTR 0[rbp+rax*4], r11d ; store to sum_product[]
lea r11, 1[rdi]
cmp r11, r13
jne .L11

.L7:
pop rbx rsi rdi rbp r12 r13
ret

The di�erence between compiled f1() and f2() function is as follows: in f1(), sum[i] and product[i] are reloaded in
themiddle of loop, and in f2() there are no such thing, already calculated values are used, sincewe “promised” to compiler,
that no one and nothing will change values in sum[i] and product[i]while execution of loop body, so it is “sure” the value
frommemory may not be loaded again. Obviously, second example will work faster.

Butwhat if pointers in functionargumentswill be crossed somehow? Thiswill beonprogrammer’s conscience, but results
will be incorrect.

Let’s back to FORTRAN.Compilers from this programming language treats all pointers as such, sowhen itwasnotpossible
to set restrict, FORTRAN in these cases may generate faster code.

How practical is it? In the cases when function works with several big blocks in memory. E.g. there are a lot of such in
linear algebra. A lot of linear algebra usedon supercomputers/HPC1, probably, that iswhy, traditionally, FORTRAN is still used
there [19].

But when a number of iterations is not very big, certainly, speed boost will not be significant.

1High-Performance Computing

212

CHAPTER 27. INLINE FUNCTIONS

Chapter 27

Inline functions

Inlined code is when compiler, instead of placing call instruction to small or tiny function, just placing its body right in-place.

Listing 27.1: Simple example
#include <stdio.h>

int celsius_to_fahrenheit (int celsius)
{

return celsius * 9 / 5 + 32;
};

int main(int argc, char *argv[])
{

int celsius=atol(argv[1]);
printf ("%d\n", celsius_to_fahrenheit (celsius));

};

... is compiled in very predictable way, however, if to turn on GCC optimization (-O3), we’ll see:

Listing 27.2: GCC 4.8.1 -O3
_main:

push ebp
mov ebp, esp
and esp, -16
sub esp, 16
call ___main
mov eax, DWORD PTR [ebp+12]
mov eax, DWORD PTR [eax+4]
mov DWORD PTR [esp], eax
call _atol
mov edx, 1717986919
mov DWORD PTR [esp], OFFSET FLAT:LC2 ; "%d\12\0"
lea ecx, [eax+eax*8]
mov eax, ecx
imul edx
sar ecx, 31
sar edx
sub edx, ecx
add edx, 32
mov DWORD PTR [esp+4], edx
call _printf
leave
ret

(Here division is done by multiplication(14).)
Yes, our small function was just placed before printf() call. Why? It may be faster than executing this function’s code

plus calling/returning overhead.

213

CHAPTER 27. INLINE FUNCTIONS
In past, such function must be marked with “inline” keyword in function’s declaration, however, in modern times, these

functions are chosen automatically by compiler.
Another very common automatic optimization is inlining of string functions like strcpy(), strcmp(), etc.

Listing 27.3: Another simple example
bool is_bool (char *s)
{

if (strcmp (s, "true")==0)
return true;

if (strcmp (s, "false")==0)
return false;

assert(0);
};

Listing 27.4: GCC 4.8.1 -O3
_is_bool:

push edi
mov ecx, 5
push esi
mov edi, OFFSET FLAT:LC0 ; "true\0"
sub esp, 20
mov esi, DWORD PTR [esp+32]
repz cmpsb
je L3
mov esi, DWORD PTR [esp+32]
mov ecx, 6
mov edi, OFFSET FLAT:LC1 ; "false\0"
repz cmpsb
seta cl
setb dl
xor eax, eax
cmp cl, dl
jne L8
add esp, 20
pop esi
pop edi
ret

Here is an example of very frequently seen piece of strcmp() code generated by MSVC:

Listing 27.5: MSVC
mov dl, [eax]
cmp dl, [ecx]
jnz short loc_10027FA0
test dl, dl
jz short loc_10027F9C
mov dl, [eax+1]
cmp dl, [ecx+1]
jnz short loc_10027FA0
add eax, 2
add ecx, 2
test dl, dl
jnz short loc_10027F80

loc_10027F9C: ; CODE XREF: f1+448
xor eax, eax
jmp short loc_10027FA5

; ---

loc_10027FA0: ; CODE XREF: f1+444

214

CHAPTER 27. INLINE FUNCTIONS
; f1+450

sbb eax, eax
sbb eax, 0FFFFFFFFh

I wrote small IDA script for searching and folding such very frequently seen pieces of inline code:
https://github.com/yurichev/IDA_scripts.

215

https://github.com/yurichev/IDA_scripts

CHAPTER 28. INCORRECTLY DISASSEMBLED CODE

Chapter 28

Incorrectly disassembled code

Practicing reverse engineers o�en dealing with incorrectly disassembled code.

28.1 Disassembling started incorrectly (x86)
Unlike ARM and MIPS (where any instruction has length of 2 or 4 bytes), x86 instructions has variable size, so, any disassem-
bler, starting at the middle of x86 instruction, may produce incorrect results.

As an example:

add [ebp-31F7Bh], cl
dec dword ptr [ecx-3277Bh]
dec dword ptr [ebp-2CF7Bh]
inc dword ptr [ebx-7A76F33Ch]
fdiv st(4), st

;---
db 0FFh

;---
dec dword ptr [ecx-21F7Bh]
dec dword ptr [ecx-22373h]
dec dword ptr [ecx-2276Bh]
dec dword ptr [ecx-22B63h]
dec dword ptr [ecx-22F4Bh]
dec dword ptr [ecx-23343h]
jmp dword ptr [esi-74h]

;---
xchg eax, ebp
clc
std

;---
db 0FFh
db 0FFh

;---
mov word ptr [ebp-214h], cs
mov word ptr [ebp-238h], ds
mov word ptr [ebp-23Ch], es
mov word ptr [ebp-240h], fs
mov word ptr [ebp-244h], gs
pushf
pop dword ptr [ebp-210h]
mov eax, [ebp+4]
mov [ebp-218h], eax
lea eax, [ebp+4]
mov [ebp-20Ch], eax
mov dword ptr [ebp-2D0h], 10001h
mov eax, [eax-4]
mov [ebp-21Ch], eax
mov eax, [ebp+0Ch]

216

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED? CHAPTER 28. INCORRECTLY DISASSEMBLED CODE
mov [ebp-320h], eax
mov eax, [ebp+10h]
mov [ebp-31Ch], eax
mov eax, [ebp+4]
mov [ebp-314h], eax
call ds:IsDebuggerPresent
mov edi, eax
lea eax, [ebp-328h]
push eax
call sub_407663
pop ecx
test eax, eax
jnz short loc_402D7B

There are incorrectly disassembled instructions at the beginning, but eventually, disassembler finds right track.

28.2 How random noise looks disassembled?
Common properties which can be easily spotted are:

∙ Unusually big instruction dispersion. Most frequent x86 instructions are PUSH, MOV, CALL, but here we will see in-
structions from any instruction group: FPU instructions, IN/OUT instructions, rare and system instructions, everything
messed up in one single place.

∙ Big and random values, o�sets and immediates.

∙ Jumps having incorrect o�sets o�en jumping into the middle of another instructions.

Listing 28.1: random noise (x86)
mov bl, 0Ch
mov ecx, 0D38558Dh
mov eax, ds:2C869A86h
db 67h
mov dl, 0CCh
insb
movsb
push eax
xor [edx-53h], ah
fcom qword ptr [edi-45A0EF72h]
pop esp
pop ss
in eax, dx
dec ebx
push esp
lds esp, [esi-41h]
retf
rcl dword ptr [eax], cl
mov cl, 9Ch
mov ch, 0DFh
push cs
insb
mov esi, 0D9C65E4Dh
imul ebp, [ecx], 66h
pushf
sal dword ptr [ebp-64h], cl
sub eax, 0AC433D64h
out 8Ch, eax
pop ss
sbb [eax], ebx
aas
xchg cl, [ebx+ebx*4+14B31Eh]

217

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED? CHAPTER 28. INCORRECTLY DISASSEMBLED CODE
jecxz short near ptr loc_58+1
xor al, 0C6h
inc edx
db 36h
pusha
stosb
test [ebx], ebx
sub al, 0D3h ; ’L’
pop eax
stosb

loc_58: ; CODE XREF: seg000:0000004A
test [esi], eax
inc ebp
das
db 64h
pop ecx
das
hlt

; ---
pop edx
out 0B0h, al
lodsb
push ebx
cdq
out dx, al
sub al, 0Ah
sti
outsd
add dword ptr [edx], 96FCBE4Bh
and eax, 0E537EE4Fh
inc esp
stosd
cdq
push ecx
in al, 0CBh
mov ds:0D114C45Ch, al
mov esi, 659D1985h
enter 6FE8h, 0D9h
enter 6FE6h, 0D9h
xchg eax, esi
sub eax, 0A599866Eh
retn

; ---
pop eax
dec eax
adc al, 21h ; ’!’
lahf
inc edi
sub eax, 9062EE5Bh
bound eax, [ebx]

loc_A2: ; CODE XREF: seg000:00000120
wait
iret

; ---
jnb short loc_D7
cmpsd
iret

; ---
jnb short loc_D7

218

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED? CHAPTER 28. INCORRECTLY DISASSEMBLED CODE
sub ebx, [ecx]
in al, 0Ch
add esp, esp
mov bl, 8Fh
xchg eax, ecx
int 67h ; - LIM EMS
pop ds
pop ebx
db 36h
xor esi, [ebp-4Ah]
mov ebx, 0EB4F980Ch
repne add bl, dh
imul ebx, [ebp+5616E7A5h], 67A4D1EEh
xchg eax, ebp
scasb
push esp
wait
mov dl, 11h
mov ah, 29h ; ’)’
fist dword ptr [edx]

loc_D7: ; CODE XREF: seg000:000000A4
; seg000:000000A8 ...

dec dword ptr [ebp-5D0E0BA4h]
call near ptr 622FEE3Eh
sbb ax, 5A2Fh
jmp dword ptr cs:[ebx]

; ---
xor ch, [edx-5]
inc esp
push edi
xor esp, [ebx-6779D3B8h]
pop eax
int 3 ; Trap to Debugger
rcl byte ptr [ebx-3Eh], cl
xor [edi], bl
sbb al, [edx+ecx*4]
xor ah, [ecx-1DA4E05Dh]
push edi
xor ah, cl
popa
cmp dword ptr [edx-62h], 46h ; ’F’
dec eax
in al, 69h
dec ebx
iret

; ---
or al, 6
jns short near ptr loc_D7+3
shl byte ptr [esi], 42h
repne adc [ebx+2Ch], eax
icebp
cmpsd
leave
push esi
jmp short loc_A2

; ---
and eax, 0F2E41FE9h
push esi
loop loc_14F
add ah, fs:[edx]

219

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED? CHAPTER 28. INCORRECTLY DISASSEMBLED CODE

loc_12D: ; CODE XREF: seg000:00000169
mov dh, 0F7h
add [ebx+7B61D47Eh], esp
mov edi, 79F19525h
rcl byte ptr [eax+22015F55h], cl
cli
sub al, 0D2h ; ’T’
dec eax
mov ds:0A81406F5h, eax
sbb eax, 0A7AA179Ah
in eax, dx

loc_14F: ; CODE XREF: seg000:00000128
and [ebx-4CDFAC74h], ah
pop ecx
push esi
mov bl, 2Dh ; ’-’
in eax, 2Ch
stosd
inc edi
push esp

locret_15E: ; CODE XREF: seg000:loc_1A0
retn 0C432h

; ---
and al, 86h
cwde
and al, 8Fh
cmp ebp, [ebp+7]
jz short loc_12D
sub bh, ch
or dword ptr [edi-7Bh], 8A16C0F7h
db 65h
insd
mov al, ds:0A3A5173Dh
dec ecx
push ds
xor al, cl
jg short loc_195
push 6Eh ; ’n’
out 0DDh, al
inc edi
sub eax, 6899BBF1h
leave
rcr dword ptr [ecx-69h], cl
sbb ch, [edi+5EDDCB54h]

loc_195: ; CODE XREF: seg000:0000017F
push es
repne sub ah, [eax-105FF22Dh]
cmc
and ch, al

loc_1A0: ; CODE XREF: seg000:00000217
jnp short near ptr locret_15E+1
or ch, [eax-66h]
add [edi+edx-35h], esi
out dx, al
db 2Eh
call far ptr 1AAh:6832F5DDh

220

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED? CHAPTER 28. INCORRECTLY DISASSEMBLED CODE
jz short near ptr loc_1DA+1
sbb esp, [edi+2CB02CEFh]
xchg eax, edi
xor [ebx-766342ABh], edx

loc_1C1: ; CODE XREF: seg000:00000212
cmp eax, 1BE9080h
add [ecx], edi
aad 0
imul esp, [edx-70h], 0A8990126h
or dword ptr [edx+10C33693h], 4Bh
popf

loc_1DA: ; CODE XREF: seg000:000001B2
mov ecx, cs
aaa
mov al, 39h ; ’9’
adc byte ptr [eax-77F7F1C5h], 0C7h
add [ecx], bl
retn 0DD42h

; ---
db 3Eh
mov fs:[edi], edi
and [ebx-24h], esp
db 64h
xchg eax, ebp
push cs
adc eax, [edi+36h]
mov bh, 0C7h
sub eax, 0A710CBE7h
xchg eax, ecx
or eax, 51836E42h
xchg eax, ebx
inc ecx
jb short near ptr loc_21E+3
db 64h
xchg eax, esp
and dh, [eax-31h]
mov ch, 13h
add ebx, edx
jnb short loc_1C1
db 65h
adc al, 0C5h
js short loc_1A0
sbb eax, 887F5BEEh

loc_21E: ; CODE XREF: seg000:00000207
mov eax, 888E1FD6h
mov bl, 90h
cmp [eax], ecx
rep int 61h ; reserved for user interrupt
and edx, [esi-7EB5C9EAh]
fisttp qword ptr [eax+esi*4+38F9BA6h]
jmp short loc_27C

; ---
fadd st, st(2)
db 3Eh
mov edx, 54C03172h
retn

; ---
db 64h

221

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED? CHAPTER 28. INCORRECTLY DISASSEMBLED CODE
pop ds
xchg eax, esi
rcr ebx, cl
cmp [di+2Eh], ebx
repne xor [di-19h], dh
insd
adc dl, [eax-0C4579F7h]
push ss
xor [ecx+edx*4+65h], ecx
mov cl, [ecx+ebx-32E8AC51h]
or [ebx], ebp
cmpsb
lodsb
iret

Listing 28.2: random noise (x86-64)
lea esi, [rax+rdx*4+43558D29h]

loc_AF3: ; CODE XREF: seg000:0000000000000B46
rcl byte ptr [rsi+rax*8+29BB423Ah], 1
lea ecx, cs:0FFFFFFFFB2A6780Fh
mov al, 96h
mov ah, 0CEh
push rsp
lods byte ptr [esi]

; ---
db 2Fh ; /

; ---
pop rsp
db 64h
retf 0E993h

; ---
cmp ah, [rax+4Ah]
movzx rsi, dword ptr [rbp-25h]
push 4Ah
movzx rdi, dword ptr [rdi+rdx*8]

; ---
db 9Ah

; ---
rcr byte ptr [rax+1Dh], cl
lodsd
xor [rbp+6CF20173h], edx
xor [rbp+66F8B593h], edx
push rbx
sbb ch, [rbx-0Fh]
stosd
int 87h ; used by BASIC while in interpreter
db 46h, 4Ch
out 33h, rax
xchg eax, ebp
test ecx, ebp
movsd
leave
push rsp

; ---
db 16h

; ---
xchg eax, esi
pop rdi

222

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED? CHAPTER 28. INCORRECTLY DISASSEMBLED CODE
loc_B3D: ; CODE XREF: seg000:0000000000000B5F

mov ds:93CA685DF98A90F9h, eax
jnz short near ptr loc_AF3+6
out dx, eax
cwde
mov bh, 5Dh ; ’]’
movsb
pop rbp

; ---
db 60h ; ‘

; ---
movsxd rbp, dword ptr [rbp-17h]
pop rbx
out 7Dh, al
add eax, 0D79BE769h

; ---
db 1Fh

; ---
retf 0CAB9h

; ---
jl short near ptr loc_B3D+4
sal dword ptr [rbx+rbp+4Dh], 0D3h
mov cl, 41h ; ’A’
imul eax, [rbp-5B77E717h], 1DDE6E5h
imul ecx, ebx, 66359BCCh
xlat

; ---
db 60h ; ‘

; ---
cmp bl, [rax]
and ebp, [rcx-57h]
stc
sub [rcx+1A533AB4h], al
jmp short loc_C05

; ---
db 4Bh ; K

; ---
int 3 ; Trap to Debugger
xchg ebx, [rsp+rdx-5Bh]

; ---
db 0D6h

; ---
mov esp, 0C5BA61F7h
out 0A3h, al ; Interrupt Controller #2, 8259A
add al, 0A6h
pop rbx
cmp bh, fs:[rsi]
and ch, cl
cmp al, 0F3h

; ---
db 0Eh

; ---
xchg dh, [rbp+rax*4-4CE9621Ah]
stosd
xor [rdi], ebx
stosb
xchg eax, ecx
push rsi
insd
fidiv word ptr [rcx]
xchg eax, ecx

223

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED? CHAPTER 28. INCORRECTLY DISASSEMBLED CODE
mov dh, 0C0h ; ’L’
xchg eax, esp
push rsi
mov dh, [rdx+rbp+6918F1F3h]
xchg eax, ebp
out 9Dh, al

loc_BC0: ; CODE XREF: seg000:0000000000000C26
or [rcx-0Dh], ch
int 67h ; - LIM EMS
push rdx
sub al, 43h ; ’C’
test ecx, ebp
test [rdi+71F372A4h], cl

; ---
db 7

; ---
imul ebx, [rsi-0Dh], 2BB30231h
xor ebx, [rbp-718B6E64h]
jns short near ptr loc_C56+1
ficomp dword ptr [rcx-1Ah]
and eax, 69BEECC7h
mov esi, 37DA40F6h
imul r13, [rbp+rdi*8+529F33CDh], 0FFFFFFFFF35CDD30h
or [rbx], edx
imul esi, [rbx-34h], 0CDA42B87h

; ---
db 36h ; 6
db 1Fh

; ---

loc_C05: ; CODE XREF: seg000:0000000000000B86
add dh, [rcx]
mov edi, 0DD3E659h
ror byte ptr [rdx-33h], cl
xlat
db 48h
sub rsi, [rcx]

; ---
db 1Fh
db 6

; ---
xor [rdi+13F5F362h], bh
cmpsb
sub esi, [rdx]
pop rbp
sbb al, 62h ; ’b’
mov dl, 33h ; ’3’

; ---
db 4Dh ; M
db 17h

; ---
jns short loc_BC0
push 0FFFFFFFFFFFFFF86h

loc_C2A: ; CODE XREF: seg000:0000000000000C8F
sub [rdi-2Ah], eax

; ---
db 0FEh

; ---
cmpsb

224

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED? CHAPTER 28. INCORRECTLY DISASSEMBLED CODE
wait
rcr byte ptr [rax+5Fh], cl
cmp bl, al
pushfq
xchg ch, cl

; ---
db 4Eh ; N
db 37h ; 7

; ---
mov ds:0E43F3CCD3D9AB295h, eax
cmp ebp, ecx
jl short loc_C87
retn 8574h

; ---
out 3, al ; DMA controller, 8237A-5.

; channel 1 base address and word count

loc_C4C: ; CODE XREF: seg000:0000000000000C7F
cmp al, 0A6h
wait
push 0FFFFFFFFFFFFFFBEh

; ---
db 82h

; ---
ficom dword ptr [rbx+r10*8]

loc_C56: ; CODE XREF: seg000:0000000000000BDE
jnz short loc_C76
xchg eax, edx
db 26h
wait
iret

; ---
push rcx

; ---
db 48h ; H
db 9Bh
db 64h ; d
db 3Eh ; >
db 2Fh ; /

; ---
mov al, ds:8A7490CA2E9AA728h
stc

; ---
db 60h ; ‘

; ---
test [rbx+rcx], ebp
int 3 ; Trap to Debugger
xlat

loc_C72: ; CODE XREF: seg000:0000000000000CC6
mov bh, 98h

; ---
db 2Eh ; .
db 0DFh

; ---

loc_C76: ; CODE XREF: seg000:loc_C56
jl short loc_C91
sub ecx, 13A7CCF2h
movsb

225

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED? CHAPTER 28. INCORRECTLY DISASSEMBLED CODE
jns short near ptr loc_C4C+1
cmpsd
sub ah, ah
cdq

; ---
db 6Bh ; k
db 5Ah ; Z

; ---

loc_C87: ; CODE XREF: seg000:0000000000000C45
or ecx, [rbx+6Eh]
rep in eax, 0Eh ; DMA controller, 8237A-5.

; Clear mask registers.
; Any OUT enables all 4 channels.

cmpsb
jnb short loc_C2A

loc_C91: ; CODE XREF: seg000:loc_C76
scasd
add dl, [rcx+5FEF30E6h]
enter 0FFFFFFFFFFFFC733h, 7Ch
insd
mov ecx, gs
in al, dx
out 2Dh, al
mov ds:6599E434E6D96814h, al
cmpsb
push 0FFFFFFFFFFFFFFD6h
popfq
xor ecx, ebp
db 48h
insb
test al, cl
xor [rbp-7Bh], cl
and al, 9Bh

; ---
db 9Ah

; ---
push rsp
xor al, 8Fh
cmp eax, 924E81B9h
clc
mov bh, 0DEh
jbe short near ptr loc_C72+1

; ---
db 1Eh

; ---
retn 8FCAh

; ---
db 0C4h ; -

; ---

loc_CCD: ; CODE XREF: seg000:0000000000000D22
adc eax, 7CABFBF8h

; ---
db 38h ; 8

; ---
mov ebp, 9C3E66FCh
push rbp
dec byte ptr [rcx]
sahf

226

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED? CHAPTER 28. INCORRECTLY DISASSEMBLED CODE
fidivr word ptr [rdi+2Ch]

; ---
db 1Fh

; ---
db 3Eh
xchg eax, esi

loc_CE2: ; CODE XREF: seg000:0000000000000D5E
mov ebx, 0C7AFE30Bh
clc
in eax, dx
sbb bh, bl
xchg eax, ebp

; ---
db 3Fh ; ?

; ---
cmp edx, 3EC3E4D7h
push 51h
db 3Eh
pushfq
jl short loc_D17
test [rax-4CFF0D49h], ebx

; ---
db 2Fh ; /

; ---
rdtsc
jns short near ptr loc_D40+4
mov ebp, 0B2BB03D8h
in eax, dx

; ---
db 1Eh

; ---
fsubr dword ptr [rbx-0Bh]
jns short loc_D70
scasd
mov ch, 0C1h ; ’+’
add edi, [rbx-53h]

; ---
db 0E7h

; ---

loc_D17: ; CODE XREF: seg000:0000000000000CF7
jp short near ptr unk_D79
scasd
cmc
sbb ebx, [rsi]
fsubr dword ptr [rbx+3Dh]
retn

; ---
db 3

; ---
jnp short near ptr loc_CCD+4
db 36h
adc r14b, r13b

; ---
db 1Fh

; ---
retf

; ---
test [rdi+rdi*2], ebx
cdq

227

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED? CHAPTER 28. INCORRECTLY DISASSEMBLED CODE
or ebx, edi
test eax, 310B94BCh
ffreep st(7)
cwde
sbb esi, [rdx+53h]
push 5372CBAAh

loc_D40: ; CODE XREF: seg000:0000000000000D02
push 53728BAAh
push 0FFFFFFFFF85CF2FCh

; ---
db 0Eh

; ---
retn 9B9Bh

; ---
movzx r9, dword ptr [rdx]
adc [rcx+43h], ebp
in al, 31h

; ---
db 37h ; 7

; ---
jl short loc_DC5
icebp
sub esi, [rdi]
clc
pop rdi
jb short near ptr loc_CE2+1
or al, 8Fh
mov ecx, 770EFF81h
sub al, ch
sub al, 73h ; ’s’
cmpsd
adc bl, al
out 87h, eax ; DMA page register 74LS612:

; Channel 0 (address bits 16-23)

loc_D70: ; CODE XREF: seg000:0000000000000D0E
adc edi, ebx
db 49h
outsb
enter 33E5h, 97h
xchg eax, ebx

; ---
unk_D79 db 0FEh ; CODE XREF: seg000:loc_D17

db 0BEh
db 0E1h
db 82h

; ---

loc_D7D: ; CODE XREF: seg000:0000000000000DB3
cwde

; ---
db 7
db 5Ch ; \
db 10h
db 73h ; s
db 0A9h
db 2Bh ; +
db 9Fh

; ---

228

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED? CHAPTER 28. INCORRECTLY DISASSEMBLED CODE
loc_D85: ; CODE XREF: seg000:0000000000000DD1

dec dh
jnz short near ptr loc_DD3+3
mov ds:7C1758CB282EF9BFh, al
sal ch, 91h
rol dword ptr [rbx+7Fh], cl
fbstp tbyte ptr [rcx+2]
repne mov al, ds:4BFAB3C3ECF2BE13h
pushfq
imul edx, [rbx+rsi*8+3B484EE9h], 8EDC09C6h
cmp [rax], al
jg short loc_D7D
xor [rcx-638C1102h], edx
test eax, 14E3AD7h
insd

; ---
db 38h ; 8
db 80h
db 0C3h

; ---

loc_DC5: ; CODE XREF: seg000:0000000000000D57
; seg000:0000000000000DD8

cmp ah, [rsi+rdi*2+527C01D3h]
sbb eax, 5FC631F0h
jnb short loc_D85

loc_DD3: ; CODE XREF: seg000:0000000000000D87
call near ptr 0FFFFFFFFC03919C7h
loope near ptr loc_DC5+3
sbb al, 0C8h
std

Listing 28.3: random noise (ARM in ARMmode)
BLNE 0xFE16A9D8
BGE 0x1634D0C
SVCCS 0x450685
STRNVT R5, [PC],#-0x964
LDCGE p6, c14, [R0],#0x168
STCCSL p9, c9, [LR],#0x14C
CMNHIP PC, R10,LSL#22
FLDMIADNV LR!, {D4}
MCR p5, 2, R2,c15,c6, 4
BLGE 0x1139558
BLGT 0xFF9146E4
STRNEB R5, [R4],#0xCA2
STMNEIB R5, {R0,R4,R6,R7,R9-SP,PC}
STMIA R8, {R0,R2-R4,R7,R8,R10,SP,LR}^
STRB SP, [R8],PC,ROR#18
LDCCS p9, c13, [R6,#0x1BC]
LDRGE R8, [R9,#0x66E]
STRNEB R5, [R8],#-0x8C3
STCCSL p15, c9, [R7,#-0x84]
RSBLS LR, R2, R11,ASR LR
SVCGT 0x9B0362
SVCGT 0xA73173
STMNEDB R11!, {R0,R1,R4-R6,R8,R10,R11,SP}
STR R0, [R3],#-0xCE4
LDCGT p15, c8, [R1,#0x2CC]
LDRCCB R1, [R11],-R7,ROR#30

229

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED? CHAPTER 28. INCORRECTLY DISASSEMBLED CODE
BLLT 0xFED9D58C
BL 0x13E60F4
LDMVSIB R3!, {R1,R4-R7}^
USATNE R10, #7, SP,LSL#11
LDRGEB LR, [R1],#0xE56
STRPLT R9, [LR],#0x567
LDRLT R11, [R1],#-0x29B
SVCNV 0x12DB29
MVNNVS R5, SP,LSL#25
LDCL p8, c14, [R12,#-0x288]
STCNEL p2, c6, [R6,#-0xBC]!
SVCNV 0x2E5A2F
BLX 0x1A8C97E
TEQGE R3, #0x1100000
STMLSIA R6, {R3,R6,R10,R11,SP}
BICPLS R12, R2, #0x5800
BNE 0x7CC408
TEQGE R2, R4,LSL#20
SUBS R1, R11, #0x28C
BICVS R3, R12, R7,ASR R0
LDRMI R7, [LR],R3,LSL#21
BLMI 0x1A79234
STMVCDB R6, {R0-R3,R6,R7,R10,R11}
EORMI R12, R6, #0xC5
MCRRCS p1, 0xF, R1,R3,c2

Listing 28.4: random noise (ARM in Thumbmode)
LSRS R3, R6, #0x12
LDRH R1, [R7,#0x2C]
SUBS R0, #0x55 ; ’U’
ADR R1, loc_3C
LDR R2, [SP,#0x218]
CMP R4, #0x86
SXTB R7, R4
LDR R4, [R1,#0x4C]
STR R4, [R4,R2]
STR R0, [R6,#0x20]
BGT 0xFFFFFF72
LDRH R7, [R2,#0x34]
LDRSH R0, [R2,R4]
LDRB R2, [R7,R2]

; ---
DCB 0x17
DCB 0xED

; ---
STRB R3, [R1,R1]
STR R5, [R0,#0x6C]
LDMIA R3, {R0-R5,R7}
ASRS R3, R2, #3
LDR R4, [SP,#0x2C4]
SVC 0xB5
LDR R6, [R1,#0x40]
LDR R5, =0xB2C5CA32
STMIA R6, {R1-R4,R6}
LDR R1, [R3,#0x3C]
STR R1, [R5,#0x60]
BCC 0xFFFFFF70
LDR R4, [SP,#0x1D4]
STR R5, [R5,#0x40]
ORRS R5, R7

230

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED? CHAPTER 28. INCORRECTLY DISASSEMBLED CODE

loc_3C ; DATA XREF: ROM:00000006
B 0xFFFFFF98

; ---
ASRS R4, R1, #0x1E
ADDS R1, R3, R0
STRH R7, [R7,#0x30]
LDR R3, [SP,#0x230]
CBZ R6, loc_90
MOVS R4, R2
LSRS R3, R4, #0x17
STMIA R6!, {R2,R4,R5}
ADDS R6, #0x42 ; ’B’
ADD R2, SP, #0x180
SUBS R5, R0, R6
BCC loc_B0
ADD R2, SP, #0x160
LSLS R5, R0, #0x1A
CMP R7, #0x45
LDR R4, [R4,R5]

; ---
DCB 0x2F ; /
DCB 0xF4

; ---
B 0xFFFFFD18

; ---
ADD R4, SP, #0x2C0
LDR R1, [SP,#0x14C]
CMP R4, #0xEE

; ---
DCB 0xA
DCB 0xFB

; ---
STRH R7, [R5,#0xA]
LDR R3, loc_78

; ---
DCB 0xBE ; -
DCB 0xFC

; ---
MOVS R5, #0x96

; ---
DCB 0x4F ; O
DCB 0xEE

; ---
B 0xFFFFFAE6

; ---
ADD R3, SP, #0x110

loc_78 ; DATA XREF: ROM:0000006C
STR R1, [R3,R6]
LDMIA R3!, {R2,R5-R7}
LDRB R2, [R4,R2]
ASRS R4, R0, #0x13
BKPT 0xD1
ADDS R5, R0, R6
STR R5, [R3,#0x58]

Listing 28.5: random noise(MIPS little endian)
lw $t9, 0xCB3($t5)
sb $t5, 0x3855($t0)

231

28.2. HOW RANDOM NOISE LOOKS DISASSEMBLED? CHAPTER 28. INCORRECTLY DISASSEMBLED CODE
sltiu $a2, $a0, -0x657A
ldr $t4, -0x4D99($a2)
daddi $s0, $s1, 0x50A4
lw $s7, -0x2353($s4)
bgtzl $a1, 0x17C5C

.byte 0x17
.byte 0xED
.byte 0x4B # K
.byte 0x54 # T

lwc2 $31, 0x66C5($sp)
lwu $s1, 0x10D3($a1)
ldr $t6, -0x204B($zero)
lwc1 $f30, 0x4DBE($s2)
daddiu $t1, $s1, 0x6BD9
lwu $s5, -0x2C64($v1)
cop0 0x13D642D
bne $gp, $t4, 0xFFFF9EF0
lh $ra, 0x1819($s1)
sdl $fp, -0x6474($t8)
jal 0x78C0050
ori $v0, $s2, 0xC634
blez $gp, 0xFFFEA9D4
swl $t8, -0x2CD4($s2)
sltiu $a1, $k0, 0x685
sdc1 $f15, 0x5964($at)
sw $s0, -0x19A6($a1)
sltiu $t6, $a3, -0x66AD
lb $t7, -0x4F6($t3)
sd $fp, 0x4B02($a1)

.byte 0x96
.byte 0x25 # %
.byte 0x4F # O
.byte 0xEE

swl $a0, -0x1AC9($k0)
lwc2 $4, 0x5199($ra)
bne $a2, $a0, 0x17308

.byte 0xD1
.byte 0xBE
.byte 0x85
.byte 0x19

swc2 $8, 0x659D($a2)
swc1 $f8, -0x2691($s6)
sltiu $s6, $t4, -0x2691
sh $t9, -0x7992($t4)
bne $v0, $t0, 0x163A4
sltiu $a3, $t2, -0x60DF
lbu $v0, -0x11A5($v1)
pref 0x1B, 0x362($gp)
pref 7, 0x3173($sp)
blez $t1, 0xB678
swc1 $f3, flt_CE4($zero)
pref 0x11, -0x704D($t4)
ori $k1, $s2, 0x1F67
swr $s6, 0x7533($sp)
swc2 $15, -0x67F4($k0)

232

28.3. INFORMATION ENTROPY OF AVERAGE CODE CHAPTER 28. INCORRECTLY DISASSEMBLED CODE
ldl $s3, 0xF2($t7)
bne $s7, $a3, 0xFFFE973C
sh $s1, -0x11AA($a2)
bnel $a1, $t6, 0xFFFE566C
sdr $s1, -0x4D65($zero)
sd $s2, -0x24D7($t8)
scd $s4, 0x5C8D($t7)

.byte 0xA2
.byte 0xE8
.byte 0x5C # \
.byte 0xED

bgtz $t3, 0x189A0
sd $t6, 0x5A2F($t9)
sdc2 $10, 0x3223($k1)
sb $s3, 0x5744($t9)
lwr $a2, 0x2C48($a0)
beql $fp, $s2, 0xFFFF3258

It is also important to keep in mind that cleverly constructed unpacking and decrypting code (including self-modifying)
may looks like noise as well, nevertheless, it executes correctly.

28.3 Information entropy of average code

ent utility results1.
(Entropy of ideally compressed (or encrypted) file is 8 bits per byte; of zero file of arbitrary size if 0 bits per byte.)
Here we can see that a code for CPUwith 4-byte instructions (ARM in ARMmode and MIPS) is least e�ective in this sense.

28.3.1 x86
.text section of ntoskrnl.exe file fromWindows 2003:

Entropy = 6.662739 bits per byte.

Optimum compression would reduce the size
of this 593920 byte file by 16 percent.
...

.text section of ntoskrnl.exe fromWindows 7 x64:

Entropy = 6.549586 bits per byte.

Optimum compression would reduce the size
of this 1685504 byte file by 18 percent.
...

28.3.2 ARM (Thumb)

AngryBirds Classic:

Entropy = 7.058766 bits per byte.

Optimum compression would reduce the size
of this 3336888 byte file by 11 percent.
...

1http://www.fourmilab.ch/random/

233

http://www.fourmilab.ch/random/

28.3. INFORMATION ENTROPY OF AVERAGE CODE CHAPTER 28. INCORRECTLY DISASSEMBLED CODE
28.3.3 ARM (ARMmode)
Linux Kernel 3.8.0:

Entropy = 6.036160 bits per byte.

Optimum compression would reduce the size
of this 6946037 byte file by 24 percent.
...

28.3.4 MIPS (little endian)
.text section of user32.dll fromWindows NT 4:

Entropy = 6.098227 bits per byte.

Optimum compression would reduce the size
of this 433152 byte file by 23 percent.
....

234

CHAPTER 29. OBFUSCATION

Chapter 29

Obfuscation

Obfuscation is an attempt to hide the code (or its meaning) from reverse engineer.

29.1 Text strings
As I revealed in (39) text strings may be utterly helpful. Programmers who aware of this, may try to hide them resulting
unableness to find the string in IDA or any hex editor.

Here is the simpliest method.
That is how the string may be constructed:

mov byte ptr [ebx], ’h’
mov byte ptr [ebx+1], ’e’
mov byte ptr [ebx+2], ’l’
mov byte ptr [ebx+3], ’l’
mov byte ptr [ebx+4], ’o’
mov byte ptr [ebx+5], ’ ’
mov byte ptr [ebx+6], ’w’
mov byte ptr [ebx+7], ’o’
mov byte ptr [ebx+8], ’r’
mov byte ptr [ebx+9], ’l’
mov byte ptr [ebx+10], ’d’

The string is also can be compared with another like:

mov ebx, offset username
cmp byte ptr [ebx], ’j’
jnz fail
cmp byte ptr [ebx+1], ’o’
jnz fail
cmp byte ptr [ebx+2], ’h’
jnz fail
cmp byte ptr [ebx+3], ’n’
jnz fail
jz it_is_john

In both cases, it is impossible to find these strings straightforwardly in hex editor.
By the way, it is a chance to work with the strings when it is impossible to allocate it in data segment, for example, in PIC

or in shellcode.
Another method I once saw is to use sprintf() for constructing:

sprintf(buf, "%s%c%s%c%s", "hel",’l’,"o w",’o’,"rld");

The code looks weird, but as a simpliest anti-reversing measure it may be helpul.
Text strings may also be present in encrypted form, then all string usage will precede string decrypting routine.

235

29.2. EXECUTABLE CODE CHAPTER 29. OBFUSCATION
29.2 Executable code

29.2.1 Inserting garbage
Executable code obfuscationmean inserting randomgarbage code between real one, which executes but not doing anything
useful.

Simple example is:

add eax, ebx
mul ecx

Listing 29.1: obfuscated code
xor esi, 011223344h ; garbage
add esi, eax ; garbage
add eax, ebx
mov edx, eax ; garbage
shl edx, 4 ; garbage
mul ecx
xor esi, ecx ; garbage

Here garbage code uses registers which are not used in the real code (ESI and EDX). However, intermediate results pro-
duced by the real code may be used by garbage instructions for extra mess—why not?

29.2.2 Replacing instructions to bloated equivalents
∙ MOV op1, op2 can be replaced by PUSH op2 / POP op1 pair.

∙ JMP label can be replaced by PUSH label / RET pair. IDA will not show references to the label.

∙ CALL label can be replaced by PUSH label_after_CALL_instruction / PUSH label / RET triplet.

∙ PUSH opmay also be replaced by SUB ESP, 4 (or 8) / MOV [ESP], op pair.

29.2.3 Always executed/never executed code

If the developer is sure that ESI at the point is always 0:

mov esi, 1
... ; some code not touching ESI
dec esi
... ; some code not touching ESI
cmp esi, 0
jz real_code
; fake luggage
real_code:

Reverse engineer need some time to get into it.
This is also called opaque predicate.
Another example (and again, developer is sure that ESI—is always zero):

add eax, ebx ; real code
mul ecx ; real code
add eax, esi ; opaque predicate. XOR, AND or SHL, etc, can be here instead of ADD.

29.2.4 Making a lot of mess

instruction 1
instruction 2
instruction 3

Can be replaced to:

236

29.3. VIRTUAL MACHINE / PSEUDO-CODE CHAPTER 29. OBFUSCATION

begin: jmp ins1_label

ins2_label: instruction 2
jmp ins3_label

ins3_label: instruction 3
jmp exit:

ins1_label: instruction 1
jmp ins2_label

exit:

29.2.5 Using indirect pointers

dummy_data1 db 100h dup (0)
message1 db ’hello world’,0

dummy_data2 db 200h dup (0)
message2 db ’another message’,0

func proc
...
mov eax, offset dummy_data1 ; PE or ELF reloc here
add eax, 100h
push eax
call dump_string
...
mov eax, offset dummy_data2 ; PE or ELF reloc here
add eax, 200h
push eax
call dump_string
...

func endp

IDA will show references only to dummy_data1 and dummy_data2, but not to the text strings.
Global variables and even functions may be accessed like that.

29.3 Virtual machine / pseudo-code

Programmer may construct his/her own PL or ISA and interpreter for it. (Like pre-5.0 Visual Basic, .NET, Java machine). Re-
verse engineerwill have to spend some time to understandmeaning and details of all ISA instructions. Probably, he/she will
also need to write a disassembler/decompiler of some sort.

29.4 Other thing to mention
My own (yet weak) attempt to patch Tiny C compiler to produce obfuscated code: http://blog.yurichev.com/node/58.

Using MOV instruction for really complicated things: [8].

237

http://blog.yurichev.com/node/58

CHAPTER 30. WINDOWS 16-BIT

Chapter 30

Windows 16-bit

16-bit Windows program are rare nowadays, but in the sense of retrocomputing, or dongle hacking (55), I sometimes digging
into these.

16-bit Windows versionswere up to 3.11. 96/98/ME also support 16-bit code, as well as 32-bit versions ofWindows NT line.
64-bit versions of Windows NT line are not support 16-bit executable code at all.

The code is resembling MS-DOS one.
Executable files has not MZ-type, nor PE-type, they are NE-type (so-called “new executable”).
All examples considered here were compiled by OpenWatcom 1.9 compiler, using these switches:

wcl.exe -i=C:/WATCOM/h/win/ -s -os -bt=windows -bcl=windows example.c

30.1 Example#1

#include <windows.h>

int PASCAL WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{
MessageBeep(MB_ICONEXCLAMATION);
return 0;

};

WinMain proc near
push bp
mov bp, sp
mov ax, 30h ; ’0’ ; MB_ICONEXCLAMATION constant
push ax
call MESSAGEBEEP
xor ax, ax ; return 0
pop bp
retn 0Ah

WinMain endp

Seems to be easy, so far.

30.2 Example #2

#include <windows.h>

int PASCAL WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

238

30.3. EXAMPLE #3 CHAPTER 30. WINDOWS 16-BIT
{

MessageBox (NULL, "hello, world", "caption", MB_YESNOCANCEL);
return 0;

};

WinMain proc near
push bp
mov bp, sp
xor ax, ax ; NULL
push ax
push ds
mov ax, offset aHelloWorld ; 0x18. "hello, world"
push ax
push ds
mov ax, offset aCaption ; 0x10. "caption"
push ax
mov ax, 3 ; MB_YESNOCANCEL
push ax
call MESSAGEBOX
xor ax, ax ; return 0
pop bp
retn 0Ah

WinMain endp

dseg02:0010 aCaption db ’caption’,0
dseg02:0018 aHelloWorld db ’hello, world’,0

Couple important things here: PASCAL calling convention dictates passing the last argument first (MB_YESNOCANCEL),
and the first argument—last (NULL). This convention also tells callee to restore stack pointer: hence RETN instruction has 0Ah
argument, meaning pointer should be shi�ed above by 10 bytes upon function exit.

Pointers are passed by pairs: a segment of data is first passed, then the pointer inside of segment. Here is only one
segment in this example, so DS is always pointing to data segment of executable.

30.3 Example #3

#include <windows.h>

int PASCAL WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{
int result=MessageBox (NULL, "hello, world", "caption", MB_YESNOCANCEL);

if (result==IDCANCEL)
MessageBox (NULL, "you pressed cancel", "caption", MB_OK);

else if (result==IDYES)
MessageBox (NULL, "you pressed yes", "caption", MB_OK);

else if (result==IDNO)
MessageBox (NULL, "you pressed no", "caption", MB_OK);

return 0;
};

WinMain proc near
push bp
mov bp, sp
xor ax, ax ; NULL
push ax

239

30.4. EXAMPLE #4 CHAPTER 30. WINDOWS 16-BIT
push ds
mov ax, offset aHelloWorld ; "hello, world"
push ax
push ds
mov ax, offset aCaption ; "caption"
push ax
mov ax, 3 ; MB_YESNOCANCEL
push ax
call MESSAGEBOX
cmp ax, 2 ; IDCANCEL
jnz short loc_2F
xor ax, ax
push ax
push ds
mov ax, offset aYouPressedCanc ; "you pressed cancel"
jmp short loc_49

; ---
loc_2F:

cmp ax, 6 ; IDYES
jnz short loc_3D
xor ax, ax
push ax
push ds
mov ax, offset aYouPressedYes ; "you pressed yes"
jmp short loc_49

; ---
loc_3D:

cmp ax, 7 ; IDNO
jnz short loc_57
xor ax, ax
push ax
push ds
mov ax, offset aYouPressedNo ; "you pressed no"

loc_49:
push ax
push ds
mov ax, offset aCaption ; "caption"
push ax
xor ax, ax
push ax
call MESSAGEBOX

loc_57:
xor ax, ax
pop bp
retn 0Ah

WinMain endp

Somewhat extended example from the previous section.

30.4 Example #4

#include <windows.h>

int PASCAL func1 (int a, int b, int c)
{

return a*b+c;
};

long PASCAL func2 (long a, long b, long c)
{

240

30.4. EXAMPLE #4 CHAPTER 30. WINDOWS 16-BIT
return a*b+c;

};

long PASCAL func3 (long a, long b, long c, int d)
{

return a*b+c-d;
};

int PASCAL WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{
func1 (123, 456, 789);
func2 (600000, 700000, 800000);
func3 (600000, 700000, 800000, 123);
return 0;

};

func1 proc near

c = word ptr 4
b = word ptr 6
a = word ptr 8

push bp
mov bp, sp
mov ax, [bp+a]
imul [bp+b]
add ax, [bp+c]
pop bp
retn 6

func1 endp

func2 proc near

arg_0 = word ptr 4
arg_2 = word ptr 6
arg_4 = word ptr 8
arg_6 = word ptr 0Ah
arg_8 = word ptr 0Ch
arg_A = word ptr 0Eh

push bp
mov bp, sp
mov ax, [bp+arg_8]
mov dx, [bp+arg_A]
mov bx, [bp+arg_4]
mov cx, [bp+arg_6]
call sub_B2 ; long 32-bit multiplication
add ax, [bp+arg_0]
adc dx, [bp+arg_2]
pop bp
retn 12

func2 endp

func3 proc near

arg_0 = word ptr 4
arg_2 = word ptr 6
arg_4 = word ptr 8

241

30.4. EXAMPLE #4 CHAPTER 30. WINDOWS 16-BIT
arg_6 = word ptr 0Ah
arg_8 = word ptr 0Ch
arg_A = word ptr 0Eh
arg_C = word ptr 10h

push bp
mov bp, sp
mov ax, [bp+arg_A]
mov dx, [bp+arg_C]
mov bx, [bp+arg_6]
mov cx, [bp+arg_8]
call sub_B2 ; long 32-bit multiplication
mov cx, [bp+arg_2]
add cx, ax
mov bx, [bp+arg_4]
adc bx, dx ; BX=high part, CX=low part
mov ax, [bp+arg_0]
cwd ; AX=low part d, DX=high part d
sub cx, ax
mov ax, cx
sbb bx, dx
mov dx, bx
pop bp
retn 14

func3 endp

WinMain proc near
push bp
mov bp, sp
mov ax, 123
push ax
mov ax, 456
push ax
mov ax, 789
push ax
call func1
mov ax, 9 ; high part of 600000
push ax
mov ax, 27C0h ; low part of 600000
push ax
mov ax, 0Ah ; high part of 700000
push ax
mov ax, 0AE60h ; low part of 700000
push ax
mov ax, 0Ch ; high part of 800000
push ax
mov ax, 3500h ; low part of 800000
push ax
call func2
mov ax, 9 ; high part of 600000
push ax
mov ax, 27C0h ; low part of 600000
push ax
mov ax, 0Ah ; high part of 700000
push ax
mov ax, 0AE60h ; low part of 700000
push ax
mov ax, 0Ch ; high part of 800000
push ax
mov ax, 3500h ; low part of 800000
push ax

242

30.5. EXAMPLE #5 CHAPTER 30. WINDOWS 16-BIT
mov ax, 7Bh ; 123
push ax
call func3
xor ax, ax ; return 0
pop bp
retn 0Ah

WinMain endp

32-bit values (long data type mean 32-bit, while int is fixed on 16-bit data type) in 16-bit code (both MS-DOS and Win16)
are passed by pairs. It is just like 64-bit values are used in 32-bit environment (21).

sub_B2 here is a library function written by compiler developers, doing “long multiplication”, i.e., multiplies two 32-bit
values. Other compiler functions doing the same are listed here: 83, 82.

ADD/ADC instructionpair is used for addition of compound values: ADDmay set/clear CF carry flag, ADCwill use it. SUB/SBB
instruction pair is used for subtraction: SUBmay set/clear CF flag, SBBwill use it.

32-bit values are returned from functions in DX:AX register pair.
Constant also passed by pairs in WinMain() here.
int-typed 123 constant is first converted respecting its sign into 32-bit value using CWD instruction.

30.5 Example #5

#include <windows.h>

int PASCAL string_compare (char *s1, char *s2)
{

while (1)
{

if (*s1!=*s2)
return 0;

if (*s1==0 || *s2==0)
return 1; // end of string

s1++;
s2++;

};

};

int PASCAL string_compare_far (char far *s1, char far *s2)
{

while (1)
{

if (*s1!=*s2)
return 0;

if (*s1==0 || *s2==0)
return 1; // end of string

s1++;
s2++;

};

};

void PASCAL remove_digits (char *s)
{

while (*s)
{

if (*s>=’0’ && *s<=’9’)
*s=’-’;

s++;
};

};

243

30.5. EXAMPLE #5 CHAPTER 30. WINDOWS 16-BIT
char str[]="hello 1234 world";

int PASCAL WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{
string_compare ("asd", "def");
string_compare_far ("asd", "def");
remove_digits (str);
MessageBox (NULL, str, "caption", MB_YESNOCANCEL);
return 0;

};

string_compare proc near

arg_0 = word ptr 4
arg_2 = word ptr 6

push bp
mov bp, sp
push si
mov si, [bp+arg_0]
mov bx, [bp+arg_2]

loc_12: ; CODE XREF: string_compare+21j
mov al, [bx]
cmp al, [si]
jz short loc_1C
xor ax, ax
jmp short loc_2B

; ---

loc_1C: ; CODE XREF: string_compare+Ej
test al, al
jz short loc_22
jnz short loc_27

loc_22: ; CODE XREF: string_compare+16j
mov ax, 1
jmp short loc_2B

; ---

loc_27: ; CODE XREF: string_compare+18j
inc bx
inc si
jmp short loc_12

; ---

loc_2B: ; CODE XREF: string_compare+12j
; string_compare+1Dj

pop si
pop bp
retn 4

string_compare endp

string_compare_far proc near ; CODE XREF: WinMain+18p

arg_0 = word ptr 4
arg_2 = word ptr 6
arg_4 = word ptr 8

244

30.5. EXAMPLE #5 CHAPTER 30. WINDOWS 16-BIT
arg_6 = word ptr 0Ah

push bp
mov bp, sp
push si
mov si, [bp+arg_0]
mov bx, [bp+arg_4]

loc_3A: ; CODE XREF: string_compare_far+35j
mov es, [bp+arg_6]
mov al, es:[bx]
mov es, [bp+arg_2]
cmp al, es:[si]
jz short loc_4C
xor ax, ax
jmp short loc_67

; ---

loc_4C: ; CODE XREF: string_compare_far+16j
mov es, [bp+arg_6]
cmp byte ptr es:[bx], 0
jz short loc_5E
mov es, [bp+arg_2]
cmp byte ptr es:[si], 0
jnz short loc_63

loc_5E: ; CODE XREF: string_compare_far+23j
mov ax, 1
jmp short loc_67

; ---

loc_63: ; CODE XREF: string_compare_far+2Cj
inc bx
inc si
jmp short loc_3A

; ---

loc_67: ; CODE XREF: string_compare_far+1Aj
; string_compare_far+31j

pop si
pop bp
retn 8

string_compare_far endp

remove_digits proc near ; CODE XREF: WinMain+1Fp

arg_0 = word ptr 4

push bp
mov bp, sp
mov bx, [bp+arg_0]

loc_72: ; CODE XREF: remove_digits+18j
mov al, [bx]
test al, al
jz short loc_86
cmp al, 30h ; ’0’
jb short loc_83
cmp al, 39h ; ’9’
ja short loc_83
mov byte ptr [bx], 2Dh ; ’-’

245

30.5. EXAMPLE #5 CHAPTER 30. WINDOWS 16-BIT

loc_83: ; CODE XREF: remove_digits+Ej
; remove_digits+12j

inc bx
jmp short loc_72

; ---

loc_86: ; CODE XREF: remove_digits+Aj
pop bp
retn 2

remove_digits endp

WinMain proc near ; CODE XREF: start+EDp
push bp
mov bp, sp
mov ax, offset aAsd ; "asd"
push ax
mov ax, offset aDef ; "def"
push ax
call string_compare
push ds
mov ax, offset aAsd ; "asd"
push ax
push ds
mov ax, offset aDef ; "def"
push ax
call string_compare_far
mov ax, offset aHello1234World ; "hello 1234 world"
push ax
call remove_digits
xor ax, ax
push ax
push ds
mov ax, offset aHello1234World ; "hello 1234 world"
push ax
push ds
mov ax, offset aCaption ; "caption"
push ax
mov ax, 3 ; MB_YESNOCANCEL
push ax
call MESSAGEBOX
xor ax, ax
pop bp
retn 0Ah

WinMain endp

Herewe seeadi�erencebetween so-called “near” pointers and “far” pointers: anotherweird artefact of segmentedmem-
ory of 16-bit 8086.

Readmore about it: 66.
“near” pointers are those which points within current data segment. Hence, string_compare() function takes only two

16-bit pointers, and accesses data as it is located in the segment DS pointing to (mov al, [bx] instruction actually works
like mov al, ds:[bx]—DS is implicitly used here).

“far” pointers are those which may point to data in another segment memory. Hence string_compare_far() takes
16-bit pair as a pointer, loads high part of it to ES segment register and accessing data through it (mov al, es:[bx]). “far”
pointers are also used in my MessageBox()win16 example: 30.2. Indeed, Windows kernel is not aware which data segment
to use when accessing text strings, so it needmore complete information.

The reason for this distinction is that compact programmay use just one 64kb data segment, so it doesn’t need to pass
high part of the address, which is always the same. Bigger program may use several 64kb data segments, so it needs to
specify each time, in which segment data is located.

The same story for code segments. Compact program may have all executable code within one 64kb-segment, then all
functions will be called in it using CALL NEAR instruction, and code flow will be returned using RETN. But if there are several

246

30.6. EXAMPLE #6 CHAPTER 30. WINDOWS 16-BIT
code segments, then the address of the function will be specified by pair, it will be called using CALL FAR instruction, and
the code flow will be returned using RETF.

This is what to be set in compiler by specifying “memory model”.
Compilers targeting MS-DOS and Win16 has specific libraries for each memory model: they were di�er by pointer types

for code and data.

30.6 Example #6

#include <windows.h>
#include <time.h>
#include <stdio.h>

char strbuf[256];

int PASCAL WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{

struct tm *t;
time_t unix_time;

unix_time=time(NULL);

t=localtime (&unix_time);

sprintf (strbuf, "%04d-%02d-%02d %02d:%02d:%02d", t->tm_year+1900, t->tm_mon, t->tm_mday,
t->tm_hour, t->tm_min, t->tm_sec);

MessageBox (NULL, strbuf, "caption", MB_OK);
return 0;

};

WinMain proc near

var_4 = word ptr -4
var_2 = word ptr -2

push bp
mov bp, sp
push ax
push ax
xor ax, ax
call time_
mov [bp+var_4], ax ; low part of UNIX time
mov [bp+var_2], dx ; high part of UNIX time
lea ax, [bp+var_4] ; take a pointer of high part
call localtime_
mov bx, ax ; t
push word ptr [bx] ; second
push word ptr [bx+2] ; minute
push word ptr [bx+4] ; hour
push word ptr [bx+6] ; day
push word ptr [bx+8] ; month
mov ax, [bx+0Ah] ; year
add ax, 1900
push ax
mov ax, offset a04d02d02d02d02 ; "%04d-%02d-%02d %02d:%02d:%02d"

247

30.6. EXAMPLE #6 CHAPTER 30. WINDOWS 16-BIT
push ax
mov ax, offset strbuf
push ax
call sprintf_
add sp, 10h
xor ax, ax ; NULL
push ax
push ds
mov ax, offset strbuf
push ax
push ds
mov ax, offset aCaption ; "caption"
push ax
xor ax, ax ; MB_OK
push ax
call MESSAGEBOX
xor ax, ax
mov sp, bp
pop bp
retn 0Ah

WinMain endp

UNIX time is 32-bit value, so it is returned in DX:AX register pair and stored into two local 16-bit variables. Then a pointer
to the pair is passed to localtime() function. The localtime() function has struct tm allocated somewhere in guts of
the C library, so only pointer to it is returned. By the way, this is also means that the function cannot be called again until its
results are used.

For the time() and localtime() functions, a Watcom calling convention is used here: first four arguments are passed
in AX, DX, BX and CX, registers, all the rest arguments are via stack. Functions used this convention are alsomarked by under-
score at the end of name.

sprintf() does not use PASCAL calling convention, nor Watcom one, so the arguments are passed in usual cdecl way
(??).

30.6.1 Global variables

This is the same example, but now these variables are global:

#include <windows.h>
#include <time.h>
#include <stdio.h>

char strbuf[256];
struct tm *t;
time_t unix_time;

int PASCAL WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{

unix_time=time(NULL);

t=localtime (&unix_time);

sprintf (strbuf, "%04d-%02d-%02d %02d:%02d:%02d", t->tm_year+1900, t->tm_mon, t->tm_mday,
t->tm_hour, t->tm_min, t->tm_sec);

MessageBox (NULL, strbuf, "caption", MB_OK);
return 0;

};

248

30.6. EXAMPLE #6 CHAPTER 30. WINDOWS 16-BIT

unix_time_low dw 0
unix_time_high dw 0
t dw 0

WinMain proc near
push bp
mov bp, sp
xor ax, ax
call time_
mov unix_time_low, ax
mov unix_time_high, dx
mov ax, offset unix_time_low
call localtime_
mov bx, ax
mov t, ax ; will not be used in future...
push word ptr [bx] ; seconds
push word ptr [bx+2] ; minutes
push word ptr [bx+4] ; hour
push word ptr [bx+6] ; day
push word ptr [bx+8] ; month
mov ax, [bx+0Ah] ; year
add ax, 1900
push ax
mov ax, offset a04d02d02d02d02 ; "%04d-%02d-%02d %02d:%02d:%02d"
push ax
mov ax, offset strbuf
push ax
call sprintf_
add sp, 10h
xor ax, ax ; NULL
push ax
push ds
mov ax, offset strbuf
push ax
push ds
mov ax, offset aCaption ; "caption"
push ax
xor ax, ax ; MB_OK
push ax
call MESSAGEBOX
xor ax, ax ; return 0
pop bp
retn 0Ah

WinMain endp

twill not be used, but compiler emitted the code which stores the value. Because it is not sure, maybe that value will be
eventually used somewhere.

249

Part II

C++

250

CHAPTER 31. CLASSES

Chapter 31

Classes

31.1 Simple example
Internally, C++ classes representation is almost the same as structures representation.

Let’s try an example with two variables, two constructors and onemethod:

#include <stdio.h>

class c
{
private:

int v1;
int v2;

public:
c() // default ctor
{

v1=667;
v2=999;

};

c(int a, int b) // ctor
{

v1=a;
v2=b;

};

void dump()
{

printf ("%d; %d\n", v1, v2);
};

};

int main()
{

class c c1;
class c c2(5,6);

c1.dump();
c2.dump();

return 0;
};

31.1.1 MSVC—x86

Here is how main() function looks like translated into assembly language:

251

31.1. SIMPLE EXAMPLE CHAPTER 31. CLASSES
Listing 31.1: MSVC

_c2$ = -16 ; size = 8
_c1$ = -8 ; size = 8
_main PROC

push ebp
mov ebp, esp
sub esp, 16 ; 00000010H
lea ecx, DWORD PTR _c1$[ebp]
call ??0c@@QAE@XZ ; c::c
push 6
push 5
lea ecx, DWORD PTR _c2$[ebp]
call ??0c@@QAE@HH@Z ; c::c
lea ecx, DWORD PTR _c1$[ebp]
call ?dump@c@@QAEXXZ ; c::dump
lea ecx, DWORD PTR _c2$[ebp]
call ?dump@c@@QAEXXZ ; c::dump
xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP

So what’s going on. For each object (instance of class c) 8 bytes allocated, that is exactly size of 2 variables storage.
For c1 a default argumentless constructor ??0c@@QAE@XZ is called. For c2 another constructor ??0c@@QAE@HH@Z is called

and two numbers are passed as arguments.
A pointer to object (this in C++ terminology) is passed in the ECX register. This is called thiscall (31.1.1) —a pointer to object

passing method.
MSVC doing it using the ECX register. Needless to say, it is not a standardized method, other compilers could do it di�er-

ently, e.g., via first function argument (like GCC).
Why these functions has so odd names? That’s namemangling.
C++ class may contain several methods sharing the same name but having di�erent arguments —that is polymorphism.

And of course, di�erent classes may ownmethods sharing the same name.
Namemangling enable us to encode class name +method name + all method argument types in one ASCII-string, which

is to be used as internal function name. That’s all because neither linker, nor DLL OS loader (mangled namesmay be among
DLL exports as well) knows nothing about C++ or OOP1.

dump() function called two times a�er.
Now let’s see constructors’ code:

Listing 31.2: MSVC
_this$ = -4 ; size = 4
??0c@@QAE@XZ PROC ; c::c, COMDAT
; _this$ = ecx

push ebp
mov ebp, esp
push ecx
mov DWORD PTR _this$[ebp], ecx
mov eax, DWORD PTR _this$[ebp]
mov DWORD PTR [eax], 667 ; 0000029bH
mov ecx, DWORD PTR _this$[ebp]
mov DWORD PTR [ecx+4], 999 ; 000003e7H
mov eax, DWORD PTR _this$[ebp]
mov esp, ebp
pop ebp
ret 0

??0c@@QAE@XZ ENDP ; c::c

_this$ = -4 ; size = 4
_a$ = 8 ; size = 4

1Object-Oriented Programming

252

31.1. SIMPLE EXAMPLE CHAPTER 31. CLASSES
_b$ = 12 ; size = 4
??0c@@QAE@HH@Z PROC ; c::c, COMDAT
; _this$ = ecx

push ebp
mov ebp, esp
push ecx
mov DWORD PTR _this$[ebp], ecx
mov eax, DWORD PTR _this$[ebp]
mov ecx, DWORD PTR _a$[ebp]
mov DWORD PTR [eax], ecx
mov edx, DWORD PTR _this$[ebp]
mov eax, DWORD PTR _b$[ebp]
mov DWORD PTR [edx+4], eax
mov eax, DWORD PTR _this$[ebp]
mov esp, ebp
pop ebp
ret 8

??0c@@QAE@HH@Z ENDP ; c::c

Constructors are just functions, they use pointer to structure in the ECX, moving the pointer into own local variable, how-
ever, it is not necessary.

From the C++ standard [16, 12.1] we know that constructors should not return any values. In fact, internally, constructors
are returns pointer to the newly created object, i.e., this.

Now dump()method:

Listing 31.3: MSVC
_this$ = -4 ; size = 4
?dump@c@@QAEXXZ PROC ; c::dump, COMDAT
; _this$ = ecx

push ebp
mov ebp, esp
push ecx
mov DWORD PTR _this$[ebp], ecx
mov eax, DWORD PTR _this$[ebp]
mov ecx, DWORD PTR [eax+4]
push ecx
mov edx, DWORD PTR _this$[ebp]
mov eax, DWORD PTR [edx]
push eax
push OFFSET ??_C@_07NJBDCIEC@?$CFd?$DL?5?$CFd?6?$AA@
call _printf
add esp, 12 ; 0000000cH
mov esp, ebp
pop ebp
ret 0

?dump@c@@QAEXXZ ENDP ; c::dump

Simpleenough: dump() takingpointer to the structure containing two int’s in theECX, takes twovalues from it andpassing
it into printf().

The code is much shorter if compiled with optimization (/Ox):

Listing 31.4: MSVC
??0c@@QAE@XZ PROC ; c::c, COMDAT
; _this$ = ecx

mov eax, ecx
mov DWORD PTR [eax], 667 ; 0000029bH
mov DWORD PTR [eax+4], 999 ; 000003e7H
ret 0

??0c@@QAE@XZ ENDP ; c::c

_a$ = 8 ; size = 4
_b$ = 12 ; size = 4

253

31.1. SIMPLE EXAMPLE CHAPTER 31. CLASSES
??0c@@QAE@HH@Z PROC ; c::c, COMDAT
; _this$ = ecx

mov edx, DWORD PTR _b$[esp-4]
mov eax, ecx
mov ecx, DWORD PTR _a$[esp-4]
mov DWORD PTR [eax], ecx
mov DWORD PTR [eax+4], edx
ret 8

??0c@@QAE@HH@Z ENDP ; c::c

?dump@c@@QAEXXZ PROC ; c::dump, COMDAT
; _this$ = ecx

mov eax, DWORD PTR [ecx+4]
mov ecx, DWORD PTR [ecx]
push eax
push ecx
push OFFSET ??_C@_07NJBDCIEC@?$CFd?$DL?5?$CFd?6?$AA@
call _printf
add esp, 12 ; 0000000cH
ret 0

?dump@c@@QAEXXZ ENDP ; c::dump

That’s all. Onemore thing to say is the stack pointer was not corrected with add esp, X a�er constructor called. Withal,
constructor has ret 8 instead of the RET at the end.

This is all because here used thiscall (31.1.1) calling convention, the method of passing values through the stack, which
is, together with stdcall (??) method, o�ers to correct stack to callee rather then to caller. ret x instruction adding X to the
value in the ESP, then passes control to the caller function.

See also section about calling conventions (??).
It is also should be noted the compiler deciding when to call constructor and destructor —but that is we already know

from C++ language basics.

31.1.2 MSVC—x86-64
As we already know, first 4 function arguments in x86-64 are passed in RCX, RDX, R8, R9 registers, all the rest—via stack.
Nevertheless, this pointer to the object is passed in RCX, first method argument—in EDX, etc. We can see this in the c(int a,
int b)method internals:

Listing 31.5: MSVC 2012 x64 /Ox
; void dump()

?dump@c@@QEAAXXZ PROC ; c::dump
mov r8d, DWORD PTR [rcx+4]
mov edx, DWORD PTR [rcx]
lea rcx, OFFSET FLAT:??_C@_07NJBDCIEC@?$CFd?$DL?5?$CFd?6?$AA@ ; ’%d; %d’
jmp printf

?dump@c@@QEAAXXZ ENDP ; c::dump

; c(int a, int b)

??0c@@QEAA@HH@Z PROC ; c::c
mov DWORD PTR [rcx], edx ; 1st argument: a
mov DWORD PTR [rcx+4], r8d ; 2nd argument: b
mov rax, rcx
ret 0

??0c@@QEAA@HH@Z ENDP ; c::c

; default ctor

??0c@@QEAA@XZ PROC ; c::c
mov DWORD PTR [rcx], 667 ; 0000029bH
mov DWORD PTR [rcx+4], 999 ; 000003e7H

254

31.1. SIMPLE EXAMPLE CHAPTER 31. CLASSES
mov rax, rcx
ret 0

??0c@@QEAA@XZ ENDP ; c::c

int data type is still 32-bit in x64 2, so that is why 32-bit register’s parts are used here.
We also see JMP printf instead of RET in the dump()method, that hack we already saw earlier: 11.1.1.

31.1.3 GCC—x86
It is almost the same situation in GCC 4.4.1, with a few exceptions.

Listing 31.6: GCC 4.4.1
public main

main proc near ; DATA XREF: _start+17

var_20 = dword ptr -20h
var_1C = dword ptr -1Ch
var_18 = dword ptr -18h
var_10 = dword ptr -10h
var_8 = dword ptr -8

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 20h
lea eax, [esp+20h+var_8]
mov [esp+20h+var_20], eax
call _ZN1cC1Ev
mov [esp+20h+var_18], 6
mov [esp+20h+var_1C], 5
lea eax, [esp+20h+var_10]
mov [esp+20h+var_20], eax
call _ZN1cC1Eii
lea eax, [esp+20h+var_8]
mov [esp+20h+var_20], eax
call _ZN1c4dumpEv
lea eax, [esp+20h+var_10]
mov [esp+20h+var_20], eax
call _ZN1c4dumpEv
mov eax, 0
leave
retn

main endp

Here we see another namemangling style, specific to GNU 3 It is also can be noted the pointer to object is passed as first
function argument —transparently from programmer, of course.

First constructor:

public _ZN1cC1Ev ; weak
_ZN1cC1Ev proc near ; CODE XREF: main+10

arg_0 = dword ptr 8

push ebp
mov ebp, esp
mov eax, [ebp+arg_0]
mov dword ptr [eax], 667
mov eax, [ebp+arg_0]
mov dword ptr [eax+4], 999
pop ebp

2Apparently, for easier porting of C/C++ 32-bit code to x64
3Onemore document about di�erent compilers namemangling types: [12] standards.

255

31.1. SIMPLE EXAMPLE CHAPTER 31. CLASSES
retn

_ZN1cC1Ev endp

What it does is just writes two numbers using pointer passed in first (and single) argument.
Second constructor:

public _ZN1cC1Eii
_ZN1cC1Eii proc near

arg_0 = dword ptr 8
arg_4 = dword ptr 0Ch
arg_8 = dword ptr 10h

push ebp
mov ebp, esp
mov eax, [ebp+arg_0]
mov edx, [ebp+arg_4]
mov [eax], edx
mov eax, [ebp+arg_0]
mov edx, [ebp+arg_8]
mov [eax+4], edx
pop ebp
retn

_ZN1cC1Eii endp

This is a function, analog of which could be looks like:

void ZN1cC1Eii (int *obj, int a, int b)
{

*obj=a;
*(obj+1)=b;

};

. . .and that is completely predictable.
Now dump() function:

public _ZN1c4dumpEv
_ZN1c4dumpEv proc near

var_18 = dword ptr -18h
var_14 = dword ptr -14h
var_10 = dword ptr -10h
arg_0 = dword ptr 8

push ebp
mov ebp, esp
sub esp, 18h
mov eax, [ebp+arg_0]
mov edx, [eax+4]
mov eax, [ebp+arg_0]
mov eax, [eax]
mov [esp+18h+var_10], edx
mov [esp+18h+var_14], eax
mov [esp+18h+var_18], offset aDD ; "%d; %d\n"
call _printf
leave
retn

_ZN1c4dumpEv endp

This function in its internal representation has sole argument, used as pointer to the object (this).
Thus, if to base our judgment on these simple examples, the di�erence betweenMSVC andGCC is style of function names

encoding (namemangling) and passing pointer to object (via the ECX register or via the first argument).

256

31.2. CLASS INHERITANCE CHAPTER 31. CLASSES
31.1.4 GCC—x86-64
The first 6 arguments, as we already know, are passed in the RDI, RSI, RDX, RCX, R8, R9 [21] registers, and the pointer to this
via first one (RDI) and that is what we see here. int data type is also 32-bit here. JMP instead of RET hack is also used here.

Listing 31.7: GCC 4.4.6 x64
; default ctor

_ZN1cC2Ev:
mov DWORD PTR [rdi], 667
mov DWORD PTR [rdi+4], 999
ret

; c(int a, int b)

_ZN1cC2Eii:
mov DWORD PTR [rdi], esi
mov DWORD PTR [rdi+4], edx
ret

; dump()

_ZN1c4dumpEv:
mov edx, DWORD PTR [rdi+4]
mov esi, DWORD PTR [rdi]
xor eax, eax
mov edi, OFFSET FLAT:.LC0 ; "%d; %d\n"
jmp printf

31.2 Class inheritance

It can be said about inherited classes that it is simple structure we already considered, but extending in inherited classes.
Let’s take simple example:

#include <stdio.h>

class object
{

public:
int color;
object() { };
object (int color) { this->color=color; };
void print_color() { printf ("color=%d\n", color); };

};

class box : public object
{

private:
int width, height, depth;

public:
box(int color, int width, int height, int depth)
{

this->color=color;
this->width=width;
this->height=height;
this->depth=depth;

};
void dump()
{

printf ("this is box. color=%d, width=%d, height=%d, depth=%d\n", color, width,
height, depth);

257

31.2. CLASS INHERITANCE CHAPTER 31. CLASSES
};

};

class sphere : public object
{
private:

int radius;
public:

sphere(int color, int radius)
{

this->color=color;
this->radius=radius;

};
void dump()
{

printf ("this is sphere. color=%d, radius=%d\n", color, radius);
};

};

int main()
{

box b(1, 10, 20, 30);
sphere s(2, 40);

b.print_color();
s.print_color();

b.dump();
s.dump();

return 0;
};

Let’s investigate generated code of the dump() functions/methods and also object::print_color(), let’s seememory
layout for structures-objects (as of 32-bit code).

So, dump()methods for several classes, generated by MSVC 2008 with /Ox and /Ob0 options 4

Listing 31.8: Optimizing MSVC 2008 /Ob0
??_C@_09GCEDOLPA@color?$DN?$CFd?6?$AA@ DB ’color=%d’, 0aH, 00H ; ‘string’
?print_color@object@@QAEXXZ PROC ; object::print_color, COMDAT
; _this$ = ecx

mov eax, DWORD PTR [ecx]
push eax

; ’color=%d’, 0aH, 00H
push OFFSET ??_C@_09GCEDOLPA@color?$DN?$CFd?6?$AA@
call _printf
add esp, 8
ret 0

?print_color@object@@QAEXXZ ENDP ; object::print_color

Listing 31.9: Optimizing MSVC 2008 /Ob0
?dump@box@@QAEXXZ PROC ; box::dump, COMDAT
; _this$ = ecx

mov eax, DWORD PTR [ecx+12]
mov edx, DWORD PTR [ecx+8]
push eax
mov eax, DWORD PTR [ecx+4]
mov ecx, DWORD PTR [ecx]

4/Ob0 options means inline expansion disabling since function inlining right into the code where the function is called will make our experiment harder

258

31.2. CLASS INHERITANCE CHAPTER 31. CLASSES
push edx
push eax
push ecx

; ’this is box. color=%d, width=%d, height=%d, depth=%d’, 0aH, 00H ; ‘string’
push OFFSET ??_C@_0DG@NCNGAADL@this?5is?5box?4?5color?$DN?$CFd?0?5width?$DN?$CFd?0@
call _printf
add esp, 20 ; 00000014H
ret 0

?dump@box@@QAEXXZ ENDP ; box::dump

Listing 31.10: Optimizing MSVC 2008 /Ob0
?dump@sphere@@QAEXXZ PROC ; sphere::dump, COMDAT
; _this$ = ecx

mov eax, DWORD PTR [ecx+4]
mov ecx, DWORD PTR [ecx]
push eax
push ecx

; ’this is sphere. color=%d, radius=%d’, 0aH, 00H
push OFFSET ??_C@_0CF@EFEDJLDC@this?5is?5sphere?4?5color?$DN?$CFd?0?5radius@
call _printf
add esp, 12 ; 0000000cH
ret 0

?dump@sphere@@QAEXXZ ENDP ; sphere::dump

So, here is memory layout:
(base class object)

o�set description
+0x0 int color

(inherited classes)
box:

o�set description
+0x0 int color
+0x4 int width
+0x8 int height
+0xC int depth

sphere:

o�set description
+0x0 int color
+0x4 int radius

Let’s see main() function body:

Listing 31.11: Optimizing MSVC 2008 /Ob0
PUBLIC _main
_TEXT SEGMENT
_s$ = -24 ; size = 8
_b$ = -16 ; size = 16
_main PROC

sub esp, 24 ; 00000018H
push 30 ; 0000001eH
push 20 ; 00000014H
push 10 ; 0000000aH
push 1
lea ecx, DWORD PTR _b$[esp+40]
call ??0box@@QAE@HHHH@Z ; box::box

259

31.3. ENCAPSULATION CHAPTER 31. CLASSES
push 40 ; 00000028H
push 2
lea ecx, DWORD PTR _s$[esp+32]
call ??0sphere@@QAE@HH@Z ; sphere::sphere
lea ecx, DWORD PTR _b$[esp+24]
call ?print_color@object@@QAEXXZ ; object::print_color
lea ecx, DWORD PTR _s$[esp+24]
call ?print_color@object@@QAEXXZ ; object::print_color
lea ecx, DWORD PTR _b$[esp+24]
call ?dump@box@@QAEXXZ ; box::dump
lea ecx, DWORD PTR _s$[esp+24]
call ?dump@sphere@@QAEXXZ ; sphere::dump
xor eax, eax
add esp, 24 ; 00000018H
ret 0

_main ENDP

Inherited classes must always add their fields a�er base classes’ fields, so to make possible for base class methods to
work with their fields.

When object::print_color()method is called, a pointers to both box object and sphere object are passed as this, it
can work with these objects easily since color field in these objects is always at the pinned address (at +0x0 o�set).

It canbe said, object::print_color()method is agnostic in relation to input object type as long as fieldswill bepinned
at the same addresses, and this condition is always true.

And if you create inherited class of the e.g. box class, compiler will add new fields a�er depth field, leaving box class fields
at the pinned addresses.

Thus,box::dump()methodwillwork fineaccessing color/width/height/depths fields alwayspinnedonknownaddresses.
GCC-generated code is almost likewise, with the sole exception of this pointer passing (as it was described above, it

passing as first argument instead of the ECX registers.

31.3 Encapsulation

Encapsulation is data hiding in the private sections of class, e.g. to allow access to them only from this classmethods, but no
more than.

However, are there any marks in code about the fact that some field is private and some other —not?
No, there are no such marks.
Let’s try simple example:

#include <stdio.h>

class box
{

private:
int color, width, height, depth;

public:
box(int color, int width, int height, int depth)
{

this->color=color;
this->width=width;
this->height=height;
this->depth=depth;

};
void dump()
{

printf ("this is box. color=%d, width=%d, height=%d, depth=%d\n", color, width,
height, depth);

};
};

Let’s compile it again in MSVC 2008 with /Ox and /Ob0 options and let’s see box::dump()method code:

?dump@box@@QAEXXZ PROC ; box::dump, COMDAT
; _this$ = ecx

260

31.3. ENCAPSULATION CHAPTER 31. CLASSES
mov eax, DWORD PTR [ecx+12]
mov edx, DWORD PTR [ecx+8]
push eax
mov eax, DWORD PTR [ecx+4]
mov ecx, DWORD PTR [ecx]
push edx
push eax
push ecx

; ’this is box. color=%d, width=%d, height=%d, depth=%d’, 0aH, 00H
push OFFSET ??_C@_0DG@NCNGAADL@this?5is?5box?4?5color?$DN?$CFd?0?5width?$DN?$CFd?0@
call _printf
add esp, 20 ; 00000014H
ret 0

?dump@box@@QAEXXZ ENDP ; box::dump

Here is a memory layout of the class:

o�set description
+0x0 int color
+0x4 int width
+0x8 int height
+0xC int depth

All fields are private and not allowed to access from any other functions, but, knowing this layout, can we create a code
modifying these fields?

So I added hack_oop_encapsulation() function, which, if has the body as follows, will not compile:

void hack_oop_encapsulation(class box * o)
{

o->width=1; // that code can’t be compiled: "error C2248: ’box::width’ : cannot access
private member declared in class ’box’"

};

Nevertheless, if to cast box type to pointer to int array, and if to modify array of the int-s we got, then we have success.

void hack_oop_encapsulation(class box * o)
{

unsigned int *ptr_to_object=reinterpret_cast<unsigned int*>(o);
ptr_to_object[1]=123;

};

This functions’ code is very simple —it can be said, the function taking pointer to array of the int-s on input and writing
123 to the second int:

?hack_oop_encapsulation@@YAXPAVbox@@@Z PROC ; hack_oop_encapsulation
mov eax, DWORD PTR _o$[esp-4]
mov DWORD PTR [eax+4], 123 ; 0000007bH
ret 0

?hack_oop_encapsulation@@YAXPAVbox@@@Z ENDP ; hack_oop_encapsulation

Let’s check, how it works:

int main()
{

box b(1, 10, 20, 30);

b.dump();

hack_oop_encapsulation(&b);

b.dump();

return 0;
};

261

31.4. MULTIPLE INHERITANCE CHAPTER 31. CLASSES
Let’s run:

this is box. color=1, width=10, height=20, depth=30
this is box. color=1, width=123, height=20, depth=30

We see, encapsulation is just class fields protection only on compiling stage. C++ compiler will not allow to generate a
code modifying protected fields straightforwardly, nevertheless, it is possible with the help of dirty hacks.

31.4 Multiple inheritance
Multiple inheritance is a class creation which inherits fields andmethods from two or more classes.

Let’s write simple example again:

#include <stdio.h>

class box
{

public:
int width, height, depth;
box() { };
box(int width, int height, int depth)
{

this->width=width;
this->height=height;
this->depth=depth;

};
void dump()
{

printf ("this is box. width=%d, height=%d, depth=%d\n", width, height, depth);
};
int get_volume()
{

return width * height * depth;
};

};

class solid_object
{

public:
int density;
solid_object() { };
solid_object(int density)
{

this->density=density;
};
int get_density()
{

return density;
};
void dump()
{

printf ("this is solid_object. density=%d\n", density);
};

};

class solid_box: box, solid_object
{

public:
solid_box (int width, int height, int depth, int density)
{

this->width=width;

262

31.4. MULTIPLE INHERITANCE CHAPTER 31. CLASSES
this->height=height;
this->depth=depth;
this->density=density;

};
void dump()
{

printf ("this is solid_box. width=%d, height=%d, depth=%d, density=%d\n", width,
height, depth, density);

};
int get_weight() { return get_volume() * get_density(); };

};

int main()
{

box b(10, 20, 30);
solid_object so(100);
solid_box sb(10, 20, 30, 3);

b.dump();
so.dump();
sb.dump();
printf ("%d\n", sb.get_weight());

return 0;
};

Let’s compile it inMSVC2008with/Oxand/Ob0optionsand let’s seebox::dump(),solid_object::dump()andsolid_box::dump()
methods code:

Listing 31.12: Optimizing MSVC 2008 /Ob0
?dump@box@@QAEXXZ PROC ; box::dump, COMDAT
; _this$ = ecx

mov eax, DWORD PTR [ecx+8]
mov edx, DWORD PTR [ecx+4]
push eax
mov eax, DWORD PTR [ecx]
push edx
push eax

; ’this is box. width=%d, height=%d, depth=%d’, 0aH, 00H
push OFFSET ??_C@_0CM@DIKPHDFI@this?5is?5box?4?5width?$DN?$CFd?0?5height?$DN?$CFd@
call _printf
add esp, 16 ; 00000010H
ret 0

?dump@box@@QAEXXZ ENDP ; box::dump

Listing 31.13: Optimizing MSVC 2008 /Ob0
?dump@solid_object@@QAEXXZ PROC ; solid_object::dump, COMDAT
; _this$ = ecx

mov eax, DWORD PTR [ecx]
push eax

; ’this is solid_object. density=%d’, 0aH
push OFFSET ??_C@_0CC@KICFJINL@this?5is?5solid_object?4?5density?$DN?$CFd@
call _printf
add esp, 8
ret 0

?dump@solid_object@@QAEXXZ ENDP ; solid_object::dump

Listing 31.14: Optimizing MSVC 2008 /Ob0
?dump@solid_box@@QAEXXZ PROC ; solid_box::dump, COMDAT
; _this$ = ecx

263

31.4. MULTIPLE INHERITANCE CHAPTER 31. CLASSES
mov eax, DWORD PTR [ecx+12]
mov edx, DWORD PTR [ecx+8]
push eax
mov eax, DWORD PTR [ecx+4]
mov ecx, DWORD PTR [ecx]
push edx
push eax
push ecx

; ’this is solid_box. width=%d, height=%d, depth=%d, density=%d’, 0aH
push OFFSET ??_C@_0DO@HNCNIHNN@this?5is?5solid_box?4?5width?$DN?$CFd?0?5hei@
call _printf
add esp, 20 ; 00000014H
ret 0

?dump@solid_box@@QAEXXZ ENDP ; solid_box::dump

So, the memory layout for all three classes is:
box class:

o�set description
+0x0 width
+0x4 height
+0x8 depth

solid_object class:

o�set description
+0x0 density

It can be said, solid_box class memory layout will be united:
solid_box class:

o�set description
+0x0 width
+0x4 height
+0x8 depth
+0xC density

The code of the box::get_volume() and solid_object::get_density()methods is trivial:

Listing 31.15: Optimizing MSVC 2008 /Ob0
?get_volume@box@@QAEHXZ PROC ; box::get_volume, COMDAT
; _this$ = ecx

mov eax, DWORD PTR [ecx+8]
imul eax, DWORD PTR [ecx+4]
imul eax, DWORD PTR [ecx]
ret 0

?get_volume@box@@QAEHXZ ENDP ; box::get_volume

Listing 31.16: Optimizing MSVC 2008 /Ob0
?get_density@solid_object@@QAEHXZ PROC ; solid_object::get_density, COMDAT
; _this$ = ecx

mov eax, DWORD PTR [ecx]
ret 0

?get_density@solid_object@@QAEHXZ ENDP ; solid_object::get_density

But the code of the solid_box::get_weight()method is muchmore interesting:

Listing 31.17: Optimizing MSVC 2008 /Ob0
?get_weight@solid_box@@QAEHXZ PROC ; solid_box::get_weight, COMDAT
; _this$ = ecx

push esi
mov esi, ecx

264

31.5. VIRTUAL METHODS CHAPTER 31. CLASSES
push edi
lea ecx, DWORD PTR [esi+12]
call ?get_density@solid_object@@QAEHXZ ; solid_object::get_density
mov ecx, esi
mov edi, eax
call ?get_volume@box@@QAEHXZ ; box::get_volume
imul eax, edi
pop edi
pop esi
ret 0

?get_weight@solid_box@@QAEHXZ ENDP ; solid_box::get_weight

get_weight() just calling twomethods, but for get_volume() it just passing pointer to this, and for get_density() it
passingpointer tothis shi�edby12 (or0xC) bytes, and there, in thesolid_boxclassmemory layout, fieldsof thesolid_object
class are beginning.

Thus,solid_object::get_density()methodwill believe it isdealingwithusualsolid_objectclass, andbox::get_volume()
method will work with its three fields, believing this is usual object of the box class.

Thus, we can say, an object of a class, inheriting from several other classes, representing in memory united class, con-
taining all inherited fields. And each inherited method called with a pointer to corresponding structure’s part passed.

31.5 Virtual methods

Yet another simple example:

#include <stdio.h>

class object
{

public:
int color;
object() { };
object (int color) { this->color=color; };
virtual void dump()
{

printf ("color=%d\n", color);
};

};

class box : public object
{

private:
int width, height, depth;

public:
box(int color, int width, int height, int depth)
{

this->color=color;
this->width=width;
this->height=height;
this->depth=depth;

};
void dump()
{

printf ("this is box. color=%d, width=%d, height=%d, depth=%d\n", color, width,
height, depth);

};
};

class sphere : public object
{

private:
int radius;

265

31.5. VIRTUAL METHODS CHAPTER 31. CLASSES
public:

sphere(int color, int radius)
{

this->color=color;
this->radius=radius;

};
void dump()
{

printf ("this is sphere. color=%d, radius=%d\n", color, radius);
};

};

int main()
{

box b(1, 10, 20, 30);
sphere s(2, 40);

object *o1=&b;
object *o2=&s;

o1->dump();
o2->dump();
return 0;

};

Class object has virtual method dump(), being replaced in the box and sphere class-inheritors.
If in an environment, where it is not known what type has object, as in the main() function in example, a virtual method

dump() is called, somewhere, the information about its type must be stored, so to call relevant virtual method.
Let’s compile it in MSVC 2008 with /Ox and /Ob0 options and let’s see main() function code:

_s$ = -32 ; size = 12
_b$ = -20 ; size = 20
_main PROC

sub esp, 32 ; 00000020H
push 30 ; 0000001eH
push 20 ; 00000014H
push 10 ; 0000000aH
push 1
lea ecx, DWORD PTR _b$[esp+48]
call ??0box@@QAE@HHHH@Z ; box::box
push 40 ; 00000028H
push 2
lea ecx, DWORD PTR _s$[esp+40]
call ??0sphere@@QAE@HH@Z ; sphere::sphere
mov eax, DWORD PTR _b$[esp+32]
mov edx, DWORD PTR [eax]
lea ecx, DWORD PTR _b$[esp+32]
call edx
mov eax, DWORD PTR _s$[esp+32]
mov edx, DWORD PTR [eax]
lea ecx, DWORD PTR _s$[esp+32]
call edx
xor eax, eax
add esp, 32 ; 00000020H
ret 0

_main ENDP

Pointer to the dump() function is taken somewhere from object. Where the address of new method would be written
there? Only somewhere in constructors: there is no other place since nothing more is called in the main() function. 5

Let’s see box class constructor’s code:
5About pointers to functions, read more in relevant section:(20)

266

31.5. VIRTUAL METHODS CHAPTER 31. CLASSES

??_R0?AVbox@@@8 DD FLAT:??_7type_info@@6B@ ; box ‘RTTI Type Descriptor’
DD 00H
DB ’.?AVbox@@’, 00H

??_R1A@?0A@EA@box@@8 DD FLAT:??_R0?AVbox@@@8 ; box::‘RTTI Base Class Descriptor at
(0,-1,0,64)’

DD 01H
DD 00H
DD 0ffffffffH
DD 00H
DD 040H
DD FLAT:??_R3box@@8

??_R2box@@8 DD FLAT:??_R1A@?0A@EA@box@@8 ; box::‘RTTI Base Class Array’
DD FLAT:??_R1A@?0A@EA@object@@8

??_R3box@@8 DD 00H ; box::‘RTTI Class Hierarchy Descriptor’
DD 00H
DD 02H
DD FLAT:??_R2box@@8

??_R4box@@6B@ DD 00H ; box::‘RTTI Complete Object Locator’
DD 00H
DD 00H
DD FLAT:??_R0?AVbox@@@8
DD FLAT:??_R3box@@8

??_7box@@6B@ DD FLAT:??_R4box@@6B@ ; box::‘vftable’
DD FLAT:?dump@box@@UAEXXZ

_color$ = 8 ; size = 4
_width$ = 12 ; size = 4
_height$ = 16 ; size = 4
_depth$ = 20 ; size = 4
??0box@@QAE@HHHH@Z PROC ; box::box, COMDAT
; _this$ = ecx

push esi
mov esi, ecx
call ??0object@@QAE@XZ ; object::object
mov eax, DWORD PTR _color$[esp]
mov ecx, DWORD PTR _width$[esp]
mov edx, DWORD PTR _height$[esp]
mov DWORD PTR [esi+4], eax
mov eax, DWORD PTR _depth$[esp]
mov DWORD PTR [esi+16], eax
mov DWORD PTR [esi], OFFSET ??_7box@@6B@
mov DWORD PTR [esi+8], ecx
mov DWORD PTR [esi+12], edx
mov eax, esi
pop esi
ret 16 ; 00000010H

??0box@@QAE@HHHH@Z ENDP ; box::box

Here we see slightly di�erentmemory layout: the first field is a pointer to some table box::‘vftable’ (namewas set by
MSVC compiler).

In this tableweseea link to the tablenamedbox::‘RTTI Complete Object Locator’andalsoa link to thebox::dump()
method. So this is named virtual methods table and RTTI6. Table of virtual methods contain addresses of methods and RTTI
table contain information about types. By the way, RTTI-tables are the tables enumerated while calling to dynamic_cast
and typeid in C++. You can also see here class name as plain text string. Thus, a method of base object class may call vir-

6Run-time type information

267

31.5. VIRTUAL METHODS CHAPTER 31. CLASSES
tual method object::dump(), which in turn, will call a method of inherited class since that information is present right in the
object’s structure.

Some additional CPU time needed for enumerating these tables and finding right virtual method address, thus virtual
methods are widely considered as slightly slower than commonmethods.

In GCC-generated code RTTI-tables constructed slightly di�erently.

268

CHAPTER 32. OSTREAM

Chapter 32

ostream

Let’s start again with a “hello world” example, but now will use ostream:

#include <iostream>

int main()
{

std::cout << "Hello, world!\n";
}

Almost any C++ textbook tells that « operation can be replaced (overloaded) for other types. That is what is done in
ostream. We see that operator« is called for ostream:

Listing 32.1: MSVC 2012 (reduced listing)
$SG37112 DB ’Hello, world!’, 0aH, 00H

_main PROC
push OFFSET $SG37112
push OFFSET ?cout@std@@3V?$basic_ostream@DU?$char_traits@D@std@@@1@A ; std::cout
call ??$?6U?$char_traits@D@std@@@std@@YAAAV?$basic_ostream@DU?

$char_traits@D@std@@@0@AAV10@PBD@Z ; std::operator<<<std::char_traits<char> >
add esp, 8
xor eax, eax
ret 0

_main ENDP

Let’s modify the example:

#include <iostream>

int main()
{

std::cout << "Hello, " << "world!\n";
}

And again, frommany C++ textbookswe know that the result of each operator« in ostream is forwarded to the next one.
Indeed:

Listing 32.2: MSVC 2012
$SG37112 DB ’world!’, 0aH, 00H
$SG37113 DB ’Hello, ’, 00H

_main PROC
push OFFSET $SG37113 ; ’Hello, ’
push OFFSET ?cout@std@@3V?$basic_ostream@DU?$char_traits@D@std@@@1@A ; std::cout
call ??$?6U?$char_traits@D@std@@@std@@YAAAV?$basic_ostream@DU?

$char_traits@D@std@@@0@AAV10@PBD@Z ; std::operator<<<std::char_traits<char> >
add esp, 8

269

CHAPTER 32. OSTREAM
push OFFSET $SG37112 ; ’world!’
push eax ; result of previous function
call ??$?6U?$char_traits@D@std@@@std@@YAAAV?$basic_ostream@DU?

$char_traits@D@std@@@0@AAV10@PBD@Z ; std::operator<<<std::char_traits<char> >
add esp, 8

xor eax, eax
ret 0

_main ENDP

If to replace operator« by f(), that code can be rewritten as:

f(f(std::cout, "Hello, "), "world!")

GCC generates almost the same code as MSVC.

270

CHAPTER 33. REFERENCES

Chapter 33

References

In C++, references are pointers (9) as well, but they are called safe, because it is harder to make a mistake while dealing
with them [16, 8.3.2]. For example, reference must always be pointing to the object of corresponding type and cannot be
NULL [6, 8.6]. Evenmore than that, reference cannot be changed, it is impossible to point it to another object (reseat) [6, 8.5].

If we will try to change the pointers example (9) to use references instead of pointers:

void f2 (int x, int y, int & sum, int & product)
{

sum=x+y;
product=x*y;

};

Then we’ll figure out the compiled code is just the same as in pointers example (9):

Listing 33.1: Optimizing MSVC 2010
_x$ = 8 ; size = 4
_y$ = 12 ; size = 4
_sum$ = 16 ; size = 4
_product$ = 20 ; size = 4
?f2@@YAXHHAAH0@Z PROC ; f2

mov ecx, DWORD PTR _y$[esp-4]
mov eax, DWORD PTR _x$[esp-4]
lea edx, DWORD PTR [eax+ecx]
imul eax, ecx
mov ecx, DWORD PTR _product$[esp-4]
push esi
mov esi, DWORD PTR _sum$[esp]
mov DWORD PTR [esi], edx
mov DWORD PTR [ecx], eax
pop esi
ret 0

?f2@@YAXHHAAH0@Z ENDP ; f2

(A reason why C++ functions has such strange names, is described here: 31.1.1.)

271

CHAPTER 34. STL

Chapter 34

STL

N.B.: all examples here were checked only in 32-bit environment. x64 wasn’t checked.

34.1 std::string

34.1.1 Internals
Many string libraries ([37, 2.2]) implements structure containing pointer to the bu�er containing string, a variable always
containing current string length (that is very convenient for many functions: [37, 2.2.1]) and a variable containing current
bu�er size. A string in bu�er is usually terminatedwith zero: in order to be able to pass a pointer to a bu�er into the functions
taking usual C ASCIIZ-string.

It is not specified in the C++ standard ([16]) how std::string should be implemented, however, it is usually implemented
as described above.

By standard, std::string is not a class (as QString in Qt, for instance) but template, this is done in order to support various
character types: at least char and wchar_t.

There are no assembly listings, because std::string internals in MSVC and GCC can be illustrated without them.

MSVC

MSVC implementation may store bu�er in place instead of pointer to bu�er (if the string is shorter than 16 symbols).
This mean that short string will occupy at least 16 + 4 + 4 = 24 bytes in 32-bit environment or at least 16 + 8 + 8 = 32

bytes in 64-bit, and if the string is longer than 16 characters, add also length of the string itself.

Listing 34.1: example for MSVC
#include <string>
#include <stdio.h>

struct std_string
{

union
{

char buf[16];
char* ptr;

} u;
size_t size; // AKA ’Mysize’ in MSVC
size_t capacity; // AKA ’Myres’ in MSVC

};

void dump_std_string(std::string s)
{

struct std_string *p=(struct std_string*)&s;
printf ("[%s] size:%d capacity:%d\n", p->size>16 ? p->u.ptr : p->u.buf, p->size, p->

capacity);
};

int main()
{

272

34.1. STD::STRING CHAPTER 34. STL
std::string s1="short string";
std::string s2="string longer that 16 bytes";

dump_std_string(s1);
dump_std_string(s2);

// that works without using c_str()
printf ("%s\n", &s1);
printf ("%s\n", s2);

};

Almost everything is clear from the source code.
Couple notes:
If the string is shorter than 16 symbols, a bu�er for the string will not be allocated in the heap. This is convenient because

in practice, large amount of strings are short indeed. Apparently, Microso�developers chose 16 characters as a goodbalance.
Very important thing here is in the end of main() functions: I’m not using c_str() method, nevertheless, if to compile the

code and run, both strings will be appeared in the console!
This is why it works.
The string is shorter than 16 characters and bu�er with the string is located in the beginning of std::string object (it can

be treated just as structure). printf() treats pointer as a pointer to the null-terminated array of characters, hence it works.
Second string (longer than 16 characters) printing is evenmore dangerous: it is typical programmer’smistake (or typo) to

forget to write c_str(). This works because at themoment a pointer to bu�er is located at the start of structure. This may le�
unnoticed for a long span of time: until a longer string will appear there, then a process will crash.

GCC

GCC implementation of a structure has one more variable—reference count.
One interesting fact is that a pointer to std::string instance of class points not to beginning of the structure, but to the

pointer to bu�er. In libstdc++-v3\include\bits\basic_string.h wemay read that it was made for convenient debugging:

* The reason you want _M_data pointing to the character %array and
* not the _Rep is so that the debugger can see the string
* contents. (Probably we should add a non-inline member to get
* the _Rep for the debugger to use, so users can check the actual
* string length.)

basic_string.h source code
I considering this in my example:

Listing 34.2: example for GCC
#include <string>
#include <stdio.h>

struct std_string
{

size_t length;
size_t capacity;
size_t refcount;

};

void dump_std_string(std::string s)
{

char *p1=*(char**)&s; // GCC type checking workaround
struct std_string *p2=(struct std_string*)(p1-sizeof(struct std_string));
printf ("[%s] size:%d capacity:%d\n", p1, p2->length, p2->capacity);

};

int main()
{

std::string s1="short string";
std::string s2="string longer that 16 bytes";

273

http://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.4/a01068.html

34.1. STD::STRING CHAPTER 34. STL
dump_std_string(s1);
dump_std_string(s2);

// GCC type checking workaround:
printf ("%s\n", *(char**)&s1);
printf ("%s\n", *(char**)&s2);

};

A trickery should be also used to imitate mistake I already wrote above because GCC has stronger type checking, never-
theless, printf() works here without c_str() as well.

34.1.2 More complex example

#include <string>
#include <stdio.h>

int main()
{

std::string s1="Hello, ";
std::string s2="world!\n";
std::string s3=s1+s2;

printf ("%s\n", s3.c_str());
}

Listing 34.3: MSVC 2012
$SG39512 DB ’Hello, ’, 00H
$SG39514 DB ’world!’, 0aH, 00H
$SG39581 DB ’%s’, 0aH, 00H

_s2$ = -72 ; size = 24
_s3$ = -48 ; size = 24
_s1$ = -24 ; size = 24
_main PROC

sub esp, 72 ; 00000048H

push 7
push OFFSET $SG39512
lea ecx, DWORD PTR _s1$[esp+80]
mov DWORD PTR _s1$[esp+100], 15 ; 0000000fH
mov DWORD PTR _s1$[esp+96], 0
mov BYTE PTR _s1$[esp+80], 0
call ?assign@?$basic_string@DU?$char_traits@D@std@@V?

$allocator@D@2@@std@@QAEAAV12@PBDI@Z ; std::basic_string<char,std::char_traits<char>,std::
allocator<char> >::assign

push 7
push OFFSET $SG39514
lea ecx, DWORD PTR _s2$[esp+80]
mov DWORD PTR _s2$[esp+100], 15 ; 0000000fH
mov DWORD PTR _s2$[esp+96], 0
mov BYTE PTR _s2$[esp+80], 0
call ?assign@?$basic_string@DU?$char_traits@D@std@@V?

$allocator@D@2@@std@@QAEAAV12@PBDI@Z ; std::basic_string<char,std::char_traits<char>,std::
allocator<char> >::assign

lea eax, DWORD PTR _s2$[esp+72]
push eax
lea eax, DWORD PTR _s1$[esp+76]

274

34.1. STD::STRING CHAPTER 34. STL
push eax
lea eax, DWORD PTR _s3$[esp+80]
push eax
call ??$?HDU?$char_traits@D@std@@V?$allocator@D@1@@std@@YA?AV?$basic_string@DU?

$char_traits@D@std@@V?$allocator@D@2@@0@ABV10@0@Z ; std::operator+<char,std::char_traits<char
>,std::allocator<char> >

; inlined c_str() method:
cmp DWORD PTR _s3$[esp+104], 16 ; 00000010H
lea eax, DWORD PTR _s3$[esp+84]
cmovae eax, DWORD PTR _s3$[esp+84]

push eax
push OFFSET $SG39581
call _printf
add esp, 20 ; 00000014H

cmp DWORD PTR _s3$[esp+92], 16 ; 00000010H
jb SHORT $LN119@main
push DWORD PTR _s3$[esp+72]
call ??3@YAXPAX@Z ; operator delete
add esp, 4

$LN119@main:
cmp DWORD PTR _s2$[esp+92], 16 ; 00000010H
mov DWORD PTR _s3$[esp+92], 15 ; 0000000fH
mov DWORD PTR _s3$[esp+88], 0
mov BYTE PTR _s3$[esp+72], 0
jb SHORT $LN151@main
push DWORD PTR _s2$[esp+72]
call ??3@YAXPAX@Z ; operator delete
add esp, 4

$LN151@main:
cmp DWORD PTR _s1$[esp+92], 16 ; 00000010H
mov DWORD PTR _s2$[esp+92], 15 ; 0000000fH
mov DWORD PTR _s2$[esp+88], 0
mov BYTE PTR _s2$[esp+72], 0
jb SHORT $LN195@main
push DWORD PTR _s1$[esp+72]
call ??3@YAXPAX@Z ; operator delete
add esp, 4

$LN195@main:
xor eax, eax
add esp, 72 ; 00000048H
ret 0

_main ENDP

Compilernot constructing strings statically: how it ispossibleanyway if bu�er shouldbe located in theheap? UsualASCIIZ
strings are stored in the data segment instead, and later, at the moment of execution, with the help of “assign” method, s1
and s2 strings are constructed. With the help of operator+, s3 string is constructed.

Please note that there are no call to c_str() method, because, its code is tiny enough so compiler inlined it right here: if
the string is shorter than 16 characters, a pointer to bu�er is leaved in EAX register, and an address of the string bu�er located
in the heap is fetched otherwise.

Next, we see calls to the 3 destructors, and they are called if string is longer than 16 characters: then a bu�ers in the
heap should be freed. Otherwise, since all three std::string objects are stored in the stack, they are freed automatically, upon
function finish.

As a consequence, short strings processing is faster because of lesser heap accesses.
GCC code is even simpler (because GCC way, as I mentioned above, is not to store shorter string right in the structure):

Listing 34.4: GCC 4.8.1
.LC0:

.string "Hello, "

275

34.1. STD::STRING CHAPTER 34. STL
.LC1:

.string "world!\n"
main:

push ebp
mov ebp, esp
push edi
push esi
push ebx
and esp, -16
sub esp, 32
lea ebx, [esp+28]
lea edi, [esp+20]
mov DWORD PTR [esp+8], ebx
lea esi, [esp+24]
mov DWORD PTR [esp+4], OFFSET FLAT:.LC0
mov DWORD PTR [esp], edi

call _ZNSsC1EPKcRKSaIcE

mov DWORD PTR [esp+8], ebx
mov DWORD PTR [esp+4], OFFSET FLAT:.LC1
mov DWORD PTR [esp], esi

call _ZNSsC1EPKcRKSaIcE

mov DWORD PTR [esp+4], edi
mov DWORD PTR [esp], ebx

call _ZNSsC1ERKSs

mov DWORD PTR [esp+4], esi
mov DWORD PTR [esp], ebx

call _ZNSs6appendERKSs

; inlined c_str():
mov eax, DWORD PTR [esp+28]
mov DWORD PTR [esp], eax

call puts

mov eax, DWORD PTR [esp+28]
lea ebx, [esp+19]
mov DWORD PTR [esp+4], ebx
sub eax, 12
mov DWORD PTR [esp], eax
call _ZNSs4_Rep10_M_disposeERKSaIcE
mov eax, DWORD PTR [esp+24]
mov DWORD PTR [esp+4], ebx
sub eax, 12
mov DWORD PTR [esp], eax
call _ZNSs4_Rep10_M_disposeERKSaIcE
mov eax, DWORD PTR [esp+20]
mov DWORD PTR [esp+4], ebx
sub eax, 12
mov DWORD PTR [esp], eax
call _ZNSs4_Rep10_M_disposeERKSaIcE
lea esp, [ebp-12]
xor eax, eax
pop ebx
pop esi

276

34.1. STD::STRING CHAPTER 34. STL
pop edi
pop ebp
ret

It can be seen that not a pointer to object is passed to destructors, but rather a place 12 bytes (or 3 words) before, i.e.,
pointer to the real start of the structure.

34.1.3 std::string as a global variable
Experienced C++ programmers may argue: a global variables of STL1 types are in fact can be defined.

Yes, indeed:

#include <stdio.h>
#include <string>

std::string s="a string";

int main()
{

printf ("%s\n", s.c_str());
};

Listing 34.5: MSVC 2012
$SG39512 DB ’a string’, 00H
$SG39519 DB ’%s’, 0aH, 00H

_main PROC
cmp DWORD PTR ?s@@3V?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@A

+20, 16 ; 00000010H
mov eax, OFFSET ?s@@3V?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@A

; s
cmovae eax, DWORD PTR ?s@@3V?$basic_string@DU?$char_traits@D@std@@V?

$allocator@D@2@@std@@A
push eax
push OFFSET $SG39519
call _printf
add esp, 8
xor eax, eax
ret 0

_main ENDP

??__Es@@YAXXZ PROC ; ‘dynamic initializer for ’s’’, COMDAT
push 8
push OFFSET $SG39512
mov ecx, OFFSET ?s@@3V?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@A

; s
call ?assign@?$basic_string@DU?$char_traits@D@std@@V?

$allocator@D@2@@std@@QAEAAV12@PBDI@Z ; std::basic_string<char,std::char_traits<char>,std::
allocator<char> >::assign

push OFFSET ??__Fs@@YAXXZ ; ‘dynamic atexit destructor for ’s’’
call _atexit
pop ecx
ret 0

??__Es@@YAXXZ ENDP ; ‘dynamic initializer for ’s’’

??__Fs@@YAXXZ PROC ; ‘dynamic atexit destructor for ’s’’,
COMDAT

push ecx
cmp DWORD PTR ?s@@3V?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@A

+20, 16 ; 00000010H

1(C++) Standard Template Library: 34

277

34.1. STD::STRING CHAPTER 34. STL
jb SHORT $LN23@dynamic
push esi
mov esi, DWORD PTR ?s@@3V?$basic_string@DU?$char_traits@D@std@@V?

$allocator@D@2@@std@@A
lea ecx, DWORD PTR $T2[esp+8]
call ??0?$_Wrap_alloc@V?$allocator@D@std@@@std@@QAE@XZ ; std::_Wrap_alloc<std::

allocator<char> >::_Wrap_alloc<std::allocator<char> >
push OFFSET ?s@@3V?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@A ; s
lea ecx, DWORD PTR $T2[esp+12]
call ??$destroy@PAD@?$_Wrap_alloc@V?$allocator@D@std@@@std@@QAEXPAPAD@Z ; std::

_Wrap_alloc<std::allocator<char> >::destroy<char *>
lea ecx, DWORD PTR $T1[esp+8]
call ??0?$_Wrap_alloc@V?$allocator@D@std@@@std@@QAE@XZ ; std::_Wrap_alloc<std::

allocator<char> >::_Wrap_alloc<std::allocator<char> >
push esi
call ??3@YAXPAX@Z ; operator delete
add esp, 4
pop esi

$LN23@dynamic:
mov DWORD PTR ?s@@3V?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@A

+20, 15 ; 0000000fH
mov DWORD PTR ?s@@3V?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@A

+16, 0
mov BYTE PTR ?s@@3V?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@A, 0
pop ecx
ret 0

??__Fs@@YAXXZ ENDP ; ‘dynamic atexit destructor for ’s’’

In fact, a special function with all constructors of global variables is called from CRT, before main(). More than that: with
the help of atexit() another function is registered: which contain all destructors of such variables.

GCC works likewise:

Listing 34.6: GCC 4.8.1
main:

push ebp
mov ebp, esp
and esp, -16
sub esp, 16
mov eax, DWORD PTR s
mov DWORD PTR [esp], eax
call puts
xor eax, eax
leave
ret

.LC0:
.string "a string"

_GLOBAL__sub_I_s:
sub esp, 44
lea eax, [esp+31]
mov DWORD PTR [esp+8], eax
mov DWORD PTR [esp+4], OFFSET FLAT:.LC0
mov DWORD PTR [esp], OFFSET FLAT:s
call _ZNSsC1EPKcRKSaIcE
mov DWORD PTR [esp+8], OFFSET FLAT:__dso_handle
mov DWORD PTR [esp+4], OFFSET FLAT:s
mov DWORD PTR [esp], OFFSET FLAT:_ZNSsD1Ev
call __cxa_atexit
add esp, 44
ret

.LFE645:
.size _GLOBAL__sub_I_s, .-_GLOBAL__sub_I_s

278

34.2. STD::LIST CHAPTER 34. STL
.section .init_array,"aw"
.align 4
.long _GLOBAL__sub_I_s
.globl s
.bss
.align 4
.type s, @object
.size s, 4

s:
.zero 4
.hidden __dso_handle

It even not creates separated functions for this, each destructor is passed to atexit(), one by one.

34.2 std::list
This is a well-known doubly-linked list: each element has two pointers, to the previous and the next elements.

This mean that a memory footprint is enlarged by 2 words for each element (8 bytes in 32-bit environment or 16 bytes in
64-bit).

This is also a circular list, meaning that the last element has a pointer to the first and vice versa.
C++ STL just append “next” and “previous” pointers to your existing structure you wish to unite into a list.
Let’s work out an example with a simple 2-variable structure we want to store in the list.
Although standard C++ standard [16] does not o�er how to implement it, MSVC and GCC implementations are straight-

forward and similar to each other, so here is only one source code for both:

#include <stdio.h>
#include <list>
#include <iostream>

struct a
{

int x;
int y;

};

struct List_node
{

struct List_node* _Next;
struct List_node* _Prev;
int x;
int y;

};

void dump_List_node (struct List_node *n)
{

printf ("ptr=0x%p _Next=0x%p _Prev=0x%p x=%d y=%d\n",
n, n->_Next, n->_Prev, n->x, n->y);

};

void dump_List_vals (struct List_node* n)
{

struct List_node* current=n;

for (;;)
{

dump_List_node (current);
current=current->_Next;
if (current==n) // end

break;
};

};

279

34.2. STD::LIST CHAPTER 34. STL

void dump_List_val (unsigned int *a)
{
#ifdef _MSC_VER

// GCC implementation doesn’t have "size" field
printf ("_Myhead=0x%p, _Mysize=%d\n", a[0], a[1]);

#endif
dump_List_vals ((struct List_node*)a[0]);

};

int main()
{

std::list<struct a> l;

printf ("* empty list:\n");
dump_List_val((unsigned int*)(void*)&l);

struct a t1;
t1.x=1;
t1.y=2;
l.push_front (t1);
t1.x=3;
t1.y=4;
l.push_front (t1);
t1.x=5;
t1.y=6;
l.push_back (t1);

printf ("* 3-elements list:\n");
dump_List_val((unsigned int*)(void*)&l);

std::list<struct a>::iterator tmp;
printf ("node at .begin:\n");
tmp=l.begin();
dump_List_node ((struct List_node *)*(void**)&tmp);
printf ("node at .end:\n");
tmp=l.end();
dump_List_node ((struct List_node *)*(void**)&tmp);

printf ("* let’s count from the begin:\n");
std::list<struct a>::iterator it=l.begin();
printf ("1st element: %d %d\n", (*it).x, (*it).y);
it++;
printf ("2nd element: %d %d\n", (*it).x, (*it).y);
it++;
printf ("3rd element: %d %d\n", (*it).x, (*it).y);
it++;
printf ("element at .end(): %d %d\n", (*it).x, (*it).y);

printf ("* let’s count from the end:\n");
std::list<struct a>::iterator it2=l.end();
printf ("element at .end(): %d %d\n", (*it2).x, (*it2).y);
it2--;
printf ("3rd element: %d %d\n", (*it2).x, (*it2).y);
it2--;
printf ("2nd element: %d %d\n", (*it2).x, (*it2).y);
it2--;
printf ("1st element: %d %d\n", (*it2).x, (*it2).y);

printf ("removing last element...\n");
l.pop_back();

280

34.2. STD::LIST CHAPTER 34. STL
dump_List_val((unsigned int*)(void*)&l);

};

34.2.1 GCC
Let’s start with GCC.

When we run the example, we’ll see a long dump, let’s work with it part by part.

* empty list:
ptr=0x0028fe90 _Next=0x0028fe90 _Prev=0x0028fe90 x=3 y=0

Here we see an empty list. Despite the fact it is empty, it has one element with garbage in 𝑥 and 𝑦 variables. Both “next”
and “prev” pointers are pointing to the self node:

Next

Prev

X=garbage

Y=garbage

Variable std::listlist.begin() list.end()

That’s is the moment when .begin and .end iterators are equal to each other.
Let’s push 3 elements, and the list internally will be:

* 3-elements list:
ptr=0x000349a0 _Next=0x00034988 _Prev=0x0028fe90 x=3 y=4
ptr=0x00034988 _Next=0x00034b40 _Prev=0x000349a0 x=1 y=2
ptr=0x00034b40 _Next=0x0028fe90 _Prev=0x00034988 x=5 y=6
ptr=0x0028fe90 _Next=0x000349a0 _Prev=0x00034b40 x=5 y=6

The last element is still at 0x0028fe90, it will not be moved until list disposal. It still contain random garbage in 𝑥 and 𝑦
fields (5 and 6). By occasion, these values are the same as in the last element, but it doesn’t mean they are meaningful.

Here is how 3 elements will be stored in memory:

Next

Prev

X=1st element

Y=1st element

Next

Prev

X=2nd element

Y=2nd element

Next

Prev

X=3rd element

Y=3rd element

Next

Prev

X=garbage

Y=garbage

Variable std::list

list.begin() list.end()

The variable 𝑙 is always points to the first node.

281

34.2. STD::LIST CHAPTER 34. STL
.begin() and .end() iterators are not pointing to anything andnot present inmemory at all, but the pointers to these nodes

will be returned when corresponding method is called.
Having a “garbage” element is a very popular practice in implementing doubly-linked lists. Without it, a lot of operations

may become slightly more complex and, hence, slower.
Iterator in fact is just a pointer to a node. list.begin() and list.end() are just returning pointers.

node at .begin:
ptr=0x000349a0 _Next=0x00034988 _Prev=0x0028fe90 x=3 y=4
node at .end:
ptr=0x0028fe90 _Next=0x000349a0 _Prev=0x00034b40 x=5 y=6

The fact the list is circular is very helpful here: having a pointer to the first list element, i.e., that is in the 𝑙 variable, it is
easy to get a pointer to the last one quickly, without need to traversewhole list. Inserting element at the list end is also quick,
thanks to this feature.

operator– and operator++ are just set current iterator value to the current_node->prev or current_node->next
values. Reverse iterators (.rbegin, .rend) works just as the same, but in inverse way.

operator* of iterator just returns pointer to the point in the node structure, where user’s structure is beginning, i.e.,
pointer to the very first structure element (𝑥).

List insertion and deletion is trivial: just allocate new node (or deallocate) and fix all pointers to be valid.
That’s why iterator may become invalid a�er element deletion: it may still point to the node already deallocated. And of

course, the information from the freed node, to which iterator still points, cannot be used anymore.
TheGCC implementation (as of 4.8.1) doesn’t store current list size: this resulting in slow .size()method: it should traverse

the whole list counting elements, because it doesn’t have any other way to get the information. This mean this operation is
𝑂(𝑛), i.e., it is as slow, as howmany elements present in the list.

Listing 34.7: GCC 4.8.1 -O3 -fno-inline-small-functions
main proc near

push ebp
mov ebp, esp
push esi
push ebx
and esp, 0FFFFFFF0h
sub esp, 20h
lea ebx, [esp+10h]
mov dword ptr [esp], offset s ; "* empty list:"
mov [esp+10h], ebx
mov [esp+14h], ebx
call puts
mov [esp], ebx
call _Z13dump_List_valPj ; dump_List_val(uint *)
lea esi, [esp+18h]
mov [esp+4], esi
mov [esp], ebx
mov dword ptr [esp+18h], 1 ; X for new element
mov dword ptr [esp+1Ch], 2 ; Y for new element
call _ZNSt4listI1aSaIS0_EE10push_frontERKS0_ ; std::list<a,std::allocator<a

>>::push_front(a const&)
mov [esp+4], esi
mov [esp], ebx
mov dword ptr [esp+18h], 3 ; X for new element
mov dword ptr [esp+1Ch], 4 ; Y for new element
call _ZNSt4listI1aSaIS0_EE10push_frontERKS0_ ; std::list<a,std::allocator<a

>>::push_front(a const&)
mov dword ptr [esp], 10h
mov dword ptr [esp+18h], 5 ; X for new element
mov dword ptr [esp+1Ch], 6 ; Y for new element
call _Znwj ; operator new(uint)
cmp eax, 0FFFFFFF8h
jz short loc_80002A6
mov ecx, [esp+1Ch]
mov edx, [esp+18h]
mov [eax+0Ch], ecx

282

34.2. STD::LIST CHAPTER 34. STL
mov [eax+8], edx

loc_80002A6: ; CODE XREF: main+86
mov [esp+4], ebx
mov [esp], eax
call _ZNSt8__detail15_List_node_base7_M_hookEPS0_ ; std::__detail::

_List_node_base::_M_hook(std::__detail::_List_node_base*)
mov dword ptr [esp], offset a3ElementsList ; "* 3-elements list:"
call puts
mov [esp], ebx
call _Z13dump_List_valPj ; dump_List_val(uint *)
mov dword ptr [esp], offset aNodeAt_begin ; "node at .begin:"
call puts
mov eax, [esp+10h]
mov [esp], eax
call _Z14dump_List_nodeP9List_node ; dump_List_node(List_node *)
mov dword ptr [esp], offset aNodeAt_end ; "node at .end:"
call puts
mov [esp], ebx
call _Z14dump_List_nodeP9List_node ; dump_List_node(List_node *)
mov dword ptr [esp], offset aLetSCountFromT ; "* let’s count from the begin:"
call puts
mov esi, [esp+10h]
mov eax, [esi+0Ch]
mov [esp+0Ch], eax
mov eax, [esi+8]
mov dword ptr [esp+4], offset a1stElementDD ; "1st element: %d %d\n"
mov dword ptr [esp], 1
mov [esp+8], eax
call __printf_chk
mov esi, [esi] ; operator++: get ->next pointer
mov eax, [esi+0Ch]
mov [esp+0Ch], eax
mov eax, [esi+8]
mov dword ptr [esp+4], offset a2ndElementDD ; "2nd element: %d %d\n"
mov dword ptr [esp], 1
mov [esp+8], eax
call __printf_chk
mov esi, [esi] ; operator++: get ->next pointer
mov eax, [esi+0Ch]
mov [esp+0Ch], eax
mov eax, [esi+8]
mov dword ptr [esp+4], offset a3rdElementDD ; "3rd element: %d %d\n"
mov dword ptr [esp], 1
mov [esp+8], eax
call __printf_chk
mov eax, [esi] ; operator++: get ->next pointer
mov edx, [eax+0Ch]
mov [esp+0Ch], edx
mov eax, [eax+8]
mov dword ptr [esp+4], offset aElementAt_endD ; "element at .end(): %d %d\n"
mov dword ptr [esp], 1
mov [esp+8], eax
call __printf_chk
mov dword ptr [esp], offset aLetSCountFro_0 ; "* let’s count from the end:"
call puts
mov eax, [esp+1Ch]
mov dword ptr [esp+4], offset aElementAt_endD ; "element at .end(): %d %d\n"
mov dword ptr [esp], 1
mov [esp+0Ch], eax
mov eax, [esp+18h]

283

34.2. STD::LIST CHAPTER 34. STL
mov [esp+8], eax
call __printf_chk
mov esi, [esp+14h]
mov eax, [esi+0Ch]
mov [esp+0Ch], eax
mov eax, [esi+8]
mov dword ptr [esp+4], offset a3rdElementDD ; "3rd element: %d %d\n"
mov dword ptr [esp], 1
mov [esp+8], eax
call __printf_chk
mov esi, [esi+4] ; operator--: get ->prev pointer
mov eax, [esi+0Ch]
mov [esp+0Ch], eax
mov eax, [esi+8]
mov dword ptr [esp+4], offset a2ndElementDD ; "2nd element: %d %d\n"
mov dword ptr [esp], 1
mov [esp+8], eax
call __printf_chk
mov eax, [esi+4] ; operator--: get ->prev pointer
mov edx, [eax+0Ch]
mov [esp+0Ch], edx
mov eax, [eax+8]
mov dword ptr [esp+4], offset a1stElementDD ; "1st element: %d %d\n"
mov dword ptr [esp], 1
mov [esp+8], eax
call __printf_chk
mov dword ptr [esp], offset aRemovingLastEl ; "removing last element..."
call puts
mov esi, [esp+14h]
mov [esp], esi
call _ZNSt8__detail15_List_node_base9_M_unhookEv ; std::__detail::

_List_node_base::_M_unhook(void)
mov [esp], esi ; void *
call _ZdlPv ; operator delete(void *)
mov [esp], ebx
call _Z13dump_List_valPj ; dump_List_val(uint *)
mov [esp], ebx
call _ZNSt10_List_baseI1aSaIS0_EE8_M_clearEv ; std::_List_base<a,std::

allocator<a>>::_M_clear(void)
lea esp, [ebp-8]
xor eax, eax
pop ebx
pop esi
pop ebp
retn

main endp

Listing 34.8: The whole output
* empty list:
ptr=0x0028fe90 _Next=0x0028fe90 _Prev=0x0028fe90 x=3 y=0
* 3-elements list:
ptr=0x000349a0 _Next=0x00034988 _Prev=0x0028fe90 x=3 y=4
ptr=0x00034988 _Next=0x00034b40 _Prev=0x000349a0 x=1 y=2
ptr=0x00034b40 _Next=0x0028fe90 _Prev=0x00034988 x=5 y=6
ptr=0x0028fe90 _Next=0x000349a0 _Prev=0x00034b40 x=5 y=6
node at .begin:
ptr=0x000349a0 _Next=0x00034988 _Prev=0x0028fe90 x=3 y=4
node at .end:
ptr=0x0028fe90 _Next=0x000349a0 _Prev=0x00034b40 x=5 y=6
* let’s count from the begin:

284

34.2. STD::LIST CHAPTER 34. STL
1st element: 3 4
2nd element: 1 2
3rd element: 5 6
element at .end(): 5 6
* let’s count from the end:
element at .end(): 5 6
3rd element: 5 6
2nd element: 1 2
1st element: 3 4
removing last element...
ptr=0x000349a0 _Next=0x00034988 _Prev=0x0028fe90 x=3 y=4
ptr=0x00034988 _Next=0x0028fe90 _Prev=0x000349a0 x=1 y=2
ptr=0x0028fe90 _Next=0x000349a0 _Prev=0x00034988 x=5 y=6

34.2.2 MSVC

MSVC implementation (2012) is just the same, but it also stores current list size. This mean, .size() method is very fast (𝑂(1)):
just read one value frommemory. On the other way, size variable must be corrected at each insertion/deletion.

MSVC implementation is also slightly di�erent in a way it arrange nodes:

Next

Prev

X=garbage

Y=garbage

Next

Prev

X=1st element

Y=1st element

Next

Prev

X=2nd element

Y=2nd element

Next

Prev

X=3rd element

Y=3rd element

Variable std::list

list.end() list.begin()

GCC has its “garbage” element at the end of the list, while MSVC at the beginning of it.

Listing 34.9: MSVC 2012 /Fa2.asm /Ox /GS- /Ob1
_l$ = -16 ; size = 8
_t1$ = -8 ; size = 8
_main PROC

sub esp, 16 ; 00000010H
push ebx
push esi
push edi
push 0
push 0
lea ecx, DWORD PTR _l$[esp+36]
mov DWORD PTR _l$[esp+40], 0
; allocate first "garbage" element
call ?_Buynode0@?$_List_alloc@$0A@U?$_List_base_types@Ua@@V?

$allocator@Ua@@@std@@@std@@@std@@QAEPAU?$_List_node@Ua@@PAX@2@PAU32@0@Z ; std::_List_alloc<0,
std::_List_base_types<a,std::allocator<a> > >::_Buynode0

mov edi, DWORD PTR __imp__printf
mov ebx, eax
push OFFSET $SG40685 ; ’* empty list:’
mov DWORD PTR _l$[esp+32], ebx

285

34.2. STD::LIST CHAPTER 34. STL
call edi ; printf
lea eax, DWORD PTR _l$[esp+32]
push eax
call ?dump_List_val@@YAXPAI@Z ; dump_List_val
mov esi, DWORD PTR [ebx]
add esp, 8
lea eax, DWORD PTR _t1$[esp+28]
push eax
push DWORD PTR [esi+4]
lea ecx, DWORD PTR _l$[esp+36]
push esi
mov DWORD PTR _t1$[esp+40], 1 ; data for a new node
mov DWORD PTR _t1$[esp+44], 2 ; data for a new node
; allocate new node
call ??$_Buynode@ABUa@@@?$_List_buy@Ua@@V?$allocator@Ua@@@std@@@std@@QAEPAU?

$_List_node@Ua@@PAX@1@PAU21@0ABUa@@@Z ; std::_List_buy<a,std::allocator<a> >::_Buynode<a
const &>

mov DWORD PTR [esi+4], eax
mov ecx, DWORD PTR [eax+4]
mov DWORD PTR _t1$[esp+28], 3 ; data for a new node
mov DWORD PTR [ecx], eax
mov esi, DWORD PTR [ebx]
lea eax, DWORD PTR _t1$[esp+28]
push eax
push DWORD PTR [esi+4]
lea ecx, DWORD PTR _l$[esp+36]
push esi
mov DWORD PTR _t1$[esp+44], 4 ; data for a new node
; allocate new node
call ??$_Buynode@ABUa@@@?$_List_buy@Ua@@V?$allocator@Ua@@@std@@@std@@QAEPAU?

$_List_node@Ua@@PAX@1@PAU21@0ABUa@@@Z ; std::_List_buy<a,std::allocator<a> >::_Buynode<a
const &>

mov DWORD PTR [esi+4], eax
mov ecx, DWORD PTR [eax+4]
mov DWORD PTR _t1$[esp+28], 5 ; data for a new node
mov DWORD PTR [ecx], eax
lea eax, DWORD PTR _t1$[esp+28]
push eax
push DWORD PTR [ebx+4]
lea ecx, DWORD PTR _l$[esp+36]
push ebx
mov DWORD PTR _t1$[esp+44], 6 ; data for a new node
; allocate new node
call ??$_Buynode@ABUa@@@?$_List_buy@Ua@@V?$allocator@Ua@@@std@@@std@@QAEPAU?

$_List_node@Ua@@PAX@1@PAU21@0ABUa@@@Z ; std::_List_buy<a,std::allocator<a> >::_Buynode<a
const &>

mov DWORD PTR [ebx+4], eax
mov ecx, DWORD PTR [eax+4]
push OFFSET $SG40689 ; ’* 3-elements list:’
mov DWORD PTR _l$[esp+36], 3
mov DWORD PTR [ecx], eax
call edi ; printf
lea eax, DWORD PTR _l$[esp+32]
push eax
call ?dump_List_val@@YAXPAI@Z ; dump_List_val
push OFFSET $SG40831 ; ’node at .begin:’
call edi ; printf
push DWORD PTR [ebx] ; get next field of node l variable points to
call ?dump_List_node@@YAXPAUList_node@@@Z ; dump_List_node
push OFFSET $SG40835 ; ’node at .end:’
call edi ; printf

286

34.2. STD::LIST CHAPTER 34. STL
push ebx ; pointer to the node l variable points to!
call ?dump_List_node@@YAXPAUList_node@@@Z ; dump_List_node
push OFFSET $SG40839 ; ’* let’’s count from the begin:’
call edi ; printf
mov esi, DWORD PTR [ebx] ; operator++: get ->next pointer
push DWORD PTR [esi+12]
push DWORD PTR [esi+8]
push OFFSET $SG40846 ; ’1st element: %d %d’
call edi ; printf
mov esi, DWORD PTR [esi] ; operator++: get ->next pointer
push DWORD PTR [esi+12]
push DWORD PTR [esi+8]
push OFFSET $SG40848 ; ’2nd element: %d %d’
call edi ; printf
mov esi, DWORD PTR [esi] ; operator++: get ->next pointer
push DWORD PTR [esi+12]
push DWORD PTR [esi+8]
push OFFSET $SG40850 ; ’3rd element: %d %d’
call edi ; printf
mov eax, DWORD PTR [esi] ; operator++: get ->next pointer
add esp, 64 ; 00000040H
push DWORD PTR [eax+12]
push DWORD PTR [eax+8]
push OFFSET $SG40852 ; ’element at .end(): %d %d’
call edi ; printf
push OFFSET $SG40853 ; ’* let’’s count from the end:’
call edi ; printf
push DWORD PTR [ebx+12] ; use x and y fields from the node l variable points to
push DWORD PTR [ebx+8]
push OFFSET $SG40860 ; ’element at .end(): %d %d’
call edi ; printf
mov esi, DWORD PTR [ebx+4] ; operator--: get ->prev pointer
push DWORD PTR [esi+12]
push DWORD PTR [esi+8]
push OFFSET $SG40862 ; ’3rd element: %d %d’
call edi ; printf
mov esi, DWORD PTR [esi+4] ; operator--: get ->prev pointer
push DWORD PTR [esi+12]
push DWORD PTR [esi+8]
push OFFSET $SG40864 ; ’2nd element: %d %d’
call edi ; printf
mov eax, DWORD PTR [esi+4] ; operator--: get ->prev pointer
push DWORD PTR [eax+12]
push DWORD PTR [eax+8]
push OFFSET $SG40866 ; ’1st element: %d %d’
call edi ; printf
add esp, 64 ; 00000040H
push OFFSET $SG40867 ; ’removing last element...’
call edi ; printf
mov edx, DWORD PTR [ebx+4]
add esp, 4

; prev=next?
; it is the only element, "garbage one"?
; if yes, do not delete it!
cmp edx, ebx
je SHORT $LN349@main
mov ecx, DWORD PTR [edx+4]
mov eax, DWORD PTR [edx]
mov DWORD PTR [ecx], eax
mov ecx, DWORD PTR [edx]

287

34.2. STD::LIST CHAPTER 34. STL
mov eax, DWORD PTR [edx+4]
push edx
mov DWORD PTR [ecx+4], eax
call ??3@YAXPAX@Z ; operator delete
add esp, 4
mov DWORD PTR _l$[esp+32], 2

$LN349@main:
lea eax, DWORD PTR _l$[esp+28]
push eax
call ?dump_List_val@@YAXPAI@Z ; dump_List_val
mov eax, DWORD PTR [ebx]
add esp, 4
mov DWORD PTR [ebx], ebx
mov DWORD PTR [ebx+4], ebx
cmp eax, ebx
je SHORT $LN412@main

$LL414@main:
mov esi, DWORD PTR [eax]
push eax
call ??3@YAXPAX@Z ; operator delete
add esp, 4
mov eax, esi
cmp esi, ebx
jne SHORT $LL414@main

$LN412@main:
push ebx
call ??3@YAXPAX@Z ; operator delete
add esp, 4
xor eax, eax
pop edi
pop esi
pop ebx
add esp, 16 ; 00000010H
ret 0

_main ENDP

Unlike GCC, MSVC code allocates “garbage” element at the function start with “Buynode” function, it is also used for the
rest nodes allocations (GCC code allocates the very first element in the local stack).

Listing 34.10: The whole output
* empty list:
_Myhead=0x003CC258, _Mysize=0
ptr=0x003CC258 _Next=0x003CC258 _Prev=0x003CC258 x=6226002 y=4522072
* 3-elements list:
_Myhead=0x003CC258, _Mysize=3
ptr=0x003CC258 _Next=0x003CC288 _Prev=0x003CC2A0 x=6226002 y=4522072
ptr=0x003CC288 _Next=0x003CC270 _Prev=0x003CC258 x=3 y=4
ptr=0x003CC270 _Next=0x003CC2A0 _Prev=0x003CC288 x=1 y=2
ptr=0x003CC2A0 _Next=0x003CC258 _Prev=0x003CC270 x=5 y=6
node at .begin:
ptr=0x003CC288 _Next=0x003CC270 _Prev=0x003CC258 x=3 y=4
node at .end:
ptr=0x003CC258 _Next=0x003CC288 _Prev=0x003CC2A0 x=6226002 y=4522072
* let’s count from the begin:
1st element: 3 4
2nd element: 1 2
3rd element: 5 6
element at .end(): 6226002 4522072
* let’s count from the end:
element at .end(): 6226002 4522072
3rd element: 5 6

288

34.3. STD::VECTOR CHAPTER 34. STL
2nd element: 1 2
1st element: 3 4
removing last element...
_Myhead=0x003CC258, _Mysize=2
ptr=0x003CC258 _Next=0x003CC288 _Prev=0x003CC270 x=6226002 y=4522072
ptr=0x003CC288 _Next=0x003CC270 _Prev=0x003CC258 x=3 y=4
ptr=0x003CC270 _Next=0x003CC258 _Prev=0x003CC288 x=1 y=2

34.2.3 C++11 std::forward_list

The same thing as std::list, but singly-linked one, i.e., having only “next” field at teach node. It require smaller memory
footprint, but also don’t o�er a feature to traverse list back.

34.3 std::vector
I would call std::vector “safe wrapper” of PODT2 C array. Internally, it is somewhat similar to std::string (34.1): it has a
pointer to bu�er, pointer to the end of array, and a pointer to the end of bu�er.

Array elements are lie in memory adjacently to each other, just like in usual array (16). In C++11 there are new method
.data() appeared, returning a pointer to the bu�er, akin to .c_str() in std::string.

Allocated bu�er in heapmay be larger than array itself.
Both MSVC and GCC implementations are similar, just structure field names are slightly di�erent3, so here is one source

code working for both compilters. Here is again a C-like code for dumping std::vector structure:

#include <stdio.h>
#include <vector>
#include <algorithm>
#include <functional>

struct vector_of_ints
{

// MSVC names:
int *Myfirst;
int *Mylast;
int *Myend;

// GCC structure is the same, names are: _M_start, _M_finish, _M_end_of_storage
};

void dump(struct vector_of_ints *in)
{

printf ("_Myfirst=%p, _Mylast=%p, _Myend=%p\n", in->Myfirst, in->Mylast, in->Myend);
size_t size=(in->Mylast-in->Myfirst);
size_t capacity=(in->Myend-in->Myfirst);
printf ("size=%d, capacity=%d\n", size, capacity);
for (size_t i=0; i<size; i++)

printf ("element %d: %d\n", i, in->Myfirst[i]);
};

int main()
{

std::vector<int> c;
dump ((struct vector_of_ints*)(void*)&c);
c.push_back(1);
dump ((struct vector_of_ints*)(void*)&c);
c.push_back(2);
dump ((struct vector_of_ints*)(void*)&c);
c.push_back(3);

2(C++) Plain Old Data Type
3GCC internals: http://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.4/a01371.html

289

http://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.4/a01371.html

34.3. STD::VECTOR CHAPTER 34. STL
dump ((struct vector_of_ints*)(void*)&c);
c.push_back(4);
dump ((struct vector_of_ints*)(void*)&c);
c.reserve (6);
dump ((struct vector_of_ints*)(void*)&c);
c.push_back(5);
dump ((struct vector_of_ints*)(void*)&c);
c.push_back(6);
dump ((struct vector_of_ints*)(void*)&c);
printf ("%d\n", c.at(5)); // bounds checking
printf ("%d\n", c[8]); // operator[], no bounds checking

};

Here is a sample output if compiled in MSVC:

_Myfirst=00000000, _Mylast=00000000, _Myend=00000000
size=0, capacity=0
_Myfirst=0051CF48, _Mylast=0051CF4C, _Myend=0051CF4C
size=1, capacity=1
element 0: 1
_Myfirst=0051CF58, _Mylast=0051CF60, _Myend=0051CF60
size=2, capacity=2
element 0: 1
element 1: 2
_Myfirst=0051C278, _Mylast=0051C284, _Myend=0051C284
size=3, capacity=3
element 0: 1
element 1: 2
element 2: 3
_Myfirst=0051C290, _Mylast=0051C2A0, _Myend=0051C2A0
size=4, capacity=4
element 0: 1
element 1: 2
element 2: 3
element 3: 4
_Myfirst=0051B180, _Mylast=0051B190, _Myend=0051B198
size=4, capacity=6
element 0: 1
element 1: 2
element 2: 3
element 3: 4
_Myfirst=0051B180, _Mylast=0051B194, _Myend=0051B198
size=5, capacity=6
element 0: 1
element 1: 2
element 2: 3
element 3: 4
element 4: 5
_Myfirst=0051B180, _Mylast=0051B198, _Myend=0051B198
size=6, capacity=6
element 0: 1
element 1: 2
element 2: 3
element 3: 4
element 4: 5
element 5: 6
6
6619158

As it can be seen, there is no allocated bu�er at the main() function start yet. A�er first push_back() call bu�er is al-
located. And then, a�er each push_back() call, both array size and bu�er size (capacity) are increased. But bu�er address
is changed as well, because push_back() function reallocates the bu�er in the heap each time. It is costly operation, that’s

290

34.3. STD::VECTOR CHAPTER 34. STL
why it is very important to predict future array size and reserve a space for it with .reserve()method. The very last num-
ber is a garbage: there are no array elements at this point, so random number is printed. This is illustration to the fact that
operator[] of std::vector is not checking if the index in the array bounds. .at()method, however, does checking and
throw std::out_of_range exception in case of error.

Let’s see the code:

Listing 34.11: MSVC 2012 /GS- /Ob1
$SG52650 DB ’%d’, 0aH, 00H
$SG52651 DB ’%d’, 0aH, 00H

_this$ = -4 ; size = 4
__Pos$ = 8 ; size = 4
?at@?$vector@HV?$allocator@H@std@@@std@@QAEAAHI@Z PROC ; std::vector<int,std::allocator<int> >::

at, COMDAT
; _this$ = ecx

push ebp
mov ebp, esp
push ecx
mov DWORD PTR _this$[ebp], ecx
mov eax, DWORD PTR _this$[ebp]
mov ecx, DWORD PTR _this$[ebp]
mov edx, DWORD PTR [eax+4]
sub edx, DWORD PTR [ecx]
sar edx, 2
cmp edx, DWORD PTR __Pos$[ebp]
ja SHORT $LN1@at
push OFFSET ??_C@_0BM@NMJKDPPO@invalid?5vector?$DMT?$DO?5subscript?$AA@
call DWORD PTR __imp_?_Xout_of_range@std@@YAXPBD@Z

$LN1@at:
mov eax, DWORD PTR _this$[ebp]
mov ecx, DWORD PTR [eax]
mov edx, DWORD PTR __Pos$[ebp]
lea eax, DWORD PTR [ecx+edx*4]

$LN3@at:
mov esp, ebp
pop ebp
ret 4

?at@?$vector@HV?$allocator@H@std@@@std@@QAEAAHI@Z ENDP ; std::vector<int,std::allocator<int> >::
at

_c$ = -36 ; size = 12
$T1 = -24 ; size = 4
$T2 = -20 ; size = 4
$T3 = -16 ; size = 4
$T4 = -12 ; size = 4
$T5 = -8 ; size = 4
$T6 = -4 ; size = 4
_main PROC

push ebp
mov ebp, esp
sub esp, 36 ; 00000024H
mov DWORD PTR _c$[ebp], 0 ; Myfirst
mov DWORD PTR _c$[ebp+4], 0 ; Mylast
mov DWORD PTR _c$[ebp+8], 0 ; Myend
lea eax, DWORD PTR _c$[ebp]
push eax
call ?dump@@YAXPAUvector_of_ints@@@Z ; dump
add esp, 4
mov DWORD PTR $T6[ebp], 1
lea ecx, DWORD PTR $T6[ebp]
push ecx

291

34.3. STD::VECTOR CHAPTER 34. STL
lea ecx, DWORD PTR _c$[ebp]
call ?push_back@?$vector@HV?$allocator@H@std@@@std@@QAEX$$QAH@Z ; std::vector<int,std

::allocator<int> >::push_back
lea edx, DWORD PTR _c$[ebp]
push edx
call ?dump@@YAXPAUvector_of_ints@@@Z ; dump
add esp, 4
mov DWORD PTR $T5[ebp], 2
lea eax, DWORD PTR $T5[ebp]
push eax
lea ecx, DWORD PTR _c$[ebp]
call ?push_back@?$vector@HV?$allocator@H@std@@@std@@QAEX$$QAH@Z ; std::vector<int,std

::allocator<int> >::push_back
lea ecx, DWORD PTR _c$[ebp]
push ecx
call ?dump@@YAXPAUvector_of_ints@@@Z ; dump
add esp, 4
mov DWORD PTR $T4[ebp], 3
lea edx, DWORD PTR $T4[ebp]
push edx
lea ecx, DWORD PTR _c$[ebp]
call ?push_back@?$vector@HV?$allocator@H@std@@@std@@QAEX$$QAH@Z ; std::vector<int,std

::allocator<int> >::push_back
lea eax, DWORD PTR _c$[ebp]
push eax
call ?dump@@YAXPAUvector_of_ints@@@Z ; dump
add esp, 4
mov DWORD PTR $T3[ebp], 4
lea ecx, DWORD PTR $T3[ebp]
push ecx
lea ecx, DWORD PTR _c$[ebp]
call ?push_back@?$vector@HV?$allocator@H@std@@@std@@QAEX$$QAH@Z ; std::vector<int,std

::allocator<int> >::push_back
lea edx, DWORD PTR _c$[ebp]
push edx
call ?dump@@YAXPAUvector_of_ints@@@Z ; dump
add esp, 4
push 6
lea ecx, DWORD PTR _c$[ebp]
call ?reserve@?$vector@HV?$allocator@H@std@@@std@@QAEXI@Z ; std::vector<int,std::

allocator<int> >::reserve
lea eax, DWORD PTR _c$[ebp]
push eax
call ?dump@@YAXPAUvector_of_ints@@@Z ; dump
add esp, 4
mov DWORD PTR $T2[ebp], 5
lea ecx, DWORD PTR $T2[ebp]
push ecx
lea ecx, DWORD PTR _c$[ebp]
call ?push_back@?$vector@HV?$allocator@H@std@@@std@@QAEX$$QAH@Z ; std::vector<int,std

::allocator<int> >::push_back
lea edx, DWORD PTR _c$[ebp]
push edx
call ?dump@@YAXPAUvector_of_ints@@@Z ; dump
add esp, 4
mov DWORD PTR $T1[ebp], 6
lea eax, DWORD PTR $T1[ebp]
push eax
lea ecx, DWORD PTR _c$[ebp]
call ?push_back@?$vector@HV?$allocator@H@std@@@std@@QAEX$$QAH@Z ; std::vector<int,std

::allocator<int> >::push_back

292

34.3. STD::VECTOR CHAPTER 34. STL
lea ecx, DWORD PTR _c$[ebp]
push ecx
call ?dump@@YAXPAUvector_of_ints@@@Z ; dump
add esp, 4
push 5
lea ecx, DWORD PTR _c$[ebp]
call ?at@?$vector@HV?$allocator@H@std@@@std@@QAEAAHI@Z ; std::vector<int,std::

allocator<int> >::at
mov edx, DWORD PTR [eax]
push edx
push OFFSET $SG52650 ; ’%d’
call DWORD PTR __imp__printf
add esp, 8
mov eax, 8
shl eax, 2
mov ecx, DWORD PTR _c$[ebp]
mov edx, DWORD PTR [ecx+eax]
push edx
push OFFSET $SG52651 ; ’%d’
call DWORD PTR __imp__printf
add esp, 8
lea ecx, DWORD PTR _c$[ebp]
call ?_Tidy@?$vector@HV?$allocator@H@std@@@std@@IAEXXZ ; std::vector<int,std::

allocator<int> >::_Tidy
xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP

We see how .at()method check bounds and throw exception in case of error. The number of the last printf() call is
just to be taken from amemory, without any checks.

One may ask, why not to use variables like “size” and “capacity”, like it was done in std::string. I suppose, that was
done for the faster bounds checking. But I’m not sure.

The code GCC generates is almost the same on the whole, but .at()method is inlined:

Listing 34.12: GCC 4.8.1 -fno-inline-small-functions -O1
main proc near

push ebp
mov ebp, esp
push edi
push esi
push ebx
and esp, 0FFFFFFF0h
sub esp, 20h
mov dword ptr [esp+14h], 0
mov dword ptr [esp+18h], 0
mov dword ptr [esp+1Ch], 0
lea eax, [esp+14h]
mov [esp], eax
call _Z4dumpP14vector_of_ints ; dump(vector_of_ints *)
mov dword ptr [esp+10h], 1
lea eax, [esp+10h]
mov [esp+4], eax
lea eax, [esp+14h]
mov [esp], eax
call _ZNSt6vectorIiSaIiEE9push_backERKi ; std::vector<int,std::allocator<int

>>::push_back(int const&)
lea eax, [esp+14h]
mov [esp], eax
call _Z4dumpP14vector_of_ints ; dump(vector_of_ints *)

293

34.3. STD::VECTOR CHAPTER 34. STL
mov dword ptr [esp+10h], 2
lea eax, [esp+10h]
mov [esp+4], eax
lea eax, [esp+14h]
mov [esp], eax
call _ZNSt6vectorIiSaIiEE9push_backERKi ; std::vector<int,std::allocator<int

>>::push_back(int const&)
lea eax, [esp+14h]
mov [esp], eax
call _Z4dumpP14vector_of_ints ; dump(vector_of_ints *)
mov dword ptr [esp+10h], 3
lea eax, [esp+10h]
mov [esp+4], eax
lea eax, [esp+14h]
mov [esp], eax
call _ZNSt6vectorIiSaIiEE9push_backERKi ; std::vector<int,std::allocator<int

>>::push_back(int const&)
lea eax, [esp+14h]
mov [esp], eax
call _Z4dumpP14vector_of_ints ; dump(vector_of_ints *)
mov dword ptr [esp+10h], 4
lea eax, [esp+10h]
mov [esp+4], eax
lea eax, [esp+14h]
mov [esp], eax
call _ZNSt6vectorIiSaIiEE9push_backERKi ; std::vector<int,std::allocator<int

>>::push_back(int const&)
lea eax, [esp+14h]
mov [esp], eax
call _Z4dumpP14vector_of_ints ; dump(vector_of_ints *)
mov ebx, [esp+14h]
mov eax, [esp+1Ch]
sub eax, ebx
cmp eax, 17h
ja short loc_80001CF
mov edi, [esp+18h]
sub edi, ebx
sar edi, 2
mov dword ptr [esp], 18h
call _Znwj ; operator new(uint)
mov esi, eax
test edi, edi
jz short loc_80001AD
lea eax, ds:0[edi*4]
mov [esp+8], eax ; n
mov [esp+4], ebx ; src
mov [esp], esi ; dest
call memmove

loc_80001AD: ; CODE XREF: main+F8
mov eax, [esp+14h]
test eax, eax
jz short loc_80001BD
mov [esp], eax ; void *
call _ZdlPv ; operator delete(void *)

loc_80001BD: ; CODE XREF: main+117
mov [esp+14h], esi
lea eax, [esi+edi*4]
mov [esp+18h], eax
add esi, 18h

294

34.3. STD::VECTOR CHAPTER 34. STL
mov [esp+1Ch], esi

loc_80001CF: ; CODE XREF: main+DD
lea eax, [esp+14h]
mov [esp], eax
call _Z4dumpP14vector_of_ints ; dump(vector_of_ints *)
mov dword ptr [esp+10h], 5
lea eax, [esp+10h]
mov [esp+4], eax
lea eax, [esp+14h]
mov [esp], eax
call _ZNSt6vectorIiSaIiEE9push_backERKi ; std::vector<int,std::allocator<int

>>::push_back(int const&)
lea eax, [esp+14h]
mov [esp], eax
call _Z4dumpP14vector_of_ints ; dump(vector_of_ints *)
mov dword ptr [esp+10h], 6
lea eax, [esp+10h]
mov [esp+4], eax
lea eax, [esp+14h]
mov [esp], eax
call _ZNSt6vectorIiSaIiEE9push_backERKi ; std::vector<int,std::allocator<int

>>::push_back(int const&)
lea eax, [esp+14h]
mov [esp], eax
call _Z4dumpP14vector_of_ints ; dump(vector_of_ints *)
mov eax, [esp+14h]
mov edx, [esp+18h]
sub edx, eax
cmp edx, 17h
ja short loc_8000246
mov dword ptr [esp], offset aVector_m_range ; "vector::_M_range_check"
call _ZSt20__throw_out_of_rangePKc ; std::__throw_out_of_range(char const*)

loc_8000246: ; CODE XREF: main+19C
mov eax, [eax+14h]
mov [esp+8], eax
mov dword ptr [esp+4], offset aD ; "%d\n"
mov dword ptr [esp], 1
call __printf_chk
mov eax, [esp+14h]
mov eax, [eax+20h]
mov [esp+8], eax
mov dword ptr [esp+4], offset aD ; "%d\n"
mov dword ptr [esp], 1
call __printf_chk
mov eax, [esp+14h]
test eax, eax
jz short loc_80002AC
mov [esp], eax ; void *
call _ZdlPv ; operator delete(void *)
jmp short loc_80002AC

; ---
mov ebx, eax
mov edx, [esp+14h]
test edx, edx
jz short loc_80002A4
mov [esp], edx ; void *
call _ZdlPv ; operator delete(void *)

loc_80002A4: ; CODE XREF: main+1FE

295

34.3. STD::VECTOR CHAPTER 34. STL
mov [esp], ebx
call _Unwind_Resume

; ---

loc_80002AC: ; CODE XREF: main+1EA
; main+1F4

mov eax, 0
lea esp, [ebp-0Ch]
pop ebx
pop esi
pop edi
pop ebp

locret_80002B8: ; DATA XREF: .eh_frame:08000510
; .eh_frame:080005BC

retn
main endp

.reserve() method is inlined as well. It calls new() if bu�er is too small for new size, call memmove() to copy bu�er
contents, and call delete() to free old bu�er.

Let’s also see what the compiled program outputs if compiled by GCC:

_Myfirst=0x(nil), _Mylast=0x(nil), _Myend=0x(nil)
size=0, capacity=0
_Myfirst=0x8257008, _Mylast=0x825700c, _Myend=0x825700c
size=1, capacity=1
element 0: 1
_Myfirst=0x8257018, _Mylast=0x8257020, _Myend=0x8257020
size=2, capacity=2
element 0: 1
element 1: 2
_Myfirst=0x8257028, _Mylast=0x8257034, _Myend=0x8257038
size=3, capacity=4
element 0: 1
element 1: 2
element 2: 3
_Myfirst=0x8257028, _Mylast=0x8257038, _Myend=0x8257038
size=4, capacity=4
element 0: 1
element 1: 2
element 2: 3
element 3: 4
_Myfirst=0x8257040, _Mylast=0x8257050, _Myend=0x8257058
size=4, capacity=6
element 0: 1
element 1: 2
element 2: 3
element 3: 4
_Myfirst=0x8257040, _Mylast=0x8257054, _Myend=0x8257058
size=5, capacity=6
element 0: 1
element 1: 2
element 2: 3
element 3: 4
element 4: 5
_Myfirst=0x8257040, _Mylast=0x8257058, _Myend=0x8257058
size=6, capacity=6
element 0: 1
element 1: 2
element 2: 3
element 3: 4
element 4: 5

296

34.4. STD::MAP AND STD::SET CHAPTER 34. STL
element 5: 6
6
0

We can spot that bu�er size grows in di�erent way that in MSVC.
Simple experimentation shows thatMSVC implementation bu�er grows by ~50%each time it needs to be enlarged, while

GCC code enlarges it by 100% each time, i.e., doubles it each time.

34.4 std::map and std::set
Binary tree is another fundamental data structure. As it states, this is a tree, but each node has atmost 2 links to other nodes.
Each node have key and/or value.

Binary trees are usually the structure used in “dictionaries” of key-values (AKA “associative arrays”) implementations.
There are at least three important properties binary trees has:

∙ All keys are stored in always sorted form.

∙ Keys of any types can be stored easily. Binary tree algorithms are unaware of key type, only key comparison function
is required.

∙ Finding needed key is relatively fast in comparison with lists and arrays.

Here is a very simple example: let’s store these numbers in binary tree: 0, 1, 2, 3, 5, 6, 9, 10, 11, 12, 20, 99, 100, 101, 107, 1001,
1010.

10

1

0 5

3

2

6

9

100

20

12

11

99

107

101 1001

1010

All keys lesser than node key value is stored on the le� side. All keys greater than node key value is stored on the right
side.

Hence, finding algorithm is straightforward: if the value you looking for is lesser than current node’s key value: move le�,
if it is greater: move right, stop if the value required is equals to the node’s key value. That is why searching algorithm may
search for numbers, text strings, etc, using only key comparison function.

All keys has unique values.
Having that, one need≈ log2 𝑛 steps in order to find a key in the balancedbinary tree of𝑛 keys. It is≈ 10 steps for≈ 1000

keys, or≈ 13 steps for≈ 10000 keys. Not bad, but tree should always be balanced for this: i.e., keys should be distributed
evenly on all tiers. Insertion and removal operations do somemaintenance to keep tree in balanced state.

There are several popular balancing algorithmsavailable, includingAVL tree and red-black tree. The latter extends anode
by a “color” value for simplifying balancing process, hence, each nodemay be “red” or “black”.

Both GCC and MSVC std::map and std::set template implementations use red-black trees.
std::set contain only keys. std::map is “extended” version of set: it also has a value at each node.

34.4.1 MSVC

#include <map>
#include <set>
#include <string>
#include <iostream>

297

34.4. STD::MAP AND STD::SET CHAPTER 34. STL

// struct is not packed!
struct tree_node
{

struct tree_node *Left;
struct tree_node *Parent;
struct tree_node *Right;
char Color; // 0 - Red, 1 - Black
char Isnil;
//std::pair Myval;
unsigned int first; // called Myval in std::set
const char *second; // not present in std::set

};

struct tree_struct
{

struct tree_node *Myhead;
size_t Mysize;

};

void dump_tree_node (struct tree_node *n, bool is_set, bool traverse)
{

printf ("ptr=0x%p Left=0x%p Parent=0x%p Right=0x%p Color=%d Isnil=%d\n",
n, n->Left, n->Parent, n->Right, n->Color, n->Isnil);

if (n->Isnil==0)
{

if (is_set)
printf ("first=%d\n", n->first);

else
printf ("first=%d second=[%s]\n", n->first, n->second);

}

if (traverse)
{

if (n->Isnil==1)
dump_tree_node (n->Parent, is_set, true);

else
{

if (n->Left->Isnil==0)
dump_tree_node (n->Left, is_set, true);

if (n->Right->Isnil==0)
dump_tree_node (n->Right, is_set, true);

};
};

};

const char* ALOT_OF_TABS="\t\t\t\t\t\t\t\t\t\t\t";

void dump_as_tree (int tabs, struct tree_node *n, bool is_set)
{

if (is_set)
printf ("%d\n", n->first);

else
printf ("%d [%s]\n", n->first, n->second);

if (n->Left->Isnil==0)
{

printf ("%.*sL-------", tabs, ALOT_OF_TABS);
dump_as_tree (tabs+1, n->Left, is_set);

};
if (n->Right->Isnil==0)
{

298

34.4. STD::MAP AND STD::SET CHAPTER 34. STL
printf ("%.*sR-------", tabs, ALOT_OF_TABS);
dump_as_tree (tabs+1, n->Right, is_set);

};
};

void dump_map_and_set(struct tree_struct *m, bool is_set)
{

printf ("ptr=0x%p, Myhead=0x%p, Mysize=%d\n", m, m->Myhead, m->Mysize);
dump_tree_node (m->Myhead, is_set, true);
printf ("As a tree:\n");
printf ("root----");
dump_as_tree (1, m->Myhead->Parent, is_set);

};

int main()
{

// map

std::map<int, const char*> m;

m[10]="ten";
m[20]="twenty";
m[3]="three";
m[101]="one hundred one";
m[100]="one hundred";
m[12]="twelve";
m[107]="one hundred seven";
m[0]="zero";
m[1]="one";
m[6]="six";
m[99]="ninety-nine";
m[5]="five";
m[11]="eleven";
m[1001]="one thousand one";
m[1010]="one thousand ten";
m[2]="two";
m[9]="nine";
printf ("dumping m as map:\n");
dump_map_and_set ((struct tree_struct *)(void*)&m, false);

std::map<int, const char*>::iterator it1=m.begin();
printf ("m.begin():\n");
dump_tree_node ((struct tree_node *)*(void**)&it1, false, false);
it1=m.end();
printf ("m.end():\n");
dump_tree_node ((struct tree_node *)*(void**)&it1, false, false);

// set

std::set<int> s;
s.insert(123);
s.insert(456);
s.insert(11);
s.insert(12);
s.insert(100);
s.insert(1001);
printf ("dumping s as set:\n");
dump_map_and_set ((struct tree_struct *)(void*)&s, true);
std::set<int>::iterator it2=s.begin();
printf ("s.begin():\n");
dump_tree_node ((struct tree_node *)*(void**)&it2, true, false);

299

34.4. STD::MAP AND STD::SET CHAPTER 34. STL
it2=s.end();
printf ("s.end():\n");
dump_tree_node ((struct tree_node *)*(void**)&it2, true, false);

};

Listing 34.13: MSVC 2012
dumping m as map:
ptr=0x0020FE04, Myhead=0x005BB3A0, Mysize=17
ptr=0x005BB3A0 Left=0x005BB4A0 Parent=0x005BB3C0 Right=0x005BB580 Color=1 Isnil=1
ptr=0x005BB3C0 Left=0x005BB4C0 Parent=0x005BB3A0 Right=0x005BB440 Color=1 Isnil=0
first=10 second=[ten]
ptr=0x005BB4C0 Left=0x005BB4A0 Parent=0x005BB3C0 Right=0x005BB520 Color=1 Isnil=0
first=1 second=[one]
ptr=0x005BB4A0 Left=0x005BB3A0 Parent=0x005BB4C0 Right=0x005BB3A0 Color=1 Isnil=0
first=0 second=[zero]
ptr=0x005BB520 Left=0x005BB400 Parent=0x005BB4C0 Right=0x005BB4E0 Color=0 Isnil=0
first=5 second=[five]
ptr=0x005BB400 Left=0x005BB5A0 Parent=0x005BB520 Right=0x005BB3A0 Color=1 Isnil=0
first=3 second=[three]
ptr=0x005BB5A0 Left=0x005BB3A0 Parent=0x005BB400 Right=0x005BB3A0 Color=0 Isnil=0
first=2 second=[two]
ptr=0x005BB4E0 Left=0x005BB3A0 Parent=0x005BB520 Right=0x005BB5C0 Color=1 Isnil=0
first=6 second=[six]
ptr=0x005BB5C0 Left=0x005BB3A0 Parent=0x005BB4E0 Right=0x005BB3A0 Color=0 Isnil=0
first=9 second=[nine]
ptr=0x005BB440 Left=0x005BB3E0 Parent=0x005BB3C0 Right=0x005BB480 Color=1 Isnil=0
first=100 second=[one hundred]
ptr=0x005BB3E0 Left=0x005BB460 Parent=0x005BB440 Right=0x005BB500 Color=0 Isnil=0
first=20 second=[twenty]
ptr=0x005BB460 Left=0x005BB540 Parent=0x005BB3E0 Right=0x005BB3A0 Color=1 Isnil=0
first=12 second=[twelve]
ptr=0x005BB540 Left=0x005BB3A0 Parent=0x005BB460 Right=0x005BB3A0 Color=0 Isnil=0
first=11 second=[eleven]
ptr=0x005BB500 Left=0x005BB3A0 Parent=0x005BB3E0 Right=0x005BB3A0 Color=1 Isnil=0
first=99 second=[ninety-nine]
ptr=0x005BB480 Left=0x005BB420 Parent=0x005BB440 Right=0x005BB560 Color=0 Isnil=0
first=107 second=[one hundred seven]
ptr=0x005BB420 Left=0x005BB3A0 Parent=0x005BB480 Right=0x005BB3A0 Color=1 Isnil=0
first=101 second=[one hundred one]
ptr=0x005BB560 Left=0x005BB3A0 Parent=0x005BB480 Right=0x005BB580 Color=1 Isnil=0
first=1001 second=[one thousand one]
ptr=0x005BB580 Left=0x005BB3A0 Parent=0x005BB560 Right=0x005BB3A0 Color=0 Isnil=0
first=1010 second=[one thousand ten]
As a tree:
root----10 [ten]

L-------1 [one]
L-------0 [zero]
R-------5 [five]

L-------3 [three]
L-------2 [two]

R-------6 [six]
R-------9 [nine]

R-------100 [one hundred]
L-------20 [twenty]

L-------12 [twelve]
L-------11 [eleven]

R-------99 [ninety-nine]
R-------107 [one hundred seven]

L-------101 [one hundred one]
R-------1001 [one thousand one]

300

34.4. STD::MAP AND STD::SET CHAPTER 34. STL
R-------1010 [one thousand ten]

m.begin():
ptr=0x005BB4A0 Left=0x005BB3A0 Parent=0x005BB4C0 Right=0x005BB3A0 Color=1 Isnil=0
first=0 second=[zero]
m.end():
ptr=0x005BB3A0 Left=0x005BB4A0 Parent=0x005BB3C0 Right=0x005BB580 Color=1 Isnil=1

dumping s as set:
ptr=0x0020FDFC, Myhead=0x005BB5E0, Mysize=6
ptr=0x005BB5E0 Left=0x005BB640 Parent=0x005BB600 Right=0x005BB6A0 Color=1 Isnil=1
ptr=0x005BB600 Left=0x005BB660 Parent=0x005BB5E0 Right=0x005BB620 Color=1 Isnil=0
first=123
ptr=0x005BB660 Left=0x005BB640 Parent=0x005BB600 Right=0x005BB680 Color=1 Isnil=0
first=12
ptr=0x005BB640 Left=0x005BB5E0 Parent=0x005BB660 Right=0x005BB5E0 Color=0 Isnil=0
first=11
ptr=0x005BB680 Left=0x005BB5E0 Parent=0x005BB660 Right=0x005BB5E0 Color=0 Isnil=0
first=100
ptr=0x005BB620 Left=0x005BB5E0 Parent=0x005BB600 Right=0x005BB6A0 Color=1 Isnil=0
first=456
ptr=0x005BB6A0 Left=0x005BB5E0 Parent=0x005BB620 Right=0x005BB5E0 Color=0 Isnil=0
first=1001
As a tree:
root----123

L-------12
L-------11
R-------100

R-------456
R-------1001

s.begin():
ptr=0x005BB640 Left=0x005BB5E0 Parent=0x005BB660 Right=0x005BB5E0 Color=0 Isnil=0
first=11
s.end():
ptr=0x005BB5E0 Left=0x005BB640 Parent=0x005BB600 Right=0x005BB6A0 Color=1 Isnil=1

Structure is not packed, so both char type values occupy 4 bytes each.
As for std::map, first and second can be viewed as a single value of std::pair type. std::set has only one value at

this point in the structure instead.
Current size of tree is always present, as in case of std::listMSVC implementation (34.2.2).
As in case of std::list, iterators are just pointers to the nodes. .begin() iterator pointing to the minimal key. That

pointer is not stored somewhere (as in lists), minimal key of tree is to be found each time. operator– and operator++
moves pointer to the current node to predecessor and successor respectively, i.e., nodes which has previous and next key.
The algorithms for all these operations are described in [7].

.end() iterator pointing to the root node, it has 1 in Isnil, meaning, the node has no key and/or value. So it can be
viewed as a “landing zone” in HDD4.

34.4.2 GCC

#include <stdio.h>
#include <map>
#include <set>
#include <string>
#include <iostream>

struct map_pair
{

int key;
const char *value;

};

4Hard disk drive

301

34.4. STD::MAP AND STD::SET CHAPTER 34. STL

struct tree_node
{

int M_color; // 0 - Red, 1 - Black
struct tree_node *M_parent;
struct tree_node *M_left;
struct tree_node *M_right;

};

struct tree_struct
{

int M_key_compare;
struct tree_node M_header;
size_t M_node_count;

};

void dump_tree_node (struct tree_node *n, bool is_set, bool traverse, bool dump_keys_and_values)
{

printf ("ptr=0x%p M_left=0x%p M_parent=0x%p M_right=0x%p M_color=%d\n",
n, n->M_left, n->M_parent, n->M_right, n->M_color);

void *point_after_struct=((char*)n)+sizeof(struct tree_node);

if (dump_keys_and_values)
{

if (is_set)
printf ("key=%d\n", *(int*)point_after_struct);

else
{

struct map_pair *p=(struct map_pair *)point_after_struct;
printf ("key=%d value=[%s]\n", p->key, p->value);

};
};

if (traverse==false)
return;

if (n->M_left)
dump_tree_node (n->M_left, is_set, traverse, dump_keys_and_values);

if (n->M_right)
dump_tree_node (n->M_right, is_set, traverse, dump_keys_and_values);

};

const char* ALOT_OF_TABS="\t\t\t\t\t\t\t\t\t\t\t";

void dump_as_tree (int tabs, struct tree_node *n, bool is_set)
{

void *point_after_struct=((char*)n)+sizeof(struct tree_node);

if (is_set)
printf ("%d\n", *(int*)point_after_struct);

else
{

struct map_pair *p=(struct map_pair *)point_after_struct;
printf ("%d [%s]\n", p->key, p->value);

}

if (n->M_left)
{

printf ("%.*sL-------", tabs, ALOT_OF_TABS);
dump_as_tree (tabs+1, n->M_left, is_set);

302

34.4. STD::MAP AND STD::SET CHAPTER 34. STL
};
if (n->M_right)
{

printf ("%.*sR-------", tabs, ALOT_OF_TABS);
dump_as_tree (tabs+1, n->M_right, is_set);

};
};

void dump_map_and_set(struct tree_struct *m, bool is_set)
{

printf ("ptr=0x%p, M_key_compare=0x%x, M_header=0x%p, M_node_count=%d\n",
m, m->M_key_compare, &m->M_header, m->M_node_count);

dump_tree_node (m->M_header.M_parent, is_set, true, true);
printf ("As a tree:\n");
printf ("root----");
dump_as_tree (1, m->M_header.M_parent, is_set);

};

int main()
{

// map

std::map<int, const char*> m;

m[10]="ten";
m[20]="twenty";
m[3]="three";
m[101]="one hundred one";
m[100]="one hundred";
m[12]="twelve";
m[107]="one hundred seven";
m[0]="zero";
m[1]="one";
m[6]="six";
m[99]="ninety-nine";
m[5]="five";
m[11]="eleven";
m[1001]="one thousand one";
m[1010]="one thousand ten";
m[2]="two";
m[9]="nine";

printf ("dumping m as map:\n");
dump_map_and_set ((struct tree_struct *)(void*)&m, false);

std::map<int, const char*>::iterator it1=m.begin();
printf ("m.begin():\n");
dump_tree_node ((struct tree_node *)*(void**)&it1, false, false, true);
it1=m.end();
printf ("m.end():\n");
dump_tree_node ((struct tree_node *)*(void**)&it1, false, false, false);

// set

std::set<int> s;
s.insert(123);
s.insert(456);
s.insert(11);
s.insert(12);
s.insert(100);
s.insert(1001);

303

34.4. STD::MAP AND STD::SET CHAPTER 34. STL
printf ("dumping s as set:\n");
dump_map_and_set ((struct tree_struct *)(void*)&s, true);
std::set<int>::iterator it2=s.begin();
printf ("s.begin():\n");
dump_tree_node ((struct tree_node *)*(void**)&it2, true, false, true);
it2=s.end();
printf ("s.end():\n");
dump_tree_node ((struct tree_node *)*(void**)&it2, true, false, false);

};

Listing 34.14: GCC 4.8.1
dumping m as map:
ptr=0x0028FE3C, M_key_compare=0x402b70, M_header=0x0028FE40, M_node_count=17
ptr=0x007A4988 M_left=0x007A4C00 M_parent=0x0028FE40 M_right=0x007A4B80 M_color=1
key=10 value=[ten]
ptr=0x007A4C00 M_left=0x007A4BE0 M_parent=0x007A4988 M_right=0x007A4C60 M_color=1
key=1 value=[one]
ptr=0x007A4BE0 M_left=0x00000000 M_parent=0x007A4C00 M_right=0x00000000 M_color=1
key=0 value=[zero]
ptr=0x007A4C60 M_left=0x007A4B40 M_parent=0x007A4C00 M_right=0x007A4C20 M_color=0
key=5 value=[five]
ptr=0x007A4B40 M_left=0x007A4CE0 M_parent=0x007A4C60 M_right=0x00000000 M_color=1
key=3 value=[three]
ptr=0x007A4CE0 M_left=0x00000000 M_parent=0x007A4B40 M_right=0x00000000 M_color=0
key=2 value=[two]
ptr=0x007A4C20 M_left=0x00000000 M_parent=0x007A4C60 M_right=0x007A4D00 M_color=1
key=6 value=[six]
ptr=0x007A4D00 M_left=0x00000000 M_parent=0x007A4C20 M_right=0x00000000 M_color=0
key=9 value=[nine]
ptr=0x007A4B80 M_left=0x007A49A8 M_parent=0x007A4988 M_right=0x007A4BC0 M_color=1
key=100 value=[one hundred]
ptr=0x007A49A8 M_left=0x007A4BA0 M_parent=0x007A4B80 M_right=0x007A4C40 M_color=0
key=20 value=[twenty]
ptr=0x007A4BA0 M_left=0x007A4C80 M_parent=0x007A49A8 M_right=0x00000000 M_color=1
key=12 value=[twelve]
ptr=0x007A4C80 M_left=0x00000000 M_parent=0x007A4BA0 M_right=0x00000000 M_color=0
key=11 value=[eleven]
ptr=0x007A4C40 M_left=0x00000000 M_parent=0x007A49A8 M_right=0x00000000 M_color=1
key=99 value=[ninety-nine]
ptr=0x007A4BC0 M_left=0x007A4B60 M_parent=0x007A4B80 M_right=0x007A4CA0 M_color=0
key=107 value=[one hundred seven]
ptr=0x007A4B60 M_left=0x00000000 M_parent=0x007A4BC0 M_right=0x00000000 M_color=1
key=101 value=[one hundred one]
ptr=0x007A4CA0 M_left=0x00000000 M_parent=0x007A4BC0 M_right=0x007A4CC0 M_color=1
key=1001 value=[one thousand one]
ptr=0x007A4CC0 M_left=0x00000000 M_parent=0x007A4CA0 M_right=0x00000000 M_color=0
key=1010 value=[one thousand ten]
As a tree:
root----10 [ten]

L-------1 [one]
L-------0 [zero]
R-------5 [five]

L-------3 [three]
L-------2 [two]

R-------6 [six]
R-------9 [nine]

R-------100 [one hundred]
L-------20 [twenty]

L-------12 [twelve]
L-------11 [eleven]

304

34.4. STD::MAP AND STD::SET CHAPTER 34. STL
R-------99 [ninety-nine]

R-------107 [one hundred seven]
L-------101 [one hundred one]
R-------1001 [one thousand one]

R-------1010 [one thousand ten]
m.begin():
ptr=0x007A4BE0 M_left=0x00000000 M_parent=0x007A4C00 M_right=0x00000000 M_color=1
key=0 value=[zero]
m.end():
ptr=0x0028FE40 M_left=0x007A4BE0 M_parent=0x007A4988 M_right=0x007A4CC0 M_color=0

dumping s as set:
ptr=0x0028FE20, M_key_compare=0x8, M_header=0x0028FE24, M_node_count=6
ptr=0x007A1E80 M_left=0x01D5D890 M_parent=0x0028FE24 M_right=0x01D5D850 M_color=1
key=123
ptr=0x01D5D890 M_left=0x01D5D870 M_parent=0x007A1E80 M_right=0x01D5D8B0 M_color=1
key=12
ptr=0x01D5D870 M_left=0x00000000 M_parent=0x01D5D890 M_right=0x00000000 M_color=0
key=11
ptr=0x01D5D8B0 M_left=0x00000000 M_parent=0x01D5D890 M_right=0x00000000 M_color=0
key=100
ptr=0x01D5D850 M_left=0x00000000 M_parent=0x007A1E80 M_right=0x01D5D8D0 M_color=1
key=456
ptr=0x01D5D8D0 M_left=0x00000000 M_parent=0x01D5D850 M_right=0x00000000 M_color=0
key=1001
As a tree:
root----123

L-------12
L-------11
R-------100

R-------456
R-------1001

s.begin():
ptr=0x01D5D870 M_left=0x00000000 M_parent=0x01D5D890 M_right=0x00000000 M_color=0
key=11
s.end():
ptr=0x0028FE24 M_left=0x01D5D870 M_parent=0x007A1E80 M_right=0x01D5D8D0 M_color=0

GCC implementation is very similar 5. The only di�erence is absence of Isnil field, so the structure occupy slightly less
space in memory than as it is implemented in MSVC. Root node is also used as a place .end() iterator pointing to and also
has no key and/or value.

34.4.3 Rebalancing demo (GCC)
Here is also a demo showing us how tree is rebalanced a�er insertions.

Listing 34.15: GCC
#include <stdio.h>
#include <map>
#include <set>
#include <string>
#include <iostream>

struct map_pair
{

int key;
const char *value;

};

struct tree_node

5http://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.1/stl__tree_8h-source.html

305

http://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.1/stl__tree_8h-source.html

34.4. STD::MAP AND STD::SET CHAPTER 34. STL
{

int M_color; // 0 - Red, 1 - Black
struct tree_node *M_parent;
struct tree_node *M_left;
struct tree_node *M_right;

};

struct tree_struct
{

int M_key_compare;
struct tree_node M_header;
size_t M_node_count;

};

const char* ALOT_OF_TABS="\t\t\t\t\t\t\t\t\t\t\t";

void dump_as_tree (int tabs, struct tree_node *n)
{

void *point_after_struct=((char*)n)+sizeof(struct tree_node);

printf ("%d\n", *(int*)point_after_struct);

if (n->M_left)
{

printf ("%.*sL-------", tabs, ALOT_OF_TABS);
dump_as_tree (tabs+1, n->M_left);

};
if (n->M_right)
{

printf ("%.*sR-------", tabs, ALOT_OF_TABS);
dump_as_tree (tabs+1, n->M_right);

};
};

void dump_map_and_set(struct tree_struct *m)
{

printf ("root----");
dump_as_tree (1, m->M_header.M_parent);

};

int main()
{

std::set<int> s;
s.insert(123);
s.insert(456);
printf ("123, 456 are inserted\n");
dump_map_and_set ((struct tree_struct *)(void*)&s);
s.insert(11);
s.insert(12);
printf ("\n");
printf ("11, 12 are inserted\n");
dump_map_and_set ((struct tree_struct *)(void*)&s);
s.insert(100);
s.insert(1001);
printf ("\n");
printf ("100, 1001 are inserted\n");
dump_map_and_set ((struct tree_struct *)(void*)&s);
s.insert(667);
s.insert(1);
s.insert(4);
s.insert(7);

306

34.4. STD::MAP AND STD::SET CHAPTER 34. STL
printf ("\n");
printf ("667, 1, 4, 7 are inserted\n");
dump_map_and_set ((struct tree_struct *)(void*)&s);
printf ("\n");

};

Listing 34.16: GCC 4.8.1
123, 456 are inserted
root----123

R-------456

11, 12 are inserted
root----123

L-------11
R-------12

R-------456

100, 1001 are inserted
root----123

L-------12
L-------11
R-------100

R-------456
R-------1001

667, 1, 4, 7 are inserted
root----12

L-------4
L-------1
R-------11

L-------7
R-------123

L-------100
R-------667

L-------456
R-------1001

307

Part III

Important fundamentals

308

CHAPTER 35. SIGNED NUMBER REPRESENTATIONS

Chapter 35

Signed number representations

There are several methods of representing signed numbers1, but in x86 architecture used “two’s complement”.

binary hexadecimal unsigned signed (2’s complement)
01111111 0x7f 127 127
01111110 0x7e 126 126

...
00000010 0x2 2 2
00000001 0x1 1 1
00000000 0x0 0 0
11111111 0x� 255 -1
11111110 0xfe 254 -2

...
10000010 0x82 130 -126
10000001 0x81 129 -127
10000000 0x80 128 -128

The di�erence between signed and unsigned numbers is that if we represent 0xFFFFFFFE and 0x0000002 as unsigned,
then first number (4294967294) is bigger than second (2). If to represent them both as signed, first will be−2, and it is lesser
than second (2). That is the reason why conditional jumps (10) are present both for signed (e.g. JG, JL) and unsigned (JA,
JBE) operations.

For the sake of simplicity, that is what one need to know:

∙ Number can be signed or unsigned.

∙ C/C++ signed types: int (-2147483646..2147483647 or 0x80000000..0x7FFFFFFF), char (-127..128 or 0x7F..0x80). Un-
signed: unsigned int (0..4294967295 or 0..0xFFFFFFFF), unsigned char (0..255 or 0..0xFF), size_t.

∙ Signed types has sign in the most significant bit: 1 mean “minus”, 0 mean “plus”.

∙ Addition and subtraction operations are working well for both signed and unsigned values. But for multiplication and
division operations, x86 has di�erent instructions: IDIV/IMUL for signed and DIV/MUL for unsigned.

∙ More instructions working with signed numbers: CBW/CWD/CWDE/CDQ/CDQE (80.6.3), MOVSX (13.1), SAR (80.6.3).

35.1 Integer overflow
It is worth noting that incorrect representation of number can lead integer overflow vulnerability.

For example, we have a network service, it receives network packets. In the packets there is also a field where subpacket
length is coded. It is 32-bit value. A�er network packet received, service checking the field, and if it is larger than, e.g. some
MAX_PACKET_SIZE (let’s say, 10 kilobytes), the packet is rejected as incorrect. Comparison is signed. Intruder set this value to
the 0xFFFFFFFF. While comparison, this number is considered as signed−1 and it is lesser than 10 kilobytes. No error here.
Service would like to copy the subpacket to another place inmemory and call memcpy (dst, src, 0xFFFFFFFF) function:
this operation, rapidly garbling a lot of inside of process memory.

More about it: [3].

1http://en.wikipedia.org/wiki/Signed_number_representations

309

http://en.wikipedia.org/wiki/Signed_number_representations

CHAPTER 36. ENDIANNESS

Chapter 36

Endianness

Endianness is a way of representing values in memory.

36.1 Big-endian
A 0x12345678 value will be represented in memory as:

address in memory byte value
+0 0x12
+1 0x34
+2 0x56
+3 0x78

Big-endian CPUs are including Motorola 68k, IBM POWER.

36.2 Little-endian

A 0x12345678 value will be represented in memory as:

address in memory byte value
+0 0x78
+1 0x56
+2 0x34
+3 0x12

Little-endian CPUs are including Intel x86.

36.3 Bi-endian
CPUs which may switch between endianness are ARM, PowerPC, SPARC, MIPS, IA641, etc.

36.4 Converting data
TCP/IP network data packets are usedbig-endian conventions, so that iswhy aprogramworking on little-endian architecture
should convert values using htonl() and htons() functions.

Big-endian convention in the TCP/IP environment is also called “network byte order”, while little-endian—“host byte or-
der”.

BSWAP instruction is also can be used for the conversion.

1Intel Architecture 64 (Itanium): 65

310

Part IV

Finding important/interesting stu� in the code

311

Minimalism it is not a significant feature of modern so�ware.
But not because programmers are writing a lot, but in a reason that all libraries are commonly linked statically to exe-

cutable files. If all external libraries were shi�ed into external DLL files, the world would be di�erent. (Another reason for
C++ —STL and other template libraries.)

Thus, it is very important to determine origin of a function, if it is from standard library or well-known library (like Boost2,
libpng3), and which one —is related to what we are trying to find in the code.

It is just absurdly to rewrite all code to C/C++ to find what we looking for.
One of the primary reverse engineer’s task is to find quickly in the code what is needed.
IDA disassembler allow us search among text strings, byte sequences, constants. It is even possible to export the code

into .lst or .asm text file and then use grep, awk, etc.
When you try to understand what a code is doing, this easily could be some open-source library like libpng. So when you

see some constants or text strings looks familiar, it is always worth to google it. And if you find the opensource project where
it is used, then it will be enough just to compare the functions. It may solve some part of problem.

For example, if program use a XML files, the first stepmay be determining, which XML-library is used for processing, since
standard (or well-known) library is usually used instead of self-made one.

For example, once upon a time I tried to understand how SAP 6.0 network packets compression/decompression is work-
ing. It is a huge so�ware, but a detailed .PDB with debugging information is present, and that is cozily. I finally came to idea
that one of the functions doing decompressing of network packet called CsDecomprLZC(). Immediately I tried to google its
name and I quickly found the function named as the same is used in MaxDB (it is open-source SAP project)4.

http://www.google.com/search?q=CsDecomprLZC
Astoundingly, MaxDB and SAP 6.0 so�ware shared likewise code for network packets compression/decompression.

2http://www.boost.org/
3http://www.libpng.org/pub/png/libpng.html
4More about it in relevant section (57.1)

312

http://www.google.com/search?q=CsDecomprLZC
http://www.boost.org/
http://www.libpng.org/pub/png/libpng.html

CHAPTER 37. IDENTIFICATION OF EXECUTABLE FILES

Chapter 37

Identification of executable files

37.1 Microso� Visual C++
MSVC versions and DLLs which may be imported:

Marketing version Internal version CL.EXE version DLLs may be imported Release date
6 6.0 12.00 msvcrt.dll, msvcp60.dll June 1998
.NET (2002) 7.0 13.00 msvcr70.dll, msvcp70.dll February 13, 2002
.NET 2003 7.1 13.10 msvcr71.dll, msvcp71.dll April 24, 2003
2005 8.0 14.00 msvcr80.dll, msvcp80.dll November 7, 2005
2008 9.0 15.00 msvcr90.dll, msvcp90.dll November 19, 2007
2010 10.0 16.00 msvcr100.dll, msvcp100.dll April 12, 2010
2012 11.0 17.00 msvcr110.dll, msvcp110.dll September 12, 2012
2013 12.0 18.00 msvcr120.dll, msvcp120.dll October 17, 2013

msvcp*.dll contain C++-related functions, so, if it is imported, this is probably C++ program.

37.1.1 Namemangling
Names are usually started with ? symbol.

Readmore about MSVC namemangling here: 31.1.1.

37.2 GCC

Aside from *NIX targets, GCC is also present in win32 environment: in form of Cygwin and MinGW.

37.2.1 Namemangling
Names are usually started with _Z symbols.

Readmore about GCC namemangling here: 31.1.1.

37.2.2 Cygwin

cygwin1.dll is o�en imported.

37.2.3 MinGW

msvcrt.dll may be imported.

37.3 Intel FORTRAN
libifcoremd.dll, libifportmd.dll and libiomp5md.dll (OpenMP support) may be imported.

libifcoremd.dll has a lot of functions prefixed with for_, meaning FORTRAN.

313

37.4. WATCOM, OPENWATCOM CHAPTER 37. IDENTIFICATION OF EXECUTABLE FILES
37.4 Watcom, OpenWatcom

37.4.1 Namemangling

Names are usually started with W symbol.
For example, that is how method named “method” of the class “class” not having arguments and returning void is en-

coded to:

W?method$_class$n__v

37.5 Borland
Here is an example of Borland Delphi and C++Builder namemangling:

@TApplication@IdleAction$qv
@TApplication@ProcessMDIAccels$qp6tagMSG
@TModule@$bctr$qpcpvt1
@TModule@$bdtr$qv
@TModule@ValidWindow$qp14TWindowsObject
@TrueColorTo8BitN$qpviiiiiit1iiiiii
@TrueColorTo16BitN$qpviiiiiit1iiiiii
@DIB24BitTo8BitBitmap$qpviiiiiit1iiiii
@TrueBitmap@$bctr$qpcl
@TrueBitmap@$bctr$qpvl
@TrueBitmap@$bctr$qiilll

Names are always started with @ symbol, then class name came, method name, and encodedmethod argument types.
These names can be in .exe imports, .dll exports, debug data, etc.
Borland Visual Component Libraries (VCL) are stored in .bpl files instead of .dll ones, for example, vcl50.dll, rtl60.dll.
Other DLL might be imported: BORLNDMM.DLL.

37.5.1 Delphi
Almost all Delphi executables has “Boolean” text string at the very beginning of code segment, alongwith other type names.

This is a very typical beginning of .text segment of a Delphi program, this block came right a�er win32 PE file header:

00000400 04 10 40 00 03 07 42 6f 6f 6c 65 61 6e 01 00 00 |..@...Boolean...|
00000410 00 00 01 00 00 00 00 10 40 00 05 46 61 6c 73 65 |........@..False|
00000420 04 54 72 75 65 8d 40 00 2c 10 40 00 09 08 57 69 |.True.@.,.@...Wi|
00000430 64 65 43 68 61 72 03 00 00 00 00 ff ff 00 00 90 |deChar..........|
00000440 44 10 40 00 02 04 43 68 61 72 01 00 00 00 00 ff |D.@...Char......|
00000450 00 00 00 90 58 10 40 00 01 08 53 6d 61 6c 6c 69 |....X.@...Smalli|
00000460 6e 74 02 00 80 ff ff ff 7f 00 00 90 70 10 40 00 |nt..........p.@.|
00000470 01 07 49 6e 74 65 67 65 72 04 00 00 00 80 ff ff |..Integer.......|
00000480 ff 7f 8b c0 88 10 40 00 01 04 42 79 74 65 01 00 |......@...Byte..|
00000490 00 00 00 ff 00 00 00 90 9c 10 40 00 01 04 57 6f |..........@...Wo|
000004a0 72 64 03 00 00 00 00 ff ff 00 00 90 b0 10 40 00 |rd............@.|
000004b0 01 08 43 61 72 64 69 6e 61 6c 05 00 00 00 00 ff |..Cardinal......|
000004c0 ff ff ff 90 c8 10 40 00 10 05 49 6e 74 36 34 00 |......@...Int64.|
000004d0 00 00 00 00 00 00 80 ff ff ff ff ff ff ff 7f 90 |................|
000004e0 e4 10 40 00 04 08 45 78 74 65 6e 64 65 64 02 90 |..@...Extended..|
000004f0 f4 10 40 00 04 06 44 6f 75 62 6c 65 01 8d 40 00 |..@...Double..@.|
00000500 04 11 40 00 04 08 43 75 72 72 65 6e 63 79 04 90 |..@...Currency..|
00000510 14 11 40 00 0a 06 73 74 72 69 6e 67 20 11 40 00 |..@...string .@.|
00000520 0b 0a 57 69 64 65 53 74 72 69 6e 67 30 11 40 00 |..WideString0.@.|
00000530 0c 07 56 61 72 69 61 6e 74 8d 40 00 40 11 40 00 |..Variant.@.@.@.|
00000540 0c 0a 4f 6c 65 56 61 72 69 61 6e 74 98 11 40 00 |..OleVariant..@.|
00000550 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000560 00 00 00 00 00 00 00 00 00 00 00 00 98 11 40 00 |..............@.|
00000570 04 00 00 00 00 00 00 00 18 4d 40 00 24 4d 40 00 |.........M@.$M@.|
00000580 28 4d 40 00 2c 4d 40 00 20 4d 40 00 68 4a 40 00 |(M@.,M@. M@.hJ@.|

314

37.6. OTHER KNOWN DLLS CHAPTER 37. IDENTIFICATION OF EXECUTABLE FILES
00000590 84 4a 40 00 c0 4a 40 00 07 54 4f 62 6a 65 63 74 |.J@..J@..TObject|
000005a0 a4 11 40 00 07 07 54 4f 62 6a 65 63 74 98 11 40 |..@...TObject..@|
000005b0 00 00 00 00 00 00 00 06 53 79 73 74 65 6d 00 00 |........System..|
000005c0 c4 11 40 00 0f 0a 49 49 6e 74 65 72 66 61 63 65 |..@...IInterface|
000005d0 00 00 00 00 01 00 00 00 00 00 00 00 00 c0 00 00 |................|
000005e0 00 00 00 00 46 06 53 79 73 74 65 6d 03 00 ff ff |....F.System....|
000005f0 f4 11 40 00 0f 09 49 44 69 73 70 61 74 63 68 c0 |..@...IDispatch.|
00000600 11 40 00 01 00 04 02 00 00 00 00 00 c0 00 00 00 |.@..............|
00000610 00 00 00 46 06 53 79 73 74 65 6d 04 00 ff ff 90 |...F.System.....|
00000620 cc 83 44 24 04 f8 e9 51 6c 00 00 83 44 24 04 f8 |..D$...Ql...D$..|
00000630 e9 6f 6c 00 00 83 44 24 04 f8 e9 79 6c 00 00 cc |.ol...D$...yl...|
00000640 cc 21 12 40 00 2b 12 40 00 35 12 40 00 01 00 00 |.!.@.+.@.5.@....|
00000650 00 00 00 00 00 00 00 00 00 c0 00 00 00 00 00 00 |................|
00000660 46 41 12 40 00 08 00 00 00 00 00 00 00 8d 40 00 |FA.@..........@.|
00000670 bc 12 40 00 4d 12 40 00 00 00 00 00 00 00 00 00 |..@.M.@.........|
00000680 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000690 bc 12 40 00 0c 00 00 00 4c 11 40 00 18 4d 40 00 |..@.....L.@..M@.|
000006a0 50 7e 40 00 5c 7e 40 00 2c 4d 40 00 20 4d 40 00 |P~@.\~@.,M@. M@.|
000006b0 6c 7e 40 00 84 4a 40 00 c0 4a 40 00 11 54 49 6e |l~@..J@..J@..TIn|
000006c0 74 65 72 66 61 63 65 64 4f 62 6a 65 63 74 8b c0 |terfacedObject..|
000006d0 d4 12 40 00 07 11 54 49 6e 74 65 72 66 61 63 65 |..@...TInterface|
000006e0 64 4f 62 6a 65 63 74 bc 12 40 00 a0 11 40 00 00 |dObject..@...@..|
000006f0 00 06 53 79 73 74 65 6d 00 00 8b c0 00 13 40 00 |..System......@.|
00000700 11 0b 54 42 6f 75 6e 64 41 72 72 61 79 04 00 00 |..TBoundArray...|
00000710 00 00 00 00 00 03 00 00 00 6c 10 40 00 06 53 79 |.........l.@..Sy|
00000720 73 74 65 6d 28 13 40 00 04 09 54 44 61 74 65 54 |stem(.@...TDateT|
00000730 69 6d 65 01 ff 25 48 e0 c4 00 8b c0 ff 25 44 e0 |ime..%H......%D.|

37.6 Other known DLLs

∙ vcomp*.dll—Microso� implementation of OpenMP.

315

CHAPTER 38. COMMUNICATIONWITH THE OUTERWORLD (WIN32)

Chapter 38

Communication with the outer world (win32)

Files and registry access: for the very basic analysis, Process Monitor1 utility from SysInternals may help.
For the basic analysis of network accesses, Wireshark2 may help.
But then you will need to look inside anyway.

First what to look on is which functions from OS API3 and standard libraries are used.
If the program is divided into main executable file and a group of DLL-files, sometimes, these function’s names may be

helpful.
If we are interesting, what exactly may lead to the MessageBox() call with specific text, first what we can try to do: find

this text in data segment, find references to it and find the points fromwhich a control may be passed to the MessageBox()
call we’re interesting in.

If we are talking about a video game andwe’re interesting, which events aremore or less random in it, wemay try to find
rand() function or its replacement (like Mersenne twister algorithm) and find a places from which this function called and
most important: how the results are used.

But if it is not a game, but rand() is used, it is also interesting, why. There are cases of unexpected rand() usage in data
compression algorithm (for encryption imitation): http://blog.yurichev.com/node/44.

38.1 O�en used functions in Windows API

These functions may be among imported. It is worth to note that not every function might be used by the code written by
author. A lot of functions might be called from library functions and CRT code.

∙ Registry access (advapi32.dll): RegEnumKeyEx4 5, RegEnumValue6 5, RegGetValue7 5, RegOpenKeyEx8 5, RegQueryVal-
ueEx9 5.

∙ Access to text .ini-files (kernel32.dll): GetPrivateProfileString 10 5.

∙ Dialog boxes (user32.dll): MessageBox 11 5, MessageBoxEx 12 5, SetDlgItemText 13 5, GetDlgItemText 14 5.

∙ Resources access(50.2.8): (user32.dll): LoadMenu 15 5.

∙ TCP/IP-network (ws2_32.dll): WSARecv 16, WSASend 17.
1http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
2http://www.wireshark.org/
3Application programming interface
4http://msdn.microsoft.com/en-us/library/windows/desktop/ms724862(v=vs.85).aspx
5May have -A su�ix for ASCII-version and -W for Unicode-version
6http://msdn.microsoft.com/en-us/library/windows/desktop/ms724865(v=vs.85).aspx
7http://msdn.microsoft.com/en-us/library/windows/desktop/ms724868(v=vs.85).aspx
8http://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
9http://msdn.microsoft.com/en-us/library/windows/desktop/ms724911(v=vs.85).aspx
10http://msdn.microsoft.com/en-us/library/windows/desktop/ms724353(v=vs.85).aspx
11http://msdn.microsoft.com/en-us/library/ms645505(VS.85).aspx
12http://msdn.microsoft.com/en-us/library/ms645507(v=vs.85).aspx
13http://msdn.microsoft.com/en-us/library/ms645521(v=vs.85).aspx
14http://msdn.microsoft.com/en-us/library/ms645489(v=vs.85).aspx
15http://msdn.microsoft.com/en-us/library/ms647990(v=vs.85).aspx
16http://msdn.microsoft.com/en-us/library/windows/desktop/ms741688(v=vs.85).aspx
17http://msdn.microsoft.com/en-us/library/windows/desktop/ms742203(v=vs.85).aspx

316

http://blog.yurichev.com/node/44
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://www.wireshark.org/
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724862(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724865(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724868(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724911(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724353(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms645505(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms645507(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms645521(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms645489(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms647990(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms741688(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms742203(v=vs.85).aspx

38.2. TRACER: INTERCEPTING ALL FUNCTIONS IN SPECIFIC MODULECHAPTER 38. COMMUNICATIONWITH THE OUTERWORLD (WIN32)
∙ File access (kernel32.dll): CreateFile 18 5, ReadFile 19, ReadFileEx 20, WriteFile 21, WriteFileEx 22.

∙ High-level access to the Internet (wininet.dll): WinHttpOpen 23.

∙ Check digital signature of a executable file (wintrust.dll): WinVerifyTrust 24.

∙ Standard MSVC library (in case of dynamic linking) (msvcr*.dll): assert, itoa, ltoa, open, printf, read, strcmp, atol, atoi,
fopen, fread, fwrite, memcmp, rand, strlen, strstr, strchr.

38.2 tracer: Intercepting all functions in specific module
There is INT3-breakpoints in tracer, triggering only once, however, they can be set to all functions in specific DLL.

--one-time-INT3-bp:somedll.dll!.*

Or, let’s set INT3-breakpoints to all functions with xml prefix in name:

--one-time-INT3-bp:somedll.dll!xml.*

On the other side of coin, such breakpoints are triggered only once.
Tracer will show calling of a function, if it happens, but only once. Another drawback —it is impossible to see function’s

arguments.
Nevertheless, this feature is very useful when you know the program uses a DLL, but do not know which functions in it.

And there are a lot of functions.

For example, let’s see, what uptime cygwin-utility uses:

tracer -l:uptime.exe --one-time-INT3-bp:cygwin1.dll!.*

Thus wemay see all cygwin1.dll library functions which were called at least once, and where from:

One-time INT3 breakpoint: cygwin1.dll!__main (called from uptime.exe!OEP+0x6d (0x40106d))
One-time INT3 breakpoint: cygwin1.dll!_geteuid32 (called from uptime.exe!OEP+0xba3 (0x401ba3))
One-time INT3 breakpoint: cygwin1.dll!_getuid32 (called from uptime.exe!OEP+0xbaa (0x401baa))
One-time INT3 breakpoint: cygwin1.dll!_getegid32 (called from uptime.exe!OEP+0xcb7 (0x401cb7))
One-time INT3 breakpoint: cygwin1.dll!_getgid32 (called from uptime.exe!OEP+0xcbe (0x401cbe))
One-time INT3 breakpoint: cygwin1.dll!sysconf (called from uptime.exe!OEP+0x735 (0x401735))
One-time INT3 breakpoint: cygwin1.dll!setlocale (called from uptime.exe!OEP+0x7b2 (0x4017b2))
One-time INT3 breakpoint: cygwin1.dll!_open64 (called from uptime.exe!OEP+0x994 (0x401994))
One-time INT3 breakpoint: cygwin1.dll!_lseek64 (called from uptime.exe!OEP+0x7ea (0x4017ea))
One-time INT3 breakpoint: cygwin1.dll!read (called from uptime.exe!OEP+0x809 (0x401809))
One-time INT3 breakpoint: cygwin1.dll!sscanf (called from uptime.exe!OEP+0x839 (0x401839))
One-time INT3 breakpoint: cygwin1.dll!uname (called from uptime.exe!OEP+0x139 (0x401139))
One-time INT3 breakpoint: cygwin1.dll!time (called from uptime.exe!OEP+0x22e (0x40122e))
One-time INT3 breakpoint: cygwin1.dll!localtime (called from uptime.exe!OEP+0x236 (0x401236))
One-time INT3 breakpoint: cygwin1.dll!sprintf (called from uptime.exe!OEP+0x25a (0x40125a))
One-time INT3 breakpoint: cygwin1.dll!setutent (called from uptime.exe!OEP+0x3b1 (0x4013b1))
One-time INT3 breakpoint: cygwin1.dll!getutent (called from uptime.exe!OEP+0x3c5 (0x4013c5))
One-time INT3 breakpoint: cygwin1.dll!endutent (called from uptime.exe!OEP+0x3e6 (0x4013e6))
One-time INT3 breakpoint: cygwin1.dll!puts (called from uptime.exe!OEP+0x4c3 (0x4014c3))

18http://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
19http://msdn.microsoft.com/en-us/library/windows/desktop/aa365467(v=vs.85).aspx
20http://msdn.microsoft.com/en-us/library/windows/desktop/aa365468(v=vs.85).aspx
21http://msdn.microsoft.com/en-us/library/windows/desktop/aa365747(v=vs.85).aspx
22http://msdn.microsoft.com/en-us/library/windows/desktop/aa365748(v=vs.85).aspx
23http://msdn.microsoft.com/en-us/library/windows/desktop/aa384098(v=vs.85).aspx
24http://msdn.microsoft.com/library/windows/desktop/aa388208.aspx

317

http://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365467(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365468(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365747(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365748(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa384098(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/desktop/aa388208.aspx

CHAPTER 39. STRINGS

Chapter 39

Strings

39.1 Text strings
Usual C-strings are zero-terminated (ASCIIZ-strings).

The reason why C string format is as it is (zero-terminating) is apparently hisorical. In [27] we can read:

A minor di�erence was that the unit of I/O was the word, not the byte, because the PDP-7 was a word-
addressedmachine. In practice thismeantmerely that all programs dealing with character streams ignored
null characters, because null was used to pad a file to an even number of characters.

In Hiew or FAR Manager these strings looks like as it is:

int main()
{

printf ("Hello, world!\n");
};

Figure 39.1: Hiew

The string is preceeded by 8-bit or 32-bit string length value.
For example:

Listing 39.1: Delphi
CODE:00518AC8 dd 19h
CODE:00518ACC aLoading___Plea db ’Loading... , please wait.’,0

...

CODE:00518AFC dd 10h
CODE:00518B00 aPreparingRun__ db ’Preparing run...’,0

318

39.1. TEXT STRINGS CHAPTER 39. STRINGS
39.1.1 Unicode
O�en, what is called by Unicode is a methods of strings encoding when each character occupies 2 bytes or 16 bits. This is
common terminologicalmistake. Unicode is a standard assigning a number to each character ofmanywriting systems of the
world, but not describing encoding method.

Most popular encoding methods are: UTF-8 (o�en used in Internet and *NIX systems) and UTF-16LE (used in Windows).

UTF-8

UTF-8 is one of the most successful methods of character encoding. All Latin symbols are encoded just like in an ASCII-
encoding, and symbols beyond ASCII-table are encoded by several bytes. 0 is encoded as it was before, so all standard C
string functions works with UTF-8-strings just like any other string.

Let’s see how symbols in various languages are encoded in UTF-8 and how it looks like in FAR in 437 codepage 1:

Figure 39.2: FAR: UTF-8

As it seems, English language string looks like as it is in ASCII-encoding. Hungarian language uses Latin symbols plus
symbols with diacritic marks. These symbols are encoded by several bytes, I underscored them by red. The same story with
Icelandic and Polish languages. I also used “Euro” currency symbol at the begin, which is encoded by 3 bytes. All the rest
writing systems here have no connectionwith Latin. At least about Russian, Arabic, Hebrew andHindi we could see recurring
bytes, and that is not surprise: all symbols from thewriting system is usually located in the sameUnicode table, so their code
begins with the same numbers.

At the very beginning, before “Howmuch?” string we see 3 bytes, which is BOM2 in fact. BOM defines encoding system to
be used now.

UTF-16LE

Manywin32 functions inWindows has a su�ix -A and -W. The first functions works with usual strings, the next with UTF-16LE-
strings (wide). As in the second case, each symbol is usually stored in 16-bit value of short type.

1I’ve got example and translations from there: http://www.columbia.edu/~fdc/utf8/
2Byte order mark

319

http://www.columbia.edu/~fdc/utf8/

39.1. TEXT STRINGS CHAPTER 39. STRINGS
Latin symbols in UTF-16 strings looks in Hiew or FAR as interleaved with zero byte:

int wmain()
{

wprintf (L"Hello, world!\n");
};

Figure 39.3: Hiew

Wemay o�en see this in Windows NT system files:

Figure 39.4: Hiew

String with characters occupying exactly 2 bytes are called by “Unicode” in IDA:

.data:0040E000 aHelloWorld:

.data:0040E000 unicode 0, <Hello, world!>

.data:0040E000 dw 0Ah, 0

Here is how Russian language string encoded in UTF-16LE may looks like:

Figure 39.5: Hiew: UTF-16LE

320

39.2. ERROR/DEBUGMESSAGES CHAPTER 39. STRINGS
What we can easily spot—is that symbols are interleaved by diamond character (which has code of 4). Indeed, Cyrillic

symbols are located in the fourth Unicode plane 3. Hence, all Cyrillic symbols in UTF-16LE are located in 0x400-0x4FF range.
Let’s back to the example with the string written in multiple languages. Here we can see it in UTF-16LE encoding.

Figure 39.6: FAR: UTF-16LE

Here we can also see BOM in the very beginning. All Latin characters are interleaved with zero byte. I also underscored
by red some characters with diacritic marks (Hungarian and Icelandic languages).

39.2 Error/debugmessages

Debuggingmessages are o�en very helpful if present. In some sense, debuggingmessages are reporting about what’s going
on in program right now. O�en these are printf()-like functions, which writes to log-files, and sometimes, not writing
anything but calls are still present since this build is not a debug build but release one. If local or global variables are dumped
in debuggingmessages, it might be helpful as well since it is possible to get variable names at least. For example, one of such
functions in Oracle RDBMS is ksdwrt().

Meaningful text strings are o�en helpful. IDA disassembler may show from which function and from which point this
specific string is used. Funny cases sometimes happen.

Error messages may help us as well. In Oracle RDBMS, errors are reporting using group of functions. More about it.
It is possible to find very quickly, which functions reporting about errors and in which conditions. By the way, it is o�en

a reason why copy-protection systems has inarticulate cryptic error messages or just error numbers. No one happy when
so�ware cracker quickly understand why copy-protection is triggered just by error message.

One example of encrypted error messages is here: 55.2.

3https://en.wikipedia.org/wiki/Cyrillic_(Unicode_block)

321

http://blog.yurichev.com/node/32
http://blog.yurichev.com/node/43
https://en.wikipedia.org/wiki/Cyrillic_(Unicode_block)

CHAPTER 40. CALLS TO ASSERT()

Chapter 40

Calls to assert()

Sometimesassert()macropresence is useful too: commonly thismacro leaves source file name, linenumberandcondition
in code.

Most useful information is contained in assert-condition, we can deduce variable names, or structure field names from
it. Another useful piece of information is file names —we can try to deduce what type of code is here. Also by file names it is
possible to recognize a well-known open-source libraries.

Listing 40.1: Example of informative assert() calls
.text:107D4B29 mov dx, [ecx+42h]
.text:107D4B2D cmp edx, 1
.text:107D4B30 jz short loc_107D4B4A
.text:107D4B32 push 1ECh
.text:107D4B37 push offset aWrite_c ; "write.c"
.text:107D4B3C push offset aTdTd_planarcon ; "td->td_planarconfig ==

PLANARCONFIG_CON"...
.text:107D4B41 call ds:_assert

...

.text:107D52CA mov edx, [ebp-4]

.text:107D52CD and edx, 3

.text:107D52D0 test edx, edx

.text:107D52D2 jz short loc_107D52E9

.text:107D52D4 push 58h

.text:107D52D6 push offset aDumpmode_c ; "dumpmode.c"

.text:107D52DB push offset aN30 ; "(n & 3) == 0"

.text:107D52E0 call ds:_assert

...

.text:107D6759 mov cx, [eax+6]

.text:107D675D cmp ecx, 0Ch

.text:107D6760 jle short loc_107D677A

.text:107D6762 push 2D8h

.text:107D6767 push offset aLzw_c ; "lzw.c"

.text:107D676C push offset aSpLzw_nbitsBit ; "sp->lzw_nbits <= BITS_MAX"

.text:107D6771 call ds:_assert

It is advisable to “google” both conditions and file names, that may lead us to open-source library. For example, if to
“google” “sp->lzw_nbits <=BITS_MAX”, thispredictablygiveus someopen-sourcecode, something related toLZW-compression.

322

CHAPTER 41. CONSTANTS

Chapter 41

Constants

Some algorithms, especially cryptographical, use distinct constants, which is easy to find in code using IDA.
For example, MD51 algorithm initializes its own internal variables like:

var int h0 := 0x67452301
var int h1 := 0xEFCDAB89
var int h2 := 0x98BADCFE
var int h3 := 0x10325476

If you find these four constants usage in the code in a row—it is very high probability this function is related to MD5.

Another example is CRC16/CRC32 algorithms, o�en, calculation algorithms use precomputed tables like:

Listing 41.1: linux/lib/crc16.c
/** CRC table for the CRC-16. The poly is 0x8005 (x^16 + x^15 + x^2 + 1) */
u16 const crc16_table[256] = {

0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241,
0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,
0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40,
...

See also precomputed table for CRC32: 17.4.

41.1 Magic numbers
A lot of file formats defining a standard file header wheremagic number2 is used.

For example, all Win32 and MS-DOS executables are started with two characters “MZ”3.
At the MIDI-file beginning “MThd” signature must be present. If we have a program which uses MIDI-files for something,

very likely, it must check MIDI-files for validity by checking at least first 4 bytes.
This could be done like:
(buf pointing to the beginning of loaded file into memory)

cmp [buf], 0x6468544D ; "MThd"
jnz _error_not_a_MIDI_file

. . .or by calling function for comparing memory blocks memcmp() or any other equivalent code up to a CMPSB (80.6.3)
instruction.

When you find such point you alreadymay saywhereMIDI-file loading is starting, also, we could see a location ofMIDI-file
contents bu�er and what is used from the bu�er, and how.

1http://en.wikipedia.org/wiki/MD5
2http://en.wikipedia.org/wiki/Magic_number_(programming)
3http://en.wikipedia.org/wiki/DOS_MZ_executable

323

http://en.wikipedia.org/wiki/MD5
http://en.wikipedia.org/wiki/Magic_number_(programming)
http://en.wikipedia.org/wiki/DOS_MZ_executable

41.2. CONSTANT SEARCHING CHAPTER 41. CONSTANTS
41.1.1 DHCP
This applies to network protocols as well. For example, DHCP protocol network packets contains so-called magic cookie:
0x63538263. Any code generating DHCP protocol packets somewhere and somehowmust embed this constant into packet.
If we find it in the code we may find where it happen and not only this. Something received DHCP packet must checkmagic
cookie, comparing it with the constant.

For example, let’s take dhcpcore.dll file from Windows 7 x64 and search for the constant. And we found it, two times: it
seems, theconstant isused in two functionseloquentlynamedasDhcpExtractOptionsForValidation()andDhcpExtractFullOptions():

Listing 41.2: dhcpcore.dll (Windows 7 x64)
.rdata:000007FF6483CBE8 dword_7FF6483CBE8 dd 63538263h ; DATA XREF:

DhcpExtractOptionsForValidation+79
.rdata:000007FF6483CBEC dword_7FF6483CBEC dd 63538263h ; DATA XREF:

DhcpExtractFullOptions+97

And the places where these constants accessed:

Listing 41.3: dhcpcore.dll (Windows 7 x64)
.text:000007FF6480875F mov eax, [rsi]
.text:000007FF64808761 cmp eax, cs:dword_7FF6483CBE8
.text:000007FF64808767 jnz loc_7FF64817179

And:

Listing 41.4: dhcpcore.dll (Windows 7 x64)
.text:000007FF648082C7 mov eax, [r12]
.text:000007FF648082CB cmp eax, cs:dword_7FF6483CBEC
.text:000007FF648082D1 jnz loc_7FF648173AF

41.2 Constant searching

It is easy in IDA: Alt-B or Alt-I. And for searching for constant in big pile of files, or for searching it in non-executable files, I
wrote small utility binary grep4.

4https://github.com/yurichev/bgrep

324

https://github.com/yurichev/bgrep

CHAPTER 42. FINDING THE RIGHT INSTRUCTIONS

Chapter 42

Finding the right instructions

If the program is utilizing FPU instructions and there are very few of them in a code, one can try to check each onemanually
by debugger.

For example, we may be interesting, how Microso� Excel calculating formulae entered by user. For example, division op-
eration.

If to load excel.exe (from O�ice 2010) version 14.0.4756.1000 into IDA, then make a full listing and to find each FDIV in-
structions (except ones which use constants as a second operand —obviously, it is not suits us):

cat EXCEL.lst | grep fdiv | grep -v dbl_ > EXCEL.fdiv

. . . then we realizing they are just 144.

We can enter string like =(1/3) in Excel and check each instruction.

Checking each instruction in debugger or tracer (one may check 4 instruction at a time), it seems, we are lucky here and
sought-for instruction is just 14th:

.text:3011E919 DC 33 fdiv qword ptr [ebx]

PID=13944|TID=28744|(0) 0x2f64e919 (Excel.exe!BASE+0x11e919)
EAX=0x02088006 EBX=0x02088018 ECX=0x00000001 EDX=0x00000001
ESI=0x02088000 EDI=0x00544804 EBP=0x0274FA3C ESP=0x0274F9F8
EIP=0x2F64E919
FLAGS=PF IF
FPU ControlWord=IC RC=NEAR PC=64bits PM UM OM ZM DM IM
FPU StatusWord=
FPU ST(0): 1.000000

ST(0) holding first argument (1) and second one is in [EBX].

Next instruction a�er FDIVwrites result into memory:

.text:3011E91B DD 1E fstp qword ptr [esi]

If to set breakpoint on it, we may see result:

PID=32852|TID=36488|(0) 0x2f40e91b (Excel.exe!BASE+0x11e91b)
EAX=0x00598006 EBX=0x00598018 ECX=0x00000001 EDX=0x00000001
ESI=0x00598000 EDI=0x00294804 EBP=0x026CF93C ESP=0x026CF8F8
EIP=0x2F40E91B
FLAGS=PF IF
FPU ControlWord=IC RC=NEAR PC=64bits PM UM OM ZM DM IM
FPU StatusWord=C1 P
FPU ST(0): 0.333333

325

CHAPTER 42. FINDING THE RIGHT INSTRUCTIONS
Also as a practical joke, we canmodify it on-fly:

tracer -l:excel.exe bpx=excel.exe!BASE+0x11E91B,set(st0,666)

PID=36540|TID=24056|(0) 0x2f40e91b (Excel.exe!BASE+0x11e91b)
EAX=0x00680006 EBX=0x00680018 ECX=0x00000001 EDX=0x00000001
ESI=0x00680000 EDI=0x00395404 EBP=0x0290FD9C ESP=0x0290FD58
EIP=0x2F40E91B
FLAGS=PF IF
FPU ControlWord=IC RC=NEAR PC=64bits PM UM OM ZM DM IM
FPU StatusWord=C1 P
FPU ST(0): 0.333333
Set ST0 register to 666.000000

Excel showing 666 in the cell what finally convincing us we find the right point.

Figure 42.1: Practical joke worked

If to try the same Excel version, but x64, we will find only 12 FDIV instructions there, and the one we looking for —third.

tracer.exe -l:excel.exe bpx=excel.exe!BASE+0x1B7FCC,set(st0,666)

It seems, a lot of division operations of float and double types, compiler replaced by SSE-instructions like DIVSD (DIVSD
present here 268 in total).

326

CHAPTER 43. SUSPICIOUS CODE PATTERNS

Chapter 43

Suspicious code patterns

43.1 XOR instructions
instructions like XOR op, op (for example, XOR EAX, EAX) are usually used for setting register value to zero, but if operands
are di�erent, exclusive or operation is executed. This operation is rare in common programming, but used o�en in cryptog-
raphy, including amateur. Especially suspicious case if the second operand is big number. This may points to encrypting/de-
crypting, checksum computing, etc.

Oneexception to thisobservationworth tonote is “canary” (16.3) generationandchecking iso�endoneusingXOR instruction.

This AWK script can be used for processing IDA listing (.lst) files:

gawk -e ’$2=="xor" { tmp=substr($3, 0, length($3)-1); if (tmp!=$4) if($4!="esp") if ($4!="ebp") {
print $1, $2, tmp, ",", $4 } }’ filename.lst

It is also worth to note that such script may also capture incorrectly disassembled code (28).

43.2 Hand-written assembly code

Modern compilers do not emit LOOP and RCL instructions. On the other hand, these instructions are well-known to coders
who like to code in straight assembly language. If you spot these, it can be said, with a high probability, this fragment of code
is hand-written. Such instructions are marked as (M) in the instructions list in appendix: 80.6.

Also function prologue/epilogue is not commonly present in hand-written assembly copy.

Commonly there is no fixed system in passing arguments into functions in the hand-written code.

Example fromWindows 2003 kernel (ntoskrnl.exe file):

MultiplyTest proc near ; CODE XREF: Get386Stepping
xor cx, cx

loc_620555: ; CODE XREF: MultiplyTest+E
push cx
call Multiply
pop cx
jb short locret_620563
loop loc_620555
clc

locret_620563: ; CODE XREF: MultiplyTest+C
retn

MultiplyTest endp

Multiply proc near ; CODE XREF: MultiplyTest+5
mov ecx, 81h
mov eax, 417A000h
mul ecx
cmp edx, 2

327

43.2. HAND-WRITTEN ASSEMBLY CODE CHAPTER 43. SUSPICIOUS CODE PATTERNS
stc
jnz short locret_62057F
cmp eax, 0FE7A000h
stc
jnz short locret_62057F
clc

locret_62057F: ; CODE XREF: Multiply+10
; Multiply+18

retn
Multiply endp

Indeed, ifwe look intoWRK1 v1.2 source code, this code canbe foundeasily in the fileWRK-v1.2\base\ntos\ke\i386\cpu.asm.

1Windows Research Kernel

328

CHAPTER 44. USING MAGIC NUMBERSWHILE TRACING

Chapter 44

Using magic numbers while tracing

O�en,maingoal is toget toknow, howavaluewas read fromfile, or receivedvianetwork, beingused. O�en,manual tracingof
a value is very labouring task. One of the simplest techniques (although not 100% reliable) is to use your ownmagic number.

This resembling X-ray computed tomography is some sense: radiocontrast agent is o�en injected into patient’s blood,
which is used for improving visibility of internal structures in X-rays. For example, it is well known how blood of healthy
man/woman percolates in kidneys and if agent is in blood, it will be easily seen on tomography, how good and normal blood
was percolating, are there any stones or tumors.

We can take a 32-bit number like 0x0badf00d, or someone’s birth date like 0x11101979 and to write this, 4 byte holding
number, to some point in file used by the programwe investigate.

Then, while tracing this program, with tracer in the code coveragemode, and then, with the help of grep or just by search-
ing in the text file (of tracing results), we can easily see, where the value was used and how.

Example of grepable tracer results in the ccmode:

0x150bf66 (_kziaia+0x14), e= 1 [MOV EBX, [EBP+8]] [EBP+8]=0xf59c934
0x150bf69 (_kziaia+0x17), e= 1 [MOV EDX, [69AEB08h]] [69AEB08h]=0
0x150bf6f (_kziaia+0x1d), e= 1 [FS: MOV EAX, [2Ch]]
0x150bf75 (_kziaia+0x23), e= 1 [MOV ECX, [EAX+EDX*4]] [EAX+EDX*4]=0xf1ac360
0x150bf78 (_kziaia+0x26), e= 1 [MOV [EBP-4], ECX] ECX=0xf1ac360

This can be used for network packets as well. It is important to be unique formagic number and not to be present in the
program’s code.

Aside of tracer, DosBox (MS-DOS emulator) in heavydebug mode, is able to write information about all register’s states
for each executed instruction of program to plain text file1, so this technique may be useful for DOS programs as well.

1See also my blog post about this DosBox feature: http://blog.yurichev.com/node/55

329

http://blog.yurichev.com/node/55

CHAPTER 45. OTHER THINGS

Chapter 45

Other things

RTTI (31.5)-data may be also useful for C++ classes identification.

330

CHAPTER 46. OLD-SCHOOL TECHNIQUES, NEVERTHELESS, INTERESTING TO KNOW

Chapter 46

Old-school techniques, nevertheless,
interesting to know

46.1 Memory “snapshots” comparing
The technique of straightforward two memory snapshots comparing in order to see changes, was o�en used to hack 8-bit
computer games and hacking “high score” files.

For example, if you got a loaded game on 8-bit computer (it is notmuchmemory on these, but game is usually consumes
even lessmemory) and you know that you have now, let’s say, 100 bullets, you can do a “snapshot” of all memory and back it
up to some place. Then shoot somewhere, bullet count now 99, do second “snapshot” and then compare both: somewhere
must be a byte which was 100 in the beginning and now it is 99. Considering a fact these 8-bit games were o�en written in
assembly language and such variables were global, it can be said for sure, which address in memory holding bullets count.
If to search all references to the address in disassembled game code, it is not very hard to find a piece of code decrementing
bullets count, write NOP instruction there, or couple of NOP-s, we’ll have a game with e.g 100 bullets forever. Games on
these 8-bit computers was commonly loaded on the same address, also, therewere nomuch di�erent versions of each game
(commonly just one version was popular for a long span of time), enthusiastic gamers knew, which byte must be written
(using BASIC instruction POKE) to which address in order to hack it. This led to “cheat” lists containing of POKE instructions
published in magazines related to 8-bit games. See also: http://en.wikipedia.org/wiki/PEEK_and_POKE.

Likewise, it is easy to modify “high score” files, this may work not only with 8-bit games. Let’s notice your score count
and back the file up somewhere. When “high score” count will be di�erent, just compare two files, it can be even done with
DOS-utility FC1 (“high score” files are o�en in binary form). There will be a point where couple of bytes will be di�erent and it
will be easy to seewhich ones are holding score number. However, gamedevelopers are aware of such tricks andmayprotect
against it.

1MS-DOS utility for binary files comparing

331

http://en.wikipedia.org/wiki/PEEK_and_POKE

Part V

OS-specific

332

CHAPTER 47. THREAD LOCAL STORAGE

Chapter 47

Thread Local Storage

It is a data area, specific to each thread. Every thread can store therewhat it needs. One famous example is C standard global
variable errno. Multiple threadsmay simultaneously call a functions which returns error code in the errno, so global variable
will not work correctly here, for multi-thread programs, errnomust be stored in the TLS.

In the C++11 standard, a new thread_local modifier was added, showing that each thread will have its own version of the
variable, it can be initialized, and it is located in the TLS 1:

Listing 47.1: C++11
#include <iostream>
#include <thread>

thread_local int tmp=3;

int main()
{

std::cout << tmp << std::endl;
};

2

If to say about PE-files, in the resulting executable file, the tmp variable will be stored in the section devoted to TLS.

1 C11 also has thread support, optional though
2Compiled in MinGW GCC 4.8.1, but not in MSVC 2012

333

CHAPTER 48. SYSTEM CALLS (SYSCALL-S)

Chapter 48

System calls (syscall-s)

Aswe know, all running processes inside OS are divided into two categories: those having all access to the hardware (“kernel
space”) and those have not (“user space”).

There are OS kernel and usually drivers in the first category.
All applications are usually in the second category.
This separation is crucial for OS safety: it is very important not to give to any process possibility to screw up something in

other processes or even in OS kernel. On the other hand, failing driver or error inside OS kernel usually lead to kernel panic
or BSOD1.

x86-processor protection allows to separate everything into 4 levels of protection (rings), but both in Linux and in Win-
dows only two are used: ring0 (“kernel space”) and ring3 (“user space”).

System calls (syscall-s) is a point where these two areas are connected. It can be said, this is the most principal API
providing to application so�ware.

As in Windows NT, syscalls table reside in SSDT2.
Usage of syscalls is very popular among shellcode and computer viruses authors, because it is hard to determine the

addresses of needed functions in the system libraries, while it is easier to use syscalls, however, much more code should be
written due to lower level of abstraction of the API. It is also worth noting that the numbers of syscalls e.g. in Windows, may
be di�erent from version to version.

48.1 Linux

In Linux, syscall is usually called via int 0x80. Call number is passed in the EAX register, and any other parameters —in the
other registers.

Listing 48.1: Simple example of two syscalls usage
section .text
global _start

_start:
mov edx,len ; buf len
mov ecx,msg ; buf
mov ebx,1 ; file descriptor. stdout is 1
mov eax,4 ; syscall number. sys_write is 4
int 0x80

mov eax,1 ; syscall number. sys_exit is 4
int 0x80

section .data

msg db ’Hello, world!’,0xa
len equ $ - msg

Compilation:
1Black Screen of Death
2System Service Dispatch Table

334

48.2. WINDOWS CHAPTER 48. SYSTEM CALLS (SYSCALL-S)

nasm -f elf32 1.s
ld 1.o

The full list of syscalls in Linux: http://syscalls.kernelgrok.com/.
For system calls intercepting and tracing in Linux, strace(53) can be used.

48.2 Windows
They are called by int 0x2e or using special x86 instruction SYSENTER.

The full list of syscalls in Windows: http://j00ru.vexillium.org/ntapi/.
Further reading:
“Windows Syscall Shellcode” by Piotr Bania.

335

http://syscalls.kernelgrok.com/
http://j00ru.vexillium.org/ntapi/
http://www.symantec.com/connect/articles/windows-syscall-shellcode

CHAPTER 49. LINUX

Chapter 49

Linux

49.1 Position-independent code
While analyzing Linux shared (.so) libraries, one may frequently spot such code pattern:

Listing 49.1: libc-2.17.so x86
.text:0012D5E3 __x86_get_pc_thunk_bx proc near ; CODE XREF: sub_17350+3
.text:0012D5E3 ; sub_173CC+4 ...
.text:0012D5E3 mov ebx, [esp+0]
.text:0012D5E6 retn
.text:0012D5E6 __x86_get_pc_thunk_bx endp

...

.text:000576C0 sub_576C0 proc near ; CODE XREF: tmpfile+73

...

.text:000576C0 push ebp

.text:000576C1 mov ecx, large gs:0

.text:000576C8 push edi

.text:000576C9 push esi

.text:000576CA push ebx

.text:000576CB call __x86_get_pc_thunk_bx

.text:000576D0 add ebx, 157930h

.text:000576D6 sub esp, 9Ch

...

.text:000579F0 lea eax, (a__gen_tempname - 1AF000h)[ebx] ; "__gen_tempname"

.text:000579F6 mov [esp+0ACh+var_A0], eax

.text:000579FA lea eax, (a__SysdepsPosix - 1AF000h)[ebx] ; "../sysdeps/posix/
tempname.c"

.text:00057A00 mov [esp+0ACh+var_A8], eax

.text:00057A04 lea eax, (aInvalidKindIn_ - 1AF000h)[ebx] ; "! \"invalid KIND
in __gen_tempname\""

.text:00057A0A mov [esp+0ACh+var_A4], 14Ah

.text:00057A12 mov [esp+0ACh+var_AC], eax

.text:00057A15 call __assert_fail

All pointers to strings are corrected by a constant and by value in the EBX, which calculated at the beginning of each
function. This is so-called PIC, it is intended to execute placed at any random point of memory, that is why it cannot contain
any absolute memory addresses.

PICwas crucial in early computer systems and crucial now in embedded systemswithout virtualmemory support (where
processes are all placed in single continousmemoryblock). It is also still used in *NIX systems for shared libraries since shared
libraries are shared across many processes while loaded in memory only once. But all these processes may map the same
shared library ondi�erent addresses, so that iswhy shared library should beworking correctlywithout fixing on any absolute

336

49.1. POSITION-INDEPENDENT CODE CHAPTER 49. LINUX
address.

Let’s do a simple experiment:

#include <stdio.h>

int global_variable=123;

int f1(int var)
{

int rt=global_variable+var;
printf ("returning %d\n", rt);
return rt;

};

Let’s compile it in GCC 4.7.3 and see resulting .so file in IDA:

gcc -fPIC -shared -O3 -o 1.so 1.c

Listing 49.2: GCC 4.7.3
.text:00000440 public __x86_get_pc_thunk_bx
.text:00000440 __x86_get_pc_thunk_bx proc near ; CODE XREF: _init_proc+4
.text:00000440 ; deregister_tm_clones+4 ...
.text:00000440 mov ebx, [esp+0]
.text:00000443 retn
.text:00000443 __x86_get_pc_thunk_bx endp

.text:00000570 public f1

.text:00000570 f1 proc near

.text:00000570

.text:00000570 var_1C = dword ptr -1Ch

.text:00000570 var_18 = dword ptr -18h

.text:00000570 var_14 = dword ptr -14h

.text:00000570 var_8 = dword ptr -8

.text:00000570 var_4 = dword ptr -4

.text:00000570 arg_0 = dword ptr 4

.text:00000570

.text:00000570 sub esp, 1Ch

.text:00000573 mov [esp+1Ch+var_8], ebx

.text:00000577 call __x86_get_pc_thunk_bx

.text:0000057C add ebx, 1A84h

.text:00000582 mov [esp+1Ch+var_4], esi

.text:00000586 mov eax, ds:(global_variable_ptr - 2000h)[ebx]

.text:0000058C mov esi, [eax]

.text:0000058E lea eax, (aReturningD - 2000h)[ebx] ; "returning %d\n"

.text:00000594 add esi, [esp+1Ch+arg_0]

.text:00000598 mov [esp+1Ch+var_18], eax

.text:0000059C mov [esp+1Ch+var_1C], 1

.text:000005A3 mov [esp+1Ch+var_14], esi

.text:000005A7 call ___printf_chk

.text:000005AC mov eax, esi

.text:000005AE mov ebx, [esp+1Ch+var_8]

.text:000005B2 mov esi, [esp+1Ch+var_4]

.text:000005B6 add esp, 1Ch

.text:000005B9 retn

.text:000005B9 f1 endp

That’s it: pointers to «returning %d\n» string and global_variable are to be corrected at each function execution. The
__x86_get_pc_thunk_bx() function return address of the point a�er call to itself (0x57C here) in the EBX. That’s the simple
way to get value of program counter (EIP) at some point. The 0x1A84 constant is related to the di�erence between this
function begin and so-called Global O�set Table Procedure Linkage Table (GOT PLT), the section right a�er Global O�set Table
(GOT), where pointer to global_variable is. IDA shows these o�set processed, so to understand them easily, but in fact the
code is:

337

49.2. LD_PRELOAD HACK IN LINUX CHAPTER 49. LINUX

.text:00000577 call __x86_get_pc_thunk_bx

.text:0000057C add ebx, 1A84h

.text:00000582 mov [esp+1Ch+var_4], esi

.text:00000586 mov eax, [ebx-0Ch]

.text:0000058C mov esi, [eax]

.text:0000058E lea eax, [ebx-1A30h]

So, EBX pointing to the GOT PLT section and to calculate pointer to global_variablewhich stored in the GOT, 0xCmust be
subtracted. To calculate pointer to the «returning %d\n» string, 0x1A30must be subtracted.

By the way, that is the reason why AMD64 instruction set supports RIP1-relative addressing, just to simplify PIC-code.
Let’s compile the same C code in the same GCC version, but for x64.
IDA would simplify output code but suppressing RIP-relative addressing details, so I will run objdump instead to see the

details:

0000000000000720 <f1>:
720: 48 8b 05 b9 08 20 00 mov rax,QWORD PTR [rip+0x2008b9] # 200fe0 <_DYNAMIC+0

x1d0>
727: 53 push rbx
728: 89 fb mov ebx,edi
72a: 48 8d 35 20 00 00 00 lea rsi,[rip+0x20] # 751 <_fini+0x9>
731: bf 01 00 00 00 mov edi,0x1
736: 03 18 add ebx,DWORD PTR [rax]
738: 31 c0 xor eax,eax
73a: 89 da mov edx,ebx
73c: e8 df fe ff ff call 620 <__printf_chk@plt>
741: 89 d8 mov eax,ebx
743: 5b pop rbx
744: c3 ret

0x2008b9 is the di�erence between address of instruction at 0x720 and global_variable and 0x20 is the di�erence be-
tween the address of the instruction at 0x72A and the «returning %d\n» string.

As you might see, the need to recalculate addresses frequently makes execution slower (it is better in x64, though). So it
is probably better to link statically if you aware of performance ([11]).

49.1.1 Windows
The PICmechanism is not used inWindows DLLs. If Windows loader needs to load DLL on another base address, it “patches”
DLL in memory (at the FIXUP places) in order to correct all addresses. This means, several Windows processes cannot share
once loaded DLL on di�erent addresses in di�erent process’ memory blocks —since each loaded into memory DLL instance
fixed to be work only at these addresses..

49.2 LD_PRELOAD hack in Linux
This allows us to load our own dynamic libraries before others, even before system ones, like libc.so.6.

What, in turn, allows to “substitute” our written functions before original ones in system libraries. For example, it is easy
to intercept all calls to the time(), read(), write(), etc.

Let’s see, if we are able to fool uptime utility. As we know, it tells how long the computer is working. With the help of
strace(53), it is possible to see that this information the utility takes from the /proc/uptime file:

$ strace uptime
...
open("/proc/uptime", O_RDONLY) = 3
lseek(3, 0, SEEK_SET) = 0
read(3, "416166.86 414629.38\n", 2047) = 20
...

It is not a real file on disk, it is a virtual one, its contents is generated on fly in Linux kernel. There are just two numbers:
1program counter in AMD64

338

49.2. LD_PRELOAD HACK IN LINUX CHAPTER 49. LINUX

$ cat /proc/uptime
416690.91 415152.03

What we can learn fromwikipedia:

The first number is the total number of seconds the system has been up. The second number is how
much of that time the machine has spent idle, in seconds.

2

Let’s try to write our own dynamic library with the open(), read(), close() functions working as we need.
At first, our open()will comparenameof file tobeopenedwithwhatweneedand if it is so, itwillwrite down thedescriptor

of the file opened. At second, read(), if it will be called for this file descriptor, will substitute output, and in other cases, will
call original read() from libc.so.6. And also close(), will note, if the file we are currently follow is to be closed.

We will use the dlopen() and dlsym() functions to determine original addresses of functions in libc.so.6.
We need them because wemust pass control to “real” functions.
On the other hand, if we could intercept e.g. strcmp(), and follow each string comparisons in program, then strcmp()

could be implemented easily on one’s own, while not using original function 3.

#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <stdbool.h>
#include <unistd.h>
#include <dlfcn.h>
#include <string.h>

void *libc_handle = NULL;
int (*open_ptr)(const char *, int) = NULL;
int (*close_ptr)(int) = NULL;
ssize_t (*read_ptr)(int, void*, size_t) = NULL;

bool inited = false;

_Noreturn void die (const char * fmt, ...)
{

va_list va;
va_start (va, fmt);

vprintf (fmt, va);
exit(0);

};

static void find_original_functions ()
{

if (inited)
return;

libc_handle = dlopen ("libc.so.6", RTLD_LAZY);
if (libc_handle==NULL)

die ("can’t open libc.so.6\n");

open_ptr = dlsym (libc_handle, "open");
if (open_ptr==NULL)

die ("can’t find open()\n");

close_ptr = dlsym (libc_handle, "close");

2https://en.wikipedia.org/wiki/Uptime
3For example, here is how simple strcmp() interception is works in article from Yong Huang

339

https://en.wikipedia.org/wiki/Uptime
http://yurichev.com/mirrors/LD_PRELOAD/Yong%20Huang%20LD_PRELOAD.txt

49.2. LD_PRELOAD HACK IN LINUX CHAPTER 49. LINUX
if (close_ptr==NULL)

die ("can’t find close()\n");

read_ptr = dlsym (libc_handle, "read");
if (read_ptr==NULL)

die ("can’t find read()\n");

inited = true;
}

static int opened_fd=0;

int open(const char *pathname, int flags)
{

find_original_functions();

int fd=(*open_ptr)(pathname, flags);
if (strcmp(pathname, "/proc/uptime")==0)

opened_fd=fd; // that’s our file! record its file descriptor
else

opened_fd=0;
return fd;

};

int close(int fd)
{

find_original_functions();

if (fd==opened_fd)
opened_fd=0; // the file is not opened anymore

return (*close_ptr)(fd);
};

ssize_t read(int fd, void *buf, size_t count)
{

find_original_functions();

if (opened_fd!=0 && fd==opened_fd)
{

// that’s our file!
return snprintf (buf, count, "%d %d", 0x7fffffff, 0x7fffffff)+1;

};
// not our file, go to real read() function
return (*read_ptr)(fd, buf, count);

};

Let’s compile it as common dynamic library:

gcc -fpic -shared -Wall -o fool_uptime.so fool_uptime.c -ldl

Let’s run uptimewhile loading our library before others:

LD_PRELOAD=‘pwd‘/fool_uptime.so uptime

And we see:

01:23:02 up 24855 days, 3:14, 3 users, load average: 0.00, 0.01, 0.05

If the LD_PRELOAD environment variable will always points to filename and path of our library, it will be loaded for all
starting programs.

More examples:

∙ Very simple interceptionof the strcmp() (YongHuang)http://yurichev.com/mirrors/LD_PRELOAD/Yong%20Huang%
20LD_PRELOAD.txt

340

http://yurichev.com/mirrors/LD_PRELOAD/Yong%20Huang%20LD_PRELOAD.txt
http://yurichev.com/mirrors/LD_PRELOAD/Yong%20Huang%20LD_PRELOAD.txt

49.2. LD_PRELOAD HACK IN LINUX CHAPTER 49. LINUX
∙ Kevin Pulo — Fun with LD_PRELOAD. A lot of examples and ideas. http://yurichev.com/mirrors/LD_PRELOAD/
lca2009.pdf

∙ File functions interception for compression/decompression files on fly (zlibc). ftp://metalab.unc.edu/pub/Linux/
libs/compression

341

http://yurichev.com/mirrors/LD_PRELOAD/lca2009.pdf
http://yurichev.com/mirrors/LD_PRELOAD/lca2009.pdf
ftp://metalab.unc.edu/pub/Linux/libs/compression
ftp://metalab.unc.edu/pub/Linux/libs/compression

CHAPTER 50. WINDOWS NT

Chapter 50

Windows NT

50.1 CRT (win32)
Does program execution starts right at the main() function? No, it is not. If to open any executable file in IDA or HIEW, wewill
see OEP1 pointing to another code. This is a code doing somemaintenance and preparations before passing control flow to
our code. It is called startup-code or CRT-code (C RunTime).

main() fucntion takes an array of arguments passed in the command line, and also environment variables. But in fact, a
generic string is passed to the program, CRT-code will find spaces in it and cut by parts. CRT-code is also prepares environ-
ment variables array envp. As of GUI2 win32 applications, WinMain is used instead of main(), having their own arguments:

int CALLBACK WinMain(
In HINSTANCE hInstance,
In HINSTANCE hPrevInstance,
In LPSTR lpCmdLine,
In int nCmdShow

);

CRT-code prepares them as well.
Also, the number returned by main() function is an exit code. It may be passed in CRT to the ExitProcess() function,

taking exit code as argument.

Usually, each compiler has its own CRT-code.

Here is a typical CRT-code for MSVC 2008.

___tmainCRTStartup proc near

var_24 = dword ptr -24h
var_20 = dword ptr -20h
var_1C = dword ptr -1Ch
ms_exc = CPPEH_RECORD ptr -18h

push 14h
push offset stru_4092D0
call __SEH_prolog4
mov eax, 5A4Dh
cmp ds:400000h, ax
jnz short loc_401096
mov eax, ds:40003Ch
cmp dword ptr [eax+400000h], 4550h
jnz short loc_401096
mov ecx, 10Bh
cmp [eax+400018h], cx
jnz short loc_401096
cmp dword ptr [eax+400074h], 0Eh

1Original Entry Point
2Graphical user interface

342

50.1. CRT (WIN32) CHAPTER 50. WINDOWS NT
jbe short loc_401096
xor ecx, ecx
cmp [eax+4000E8h], ecx
setnz cl
mov [ebp+var_1C], ecx
jmp short loc_40109A

; ---

loc_401096: ; CODE XREF: ___tmainCRTStartup+18
; ___tmainCRTStartup+29 ...

and [ebp+var_1C], 0

loc_40109A: ; CODE XREF: ___tmainCRTStartup+50
push 1
call __heap_init
pop ecx
test eax, eax
jnz short loc_4010AE
push 1Ch
call _fast_error_exit

; ---
pop ecx

loc_4010AE: ; CODE XREF: ___tmainCRTStartup+60
call __mtinit
test eax, eax
jnz short loc_4010BF
push 10h
call _fast_error_exit

; ---
pop ecx

loc_4010BF: ; CODE XREF: ___tmainCRTStartup+71
call sub_401F2B
and [ebp+ms_exc.disabled], 0
call __ioinit
test eax, eax
jge short loc_4010D9
push 1Bh
call __amsg_exit
pop ecx

loc_4010D9: ; CODE XREF: ___tmainCRTStartup+8B
call ds:GetCommandLineA
mov dword_40B7F8, eax
call ___crtGetEnvironmentStringsA
mov dword_40AC60, eax
call __setargv
test eax, eax
jge short loc_4010FF
push 8
call __amsg_exit
pop ecx

loc_4010FF: ; CODE XREF: ___tmainCRTStartup+B1
call __setenvp
test eax, eax
jge short loc_401110
push 9
call __amsg_exit
pop ecx

343

50.1. CRT (WIN32) CHAPTER 50. WINDOWS NT

loc_401110: ; CODE XREF: ___tmainCRTStartup+C2
push 1
call __cinit
pop ecx
test eax, eax
jz short loc_401123
push eax
call __amsg_exit
pop ecx

loc_401123: ; CODE XREF: ___tmainCRTStartup+D6
mov eax, envp
mov dword_40AC80, eax
push eax ; envp
push argv ; argv
push argc ; argc
call _main
add esp, 0Ch
mov [ebp+var_20], eax
cmp [ebp+var_1C], 0
jnz short $LN28
push eax ; uExitCode
call $LN32

$LN28: ; CODE XREF: ___tmainCRTStartup+105
call __cexit
jmp short loc_401186

; ---

$LN27: ; DATA XREF: .rdata:stru_4092D0
mov eax, [ebp+ms_exc.exc_ptr] ; Exception filter 0 for function 401044
mov ecx, [eax]
mov ecx, [ecx]
mov [ebp+var_24], ecx
push eax
push ecx
call __XcptFilter
pop ecx
pop ecx

$LN24:
retn

; ---

$LN14: ; DATA XREF: .rdata:stru_4092D0
mov esp, [ebp+ms_exc.old_esp] ; Exception handler 0 for function 401044
mov eax, [ebp+var_24]
mov [ebp+var_20], eax
cmp [ebp+var_1C], 0
jnz short $LN29
push eax ; int
call __exit

; ---

$LN29: ; CODE XREF: ___tmainCRTStartup+135
call __c_exit

loc_401186: ; CODE XREF: ___tmainCRTStartup+112
mov [ebp+ms_exc.disabled], 0FFFFFFFEh
mov eax, [ebp+var_20]

344

50.2. WIN32 PE CHAPTER 50. WINDOWS NT
call __SEH_epilog4
retn

Here we may see calls to GetCommandLineA(), then to setargv() and setenvp(), which are, apparently, fills global
variables argc, argv, envp.

Finally, main() is called with these arguments.
There are also calls to the functions having self-describing names like heap_init(), ioinit().
Heap is indeed initialized in CRT: if you will try to use malloc(), the program exiting abnormally with the error:

runtime error R6030
- CRT not initialized

Global objects initializations in C++ is also occurred in the CRT before main(): 34.1.3.
A variable main() returns is passed to cexit(), or to $LN32, which in turn calling doexit().
Is it possible to get rid of CRT? Yes, if you know what you do.
MSVC linker has /ENTRY option for setting entry point.

#include <windows.h>

int main()
{

MessageBox (NULL, "hello, world", "caption", MB_OK);
};

Let’s compile it in MSVC 2008.

cl no_crt.c user32.lib /link /entry:main

Wewill get a runnable .exe with size 2560 bytes, there are PE-header inside, instructions calling MessageBox, two strings
in the data segment, MessageBox function imported from user32.dll and nothing else.

This works, but you will not be able to write WinMain with its 4 arguments instead of main(). To be correct, you will be
able to write so, but arguments will not be prepared at the moment of execution.

By the way, it is possible to make .exe even shorter by doing PE3-section aligning less than default 4096 bytes.

cl no_crt.c user32.lib /link /entry:main /align:16

Linker will say:

LINK : warning LNK4108: /ALIGN specified without /DRIVER; image may not run

Wegetting .exeof 720bytes size. It running inWindows7 x86, butnot in x64 (theerrormessagewill be showedwhen trying
to execute). By applying even more e�orts, it is possible to make executable even shorter, but as you can see, compatibility
problemsmay arise quickly.

50.2 Win32 PE
PE is a executable file format used in Windows.

The di�erence between .exe, .dll and .sys is that .exe and .sys usually does not have exports, only imports.
A DLL4, just as any other PE-file, has entry point (OEP) (the function DllMain() is located at it) but usually this function

does nothing.
.sys is usually device driver.
As of drivers, Windows require the checksum is present in PE-file andmust be correct 5.
Starting at Windows Vista, driver PE-files must be also signed by digital signature. It will fail to load without signature.
Any PE-file begins with tiny DOS-program, printing amessage like “This program cannot be run in DOSmode.” — if to run

this program in DOS or Windows 3.1, this message will be printed.
3Portable Executable: 50.2
4Dynamic-link library
5For example, Hiew(54) can calculate it

345

50.2. WIN32 PE CHAPTER 50. WINDOWS NT
50.2.1 Terminology

∙ Module — is a separate file, .exe or.dll.

∙ Process — a program loaded into memory and running. Commonly consisting of one .exe-file and bunch of .dll-files.

∙ Processmemory— thememory a process workswith. Each process has its own. There can usually be loadedmodules,
memory of the stack, heap(s), etc.

∙ VA6 — is address which will be used in program.

∙ Base address—is the address within a process memory at which a module will be loaded.

∙ RVA7—is a VA-address minus base address. Many addresses in PE-file tables uses exactly RVA-addresses.

∙ IAT8—an array of addresses of imported symbols 9. Sometimes, a IMAGE_DIRECTORY_ENTRY_IAT data directory is
points to the IAT. It is worth to note that IDA (as of 6.1) may allocate a pseudo-section named .idata for IAT, even if IAT
is a part of another section!

∙ INT10—an array of names of symbols to be imported11.

50.2.2 Base address
The fact is that severalmodule authorsmay prepare DLL-files for others and there is no possibility to reach agreement, which
addresses will be assigned to whose modules.

So that is why if two necessary for process loading DLLs has the same base addresses, one of which will be loaded at this
base address, and another —at the other spare space in process memory, and each virtual addresses in the second DLL will
be corrected.

O�en, linker inMSVC generates an .exe-files with the base address 0x400000, andwith the code section started at 0x401000.
This mean RVA of code section begin is 0x1000. DLLs are o�en generated by this linked with the base address 0x10000000
12.

There is also another reason to loadmodules at various base addresses, rather at random ones.
It is ASLR13 14.
The fact is that a shellcode trying to be executed on a compromised systemmust call a system functions.
In older OS (in Windows NT line: before Windows Vista), system DLL (like kernel32.dll, user32.dll) were always loaded at

the known addresses, and also if to recall that its versions were rarely changed, an addresses of functions were fixed and
shellcode can call it directly.

In order to avoid this, ASLR method loads your program and all modules it needs at random base addresses, each time
di�erent.

ASLR support is denoted in PE-file by setting the flag
IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE [30].

50.2.3 Subsystem
There is also subsystem field, usually it is native (.sys-driver), console (console application) or GUI (non-console).

50.2.4 OS version

A PE-file also has minimal Windows version needed in order to load it. The table of version numbers stored in PE-file and
corresponding Windows codenames is here.

For example, MSVC2005 compiles .exe-files running onWindowsNT4 (version 4.00), butMSVC2008 is not (files generated
has version 5.00, at least Windows 2000 is needed to run them).

MSVC 2012 by default generates .exe-files of version 6.00, targeting at least Windows Vista, however, by by changing com-
piler’s options, it is possible to force it to compile for Windows XP.

6Virtual Address
7Relative Virtual Address
8Import Address Table
9 [24]
10Import Name Table
11 [24]
12This can be changed by /BASE linker option
13Address Space Layout Randomization
14https://en.wikipedia.org/wiki/Address_space_layout_randomization

346

https://en.wikipedia.org/wiki/Windows_NT#Releases
http://blogs.msdn.com/b/vcblog/archive/2012/10/08/10357555.aspx
http://blogs.msdn.com/b/vcblog/archive/2012/10/08/10357555.aspx
https://en.wikipedia.org/wiki/Address_space_layout_randomization

50.2. WIN32 PE CHAPTER 50. WINDOWS NT
50.2.5 Sections
Division by sections, as it seems, are present in all executable file formats.

It is done in order to separate code from data, and data —from constant data.

∙ There will be flag IMAGE_SCN_CNT_CODE or IMAGE_SCN_MEM_EXECUTE on code section—this is executable code.

∙ On data section—IMAGE_SCN_CNT_INITIALIZED_DATA, IMAGE_SCN_MEM_READ and IMAGE_SCN_MEM_WRITE flags.

∙ On an empty section with uninitialized data—IMAGE_SCN_CNT_UNINITIALIZED_DATA, IMAGE_SCN_MEM_READ and IM-
AGE_SCN_MEM_WRITE.

∙ On a constant data section, in other words, protected fromwriting, there are may be flags
IMAGE_SCN_CNT_INITIALIZED_DATA and IMAGE_SCN_MEM_READ without IMAGE_SCN_MEM_WRITE. A process will crash
if it would try to write to this section.

Each section in PE-file may have a name, however, it is not very important. O�en (but not always) code section have the
name .text, data section — .data, constant data section — .rdata (readable data). Other popular section names are:

∙ .idata—imports section. IDA may create pseudo-section named like this: 50.2.1.

∙ .edata—exports section

∙ .pdata—section containing all information about exceptions in Windows NT for MIPS, IA64 and x64: 50.3.3

∙ .reloc—relocs section

∙ .bss—uninitialized data (BSS)

∙ .tls—thread local storage (TLS)

∙ .rsrc—resources

∙ .CRT—may present in binary files compiled by very old MSVC versions

PE-file packers/encryptors are o�en garble section names or replacing names to their own.
MSVC allows to declare data in arbitrarily named section 15.
Some compilers and linkers can add a section with debugging symbols and other debugging information (e.g. MinGW).

However it is not so in modern versions of MSVC (a separate PDB-files are used there for this purpose).
That is how section described in the file:

typedef struct _IMAGE_SECTION_HEADER {
BYTE Name[IMAGE_SIZEOF_SHORT_NAME];
union {

DWORD PhysicalAddress;
DWORD VirtualSize;

} Misc;
DWORD VirtualAddress;
DWORD SizeOfRawData;
DWORD PointerToRawData;
DWORD PointerToRelocations;
DWORD PointerToLinenumbers;
WORD NumberOfRelocations;
WORD NumberOfLinenumbers;
DWORD Characteristics;

} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;

16

A word about terminology: PointerToRawData it called “O�set” and VirtualAddress is called “RVA” in Hiew.
15http://msdn.microsoft.com/en-us/library/windows/desktop/cc307397.aspx
16http://msdn.microsoft.com/en-us/library/windows/desktop/ms680341(v=vs.85).aspx

347

http://msdn.microsoft.com/en-us/library/windows/desktop/cc307397.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms680341(v=vs.85).aspx

50.2. WIN32 PE CHAPTER 50. WINDOWS NT
50.2.6 Relocations (relocs)
AKA FIXUP-s (at least in Hiew).

This is also present in almost all executable file formats 17.
Obviously, modules can be loaded on various base addresses, but how to deal with e.g. global variables? They must be

accessed by an address. One solution is position-independent code(49.1). But it is not always suitable.
That is why relocations table is present. The addresses of points needs to be corrected in case of loading on another base

address are just enumerated in the table.
For example, there is a global variable at the address 0x410000 and this is how it is accessed:

A1 00 00 41 00 mov eax,[000410000]

Base address of module is 0x400000, RVA of global variable is 0x10000.
If the module is loading on the base address 0x500000, the factual address of the global variable must be 0x510000.
As we can see, address of variable is encoded in the instruction MOV, a�er the byte 0xA1.
That is why address of 4 bytes, a�er 0xA1, is written into relocs table.
, OS-loader enumerates all addresses in table, finds each 32-bit word the address points on, subtracts real, original base

address of it (we getting RVA here), and adds new base address to it.
If module is loading on original base address, nothing happens.
All global variables may be treated like that.
Relocs may have various types, however, in Windows, for x86 processors, the type is usually

IMAGE_REL_BASED_HIGHLOW.
By the way, relocs are darkened in Hiew, for example fig.6.12.

50.2.7 Exports and imports

As all we know, any executable programmust use OS services and other DLL-libraries somehow.
It can be said, functions from one module (usually DLL) must be connected somehow to a points of their calls in other

module (.exe-file or another DLL).
Each DLL has “exports” for this, this is table of functions plus its addresses in a module.
Each .exe-file or DLL has “imports”, this is a table of functions it needs for execution including list of DLL filenames.
A�er loadingmain .exe-file, OS-loader, processes imports table: it loads additional DLL-files, finds function names among

DLL exports and writes their addresses down in an IAT of main .exe-module.
As we can notice, during loading, loader must compare a lot of function names, but strings comparison is not a very fast

procedure, so, there is a support of “ordinals” or “hints”, that is a function numbers stored in the table instead of their names.
That is how they can be located faster in loading DLL. Ordinals are always present in “export” table.
For example, program using MFC18 library usually loads mfc*.dll by ordinals, and in such programs there are no MFC

function names in INT.
While loading such program in IDA, it will asks for a path to mfs*.dll files, in order to determine function names. If not to

tell IDA path to this DLL, they will look likemfc80_123 instead of function names.

Imports section

O�en a separate section is allocated for imports table and everything related to it (with name like .idata), however, it is not
a strict rule.

Imports is also confusing subject because of terminological mess. Let’s try to collect all information in one place.
17Even .exe-files in MS-DOS
18Microso� Foundation Classes

348

50.2. WIN32 PE CHAPTER 50. WINDOWS NT

Figure 50.1: The scheme, uniting all PE-file structures related to imports

Main structure is the array of IMAGE_IMPORT_DESCRIPTOR. Each element for each DLL being imported.
Each element holds RVA-address of text string (DLL name) (Name).
OriginalFirstThink is a RVA-address of INT table. This is array of RVA-addresses, each of which points to the text stringwith

function name. Each string is prefixed by 16-bit integer (“hint”)—“ordinal” of function.
While loading, if it is possible to find function by ordinal, then strings comparison will not occur. Array is terminated by

zero. There is also a pointer to the IAT table with a name FirstThunk, it is just RVA-address of the place where loader will write
addresses of functions resolved.

The points where loader writes addresses, IDA marks like: __imp_CreateFileA, etc.
There are at least two ways to use addresses written by loader.

∙ The code will have instructions like call __imp_CreateFileA, and since the field with the address of function imported is
a global variable in some sense, the address of call instruction (plus 1 or 2) will be added to relocs table, for the case if
module will be loaded on di�erent base address.

But, obviously, thismayenlarge relocs table significantly. Because therearemightbea lotof calls to imported functions
in the module. Furthermore, large relocs table slowing down the process of module loading.

349

50.2. WIN32 PE CHAPTER 50. WINDOWS NT
∙ For each imported function, there is only one jump allocated, using JMP instruction plus reloc to this instruction. Such
points are also called “thunks”. All calls to the imported functions are just CALL instructions to the corresponding
“thunk”. In this case, additional relocs are not necessary because these CALL-s has relative addresses, they are not to
be corrected.

Both of these methods can be combined. Apparently, linker creates individual “thunk” if there are too many calls to the
functions, but by default it is not to be created.

By the way, an array of function addresses to which FirstThunk is pointing is not necessary to be located in IAT section. For
example, I oncewrote thePE_add_import19 utility for adding import to an existing .exe-file. Some timeearlier, in the previous
versions of the utility, at the place of the function you want to substitute by call to another DLL, the following codemy utility
writed:

MOV EAX, [yourdll.dll!function]
JMP EAX

FirstThunk points to the first instruction. In other words, while loading yourdll.dll, loader writes address of the function
function right in the code.

It also worth noting a code section is usually write-protected, so my utility adds IMAGE_SCN_MEM_WRITE flag for code
section. Otherwise, the programwill crash while loading with the error code 5 (access denied).

Onemight ask: what if I supply a programwith the DLL files set which are not supposed to change, is it possible to speed up
loading process?

Yes, it is possible to write addresses of the functions to be imported into FirstThunk arrays in advance. The Timestamp
field is present in the IMAGE_IMPORT_DESCRIPTOR structure. If a value is present there, then loader compare this value with
date-time of the DLL file. If the values are equal to each other, then the loader is not do anything, and loading process will
be faster. This is what called “old-style binding” 20. There is the BIND.EXE utility in Windows SDK for this. For speeding up of
loading of your program, Matt Pietrek in [24], o�ers to do binding shortly a�er your program installation on the computer of
the end user.

PE-files packers/encryptors may also compress/encrypt imports table. In this case, Windows loader, of course, will not load
all necessary DLLs. Therefore, packer/encryptor do this on its own, with the help of LoadLibrary() and GetProcAddress() func-
tions.

In the standard DLLs fromWindows installation, o�en, IAT is located right in the beginning of PE-file. Supposedly, it is done
for optimization. While loading, .exe file is not loaded intomemory as awhole (recall huge install programswhich are started
suspiciously fast), it is “mapped”, and loaded into memory by parts as they are accessed. Probably, Microso� developers
decided it will be faster.

50.2.8 Resources

Resources in a PE-file is just a set of icons, pictures, text strings, dialog descriptions. Perhaps, they were separated from the
main code, so all these things could be multilingual, and it would be simpler to pick text or picture for the language that is
currently set in OS.

As a side e�ect, they can be edited easily and saved back to the executable file, even, if one does not have special knowl-
edge, e.g. using ResHack editor(50.2.11).

50.2.9 .NET
.NET programs are compiled not intomachine code but into special bytecode. Strictly speaking, there is bytecode instead of
usual x86-code in the .exe-file, however, entry point (OEP) is pointing to the tiny fragment of x86-code:

jmp mscoree.dll!_CorExeMain

.NET-loader is located in mscoree.dll, it will process the PE-file. It was so in pre-Windows XP OS. Starting from XP, OS-
loader able to detect the .NET-file and run it without execution of that JMP instruction 21.

19http://yurichev.com/PE_add_imports.html
20http://blogs.msdn.com/b/oldnewthing/archive/2010/03/18/9980802.aspx. There is also “new-style binding”, I will write about it in future
21http://msdn.microsoft.com/en-us/library/xh0859k0(v=vs.110).aspx

350

http://yurichev.com/PE_add_imports.html
http://blogs.msdn.com/b/oldnewthing/archive/2010/03/18/9980802.aspx
http://msdn.microsoft.com/en-us/library/xh0859k0(v=vs.110).aspx

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
50.2.10 TLS
This section holds initialized data for TLS(47) (if needed). When new thread starting, its TLS-data is initialized by the data
from this section.

Aside from that, PE-file specification also provides initialization of TLS-section, so-called, TLS callbacks. If they are present,
they will be called before control passing to themain entry point (OEP). This is usedwidely in the PE-file packers/encryptors.

50.2.11 Tools
∙ objdump (from cygwin) for dumping all PE-file structures.

∙ Hiew(54) as editor.

∙ pefile — Python-library for PE-file processing 22.

∙ ResHack AKA Resource Hacker — resources editor 23.

50.2.12 Further reading
∙ Daniel Pistelli — The .NET File Format 24

50.3 Windows SEH

50.3.1 Let’s forget about MSVC

In Windows, SEH is intended for exceptions handling, nevertheless, it is language-agnostic, it is not connected to the C++ or
OOP in any way. Here we will take a look on SEH in isolated (from C++ and MSVC extensions) form.

Each running process has a chain of SEH-handlers, TIB has address of the last handler. When exception occurred (division
by zero, incorrect address access, user exception triggered by calling to RaiseException() function), OS will find the last
handler in TIB, and will call it with passing all information about CPU state (register values, etc) at themoment of exception.
Exception handler will consider exception, was it made for it? If so, it will handle exception. If no, it will signal to OS that it
cannot handle it and OS will call next handler in chain, until a handler which is able to handle the exception will be found.

At the very end of the chain, there a standard handler, showing well-known dialog box, informing a process crash, some
technical information about CPU state at the crash, and o�ering to collect all information and send it to developers in Mi-
croso�.

Figure 50.2: Windows XP
22https://code.google.com/p/pefile/
23http://www.angusj.com/resourcehacker/
24http://www.codeproject.com/Articles/12585/The-NET-File-Format

351

https://code.google.com/p/pefile/
http://www.angusj.com/resourcehacker/
http://www.codeproject.com/Articles/12585/The-NET-File-Format

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT

Figure 50.3: Windows XP

Figure 50.4: Windows 7

352

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT

Figure 50.5: Windows 8.1

This handler was also called Dr. Watson earlier 25.
By the way, some developers made their own handler, sending information about program crash to themselves. It is

registered with the help of SetUnhandledExceptionFilter() and will be called if OS do not have any other way to handle
exception. Other example is Oracle RDBMS it saves huge dumps containing all possible information about CPU andmemory
state.

Let’s write our own primitive exception handler 26:

#include <windows.h>
#include <stdio.h>

DWORD new_value=1234;

EXCEPTION_DISPOSITION __cdecl except_handler(
struct _EXCEPTION_RECORD *ExceptionRecord,
void * EstablisherFrame,
struct _CONTEXT *ContextRecord,
void * DispatcherContext)

{
unsigned i;

printf ("%s\n", __FUNCTION__);
printf ("ExceptionRecord->ExceptionCode=0x%p\n", ExceptionRecord->ExceptionCode);
printf ("ExceptionRecord->ExceptionFlags=0x%p\n", ExceptionRecord->ExceptionFlags);
printf ("ExceptionRecord->ExceptionAddress=0x%p\n", ExceptionRecord->ExceptionAddress);

if (ExceptionRecord->ExceptionCode==0xE1223344)
{

printf ("That’s for us\n");
// yes, we "handled" the exception
return ExceptionContinueExecution;

}
else if (ExceptionRecord->ExceptionCode==EXCEPTION_ACCESS_VIOLATION)
{

printf ("ContextRecord->Eax=0x%08X\n", ContextRecord->Eax);
// will it be possible to ’fix’ it?
printf ("Trying to fix wrong pointer address\n");
ContextRecord->Eax=(DWORD)&new_value;
// yes, we "handled" the exception
return ExceptionContinueExecution;

}
else
{

printf ("We do not handle this\n");
// someone else’s problem

25https://en.wikipedia.org/wiki/Dr._Watson_(debugger)
26The example is based on the example from [23]
It is compiled with the SAFESEH option: cl seh1.cpp /link /safeseh:no
More about SAFESEH

353

https://en.wikipedia.org/wiki/Dr._Watson_(debugger)
http://msdn.microsoft.com/en-us/library/9a89h429.aspx

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
return ExceptionContinueSearch;

};
}

int main()
{

DWORD handler = (DWORD)except_handler; // take a pointer to our handler

// install exception handler
__asm
{ // make EXCEPTION_REGISTRATION record:

push handler // address of handler function
push FS:[0] // address of previous handler
mov FS:[0],ESP // add new EXECEPTION_REGISTRATION

}

RaiseException (0xE1223344, 0, 0, NULL);

// now do something very bad
int* ptr=NULL;
int val=0;
val=*ptr;
printf ("val=%d\n", val);

// deinstall exception handler
__asm
{ // remove our EXECEPTION_REGISTRATION record

mov eax,[ESP] // get pointer to previous record
mov FS:[0], EAX // install previous record
add esp, 8 // clean our EXECEPTION_REGISTRATION off stack

}

return 0;
}

FS: segment register is pointing to the TIB in win32. The very first element in TIB is a pointer to the last handler in chain.
We saving it in the stack and store an address of our handler there. The structure is named _EXCEPTION_REGISTRATION, it
is a simplest singly-linked list and its elements are stored right in the stack.

Listing 50.1: MSVC/VC/crt/src/exsup.inc
_EXCEPTION_REGISTRATION struc

prev dd ?
handler dd ?

_EXCEPTION_REGISTRATION ends

So each “handler” field points to handler and an each “prev” field points to previous record in the stack. The last record
has 0xFFFFFFFF (-1) in “prev” field.

354

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT

FS:0 +0: __except_list

+4: . . .

+8: . . .

TIB

. . .

Prev=0xFFFFFFFF

Handle handler function

. . .

Prev

Handle handler function

. . .

Prev

Handle handler function

. . .

Stack

When our handler is installed, let’s call RaiseException() 27. This is user exception. Handler will check the code. If the
code is 0xE1223344, it will return ExceptionContinueExecution, which means that handler fixes CPU state (it is usually
EIP/ESP)and theOScan resumethreadexecution. If toalter thecodeslightly so thehandlerwill returnExceptionContinueSearch,
then OS will call other handlers, and very unlikely the one who can handle it will be founded, since no one have information
about it (rather about its code). You will see the standard Windows dialog about process crash.

What is the di�erence between system exceptions and user? Here is a system ones:

as defined in WinBase.h as defined in ntstatus.h numerical value
EXCEPTION_ACCESS_VIOLATION STATUS_ACCESS_VIOLATION 0xC0000005
EXCEPTION_DATATYPE_MISALIGNMENT STATUS_DATATYPE_MISALIGNMENT 0x80000002
EXCEPTION_BREAKPOINT STATUS_BREAKPOINT 0x80000003
EXCEPTION_SINGLE_STEP STATUS_SINGLE_STEP 0x80000004
EXCEPTION_ARRAY_BOUNDS_EXCEEDED STATUS_ARRAY_BOUNDS_EXCEEDED 0xC000008C
EXCEPTION_FLT_DENORMAL_OPERAND STATUS_FLOAT_DENORMAL_OPERAND 0xC000008D
EXCEPTION_FLT_DIVIDE_BY_ZERO STATUS_FLOAT_DIVIDE_BY_ZERO 0xC000008E
EXCEPTION_FLT_INEXACT_RESULT STATUS_FLOAT_INEXACT_RESULT 0xC000008F
EXCEPTION_FLT_INVALID_OPERATION STATUS_FLOAT_INVALID_OPERATION 0xC0000090
EXCEPTION_FLT_OVERFLOW STATUS_FLOAT_OVERFLOW 0xC0000091
EXCEPTION_FLT_STACK_CHECK STATUS_FLOAT_STACK_CHECK 0xC0000092
EXCEPTION_FLT_UNDERFLOW STATUS_FLOAT_UNDERFLOW 0xC0000093
EXCEPTION_INT_DIVIDE_BY_ZERO STATUS_INTEGER_DIVIDE_BY_ZERO 0xC0000094
EXCEPTION_INT_OVERFLOW STATUS_INTEGER_OVERFLOW 0xC0000095
EXCEPTION_PRIV_INSTRUCTION STATUS_PRIVILEGED_INSTRUCTION 0xC0000096
EXCEPTION_IN_PAGE_ERROR STATUS_IN_PAGE_ERROR 0xC0000006
EXCEPTION_ILLEGAL_INSTRUCTION STATUS_ILLEGAL_INSTRUCTION 0xC000001D
EXCEPTION_NONCONTINUABLE_EXCEPTION STATUS_NONCONTINUABLE_EXCEPTION 0xC0000025
EXCEPTION_STACK_OVERFLOW STATUS_STACK_OVERFLOW 0xC00000FD
EXCEPTION_INVALID_DISPOSITION STATUS_INVALID_DISPOSITION 0xC0000026
EXCEPTION_GUARD_PAGE STATUS_GUARD_PAGE_VIOLATION 0x80000001
EXCEPTION_INVALID_HANDLE STATUS_INVALID_HANDLE 0xC0000008
EXCEPTION_POSSIBLE_DEADLOCK STATUS_POSSIBLE_DEADLOCK 0xC0000194
CONTROL_C_EXIT STATUS_CONTROL_C_EXIT 0xC000013A

That is how code is defined:
31 29 28 27 16 15 0

S U0 Facility code Error code

27http://msdn.microsoft.com/en-us/library/windows/desktop/ms680552(v=vs.85).aspx

355

http://msdn.microsoft.com/en-us/library/windows/desktop/ms680552(v=vs.85).aspx

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
S is a basic status code: 11—error; 10—warning; 01—informational; 00—success. U—whether the code is user code.
That is why I chose 0xE1223344— 0xE (1110b)mean this is 1) user exception; 2) error. But to be honest, this example works

finely without these high bits.
Then we try to read a value from memory at the 0th address. Of course, there are nothing at this address in win32, so

exception is raised. However, the very first handlerwill be called—yours, itwill benotified first, checking the codeonequality
to the EXCEPTION_ACCESS_VIOLATION constant.

The code reading frommemory at 0th address is looks like:

Listing 50.2: MSVC 2010
...
xor eax, eax
mov eax, DWORD PTR [eax] ; exception will occur here
push eax
push OFFSET msg
call _printf
add esp, 8
...

Will it be possible to fix error “on fly” and to continue programexecution? Yes, our exception handler can fix EAX value and
now let OS will execute this instruction once again. So that is what we do. printf()will print 1234, because, a�er execution
of our handler, EAXwill not be 0, it will contain address of global variable new_value. Execution will be resumed.

That is what is going on: memory manager in CPU signaling about error, the CPU suspends the thread, it finds exception
handler in the Windows kernel, latter, in turn, is starting to call all handlers in SEH chain, one by one.

I use MSVC 2010 now, but of course, there are no any guarantee that EAXwill be used for pointer.
This address replacement trick is looks showingly, and I o�er it here for SEH internals illustration. Nevertheless, I cannot

recall where it is used for “on-fly” error fixing in practice.
Why SEH-related records are stored right in the stack instead of some other place? Supposedly because then OS will not

need to care about freeing this information, these records will be disposed when function finishing its execution. But I’m not
100%-sure and can be wrong. This is somewhat like alloca(): (4.2.4).

50.3.2 Now let’s get back to MSVC
Supposedly, Microso� programmers need exceptions in C, but not in C++, so they added a non-standard C extension to
MSVC28. It is not related to C++ PL exceptions.

__try
{

...
}
__except(filter code)
{

handler code
}

“Finally” block may be instead of handler code:

__try
{

...
}
__finally
{

...
}

The filter code is an expression, telling whether this handler code is coressponding to the exception raised. If your code
is too big and cannot be fitted into one expression, a separate filter function can be defined.

There are a lot of such constructs in the Windows kernel. Here is couple of examples from there (WRK):
28http://msdn.microsoft.com/en-us/library/swezty51.aspx

356

http://msdn.microsoft.com/en-us/library/swezty51.aspx

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
Listing 50.3: WRK-v1.2/base/ntos/ob/obwait.c

try {

KeReleaseMutant((PKMUTANT)SignalObject,
MUTANT_INCREMENT,
FALSE,
TRUE);

} except((GetExceptionCode () == STATUS_ABANDONED ||
GetExceptionCode () == STATUS_MUTANT_NOT_OWNED)?

EXCEPTION_EXECUTE_HANDLER :
EXCEPTION_CONTINUE_SEARCH) {

Status = GetExceptionCode();

goto WaitExit;
}

Listing 50.4: WRK-v1.2/base/ntos/cache/cachesub.c
try {

RtlCopyBytes((PVOID)((PCHAR)CacheBuffer + PageOffset),
UserBuffer,
MorePages ?

(PAGE_SIZE - PageOffset) :
(ReceivedLength - PageOffset));

} except(CcCopyReadExceptionFilter(GetExceptionInformation(),
&Status)) {

Here is also filter code example:

Listing 50.5: WRK-v1.2/base/ntos/cache/copysup.c
LONG
CcCopyReadExceptionFilter(

IN PEXCEPTION_POINTERS ExceptionPointer,
IN PNTSTATUS ExceptionCode
)

/*++

Routine Description:

This routine serves as a exception filter and has the special job of
extracting the "real" I/O error when Mm raises STATUS_IN_PAGE_ERROR
beneath us.

Arguments:

ExceptionPointer - A pointer to the exception record that contains
the real Io Status.

ExceptionCode - A pointer to an NTSTATUS that is to receive the real
status.

Return Value:

EXCEPTION_EXECUTE_HANDLER

--*/

357

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
{

*ExceptionCode = ExceptionPointer->ExceptionRecord->ExceptionCode;

if ((*ExceptionCode == STATUS_IN_PAGE_ERROR) &&
(ExceptionPointer->ExceptionRecord->NumberParameters >= 3)) {

*ExceptionCode = (NTSTATUS) ExceptionPointer->ExceptionRecord->ExceptionInformation[2];
}

ASSERT(!NT_SUCCESS(*ExceptionCode));

return EXCEPTION_EXECUTE_HANDLER;
}

Internally, SEH is an extension of OS-supported exceptions. But the handler function is _except_handler3 (for SEH3) or
_except_handler4 (for SEH4). The code of this handler is MSVC-related, it is located in its libraries, or inmsvcr*.dll. It is very
important to know that SEH is MSVC thing. Other compilers may o�er something completely di�erent.

SEH3

SEH3 has _except_handler3 as handler functions, and extends _EXCEPTION_REGISTRATION table, adding a pointer to the
scope table and previous try level variable. SEH4 extends scope table by 4 values for bu�er overflow protection.

Scope table is a table consisting of pointers to the filter and handler codes, for each level of try/except nestedness.

FS:0 +0: __except_list

+4: . . .

+8: . . .

TIB

. . .

Prev=0xFFFFFFFF

Handle

. . .

Prev

Handle

. . .

Prev

Handle

scope table

previous try level

EBP

handler function

handler function

_except_handler3

. . .

Stack

0xFFFFFFFF (-1)

filter function

handler/finally function

0

filter function

handler/finally function

1

filter function

handler/finally function

. . .more entries. . .

information about first
try/except block

information about sec-
ond try/except block

information about
third try/except block

scope table

358

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
Again, it is very important to understand that OS take care only of prev/handle fields, and nothing more. It is job of

_except_handler3 function to read other fields, read scope table, and decide, which handler to execute and when.

The source code of _except_handler3 function is closed. However, Sanos OS, which have win32 compatibility layer, has
the same functions redeveloped, which are somewhat equivalent to those in Windows 29. Another reimplementations are
present in Wine30 and ReactOS31.

If the filter pointer is zero, handler pointer is the pointer to a finally code.

During execution, previous try level value in the stack is changing, so the _except_handler3 will know about current state
of nestedness, in order to know which scope table entry to use.

SEH3: one try/except block example

#include <stdio.h>
#include <windows.h>
#include <excpt.h>

int main()
{

int* p = NULL;
__try
{

printf("hello #1!\n");
*p = 13; // causes an access violation exception;
printf("hello #2!\n");

}
__except(GetExceptionCode()==EXCEPTION_ACCESS_VIOLATION ?

EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH)
{

printf("access violation, can’t recover\n");
}

}

Listing 50.6: MSVC 2003
$SG74605 DB ’hello #1!’, 0aH, 00H

ORG $+1
$SG74606 DB ’hello #2!’, 0aH, 00H

ORG $+1
$SG74608 DB ’access violation, can’’t recover’, 0aH, 00H
_DATA ENDS

; scope table

CONST SEGMENT
$T74622 DD 0ffffffffH ; previous try level

DD FLAT:$L74617 ; filter
DD FLAT:$L74618 ; handler

CONST ENDS
_TEXT SEGMENT
$T74621 = -32 ; size = 4
_p$ = -28 ; size = 4
__$SEHRec$ = -24 ; size = 24
_main PROC NEAR

push ebp
mov ebp, esp

29https://code.google.com/p/sanos/source/browse/src/win32/msvcrt/except.c
30https://github.com/mirrors/wine/blob/master/dlls/msvcrt/except_i386.c
31http://doxygen.reactos.org/d4/df2/lib_2sdk_2crt_2except_2except_8c_source.html

359

https://code.google.com/p/sanos/source/browse/src/win32/msvcrt/except.c
https://github.com/mirrors/wine/blob/master/dlls/msvcrt/except_i386.c
http://doxygen.reactos.org/d4/df2/lib_2sdk_2crt_2except_2except_8c_source.html

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
push -1 ; previous try level
push OFFSET FLAT:$T74622 ; scope table
push OFFSET FLAT:__except_handler3 ; handler
mov eax, DWORD PTR fs:__except_list
push eax ; prev
mov DWORD PTR fs:__except_list, esp
add esp, -16
push ebx ; saved 3 registers
push esi ; saved 3 registers
push edi ; saved 3 registers
mov DWORD PTR __$SEHRec$[ebp], esp
mov DWORD PTR _p$[ebp], 0
mov DWORD PTR __$SEHRec$[ebp+20], 0 ; previous try level
push OFFSET FLAT:$SG74605 ; ’hello #1!’
call _printf
add esp, 4
mov eax, DWORD PTR _p$[ebp]
mov DWORD PTR [eax], 13
push OFFSET FLAT:$SG74606 ; ’hello #2!’
call _printf
add esp, 4
mov DWORD PTR __$SEHRec$[ebp+20], -1 ; previous try level
jmp SHORT $L74616

; filter code

$L74617:
$L74627:

mov ecx, DWORD PTR __$SEHRec$[ebp+4]
mov edx, DWORD PTR [ecx]
mov eax, DWORD PTR [edx]
mov DWORD PTR $T74621[ebp], eax
mov eax, DWORD PTR $T74621[ebp]
sub eax, -1073741819; c0000005H
neg eax
sbb eax, eax
inc eax

$L74619:
$L74626:

ret 0

; handler code

$L74618:
mov esp, DWORD PTR __$SEHRec$[ebp]
push OFFSET FLAT:$SG74608 ; ’access violation, can’’t recover’
call _printf
add esp, 4
mov DWORD PTR __$SEHRec$[ebp+20], -1 ; setting previous try level back to -1

$L74616:
xor eax, eax
mov ecx, DWORD PTR __$SEHRec$[ebp+8]
mov DWORD PTR fs:__except_list, ecx
pop edi
pop esi
pop ebx
mov esp, ebp
pop ebp
ret 0

_main ENDP
_TEXT ENDS

360

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
END

Herewe see howSEH frame is being constructed in the stack. Scope table is located in the CONST segment— indeed, these
fields will not be changed. An interesting thing is how previous try level variable is changed. Initial value is 0xFFFFFFFF (−1).
Themoment when body of try statement is opened ismarked as an instructionwriting 0 to the variable. Themoment when
body of try statement is closed, −1 is returned back to it. We also see addresses of filter and handler code. Thus we can
easily see the structure of try/except constructs in the function.

Since the SEH setup code in the function prologuemay be shared betweenmany of functions, sometimes compiler inserts a
call to SEH_prolog() function in the prologue, which do that. SEH cleanup code may be in the SEH_epilog() function.

Let’s try to run this example in tracer:

tracer.exe -l:2.exe --dump-seh

Listing 50.7: tracer.exe output
EXCEPTION_ACCESS_VIOLATION at 2.exe!main+0x44 (0x401054) ExceptionInformation[0]=1
EAX=0x00000000 EBX=0x7efde000 ECX=0x0040cbc8 EDX=0x0008e3c8
ESI=0x00001db1 EDI=0x00000000 EBP=0x0018feac ESP=0x0018fe80
EIP=0x00401054
FLAGS=AF IF RF
* SEH frame at 0x18fe9c prev=0x18ff78 handler=0x401204 (2.exe!_except_handler3)
SEH3 frame. previous trylevel=0
scopetable entry[0]. previous try level=-1, filter=0x401070 (2.exe!main+0x60) handler=0x401088

(2.exe!main+0x78)
* SEH frame at 0x18ff78 prev=0x18ffc4 handler=0x401204 (2.exe!_except_handler3)
SEH3 frame. previous trylevel=0
scopetable entry[0]. previous try level=-1, filter=0x401531 (2.exe!mainCRTStartup+0x18d) handler

=0x401545 (2.exe!mainCRTStartup+0x1a1)
* SEH frame at 0x18ffc4 prev=0x18ffe4 handler=0x771f71f5 (ntdll.dll!__except_handler4)
SEH4 frame. previous trylevel=0
SEH4 header: GSCookieOffset=0xfffffffe GSCookieXOROffset=0x0

EHCookieOffset=0xffffffcc EHCookieXOROffset=0x0
scopetable entry[0]. previous try level=-2, filter=0x771f74d0 (ntdll.dll!___safe_se_handler_table

+0x20) handler=0x771f90eb (ntdll.dll!_TppTerminateProcess@4+0x43)
* SEH frame at 0x18ffe4 prev=0xffffffff handler=0x77247428 (ntdll.dll!_FinalExceptionHandler@16)

We that SEH chain consisting of 4 handlers.

First twoare located inoutexample. Two? Butwemadeonlyone? Yes, anotherone is settingup inCRT function_mainCRTStartup(),
and as it seems, it handles at least FPU exceptions. Its source code can found in MSVS installation: crt/src/winxfltr.c.

Third is SEH4 frame in ntdll.dll, and the fourth handler is not MSVC-related located in ntdll.dll, and it has self-describing
function name.

As you can see, there are 3 types of handlers in one chain: one is not related to MSVC at all (the last one) and two MSVC-
related: SEH3 and SEH4.

SEH3: two try/except blocks example

#include <stdio.h>
#include <windows.h>
#include <excpt.h>

int filter_user_exceptions (unsigned int code, struct _EXCEPTION_POINTERS *ep)
{

printf("in filter. code=0x%08X\n", code);
if (code == 0x112233)
{

printf("yes, that is our exception\n");
return EXCEPTION_EXECUTE_HANDLER;

361

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
}
else
{

printf("not our exception\n");
return EXCEPTION_CONTINUE_SEARCH;

};
}
int main()
{

int* p = NULL;
__try
{

__try
{

printf ("hello!\n");
RaiseException (0x112233, 0, 0, NULL);
printf ("0x112233 raised. now let’s crash\n");
*p = 13; // causes an access violation exception;

}
__except(GetExceptionCode()==EXCEPTION_ACCESS_VIOLATION ?

EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH)
{

printf("access violation, can’t recover\n");
}

}
__except(filter_user_exceptions(GetExceptionCode(), GetExceptionInformation()))
{

// the filter_user_exceptions() function answering to the question
// "is this exception belongs to this block?"
// if yes, do the follow:
printf("user exception caught\n");

}
}

Now there are two try blocks. So the scope table now have two entries, each entry for each block. Previous try level is
changing as execution flow entering or exiting try block.

Listing 50.8: MSVC 2003
$SG74606 DB ’in filter. code=0x%08X’, 0aH, 00H
$SG74608 DB ’yes, that is our exception’, 0aH, 00H
$SG74610 DB ’not our exception’, 0aH, 00H
$SG74617 DB ’hello!’, 0aH, 00H
$SG74619 DB ’0x112233 raised. now let’’s crash’, 0aH, 00H
$SG74621 DB ’access violation, can’’t recover’, 0aH, 00H
$SG74623 DB ’user exception caught’, 0aH, 00H

_code$ = 8 ; size = 4
_ep$ = 12 ; size = 4
_filter_user_exceptions PROC NEAR

push ebp
mov ebp, esp
mov eax, DWORD PTR _code$[ebp]
push eax
push OFFSET FLAT:$SG74606 ; ’in filter. code=0x%08X’
call _printf
add esp, 8
cmp DWORD PTR _code$[ebp], 1122867; 00112233H
jne SHORT $L74607
push OFFSET FLAT:$SG74608 ; ’yes, that is our exception’
call _printf
add esp, 4

362

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
mov eax, 1
jmp SHORT $L74605

$L74607:
push OFFSET FLAT:$SG74610 ; ’not our exception’
call _printf
add esp, 4
xor eax, eax

$L74605:
pop ebp
ret 0

_filter_user_exceptions ENDP

; scope table

CONST SEGMENT
$T74644 DD 0ffffffffH ; previous try level for outer block

DD FLAT:$L74634 ; outer block filter
DD FLAT:$L74635 ; outer block handler
DD 00H ; previous try level for inner block
DD FLAT:$L74638 ; inner block filter
DD FLAT:$L74639 ; inner block handler

CONST ENDS

$T74643 = -36 ; size = 4
$T74642 = -32 ; size = 4
_p$ = -28 ; size = 4
__$SEHRec$ = -24 ; size = 24
_main PROC NEAR

push ebp
mov ebp, esp
push -1 ; previous try level
push OFFSET FLAT:$T74644
push OFFSET FLAT:__except_handler3
mov eax, DWORD PTR fs:__except_list
push eax
mov DWORD PTR fs:__except_list, esp
add esp, -20
push ebx
push esi
push edi
mov DWORD PTR __$SEHRec$[ebp], esp
mov DWORD PTR _p$[ebp], 0
mov DWORD PTR __$SEHRec$[ebp+20], 0 ; outer try block entered. set previous

try level to 0
mov DWORD PTR __$SEHRec$[ebp+20], 1 ; inner try block entered. set previous

try level to 1
push OFFSET FLAT:$SG74617 ; ’hello!’
call _printf
add esp, 4
push 0
push 0
push 0
push 1122867 ; 00112233H
call DWORD PTR __imp__RaiseException@16
push OFFSET FLAT:$SG74619 ; ’0x112233 raised. now let’’s crash’
call _printf
add esp, 4
mov eax, DWORD PTR _p$[ebp]
mov DWORD PTR [eax], 13
mov DWORD PTR __$SEHRec$[ebp+20], 0 ; inner try block exited. set previous

try level back to 0

363

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
jmp SHORT $L74615

; inner block filter

$L74638:
$L74650:

mov ecx, DWORD PTR __$SEHRec$[ebp+4]
mov edx, DWORD PTR [ecx]
mov eax, DWORD PTR [edx]
mov DWORD PTR $T74643[ebp], eax
mov eax, DWORD PTR $T74643[ebp]
sub eax, -1073741819; c0000005H
neg eax
sbb eax, eax
inc eax

$L74640:
$L74648:

ret 0

; inner block handler

$L74639:
mov esp, DWORD PTR __$SEHRec$[ebp]
push OFFSET FLAT:$SG74621 ; ’access violation, can’’t recover’
call _printf
add esp, 4
mov DWORD PTR __$SEHRec$[ebp+20], 0 ; inner try block exited. set previous try level

back to 0

$L74615:
mov DWORD PTR __$SEHRec$[ebp+20], -1 ; outer try block exited, set previous try level

back to -1
jmp SHORT $L74633

; outer block filter

$L74634:
$L74651:

mov ecx, DWORD PTR __$SEHRec$[ebp+4]
mov edx, DWORD PTR [ecx]
mov eax, DWORD PTR [edx]
mov DWORD PTR $T74642[ebp], eax
mov ecx, DWORD PTR __$SEHRec$[ebp+4]
push ecx
mov edx, DWORD PTR $T74642[ebp]
push edx
call _filter_user_exceptions
add esp, 8

$L74636:
$L74649:

ret 0

; outer block handler

$L74635:
mov esp, DWORD PTR __$SEHRec$[ebp]
push OFFSET FLAT:$SG74623 ; ’user exception caught’
call _printf
add esp, 4
mov DWORD PTR __$SEHRec$[ebp+20], -1 ; both try blocks exited. set previous try level

back to -1

364

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
$L74633:

xor eax, eax
mov ecx, DWORD PTR __$SEHRec$[ebp+8]
mov DWORD PTR fs:__except_list, ecx
pop edi
pop esi
pop ebx
mov esp, ebp
pop ebp
ret 0

_main ENDP

If to set abreakpointonprintf() functionwhich is called fromthehandler,wemayalso seehowyetanotherSEHhandler
is added. Perhaps, yet another machinery inside of SEH handling process. Here we also see our scope table consisting of 2
entries.

tracer.exe -l:3.exe bpx=3.exe!printf --dump-seh

Listing 50.9: tracer.exe output
(0) 3.exe!printf
EAX=0x0000001b EBX=0x00000000 ECX=0x0040cc58 EDX=0x0008e3c8
ESI=0x00000000 EDI=0x00000000 EBP=0x0018f840 ESP=0x0018f838
EIP=0x004011b6
FLAGS=PF ZF IF
* SEH frame at 0x18f88c prev=0x18fe9c handler=0x771db4ad (ntdll.dll!ExecuteHandler2@20+0x3a)
* SEH frame at 0x18fe9c prev=0x18ff78 handler=0x4012e0 (3.exe!_except_handler3)
SEH3 frame. previous trylevel=1
scopetable entry[0]. previous try level=-1, filter=0x401120 (3.exe!main+0xb0) handler=0x40113b

(3.exe!main+0xcb)
scopetable entry[1]. previous try level=0, filter=0x4010e8 (3.exe!main+0x78) handler=0x401100 (3.

exe!main+0x90)
* SEH frame at 0x18ff78 prev=0x18ffc4 handler=0x4012e0 (3.exe!_except_handler3)
SEH3 frame. previous trylevel=0
scopetable entry[0]. previous try level=-1, filter=0x40160d (3.exe!mainCRTStartup+0x18d) handler

=0x401621 (3.exe!mainCRTStartup+0x1a1)
* SEH frame at 0x18ffc4 prev=0x18ffe4 handler=0x771f71f5 (ntdll.dll!__except_handler4)
SEH4 frame. previous trylevel=0
SEH4 header: GSCookieOffset=0xfffffffe GSCookieXOROffset=0x0

EHCookieOffset=0xffffffcc EHCookieXOROffset=0x0
scopetable entry[0]. previous try level=-2, filter=0x771f74d0 (ntdll.dll!___safe_se_handler_table

+0x20) handler=0x771f90eb (ntdll.dll!_TppTerminateProcess@4+0x43)
* SEH frame at 0x18ffe4 prev=0xffffffff handler=0x77247428 (ntdll.dll!_FinalExceptionHandler@16)

SEH4

During bu�er overflow (16.2) attack, address of the scope table can be rewritten, so starting at MSVC 2005, SEH3 was up-
graded to SEH4 in order to have bu�er overflow protection. The pointer to scope table is now xored with security cookie.
Scope table extended to have a header, consisting of two pointers to security cookies. Each element have an o�set inside of
stack of another value: this is address of stack frame (EBP) xored with security_cookie as well, placed in the stack. This
value will be read during exception handling and checked, if it is correct. Security cookie in the stack is random each time, so
remote attacker, hopefully, will not be able to predict it.

Initial previous try level is−2 in SEH4 instead of−1.

365

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT

FS:0 +0: __except_list

+4: . . .

+8: . . .

TIB

. . .

Prev=0xFFFFFFFF

Handle

. . .

Prev

Handle

. . .

Prev

Handle

scope
table⊕security_cookie

previous try level

EBP

. . .

EBP⊕security_cookie

. . .

handler function

handler function

_except_handler4

. . .

Stack

GS Cookie O�set

GS Cookie XOR O�set

EH Cookie O�set

EH Cookie XOR O�set

0xFFFFFFFF (-1)

filter function

handler/finally function

0

filter function

handler/finally function

1

filter function

handler/finally function

. . .more entries. . .

information about first
try/except block

information about sec-
ond try/except block

information about
third try/except block

scope table

Here is both examples compiled in MSVC 2012 with SEH4:

Listing 50.10: MSVC 2012: one try block example
$SG85485 DB ’hello #1!’, 0aH, 00H
$SG85486 DB ’hello #2!’, 0aH, 00H
$SG85488 DB ’access violation, can’’t recover’, 0aH, 00H

; scope table

xdata$x SEGMENT
__sehtable$_main DD 0fffffffeH ; GS Cookie Offset

DD 00H ; GS Cookie XOR Offset
DD 0ffffffccH ; EH Cookie Offset
DD 00H ; EH Cookie XOR Offset
DD 0fffffffeH ; previous try level
DD FLAT:$LN12@main ; filter

366

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
DD FLAT:$LN8@main ; handler

xdata$x ENDS

$T2 = -36 ; size = 4
_p$ = -32 ; size = 4
tv68 = -28 ; size = 4
__$SEHRec$ = -24 ; size = 24
_main PROC

push ebp
mov ebp, esp
push -2
push OFFSET __sehtable$_main
push OFFSET __except_handler4
mov eax, DWORD PTR fs:0
push eax
add esp, -20
push ebx
push esi
push edi
mov eax, DWORD PTR ___security_cookie
xor DWORD PTR __$SEHRec$[ebp+16], eax ; xored pointer to scope table
xor eax, ebp
push eax ; ebp ^ security_cookie
lea eax, DWORD PTR __$SEHRec$[ebp+8] ; pointer to VC_EXCEPTION_REGISTRATION_RECORD
mov DWORD PTR fs:0, eax
mov DWORD PTR __$SEHRec$[ebp], esp
mov DWORD PTR _p$[ebp], 0
mov DWORD PTR __$SEHRec$[ebp+20], 0 ; previous try level
push OFFSET $SG85485 ; ’hello #1!’
call _printf
add esp, 4
mov eax, DWORD PTR _p$[ebp]
mov DWORD PTR [eax], 13
push OFFSET $SG85486 ; ’hello #2!’
call _printf
add esp, 4
mov DWORD PTR __$SEHRec$[ebp+20], -2 ; previous try level
jmp SHORT $LN6@main

; filter

$LN7@main:
$LN12@main:

mov ecx, DWORD PTR __$SEHRec$[ebp+4]
mov edx, DWORD PTR [ecx]
mov eax, DWORD PTR [edx]
mov DWORD PTR $T2[ebp], eax
cmp DWORD PTR $T2[ebp], -1073741819 ; c0000005H
jne SHORT $LN4@main
mov DWORD PTR tv68[ebp], 1
jmp SHORT $LN5@main

$LN4@main:
mov DWORD PTR tv68[ebp], 0

$LN5@main:
mov eax, DWORD PTR tv68[ebp]

$LN9@main:
$LN11@main:

ret 0

; handler

367

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
$LN8@main:

mov esp, DWORD PTR __$SEHRec$[ebp]
push OFFSET $SG85488 ; ’access violation, can’’t recover’
call _printf
add esp, 4
mov DWORD PTR __$SEHRec$[ebp+20], -2 ; previous try level

$LN6@main:
xor eax, eax
mov ecx, DWORD PTR __$SEHRec$[ebp+8]
mov DWORD PTR fs:0, ecx
pop ecx
pop edi
pop esi
pop ebx
mov esp, ebp
pop ebp
ret 0

_main ENDP

Listing 50.11: MSVC 2012: two try blocks example
$SG85486 DB ’in filter. code=0x%08X’, 0aH, 00H
$SG85488 DB ’yes, that is our exception’, 0aH, 00H
$SG85490 DB ’not our exception’, 0aH, 00H
$SG85497 DB ’hello!’, 0aH, 00H
$SG85499 DB ’0x112233 raised. now let’’s crash’, 0aH, 00H
$SG85501 DB ’access violation, can’’t recover’, 0aH, 00H
$SG85503 DB ’user exception caught’, 0aH, 00H

xdata$x SEGMENT
__sehtable$_main DD 0fffffffeH ; GS Cookie Offset

DD 00H ; GS Cookie XOR Offset
DD 0ffffffc8H ; EH Cookie Offset
DD 00H ; EH Cookie Offset
DD 0fffffffeH ; previous try level for outer block
DD FLAT:$LN19@main ; outer block filter
DD FLAT:$LN9@main ; outer block handler
DD 00H ; previous try level for inner block
DD FLAT:$LN18@main ; inner block filter
DD FLAT:$LN13@main ; inner block handler

xdata$x ENDS

$T2 = -40 ; size = 4
$T3 = -36 ; size = 4
_p$ = -32 ; size = 4
tv72 = -28 ; size = 4
__$SEHRec$ = -24 ; size = 24
_main PROC

push ebp
mov ebp, esp
push -2 ; initial previous try level
push OFFSET __sehtable$_main
push OFFSET __except_handler4
mov eax, DWORD PTR fs:0
push eax ; prev
add esp, -24
push ebx
push esi
push edi
mov eax, DWORD PTR ___security_cookie
xor DWORD PTR __$SEHRec$[ebp+16], eax ; xored pointer to scope table

368

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
xor eax, ebp ; ebp ^ security_cookie
push eax
lea eax, DWORD PTR __$SEHRec$[ebp+8] ; pointer to

VC_EXCEPTION_REGISTRATION_RECORD
mov DWORD PTR fs:0, eax
mov DWORD PTR __$SEHRec$[ebp], esp
mov DWORD PTR _p$[ebp], 0
mov DWORD PTR __$SEHRec$[ebp+20], 0 ; entering outer try block, setting

previous try level=0
mov DWORD PTR __$SEHRec$[ebp+20], 1 ; entering inner try block, setting

previous try level=1
push OFFSET $SG85497 ; ’hello!’
call _printf
add esp, 4
push 0
push 0
push 0
push 1122867 ; 00112233H
call DWORD PTR __imp__RaiseException@16
push OFFSET $SG85499 ; ’0x112233 raised. now let’’s crash’
call _printf
add esp, 4
mov eax, DWORD PTR _p$[ebp]
mov DWORD PTR [eax], 13
mov DWORD PTR __$SEHRec$[ebp+20], 0 ; exiting inner try block, set previous

try level back to 0
jmp SHORT $LN2@main

; inner block filter

$LN12@main:
$LN18@main:

mov ecx, DWORD PTR __$SEHRec$[ebp+4]
mov edx, DWORD PTR [ecx]
mov eax, DWORD PTR [edx]
mov DWORD PTR $T3[ebp], eax
cmp DWORD PTR $T3[ebp], -1073741819 ; c0000005H
jne SHORT $LN5@main
mov DWORD PTR tv72[ebp], 1
jmp SHORT $LN6@main

$LN5@main:
mov DWORD PTR tv72[ebp], 0

$LN6@main:
mov eax, DWORD PTR tv72[ebp]

$LN14@main:
$LN16@main:

ret 0

; inner block handler

$LN13@main:
mov esp, DWORD PTR __$SEHRec$[ebp]
push OFFSET $SG85501 ; ’access violation, can’’t recover’
call _printf
add esp, 4
mov DWORD PTR __$SEHRec$[ebp+20], 0 ; exiting inner try block, setting

previous try level back to 0
$LN2@main:

mov DWORD PTR __$SEHRec$[ebp+20], -2 ; exiting both blocks, setting previous
try level back to -2

jmp SHORT $LN7@main

369

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT

; outer block filter

$LN8@main:
$LN19@main:

mov ecx, DWORD PTR __$SEHRec$[ebp+4]
mov edx, DWORD PTR [ecx]
mov eax, DWORD PTR [edx]
mov DWORD PTR $T2[ebp], eax
mov ecx, DWORD PTR __$SEHRec$[ebp+4]
push ecx
mov edx, DWORD PTR $T2[ebp]
push edx
call _filter_user_exceptions
add esp, 8

$LN10@main:
$LN17@main:

ret 0

; outer block handler

$LN9@main:
mov esp, DWORD PTR __$SEHRec$[ebp]
push OFFSET $SG85503 ; ’user exception caught’
call _printf
add esp, 4
mov DWORD PTR __$SEHRec$[ebp+20], -2 ; exiting both blocks, setting previous

try level back to -2
$LN7@main:

xor eax, eax
mov ecx, DWORD PTR __$SEHRec$[ebp+8]
mov DWORD PTR fs:0, ecx
pop ecx
pop edi
pop esi
pop ebx
mov esp, ebp
pop ebp
ret 0

_main ENDP

_code$ = 8 ; size = 4
_ep$ = 12 ; size = 4
_filter_user_exceptions PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _code$[ebp]
push eax
push OFFSET $SG85486 ; ’in filter. code=0x%08X’
call _printf
add esp, 8
cmp DWORD PTR _code$[ebp], 1122867 ; 00112233H
jne SHORT $LN2@filter_use
push OFFSET $SG85488 ; ’yes, that is our exception’
call _printf
add esp, 4
mov eax, 1
jmp SHORT $LN3@filter_use
jmp SHORT $LN3@filter_use

$LN2@filter_use:
push OFFSET $SG85490 ; ’not our exception’

370

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
call _printf
add esp, 4
xor eax, eax

$LN3@filter_use:
pop ebp
ret 0

_filter_user_exceptions ENDP

Here is ameaning of cookies: Cookie Offset is a di�erence between address of saved EBP value in stack and the𝐸𝐵𝑃⊕
𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦_𝑐𝑜𝑜𝑘𝑖𝑒 value in the stack. Cookie XOR Offset is additional di�erence between 𝐸𝐵𝑃 ⊕ 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦_𝑐𝑜𝑜𝑘𝑖𝑒 value
and what is stored in the stack. If this equation is not true, a process will be stopped due to stack corruption:

𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦_𝑐𝑜𝑜𝑘𝑖𝑒⊕ (𝐶𝑜𝑜𝑘𝑖𝑒𝑋𝑂𝑅𝑂𝑓𝑓𝑠𝑒𝑡+ 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑜𝑓𝑠𝑎𝑣𝑒𝑑𝐸𝐵𝑃) == 𝑠𝑡𝑎𝑐𝑘[𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑜𝑓𝑠𝑎𝑣𝑒𝑑𝐸𝐵𝑃 + 𝐶𝑜𝑜𝑘𝑖𝑒𝑂𝑓𝑓𝑠𝑒𝑡]

If Cookie Offset is−2, it is not present.
Cookies checking is also implemented inmy tracer, seehttps://github.com/dennis714/tracer/blob/master/SEH.

c for details.

It is still possible to fall back to SEH3 in the compilers a�er (and including) MSVC 2005 by setting /GS- option, however,
CRT code will use SEH4 anyway.

50.3.3 Windows x64
As you might think, it is not very fast thing to set up SEH frame at each function prologue. Another performance problem
is to change previous try level value many times while function execution. So things are changed completely in x64: now all
pointers to try blocks, filter and handler functions are stored in another PE-segment .pdata, that is where OS exception
handler takes all the information.

These are two examples from the previous section compiled for x64:

Listing 50.12: MSVC 2012
$SG86276 DB ’hello #1!’, 0aH, 00H
$SG86277 DB ’hello #2!’, 0aH, 00H
$SG86279 DB ’access violation, can’’t recover’, 0aH, 00H

pdata SEGMENT
$pdata$main DD imagerel $LN9

DD imagerel $LN9+61
DD imagerel $unwind$main

pdata ENDS
pdata SEGMENT
$pdata$main$filt$0 DD imagerel main$filt$0

DD imagerel main$filt$0+32
DD imagerel $unwind$main$filt$0

pdata ENDS
xdata SEGMENT
$unwind$main DD 020609H

DD 030023206H
DD imagerel __C_specific_handler
DD 01H
DD imagerel $LN9+8
DD imagerel $LN9+40
DD imagerel main$filt$0
DD imagerel $LN9+40

$unwind$main$filt$0 DD 020601H
DD 050023206H

xdata ENDS

_TEXT SEGMENT
main PROC
$LN9:

push rbx
sub rsp, 32

371

https://github.com/dennis714/tracer/blob/master/SEH.c
https://github.com/dennis714/tracer/blob/master/SEH.c

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
xor ebx, ebx
lea rcx, OFFSET FLAT:$SG86276 ; ’hello #1!’
call printf
mov DWORD PTR [rbx], 13
lea rcx, OFFSET FLAT:$SG86277 ; ’hello #2!’
call printf
jmp SHORT $LN8@main

$LN6@main:
lea rcx, OFFSET FLAT:$SG86279 ; ’access violation, can’’t recover’
call printf
npad 1

$LN8@main:
xor eax, eax
add rsp, 32
pop rbx
ret 0

main ENDP
_TEXT ENDS

text$x SEGMENT
main$filt$0 PROC

push rbp
sub rsp, 32
mov rbp, rdx

$LN5@main$filt$:
mov rax, QWORD PTR [rcx]
xor ecx, ecx
cmp DWORD PTR [rax], -1073741819; c0000005H
sete cl
mov eax, ecx

$LN7@main$filt$:
add rsp, 32
pop rbp
ret 0
int 3

main$filt$0 ENDP
text$x ENDS

Listing 50.13: MSVC 2012
$SG86277 DB ’in filter. code=0x%08X’, 0aH, 00H
$SG86279 DB ’yes, that is our exception’, 0aH, 00H
$SG86281 DB ’not our exception’, 0aH, 00H
$SG86288 DB ’hello!’, 0aH, 00H
$SG86290 DB ’0x112233 raised. now let’’s crash’, 0aH, 00H
$SG86292 DB ’access violation, can’’t recover’, 0aH, 00H
$SG86294 DB ’user exception caught’, 0aH, 00H

pdata SEGMENT
$pdata$filter_user_exceptions DD imagerel $LN6

DD imagerel $LN6+73
DD imagerel $unwind$filter_user_exceptions

$pdata$main DD imagerel $LN14
DD imagerel $LN14+95
DD imagerel $unwind$main

pdata ENDS
pdata SEGMENT
$pdata$main$filt$0 DD imagerel main$filt$0

DD imagerel main$filt$0+32
DD imagerel $unwind$main$filt$0

$pdata$main$filt$1 DD imagerel main$filt$1

372

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
DD imagerel main$filt$1+30
DD imagerel $unwind$main$filt$1

pdata ENDS

xdata SEGMENT
$unwind$filter_user_exceptions DD 020601H

DD 030023206H
$unwind$main DD 020609H

DD 030023206H
DD imagerel __C_specific_handler
DD 02H
DD imagerel $LN14+8
DD imagerel $LN14+59
DD imagerel main$filt$0
DD imagerel $LN14+59
DD imagerel $LN14+8
DD imagerel $LN14+74
DD imagerel main$filt$1
DD imagerel $LN14+74

$unwind$main$filt$0 DD 020601H
DD 050023206H

$unwind$main$filt$1 DD 020601H
DD 050023206H

xdata ENDS

_TEXT SEGMENT
main PROC
$LN14:

push rbx
sub rsp, 32
xor ebx, ebx
lea rcx, OFFSET FLAT:$SG86288 ; ’hello!’
call printf
xor r9d, r9d
xor r8d, r8d
xor edx, edx
mov ecx, 1122867 ; 00112233H
call QWORD PTR __imp_RaiseException
lea rcx, OFFSET FLAT:$SG86290 ; ’0x112233 raised. now let’’s crash’
call printf
mov DWORD PTR [rbx], 13
jmp SHORT $LN13@main

$LN11@main:
lea rcx, OFFSET FLAT:$SG86292 ; ’access violation, can’’t recover’
call printf
npad 1

$LN13@main:
jmp SHORT $LN9@main

$LN7@main:
lea rcx, OFFSET FLAT:$SG86294 ; ’user exception caught’
call printf
npad 1

$LN9@main:
xor eax, eax
add rsp, 32
pop rbx
ret 0

main ENDP

text$x SEGMENT
main$filt$0 PROC

373

50.3. WINDOWS SEH CHAPTER 50. WINDOWS NT
push rbp
sub rsp, 32
mov rbp, rdx

$LN10@main$filt$:
mov rax, QWORD PTR [rcx]
xor ecx, ecx
cmp DWORD PTR [rax], -1073741819; c0000005H
sete cl
mov eax, ecx

$LN12@main$filt$:
add rsp, 32
pop rbp
ret 0
int 3

main$filt$0 ENDP

main$filt$1 PROC
push rbp
sub rsp, 32
mov rbp, rdx

$LN6@main$filt$:
mov rax, QWORD PTR [rcx]
mov rdx, rcx
mov ecx, DWORD PTR [rax]
call filter_user_exceptions
npad 1

$LN8@main$filt$:
add rsp, 32
pop rbp
ret 0
int 3

main$filt$1 ENDP
text$x ENDS

_TEXT SEGMENT
code$ = 48
ep$ = 56
filter_user_exceptions PROC
$LN6:

push rbx
sub rsp, 32
mov ebx, ecx
mov edx, ecx
lea rcx, OFFSET FLAT:$SG86277 ; ’in filter. code=0x%08X’
call printf
cmp ebx, 1122867; 00112233H
jne SHORT $LN2@filter_use
lea rcx, OFFSET FLAT:$SG86279 ; ’yes, that is our exception’
call printf
mov eax, 1
add rsp, 32
pop rbx
ret 0

$LN2@filter_use:
lea rcx, OFFSET FLAT:$SG86281 ; ’not our exception’
call printf
xor eax, eax
add rsp, 32
pop rbx
ret 0

filter_user_exceptions ENDP

374

50.4. WINDOWS NT: CRITICAL SECTION CHAPTER 50. WINDOWS NT
_TEXT ENDS

Read [32] for more detailed information about this.
Aside from exception information, .pdata is a section containing addresses of almost all function starts and ends, hence

it may be useful for a tools targetting automated analysis.

50.3.4 Readmore about SEH
[23], [32].

50.4 Windows NT: Critical section
Critical sections in any OS are very important in multithreaded environment, mostly used for issuing a guarantee that only
one thread will access some data, while blocking other threads and interrupts.

That is how CRITICAL_SECTION structure is declared in Windows NT line OS:

Listing 50.14: (Windows Research Kernel v1.2) public/sdk/inc/nturtl.h
typedef struct _RTL_CRITICAL_SECTION {

PRTL_CRITICAL_SECTION_DEBUG DebugInfo;

//
// The following three fields control entering and exiting the critical
// section for the resource
//

LONG LockCount;
LONG RecursionCount;
HANDLE OwningThread; // from the thread’s ClientId->UniqueThread
HANDLE LockSemaphore;
ULONG_PTR SpinCount; // force size on 64-bit systems when packed

} RTL_CRITICAL_SECTION, *PRTL_CRITICAL_SECTION;

That’s is how EnterCriticalSection() function works:

Listing 50.15: Windows 2008/ntdll.dll/x86 (begin)
_RtlEnterCriticalSection@4

var_C = dword ptr -0Ch
var_8 = dword ptr -8
var_4 = dword ptr -4
arg_0 = dword ptr 8

mov edi, edi
push ebp
mov ebp, esp
sub esp, 0Ch
push esi
push edi
mov edi, [ebp+arg_0]
lea esi, [edi+4] ; LockCount
mov eax, esi
lock btr dword ptr [eax], 0
jnb wait ; jump if CF=0

loc_7DE922DD:
mov eax, large fs:18h
mov ecx, [eax+24h]
mov [edi+0Ch], ecx
mov dword ptr [edi+8], 1
pop edi

375

50.4. WINDOWS NT: CRITICAL SECTION CHAPTER 50. WINDOWS NT
xor eax, eax
pop esi
mov esp, ebp
pop ebp
retn 4

... skipped

The most important instruction in this code fragment is BTR (prefixed with LOCK): the zeroth bit is stored in CF flag and
cleared in memory. This is atomic operation, blocking all other CPUs to access this piece of memory (take a notice of LOCK
prefix before BTR instruction). If the bit at LockCountwas 1, fine, reset it and return from the function: we are in critical sec-
tion. If not —critical section is already occupied by other thread, then wait.
Wait is done there using WaitForSingleObject().

And here is how LeaveCriticalSection() function works:

Listing 50.16: Windows 2008/ntdll.dll/x86 (begin)
_RtlLeaveCriticalSection@4 proc near

arg_0 = dword ptr 8

mov edi, edi
push ebp
mov ebp, esp
push esi
mov esi, [ebp+arg_0]
add dword ptr [esi+8], 0FFFFFFFFh ; RecursionCount
jnz short loc_7DE922B2
push ebx
push edi
lea edi, [esi+4] ; LockCount
mov dword ptr [esi+0Ch], 0
mov ebx, 1
mov eax, edi
lock xadd [eax], ebx
inc ebx
cmp ebx, 0FFFFFFFFh
jnz loc_7DEA8EB7

loc_7DE922B0:
pop edi
pop ebx

loc_7DE922B2:
xor eax, eax
pop esi
pop ebp
retn 4

... skipped

XADD is “exchange and add”. In this case, it summing LockCount value and 1 and stores result in EBX register, and at the
same time 1 goes to LockCount. This operation is atomic since it is prefixed by LOCK as well, meaning that all other CPUs or
CPU cores in system are blocked from accessing this point of memory.

LOCK prefix is very important: two threads, each of whichworking on separate CPUs or CPU coresmay try to enter critical
section and to modify the value in memory simultaneously, this will result in unpredictable behaviour.

376

Part VI

Tools

377

CHAPTER 51. DISASSEMBLER

Chapter 51

Disassembler

51.1 IDA
Older freeware version is available for downloading 1.

Short hot-keys cheatsheet:

key meaning
Space switch listing and graph view
C convert to code
D convert to data
A convert to string
* convert to array
U undefine
O make o�set of operand
H make decimal number
R make char
B make binary number
Q make hexadecimal number
N rename identificator
? calculator
G jump to address
: add comment
Ctrl-X show refernces to the current function, label, variable (incl. in local stack)
X show references to the function, label, variable, etc
Alt-I search for constant
Ctrl-I search for the next occurrence of constant
Alt-B search for byte sequence
Ctrl-B search for the next occurrence of byte sequence
Alt-T search for text (including instructions, etc)
Ctrl-T search for the next occurrence of text
Alt-P edit current function
Enter jump to function, variable, etc
Esc get back
Num - fold function or selected area
Num + unhide function or area

Function/area foldingmay be useful for hiding function parts when you realize what they do. this is used inmy script2 for
hiding some o�en used patterns of inline code.

1http://www.hex-rays.com/idapro/idadownfreeware.htm
2https://github.com/yurichev/IDA_scripts

378

http://www.hex-rays.com/idapro/idadownfreeware.htm
https://github.com/yurichev/IDA_scripts

CHAPTER 52. DEBUGGER

Chapter 52

Debugger

I use tracer1 instead of debugger.
I stopped to use debugger eventually, since all I need from it is to spot a function’s arguments while execution, or regis-

ters’ state at some point. To load debugger each time is too much, so I wrote a small utility tracer. It has console-interface,
working from command-line, enable us to intercept function execution, set breakpoints at arbitrary places, spot registers’
state, modify it, etc.

However, as for learning purposes, it is highly advisable to trace code in debugger manually, watch how register’s state
changing (e.g. classic So�ICE, OllyDbg, WinDbg highlighting changed registers), flags, data, change them manually, watch
reaction, etc.

1http://yurichev.com/tracer-en.html

379

http://yurichev.com/tracer-en.html

CHAPTER 53. SYSTEM CALLS TRACING

Chapter 53

System calls tracing

53.0.1 strace / dtruss
Will show which system calls (syscalls(48)) are called by process right now. For example:

strace df -h

...

access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
open("/lib/i386-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\220\232\1\0004\0\0\0"..., 512) = 512
fstat64(3, {st_mode=S_IFREG|0755, st_size=1770984, ...}) = 0
mmap2(NULL, 1780508, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0xb75b3000

MacOSX has dtruss for the same aim.
The Cygwin also has strace, but if I understood correctly, it works only for .exe-files compiled for cygwin environment

itself.

380

CHAPTER 54. OTHER TOOLS

Chapter 54

Other tools

∙ Microso� Visual Studio Express1: Stripped-down free Visual Studio version, convenient for simple experiments.

∙ Hiew2 for small modifications of code in binary files.

∙ binary grep: the small utility for constants searching (or just any byte sequence) in a big pile of files, including non-
executable: https://github.com/yurichev/bgrep.

1http://www.microsoft.com/express/Downloads/
2http://www.hiew.ru/

381

https://github.com/yurichev/bgrep
http://www.microsoft.com/express/Downloads/
http://www.hiew.ru/

Part VII

More examples

382

CHAPTER 55. DONGLES

Chapter 55

Dongles

Occasionally I do so�ware copy-protection dongle replacements, or “dongle emulators” and here are couple examples ofmy
work 1.

About one of not described cases youmay also read here: [36].

55.1 Example #1: MacOS Classic and PowerPC

I’ve got a program for MacOS Classic 2, for PowerPC. The company who developed the so�ware product was disappeared
long time ago, so the (legal) customer was afraid of physical dongle damage.

While running without dongle connected, amessage box with a text "Invalid Security Device" appeared. Luckily, this text
string can be found easily in the executable binary file.

I was not very familiar both with Mac OS Classic and PowerPC, but I tried anyway.
IDA opens the executable file smoothly, reported its type as "PEF (Mac OS or Be OS executable)" (indeed, it is a standard

Mac OS Classic file format).
By searching for the text string with error message, I’ve got into this code fragment:

...

seg000:000C87FC 38 60 00 01 li %r3, 1
seg000:000C8800 48 03 93 41 bl check1
seg000:000C8804 60 00 00 00 nop
seg000:000C8808 54 60 06 3F clrlwi. %r0, %r3, 24
seg000:000C880C 40 82 00 40 bne OK
seg000:000C8810 80 62 9F D8 lwz %r3, TC_aInvalidSecurityDevice

...

Yes, this is PowerPC code. The CPU is very typical 32-bit RISC of 1990s era. Each instruction occupies 4 bytes (just as in
MIPS and ARM) and its names are somewhat resembling MIPS instruction names.

check1() is a function name I gave it to lately. BL is Branch Link instruction, e.g., intended for subroutines calling. The
crucial point is BNE instruction jumping if dongle protection check is passed or not jumping if error is occurred: then the
address of the text string being loaded into r3 register for the subsequent passage into message box routine.

From the [33] I’ve got to know the r3 register is used for values returning (and r4, in case of 64-bit values).
Another yet unknown instruction is CLRLWI. From [13] I’ve got to know that this instruction do both clearing and loading.

In our case, it clears 24 high bits from the value in r3 and put it to r0, so it is analogical to MOVZX in x86 (13.1), but it also sets
the flags, so the BNE can check them a�er.

Let’s take a look into check1() function:

seg000:00101B40 check1: # CODE XREF: seg000:00063E7Cp
seg000:00101B40 # sub_64070+160p ...
seg000:00101B40
seg000:00101B40 .set arg_8, 8
seg000:00101B40
seg000:00101B40 7C 08 02 A6 mflr %r0
seg000:00101B44 90 01 00 08 stw %r0, arg_8(%sp)

1Readmore about it: http://yurichev.com/dongles.html
2pre-UNIX MacOS

383

http://yurichev.com/dongles.html

55.1. EXAMPLE #1: MACOS CLASSIC AND POWERPC CHAPTER 55. DONGLES
seg000:00101B48 94 21 FF C0 stwu %sp, -0x40(%sp)
seg000:00101B4C 48 01 6B 39 bl check2
seg000:00101B50 60 00 00 00 nop
seg000:00101B54 80 01 00 48 lwz %r0, 0x40+arg_8(%sp)
seg000:00101B58 38 21 00 40 addi %sp, %sp, 0x40
seg000:00101B5C 7C 08 03 A6 mtlr %r0
seg000:00101B60 4E 80 00 20 blr
seg000:00101B60 # End of function check1

As I can see in IDA, that function is called from many places in program, but only r3 register value is checked right a�er
each call. All this function does is calling other function, so it is thunk function: there is function prologue and epilogue, but
r3 register is not touched, so checkl() returns what check2() returns.

BLR3 is seems return from function, but since IDA does functions layout, we probably do not need to be interesting in this.
It seems, since it is a typical RISC, subroutines are called using link register, just like in ARM.

check2() function is more complex:

seg000:00118684 check2: # CODE XREF: check1+Cp
seg000:00118684
seg000:00118684 .set var_18, -0x18
seg000:00118684 .set var_C, -0xC
seg000:00118684 .set var_8, -8
seg000:00118684 .set var_4, -4
seg000:00118684 .set arg_8, 8
seg000:00118684
seg000:00118684 93 E1 FF FC stw %r31, var_4(%sp)
seg000:00118688 7C 08 02 A6 mflr %r0
seg000:0011868C 83 E2 95 A8 lwz %r31, off_1485E8 # dword_24B704
seg000:00118690 .using dword_24B704, %r31
seg000:00118690 93 C1 FF F8 stw %r30, var_8(%sp)
seg000:00118694 93 A1 FF F4 stw %r29, var_C(%sp)
seg000:00118698 7C 7D 1B 78 mr %r29, %r3
seg000:0011869C 90 01 00 08 stw %r0, arg_8(%sp)
seg000:001186A0 54 60 06 3E clrlwi %r0, %r3, 24
seg000:001186A4 28 00 00 01 cmplwi %r0, 1
seg000:001186A8 94 21 FF B0 stwu %sp, -0x50(%sp)
seg000:001186AC 40 82 00 0C bne loc_1186B8
seg000:001186B0 38 60 00 01 li %r3, 1
seg000:001186B4 48 00 00 6C b exit
seg000:001186B8 #

seg000:001186B8
seg000:001186B8 loc_1186B8: # CODE XREF: check2+28j
seg000:001186B8 48 00 03 D5 bl sub_118A8C
seg000:001186BC 60 00 00 00 nop
seg000:001186C0 3B C0 00 00 li %r30, 0
seg000:001186C4
seg000:001186C4 skip: # CODE XREF: check2+94j
seg000:001186C4 57 C0 06 3F clrlwi. %r0, %r30, 24
seg000:001186C8 41 82 00 18 beq loc_1186E0
seg000:001186CC 38 61 00 38 addi %r3, %sp, 0x50+var_18
seg000:001186D0 80 9F 00 00 lwz %r4, dword_24B704
seg000:001186D4 48 00 C0 55 bl .RBEFINDNEXT
seg000:001186D8 60 00 00 00 nop
seg000:001186DC 48 00 00 1C b loc_1186F8
seg000:001186E0 #

seg000:001186E0
seg000:001186E0 loc_1186E0: # CODE XREF: check2+44j
seg000:001186E0 80 BF 00 00 lwz %r5, dword_24B704
seg000:001186E4 38 81 00 38 addi %r4, %sp, 0x50+var_18

3(PowerPC) Branch to Link Register

384

55.1. EXAMPLE #1: MACOS CLASSIC AND POWERPC CHAPTER 55. DONGLES
seg000:001186E8 38 60 08 C2 li %r3, 0x1234
seg000:001186EC 48 00 BF 99 bl .RBEFINDFIRST
seg000:001186F0 60 00 00 00 nop
seg000:001186F4 3B C0 00 01 li %r30, 1
seg000:001186F8
seg000:001186F8 loc_1186F8: # CODE XREF: check2+58j
seg000:001186F8 54 60 04 3F clrlwi. %r0, %r3, 16
seg000:001186FC 41 82 00 0C beq must_jump
seg000:00118700 38 60 00 00 li %r3, 0 # error
seg000:00118704 48 00 00 1C b exit
seg000:00118708 #

seg000:00118708
seg000:00118708 must_jump: # CODE XREF: check2+78j
seg000:00118708 7F A3 EB 78 mr %r3, %r29
seg000:0011870C 48 00 00 31 bl check3
seg000:00118710 60 00 00 00 nop
seg000:00118714 54 60 06 3F clrlwi. %r0, %r3, 24
seg000:00118718 41 82 FF AC beq skip
seg000:0011871C 38 60 00 01 li %r3, 1
seg000:00118720
seg000:00118720 exit: # CODE XREF: check2+30j
seg000:00118720 # check2+80j
seg000:00118720 80 01 00 58 lwz %r0, 0x50+arg_8(%sp)
seg000:00118724 38 21 00 50 addi %sp, %sp, 0x50
seg000:00118728 83 E1 FF FC lwz %r31, var_4(%sp)
seg000:0011872C 7C 08 03 A6 mtlr %r0
seg000:00118730 83 C1 FF F8 lwz %r30, var_8(%sp)
seg000:00118734 83 A1 FF F4 lwz %r29, var_C(%sp)
seg000:00118738 4E 80 00 20 blr
seg000:00118738 # End of function check2

I’m lucky again: some function names are leaved in the executable (debug symbols section? I’m not sure, since I’m not
very familiarwith the file format,maybe it is somekindofPEexports? (50.2.7)), like.RBEFINDNEXT()and.RBEFINDFIRST().
Eventually these functions are calling other functionswith names like .GetNextDeviceViaUSB(), .USBSendPKT(), so these
are clearly dealing with USB device.

There are even a function named .GetNextEve3Device()—sounds familiar, therewas Sentinel Eve3 dongle for ADBport
(present on Macs) in 1990s.

Let’s first take a look on how r3 register is set before return simultaneously ignoring all we see. We know that “good” r3
value should be non-zero, zero r3 will lead execution flow to the message box with an error message.

There are two instructions li %r3, 1 present in the function and one li %r3, 0 (Load Immediate, i.e., loading value
into register). The very first instruction at 0x001186B0—frankly speaking, I don’t knowwhat it mean, I need somemore time
to learn PowerPC assembly language.

What we see next is, however, easier to understand: .RBEFINDFIRST() is called: in case of its failure, 0 is written into
r3 and we jump to exit, otherwise another function is called (check3()) —if it is failing too, the .RBEFINDNEXT() is called,
probably, in order to look for another USB device.

N.B.: clrlwi. %r0, %r3, 16 it is analogical to what we already saw, but it clears 16 bits, i.e., .RBEFINDFIRST() prob-
ably returns 16-bit value.

Bmeaning branch is unconditional jump.
BEQ is inverse instruction of BNE.
Let’s see check3():

seg000:0011873C check3: # CODE XREF: check2+88p
seg000:0011873C
seg000:0011873C .set var_18, -0x18
seg000:0011873C .set var_C, -0xC
seg000:0011873C .set var_8, -8
seg000:0011873C .set var_4, -4
seg000:0011873C .set arg_8, 8
seg000:0011873C
seg000:0011873C 93 E1 FF FC stw %r31, var_4(%sp)
seg000:00118740 7C 08 02 A6 mflr %r0

385

55.1. EXAMPLE #1: MACOS CLASSIC AND POWERPC CHAPTER 55. DONGLES
seg000:00118744 38 A0 00 00 li %r5, 0
seg000:00118748 93 C1 FF F8 stw %r30, var_8(%sp)
seg000:0011874C 83 C2 95 A8 lwz %r30, off_1485E8 # dword_24B704
seg000:00118750 .using dword_24B704, %r30
seg000:00118750 93 A1 FF F4 stw %r29, var_C(%sp)
seg000:00118754 3B A3 00 00 addi %r29, %r3, 0
seg000:00118758 38 60 00 00 li %r3, 0
seg000:0011875C 90 01 00 08 stw %r0, arg_8(%sp)
seg000:00118760 94 21 FF B0 stwu %sp, -0x50(%sp)
seg000:00118764 80 DE 00 00 lwz %r6, dword_24B704
seg000:00118768 38 81 00 38 addi %r4, %sp, 0x50+var_18
seg000:0011876C 48 00 C0 5D bl .RBEREAD
seg000:00118770 60 00 00 00 nop
seg000:00118774 54 60 04 3F clrlwi. %r0, %r3, 16
seg000:00118778 41 82 00 0C beq loc_118784
seg000:0011877C 38 60 00 00 li %r3, 0
seg000:00118780 48 00 02 F0 b exit
seg000:00118784 #

seg000:00118784
seg000:00118784 loc_118784: # CODE XREF: check3+3Cj
seg000:00118784 A0 01 00 38 lhz %r0, 0x50+var_18(%sp)
seg000:00118788 28 00 04 B2 cmplwi %r0, 0x1100
seg000:0011878C 41 82 00 0C beq loc_118798
seg000:00118790 38 60 00 00 li %r3, 0
seg000:00118794 48 00 02 DC b exit
seg000:00118798 #

seg000:00118798
seg000:00118798 loc_118798: # CODE XREF: check3+50j
seg000:00118798 80 DE 00 00 lwz %r6, dword_24B704
seg000:0011879C 38 81 00 38 addi %r4, %sp, 0x50+var_18
seg000:001187A0 38 60 00 01 li %r3, 1
seg000:001187A4 38 A0 00 00 li %r5, 0
seg000:001187A8 48 00 C0 21 bl .RBEREAD
seg000:001187AC 60 00 00 00 nop
seg000:001187B0 54 60 04 3F clrlwi. %r0, %r3, 16
seg000:001187B4 41 82 00 0C beq loc_1187C0
seg000:001187B8 38 60 00 00 li %r3, 0
seg000:001187BC 48 00 02 B4 b exit
seg000:001187C0 #

seg000:001187C0
seg000:001187C0 loc_1187C0: # CODE XREF: check3+78j
seg000:001187C0 A0 01 00 38 lhz %r0, 0x50+var_18(%sp)
seg000:001187C4 28 00 06 4B cmplwi %r0, 0x09AB
seg000:001187C8 41 82 00 0C beq loc_1187D4
seg000:001187CC 38 60 00 00 li %r3, 0
seg000:001187D0 48 00 02 A0 b exit
seg000:001187D4 #

seg000:001187D4
seg000:001187D4 loc_1187D4: # CODE XREF: check3+8Cj
seg000:001187D4 4B F9 F3 D9 bl sub_B7BAC
seg000:001187D8 60 00 00 00 nop
seg000:001187DC 54 60 06 3E clrlwi %r0, %r3, 24
seg000:001187E0 2C 00 00 05 cmpwi %r0, 5
seg000:001187E4 41 82 01 00 beq loc_1188E4
seg000:001187E8 40 80 00 10 bge loc_1187F8
seg000:001187EC 2C 00 00 04 cmpwi %r0, 4
seg000:001187F0 40 80 00 58 bge loc_118848

386

55.1. EXAMPLE #1: MACOS CLASSIC AND POWERPC CHAPTER 55. DONGLES
seg000:001187F4 48 00 01 8C b loc_118980
seg000:001187F8 #

seg000:001187F8
seg000:001187F8 loc_1187F8: # CODE XREF: check3+ACj
seg000:001187F8 2C 00 00 0B cmpwi %r0, 0xB
seg000:001187FC 41 82 00 08 beq loc_118804
seg000:00118800 48 00 01 80 b loc_118980
seg000:00118804 #

seg000:00118804
seg000:00118804 loc_118804: # CODE XREF: check3+C0j
seg000:00118804 80 DE 00 00 lwz %r6, dword_24B704
seg000:00118808 38 81 00 38 addi %r4, %sp, 0x50+var_18
seg000:0011880C 38 60 00 08 li %r3, 8
seg000:00118810 38 A0 00 00 li %r5, 0
seg000:00118814 48 00 BF B5 bl .RBEREAD
seg000:00118818 60 00 00 00 nop
seg000:0011881C 54 60 04 3F clrlwi. %r0, %r3, 16
seg000:00118820 41 82 00 0C beq loc_11882C
seg000:00118824 38 60 00 00 li %r3, 0
seg000:00118828 48 00 02 48 b exit
seg000:0011882C #

seg000:0011882C
seg000:0011882C loc_11882C: # CODE XREF: check3+E4j
seg000:0011882C A0 01 00 38 lhz %r0, 0x50+var_18(%sp)
seg000:00118830 28 00 11 30 cmplwi %r0, 0xFEA0
seg000:00118834 41 82 00 0C beq loc_118840
seg000:00118838 38 60 00 00 li %r3, 0
seg000:0011883C 48 00 02 34 b exit
seg000:00118840 #

seg000:00118840
seg000:00118840 loc_118840: # CODE XREF: check3+F8j
seg000:00118840 38 60 00 01 li %r3, 1
seg000:00118844 48 00 02 2C b exit
seg000:00118848 #

seg000:00118848
seg000:00118848 loc_118848: # CODE XREF: check3+B4j
seg000:00118848 80 DE 00 00 lwz %r6, dword_24B704
seg000:0011884C 38 81 00 38 addi %r4, %sp, 0x50+var_18
seg000:00118850 38 60 00 0A li %r3, 0xA
seg000:00118854 38 A0 00 00 li %r5, 0
seg000:00118858 48 00 BF 71 bl .RBEREAD
seg000:0011885C 60 00 00 00 nop
seg000:00118860 54 60 04 3F clrlwi. %r0, %r3, 16
seg000:00118864 41 82 00 0C beq loc_118870
seg000:00118868 38 60 00 00 li %r3, 0
seg000:0011886C 48 00 02 04 b exit
seg000:00118870 #

seg000:00118870
seg000:00118870 loc_118870: # CODE XREF: check3+128j
seg000:00118870 A0 01 00 38 lhz %r0, 0x50+var_18(%sp)
seg000:00118874 28 00 03 F3 cmplwi %r0, 0xA6E1
seg000:00118878 41 82 00 0C beq loc_118884
seg000:0011887C 38 60 00 00 li %r3, 0
seg000:00118880 48 00 01 F0 b exit
seg000:00118884 #

387

55.1. EXAMPLE #1: MACOS CLASSIC AND POWERPC CHAPTER 55. DONGLES

seg000:00118884
seg000:00118884 loc_118884: # CODE XREF: check3+13Cj
seg000:00118884 57 BF 06 3E clrlwi %r31, %r29, 24
seg000:00118888 28 1F 00 02 cmplwi %r31, 2
seg000:0011888C 40 82 00 0C bne loc_118898
seg000:00118890 38 60 00 01 li %r3, 1
seg000:00118894 48 00 01 DC b exit
seg000:00118898 #

seg000:00118898
seg000:00118898 loc_118898: # CODE XREF: check3+150j
seg000:00118898 80 DE 00 00 lwz %r6, dword_24B704
seg000:0011889C 38 81 00 38 addi %r4, %sp, 0x50+var_18
seg000:001188A0 38 60 00 0B li %r3, 0xB
seg000:001188A4 38 A0 00 00 li %r5, 0
seg000:001188A8 48 00 BF 21 bl .RBEREAD
seg000:001188AC 60 00 00 00 nop
seg000:001188B0 54 60 04 3F clrlwi. %r0, %r3, 16
seg000:001188B4 41 82 00 0C beq loc_1188C0
seg000:001188B8 38 60 00 00 li %r3, 0
seg000:001188BC 48 00 01 B4 b exit
seg000:001188C0 #

seg000:001188C0
seg000:001188C0 loc_1188C0: # CODE XREF: check3+178j
seg000:001188C0 A0 01 00 38 lhz %r0, 0x50+var_18(%sp)
seg000:001188C4 28 00 23 1C cmplwi %r0, 0x1C20
seg000:001188C8 41 82 00 0C beq loc_1188D4
seg000:001188CC 38 60 00 00 li %r3, 0
seg000:001188D0 48 00 01 A0 b exit
seg000:001188D4 #

seg000:001188D4
seg000:001188D4 loc_1188D4: # CODE XREF: check3+18Cj
seg000:001188D4 28 1F 00 03 cmplwi %r31, 3
seg000:001188D8 40 82 01 94 bne error
seg000:001188DC 38 60 00 01 li %r3, 1
seg000:001188E0 48 00 01 90 b exit
seg000:001188E4 #

seg000:001188E4
seg000:001188E4 loc_1188E4: # CODE XREF: check3+A8j
seg000:001188E4 80 DE 00 00 lwz %r6, dword_24B704
seg000:001188E8 38 81 00 38 addi %r4, %sp, 0x50+var_18
seg000:001188EC 38 60 00 0C li %r3, 0xC
seg000:001188F0 38 A0 00 00 li %r5, 0
seg000:001188F4 48 00 BE D5 bl .RBEREAD
seg000:001188F8 60 00 00 00 nop
seg000:001188FC 54 60 04 3F clrlwi. %r0, %r3, 16
seg000:00118900 41 82 00 0C beq loc_11890C
seg000:00118904 38 60 00 00 li %r3, 0
seg000:00118908 48 00 01 68 b exit
seg000:0011890C #

seg000:0011890C
seg000:0011890C loc_11890C: # CODE XREF: check3+1C4j
seg000:0011890C A0 01 00 38 lhz %r0, 0x50+var_18(%sp)
seg000:00118910 28 00 1F 40 cmplwi %r0, 0x40FF
seg000:00118914 41 82 00 0C beq loc_118920
seg000:00118918 38 60 00 00 li %r3, 0

388

55.1. EXAMPLE #1: MACOS CLASSIC AND POWERPC CHAPTER 55. DONGLES
seg000:0011891C 48 00 01 54 b exit
seg000:00118920 #

seg000:00118920
seg000:00118920 loc_118920: # CODE XREF: check3+1D8j
seg000:00118920 57 BF 06 3E clrlwi %r31, %r29, 24
seg000:00118924 28 1F 00 02 cmplwi %r31, 2
seg000:00118928 40 82 00 0C bne loc_118934
seg000:0011892C 38 60 00 01 li %r3, 1
seg000:00118930 48 00 01 40 b exit
seg000:00118934 #

seg000:00118934
seg000:00118934 loc_118934: # CODE XREF: check3+1ECj
seg000:00118934 80 DE 00 00 lwz %r6, dword_24B704
seg000:00118938 38 81 00 38 addi %r4, %sp, 0x50+var_18
seg000:0011893C 38 60 00 0D li %r3, 0xD
seg000:00118940 38 A0 00 00 li %r5, 0
seg000:00118944 48 00 BE 85 bl .RBEREAD
seg000:00118948 60 00 00 00 nop
seg000:0011894C 54 60 04 3F clrlwi. %r0, %r3, 16
seg000:00118950 41 82 00 0C beq loc_11895C
seg000:00118954 38 60 00 00 li %r3, 0
seg000:00118958 48 00 01 18 b exit
seg000:0011895C #

seg000:0011895C
seg000:0011895C loc_11895C: # CODE XREF: check3+214j
seg000:0011895C A0 01 00 38 lhz %r0, 0x50+var_18(%sp)
seg000:00118960 28 00 07 CF cmplwi %r0, 0xFC7
seg000:00118964 41 82 00 0C beq loc_118970
seg000:00118968 38 60 00 00 li %r3, 0
seg000:0011896C 48 00 01 04 b exit
seg000:00118970 #

seg000:00118970
seg000:00118970 loc_118970: # CODE XREF: check3+228j
seg000:00118970 28 1F 00 03 cmplwi %r31, 3
seg000:00118974 40 82 00 F8 bne error
seg000:00118978 38 60 00 01 li %r3, 1
seg000:0011897C 48 00 00 F4 b exit
seg000:00118980 #

seg000:00118980
seg000:00118980 loc_118980: # CODE XREF: check3+B8j
seg000:00118980 # check3+C4j
seg000:00118980 80 DE 00 00 lwz %r6, dword_24B704
seg000:00118984 38 81 00 38 addi %r4, %sp, 0x50+var_18
seg000:00118988 3B E0 00 00 li %r31, 0
seg000:0011898C 38 60 00 04 li %r3, 4
seg000:00118990 38 A0 00 00 li %r5, 0
seg000:00118994 48 00 BE 35 bl .RBEREAD
seg000:00118998 60 00 00 00 nop
seg000:0011899C 54 60 04 3F clrlwi. %r0, %r3, 16
seg000:001189A0 41 82 00 0C beq loc_1189AC
seg000:001189A4 38 60 00 00 li %r3, 0
seg000:001189A8 48 00 00 C8 b exit
seg000:001189AC #

seg000:001189AC
seg000:001189AC loc_1189AC: # CODE XREF: check3+264j

389

55.1. EXAMPLE #1: MACOS CLASSIC AND POWERPC CHAPTER 55. DONGLES
seg000:001189AC A0 01 00 38 lhz %r0, 0x50+var_18(%sp)
seg000:001189B0 28 00 1D 6A cmplwi %r0, 0xAED0
seg000:001189B4 40 82 00 0C bne loc_1189C0
seg000:001189B8 3B E0 00 01 li %r31, 1
seg000:001189BC 48 00 00 14 b loc_1189D0
seg000:001189C0 #

seg000:001189C0
seg000:001189C0 loc_1189C0: # CODE XREF: check3+278j
seg000:001189C0 28 00 18 28 cmplwi %r0, 0x2818
seg000:001189C4 41 82 00 0C beq loc_1189D0
seg000:001189C8 38 60 00 00 li %r3, 0
seg000:001189CC 48 00 00 A4 b exit
seg000:001189D0 #

seg000:001189D0
seg000:001189D0 loc_1189D0: # CODE XREF: check3+280j
seg000:001189D0 # check3+288j
seg000:001189D0 57 A0 06 3E clrlwi %r0, %r29, 24
seg000:001189D4 28 00 00 02 cmplwi %r0, 2
seg000:001189D8 40 82 00 20 bne loc_1189F8
seg000:001189DC 57 E0 06 3F clrlwi. %r0, %r31, 24
seg000:001189E0 41 82 00 10 beq good2
seg000:001189E4 48 00 4C 69 bl sub_11D64C
seg000:001189E8 60 00 00 00 nop
seg000:001189EC 48 00 00 84 b exit
seg000:001189F0 #

seg000:001189F0
seg000:001189F0 good2: # CODE XREF: check3+2A4j
seg000:001189F0 38 60 00 01 li %r3, 1
seg000:001189F4 48 00 00 7C b exit
seg000:001189F8 #

seg000:001189F8
seg000:001189F8 loc_1189F8: # CODE XREF: check3+29Cj
seg000:001189F8 80 DE 00 00 lwz %r6, dword_24B704
seg000:001189FC 38 81 00 38 addi %r4, %sp, 0x50+var_18
seg000:00118A00 38 60 00 05 li %r3, 5
seg000:00118A04 38 A0 00 00 li %r5, 0
seg000:00118A08 48 00 BD C1 bl .RBEREAD
seg000:00118A0C 60 00 00 00 nop
seg000:00118A10 54 60 04 3F clrlwi. %r0, %r3, 16
seg000:00118A14 41 82 00 0C beq loc_118A20
seg000:00118A18 38 60 00 00 li %r3, 0
seg000:00118A1C 48 00 00 54 b exit
seg000:00118A20 #

seg000:00118A20
seg000:00118A20 loc_118A20: # CODE XREF: check3+2D8j
seg000:00118A20 A0 01 00 38 lhz %r0, 0x50+var_18(%sp)
seg000:00118A24 28 00 11 D3 cmplwi %r0, 0xD300
seg000:00118A28 40 82 00 0C bne loc_118A34
seg000:00118A2C 3B E0 00 01 li %r31, 1
seg000:00118A30 48 00 00 14 b good1
seg000:00118A34 #

seg000:00118A34
seg000:00118A34 loc_118A34: # CODE XREF: check3+2ECj
seg000:00118A34 28 00 1A EB cmplwi %r0, 0xEBA1
seg000:00118A38 41 82 00 0C beq good1

390

55.2. EXAMPLE #2: SCO OPENSERVER CHAPTER 55. DONGLES
seg000:00118A3C 38 60 00 00 li %r3, 0
seg000:00118A40 48 00 00 30 b exit
seg000:00118A44 #

seg000:00118A44
seg000:00118A44 good1: # CODE XREF: check3+2F4j
seg000:00118A44 # check3+2FCj
seg000:00118A44 57 A0 06 3E clrlwi %r0, %r29, 24
seg000:00118A48 28 00 00 03 cmplwi %r0, 3
seg000:00118A4C 40 82 00 20 bne error
seg000:00118A50 57 E0 06 3F clrlwi. %r0, %r31, 24
seg000:00118A54 41 82 00 10 beq good
seg000:00118A58 48 00 4B F5 bl sub_11D64C
seg000:00118A5C 60 00 00 00 nop
seg000:00118A60 48 00 00 10 b exit
seg000:00118A64 #

seg000:00118A64
seg000:00118A64 good: # CODE XREF: check3+318j
seg000:00118A64 38 60 00 01 li %r3, 1
seg000:00118A68 48 00 00 08 b exit
seg000:00118A6C #

seg000:00118A6C
seg000:00118A6C error: # CODE XREF: check3+19Cj
seg000:00118A6C # check3+238j ...
seg000:00118A6C 38 60 00 00 li %r3, 0
seg000:00118A70
seg000:00118A70 exit: # CODE XREF: check3+44j
seg000:00118A70 # check3+58j ...
seg000:00118A70 80 01 00 58 lwz %r0, 0x50+arg_8(%sp)
seg000:00118A74 38 21 00 50 addi %sp, %sp, 0x50
seg000:00118A78 83 E1 FF FC lwz %r31, var_4(%sp)
seg000:00118A7C 7C 08 03 A6 mtlr %r0
seg000:00118A80 83 C1 FF F8 lwz %r30, var_8(%sp)
seg000:00118A84 83 A1 FF F4 lwz %r29, var_C(%sp)
seg000:00118A88 4E 80 00 20 blr
seg000:00118A88 # End of function check3

There are a lot of calls to.RBEREAD(). The function is probably return somevalues from thedongle, so they are compared
here with hard-coded variables using CMPLWI.

We also see that r3 register is also filled before each call to .RBEREAD() by one of these values: 0, 1, 8, 0xA, 0xB, 0xC, 0xD,
4, 5. Probably memory address or something like that?

Yes, indeed, by googling these function names it is easy to find Sentinel Eve3 dongle manual!
I probably even do not need to learn other PowerPC instructions: all this function does is just calls .RBEREAD(), compare

its results with constants and returns 1 if comparisons are fine or 0 otherwise.
OK, all we’ve got is that check1() should return always 1 or any other non-zero value. But since I’m not very confident in

PowerPC instructions, I will be careful: I will patch jumps in check2() at 0x001186FC and 0x00118718.
At 0x001186FC I wrote bytes 0x48 and 0 thus converting BEQ instruction into B (unconditional jump): I spot its opcode in

the code without even referring to [13].
At 0x00118718 I wrote 0x60 and 3 zero bytes thus converting it to NOP instruction: I spot its opcode in the code too.
Summarizing, such small modifications can be done with IDA andminimal assembly language knowledge.

55.2 Example #2: SCO OpenServer
An ancient so�ware for SCO OpenServer from 1997 developed by a company disappeared long time ago.

There is a special dongle driver to be installed in the system, containing text strings: “Copyright 1989, Rainbow Technolo-
gies, Inc., Irvine, CA” and “Sentinel Integrated Driver Ver. 3.0 ”.

A�er driver installation in SCO OpenServer, these device files are appeared in /dev filesystem:

/dev/rbsl8

391

55.2. EXAMPLE #2: SCO OPENSERVER CHAPTER 55. DONGLES
/dev/rbsl9
/dev/rbsl10

The programwithout dongle connected reports error, but the error string cannot be found in the executables.
Thanks to IDA, it does its job perfectly working out COFF executable used in SCO OpenServer.
I’ve tried to find “rbsl” and indeed, found it in this code fragment:

.text:00022AB8 public SSQC

.text:00022AB8 SSQC proc near ; CODE XREF: SSQ+7p

.text:00022AB8

.text:00022AB8 var_44 = byte ptr -44h

.text:00022AB8 var_29 = byte ptr -29h

.text:00022AB8 arg_0 = dword ptr 8

.text:00022AB8

.text:00022AB8 push ebp

.text:00022AB9 mov ebp, esp

.text:00022ABB sub esp, 44h

.text:00022ABE push edi

.text:00022ABF mov edi, offset unk_4035D0

.text:00022AC4 push esi

.text:00022AC5 mov esi, [ebp+arg_0]

.text:00022AC8 push ebx

.text:00022AC9 push esi

.text:00022ACA call strlen

.text:00022ACF add esp, 4

.text:00022AD2 cmp eax, 2

.text:00022AD7 jnz loc_22BA4

.text:00022ADD inc esi

.text:00022ADE mov al, [esi-1]

.text:00022AE1 movsx eax, al

.text:00022AE4 cmp eax, ’3’

.text:00022AE9 jz loc_22B84

.text:00022AEF cmp eax, ’4’

.text:00022AF4 jz loc_22B94

.text:00022AFA cmp eax, ’5’

.text:00022AFF jnz short loc_22B6B

.text:00022B01 movsx ebx, byte ptr [esi]

.text:00022B04 sub ebx, ’0’

.text:00022B07 mov eax, 7

.text:00022B0C add eax, ebx

.text:00022B0E push eax

.text:00022B0F lea eax, [ebp+var_44]

.text:00022B12 push offset aDevSlD ; "/dev/sl%d"

.text:00022B17 push eax

.text:00022B18 call nl_sprintf

.text:00022B1D push 0 ; int

.text:00022B1F push offset aDevRbsl8 ; char *

.text:00022B24 call _access

.text:00022B29 add esp, 14h

.text:00022B2C cmp eax, 0FFFFFFFFh

.text:00022B31 jz short loc_22B48

.text:00022B33 lea eax, [ebx+7]

.text:00022B36 push eax

.text:00022B37 lea eax, [ebp+var_44]

.text:00022B3A push offset aDevRbslD ; "/dev/rbsl%d"

.text:00022B3F push eax

.text:00022B40 call nl_sprintf

.text:00022B45 add esp, 0Ch

.text:00022B48

.text:00022B48 loc_22B48: ; CODE XREF: SSQC+79j

.text:00022B48 mov edx, [edi]

.text:00022B4A test edx, edx

392

55.2. EXAMPLE #2: SCO OPENSERVER CHAPTER 55. DONGLES
.text:00022B4C jle short loc_22B57
.text:00022B4E push edx ; int
.text:00022B4F call _close
.text:00022B54 add esp, 4
.text:00022B57
.text:00022B57 loc_22B57: ; CODE XREF: SSQC+94j
.text:00022B57 push 2 ; int
.text:00022B59 lea eax, [ebp+var_44]
.text:00022B5C push eax ; char *
.text:00022B5D call _open
.text:00022B62 add esp, 8
.text:00022B65 test eax, eax
.text:00022B67 mov [edi], eax
.text:00022B69 jge short loc_22B78
.text:00022B6B
.text:00022B6B loc_22B6B: ; CODE XREF: SSQC+47j
.text:00022B6B mov eax, 0FFFFFFFFh
.text:00022B70 pop ebx
.text:00022B71 pop esi
.text:00022B72 pop edi
.text:00022B73 mov esp, ebp
.text:00022B75 pop ebp
.text:00022B76 retn
.text:00022B76 ; ---
.text:00022B77 align 4
.text:00022B78
.text:00022B78 loc_22B78: ; CODE XREF: SSQC+B1j
.text:00022B78 pop ebx
.text:00022B79 pop esi
.text:00022B7A pop edi
.text:00022B7B xor eax, eax
.text:00022B7D mov esp, ebp
.text:00022B7F pop ebp
.text:00022B80 retn
.text:00022B80 ; ---
.text:00022B81 align 4
.text:00022B84
.text:00022B84 loc_22B84: ; CODE XREF: SSQC+31j
.text:00022B84 mov al, [esi]
.text:00022B86 pop ebx
.text:00022B87 pop esi
.text:00022B88 pop edi
.text:00022B89 mov ds:byte_407224, al
.text:00022B8E mov esp, ebp
.text:00022B90 xor eax, eax
.text:00022B92 pop ebp
.text:00022B93 retn
.text:00022B94 ; ---
.text:00022B94
.text:00022B94 loc_22B94: ; CODE XREF: SSQC+3Cj
.text:00022B94 mov al, [esi]
.text:00022B96 pop ebx
.text:00022B97 pop esi
.text:00022B98 pop edi
.text:00022B99 mov ds:byte_407225, al
.text:00022B9E mov esp, ebp
.text:00022BA0 xor eax, eax
.text:00022BA2 pop ebp
.text:00022BA3 retn
.text:00022BA4 ; ---
.text:00022BA4

393

55.2. EXAMPLE #2: SCO OPENSERVER CHAPTER 55. DONGLES
.text:00022BA4 loc_22BA4: ; CODE XREF: SSQC+1Fj
.text:00022BA4 movsx eax, ds:byte_407225
.text:00022BAB push esi
.text:00022BAC push eax
.text:00022BAD movsx eax, ds:byte_407224
.text:00022BB4 push eax
.text:00022BB5 lea eax, [ebp+var_44]
.text:00022BB8 push offset a46CCS ; "46%c%c%s"
.text:00022BBD push eax
.text:00022BBE call nl_sprintf
.text:00022BC3 lea eax, [ebp+var_44]
.text:00022BC6 push eax
.text:00022BC7 call strlen
.text:00022BCC add esp, 18h
.text:00022BCF cmp eax, 1Bh
.text:00022BD4 jle short loc_22BDA
.text:00022BD6 mov [ebp+var_29], 0
.text:00022BDA
.text:00022BDA loc_22BDA: ; CODE XREF: SSQC+11Cj
.text:00022BDA lea eax, [ebp+var_44]
.text:00022BDD push eax
.text:00022BDE call strlen
.text:00022BE3 push eax ; unsigned int
.text:00022BE4 lea eax, [ebp+var_44]
.text:00022BE7 push eax ; void *
.text:00022BE8 mov eax, [edi]
.text:00022BEA push eax ; int
.text:00022BEB call _write
.text:00022BF0 add esp, 10h
.text:00022BF3 pop ebx
.text:00022BF4 pop esi
.text:00022BF5 pop edi
.text:00022BF6 mov esp, ebp
.text:00022BF8 pop ebp
.text:00022BF9 retn
.text:00022BF9 ; ---
.text:00022BFA db 0Eh dup(90h)
.text:00022BFA SSQC endp

Yes, indeed, the program should communicate with driver somehow and that is how it is.
The only place SSQC() function called is the thunk function:

.text:0000DBE8 public SSQ

.text:0000DBE8 SSQ proc near ; CODE XREF: sys_info+A9p

.text:0000DBE8 ; sys_info+CBp ...

.text:0000DBE8

.text:0000DBE8 arg_0 = dword ptr 8

.text:0000DBE8

.text:0000DBE8 push ebp

.text:0000DBE9 mov ebp, esp

.text:0000DBEB mov edx, [ebp+arg_0]

.text:0000DBEE push edx

.text:0000DBEF call SSQC

.text:0000DBF4 add esp, 4

.text:0000DBF7 mov esp, ebp

.text:0000DBF9 pop ebp

.text:0000DBFA retn

.text:0000DBFA ; ---

.text:0000DBFB align 4

.text:0000DBFB SSQ endp

SSQ() is called at least from 2 functions.

394

55.2. EXAMPLE #2: SCO OPENSERVER CHAPTER 55. DONGLES
One of these is:

.data:0040169C _51_52_53 dd offset aPressAnyKeyT_0 ; DATA XREF: init_sys+392r

.data:0040169C ; sys_info+A1r

.data:0040169C ; "PRESS ANY KEY TO CONTINUE: "

.data:004016A0 dd offset a51 ; "51"

.data:004016A4 dd offset a52 ; "52"

.data:004016A8 dd offset a53 ; "53"

...

.data:004016B8 _3C_or_3E dd offset a3c ; DATA XREF: sys_info:loc_D67Br

.data:004016B8 ; "3C"

.data:004016BC dd offset a3e ; "3E"

; these names I gave to the labels:
.data:004016C0 answers1 dd 6B05h ; DATA XREF: sys_info+E7r
.data:004016C4 dd 3D87h
.data:004016C8 answers2 dd 3Ch ; DATA XREF: sys_info+F2r
.data:004016CC dd 832h
.data:004016D0 _C_and_B db 0Ch ; DATA XREF: sys_info+BAr
.data:004016D0 ; sys_info:OKr
.data:004016D1 byte_4016D1 db 0Bh ; DATA XREF: sys_info+FDr
.data:004016D2 db 0

...

.text:0000D652 xor eax, eax

.text:0000D654 mov al, ds:ctl_port

.text:0000D659 mov ecx, _51_52_53[eax*4]

.text:0000D660 push ecx

.text:0000D661 call SSQ

.text:0000D666 add esp, 4

.text:0000D669 cmp eax, 0FFFFFFFFh

.text:0000D66E jz short loc_D6D1

.text:0000D670 xor ebx, ebx

.text:0000D672 mov al, _C_and_B

.text:0000D677 test al, al

.text:0000D679 jz short loc_D6C0

.text:0000D67B

.text:0000D67B loc_D67B: ; CODE XREF: sys_info+106j

.text:0000D67B mov eax, _3C_or_3E[ebx*4]

.text:0000D682 push eax

.text:0000D683 call SSQ

.text:0000D688 push offset a4g ; "4G"

.text:0000D68D call SSQ

.text:0000D692 push offset a0123456789 ; "0123456789"

.text:0000D697 call SSQ

.text:0000D69C add esp, 0Ch

.text:0000D69F mov edx, answers1[ebx*4]

.text:0000D6A6 cmp eax, edx

.text:0000D6A8 jz short OK

.text:0000D6AA mov ecx, answers2[ebx*4]

.text:0000D6B1 cmp eax, ecx

.text:0000D6B3 jz short OK

.text:0000D6B5 mov al, byte_4016D1[ebx]

.text:0000D6BB inc ebx

.text:0000D6BC test al, al

.text:0000D6BE jnz short loc_D67B

.text:0000D6C0

.text:0000D6C0 loc_D6C0: ; CODE XREF: sys_info+C1j

395

55.2. EXAMPLE #2: SCO OPENSERVER CHAPTER 55. DONGLES
.text:0000D6C0 inc ds:ctl_port
.text:0000D6C6 xor eax, eax
.text:0000D6C8 mov al, ds:ctl_port
.text:0000D6CD cmp eax, edi
.text:0000D6CF jle short loc_D652
.text:0000D6D1
.text:0000D6D1 loc_D6D1: ; CODE XREF: sys_info+98j
.text:0000D6D1 ; sys_info+B6j
.text:0000D6D1 mov edx, [ebp+var_8]
.text:0000D6D4 inc edx
.text:0000D6D5 mov [ebp+var_8], edx
.text:0000D6D8 cmp edx, 3
.text:0000D6DB jle loc_D641
.text:0000D6E1
.text:0000D6E1 loc_D6E1: ; CODE XREF: sys_info+16j
.text:0000D6E1 ; sys_info+51j ...
.text:0000D6E1 pop ebx
.text:0000D6E2 pop edi
.text:0000D6E3 mov esp, ebp
.text:0000D6E5 pop ebp
.text:0000D6E6 retn
.text:0000D6E6 ; ---
.text:0000D6E7 align 4
.text:0000D6E8
.text:0000D6E8 OK: ; CODE XREF: sys_info+F0j
.text:0000D6E8 ; sys_info+FBj
.text:0000D6E8 mov al, _C_and_B[ebx]
.text:0000D6EE pop ebx
.text:0000D6EF pop edi
.text:0000D6F0 mov ds:ctl_model, al
.text:0000D6F5 mov esp, ebp
.text:0000D6F7 pop ebp
.text:0000D6F8 retn
.text:0000D6F8 sys_info endp

“3C” and “3E” are sounds familiar: there was a Sentinel Pro dongle by Rainbow with no memory, providing only one
crypto-hashing secret function.

But what is hash-function? Simplest example is CRC32, an algorithm providing “stronger” checksum for in-
tegrity checking purposes. it is impossible to restore original text from the hash value, it just hasmuch less infor-
mation: there can be long text, but CRC32 result is always limited to 32 bits. But CRC32 is not cryptographically
secure: it is known how to alter a text in that way so the resulting CRC32 hash value will be one we need. Crypto-
graphical hash functions are protected from this. They are widely used to hash user passwords in order to store
them in the database, like MD5, SHA1, etc. Indeed: an internet forum database may not contain user passwords
(stolen databasewill compromise all user’s passwords) but only hashes (a cracker will not be able to reveal pass-
words). Besides, an internet forum engine is not aware of your password, it should only check if its hash is the
same as in the database, then it will give you access in this case. One of the simplest passwords cracking meth-
ods is just to brute-force all passwords in order to wait when resulting value will be the same as we need. Other
methods are muchmore complex.

But let’s back to the program. So the program can only check the presence or absence dongle connected. No other
information canbewritten to suchdonglewith nomemory. Two-character codes are commands (we can seehowcommands
are handled in SSQC() function) and all other strings are hashed inside the dongle transforming into 16-bit number. The
algorithmwas secret, so it was not possible towrite driver replacement or to remake dongle hardware emulating it perfectly.
However, it was always possible to intercept all accesses to it and to find what constants the hash function results compared
to. Needless to say it is possible to build a robust so�ware copy protection scheme based on secret cryptographical hash-
function: let it to encrypt/decrypt data files your so�ware dealing with.

But let’s back to the code.
Codes 51/52/53 are used for LPT printer port selection. 3x/4x is for “family” selection (that’s how Sentinel Pro dongles are

di�erentiated from each other: more than one dongle can be connected to LPT port).

396

55.2. EXAMPLE #2: SCO OPENSERVER CHAPTER 55. DONGLES
The only non-2-character string passed to the hashing function is "0123456789". Then, the result is compared against the

set of valid results. If it is correct, 0xC or 0xB is to be written into global variable ctl_model.
Another text string to be passed is "PRESS ANY KEY TO CONTINUE: ", but the result is not checked. I don’t know why,

probably by mistake. (What a strange feeling: to reveal bugs in such ancient so�ware.)
Let’s see where the value from the global variable ctl_mode is used.
One of such places is:

.text:0000D708 prep_sys proc near ; CODE XREF: init_sys+46Ap

.text:0000D708

.text:0000D708 var_14 = dword ptr -14h

.text:0000D708 var_10 = byte ptr -10h

.text:0000D708 var_8 = dword ptr -8

.text:0000D708 var_2 = word ptr -2

.text:0000D708

.text:0000D708 push ebp

.text:0000D709 mov eax, ds:net_env

.text:0000D70E mov ebp, esp

.text:0000D710 sub esp, 1Ch

.text:0000D713 test eax, eax

.text:0000D715 jnz short loc_D734

.text:0000D717 mov al, ds:ctl_model

.text:0000D71C test al, al

.text:0000D71E jnz short loc_D77E

.text:0000D720 mov [ebp+var_8], offset aIeCvulnvvOkgT_ ; "Ie-cvulnvV\\\bOKG]
T_"

.text:0000D727 mov edx, 7

.text:0000D72C jmp loc_D7E7

...

.text:0000D7E7 loc_D7E7: ; CODE XREF: prep_sys+24j

.text:0000D7E7 ; prep_sys+33j

.text:0000D7E7 push edx

.text:0000D7E8 mov edx, [ebp+var_8]

.text:0000D7EB push 20h

.text:0000D7ED push edx

.text:0000D7EE push 16h

.text:0000D7F0 call err_warn

.text:0000D7F5 push offset station_sem

.text:0000D7FA call ClosSem

.text:0000D7FF call startup_err

If it is 0, an encrypted error message is passed into decryption routine and printed.
Error strings decryption routine is seems simple xoring:

.text:0000A43C err_warn proc near ; CODE XREF: prep_sys+E8p

.text:0000A43C ; prep_sys2+2Fp ...

.text:0000A43C

.text:0000A43C var_55 = byte ptr -55h

.text:0000A43C var_54 = byte ptr -54h

.text:0000A43C arg_0 = dword ptr 8

.text:0000A43C arg_4 = dword ptr 0Ch

.text:0000A43C arg_8 = dword ptr 10h

.text:0000A43C arg_C = dword ptr 14h

.text:0000A43C

.text:0000A43C push ebp

.text:0000A43D mov ebp, esp

.text:0000A43F sub esp, 54h

.text:0000A442 push edi

.text:0000A443 mov ecx, [ebp+arg_8]

.text:0000A446 xor edi, edi

.text:0000A448 test ecx, ecx

397

55.2. EXAMPLE #2: SCO OPENSERVER CHAPTER 55. DONGLES
.text:0000A44A push esi
.text:0000A44B jle short loc_A466
.text:0000A44D mov esi, [ebp+arg_C] ; key
.text:0000A450 mov edx, [ebp+arg_4] ; string
.text:0000A453
.text:0000A453 loc_A453: ; CODE XREF: err_warn+28j
.text:0000A453 xor eax, eax
.text:0000A455 mov al, [edx+edi]
.text:0000A458 xor eax, esi
.text:0000A45A add esi, 3
.text:0000A45D inc edi
.text:0000A45E cmp edi, ecx
.text:0000A460 mov [ebp+edi+var_55], al
.text:0000A464 jl short loc_A453
.text:0000A466
.text:0000A466 loc_A466: ; CODE XREF: err_warn+Fj
.text:0000A466 mov [ebp+edi+var_54], 0
.text:0000A46B mov eax, [ebp+arg_0]
.text:0000A46E cmp eax, 18h
.text:0000A473 jnz short loc_A49C
.text:0000A475 lea eax, [ebp+var_54]
.text:0000A478 push eax
.text:0000A479 call status_line
.text:0000A47E add esp, 4
.text:0000A481
.text:0000A481 loc_A481: ; CODE XREF: err_warn+72j
.text:0000A481 push 50h
.text:0000A483 push 0
.text:0000A485 lea eax, [ebp+var_54]
.text:0000A488 push eax
.text:0000A489 call memset
.text:0000A48E call pcv_refresh
.text:0000A493 add esp, 0Ch
.text:0000A496 pop esi
.text:0000A497 pop edi
.text:0000A498 mov esp, ebp
.text:0000A49A pop ebp
.text:0000A49B retn
.text:0000A49C ; ---
.text:0000A49C
.text:0000A49C loc_A49C: ; CODE XREF: err_warn+37j
.text:0000A49C push 0
.text:0000A49E lea eax, [ebp+var_54]
.text:0000A4A1 mov edx, [ebp+arg_0]
.text:0000A4A4 push edx
.text:0000A4A5 push eax
.text:0000A4A6 call pcv_lputs
.text:0000A4AB add esp, 0Ch
.text:0000A4AE jmp short loc_A481
.text:0000A4AE err_warn endp

That’swhy Iwasunable to finderrormessages in the executable files, because theyare encrypted, this is popular practice.
Another call to SSQ() hashing function passes “o�ln” string to it and comparing result with 0xFE81 and 0x12A9. If it not

so, it deals with some timer() function (maybe waiting for poorly connected dongle to be reconnected and check again?)
and then decrypt another error message to dump.

.text:0000DA55 loc_DA55: ; CODE XREF: sync_sys+24Cj

.text:0000DA55 push offset aOffln ; "offln"

.text:0000DA5A call SSQ

.text:0000DA5F add esp, 4

.text:0000DA62 mov dl, [ebx]

.text:0000DA64 mov esi, eax

398

55.2. EXAMPLE #2: SCO OPENSERVER CHAPTER 55. DONGLES
.text:0000DA66 cmp dl, 0Bh
.text:0000DA69 jnz short loc_DA83
.text:0000DA6B cmp esi, 0FE81h
.text:0000DA71 jz OK
.text:0000DA77 cmp esi, 0FFFFF8EFh
.text:0000DA7D jz OK
.text:0000DA83
.text:0000DA83 loc_DA83: ; CODE XREF: sync_sys+201j
.text:0000DA83 mov cl, [ebx]
.text:0000DA85 cmp cl, 0Ch
.text:0000DA88 jnz short loc_DA9F
.text:0000DA8A cmp esi, 12A9h
.text:0000DA90 jz OK
.text:0000DA96 cmp esi, 0FFFFFFF5h
.text:0000DA99 jz OK
.text:0000DA9F
.text:0000DA9F loc_DA9F: ; CODE XREF: sync_sys+220j
.text:0000DA9F mov eax, [ebp+var_18]
.text:0000DAA2 test eax, eax
.text:0000DAA4 jz short loc_DAB0
.text:0000DAA6 push 24h
.text:0000DAA8 call timer
.text:0000DAAD add esp, 4
.text:0000DAB0
.text:0000DAB0 loc_DAB0: ; CODE XREF: sync_sys+23Cj
.text:0000DAB0 inc edi
.text:0000DAB1 cmp edi, 3
.text:0000DAB4 jle short loc_DA55
.text:0000DAB6 mov eax, ds:net_env
.text:0000DABB test eax, eax
.text:0000DABD jz short error

...

.text:0000DAF7 error: ; CODE XREF: sync_sys+255j

.text:0000DAF7 ; sync_sys+274j ...

.text:0000DAF7 mov [ebp+var_8], offset encrypted_error_message2

.text:0000DAFE mov [ebp+var_C], 17h ; decrypting key

.text:0000DB05 jmp decrypt_end_print_message

...

; this name I gave to label:
.text:0000D9B6 decrypt_end_print_message: ; CODE XREF: sync_sys+29Dj
.text:0000D9B6 ; sync_sys+2ABj
.text:0000D9B6 mov eax, [ebp+var_18]
.text:0000D9B9 test eax, eax
.text:0000D9BB jnz short loc_D9FB
.text:0000D9BD mov edx, [ebp+var_C] ; key
.text:0000D9C0 mov ecx, [ebp+var_8] ; string
.text:0000D9C3 push edx
.text:0000D9C4 push 20h
.text:0000D9C6 push ecx
.text:0000D9C7 push 18h
.text:0000D9C9 call err_warn
.text:0000D9CE push 0Fh
.text:0000D9D0 push 190h
.text:0000D9D5 call sound
.text:0000D9DA mov [ebp+var_18], 1
.text:0000D9E1 add esp, 18h
.text:0000D9E4 call pcv_kbhit

399

55.2. EXAMPLE #2: SCO OPENSERVER CHAPTER 55. DONGLES
.text:0000D9E9 test eax, eax
.text:0000D9EB jz short loc_D9FB

...

; this name I gave to label:
.data:00401736 encrypted_error_message2 db 74h, 72h, 78h, 43h, 48h, 6, 5Ah, 49h, 4Ch, 2 dup(47h)
.data:00401736 db 51h, 4Fh, 47h, 61h, 20h, 22h, 3Ch, 24h, 33h, 36h, 76h
.data:00401736 db 3Ah, 33h, 31h, 0Ch, 0, 0Bh, 1Fh, 7, 1Eh, 1Ah

Dongle bypassing is pretty straightforward: just patch all jumps a�er CMP the relevant instructions.
Another option is to write our own SCO OpenServer driver.

55.2.1 Decrypting error messages
By the way, we can also try to decrypt all error messages. The algorithm, locating in err_warn() function is very simple,
indeed:

Listing 55.1: Decrypting function
.text:0000A44D mov esi, [ebp+arg_C] ; key
.text:0000A450 mov edx, [ebp+arg_4] ; string
.text:0000A453 loc_A453:
.text:0000A453 xor eax, eax
.text:0000A455 mov al, [edx+edi] ; load encrypted byte
.text:0000A458 xor eax, esi ; decrypt it
.text:0000A45A add esi, 3 ; change key for the next byte
.text:0000A45D inc edi
.text:0000A45E cmp edi, ecx
.text:0000A460 mov [ebp+edi+var_55], al
.text:0000A464 jl short loc_A453

As we can see, not just string supplied to the decrypting function, but also the key:

.text:0000DAF7 error: ; CODE XREF: sync_sys+255j

.text:0000DAF7 ; sync_sys+274j ...

.text:0000DAF7 mov [ebp+var_8], offset encrypted_error_message2

.text:0000DAFE mov [ebp+var_C], 17h ; decrypting key

.text:0000DB05 jmp decrypt_end_print_message

...

; this name I gave to label:
.text:0000D9B6 decrypt_end_print_message: ; CODE XREF: sync_sys+29Dj
.text:0000D9B6 ; sync_sys+2ABj
.text:0000D9B6 mov eax, [ebp+var_18]
.text:0000D9B9 test eax, eax
.text:0000D9BB jnz short loc_D9FB
.text:0000D9BD mov edx, [ebp+var_C] ; key
.text:0000D9C0 mov ecx, [ebp+var_8] ; string
.text:0000D9C3 push edx
.text:0000D9C4 push 20h
.text:0000D9C6 push ecx
.text:0000D9C7 push 18h
.text:0000D9C9 call err_warn

The algorithm is simple xoring: each byte is xored with a key, but key is increased by 3 a�er processing of each byte.
I wrote a simple Python script to check my insights:

Listing 55.2: Python 3.x
#!/usr/bin/python
import sys

400

55.2. EXAMPLE #2: SCO OPENSERVER CHAPTER 55. DONGLES
msg=[0x74, 0x72, 0x78, 0x43, 0x48, 0x6, 0x5A, 0x49, 0x4C, 0x47, 0x47,
0x51, 0x4F, 0x47, 0x61, 0x20, 0x22, 0x3C, 0x24, 0x33, 0x36, 0x76,
0x3A, 0x33, 0x31, 0x0C, 0x0, 0x0B, 0x1F, 0x7, 0x1E, 0x1A]

key=0x17
tmp=key
for i in msg:

sys.stdout.write ("%c" % (i^tmp))
tmp=tmp+3

sys.stdout.flush()

And it prints: “check security device connection”. So yes, this is decrypted message.
There are also other encryptedmessageswith corresponding keys. But needless to say that it is possible to decrypt them

without keys. First, we may observe that key is byte in fact. It is because core decrypting instruction (XOR) works on byte
level. Key is located in ESI register, but only byte part of ESI is used. Hence, key may be greater than 255, but its value will
always be rounded.

As a consequence, we can just try brute-force, trying all possible keys in 0..255 range. Wewill also skipmessages contain-
ing unprintable characters.

Listing 55.3: Python 3.x
#!/usr/bin/python
import sys, curses.ascii

msgs=[
[0x74, 0x72, 0x78, 0x43, 0x48, 0x6, 0x5A, 0x49, 0x4C, 0x47, 0x47,
0x51, 0x4F, 0x47, 0x61, 0x20, 0x22, 0x3C, 0x24, 0x33, 0x36, 0x76,
0x3A, 0x33, 0x31, 0x0C, 0x0, 0x0B, 0x1F, 0x7, 0x1E, 0x1A],

[0x49, 0x65, 0x2D, 0x63, 0x76, 0x75, 0x6C, 0x6E, 0x76, 0x56, 0x5C,
8, 0x4F, 0x4B, 0x47, 0x5D, 0x54, 0x5F, 0x1D, 0x26, 0x2C, 0x33,
0x27, 0x28, 0x6F, 0x72, 0x75, 0x78, 0x7B, 0x7E, 0x41, 0x44],

[0x45, 0x61, 0x31, 0x67, 0x72, 0x79, 0x68, 0x52, 0x4A, 0x52, 0x50,
0x0C, 0x4B, 0x57, 0x43, 0x51, 0x58, 0x5B, 0x61, 0x37, 0x33, 0x2B,
0x39, 0x39, 0x3C, 0x38, 0x79, 0x3A, 0x30, 0x17, 0x0B, 0x0C],

[0x40, 0x64, 0x79, 0x75, 0x7F, 0x6F, 0x0, 0x4C, 0x40, 0x9, 0x4D, 0x5A,
0x46, 0x5D, 0x57, 0x49, 0x57, 0x3B, 0x21, 0x23, 0x6A, 0x38, 0x23,
0x36, 0x24, 0x2A, 0x7C, 0x3A, 0x1A, 0x6, 0x0D, 0x0E, 0x0A, 0x14,
0x10],

[0x72, 0x7C, 0x72, 0x79, 0x76, 0x0,
0x50, 0x43, 0x4A, 0x59, 0x5D, 0x5B, 0x41, 0x41, 0x1B, 0x5A,
0x24, 0x32, 0x2E, 0x29, 0x28, 0x70, 0x20, 0x22, 0x38, 0x28, 0x36,
0x0D, 0x0B, 0x48, 0x4B, 0x4E]]

def is_string_printable(s):
return all(list(map(lambda x: curses.ascii.isprint(x), s)))

cnt=1
for msg in msgs:

print ("message #%d" % cnt)
for key in range(0,256):

result=[]
tmp=key
for i in msg:

result.append (i^tmp)
tmp=tmp+3

if is_string_printable (result):
print ("key=", key, "value=", "".join(list(map(chr, result))))

401

55.3. EXAMPLE #3: MS-DOS CHAPTER 55. DONGLES
cnt=cnt+1

And we getting:

Listing 55.4: Results
message #1
key= 20 value= ‘eb^h%|‘‘hudw|_af{n~f%ljmSbnwlpk
key= 21 value= ajc]i"}cawtgv{^bgto}g"millcmvkqh
key= 22 value= bkd\j#rbbvsfuz!cduh|d#bhomdlujni
key= 23 value= check security device connection
key= 24 value= lifbl!pd|tqhsx#ejwjbb!‘nQofbshlo
message #2
key= 7 value= No security device found
key= 8 value= An#rbbvsVuz!cduhld#ghtme?!#!’!#!
message #3
key= 7 value= Bk<waoqNUpu$‘yreoa\wpmpusj,bkIjh
key= 8 value= Mj?vfnrOjqv%gxqd‘‘_vwlstlk/clHii
key= 9 value= Lm>ugasLkvw&fgpgag^uvcrwml.‘mwhj
key= 10 value= Ol!td‘tMhwx’efwfbf!tubuvnm!anvok
key= 11 value= No security device station found
key= 12 value= In#rjbvsnuz!{duhdd#r{‘whho#gPtme
message #4
key= 14 value= Number of authorized users exceeded
key= 15 value= Ovlmdq!hg#‘juknuhydk!vrbsp!Zy‘dbefe
message #5
key= 17 value= check security device station
key= 18 value= ‘ijbh!td‘tmhwx’efwfbf!tubuVnm!’!

There are some garbage, but we can quickly find English-language messages!
By the way, since algorithm is simple xoring encryption, the very same function can be used for encrypting messages. If

we need, we can encrypt our ownmessages, and patch the program by inserting them.

55.3 Example #3: MS-DOS

Another very old so�ware for MS-DOS from 1995 also developed by a company disappeared long time ago.
In the pre-DOS extenders era, all the so�ware for MS-DOS were mostly rely on 16-bit 8086 or 80286 CPUs, so en masse

code was 16-bit. 16-bit code is mostly same as you already saw in this book, but all registers are 16-bit and there are less
number of instructions available.

MS-DOS environment has no any system drivers, any program may deal with bare hardware via ports, so here you may
see OUT/IN instructions, which aremostly present in drivers in our times (it is impossible to access ports directly in usermode
in all modern OS).

Given that, the MS-DOS programworking with a dongle should access LPT printer port directly. So we can just search for
such instructions. And yes, here it is:

seg030:0034 out_port proc far ; CODE XREF: sent_pro+22p
seg030:0034 ; sent_pro+2Ap ...
seg030:0034
seg030:0034 arg_0 = byte ptr 6
seg030:0034
seg030:0034 55 push bp
seg030:0035 8B EC mov bp, sp
seg030:0037 8B 16 7E E7 mov dx, _out_port ; 0x378
seg030:003B 8A 46 06 mov al, [bp+arg_0]
seg030:003E EE out dx, al
seg030:003F 5D pop bp
seg030:0040 CB retf
seg030:0040 out_port endp

(All label names in this example were given by me).
out_port() is referenced only in one function:

402

55.3. EXAMPLE #3: MS-DOS CHAPTER 55. DONGLES

seg030:0041 sent_pro proc far ; CODE XREF: check_dongle+34p
seg030:0041
seg030:0041 var_3 = byte ptr -3
seg030:0041 var_2 = word ptr -2
seg030:0041 arg_0 = dword ptr 6
seg030:0041
seg030:0041 C8 04 00 00 enter 4, 0
seg030:0045 56 push si
seg030:0046 57 push di
seg030:0047 8B 16 82 E7 mov dx, _in_port_1 ; 0x37A
seg030:004B EC in al, dx
seg030:004C 8A D8 mov bl, al
seg030:004E 80 E3 FE and bl, 0FEh
seg030:0051 80 CB 04 or bl, 4
seg030:0054 8A C3 mov al, bl
seg030:0056 88 46 FD mov [bp+var_3], al
seg030:0059 80 E3 1F and bl, 1Fh
seg030:005C 8A C3 mov al, bl
seg030:005E EE out dx, al
seg030:005F 68 FF 00 push 0FFh
seg030:0062 0E push cs
seg030:0063 E8 CE FF call near ptr out_port
seg030:0066 59 pop cx
seg030:0067 68 D3 00 push 0D3h
seg030:006A 0E push cs
seg030:006B E8 C6 FF call near ptr out_port
seg030:006E 59 pop cx
seg030:006F 33 F6 xor si, si
seg030:0071 EB 01 jmp short loc_359D4
seg030:0073 ;

seg030:0073
seg030:0073 loc_359D3: ; CODE XREF: sent_pro+37j
seg030:0073 46 inc si
seg030:0074
seg030:0074 loc_359D4: ; CODE XREF: sent_pro+30j
seg030:0074 81 FE 96 00 cmp si, 96h
seg030:0078 7C F9 jl short loc_359D3
seg030:007A 68 C3 00 push 0C3h
seg030:007D 0E push cs
seg030:007E E8 B3 FF call near ptr out_port
seg030:0081 59 pop cx
seg030:0082 68 C7 00 push 0C7h
seg030:0085 0E push cs
seg030:0086 E8 AB FF call near ptr out_port
seg030:0089 59 pop cx
seg030:008A 68 D3 00 push 0D3h
seg030:008D 0E push cs
seg030:008E E8 A3 FF call near ptr out_port
seg030:0091 59 pop cx
seg030:0092 68 C3 00 push 0C3h
seg030:0095 0E push cs
seg030:0096 E8 9B FF call near ptr out_port
seg030:0099 59 pop cx
seg030:009A 68 C7 00 push 0C7h
seg030:009D 0E push cs
seg030:009E E8 93 FF call near ptr out_port
seg030:00A1 59 pop cx
seg030:00A2 68 D3 00 push 0D3h
seg030:00A5 0E push cs

403

55.3. EXAMPLE #3: MS-DOS CHAPTER 55. DONGLES
seg030:00A6 E8 8B FF call near ptr out_port
seg030:00A9 59 pop cx
seg030:00AA BF FF FF mov di, 0FFFFh
seg030:00AD EB 40 jmp short loc_35A4F
seg030:00AF ;

seg030:00AF
seg030:00AF loc_35A0F: ; CODE XREF: sent_pro+BDj
seg030:00AF BE 04 00 mov si, 4
seg030:00B2
seg030:00B2 loc_35A12: ; CODE XREF: sent_pro+ACj
seg030:00B2 D1 E7 shl di, 1
seg030:00B4 8B 16 80 E7 mov dx, _in_port_2 ; 0x379
seg030:00B8 EC in al, dx
seg030:00B9 A8 80 test al, 80h
seg030:00BB 75 03 jnz short loc_35A20
seg030:00BD 83 CF 01 or di, 1
seg030:00C0
seg030:00C0 loc_35A20: ; CODE XREF: sent_pro+7Aj
seg030:00C0 F7 46 FE 08+ test [bp+var_2], 8
seg030:00C5 74 05 jz short loc_35A2C
seg030:00C7 68 D7 00 push 0D7h ; ’+’
seg030:00CA EB 0B jmp short loc_35A37
seg030:00CC ;

seg030:00CC
seg030:00CC loc_35A2C: ; CODE XREF: sent_pro+84j
seg030:00CC 68 C3 00 push 0C3h
seg030:00CF 0E push cs
seg030:00D0 E8 61 FF call near ptr out_port
seg030:00D3 59 pop cx
seg030:00D4 68 C7 00 push 0C7h
seg030:00D7
seg030:00D7 loc_35A37: ; CODE XREF: sent_pro+89j
seg030:00D7 0E push cs
seg030:00D8 E8 59 FF call near ptr out_port
seg030:00DB 59 pop cx
seg030:00DC 68 D3 00 push 0D3h
seg030:00DF 0E push cs
seg030:00E0 E8 51 FF call near ptr out_port
seg030:00E3 59 pop cx
seg030:00E4 8B 46 FE mov ax, [bp+var_2]
seg030:00E7 D1 E0 shl ax, 1
seg030:00E9 89 46 FE mov [bp+var_2], ax
seg030:00EC 4E dec si
seg030:00ED 75 C3 jnz short loc_35A12
seg030:00EF
seg030:00EF loc_35A4F: ; CODE XREF: sent_pro+6Cj
seg030:00EF C4 5E 06 les bx, [bp+arg_0]
seg030:00F2 FF 46 06 inc word ptr [bp+arg_0]
seg030:00F5 26 8A 07 mov al, es:[bx]
seg030:00F8 98 cbw
seg030:00F9 89 46 FE mov [bp+var_2], ax
seg030:00FC 0B C0 or ax, ax
seg030:00FE 75 AF jnz short loc_35A0F
seg030:0100 68 FF 00 push 0FFh
seg030:0103 0E push cs
seg030:0104 E8 2D FF call near ptr out_port
seg030:0107 59 pop cx
seg030:0108 8B 16 82 E7 mov dx, _in_port_1 ; 0x37A
seg030:010C EC in al, dx

404

55.3. EXAMPLE #3: MS-DOS CHAPTER 55. DONGLES
seg030:010D 8A C8 mov cl, al
seg030:010F 80 E1 5F and cl, 5Fh
seg030:0112 8A C1 mov al, cl
seg030:0114 EE out dx, al
seg030:0115 EC in al, dx
seg030:0116 8A C8 mov cl, al
seg030:0118 F6 C1 20 test cl, 20h
seg030:011B 74 08 jz short loc_35A85
seg030:011D 8A 5E FD mov bl, [bp+var_3]
seg030:0120 80 E3 DF and bl, 0DFh
seg030:0123 EB 03 jmp short loc_35A88
seg030:0125 ;

seg030:0125
seg030:0125 loc_35A85: ; CODE XREF: sent_pro+DAj
seg030:0125 8A 5E FD mov bl, [bp+var_3]
seg030:0128
seg030:0128 loc_35A88: ; CODE XREF: sent_pro+E2j
seg030:0128 F6 C1 80 test cl, 80h
seg030:012B 74 03 jz short loc_35A90
seg030:012D 80 E3 7F and bl, 7Fh
seg030:0130
seg030:0130 loc_35A90: ; CODE XREF: sent_pro+EAj
seg030:0130 8B 16 82 E7 mov dx, _in_port_1 ; 0x37A
seg030:0134 8A C3 mov al, bl
seg030:0136 EE out dx, al
seg030:0137 8B C7 mov ax, di
seg030:0139 5F pop di
seg030:013A 5E pop si
seg030:013B C9 leave
seg030:013C CB retf
seg030:013C sent_pro endp

It is also Sentinel Pro “hashing” dongle as in the previous example. I figured out its type by noticing that a text strings are
also passed here and 16 bit values are also returned and compared with others.

So that is howSentinel Pro is accessed via ports. Output port address is usually 0x378, i.e., printer port, the data to the old
printers in pre-USB era were passed to it. The port is one-directional, because when it was developed, no one can imagined
someone will need to transfer information from the printer 4. The only way to get information from the printer, is a status
register on port 0x379, it contain such bits as “paper out”, “ack”, “busy”—thus printermay signal to the host computer that it
is ready or not and if a paper present in it. So thedongle return information fromoneof these bits, by onebit at each iteration.

_in_port_2 has address of status word (0x379) and _in_port_1 has control register address (0x37A).
It seems, the dongle return information via “busy” flag at seg030:00B9: each bit is stored in the DI register, later returned

at the function end.
What all these bytes sent to output port mean? I don’t know. Probably commands to the dongle. But generally speaking,

it is not necessary to know: it is easy to solve our task without that knowledge.
Here is a dongle checking routine:

00000000 struct_0 struc ; (sizeof=0x1B)
00000000 field_0 db 25 dup(?) ; string(C)
00000019 _A dw ?
0000001B struct_0 ends

dseg:3CBC 61 63 72 75+_Q struct_0 <’hello’, 01122h>
dseg:3CBC 6E 00 00 00+ ; DATA XREF: check_dongle+2Eo

... skipped ...

dseg:3E00 63 6F 66 66+ struct_0 <’coffee’, 7EB7h>
dseg:3E1B 64 6F 67 00+ struct_0 <’dog’, 0FFADh>
dseg:3E36 63 61 74 00+ struct_0 <’cat’, 0FF5Fh>

4If to consider Centronics only. Following IEEE 1284 standard allows to transfer information from the printer.

405

55.3. EXAMPLE #3: MS-DOS CHAPTER 55. DONGLES
dseg:3E51 70 61 70 65+ struct_0 <’paper’, 0FFDFh>
dseg:3E6C 63 6F 6B 65+ struct_0 <’coke’, 0F568h>
dseg:3E87 63 6C 6F 63+ struct_0 <’clock’, 55EAh>
dseg:3EA2 64 69 72 00+ struct_0 <’dir’, 0FFAEh>
dseg:3EBD 63 6F 70 79+ struct_0 <’copy’, 0F557h>

seg030:0145 check_dongle proc far ; CODE XREF: sub_3771D+3EP
seg030:0145
seg030:0145 var_6 = dword ptr -6
seg030:0145 var_2 = word ptr -2
seg030:0145
seg030:0145 C8 06 00 00 enter 6, 0
seg030:0149 56 push si
seg030:014A 66 6A 00 push large 0 ; newtime
seg030:014D 6A 00 push 0 ; cmd
seg030:014F 9A C1 18 00+ call _biostime
seg030:0154 52 push dx
seg030:0155 50 push ax
seg030:0156 66 58 pop eax
seg030:0158 83 C4 06 add sp, 6
seg030:015B 66 89 46 FA mov [bp+var_6], eax
seg030:015F 66 3B 06 D8+ cmp eax, _expiration
seg030:0164 7E 44 jle short loc_35B0A
seg030:0166 6A 14 push 14h
seg030:0168 90 nop
seg030:0169 0E push cs
seg030:016A E8 52 00 call near ptr get_rand
seg030:016D 59 pop cx
seg030:016E 8B F0 mov si, ax
seg030:0170 6B C0 1B imul ax, 1Bh
seg030:0173 05 BC 3C add ax, offset _Q
seg030:0176 1E push ds
seg030:0177 50 push ax
seg030:0178 0E push cs
seg030:0179 E8 C5 FE call near ptr sent_pro
seg030:017C 83 C4 04 add sp, 4
seg030:017F 89 46 FE mov [bp+var_2], ax
seg030:0182 8B C6 mov ax, si
seg030:0184 6B C0 12 imul ax, 18
seg030:0187 66 0F BF C0 movsx eax, ax
seg030:018B 66 8B 56 FA mov edx, [bp+var_6]
seg030:018F 66 03 D0 add edx, eax
seg030:0192 66 89 16 D8+ mov _expiration, edx
seg030:0197 8B DE mov bx, si
seg030:0199 6B DB 1B imul bx, 27
seg030:019C 8B 87 D5 3C mov ax, _Q._A[bx]
seg030:01A0 3B 46 FE cmp ax, [bp+var_2]
seg030:01A3 74 05 jz short loc_35B0A
seg030:01A5 B8 01 00 mov ax, 1
seg030:01A8 EB 02 jmp short loc_35B0C
seg030:01AA ;

seg030:01AA
seg030:01AA loc_35B0A: ; CODE XREF: check_dongle+1Fj
seg030:01AA ; check_dongle+5Ej
seg030:01AA 33 C0 xor ax, ax
seg030:01AC
seg030:01AC loc_35B0C: ; CODE XREF: check_dongle+63j
seg030:01AC 5E pop si
seg030:01AD C9 leave

406

55.3. EXAMPLE #3: MS-DOS CHAPTER 55. DONGLES
seg030:01AE CB retf
seg030:01AE check_dongle endp

Since the routine may be called too frequently, e.g., before each important so�ware feature executing, and the dongle
accessing process is generally slow (because of slow printer port and also slowMCU5 in the dongle), so they probably added
a way to skip dongle checking too o�en, using checking current time in biostime() function.

get_rand() function uses standard C function:

seg030:01BF get_rand proc far ; CODE XREF: check_dongle+25p
seg030:01BF
seg030:01BF arg_0 = word ptr 6
seg030:01BF
seg030:01BF 55 push bp
seg030:01C0 8B EC mov bp, sp
seg030:01C2 9A 3D 21 00+ call _rand
seg030:01C7 66 0F BF C0 movsx eax, ax
seg030:01CB 66 0F BF 56+ movsx edx, [bp+arg_0]
seg030:01D0 66 0F AF C2 imul eax, edx
seg030:01D4 66 BB 00 80+ mov ebx, 8000h
seg030:01DA 66 99 cdq
seg030:01DC 66 F7 FB idiv ebx
seg030:01DF 5D pop bp
seg030:01E0 CB retf
seg030:01E0 get_rand endp

So the text string is selected randomly, passed into dongle, and then the result of hashing is comparedwith correct value.
Text strings are seems to be chosen randomly as well.
And that is how the main dongle checking function is called:

seg033:087B 9A 45 01 96+ call check_dongle
seg033:0880 0B C0 or ax, ax
seg033:0882 74 62 jz short OK
seg033:0884 83 3E 60 42+ cmp word_620E0, 0
seg033:0889 75 5B jnz short OK
seg033:088B FF 06 60 42 inc word_620E0
seg033:088F 1E push ds
seg033:0890 68 22 44 push offset aTrupcRequiresA ; "This Software Requires

a Software Lock\n"
seg033:0893 1E push ds
seg033:0894 68 60 E9 push offset byte_6C7E0 ; dest
seg033:0897 9A 79 65 00+ call _strcpy
seg033:089C 83 C4 08 add sp, 8
seg033:089F 1E push ds
seg033:08A0 68 42 44 push offset aPleaseContactA ; "Please Contact ..."
seg033:08A3 1E push ds
seg033:08A4 68 60 E9 push offset byte_6C7E0 ; dest
seg033:08A7 9A CD 64 00+ call _strcat

Dongle bypassing is easy, just force the check_dongle() function to always return 0.
For example, by inserting this code at its beginning:

mov ax,0
retf

Observant reader might recall that strcpy() C function usually requires two pointers in arguments, but we saw how 4
values are passed:

seg033:088F 1E push ds
seg033:0890 68 22 44 push offset aTrupcRequiresA ; "This Software Requires

a Software Lock\n"
seg033:0893 1E push ds
seg033:0894 68 60 E9 push offset byte_6C7E0 ; dest

5Microcontroller unit

407

55.3. EXAMPLE #3: MS-DOS CHAPTER 55. DONGLES
seg033:0897 9A 79 65 00+ call _strcpy
seg033:089C 83 C4 08 add sp, 8

Readmore about it here: 66.
So as youmay see, strcpy() and any other function taking pointer(s) in arguments, works with 16-bit pairs.
Let’s back to our example. DS is currently set to data segment located in the executable, that is where the text string is

stored.
In the sent_pro() function, each byte of string is loaded at seg030:00EF: the LES instruction loads ES:BX pair simulta-

neously from the passed argument. The MOV at seg030:00F5 loads the byte from the memory to which ES:BX pair points.
Atseg030:00F2only 16-bitword is incremented, not segment value. Thismeans, the stringpassed to the function cannot

be located on two data segments boundaries.

408

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

Chapter 56

“QR9”: Rubik’s cube inspired amateur
crypto-algorithm

Sometimes amateur cryptosystems appear to be pretty bizarre.
I was asked to reverse engineer an amateur cryptoalgorithmof some data crypting utility, source code of whichwas lost1.
Here is also IDA exported listing from original crypting utility:

.text:00541000 set_bit proc near ; CODE XREF: rotate1+42

.text:00541000 ; rotate2+42 ...

.text:00541000

.text:00541000 arg_0 = dword ptr 4

.text:00541000 arg_4 = dword ptr 8

.text:00541000 arg_8 = dword ptr 0Ch

.text:00541000 arg_C = byte ptr 10h

.text:00541000

.text:00541000 mov al, [esp+arg_C]

.text:00541004 mov ecx, [esp+arg_8]

.text:00541008 push esi

.text:00541009 mov esi, [esp+4+arg_0]

.text:0054100D test al, al

.text:0054100F mov eax, [esp+4+arg_4]

.text:00541013 mov dl, 1

.text:00541015 jz short loc_54102B

.text:00541017 shl dl, cl

.text:00541019 mov cl, cube64[eax+esi*8]

.text:00541020 or cl, dl

.text:00541022 mov cube64[eax+esi*8], cl

.text:00541029 pop esi

.text:0054102A retn

.text:0054102B ; ---

.text:0054102B

.text:0054102B loc_54102B: ; CODE XREF: set_bit+15

.text:0054102B shl dl, cl

.text:0054102D mov cl, cube64[eax+esi*8]

.text:00541034 not dl

.text:00541036 and cl, dl

.text:00541038 mov cube64[eax+esi*8], cl

.text:0054103F pop esi

.text:00541040 retn

.text:00541040 set_bit endp

.text:00541040

.text:00541040 ; ---

.text:00541041 align 10h

.text:00541050

.text:00541050 ; =============== S U B R O U T I N E =======================================

.text:00541050

1I also got permit from customer to publish the algorithm details

409

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
.text:00541050
.text:00541050 get_bit proc near ; CODE XREF: rotate1+16
.text:00541050 ; rotate2+16 ...
.text:00541050
.text:00541050 arg_0 = dword ptr 4
.text:00541050 arg_4 = dword ptr 8
.text:00541050 arg_8 = byte ptr 0Ch
.text:00541050
.text:00541050 mov eax, [esp+arg_4]
.text:00541054 mov ecx, [esp+arg_0]
.text:00541058 mov al, cube64[eax+ecx*8]
.text:0054105F mov cl, [esp+arg_8]
.text:00541063 shr al, cl
.text:00541065 and al, 1
.text:00541067 retn
.text:00541067 get_bit endp
.text:00541067
.text:00541067 ; ---
.text:00541068 align 10h
.text:00541070
.text:00541070 ; =============== S U B R O U T I N E =======================================
.text:00541070
.text:00541070
.text:00541070 rotate1 proc near ; CODE XREF: rotate_all_with_password+8E
.text:00541070
.text:00541070 internal_array_64= byte ptr -40h
.text:00541070 arg_0 = dword ptr 4
.text:00541070
.text:00541070 sub esp, 40h
.text:00541073 push ebx
.text:00541074 push ebp
.text:00541075 mov ebp, [esp+48h+arg_0]
.text:00541079 push esi
.text:0054107A push edi
.text:0054107B xor edi, edi ; EDI is loop1 counter
.text:0054107D lea ebx, [esp+50h+internal_array_64]
.text:00541081
.text:00541081 first_loop1_begin: ; CODE XREF: rotate1+2E
.text:00541081 xor esi, esi ; ESI is loop2 counter
.text:00541083
.text:00541083 first_loop2_begin: ; CODE XREF: rotate1+25
.text:00541083 push ebp ; arg_0
.text:00541084 push esi
.text:00541085 push edi
.text:00541086 call get_bit
.text:0054108B add esp, 0Ch
.text:0054108E mov [ebx+esi], al ; store to internal array
.text:00541091 inc esi
.text:00541092 cmp esi, 8
.text:00541095 jl short first_loop2_begin
.text:00541097 inc edi
.text:00541098 add ebx, 8
.text:0054109B cmp edi, 8
.text:0054109E jl short first_loop1_begin
.text:005410A0 lea ebx, [esp+50h+internal_array_64]
.text:005410A4 mov edi, 7 ; EDI is loop1 counter, initial state is 7
.text:005410A9
.text:005410A9 second_loop1_begin: ; CODE XREF: rotate1+57
.text:005410A9 xor esi, esi ; ESI is loop2 counter
.text:005410AB
.text:005410AB second_loop2_begin: ; CODE XREF: rotate1+4E

410

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
.text:005410AB mov al, [ebx+esi] ; value from internal array
.text:005410AE push eax
.text:005410AF push ebp ; arg_0
.text:005410B0 push edi
.text:005410B1 push esi
.text:005410B2 call set_bit
.text:005410B7 add esp, 10h
.text:005410BA inc esi ; increment loop2 counter
.text:005410BB cmp esi, 8
.text:005410BE jl short second_loop2_begin
.text:005410C0 dec edi ; decrement loop2 counter
.text:005410C1 add ebx, 8
.text:005410C4 cmp edi, 0FFFFFFFFh
.text:005410C7 jg short second_loop1_begin
.text:005410C9 pop edi
.text:005410CA pop esi
.text:005410CB pop ebp
.text:005410CC pop ebx
.text:005410CD add esp, 40h
.text:005410D0 retn
.text:005410D0 rotate1 endp
.text:005410D0
.text:005410D0 ; ---
.text:005410D1 align 10h
.text:005410E0
.text:005410E0 ; =============== S U B R O U T I N E =======================================
.text:005410E0
.text:005410E0
.text:005410E0 rotate2 proc near ; CODE XREF: rotate_all_with_password+7A
.text:005410E0
.text:005410E0 internal_array_64= byte ptr -40h
.text:005410E0 arg_0 = dword ptr 4
.text:005410E0
.text:005410E0 sub esp, 40h
.text:005410E3 push ebx
.text:005410E4 push ebp
.text:005410E5 mov ebp, [esp+48h+arg_0]
.text:005410E9 push esi
.text:005410EA push edi
.text:005410EB xor edi, edi ; loop1 counter
.text:005410ED lea ebx, [esp+50h+internal_array_64]
.text:005410F1
.text:005410F1 loc_5410F1: ; CODE XREF: rotate2+2E
.text:005410F1 xor esi, esi ; loop2 counter
.text:005410F3
.text:005410F3 loc_5410F3: ; CODE XREF: rotate2+25
.text:005410F3 push esi ; loop2
.text:005410F4 push edi ; loop1
.text:005410F5 push ebp ; arg_0
.text:005410F6 call get_bit
.text:005410FB add esp, 0Ch
.text:005410FE mov [ebx+esi], al ; store to internal array
.text:00541101 inc esi ; increment loop1 counter
.text:00541102 cmp esi, 8
.text:00541105 jl short loc_5410F3
.text:00541107 inc edi ; increment loop2 counter
.text:00541108 add ebx, 8
.text:0054110B cmp edi, 8
.text:0054110E jl short loc_5410F1
.text:00541110 lea ebx, [esp+50h+internal_array_64]
.text:00541114 mov edi, 7 ; loop1 counter is initial state 7

411

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
.text:00541119
.text:00541119 loc_541119: ; CODE XREF: rotate2+57
.text:00541119 xor esi, esi ; loop2 counter
.text:0054111B
.text:0054111B loc_54111B: ; CODE XREF: rotate2+4E
.text:0054111B mov al, [ebx+esi] ; get byte from internal array
.text:0054111E push eax
.text:0054111F push edi ; loop1 counter
.text:00541120 push esi ; loop2 counter
.text:00541121 push ebp ; arg_0
.text:00541122 call set_bit
.text:00541127 add esp, 10h
.text:0054112A inc esi ; increment loop2 counter
.text:0054112B cmp esi, 8
.text:0054112E jl short loc_54111B
.text:00541130 dec edi ; decrement loop2 counter
.text:00541131 add ebx, 8
.text:00541134 cmp edi, 0FFFFFFFFh
.text:00541137 jg short loc_541119
.text:00541139 pop edi
.text:0054113A pop esi
.text:0054113B pop ebp
.text:0054113C pop ebx
.text:0054113D add esp, 40h
.text:00541140 retn
.text:00541140 rotate2 endp
.text:00541140
.text:00541140 ; ---
.text:00541141 align 10h
.text:00541150
.text:00541150 ; =============== S U B R O U T I N E =======================================
.text:00541150
.text:00541150
.text:00541150 rotate3 proc near ; CODE XREF: rotate_all_with_password+66
.text:00541150
.text:00541150 var_40 = byte ptr -40h
.text:00541150 arg_0 = dword ptr 4
.text:00541150
.text:00541150 sub esp, 40h
.text:00541153 push ebx
.text:00541154 push ebp
.text:00541155 mov ebp, [esp+48h+arg_0]
.text:00541159 push esi
.text:0054115A push edi
.text:0054115B xor edi, edi
.text:0054115D lea ebx, [esp+50h+var_40]
.text:00541161
.text:00541161 loc_541161: ; CODE XREF: rotate3+2E
.text:00541161 xor esi, esi
.text:00541163
.text:00541163 loc_541163: ; CODE XREF: rotate3+25
.text:00541163 push esi
.text:00541164 push ebp
.text:00541165 push edi
.text:00541166 call get_bit
.text:0054116B add esp, 0Ch
.text:0054116E mov [ebx+esi], al
.text:00541171 inc esi
.text:00541172 cmp esi, 8
.text:00541175 jl short loc_541163
.text:00541177 inc edi

412

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
.text:00541178 add ebx, 8
.text:0054117B cmp edi, 8
.text:0054117E jl short loc_541161
.text:00541180 xor ebx, ebx
.text:00541182 lea edi, [esp+50h+var_40]
.text:00541186
.text:00541186 loc_541186: ; CODE XREF: rotate3+54
.text:00541186 mov esi, 7
.text:0054118B
.text:0054118B loc_54118B: ; CODE XREF: rotate3+4E
.text:0054118B mov al, [edi]
.text:0054118D push eax
.text:0054118E push ebx
.text:0054118F push ebp
.text:00541190 push esi
.text:00541191 call set_bit
.text:00541196 add esp, 10h
.text:00541199 inc edi
.text:0054119A dec esi
.text:0054119B cmp esi, 0FFFFFFFFh
.text:0054119E jg short loc_54118B
.text:005411A0 inc ebx
.text:005411A1 cmp ebx, 8
.text:005411A4 jl short loc_541186
.text:005411A6 pop edi
.text:005411A7 pop esi
.text:005411A8 pop ebp
.text:005411A9 pop ebx
.text:005411AA add esp, 40h
.text:005411AD retn
.text:005411AD rotate3 endp
.text:005411AD
.text:005411AD ; ---
.text:005411AE align 10h
.text:005411B0
.text:005411B0 ; =============== S U B R O U T I N E =======================================
.text:005411B0
.text:005411B0
.text:005411B0 rotate_all_with_password proc near ; CODE XREF: crypt+1F
.text:005411B0 ; decrypt+36
.text:005411B0
.text:005411B0 arg_0 = dword ptr 4
.text:005411B0 arg_4 = dword ptr 8
.text:005411B0
.text:005411B0 mov eax, [esp+arg_0]
.text:005411B4 push ebp
.text:005411B5 mov ebp, eax
.text:005411B7 cmp byte ptr [eax], 0
.text:005411BA jz exit
.text:005411C0 push ebx
.text:005411C1 mov ebx, [esp+8+arg_4]
.text:005411C5 push esi
.text:005411C6 push edi
.text:005411C7
.text:005411C7 loop_begin: ; CODE XREF: rotate_all_with_password+9F
.text:005411C7 movsx eax, byte ptr [ebp+0]
.text:005411CB push eax ; C
.text:005411CC call _tolower
.text:005411D1 add esp, 4
.text:005411D4 cmp al, ’a’
.text:005411D6 jl short next_character_in_password

413

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
.text:005411D8 cmp al, ’z’
.text:005411DA jg short next_character_in_password
.text:005411DC movsx ecx, al
.text:005411DF sub ecx, ’a’
.text:005411E2 cmp ecx, 24
.text:005411E5 jle short skip_subtracting
.text:005411E7 sub ecx, 24
.text:005411EA
.text:005411EA skip_subtracting: ; CODE XREF: rotate_all_with_password+35
.text:005411EA mov eax, 55555556h
.text:005411EF imul ecx
.text:005411F1 mov eax, edx
.text:005411F3 shr eax, 1Fh
.text:005411F6 add edx, eax
.text:005411F8 mov eax, ecx
.text:005411FA mov esi, edx
.text:005411FC mov ecx, 3
.text:00541201 cdq
.text:00541202 idiv ecx
.text:00541204 sub edx, 0
.text:00541207 jz short call_rotate1
.text:00541209 dec edx
.text:0054120A jz short call_rotate2
.text:0054120C dec edx
.text:0054120D jnz short next_character_in_password
.text:0054120F test ebx, ebx
.text:00541211 jle short next_character_in_password
.text:00541213 mov edi, ebx
.text:00541215
.text:00541215 call_rotate3: ; CODE XREF: rotate_all_with_password+6F
.text:00541215 push esi
.text:00541216 call rotate3
.text:0054121B add esp, 4
.text:0054121E dec edi
.text:0054121F jnz short call_rotate3
.text:00541221 jmp short next_character_in_password
.text:00541223 ; ---
.text:00541223
.text:00541223 call_rotate2: ; CODE XREF: rotate_all_with_password+5A
.text:00541223 test ebx, ebx
.text:00541225 jle short next_character_in_password
.text:00541227 mov edi, ebx
.text:00541229
.text:00541229 loc_541229: ; CODE XREF: rotate_all_with_password+83
.text:00541229 push esi
.text:0054122A call rotate2
.text:0054122F add esp, 4
.text:00541232 dec edi
.text:00541233 jnz short loc_541229
.text:00541235 jmp short next_character_in_password
.text:00541237 ; ---
.text:00541237
.text:00541237 call_rotate1: ; CODE XREF: rotate_all_with_password+57
.text:00541237 test ebx, ebx
.text:00541239 jle short next_character_in_password
.text:0054123B mov edi, ebx
.text:0054123D
.text:0054123D loc_54123D: ; CODE XREF: rotate_all_with_password+97
.text:0054123D push esi
.text:0054123E call rotate1
.text:00541243 add esp, 4

414

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
.text:00541246 dec edi
.text:00541247 jnz short loc_54123D
.text:00541249
.text:00541249 next_character_in_password: ; CODE XREF: rotate_all_with_password+26
.text:00541249 ; rotate_all_with_password+2A ...
.text:00541249 mov al, [ebp+1]
.text:0054124C inc ebp
.text:0054124D test al, al
.text:0054124F jnz loop_begin
.text:00541255 pop edi
.text:00541256 pop esi
.text:00541257 pop ebx
.text:00541258
.text:00541258 exit: ; CODE XREF: rotate_all_with_password+A
.text:00541258 pop ebp
.text:00541259 retn
.text:00541259 rotate_all_with_password endp
.text:00541259
.text:00541259 ; ---
.text:0054125A align 10h
.text:00541260
.text:00541260 ; =============== S U B R O U T I N E =======================================
.text:00541260
.text:00541260
.text:00541260 crypt proc near ; CODE XREF: crypt_file+8A
.text:00541260
.text:00541260 arg_0 = dword ptr 4
.text:00541260 arg_4 = dword ptr 8
.text:00541260 arg_8 = dword ptr 0Ch
.text:00541260
.text:00541260 push ebx
.text:00541261 mov ebx, [esp+4+arg_0]
.text:00541265 push ebp
.text:00541266 push esi
.text:00541267 push edi
.text:00541268 xor ebp, ebp
.text:0054126A
.text:0054126A loc_54126A: ; CODE XREF: crypt+41
.text:0054126A mov eax, [esp+10h+arg_8]
.text:0054126E mov ecx, 10h
.text:00541273 mov esi, ebx
.text:00541275 mov edi, offset cube64
.text:0054127A push 1
.text:0054127C push eax
.text:0054127D rep movsd
.text:0054127F call rotate_all_with_password
.text:00541284 mov eax, [esp+18h+arg_4]
.text:00541288 mov edi, ebx
.text:0054128A add ebp, 40h
.text:0054128D add esp, 8
.text:00541290 mov ecx, 10h
.text:00541295 mov esi, offset cube64
.text:0054129A add ebx, 40h
.text:0054129D cmp ebp, eax
.text:0054129F rep movsd
.text:005412A1 jl short loc_54126A
.text:005412A3 pop edi
.text:005412A4 pop esi
.text:005412A5 pop ebp
.text:005412A6 pop ebx
.text:005412A7 retn

415

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
.text:005412A7 crypt endp
.text:005412A7
.text:005412A7 ; ---
.text:005412A8 align 10h
.text:005412B0
.text:005412B0 ; =============== S U B R O U T I N E =======================================
.text:005412B0
.text:005412B0
.text:005412B0 ; int __cdecl decrypt(int, int, void *Src)
.text:005412B0 decrypt proc near ; CODE XREF: decrypt_file+99
.text:005412B0
.text:005412B0 arg_0 = dword ptr 4
.text:005412B0 arg_4 = dword ptr 8
.text:005412B0 Src = dword ptr 0Ch
.text:005412B0
.text:005412B0 mov eax, [esp+Src]
.text:005412B4 push ebx
.text:005412B5 push ebp
.text:005412B6 push esi
.text:005412B7 push edi
.text:005412B8 push eax ; Src
.text:005412B9 call __strdup
.text:005412BE push eax ; Str
.text:005412BF mov [esp+18h+Src], eax
.text:005412C3 call __strrev
.text:005412C8 mov ebx, [esp+18h+arg_0]
.text:005412CC add esp, 8
.text:005412CF xor ebp, ebp
.text:005412D1
.text:005412D1 loc_5412D1: ; CODE XREF: decrypt+58
.text:005412D1 mov ecx, 10h
.text:005412D6 mov esi, ebx
.text:005412D8 mov edi, offset cube64
.text:005412DD push 3
.text:005412DF rep movsd
.text:005412E1 mov ecx, [esp+14h+Src]
.text:005412E5 push ecx
.text:005412E6 call rotate_all_with_password
.text:005412EB mov eax, [esp+18h+arg_4]
.text:005412EF mov edi, ebx
.text:005412F1 add ebp, 40h
.text:005412F4 add esp, 8
.text:005412F7 mov ecx, 10h
.text:005412FC mov esi, offset cube64
.text:00541301 add ebx, 40h
.text:00541304 cmp ebp, eax
.text:00541306 rep movsd
.text:00541308 jl short loc_5412D1
.text:0054130A mov edx, [esp+10h+Src]
.text:0054130E push edx ; Memory
.text:0054130F call _free
.text:00541314 add esp, 4
.text:00541317 pop edi
.text:00541318 pop esi
.text:00541319 pop ebp
.text:0054131A pop ebx
.text:0054131B retn
.text:0054131B decrypt endp
.text:0054131B
.text:0054131B ; ---
.text:0054131C align 10h

416

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
.text:00541320
.text:00541320 ; =============== S U B R O U T I N E =======================================
.text:00541320
.text:00541320
.text:00541320 ; int __cdecl crypt_file(int Str, char *Filename, int password)
.text:00541320 crypt_file proc near ; CODE XREF: _main+42
.text:00541320
.text:00541320 Str = dword ptr 4
.text:00541320 Filename = dword ptr 8
.text:00541320 password = dword ptr 0Ch
.text:00541320
.text:00541320 mov eax, [esp+Str]
.text:00541324 push ebp
.text:00541325 push offset Mode ; "rb"
.text:0054132A push eax ; Filename
.text:0054132B call _fopen ; open file
.text:00541330 mov ebp, eax
.text:00541332 add esp, 8
.text:00541335 test ebp, ebp
.text:00541337 jnz short loc_541348
.text:00541339 push offset Format ; "Cannot open input file!\n"
.text:0054133E call _printf
.text:00541343 add esp, 4
.text:00541346 pop ebp
.text:00541347 retn
.text:00541348 ; ---
.text:00541348
.text:00541348 loc_541348: ; CODE XREF: crypt_file+17
.text:00541348 push ebx
.text:00541349 push esi
.text:0054134A push edi
.text:0054134B push 2 ; Origin
.text:0054134D push 0 ; Offset
.text:0054134F push ebp ; File
.text:00541350 call _fseek
.text:00541355 push ebp ; File
.text:00541356 call _ftell ; get file size
.text:0054135B push 0 ; Origin
.text:0054135D push 0 ; Offset
.text:0054135F push ebp ; File
.text:00541360 mov [esp+2Ch+Str], eax
.text:00541364 call _fseek ; rewind to start
.text:00541369 mov esi, [esp+2Ch+Str]
.text:0054136D and esi, 0FFFFFFC0h ; reset all lowest 6 bits
.text:00541370 add esi, 40h ; align size to 64-byte border
.text:00541373 push esi ; Size
.text:00541374 call _malloc
.text:00541379 mov ecx, esi
.text:0054137B mov ebx, eax ; allocated buffer pointer -> to EBX
.text:0054137D mov edx, ecx
.text:0054137F xor eax, eax
.text:00541381 mov edi, ebx
.text:00541383 push ebp ; File
.text:00541384 shr ecx, 2
.text:00541387 rep stosd
.text:00541389 mov ecx, edx
.text:0054138B push 1 ; Count
.text:0054138D and ecx, 3
.text:00541390 rep stosb ; memset (buffer, 0, aligned_size)
.text:00541392 mov eax, [esp+38h+Str]
.text:00541396 push eax ; ElementSize

417

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
.text:00541397 push ebx ; DstBuf
.text:00541398 call _fread ; read file
.text:0054139D push ebp ; File
.text:0054139E call _fclose
.text:005413A3 mov ecx, [esp+44h+password]
.text:005413A7 push ecx ; password
.text:005413A8 push esi ; aligned size
.text:005413A9 push ebx ; buffer
.text:005413AA call crypt ; do crypt
.text:005413AF mov edx, [esp+50h+Filename]
.text:005413B3 add esp, 40h
.text:005413B6 push offset aWb ; "wb"
.text:005413BB push edx ; Filename
.text:005413BC call _fopen
.text:005413C1 mov edi, eax
.text:005413C3 push edi ; File
.text:005413C4 push 1 ; Count
.text:005413C6 push 3 ; Size
.text:005413C8 push offset aQr9 ; "QR9"
.text:005413CD call _fwrite ; write file signature
.text:005413D2 push edi ; File
.text:005413D3 push 1 ; Count
.text:005413D5 lea eax, [esp+30h+Str]
.text:005413D9 push 4 ; Size
.text:005413DB push eax ; Str
.text:005413DC call _fwrite ; write original file size
.text:005413E1 push edi ; File
.text:005413E2 push 1 ; Count
.text:005413E4 push esi ; Size
.text:005413E5 push ebx ; Str
.text:005413E6 call _fwrite ; write crypted file
.text:005413EB push edi ; File
.text:005413EC call _fclose
.text:005413F1 push ebx ; Memory
.text:005413F2 call _free
.text:005413F7 add esp, 40h
.text:005413FA pop edi
.text:005413FB pop esi
.text:005413FC pop ebx
.text:005413FD pop ebp
.text:005413FE retn
.text:005413FE crypt_file endp
.text:005413FE
.text:005413FE ; ---
.text:005413FF align 10h
.text:00541400
.text:00541400 ; =============== S U B R O U T I N E =======================================
.text:00541400
.text:00541400
.text:00541400 ; int __cdecl decrypt_file(char *Filename, int, void *Src)
.text:00541400 decrypt_file proc near ; CODE XREF: _main+6E
.text:00541400
.text:00541400 Filename = dword ptr 4
.text:00541400 arg_4 = dword ptr 8
.text:00541400 Src = dword ptr 0Ch
.text:00541400
.text:00541400 mov eax, [esp+Filename]
.text:00541404 push ebx
.text:00541405 push ebp
.text:00541406 push esi
.text:00541407 push edi

418

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
.text:00541408 push offset aRb ; "rb"
.text:0054140D push eax ; Filename
.text:0054140E call _fopen
.text:00541413 mov esi, eax
.text:00541415 add esp, 8
.text:00541418 test esi, esi
.text:0054141A jnz short loc_54142E
.text:0054141C push offset aCannotOpenIn_0 ; "Cannot open input file!\n"
.text:00541421 call _printf
.text:00541426 add esp, 4
.text:00541429 pop edi
.text:0054142A pop esi
.text:0054142B pop ebp
.text:0054142C pop ebx
.text:0054142D retn
.text:0054142E ; ---
.text:0054142E
.text:0054142E loc_54142E: ; CODE XREF: decrypt_file+1A
.text:0054142E push 2 ; Origin
.text:00541430 push 0 ; Offset
.text:00541432 push esi ; File
.text:00541433 call _fseek
.text:00541438 push esi ; File
.text:00541439 call _ftell
.text:0054143E push 0 ; Origin
.text:00541440 push 0 ; Offset
.text:00541442 push esi ; File
.text:00541443 mov ebp, eax
.text:00541445 call _fseek
.text:0054144A push ebp ; Size
.text:0054144B call _malloc
.text:00541450 push esi ; File
.text:00541451 mov ebx, eax
.text:00541453 push 1 ; Count
.text:00541455 push ebp ; ElementSize
.text:00541456 push ebx ; DstBuf
.text:00541457 call _fread
.text:0054145C push esi ; File
.text:0054145D call _fclose
.text:00541462 add esp, 34h
.text:00541465 mov ecx, 3
.text:0054146A mov edi, offset aQr9_0 ; "QR9"
.text:0054146F mov esi, ebx
.text:00541471 xor edx, edx
.text:00541473 repe cmpsb
.text:00541475 jz short loc_541489
.text:00541477 push offset aFileIsNotCrypt ; "File is not crypted!\n"
.text:0054147C call _printf
.text:00541481 add esp, 4
.text:00541484 pop edi
.text:00541485 pop esi
.text:00541486 pop ebp
.text:00541487 pop ebx
.text:00541488 retn
.text:00541489 ; ---
.text:00541489
.text:00541489 loc_541489: ; CODE XREF: decrypt_file+75
.text:00541489 mov eax, [esp+10h+Src]
.text:0054148D mov edi, [ebx+3]
.text:00541490 add ebp, 0FFFFFFF9h
.text:00541493 lea esi, [ebx+7]

419

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
.text:00541496 push eax ; Src
.text:00541497 push ebp ; int
.text:00541498 push esi ; int
.text:00541499 call decrypt
.text:0054149E mov ecx, [esp+1Ch+arg_4]
.text:005414A2 push offset aWb_0 ; "wb"
.text:005414A7 push ecx ; Filename
.text:005414A8 call _fopen
.text:005414AD mov ebp, eax
.text:005414AF push ebp ; File
.text:005414B0 push 1 ; Count
.text:005414B2 push edi ; Size
.text:005414B3 push esi ; Str
.text:005414B4 call _fwrite
.text:005414B9 push ebp ; File
.text:005414BA call _fclose
.text:005414BF push ebx ; Memory
.text:005414C0 call _free
.text:005414C5 add esp, 2Ch
.text:005414C8 pop edi
.text:005414C9 pop esi
.text:005414CA pop ebp
.text:005414CB pop ebx
.text:005414CC retn
.text:005414CC decrypt_file endp

All function and label names are given by me while analysis.
I started from top. Here is a function taking two file names and password.

.text:00541320 ; int __cdecl crypt_file(int Str, char *Filename, int password)

.text:00541320 crypt_file proc near

.text:00541320

.text:00541320 Str = dword ptr 4

.text:00541320 Filename = dword ptr 8

.text:00541320 password = dword ptr 0Ch

.text:00541320

Open file and report error in case of error:

.text:00541320 mov eax, [esp+Str]

.text:00541324 push ebp

.text:00541325 push offset Mode ; "rb"

.text:0054132A push eax ; Filename

.text:0054132B call _fopen ; open file

.text:00541330 mov ebp, eax

.text:00541332 add esp, 8

.text:00541335 test ebp, ebp

.text:00541337 jnz short loc_541348

.text:00541339 push offset Format ; "Cannot open input file!\n"

.text:0054133E call _printf

.text:00541343 add esp, 4

.text:00541346 pop ebp

.text:00541347 retn

.text:00541348 ; ---

.text:00541348

.text:00541348 loc_541348:

Get file size via fseek()/ftell():

.text:00541348 push ebx

.text:00541349 push esi

.text:0054134A push edi

.text:0054134B push 2 ; Origin

420

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
.text:0054134D push 0 ; Offset
.text:0054134F push ebp ; File

; move current file position to the end
.text:00541350 call _fseek
.text:00541355 push ebp ; File
.text:00541356 call _ftell ; get current file position
.text:0054135B push 0 ; Origin
.text:0054135D push 0 ; Offset
.text:0054135F push ebp ; File
.text:00541360 mov [esp+2Ch+Str], eax

; move current file position to the start
.text:00541364 call _fseek

This fragment of code calculates file size aligned on a 64-byte boundary. This is because this cryptoalgorithmworks with
only 64-byte blocks. Its operation is pretty straightforward: divide file size by 64, forget about remainder and add 1, then
multiple by 64. The following code removes remainder as if value was already divided by 64 and adds 64. It is almost the
same.

.text:00541369 mov esi, [esp+2Ch+Str]

.text:0054136D and esi, 0FFFFFFC0h ; reset all lowest 6 bits

.text:00541370 add esi, 40h ; align size to 64-byte border

Allocate bu�er with aligned size:

.text:00541373 push esi ; Size

.text:00541374 call _malloc

Call memset(), e.g., clears allocated bu�er2.

.text:00541379 mov ecx, esi

.text:0054137B mov ebx, eax ; allocated buffer pointer -> to EBX

.text:0054137D mov edx, ecx

.text:0054137F xor eax, eax

.text:00541381 mov edi, ebx

.text:00541383 push ebp ; File

.text:00541384 shr ecx, 2

.text:00541387 rep stosd

.text:00541389 mov ecx, edx

.text:0054138B push 1 ; Count

.text:0054138D and ecx, 3

.text:00541390 rep stosb ; memset (buffer, 0, aligned_size)

Read file via standard C function fread().

.text:00541392 mov eax, [esp+38h+Str]

.text:00541396 push eax ; ElementSize

.text:00541397 push ebx ; DstBuf

.text:00541398 call _fread ; read file

.text:0054139D push ebp ; File

.text:0054139E call _fclose

Call crypt(). This function takes bu�er, bu�er size (aligned) and password string.

.text:005413A3 mov ecx, [esp+44h+password]

.text:005413A7 push ecx ; password

.text:005413A8 push esi ; aligned size

.text:005413A9 push ebx ; buffer

.text:005413AA call crypt ; do crypt

Create output file. By theway, developer forgot to check if it is was created correctly! File opening result is being checked
though.

2malloc() + memset() could be replaced by calloc()

421

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

.text:005413AF mov edx, [esp+50h+Filename]

.text:005413B3 add esp, 40h

.text:005413B6 push offset aWb ; "wb"

.text:005413BB push edx ; Filename

.text:005413BC call _fopen

.text:005413C1 mov edi, eax

Newly created file handle is in the EDI register now. Write signature “QR9”.

.text:005413C3 push edi ; File

.text:005413C4 push 1 ; Count

.text:005413C6 push 3 ; Size

.text:005413C8 push offset aQr9 ; "QR9"

.text:005413CD call _fwrite ; write file signature

Write actual file size (not aligned):

.text:005413D2 push edi ; File

.text:005413D3 push 1 ; Count

.text:005413D5 lea eax, [esp+30h+Str]

.text:005413D9 push 4 ; Size

.text:005413DB push eax ; Str

.text:005413DC call _fwrite ; write original file size

Write crypted bu�er:

.text:005413E1 push edi ; File

.text:005413E2 push 1 ; Count

.text:005413E4 push esi ; Size

.text:005413E5 push ebx ; Str

.text:005413E6 call _fwrite ; write encrypted file

Close file and free allocated bu�er:

.text:005413EB push edi ; File

.text:005413EC call _fclose

.text:005413F1 push ebx ; Memory

.text:005413F2 call _free

.text:005413F7 add esp, 40h

.text:005413FA pop edi

.text:005413FB pop esi

.text:005413FC pop ebx

.text:005413FD pop ebp

.text:005413FE retn

.text:005413FE crypt_file endp

Here is reconstructed C-code:

void crypt_file(char *fin, char* fout, char *pw)
{

FILE *f;
int flen, flen_aligned;
BYTE *buf;

f=fopen(fin, "rb");

if (f==NULL)
{

printf ("Cannot open input file!\n");
return;

};

fseek (f, 0, SEEK_END);
flen=ftell (f);

422

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
fseek (f, 0, SEEK_SET);

flen_aligned=(flen&0xFFFFFFC0)+0x40;

buf=(BYTE*)malloc (flen_aligned);
memset (buf, 0, flen_aligned);

fread (buf, flen, 1, f);

fclose (f);

crypt (buf, flen_aligned, pw);

f=fopen(fout, "wb");

fwrite ("QR9", 3, 1, f);
fwrite (&flen, 4, 1, f);
fwrite (buf, flen_aligned, 1, f);

fclose (f);

free (buf);
};

Decrypting procedure is almost the same:

.text:00541400 ; int __cdecl decrypt_file(char *Filename, int, void *Src)

.text:00541400 decrypt_file proc near

.text:00541400

.text:00541400 Filename = dword ptr 4

.text:00541400 arg_4 = dword ptr 8

.text:00541400 Src = dword ptr 0Ch

.text:00541400

.text:00541400 mov eax, [esp+Filename]

.text:00541404 push ebx

.text:00541405 push ebp

.text:00541406 push esi

.text:00541407 push edi

.text:00541408 push offset aRb ; "rb"

.text:0054140D push eax ; Filename

.text:0054140E call _fopen

.text:00541413 mov esi, eax

.text:00541415 add esp, 8

.text:00541418 test esi, esi

.text:0054141A jnz short loc_54142E

.text:0054141C push offset aCannotOpenIn_0 ; "Cannot open input file!\n"

.text:00541421 call _printf

.text:00541426 add esp, 4

.text:00541429 pop edi

.text:0054142A pop esi

.text:0054142B pop ebp

.text:0054142C pop ebx

.text:0054142D retn

.text:0054142E ; ---

.text:0054142E

.text:0054142E loc_54142E:

.text:0054142E push 2 ; Origin

.text:00541430 push 0 ; Offset

.text:00541432 push esi ; File

.text:00541433 call _fseek

.text:00541438 push esi ; File

.text:00541439 call _ftell

423

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
.text:0054143E push 0 ; Origin
.text:00541440 push 0 ; Offset
.text:00541442 push esi ; File
.text:00541443 mov ebp, eax
.text:00541445 call _fseek
.text:0054144A push ebp ; Size
.text:0054144B call _malloc
.text:00541450 push esi ; File
.text:00541451 mov ebx, eax
.text:00541453 push 1 ; Count
.text:00541455 push ebp ; ElementSize
.text:00541456 push ebx ; DstBuf
.text:00541457 call _fread
.text:0054145C push esi ; File
.text:0054145D call _fclose

Check signature (first 3 bytes):

.text:00541462 add esp, 34h

.text:00541465 mov ecx, 3

.text:0054146A mov edi, offset aQr9_0 ; "QR9"

.text:0054146F mov esi, ebx

.text:00541471 xor edx, edx

.text:00541473 repe cmpsb

.text:00541475 jz short loc_541489

Report an error if signature is absent:

.text:00541477 push offset aFileIsNotCrypt ; "File is not crypted!\n"

.text:0054147C call _printf

.text:00541481 add esp, 4

.text:00541484 pop edi

.text:00541485 pop esi

.text:00541486 pop ebp

.text:00541487 pop ebx

.text:00541488 retn

.text:00541489 ; ---

.text:00541489

.text:00541489 loc_541489:

Call decrypt().

.text:00541489 mov eax, [esp+10h+Src]

.text:0054148D mov edi, [ebx+3]

.text:00541490 add ebp, 0FFFFFFF9h

.text:00541493 lea esi, [ebx+7]

.text:00541496 push eax ; Src

.text:00541497 push ebp ; int

.text:00541498 push esi ; int

.text:00541499 call decrypt

.text:0054149E mov ecx, [esp+1Ch+arg_4]

.text:005414A2 push offset aWb_0 ; "wb"

.text:005414A7 push ecx ; Filename

.text:005414A8 call _fopen

.text:005414AD mov ebp, eax

.text:005414AF push ebp ; File

.text:005414B0 push 1 ; Count

.text:005414B2 push edi ; Size

.text:005414B3 push esi ; Str

.text:005414B4 call _fwrite

.text:005414B9 push ebp ; File

.text:005414BA call _fclose

.text:005414BF push ebx ; Memory

424

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
.text:005414C0 call _free
.text:005414C5 add esp, 2Ch
.text:005414C8 pop edi
.text:005414C9 pop esi
.text:005414CA pop ebp
.text:005414CB pop ebx
.text:005414CC retn
.text:005414CC decrypt_file endp

Here is reconstructed C-code:

void decrypt_file(char *fin, char* fout, char *pw)
{

FILE *f;
int real_flen, flen;
BYTE *buf;

f=fopen(fin, "rb");

if (f==NULL)
{

printf ("Cannot open input file!\n");
return;

};

fseek (f, 0, SEEK_END);
flen=ftell (f);
fseek (f, 0, SEEK_SET);

buf=(BYTE*)malloc (flen);

fread (buf, flen, 1, f);

fclose (f);

if (memcmp (buf, "QR9", 3)!=0)
{

printf ("File is not crypted!\n");
return;

};

memcpy (&real_flen, buf+3, 4);

decrypt (buf+(3+4), flen-(3+4), pw);

f=fopen(fout, "wb");

fwrite (buf+(3+4), real_flen, 1, f);

fclose (f);

free (buf);
};

OK, now let’s go deeper.
Function crypt():

.text:00541260 crypt proc near

.text:00541260

.text:00541260 arg_0 = dword ptr 4

.text:00541260 arg_4 = dword ptr 8

.text:00541260 arg_8 = dword ptr 0Ch

.text:00541260

425

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
.text:00541260 push ebx
.text:00541261 mov ebx, [esp+4+arg_0]
.text:00541265 push ebp
.text:00541266 push esi
.text:00541267 push edi
.text:00541268 xor ebp, ebp
.text:0054126A
.text:0054126A loc_54126A:

This fragment of code copies part of input bu�er to internal array I named later “cube64”. The size is in the ECX register.
MOVSDmeansmove 32-bit dword, so, 16 of 32-bit dwords are exactly 64 bytes.

.text:0054126A mov eax, [esp+10h+arg_8]

.text:0054126E mov ecx, 10h

.text:00541273 mov esi, ebx ; EBX is pointer within input buffer

.text:00541275 mov edi, offset cube64

.text:0054127A push 1

.text:0054127C push eax

.text:0054127D rep movsd

Call rotate_all_with_password():

.text:0054127F call rotate_all_with_password

Copy crypted contents back from “cube64” to bu�er:

.text:00541284 mov eax, [esp+18h+arg_4]

.text:00541288 mov edi, ebx

.text:0054128A add ebp, 40h

.text:0054128D add esp, 8

.text:00541290 mov ecx, 10h

.text:00541295 mov esi, offset cube64

.text:0054129A add ebx, 40h ; add 64 to input buffer pointer

.text:0054129D cmp ebp, eax ; EBP contain amount of crypted data.

.text:0054129F rep movsd

If EBP is not bigger that input argument size, then continue to next block.

.text:005412A1 jl short loc_54126A

.text:005412A3 pop edi

.text:005412A4 pop esi

.text:005412A5 pop ebp

.text:005412A6 pop ebx

.text:005412A7 retn

.text:005412A7 crypt endp

Reconstructed crypt() function:

void crypt (BYTE *buf, int sz, char *pw)
{

int i=0;

do
{

memcpy (cube, buf+i, 8*8);
rotate_all (pw, 1);
memcpy (buf+i, cube, 8*8);
i+=64;

}
while (i<sz);

};

OK, now let’s go deeper into function rotate_all_with_password(). It takes two arguments: password string and
number. In crypt(), number 1 is used, and in the decrypt() function (where rotate_all_with_password() function is
called too), number is 3.

426

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

.text:005411B0 rotate_all_with_password proc near

.text:005411B0

.text:005411B0 arg_0 = dword ptr 4

.text:005411B0 arg_4 = dword ptr 8

.text:005411B0

.text:005411B0 mov eax, [esp+arg_0]

.text:005411B4 push ebp

.text:005411B5 mov ebp, eax

Check for character in password. If it is zero, exit:

.text:005411B7 cmp byte ptr [eax], 0

.text:005411BA jz exit

.text:005411C0 push ebx

.text:005411C1 mov ebx, [esp+8+arg_4]

.text:005411C5 push esi

.text:005411C6 push edi

.text:005411C7

.text:005411C7 loop_begin:

Call tolower(), standard C function.

.text:005411C7 movsx eax, byte ptr [ebp+0]

.text:005411CB push eax ; C

.text:005411CC call _tolower

.text:005411D1 add esp, 4

Hmm, if password contains non-alphabetical latin character, it is skipped! Indeed, if we run crypting utility and try non-
alphabetical latin characters in password, they seem to be ignored.

.text:005411D4 cmp al, ’a’

.text:005411D6 jl short next_character_in_password

.text:005411D8 cmp al, ’z’

.text:005411DA jg short next_character_in_password

.text:005411DC movsx ecx, al

Subtract “a” value (97) from character.

.text:005411DF sub ecx, ’a’ ; 97

A�er subtracting, we’ll get 0 for “a” here, 1 for “b”, etc. And 25 for “z”.

.text:005411E2 cmp ecx, 24

.text:005411E5 jle short skip_subtracting

.text:005411E7 sub ecx, 24

It seems, “y” and “z” are exceptional characters too. A�er that fragment of code, “y” becomes 0 and “z” —1. This means,
26 Latin alphabet symbols will become values in range 0..23, (24 in total).

.text:005411EA

.text:005411EA skip_subtracting: ; CODE XREF: rotate_all_with_password+35

This is actually division via multiplication. Readmore about it in the “Division by 9” section (14).
The code actually divides password character value by 3.

.text:005411EA mov eax, 55555556h

.text:005411EF imul ecx

.text:005411F1 mov eax, edx

.text:005411F3 shr eax, 1Fh

.text:005411F6 add edx, eax

.text:005411F8 mov eax, ecx

.text:005411FA mov esi, edx

.text:005411FC mov ecx, 3

.text:00541201 cdq

.text:00541202 idiv ecx

427

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
EDX is the remainder of division.

.text:00541204 sub edx, 0

.text:00541207 jz short call_rotate1 ; if remainder is zero, go to rotate1

.text:00541209 dec edx

.text:0054120A jz short call_rotate2 ; .. it it is 1, go to rotate2

.text:0054120C dec edx

.text:0054120D jnz short next_character_in_password

.text:0054120F test ebx, ebx

.text:00541211 jle short next_character_in_password

.text:00541213 mov edi, ebx

If remainder is 2, call rotate3(). The EDI is a second argument of the rotate_all_with_password() function. As I
already wrote, 1 is for crypting operations and 3 is for decrypting. So, here is a loop. When crypting, rotate1/2/3 will be called
the same number of times as given in the first argument.

.text:00541215 call_rotate3:

.text:00541215 push esi

.text:00541216 call rotate3

.text:0054121B add esp, 4

.text:0054121E dec edi

.text:0054121F jnz short call_rotate3

.text:00541221 jmp short next_character_in_password

.text:00541223

.text:00541223 call_rotate2:

.text:00541223 test ebx, ebx

.text:00541225 jle short next_character_in_password

.text:00541227 mov edi, ebx

.text:00541229

.text:00541229 loc_541229:

.text:00541229 push esi

.text:0054122A call rotate2

.text:0054122F add esp, 4

.text:00541232 dec edi

.text:00541233 jnz short loc_541229

.text:00541235 jmp short next_character_in_password

.text:00541237

.text:00541237 call_rotate1:

.text:00541237 test ebx, ebx

.text:00541239 jle short next_character_in_password

.text:0054123B mov edi, ebx

.text:0054123D

.text:0054123D loc_54123D:

.text:0054123D push esi

.text:0054123E call rotate1

.text:00541243 add esp, 4

.text:00541246 dec edi

.text:00541247 jnz short loc_54123D

.text:00541249

Fetch next character from password string.

.text:00541249 next_character_in_password:

.text:00541249 mov al, [ebp+1]

Increment character pointer within password string:

.text:0054124C inc ebp

.text:0054124D test al, al

.text:0054124F jnz loop_begin

.text:00541255 pop edi

.text:00541256 pop esi

.text:00541257 pop ebx

.text:00541258

428

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
.text:00541258 exit:
.text:00541258 pop ebp
.text:00541259 retn
.text:00541259 rotate_all_with_password endp

Here is reconstructed C code:

void rotate_all (char *pwd, int v)
{

char *p=pwd;

while (*p)
{

char c=*p;
int q;

c=tolower (c);

if (c>=’a’ && c<=’z’)
{

q=c-’a’;
if (q>24)

q-=24;

int quotient=q/3;
int remainder=q % 3;

switch (remainder)
{
case 0: for (int i=0; i<v; i++) rotate1 (quotient); break;
case 1: for (int i=0; i<v; i++) rotate2 (quotient); break;
case 2: for (int i=0; i<v; i++) rotate3 (quotient); break;
};

};

p++;
};

};

Now let’s go deeper and investigate rotate1/2/3 functions. Each function calls two another functions. I eventually gave
them names set_bit() and get_bit().

Let’s start with get_bit():

.text:00541050 get_bit proc near

.text:00541050

.text:00541050 arg_0 = dword ptr 4

.text:00541050 arg_4 = dword ptr 8

.text:00541050 arg_8 = byte ptr 0Ch

.text:00541050

.text:00541050 mov eax, [esp+arg_4]

.text:00541054 mov ecx, [esp+arg_0]

.text:00541058 mov al, cube64[eax+ecx*8]

.text:0054105F mov cl, [esp+arg_8]

.text:00541063 shr al, cl

.text:00541065 and al, 1

.text:00541067 retn

.text:00541067 get_bit endp

. . . in other words: calculate an index in the array cube64: arg_4 + arg_0 * 8. Then shi� a byte from an array by arg_8 bits
right. Isolate lowest bit and return it.

Let’s see another function, set_bit():

.text:00541000 set_bit proc near

429

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
.text:00541000
.text:00541000 arg_0 = dword ptr 4
.text:00541000 arg_4 = dword ptr 8
.text:00541000 arg_8 = dword ptr 0Ch
.text:00541000 arg_C = byte ptr 10h
.text:00541000
.text:00541000 mov al, [esp+arg_C]
.text:00541004 mov ecx, [esp+arg_8]
.text:00541008 push esi
.text:00541009 mov esi, [esp+4+arg_0]
.text:0054100D test al, al
.text:0054100F mov eax, [esp+4+arg_4]
.text:00541013 mov dl, 1
.text:00541015 jz short loc_54102B

Value in the DL is 1 here. Shi� le� it by arg_8. For example, if arg_8 is 4, value in the DL register became 0x10 or 1000 in
binary form.

.text:00541017 shl dl, cl

.text:00541019 mov cl, cube64[eax+esi*8]

Get bit from array and explicitly set one.

.text:00541020 or cl, dl

Store it back:

.text:00541022 mov cube64[eax+esi*8], cl

.text:00541029 pop esi

.text:0054102A retn

.text:0054102B ; ---

.text:0054102B

.text:0054102B loc_54102B:

.text:0054102B shl dl, cl

If arg_C is not zero. . .

.text:0054102D mov cl, cube64[eax+esi*8]

. . . invert DL. For example, if DL state a�er shi� was 0x10 or 1000 in binary form, there will be 0xEF a�er NOT instruction or
11101111 in binary form.

.text:00541034 not dl

This instruction clears bit, in other words, it saves all bits in CL which are also set in DL except those in DL which are
cleared. This means that if DL is e.g. 11101111 in binary form, all bits will be saved except 5th (counting from lowest bit).

.text:00541036 and cl, dl

Store it back:

.text:00541038 mov cube64[eax+esi*8], cl

.text:0054103F pop esi

.text:00541040 retn

.text:00541040 set_bit endp

It is almost the same as get_bit(), except, if arg_C is zero, the function clears specific bit in array, or sets it otherwise.
We also know the array size is 64. First two arguments both in the set_bit() and get_bit() functions could be seen as

2D coordinates. Then array will be 8*8 matrix.
Here is C representation of what we already know:

#define IS_SET(flag, bit) ((flag) & (bit))
#define SET_BIT(var, bit) ((var) |= (bit))
#define REMOVE_BIT(var, bit) ((var) &= ~(bit))

char cube[8][8];

430

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

void set_bit (int x, int y, int shift, int bit)
{

if (bit)
SET_BIT (cube[x][y], 1<<shift);

else
REMOVE_BIT (cube[x][y], 1<<shift);

};

int get_bit (int x, int y, int shift)
{

if ((cube[x][y]>>shift)&1==1)
return 1;

return 0;
};

Now let’s get back to rotate1/2/3 functions.

.text:00541070 rotate1 proc near

.text:00541070

Internal array allocation in local stack, its size 64 bytes:

.text:00541070 internal_array_64= byte ptr -40h

.text:00541070 arg_0 = dword ptr 4

.text:00541070

.text:00541070 sub esp, 40h

.text:00541073 push ebx

.text:00541074 push ebp

.text:00541075 mov ebp, [esp+48h+arg_0]

.text:00541079 push esi

.text:0054107A push edi

.text:0054107B xor edi, edi ; EDI is loop1 counter

EBX is a pointer to internal array:

.text:0054107D lea ebx, [esp+50h+internal_array_64]

.text:00541081

Two nested loops are here:

.text:00541081 first_loop1_begin:

.text:00541081 xor esi, esi ; ESI is loop 2 counter

.text:00541083

.text:00541083 first_loop2_begin:

.text:00541083 push ebp ; arg_0

.text:00541084 push esi ; loop 1 counter

.text:00541085 push edi ; loop 2 counter

.text:00541086 call get_bit

.text:0054108B add esp, 0Ch

.text:0054108E mov [ebx+esi], al ; store to internal array

.text:00541091 inc esi ; increment loop 1 counter

.text:00541092 cmp esi, 8

.text:00541095 jl short first_loop2_begin

.text:00541097 inc edi ; increment loop 2 counter

.text:00541098 add ebx, 8 ; increment internal array pointer by 8 at each loop 1
iteration

.text:0054109B cmp edi, 8

.text:0054109E jl short first_loop1_begin

. . .we see that both loop counters are in range 0..7. Also they are used as the first and the second arguments of the
get_bit() function. Third argument of the get_bit() is the only argument of rotate1(). What get_bit() returns, is
being placed into internal array.

Prepare pointer to internal array again:

431

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

.text:005410A0 lea ebx, [esp+50h+internal_array_64]

.text:005410A4 mov edi, 7 ; EDI is loop 1 counter, initial state is 7

.text:005410A9

.text:005410A9 second_loop1_begin:

.text:005410A9 xor esi, esi ; ESI is loop 2 counter

.text:005410AB

.text:005410AB second_loop2_begin:

.text:005410AB mov al, [ebx+esi] ; value from internal array

.text:005410AE push eax

.text:005410AF push ebp ; arg_0

.text:005410B0 push edi ; loop 1 counter

.text:005410B1 push esi ; loop 2 counter

.text:005410B2 call set_bit

.text:005410B7 add esp, 10h

.text:005410BA inc esi ; increment loop 2 counter

.text:005410BB cmp esi, 8

.text:005410BE jl short second_loop2_begin

.text:005410C0 dec edi ; decrement loop 2 counter

.text:005410C1 add ebx, 8 ; increment pointer in internal array

.text:005410C4 cmp edi, 0FFFFFFFFh

.text:005410C7 jg short second_loop1_begin

.text:005410C9 pop edi

.text:005410CA pop esi

.text:005410CB pop ebp

.text:005410CC pop ebx

.text:005410CD add esp, 40h

.text:005410D0 retn

.text:005410D0 rotate1 endp

. . . this code is placing contents from internal array to cube global array via set_bit() function, but, in di�erent order!
Now loop 1 counter is in range 7 to 0, decrementing at each iteration!

C code representation looks like:

void rotate1 (int v)
{

bool tmp[8][8]; // internal array
int i, j;

for (i=0; i<8; i++)
for (j=0; j<8; j++)

tmp[i][j]=get_bit (i, j, v);

for (i=0; i<8; i++)
for (j=0; j<8; j++)

set_bit (j, 7-i, v, tmp[x][y]);
};

Not very understandable, but if we will take a look at rotate2() function:

.text:005410E0 rotate2 proc near

.text:005410E0

.text:005410E0 internal_array_64 = byte ptr -40h

.text:005410E0 arg_0 = dword ptr 4

.text:005410E0

.text:005410E0 sub esp, 40h

.text:005410E3 push ebx

.text:005410E4 push ebp

.text:005410E5 mov ebp, [esp+48h+arg_0]

.text:005410E9 push esi

.text:005410EA push edi

.text:005410EB xor edi, edi ; loop 1 counter

.text:005410ED lea ebx, [esp+50h+internal_array_64]

432

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
.text:005410F1
.text:005410F1 loc_5410F1:
.text:005410F1 xor esi, esi ; loop 2 counter
.text:005410F3
.text:005410F3 loc_5410F3:
.text:005410F3 push esi ; loop 2 counter
.text:005410F4 push edi ; loop 1 counter
.text:005410F5 push ebp ; arg_0
.text:005410F6 call get_bit
.text:005410FB add esp, 0Ch
.text:005410FE mov [ebx+esi], al ; store to internal array
.text:00541101 inc esi ; increment loop 1 counter
.text:00541102 cmp esi, 8
.text:00541105 jl short loc_5410F3
.text:00541107 inc edi ; increment loop 2 counter
.text:00541108 add ebx, 8
.text:0054110B cmp edi, 8
.text:0054110E jl short loc_5410F1
.text:00541110 lea ebx, [esp+50h+internal_array_64]
.text:00541114 mov edi, 7 ; loop 1 counter is initial state 7
.text:00541119
.text:00541119 loc_541119:
.text:00541119 xor esi, esi ; loop 2 counter
.text:0054111B
.text:0054111B loc_54111B:
.text:0054111B mov al, [ebx+esi] ; get byte from internal array
.text:0054111E push eax
.text:0054111F push edi ; loop 1 counter
.text:00541120 push esi ; loop 2 counter
.text:00541121 push ebp ; arg_0
.text:00541122 call set_bit
.text:00541127 add esp, 10h
.text:0054112A inc esi ; increment loop 2 counter
.text:0054112B cmp esi, 8
.text:0054112E jl short loc_54111B
.text:00541130 dec edi ; decrement loop 2 counter
.text:00541131 add ebx, 8
.text:00541134 cmp edi, 0FFFFFFFFh
.text:00541137 jg short loc_541119
.text:00541139 pop edi
.text:0054113A pop esi
.text:0054113B pop ebp
.text:0054113C pop ebx
.text:0054113D add esp, 40h
.text:00541140 retn
.text:00541140 rotate2 endp

It is almost the same, except of di�erent order of arguments of the get_bit() and set_bit(). Let’s rewrite it in C-like
code:

void rotate2 (int v)
{

bool tmp[8][8]; // internal array
int i, j;

for (i=0; i<8; i++)
for (j=0; j<8; j++)

tmp[i][j]=get_bit (v, i, j);

for (i=0; i<8; i++)
for (j=0; j<8; j++)

set_bit (v, j, 7-i, tmp[i][j]);

433

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
};

Let’s also rewrite rotate3() function:

void rotate3 (int v)
{

bool tmp[8][8];
int i, j;

for (i=0; i<8; i++)
for (j=0; j<8; j++)

tmp[i][j]=get_bit (i, v, j);

for (i=0; i<8; i++)
for (j=0; j<8; j++)

set_bit (7-j, v, i, tmp[i][j]);
};

Well, nowthingsare simpler. Ifweconsider cube64as3Dcube8*8*8,whereeachelement isbit,get_bit()andset_bit()
take just coordinates of bit on input.

rotate1/2/3 functions are in fact rotating all bits in specific plane. Three functions are each for each cube side and v
argument is setting plane in range 0..7.

Maybe, algorithm’s author was thinking of 8*8*8 Rubik’s cube?!
Yes, indeed.
Let’s get closer into decrypt() function, I rewrote it here:

void decrypt (BYTE *buf, int sz, char *pw)
{

char *p=strdup (pw);
strrev (p);
int i=0;

do
{

memcpy (cube, buf+i, 8*8);
rotate_all (p, 3);
memcpy (buf+i, cube, 8*8);
i+=64;

}
while (i<sz);

free (p);
};

It is almost the sameexceptof crypt(),butpasswordstring is reversedbystrrev() standardC functionandrotate_all()
is called with argument 3.

This means, in case of decryption, each corresponding rotate1/2/3 call will be performed thrice.
This is almost as in Rubik’c cube! If you want to get back, do the same in reverse order and direction! If you need to undo

e�ect of rotating one place in clockwise direction, rotate it thrice in counter-clockwise direction.
rotate1() is apparently for rotating “front” plane. rotate2() is apparently for rotating “top” plane. rotate3() is

apparently for rotating “le�” plane.
Let’s get back to the core of rotate_all() function:

q=c-’a’;
if (q>24)

q-=24;

int quotient=q/3; // in range 0..7
int remainder=q % 3;

switch (remainder)
{

case 0: for (int i=0; i<v; i++) rotate1 (quotient); break; // front

434

http://en.wikipedia.org/wiki/Rubik's_Cube
http://msdn.microsoft.com/en-us/library/9hby7w40(VS.80).aspx

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
case 1: for (int i=0; i<v; i++) rotate2 (quotient); break; // top
case 2: for (int i=0; i<v; i++) rotate3 (quotient); break; // left

};

Now it is much simpler to understand: each password character defines side (one of three) and plane (one of 8). 3*8 = 24,
that is why two last characters of Latin alphabet are remapped to fit an alphabet of exactly 24 elements.

The algorithm is clearly weak: in case of short passwords, one can see, that in crypted file there are an original bytes of
the original file in binary files editor.

Here is reconstructed whole source code:

#include <windows.h>

#include <stdio.h>
#include <assert.h>

#define IS_SET(flag, bit) ((flag) & (bit))
#define SET_BIT(var, bit) ((var) |= (bit))
#define REMOVE_BIT(var, bit) ((var) &= ~(bit))

static BYTE cube[8][8];

void set_bit (int x, int y, int z, bool bit)
{

if (bit)
SET_BIT (cube[x][y], 1<<z);

else
REMOVE_BIT (cube[x][y], 1<<z);

};

bool get_bit (int x, int y, int z)
{

if ((cube[x][y]>>z)&1==1)
return true;

return false;
};

void rotate_f (int row)
{

bool tmp[8][8];
int x, y;

for (x=0; x<8; x++)
for (y=0; y<8; y++)

tmp[x][y]=get_bit (x, y, row);

for (x=0; x<8; x++)
for (y=0; y<8; y++)

set_bit (y, 7-x, row, tmp[x][y]);
};

void rotate_t (int row)
{

bool tmp[8][8];
int y, z;

for (y=0; y<8; y++)
for (z=0; z<8; z++)

tmp[y][z]=get_bit (row, y, z);

for (y=0; y<8; y++)
for (z=0; z<8; z++)

set_bit (row, z, 7-y, tmp[y][z]);

435

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
};

void rotate_l (int row)
{

bool tmp[8][8];
int x, z;

for (x=0; x<8; x++)
for (z=0; z<8; z++)

tmp[x][z]=get_bit (x, row, z);

for (x=0; x<8; x++)
for (z=0; z<8; z++)

set_bit (7-z, row, x, tmp[x][z]);
};

void rotate_all (char *pwd, int v)
{

char *p=pwd;

while (*p)
{

char c=*p;
int q;

c=tolower (c);

if (c>=’a’ && c<=’z’)
{

q=c-’a’;
if (q>24)

q-=24;

int quotient=q/3;
int remainder=q % 3;

switch (remainder)
{
case 0: for (int i=0; i<v; i++) rotate1 (quotient); break;
case 1: for (int i=0; i<v; i++) rotate2 (quotient); break;
case 2: for (int i=0; i<v; i++) rotate3 (quotient); break;
};

};

p++;
};

};

void crypt (BYTE *buf, int sz, char *pw)
{

int i=0;

do
{

memcpy (cube, buf+i, 8*8);
rotate_all (pw, 1);
memcpy (buf+i, cube, 8*8);
i+=64;

}
while (i<sz);

};

436

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM

void decrypt (BYTE *buf, int sz, char *pw)
{

char *p=strdup (pw);
strrev (p);
int i=0;

do
{

memcpy (cube, buf+i, 8*8);
rotate_all (p, 3);
memcpy (buf+i, cube, 8*8);
i+=64;

}
while (i<sz);

free (p);
};

void crypt_file(char *fin, char* fout, char *pw)
{

FILE *f;
int flen, flen_aligned;
BYTE *buf;

f=fopen(fin, "rb");

if (f==NULL)
{

printf ("Cannot open input file!\n");
return;

};

fseek (f, 0, SEEK_END);
flen=ftell (f);
fseek (f, 0, SEEK_SET);

flen_aligned=(flen&0xFFFFFFC0)+0x40;

buf=(BYTE*)malloc (flen_aligned);
memset (buf, 0, flen_aligned);

fread (buf, flen, 1, f);

fclose (f);

crypt (buf, flen_aligned, pw);

f=fopen(fout, "wb");

fwrite ("QR9", 3, 1, f);
fwrite (&flen, 4, 1, f);
fwrite (buf, flen_aligned, 1, f);

fclose (f);

free (buf);

};

void decrypt_file(char *fin, char* fout, char *pw)

437

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
{

FILE *f;
int real_flen, flen;
BYTE *buf;

f=fopen(fin, "rb");

if (f==NULL)
{

printf ("Cannot open input file!\n");
return;

};

fseek (f, 0, SEEK_END);
flen=ftell (f);
fseek (f, 0, SEEK_SET);

buf=(BYTE*)malloc (flen);

fread (buf, flen, 1, f);

fclose (f);

if (memcmp (buf, "QR9", 3)!=0)
{

printf ("File is not crypted!\n");
return;

};

memcpy (&real_flen, buf+3, 4);

decrypt (buf+(3+4), flen-(3+4), pw);

f=fopen(fout, "wb");

fwrite (buf+(3+4), real_flen, 1, f);

fclose (f);

free (buf);
};

// run: input output 0/1 password
// 0 for encrypt, 1 for decrypt

int main(int argc, char *argv[])
{

if (argc!=5)
{

printf ("Incorrect parameters!\n");
return 1;

};

if (strcmp (argv[3], "0")==0)
crypt_file (argv[1], argv[2], argv[4]);

else
if (strcmp (argv[3], "1")==0)

decrypt_file (argv[1], argv[2], argv[4]);
else

printf ("Wrong param %s\n", argv[3]);

438

CHAPTER 56. “QR9”: RUBIK’S CUBE INSPIRED AMATEUR CRYPTO-ALGORITHM
return 0;

};

439

CHAPTER 57. SAP

Chapter 57

SAP

57.1 About SAP client network tra�ic compression
(Tracing connection between TDW_NOCOMPRESS SAPGUI1 environment variable to the pesky nagging pop-up window and
actual data compression routine.)

It is known that network tra�ic between SAPGUI and SAP is not crypted by default, it is rather compressed (read here and
here).

It is also known that by setting environment variable TDW_NOCOMPRESS to 1, it is possible to turn network packets com-
pression o�.

But you will see a nagging pop-up window cannot be closed:

Figure 57.1: Screenshot

Let’s see, if we can remove the window somehow.
But before this, let’s see what we already know. First: we know the environment variable TDW_NOCOMPRESS is checked

somewhere inside of SAPGUI client. Second: string like “data compression switched o�” must be present somewhere too.
With the help of FAR file manager I found that both of these strings are stored in the SAPguilib.dll file.

So let’s open SAPguilib.dll in IDA and search for “TDW_NOCOMPRESS” string. Yes, it is present and there is only one refer-
ence to it.

Wesee the following fragmentof code (all fileo�setsarevalid forSAPGUI720win32, SAPguilib.dll file version7200,1,0,9009):

.text:6440D51B lea eax, [ebp+2108h+var_211C]

.text:6440D51E push eax ; int

.text:6440D51F push offset aTdw_nocompress ; "TDW_NOCOMPRESS"

1SAP GUI client

440

http://blog.yurichev.com/node/44
http://blog.yurichev.com/node/47

57.1. ABOUT SAP CLIENT NETWORK TRAFFIC COMPRESSION CHAPTER 57. SAP
.text:6440D524 mov byte ptr [edi+15h], 0
.text:6440D528 call chk_env
.text:6440D52D pop ecx
.text:6440D52E pop ecx
.text:6440D52F push offset byte_64443AF8
.text:6440D534 lea ecx, [ebp+2108h+var_211C]

; demangled name: int ATL::CStringT::Compare(char const *)const
.text:6440D537 call ds:mfc90_1603
.text:6440D53D test eax, eax
.text:6440D53F jz short loc_6440D55A
.text:6440D541 lea ecx, [ebp+2108h+var_211C]

; demangled name: const char* ATL::CSimpleStringT::operator PCXSTR
.text:6440D544 call ds:mfc90_910
.text:6440D54A push eax ; Str
.text:6440D54B call ds:atoi
.text:6440D551 test eax, eax
.text:6440D553 setnz al
.text:6440D556 pop ecx
.text:6440D557 mov [edi+15h], al

String returned by chk_env() via second argument is then handled by MFC string functions and then atoi()2 is called.
A�er that, numerical value is stored to edi+15h.

Also take a look onto chk_env() function (I gave a name to it):

.text:64413F20 ; int __cdecl chk_env(char *VarName, int)

.text:64413F20 chk_env proc near

.text:64413F20

.text:64413F20 DstSize = dword ptr -0Ch

.text:64413F20 var_8 = dword ptr -8

.text:64413F20 DstBuf = dword ptr -4

.text:64413F20 VarName = dword ptr 8

.text:64413F20 arg_4 = dword ptr 0Ch

.text:64413F20

.text:64413F20 push ebp

.text:64413F21 mov ebp, esp

.text:64413F23 sub esp, 0Ch

.text:64413F26 mov [ebp+DstSize], 0

.text:64413F2D mov [ebp+DstBuf], 0

.text:64413F34 push offset unk_6444C88C

.text:64413F39 mov ecx, [ebp+arg_4]

; (demangled name) ATL::CStringT::operator=(char const *)
.text:64413F3C call ds:mfc90_820
.text:64413F42 mov eax, [ebp+VarName]
.text:64413F45 push eax ; VarName
.text:64413F46 mov ecx, [ebp+DstSize]
.text:64413F49 push ecx ; DstSize
.text:64413F4A mov edx, [ebp+DstBuf]
.text:64413F4D push edx ; DstBuf
.text:64413F4E lea eax, [ebp+DstSize]
.text:64413F51 push eax ; ReturnSize
.text:64413F52 call ds:getenv_s
.text:64413F58 add esp, 10h
.text:64413F5B mov [ebp+var_8], eax
.text:64413F5E cmp [ebp+var_8], 0
.text:64413F62 jz short loc_64413F68
.text:64413F64 xor eax, eax
.text:64413F66 jmp short loc_64413FBC

2standard C library function, coverting number in string into number

441

57.1. ABOUT SAP CLIENT NETWORK TRAFFIC COMPRESSION CHAPTER 57. SAP
.text:64413F68 ; ---
.text:64413F68
.text:64413F68 loc_64413F68:
.text:64413F68 cmp [ebp+DstSize], 0
.text:64413F6C jnz short loc_64413F72
.text:64413F6E xor eax, eax
.text:64413F70 jmp short loc_64413FBC
.text:64413F72 ; ---
.text:64413F72
.text:64413F72 loc_64413F72:
.text:64413F72 mov ecx, [ebp+DstSize]
.text:64413F75 push ecx
.text:64413F76 mov ecx, [ebp+arg_4]

; demangled name: ATL::CSimpleStringT<char, 1>::Preallocate(int)
.text:64413F79 call ds:mfc90_2691
.text:64413F7F mov [ebp+DstBuf], eax
.text:64413F82 mov edx, [ebp+VarName]
.text:64413F85 push edx ; VarName
.text:64413F86 mov eax, [ebp+DstSize]
.text:64413F89 push eax ; DstSize
.text:64413F8A mov ecx, [ebp+DstBuf]
.text:64413F8D push ecx ; DstBuf
.text:64413F8E lea edx, [ebp+DstSize]
.text:64413F91 push edx ; ReturnSize
.text:64413F92 call ds:getenv_s
.text:64413F98 add esp, 10h
.text:64413F9B mov [ebp+var_8], eax
.text:64413F9E push 0FFFFFFFFh
.text:64413FA0 mov ecx, [ebp+arg_4]

; demangled name: ATL::CSimpleStringT::ReleaseBuffer(int)
.text:64413FA3 call ds:mfc90_5835
.text:64413FA9 cmp [ebp+var_8], 0
.text:64413FAD jz short loc_64413FB3
.text:64413FAF xor eax, eax
.text:64413FB1 jmp short loc_64413FBC
.text:64413FB3 ; ---
.text:64413FB3
.text:64413FB3 loc_64413FB3:
.text:64413FB3 mov ecx, [ebp+arg_4]

; demangled name: const char* ATL::CSimpleStringT::operator PCXSTR
.text:64413FB6 call ds:mfc90_910
.text:64413FBC
.text:64413FBC loc_64413FBC:
.text:64413FBC
.text:64413FBC mov esp, ebp
.text:64413FBE pop ebp
.text:64413FBF retn
.text:64413FBF chk_env endp

Yes. getenv_s()3 function is Microso� security-enhanced version of getenv()4.
There is also a MFC string manipulations.
Lots of other environment variables are checked as well. Here is a list of all variables being checked and what SAPGUI

could write to trace log when logging is turned on:
3http://msdn.microsoft.com/en-us/library/tb2sfw2z(VS.80).aspx
4Standard C library returning environment variable

442

http://msdn.microsoft.com/en-us/library/tb2sfw2z(VS.80).aspx

57.1. ABOUT SAP CLIENT NETWORK TRAFFIC COMPRESSION CHAPTER 57. SAP
DPTRACE “GUI-OPTION: Trace set to %d”
TDW_HEXDUMP “GUI-OPTION: Hexdump enabled”
TDW_WORKDIR “GUI-OPTION: working directory ‘%ś’’
TDW_SPLASHSRCEENOFF “GUI-OPTION: Splash Screen O�” / “GUI-OPTION: Splash Screen On”
TDW_REPLYTIMEOUT “GUI-OPTION: reply timeout %dmilliseconds”
TDW_PLAYBACKTIMEOUT “GUI-OPTION: PlaybackTimeout set to %dmilliseconds”
TDW_NOCOMPRESS “GUI-OPTION: no compression read”
TDW_EXPERT “GUI-OPTION: expert mode”
TDW_PLAYBACKPROGRESS “GUI-OPTION: PlaybackProgress”
TDW_PLAYBACKNETTRAFFIC “GUI-OPTION: PlaybackNetTra�ic”
TDW_PLAYLOG “GUI-OPTION: /PlayLog is YES, file %s”
TDW_PLAYTIME “GUI-OPTION: /PlayTime set to %dmilliseconds”
TDW_LOGFILE “GUI-OPTION: TDW_LOGFILE ‘%ś’’
TDW_WAN “GUI-OPTION: WAN - low speed connection enabled”
TDW_FULLMENU “GUI-OPTION: FullMenu enabled”
SAP_CP / SAP_CODEPAGE “GUI-OPTION: SAP_CODEPAGE ‘%d́’’
UPDOWNLOAD_CP “GUI-OPTION: UPDOWNLOAD_CP ‘%d́’’
SNC_PARTNERNAME “GUI-OPTION: SNC name ‘%ś’’
SNC_QOP “GUI-OPTION: SNC_QOP ‘%ś’’
SNC_LIB “GUI-OPTION: SNC is set to: %s”
SAPGUI_INPLACE “GUI-OPTION: environment variable SAPGUI_INPLACE is on”

Settings for each variable are written to the array via pointer in the EDI register. EDI is being set before the function call:

.text:6440EE00 lea edi, [ebp+2884h+var_2884] ; options here like +0x15...

.text:6440EE03 lea ecx, [esi+24h]

.text:6440EE06 call load_command_line

.text:6440EE0B mov edi, eax

.text:6440EE0D xor ebx, ebx

.text:6440EE0F cmp edi, ebx

.text:6440EE11 jz short loc_6440EE42

.text:6440EE13 push edi

.text:6440EE14 push offset aSapguiStoppedA ; "Sapgui stopped after commandline
interp"...

.text:6440EE19 push dword_644F93E8

.text:6440EE1F call FEWTraceError

Now, canwe find “data recordmodeswitchedon” string? Yes, andhere is theonly reference in functionCDwsGui::PrepareInfoWindow().
How do I know class/method names? There is a lot of special debugging calls writing to log-files like:

.text:64405160 push dword ptr [esi+2854h]

.text:64405166 push offset aCdwsguiPrepare ; "\nCDwsGui::PrepareInfoWindow:
sapgui env"...

.text:6440516B push dword ptr [esi+2848h]

.text:64405171 call dbg

.text:64405176 add esp, 0Ch

. . .or:

.text:6440237A push eax

.text:6440237B push offset aCclientStart_6 ; "CClient::Start: set shortcut
user to ’\%"...

.text:64402380 push dword ptr [edi+4]

.text:64402383 call dbg

.text:64402388 add esp, 0Ch

It is very useful.
So let’s see contents of the pesky nagging pop-up window function:

.text:64404F4F CDwsGui__PrepareInfoWindow proc near

.text:64404F4F

.text:64404F4F pvParam = byte ptr -3Ch

.text:64404F4F var_38 = dword ptr -38h

443

57.1. ABOUT SAP CLIENT NETWORK TRAFFIC COMPRESSION CHAPTER 57. SAP
.text:64404F4F var_34 = dword ptr -34h
.text:64404F4F rc = tagRECT ptr -2Ch
.text:64404F4F cy = dword ptr -1Ch
.text:64404F4F h = dword ptr -18h
.text:64404F4F var_14 = dword ptr -14h
.text:64404F4F var_10 = dword ptr -10h
.text:64404F4F var_4 = dword ptr -4
.text:64404F4F
.text:64404F4F push 30h
.text:64404F51 mov eax, offset loc_64438E00
.text:64404F56 call __EH_prolog3
.text:64404F5B mov esi, ecx ; ECX is pointer to object
.text:64404F5D xor ebx, ebx
.text:64404F5F lea ecx, [ebp+var_14]
.text:64404F62 mov [ebp+var_10], ebx

; demangled name: ATL::CStringT(void)
.text:64404F65 call ds:mfc90_316
.text:64404F6B mov [ebp+var_4], ebx
.text:64404F6E lea edi, [esi+2854h]
.text:64404F74 push offset aEnvironmentInf ; "Environment information:\n"
.text:64404F79 mov ecx, edi

; demangled name: ATL::CStringT::operator=(char const *)
.text:64404F7B call ds:mfc90_820
.text:64404F81 cmp [esi+38h], ebx
.text:64404F84 mov ebx, ds:mfc90_2539
.text:64404F8A jbe short loc_64404FA9
.text:64404F8C push dword ptr [esi+34h]
.text:64404F8F lea eax, [ebp+var_14]
.text:64404F92 push offset aWorkingDirecto ; "working directory: ’\%s’\n"
.text:64404F97 push eax

; demangled name: ATL::CStringT::Format(char const *,...)
.text:64404F98 call ebx ; mfc90_2539
.text:64404F9A add esp, 0Ch
.text:64404F9D lea eax, [ebp+var_14]
.text:64404FA0 push eax
.text:64404FA1 mov ecx, edi

; demangled name: ATL::CStringT::operator+=(class ATL::CSimpleStringT<char, 1> const &)
.text:64404FA3 call ds:mfc90_941
.text:64404FA9
.text:64404FA9 loc_64404FA9:
.text:64404FA9 mov eax, [esi+38h]
.text:64404FAC test eax, eax
.text:64404FAE jbe short loc_64404FD3
.text:64404FB0 push eax
.text:64404FB1 lea eax, [ebp+var_14]
.text:64404FB4 push offset aTraceLevelDAct ; "trace level \%d activated\n"
.text:64404FB9 push eax

; demangled name: ATL::CStringT::Format(char const *,...)
.text:64404FBA call ebx ; mfc90_2539
.text:64404FBC add esp, 0Ch
.text:64404FBF lea eax, [ebp+var_14]
.text:64404FC2 push eax
.text:64404FC3 mov ecx, edi

; demangled name: ATL::CStringT::operator+=(class ATL::CSimpleStringT<char, 1> const &)
.text:64404FC5 call ds:mfc90_941

444

57.1. ABOUT SAP CLIENT NETWORK TRAFFIC COMPRESSION CHAPTER 57. SAP
.text:64404FCB xor ebx, ebx
.text:64404FCD inc ebx
.text:64404FCE mov [ebp+var_10], ebx
.text:64404FD1 jmp short loc_64404FD6
.text:64404FD3 ; ---
.text:64404FD3
.text:64404FD3 loc_64404FD3:
.text:64404FD3 xor ebx, ebx
.text:64404FD5 inc ebx
.text:64404FD6
.text:64404FD6 loc_64404FD6:
.text:64404FD6 cmp [esi+38h], ebx
.text:64404FD9 jbe short loc_64404FF1
.text:64404FDB cmp dword ptr [esi+2978h], 0
.text:64404FE2 jz short loc_64404FF1
.text:64404FE4 push offset aHexdumpInTrace ; "hexdump in trace activated\n"
.text:64404FE9 mov ecx, edi

; demangled name: ATL::CStringT::operator+=(char const *)
.text:64404FEB call ds:mfc90_945
.text:64404FF1
.text:64404FF1 loc_64404FF1:
.text:64404FF1
.text:64404FF1 cmp byte ptr [esi+78h], 0
.text:64404FF5 jz short loc_64405007
.text:64404FF7 push offset aLoggingActivat ; "logging activated\n"
.text:64404FFC mov ecx, edi

; demangled name: ATL::CStringT::operator+=(char const *)
.text:64404FFE call ds:mfc90_945
.text:64405004 mov [ebp+var_10], ebx
.text:64405007
.text:64405007 loc_64405007:
.text:64405007 cmp byte ptr [esi+3Dh], 0
.text:6440500B jz short bypass
.text:6440500D push offset aDataCompressio ; "data compression switched off\n"
.text:64405012 mov ecx, edi

; demangled name: ATL::CStringT::operator+=(char const *)
.text:64405014 call ds:mfc90_945
.text:6440501A mov [ebp+var_10], ebx
.text:6440501D
.text:6440501D bypass:
.text:6440501D mov eax, [esi+20h]
.text:64405020 test eax, eax
.text:64405022 jz short loc_6440503A
.text:64405024 cmp dword ptr [eax+28h], 0
.text:64405028 jz short loc_6440503A
.text:6440502A push offset aDataRecordMode ; "data record mode switched on\n"
.text:6440502F mov ecx, edi

; demangled name: ATL::CStringT::operator+=(char const *)
.text:64405031 call ds:mfc90_945
.text:64405037 mov [ebp+var_10], ebx
.text:6440503A
.text:6440503A loc_6440503A:
.text:6440503A
.text:6440503A mov ecx, edi
.text:6440503C cmp [ebp+var_10], ebx
.text:6440503F jnz loc_64405142
.text:64405045 push offset aForMaximumData ; "\nFor maximum data security

445

57.1. ABOUT SAP CLIENT NETWORK TRAFFIC COMPRESSION CHAPTER 57. SAP
delete\nthe s"...

; demangled name: ATL::CStringT::operator+=(char const *)
.text:6440504A call ds:mfc90_945
.text:64405050 xor edi, edi
.text:64405052 push edi ; fWinIni
.text:64405053 lea eax, [ebp+pvParam]
.text:64405056 push eax ; pvParam
.text:64405057 push edi ; uiParam
.text:64405058 push 30h ; uiAction
.text:6440505A call ds:SystemParametersInfoA
.text:64405060 mov eax, [ebp+var_34]
.text:64405063 cmp eax, 1600
.text:64405068 jle short loc_64405072
.text:6440506A cdq
.text:6440506B sub eax, edx
.text:6440506D sar eax, 1
.text:6440506F mov [ebp+var_34], eax
.text:64405072
.text:64405072 loc_64405072:
.text:64405072 push edi ; hWnd
.text:64405073 mov [ebp+cy], 0A0h
.text:6440507A call ds:GetDC
.text:64405080 mov [ebp+var_10], eax
.text:64405083 mov ebx, 12Ch
.text:64405088 cmp eax, edi
.text:6440508A jz loc_64405113
.text:64405090 push 11h ; i
.text:64405092 call ds:GetStockObject
.text:64405098 mov edi, ds:SelectObject
.text:6440509E push eax ; h
.text:6440509F push [ebp+var_10] ; hdc
.text:644050A2 call edi ; SelectObject
.text:644050A4 and [ebp+rc.left], 0
.text:644050A8 and [ebp+rc.top], 0
.text:644050AC mov [ebp+h], eax
.text:644050AF push 401h ; format
.text:644050B4 lea eax, [ebp+rc]
.text:644050B7 push eax ; lprc
.text:644050B8 lea ecx, [esi+2854h]
.text:644050BE mov [ebp+rc.right], ebx
.text:644050C1 mov [ebp+rc.bottom], 0B4h

; demangled name: ATL::CSimpleStringT::GetLength(void)
.text:644050C8 call ds:mfc90_3178
.text:644050CE push eax ; cchText
.text:644050CF lea ecx, [esi+2854h]

; demangled name: const char* ATL::CSimpleStringT::operator PCXSTR
.text:644050D5 call ds:mfc90_910
.text:644050DB push eax ; lpchText
.text:644050DC push [ebp+var_10] ; hdc
.text:644050DF call ds:DrawTextA
.text:644050E5 push 4 ; nIndex
.text:644050E7 call ds:GetSystemMetrics
.text:644050ED mov ecx, [ebp+rc.bottom]
.text:644050F0 sub ecx, [ebp+rc.top]
.text:644050F3 cmp [ebp+h], 0
.text:644050F7 lea eax, [eax+ecx+28h]
.text:644050FB mov [ebp+cy], eax
.text:644050FE jz short loc_64405108

446

57.1. ABOUT SAP CLIENT NETWORK TRAFFIC COMPRESSION CHAPTER 57. SAP
.text:64405100 push [ebp+h] ; h
.text:64405103 push [ebp+var_10] ; hdc
.text:64405106 call edi ; SelectObject
.text:64405108
.text:64405108 loc_64405108:
.text:64405108 push [ebp+var_10] ; hDC
.text:6440510B push 0 ; hWnd
.text:6440510D call ds:ReleaseDC
.text:64405113
.text:64405113 loc_64405113:
.text:64405113 mov eax, [ebp+var_38]
.text:64405116 push 80h ; uFlags
.text:6440511B push [ebp+cy] ; cy
.text:6440511E inc eax
.text:6440511F push ebx ; cx
.text:64405120 push eax ; Y
.text:64405121 mov eax, [ebp+var_34]
.text:64405124 add eax, 0FFFFFED4h
.text:64405129 cdq
.text:6440512A sub eax, edx
.text:6440512C sar eax, 1
.text:6440512E push eax ; X
.text:6440512F push 0 ; hWndInsertAfter
.text:64405131 push dword ptr [esi+285Ch] ; hWnd
.text:64405137 call ds:SetWindowPos
.text:6440513D xor ebx, ebx
.text:6440513F inc ebx
.text:64405140 jmp short loc_6440514D
.text:64405142 ; ---
.text:64405142
.text:64405142 loc_64405142:
.text:64405142 push offset byte_64443AF8

; demangled name: ATL::CStringT::operator=(char const *)
.text:64405147 call ds:mfc90_820
.text:6440514D
.text:6440514D loc_6440514D:
.text:6440514D cmp dword_6450B970, ebx
.text:64405153 jl short loc_64405188
.text:64405155 call sub_6441C910
.text:6440515A mov dword_644F858C, ebx
.text:64405160 push dword ptr [esi+2854h]
.text:64405166 push offset aCdwsguiPrepare ; "\nCDwsGui::PrepareInfoWindow:

sapgui env"...
.text:6440516B push dword ptr [esi+2848h]
.text:64405171 call dbg
.text:64405176 add esp, 0Ch
.text:64405179 mov dword_644F858C, 2
.text:64405183 call sub_6441C920
.text:64405188
.text:64405188 loc_64405188:
.text:64405188 or [ebp+var_4], 0FFFFFFFFh
.text:6440518C lea ecx, [ebp+var_14]

; demangled name: ATL::CStringT::~CStringT()
.text:6440518F call ds:mfc90_601
.text:64405195 call __EH_epilog3
.text:6440519A retn
.text:6440519A CDwsGui__PrepareInfoWindow endp

ECX at function start gets pointer to object (since it is thiscall (31.1.1)-type of function). In our case, the object obviously

447

57.1. ABOUT SAP CLIENT NETWORK TRAFFIC COMPRESSION CHAPTER 57. SAP
has class type CDwsGui. Depends of option turned on in the object, specific message part will be concatenated to resulting
message.

If value at this+0x3D address is not zero, compression is o�:

.text:64405007 loc_64405007:

.text:64405007 cmp byte ptr [esi+3Dh], 0

.text:6440500B jz short bypass

.text:6440500D push offset aDataCompressio ; "data compression switched off\n"

.text:64405012 mov ecx, edi

; demangled name: ATL::CStringT::operator+=(char const *)
.text:64405014 call ds:mfc90_945
.text:6440501A mov [ebp+var_10], ebx
.text:6440501D
.text:6440501D bypass:

It is interesting, that finally, var_10 variable state defines whether the message is to be shown at all:

.text:6440503C cmp [ebp+var_10], ebx

.text:6440503F jnz exit ; bypass drawing

; add strings "For maximum data security delete" / "the setting(s) as soon as possible !":

.text:64405045 push offset aForMaximumData ; "\nFor maximum data security
delete\nthe s"...

.text:6440504A call ds:mfc90_945 ; ATL::CStringT::operator+=(char const *)

.text:64405050 xor edi, edi

.text:64405052 push edi ; fWinIni

.text:64405053 lea eax, [ebp+pvParam]

.text:64405056 push eax ; pvParam

.text:64405057 push edi ; uiParam

.text:64405058 push 30h ; uiAction

.text:6440505A call ds:SystemParametersInfoA

.text:64405060 mov eax, [ebp+var_34]

.text:64405063 cmp eax, 1600

.text:64405068 jle short loc_64405072

.text:6440506A cdq

.text:6440506B sub eax, edx

.text:6440506D sar eax, 1

.text:6440506F mov [ebp+var_34], eax

.text:64405072

.text:64405072 loc_64405072:

start drawing:

.text:64405072 push edi ; hWnd

.text:64405073 mov [ebp+cy], 0A0h

.text:6440507A call ds:GetDC

Let’s check our theory on practice.
JNZ at this line . . .

.text:6440503F jnz exit ; bypass drawing

. . . replace it with just JMP, and get SAPGUI working without the pesky nagging pop-up window appearing!
Now let’s dig deeper and find connection between 0x15 o�set in the load_command_line() (I gave the name to the

function) function and this+0x3D variable in the CDwsGui::PrepareInfoWindow. Are we sure the value is the same?
I’m starting to search for all occurrences of 0x15 value in code. For a small programs like SAPGUI, it sometimes works.

Here is the first occurrence I got:

.text:64404C19 sub_64404C19 proc near

.text:64404C19

.text:64404C19 arg_0 = dword ptr 4

.text:64404C19

448

57.1. ABOUT SAP CLIENT NETWORK TRAFFIC COMPRESSION CHAPTER 57. SAP
.text:64404C19 push ebx
.text:64404C1A push ebp
.text:64404C1B push esi
.text:64404C1C push edi
.text:64404C1D mov edi, [esp+10h+arg_0]
.text:64404C21 mov eax, [edi]
.text:64404C23 mov esi, ecx ; ESI/ECX are pointers to some unknown object.
.text:64404C25 mov [esi], eax
.text:64404C27 mov eax, [edi+4]
.text:64404C2A mov [esi+4], eax
.text:64404C2D mov eax, [edi+8]
.text:64404C30 mov [esi+8], eax
.text:64404C33 lea eax, [edi+0Ch]
.text:64404C36 push eax
.text:64404C37 lea ecx, [esi+0Ch]

; demangled name: ATL::CStringT::operator=(class ATL::CStringT ... &)
.text:64404C3A call ds:mfc90_817
.text:64404C40 mov eax, [edi+10h]
.text:64404C43 mov [esi+10h], eax
.text:64404C46 mov al, [edi+14h]
.text:64404C49 mov [esi+14h], al
.text:64404C4C mov al, [edi+15h] ; copy byte from 0x15 offset
.text:64404C4F mov [esi+15h], al ; to 0x15 offset in CDwsGui object

The function was called from the function named CDwsGui::CopyOptions! And thanks again for debugging information.
But the real answer in the function CDwsGui::Init():

.text:6440B0BF loc_6440B0BF:

.text:6440B0BF mov eax, [ebp+arg_0]

.text:6440B0C2 push [ebp+arg_4]

.text:6440B0C5 mov [esi+2844h], eax

.text:6440B0CB lea eax, [esi+28h] ; ESI is pointer to CDwsGui object

.text:6440B0CE push eax

.text:6440B0CF call CDwsGui__CopyOptions

Finally, we understand: array filled in the load_command_line() function is actually placed in the CDwsGui class but on
this+0x28 address. 0x15 + 0x28 is exactly 0x3D. OK, we found the point where the value is copied to.

Let’s also find other places where 0x3D o�set is used. Here is one of them in the CDwsGui::SapguiRun function (again,
thanks to debugging calls):

.text:64409D58 cmp [esi+3Dh], bl ; ESI is pointer to CDwsGui object

.text:64409D5B lea ecx, [esi+2B8h]

.text:64409D61 setz al

.text:64409D64 push eax ; arg_10 of CConnectionContext::
CreateNetwork

.text:64409D65 push dword ptr [esi+64h]

; demangled name: const char* ATL::CSimpleStringT::operator PCXSTR
.text:64409D68 call ds:mfc90_910
.text:64409D68 ; no arguments
.text:64409D6E push eax
.text:64409D6F lea ecx, [esi+2BCh]

; demangled name: const char* ATL::CSimpleStringT::operator PCXSTR
.text:64409D75 call ds:mfc90_910
.text:64409D75 ; no arguments
.text:64409D7B push eax
.text:64409D7C push esi
.text:64409D7D lea ecx, [esi+8]
.text:64409D80 call CConnectionContext__CreateNetwork

449

57.1. ABOUT SAP CLIENT NETWORK TRAFFIC COMPRESSION CHAPTER 57. SAP
Let’s check our findings. Replace the setz al here to the xor eax, eax / nop instructions, clear TDW_NOCOMPRESS

environment variable and run SAPGUI. Wow! There is no more pesky nagging window (just as expected, because variable is
not set) but in Wireshark we can see the network packets are not compressed anymore! Obviously, this is the point where
compression flag is to be set in the CConnectionContext object.

So, compression flag is passed in the 5th argument of function CConnectionContext::CreateNetwork. Inside the function,
another one is called:

...

.text:64403476 push [ebp+compression]

.text:64403479 push [ebp+arg_C]

.text:6440347C push [ebp+arg_8]

.text:6440347F push [ebp+arg_4]

.text:64403482 push [ebp+arg_0]

.text:64403485 call CNetwork__CNetwork

Compression flag is passing here in the 5th argument to the CNetwork::CNetwork constructor.
And here is how CNetwork constructor sets a flag in the CNetwork object according to the 5th argument and an another

variable which probably could a�ect network packets compression too.

.text:64411DF1 cmp [ebp+compression], esi

.text:64411DF7 jz short set_EAX_to_0

.text:64411DF9 mov al, [ebx+78h] ; another value may affect compression?

.text:64411DFC cmp al, ’3’

.text:64411DFE jz short set_EAX_to_1

.text:64411E00 cmp al, ’4’

.text:64411E02 jnz short set_EAX_to_0

.text:64411E04

.text:64411E04 set_EAX_to_1:

.text:64411E04 xor eax, eax

.text:64411E06 inc eax ; EAX -> 1

.text:64411E07 jmp short loc_64411E0B

.text:64411E09 ; ---

.text:64411E09

.text:64411E09 set_EAX_to_0:

.text:64411E09

.text:64411E09 xor eax, eax ; EAX -> 0

.text:64411E0B

.text:64411E0B loc_64411E0B:

.text:64411E0B mov [ebx+3A4h], eax ; EBX is pointer to CNetwork object

At this point we know the compression flag is stored in the CNetwork class at this+0x3A4 address.
Now let’sdigacrossSAPguilib.dll for0x3A4value. Andhere is the secondoccurrence in theCDwsGui::OnClientMessageWrite

(endless thanks for debugging information):

.text:64406F76 loc_64406F76:

.text:64406F76 mov ecx, [ebp+7728h+var_7794]

.text:64406F79 cmp dword ptr [ecx+3A4h], 1

.text:64406F80 jnz compression_flag_is_zero

.text:64406F86 mov byte ptr [ebx+7], 1

.text:64406F8A mov eax, [esi+18h]

.text:64406F8D mov ecx, eax

.text:64406F8F test eax, eax

.text:64406F91 ja short loc_64406FFF

.text:64406F93 mov ecx, [esi+14h]

.text:64406F96 mov eax, [esi+20h]

.text:64406F99

.text:64406F99 loc_64406F99:

.text:64406F99 push dword ptr [edi+2868h] ; int

.text:64406F9F lea edx, [ebp+7728h+var_77A4]

.text:64406FA2 push edx ; int

.text:64406FA3 push 30000 ; int

.text:64406FA8 lea edx, [ebp+7728h+Dst]

.text:64406FAB push edx ; Dst

450

57.2. SAP 6.0 PASSWORD CHECKING FUNCTIONS CHAPTER 57. SAP
.text:64406FAC push ecx ; int
.text:64406FAD push eax ; Src
.text:64406FAE push dword ptr [edi+28C0h] ; int
.text:64406FB4 call sub_644055C5 ; actual compression routine
.text:64406FB9 add esp, 1Ch
.text:64406FBC cmp eax, 0FFFFFFF6h
.text:64406FBF jz short loc_64407004
.text:64406FC1 cmp eax, 1
.text:64406FC4 jz loc_6440708C
.text:64406FCA cmp eax, 2
.text:64406FCD jz short loc_64407004
.text:64406FCF push eax
.text:64406FD0 push offset aCompressionErr ; "compression error [rc = \%d]-

program wi"...
.text:64406FD5 push offset aGui_err_compre ; "GUI_ERR_COMPRESS"
.text:64406FDA push dword ptr [edi+28D0h]
.text:64406FE0 call SapPcTxtRead

Let’s takea look into sub_644055C5. In itwecanonly seecall tomemcpy() andanother functionnamed (by IDA) sub_64417440.
And, let’s take a look inside sub_64417440. What we see is:

.text:6441747C push offset aErrorCsrcompre ; "\nERROR: CsRCompress: invalid
handle"

.text:64417481 call eax ; dword_644F94C8

.text:64417483 add esp, 4

Voilà! We’ve found the function which actually compresses data. As I revealed in past, this function is used in SAP and
also open-source MaxDB project. So it is available in sources.

Doing last check here:

.text:64406F79 cmp dword ptr [ecx+3A4h], 1

.text:64406F80 jnz compression_flag_is_zero

Replace JNZ here for unconditional JMP. Remove environment variable TDW_NOCOMPRESS. Voilà! In Wireshark we see
the client messages are not compressed. Server responses, however, are compressed.

So we found exact connection between environment variable and the point where data compression routine may be
called or may be bypassed.

57.2 SAP 6.0 password checking functions
While returning again to my SAP 6.0 IDES installed in VMware box, I figured out I forgot the password for SAP* account, then
it back tomymemory, but now I got error message «Password logon no longer possible - toomany failed attempts», since I’ve
spent all these attempts in trying to recall it.

First extremely goodnews is the fulldisp+work.pdb file is suppliedwith SAP, it contain almost everything: functionnames,
structures, types, local variable and argument names, etc. What a lavish gi�!

I got TYPEINFODUMP5 utility for converting PDB files into something readable and grepable.
Here is an example of function information + its arguments + its local variables:

FUNCTION ThVmcSysEvent
Address: 10143190 Size: 675 bytes Index: 60483 TypeIndex: 60484
Type: int NEAR_C ThVmcSysEvent (unsigned int, unsigned char, unsigned short*)

Flags: 0
PARAMETER events

Address: Reg335+288 Size: 4 bytes Index: 60488 TypeIndex: 60489
Type: unsigned int

Flags: d0
PARAMETER opcode

Address: Reg335+296 Size: 1 bytes Index: 60490 TypeIndex: 60491
Type: unsigned char

Flags: d0
PARAMETER serverName

5http://www.debuginfo.com/tools/typeinfodump.html

451

http://conus.info/utils/SAP_pkt_decompr.txt
http://www.debuginfo.com/tools/typeinfodump.html

57.2. SAP 6.0 PASSWORD CHECKING FUNCTIONS CHAPTER 57. SAP
Address: Reg335+304 Size: 8 bytes Index: 60492 TypeIndex: 60493
Type: unsigned short*

Flags: d0
STATIC_LOCAL_VAR func

Address: 12274af0 Size: 8 bytes Index: 60495 TypeIndex: 60496
Type: wchar_t*

Flags: 80
LOCAL_VAR admhead

Address: Reg335+304 Size: 8 bytes Index: 60498 TypeIndex: 60499
Type: unsigned char*

Flags: 90
LOCAL_VAR record

Address: Reg335+64 Size: 204 bytes Index: 60501 TypeIndex: 60502
Type: AD_RECORD

Flags: 90
LOCAL_VAR adlen

Address: Reg335+296 Size: 4 bytes Index: 60508 TypeIndex: 60509
Type: int

Flags: 90

And here is an example of some structure:

STRUCT DBSL_STMTID
Size: 120 Variables: 4 Functions: 0 Base classes: 0
MEMBER moduletype

Type: DBSL_MODULETYPE
Offset: 0 Index: 3 TypeIndex: 38653

MEMBER module
Type: wchar_t module[40]
Offset: 4 Index: 3 TypeIndex: 831

MEMBER stmtnum
Type: long
Offset: 84 Index: 3 TypeIndex: 440

MEMBER timestamp
Type: wchar_t timestamp[15]
Offset: 88 Index: 3 TypeIndex: 6612

Wow!
Another good news is: debugging calls (there are plenty of them) are very useful.
Here you can also notice ct_level global variable6, reflecting current trace level.
There is a lot of such debugging inclusions in the disp+work.exe file:

cmp cs:ct_level, 1
jl short loc_1400375DA
call DpLock
lea rcx, aDpxxtool4_c ; "dpxxtool4.c"
mov edx, 4Eh ; line
call CTrcSaveLocation
mov r8, cs:func_48
mov rcx, cs:hdl ; hdl
lea rdx, aSDpreadmemvalu ; "%s: DpReadMemValue (%d)"
mov r9d, ebx
call DpTrcErr
call DpUnlock

If current trace level is bigger or equal to threshold defined in the code here, debugging message will be written to log
files like dev_w0, dev_disp, and other dev* files.

Let’s do grepping on file I got with the help of TYPEINFODUMP utility:

cat "disp+work.pdb.d" | grep FUNCTION | grep -i password

I got:
6More about trace level: http://help.sap.com/saphelp_nwpi71/helpdata/en/46/962416a5a613e8e10000000a155369/content.htm

452

http://help.sap.com/saphelp_nwpi71/helpdata/en/46/962416a5a613e8e10000000a155369/content.htm

57.2. SAP 6.0 PASSWORD CHECKING FUNCTIONS CHAPTER 57. SAP

FUNCTION rcui::AgiPassword::DiagISelection
FUNCTION ssf_password_encrypt
FUNCTION ssf_password_decrypt
FUNCTION password_logon_disabled
FUNCTION dySignSkipUserPassword
FUNCTION migrate_password_history
FUNCTION password_is_initial
FUNCTION rcui::AgiPassword::IsVisible
FUNCTION password_distance_ok
FUNCTION get_password_downwards_compatibility
FUNCTION dySignUnSkipUserPassword
FUNCTION rcui::AgiPassword::GetTypeName
FUNCTION ‘rcui::AgiPassword::AgiPassword’::‘1’::dtor$2
FUNCTION ‘rcui::AgiPassword::AgiPassword’::‘1’::dtor$0
FUNCTION ‘rcui::AgiPassword::AgiPassword’::‘1’::dtor$1
FUNCTION usm_set_password
FUNCTION rcui::AgiPassword::TraceTo
FUNCTION days_since_last_password_change
FUNCTION rsecgrp_generate_random_password
FUNCTION rcui::AgiPassword::‘scalar deleting destructor’
FUNCTION password_attempt_limit_exceeded
FUNCTION handle_incorrect_password
FUNCTION ‘rcui::AgiPassword::‘scalar deleting destructor’’::‘1’::dtor$1
FUNCTION calculate_new_password_hash
FUNCTION shift_password_to_history
FUNCTION rcui::AgiPassword::GetType
FUNCTION found_password_in_history
FUNCTION ‘rcui::AgiPassword::‘scalar deleting destructor’’::‘1’::dtor$0
FUNCTION rcui::AgiObj::IsaPassword
FUNCTION password_idle_check
FUNCTION SlicHwPasswordForDay
FUNCTION rcui::AgiPassword::IsaPassword
FUNCTION rcui::AgiPassword::AgiPassword
FUNCTION delete_user_password
FUNCTION usm_set_user_password
FUNCTION Password_API
FUNCTION get_password_change_for_SSO
FUNCTION password_in_USR40
FUNCTION rsec_agrp_abap_generate_random_password

Let’s also try to search for debugmessages which contain words «password» and «locked». One of them is the string «user
was locked by subsequently failed password logon attempts» referenced in
function password_attempt_limit_exceeded().

Other string this function I foundmay write to log file are: «password logon attempt will be rejected immediately (prevent-
ing dictionary attacks)», «failed-logon lock: expired (but not removed due to ’read-only’ operation)», «failed-logon lock: expired
=> removed».

A�er playing for a little with this function, I quickly noticed the problem is exactly in it. It is called from chckpass() func-
tion —one of the password checking functions.

First, I would like to be sure I’m at the correct point:
Runmy tracer:

tracer64.exe -a:disp+work.exe bpf=disp+work.exe!chckpass,args:3,unicode

PID=2236|TID=2248|(0) disp+work.exe!chckpass (0x202c770, L"Brewered1
", 0x41) (called from 0x1402f1060 (disp+work.exe!usrexist+0x3c0))

PID=2236|TID=2248|(0) disp+work.exe!chckpass -> 0x35

Call path is: syssigni() -> DyISigni() -> dychkusr() -> usrexist() -> chckpass().
Number 0x35 is an error returning in chckpass() at that point:

.text:00000001402ED567 loc_1402ED567: ; CODE XREF: chckpass+B4

453

57.2. SAP 6.0 PASSWORD CHECKING FUNCTIONS CHAPTER 57. SAP
.text:00000001402ED567 mov rcx, rbx ; usr02
.text:00000001402ED56A call password_idle_check
.text:00000001402ED56F cmp eax, 33h
.text:00000001402ED572 jz loc_1402EDB4E
.text:00000001402ED578 cmp eax, 36h
.text:00000001402ED57B jz loc_1402EDB3D
.text:00000001402ED581 xor edx, edx ; usr02_readonly
.text:00000001402ED583 mov rcx, rbx ; usr02
.text:00000001402ED586 call password_attempt_limit_exceeded
.text:00000001402ED58B test al, al
.text:00000001402ED58D jz short loc_1402ED5A0
.text:00000001402ED58F mov eax, 35h
.text:00000001402ED594 add rsp, 60h
.text:00000001402ED598 pop r14
.text:00000001402ED59A pop r12
.text:00000001402ED59C pop rdi
.text:00000001402ED59D pop rsi
.text:00000001402ED59E pop rbx
.text:00000001402ED59F retn

Fine, let’s check:

tracer64.exe -a:disp+work.exe bpf=disp+work.exe!password_attempt_limit_exceeded,args:4,unicode,rt
:0

PID=2744|TID=360|(0) disp+work.exe!password_attempt_limit_exceeded (0x202c770, 0, 0x257758, 0) (
called from 0x1402ed58b (disp+work.exe!chckpass+0xeb))

PID=2744|TID=360|(0) disp+work.exe!password_attempt_limit_exceeded -> 1
PID=2744|TID=360|We modify return value (EAX/RAX) of this function to 0
PID=2744|TID=360|(0) disp+work.exe!password_attempt_limit_exceeded (0x202c770, 0, 0, 0) (called

from 0x1402e9794 (disp+work.exe!chngpass+0xe4))
PID=2744|TID=360|(0) disp+work.exe!password_attempt_limit_exceeded -> 1
PID=2744|TID=360|We modify return value (EAX/RAX) of this function to 0

Excellent! I can successfully login now.
By the way, if I try to pretend I forgot the password, fixing chckpass() function return value at 0 is enough to bypass check:

tracer64.exe -a:disp+work.exe bpf=disp+work.exe!chckpass,args:3,unicode,rt:0

PID=2744|TID=360|(0) disp+work.exe!chckpass (0x202c770, L"bogus
", 0x41) (called from 0x1402f1060 (disp+work.exe!usrexist+0x3c0))

PID=2744|TID=360|(0) disp+work.exe!chckpass -> 0x35
PID=2744|TID=360|We modify return value (EAX/RAX) of this function to 0

What also can be saidwhile analyzing password_attempt_limit_exceeded() function is that at the very beginning of it, this
call might be seen:

lea rcx, aLoginFailed_us ; "login/failed_user_auto_unlock"
call sapgparam
test rax, rax
jz short loc_1402E19DE
movzx eax, word ptr [rax]
cmp ax, ’N’
jz short loc_1402E19D4
cmp ax, ’n’
jz short loc_1402E19D4
cmp ax, ’0’
jnz short loc_1402E19DE

Obviously, function sapgparam() used to query value of some configuration parameter. This function can be called from
1768 di�erent places. It seems, with the help of this information, we can easily find places in code, control flow of which can
be a�ected by specific configuration parameters.

It is really sweet. Function names are very clear, much clearer than in the Oracle RDBMS. It seems, disp+work process
written in C++. It was apparently rewritten some time ago?

454

CHAPTER 58. ORACLE RDBMS

Chapter 58

Oracle RDBMS

58.1 V$VERSION table in the Oracle RDBMS
Oracle RDBMS 11.2 is a huge program, main module oracle.exe contain approx. 124,000 functions. For comparison, Win-
dows 7 x86 kernel (ntoskrnl.exe) —approx. 11,000 functions and Linux 3.9.8 kernel (with default drivers compiled) —31,000
functions.

Let’s start with an easy question. Where Oracle RDBMS get all this information, when we execute such simple statement
in SQL*Plus:

SQL> select * from V$VERSION;

And we’ve got:

BANNER
--

Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production
PL/SQL Release 11.2.0.1.0 - Production
CORE 11.2.0.1.0 Production
TNS for 32-bit Windows: Version 11.2.0.1.0 - Production
NLSRTL Version 11.2.0.1.0 - Production

Let’s start. Where in the Oracle RDBMS wemay find a string V$VERSION?
As of win32-version, oracle.exe file contain the string, which can be investigated easily. But we can also use object (.o)

files from Linux version of Oracle RDBMS since, unlike win32 version oracle.exe, function names (and global variables as
well) are preserved there.

So, kqf.o file contain V$VERSION string. The object file is in the main Oracle-library libserver11.a.
A reference to this text string wemay find in the kqfviw table stored in the same file, kqf.o:

Listing 58.1: kqf.o
.rodata:0800C4A0 kqfviw dd 0Bh ; DATA XREF: kqfchk:loc_8003A6D
.rodata:0800C4A0 ; kqfgbn+34
.rodata:0800C4A4 dd offset _2__STRING_10102_0 ; "GV$WAITSTAT"
.rodata:0800C4A8 dd 4
.rodata:0800C4AC dd offset _2__STRING_10103_0 ; "NULL"
.rodata:0800C4B0 dd 3
.rodata:0800C4B4 dd 0
.rodata:0800C4B8 dd 195h
.rodata:0800C4BC dd 4
.rodata:0800C4C0 dd 0
.rodata:0800C4C4 dd 0FFFFC1CBh
.rodata:0800C4C8 dd 3
.rodata:0800C4CC dd 0
.rodata:0800C4D0 dd 0Ah
.rodata:0800C4D4 dd offset _2__STRING_10104_0 ; "V$WAITSTAT"
.rodata:0800C4D8 dd 4
.rodata:0800C4DC dd offset _2__STRING_10103_0 ; "NULL"
.rodata:0800C4E0 dd 3

455

58.1. V$VERSION TABLE IN THE ORACLE RDBMS CHAPTER 58. ORACLE RDBMS
.rodata:0800C4E4 dd 0
.rodata:0800C4E8 dd 4Eh
.rodata:0800C4EC dd 3
.rodata:0800C4F0 dd 0
.rodata:0800C4F4 dd 0FFFFC003h
.rodata:0800C4F8 dd 4
.rodata:0800C4FC dd 0
.rodata:0800C500 dd 5
.rodata:0800C504 dd offset _2__STRING_10105_0 ; "GV$BH"
.rodata:0800C508 dd 4
.rodata:0800C50C dd offset _2__STRING_10103_0 ; "NULL"
.rodata:0800C510 dd 3
.rodata:0800C514 dd 0
.rodata:0800C518 dd 269h
.rodata:0800C51C dd 15h
.rodata:0800C520 dd 0
.rodata:0800C524 dd 0FFFFC1EDh
.rodata:0800C528 dd 8
.rodata:0800C52C dd 0
.rodata:0800C530 dd 4
.rodata:0800C534 dd offset _2__STRING_10106_0 ; "V$BH"
.rodata:0800C538 dd 4
.rodata:0800C53C dd offset _2__STRING_10103_0 ; "NULL"
.rodata:0800C540 dd 3
.rodata:0800C544 dd 0
.rodata:0800C548 dd 0F5h
.rodata:0800C54C dd 14h
.rodata:0800C550 dd 0
.rodata:0800C554 dd 0FFFFC1EEh
.rodata:0800C558 dd 5
.rodata:0800C55C dd 0

By theway, o�en,while analysingOracleRDBMS internals, youmayask yourself, why functionsandglobal variablenames
are soweird. Supposedly, sinceOracle RDBMS is very oldproduct andwasdeveloped inC in 1980-s. And thatwas a timewhen
C standard guaranteed function names/variables support only up to 6 characters inclusive: «6 significant initial characters
in an external identifier»1

Probably, the table kqfviw contain most (maybe even all) views prefixed with V$, these are fixed views, present all the
time. Superficially, by noticing cyclic recurrenceof data,we caneasily see that eachkqfviw table element has 12 32-bit fields.
It is very simple to create a 12-elements structure in IDA and apply it to all table elements. As of Oracle RDBMS version 11.2,
there are 1023 table elements, i.e., there are described 1023 of all possible fixed views. We will return to this number later.

As we can see, there is not much information in these numbers in fields. The very first number is always equals to name
of view (without terminating zero. This is correct for each element. But this information is not very useful.

We also know that information about all fixed views can be retrieved from fixed view named V$FIXED_VIEW_DEFINITION
(by the way, the information for this view is also taken from kqfviw and kqfvip tables.) By the way, there are 1023 elements
too.

SQL> select * from V$FIXED_VIEW_DEFINITION where view_name=’V$VERSION’;

VIEW_NAME

VIEW_DEFINITION
--

V$VERSION
select BANNER from GV$VERSION where inst_id = USERENV(’Instance’)

So, V$VERSION is some kind of thunk view for another view, named GV$VERSION, which is, in turn:

SQL> select * from V$FIXED_VIEW_DEFINITION where view_name=’GV$VERSION’;

VIEW_NAME

1Dra� ANSI C Standard (ANSI X3J11/88-090) (May 13, 1988)

456

http://yurichev.com/ref/Draft%20ANSI%20C%20Standard%20(ANSI%20X3J11-88-090)%20(May%2013,%201988).txt

58.1. V$VERSION TABLE IN THE ORACLE RDBMS CHAPTER 58. ORACLE RDBMS

VIEW_DEFINITION
--

GV$VERSION
select inst_id, banner from x$version

TablesprefixedasX$ in theOracleRDBMS– is service tables too, undocumented, cannotbe changedbyuser and refreshed
dynamically.

Let’s also try to search the text select BANNER from GV$VERSION where inst_id = USERENV(’Instance’) in the
kqf.o file and we find it in the kqfvip table:

.

Listing 58.2: kqf.o
rodata:080185A0 kqfvip dd offset _2__STRING_11126_0 ; DATA XREF: kqfgvcn+18
.rodata:080185A0 ; kqfgvt+F
.rodata:080185A0 ; "select inst_id,decode(indx,1,’data

bloc"...
.rodata:080185A4 dd offset kqfv459_c_0
.rodata:080185A8 dd 0
.rodata:080185AC dd 0

...

.rodata:08019570 dd offset _2__STRING_11378_0 ; "select BANNER from GV$VERSION
where in"...

.rodata:08019574 dd offset kqfv133_c_0

.rodata:08019578 dd 0

.rodata:0801957C dd 0

.rodata:08019580 dd offset _2__STRING_11379_0 ; "select inst_id,decode(bitand(
cfflg,1),0"...

.rodata:08019584 dd offset kqfv403_c_0

.rodata:08019588 dd 0

.rodata:0801958C dd 0

.rodata:08019590 dd offset _2__STRING_11380_0 ; "select STATUS , NAME,
IS_RECOVERY_DEST"...

.rodata:08019594 dd offset kqfv199_c_0

The table appear to have 4 fields in each element. By the way, there are 1023 elements too. The second field pointing to
another table, containing table fields for this fixed view. As of V$VERSION, this table contain only two elements, first is 6 and
second is BANNER string (the number (6) is this string length) and a�er, terminating element contain 0 and null C-string:

Listing 58.3: kqf.o
.rodata:080BBAC4 kqfv133_c_0 dd 6 ; DATA XREF: .rodata:08019574
.rodata:080BBAC8 dd offset _2__STRING_5017_0 ; "BANNER"
.rodata:080BBACC dd 0
.rodata:080BBAD0 dd offset _2__STRING_0_0

By joining data from both kqfviw and kqfvip tables, we may get SQL-statements which are executed when user wants
to query information from specific fixed view.

So I wrote an oracle tables2 program, so to gather all this information from Oracle RDBMS for Linux object files. For
V$VERSION, we may find this:

Listing 58.4: Result of oracle tables
kqfviw_element.viewname: [V$VERSION] ?: 0x3 0x43 0x1 0xffffc085 0x4
kqfvip_element.statement: [select BANNER from GV$VERSION where inst_id = USERENV(’Instance’)]
kqfvip_element.params:
[BANNER]

and:
2http://yurichev.com/oracle_tables.html

457

http://yurichev.com/oracle_tables.html

58.1. V$VERSION TABLE IN THE ORACLE RDBMS CHAPTER 58. ORACLE RDBMS
Listing 58.5: Result of oracle tables

kqfviw_element.viewname: [GV$VERSION] ?: 0x3 0x26 0x2 0xffffc192 0x1
kqfvip_element.statement: [select inst_id, banner from x$version]
kqfvip_element.params:
[INST_ID] [BANNER]

GV$VERSION fixed view is distinct from V$VERSION in only that way that it contains onemore fieldwith instance identifier.
Anyway, we stuck at the table X$VERSION. Just like any other X$-tables, it is undocumented, however, we can query it:

SQL> select * from x$version;

ADDR INDX INST_ID
-------- ---------- ----------
BANNER
--

0DBAF574 0 1
Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production

...

This table has additional fields like ADDR and INDX.
While scrolling kqf.o in IDA wemay spot another table containing pointer to the X$VERSION string, this is kqftab:

Listing 58.6: kqf.o
.rodata:0803CAC0 dd 9 ; element number 0x1f6
.rodata:0803CAC4 dd offset _2__STRING_13113_0 ; "X$VERSION"
.rodata:0803CAC8 dd 4
.rodata:0803CACC dd offset _2__STRING_13114_0 ; "kqvt"
.rodata:0803CAD0 dd 4
.rodata:0803CAD4 dd 4
.rodata:0803CAD8 dd 0
.rodata:0803CADC dd 4
.rodata:0803CAE0 dd 0Ch
.rodata:0803CAE4 dd 0FFFFC075h
.rodata:0803CAE8 dd 3
.rodata:0803CAEC dd 0
.rodata:0803CAF0 dd 7
.rodata:0803CAF4 dd offset _2__STRING_13115_0 ; "X$KQFSZ"
.rodata:0803CAF8 dd 5
.rodata:0803CAFC dd offset _2__STRING_13116_0 ; "kqfsz"
.rodata:0803CB00 dd 1
.rodata:0803CB04 dd 38h
.rodata:0803CB08 dd 0
.rodata:0803CB0C dd 7
.rodata:0803CB10 dd 0
.rodata:0803CB14 dd 0FFFFC09Dh
.rodata:0803CB18 dd 2
.rodata:0803CB1C dd 0

There are a lot of references to X$-table names, apparently, to all Oracle RDBMS 11.2 X$-tables. But again, we have not
enough information. I have no idea, what kqvt string means. kq prefix may means kernel and query. v, apparently, means
version and t—type? Frankly speaking, I do not know.

The table named similarly can be found in kqf.o:

Listing 58.7: kqf.o
.rodata:0808C360 kqvt_c_0 kqftap_param <4, offset _2__STRING_19_0, 917h, 0, 0, 0, 4, 0, 0>
.rodata:0808C360 ; DATA XREF: .rodata:08042680
.rodata:0808C360 ; "ADDR"
.rodata:0808C384 kqftap_param <4, offset _2__STRING_20_0, 0B02h, 0, 0, 0, 4, 0,

0> ; "INDX"

458

58.1. V$VERSION TABLE IN THE ORACLE RDBMS CHAPTER 58. ORACLE RDBMS
.rodata:0808C3A8 kqftap_param <7, offset _2__STRING_21_0, 0B02h, 0, 0, 0, 4, 0,

0> ; "INST_ID"
.rodata:0808C3CC kqftap_param <6, offset _2__STRING_5017_0, 601h, 0, 0, 0, 50h,

0, 0> ; "BANNER"
.rodata:0808C3F0 kqftap_param <0, offset _2__STRING_0_0, 0, 0, 0, 0, 0, 0, 0>

It contain information about all fields in theX$VERSION table. Theonly reference to this table present in thekqftap table:

Listing 58.8: kqf.o
.rodata:08042680 kqftap_element <0, offset kqvt_c_0, offset kqvrow, 0> ; element

0x1f6

It is interesting that this element here is 0x1f6th (502nd), just as a pointer to the X$VERSION string in the kqftab table.
Probably, kqftap and kqftab tables are complement each other, just like kqfvip and kqfviw. We also see a pointer to the
kqvrow() function. Finally, we got something useful!

So I added these tables to my oracle tables3 utility too. For X$VERSION I’ve got:

Listing 58.9: Result of oracle tables
kqftab_element.name: [X$VERSION] ?: [kqvt] 0x4 0x4 0x4 0xc 0xffffc075 0x3
kqftap_param.name=[ADDR] ?: 0x917 0x0 0x0 0x0 0x4 0x0 0x0
kqftap_param.name=[INDX] ?: 0xb02 0x0 0x0 0x0 0x4 0x0 0x0
kqftap_param.name=[INST_ID] ?: 0xb02 0x0 0x0 0x0 0x4 0x0 0x0
kqftap_param.name=[BANNER] ?: 0x601 0x0 0x0 0x0 0x50 0x0 0x0
kqftap_element.fn1=kqvrow
kqftap_element.fn2=NULL

With the help of tracer, it is easy to check that this function called 6 times in row (from the qerfxFetch() function) while
querying X$VERSION table.

Let’s run tracer in the ccmode (it will comment each executed instruction):

tracer -a:oracle.exe bpf=oracle.exe!_kqvrow,trace:cc

kqvrow proc near

var_7C = byte ptr -7Ch
var_18 = dword ptr -18h
var_14 = dword ptr -14h
Dest = dword ptr -10h
var_C = dword ptr -0Ch
var_8 = dword ptr -8
var_4 = dword ptr -4
arg_8 = dword ptr 10h
arg_C = dword ptr 14h
arg_14 = dword ptr 1Ch
arg_18 = dword ptr 20h

; FUNCTION CHUNK AT .text1:056C11A0 SIZE 00000049 BYTES

push ebp
mov ebp, esp
sub esp, 7Ch
mov eax, [ebp+arg_14] ; [EBP+1Ch]=1
mov ecx, TlsIndex ; [69AEB08h]=0
mov edx, large fs:2Ch
mov edx, [edx+ecx*4] ; [EDX+ECX*4]=0xc98c938
cmp eax, 2 ; EAX=1
mov eax, [ebp+arg_8] ; [EBP+10h]=0xcdfe554
jz loc_2CE1288
mov ecx, [eax] ; [EAX]=0..5
mov [ebp+var_4], edi ; EDI=0xc98c938

3http://yurichev.com/oracle_tables.html

459

http://yurichev.com/oracle_tables.html

58.1. V$VERSION TABLE IN THE ORACLE RDBMS CHAPTER 58. ORACLE RDBMS

loc_2CE10F6: ; CODE XREF: _kqvrow_+10A
; _kqvrow_+1A9

cmp ecx, 5 ; ECX=0..5
ja loc_56C11C7
mov edi, [ebp+arg_18] ; [EBP+20h]=0
mov [ebp+var_14], edx ; EDX=0xc98c938
mov [ebp+var_8], ebx ; EBX=0
mov ebx, eax ; EAX=0xcdfe554
mov [ebp+var_C], esi ; ESI=0xcdfe248

loc_2CE110D: ; CODE XREF: _kqvrow_+29E00E6
mov edx, ds:off_628B09C[ecx*4] ; [ECX*4+628B09Ch]=0x2ce1116, 0x2ce11ac, 0

x2ce11db, 0x2ce11f6, 0x2ce1236, 0x2ce127a
jmp edx ; EDX=0x2ce1116, 0x2ce11ac, 0x2ce11db, 0x2ce11f6, 0

x2ce1236, 0x2ce127a
; ---

loc_2CE1116: ; DATA XREF: .rdata:off_628B09C
push offset aXKqvvsnBuffer ; "x$kqvvsn buffer"
mov ecx, [ebp+arg_C] ; [EBP+14h]=0x8a172b4
xor edx, edx
mov esi, [ebp+var_14] ; [EBP-14h]=0xc98c938
push edx ; EDX=0
push edx ; EDX=0
push 50h
push ecx ; ECX=0x8a172b4
push dword ptr [esi+10494h] ; [ESI+10494h]=0xc98cd58
call _kghalf ; tracing nested maximum level (1) reached, skipping this

CALL
mov esi, ds:__imp__vsnnum ; [59771A8h]=0x61bc49e0
mov [ebp+Dest], eax ; EAX=0xce2ffb0
mov [ebx+8], eax ; EAX=0xce2ffb0
mov [ebx+4], eax ; EAX=0xce2ffb0
mov edi, [esi] ; [ESI]=0xb200100
mov esi, ds:__imp__vsnstr ; [597D6D4h]=0x65852148, "- Production"
push esi ; ESI=0x65852148, "- Production"
mov ebx, edi ; EDI=0xb200100
shr ebx, 18h ; EBX=0xb200100
mov ecx, edi ; EDI=0xb200100
shr ecx, 14h ; ECX=0xb200100
and ecx, 0Fh ; ECX=0xb2
mov edx, edi ; EDI=0xb200100
shr edx, 0Ch ; EDX=0xb200100
movzx edx, dl ; DL=0
mov eax, edi ; EDI=0xb200100
shr eax, 8 ; EAX=0xb200100
and eax, 0Fh ; EAX=0xb2001
and edi, 0FFh ; EDI=0xb200100
push edi ; EDI=0
mov edi, [ebp+arg_18] ; [EBP+20h]=0
push eax ; EAX=1
mov eax, ds:__imp__vsnban ; [597D6D8h]=0x65852100, "Oracle Database 11g

Enterprise Edition Release %d.%d.%d.%d.%d %s"
push edx ; EDX=0
push ecx ; ECX=2
push ebx ; EBX=0xb
mov ebx, [ebp+arg_8] ; [EBP+10h]=0xcdfe554
push eax ; EAX=0x65852100, "Oracle Database 11g Enterprise Edition

Release %d.%d.%d.%d.%d %s"
mov eax, [ebp+Dest] ; [EBP-10h]=0xce2ffb0

460

58.1. V$VERSION TABLE IN THE ORACLE RDBMS CHAPTER 58. ORACLE RDBMS
push eax ; EAX=0xce2ffb0
call ds:__imp__sprintf ; op1=MSVCR80.dll!sprintf tracing nested maximum level

(1) reached, skipping this CALL
add esp, 38h
mov dword ptr [ebx], 1

loc_2CE1192: ; CODE XREF: _kqvrow_+FB
; _kqvrow_+128 ...

test edi, edi ; EDI=0
jnz __VInfreq__kqvrow
mov esi, [ebp+var_C] ; [EBP-0Ch]=0xcdfe248
mov edi, [ebp+var_4] ; [EBP-4]=0xc98c938
mov eax, ebx ; EBX=0xcdfe554
mov ebx, [ebp+var_8] ; [EBP-8]=0
lea eax, [eax+4] ; [EAX+4]=0xce2ffb0, "NLSRTL Version 11.2.0.1.0 -

Production", "Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production", "PL/
SQL Release 11.2.0.1.0 - Production", "TNS for 32-bit Windows: Version 11.2.0.1.0 -
Production"

loc_2CE11A8: ; CODE XREF: _kqvrow_+29E00F6
mov esp, ebp
pop ebp
retn ; EAX=0xcdfe558

; ---

loc_2CE11AC: ; DATA XREF: .rdata:0628B0A0
mov edx, [ebx+8] ; [EBX+8]=0xce2ffb0, "Oracle Database 11g Enterprise

Edition Release 11.2.0.1.0 - Production"
mov dword ptr [ebx], 2
mov [ebx+4], edx ; EDX=0xce2ffb0, "Oracle Database 11g Enterprise Edition

Release 11.2.0.1.0 - Production"
push edx ; EDX=0xce2ffb0, "Oracle Database 11g Enterprise Edition

Release 11.2.0.1.0 - Production"
call _kkxvsn ; tracing nested maximum level (1) reached, skipping this

CALL
pop ecx
mov edx, [ebx+4] ; [EBX+4]=0xce2ffb0, "PL/SQL Release 11.2.0.1.0 -

Production"
movzx ecx, byte ptr [edx] ; [EDX]=0x50
test ecx, ecx ; ECX=0x50
jnz short loc_2CE1192
mov edx, [ebp+var_14]
mov esi, [ebp+var_C]
mov eax, ebx
mov ebx, [ebp+var_8]
mov ecx, [eax]
jmp loc_2CE10F6

; ---

loc_2CE11DB: ; DATA XREF: .rdata:0628B0A4
push 0
push 50h
mov edx, [ebx+8] ; [EBX+8]=0xce2ffb0, "PL/SQL Release 11.2.0.1.0 -

Production"
mov [ebx+4], edx ; EDX=0xce2ffb0, "PL/SQL Release 11.2.0.1.0 - Production"
push edx ; EDX=0xce2ffb0, "PL/SQL Release 11.2.0.1.0 - Production"
call _lmxver ; tracing nested maximum level (1) reached, skipping this

CALL
add esp, 0Ch
mov dword ptr [ebx], 3
jmp short loc_2CE1192

461

58.1. V$VERSION TABLE IN THE ORACLE RDBMS CHAPTER 58. ORACLE RDBMS
; ---

loc_2CE11F6: ; DATA XREF: .rdata:0628B0A8
mov edx, [ebx+8] ; [EBX+8]=0xce2ffb0
mov [ebp+var_18], 50h
mov [ebx+4], edx ; EDX=0xce2ffb0
push 0
call _npinli ; tracing nested maximum level (1) reached, skipping this

CALL
pop ecx
test eax, eax ; EAX=0
jnz loc_56C11DA
mov ecx, [ebp+var_14] ; [EBP-14h]=0xc98c938
lea edx, [ebp+var_18] ; [EBP-18h]=0x50
push edx ; EDX=0xd76c93c
push dword ptr [ebx+8] ; [EBX+8]=0xce2ffb0
push dword ptr [ecx+13278h] ; [ECX+13278h]=0xacce190
call _nrtnsvrs ; tracing nested maximum level (1) reached, skipping this

CALL
add esp, 0Ch

loc_2CE122B: ; CODE XREF: _kqvrow_+29E0118
mov dword ptr [ebx], 4
jmp loc_2CE1192

; ---

loc_2CE1236: ; DATA XREF: .rdata:0628B0AC
lea edx, [ebp+var_7C] ; [EBP-7Ch]=1
push edx ; EDX=0xd76c8d8
push 0
mov esi, [ebx+8] ; [EBX+8]=0xce2ffb0, "TNS for 32-bit Windows: Version

11.2.0.1.0 - Production"
mov [ebx+4], esi ; ESI=0xce2ffb0, "TNS for 32-bit Windows: Version

11.2.0.1.0 - Production"
mov ecx, 50h
mov [ebp+var_18], ecx ; ECX=0x50
push ecx ; ECX=0x50
push esi ; ESI=0xce2ffb0, "TNS for 32-bit Windows: Version

11.2.0.1.0 - Production"
call _lxvers ; tracing nested maximum level (1) reached, skipping this

CALL
add esp, 10h
mov edx, [ebp+var_18] ; [EBP-18h]=0x50
mov dword ptr [ebx], 5
test edx, edx ; EDX=0x50
jnz loc_2CE1192
mov edx, [ebp+var_14]
mov esi, [ebp+var_C]
mov eax, ebx
mov ebx, [ebp+var_8]
mov ecx, 5
jmp loc_2CE10F6

; ---

loc_2CE127A: ; DATA XREF: .rdata:0628B0B0
mov edx, [ebp+var_14] ; [EBP-14h]=0xc98c938
mov esi, [ebp+var_C] ; [EBP-0Ch]=0xcdfe248
mov edi, [ebp+var_4] ; [EBP-4]=0xc98c938
mov eax, ebx ; EBX=0xcdfe554
mov ebx, [ebp+var_8] ; [EBP-8]=0

462

58.2. X$KSMLRU TABLE IN ORACLE RDBMS CHAPTER 58. ORACLE RDBMS
loc_2CE1288: ; CODE XREF: _kqvrow_+1F

mov eax, [eax+8] ; [EAX+8]=0xce2ffb0, "NLSRTL Version 11.2.0.1.0 -
Production"

test eax, eax ; EAX=0xce2ffb0, "NLSRTL Version 11.2.0.1.0 - Production"
jz short loc_2CE12A7
push offset aXKqvvsnBuffer ; "x$kqvvsn buffer"
push eax ; EAX=0xce2ffb0, "NLSRTL Version 11.2.0.1.0 - Production"
mov eax, [ebp+arg_C] ; [EBP+14h]=0x8a172b4
push eax ; EAX=0x8a172b4
push dword ptr [edx+10494h] ; [EDX+10494h]=0xc98cd58
call _kghfrf ; tracing nested maximum level (1) reached, skipping this

CALL
add esp, 10h

loc_2CE12A7: ; CODE XREF: _kqvrow_+1C1
xor eax, eax
mov esp, ebp
pop ebp
retn ; EAX=0

kqvrow endp

Now it is easy to see that row number is passed from outside of function. The function returns the string constructing it
as follows:

String 1 Using vsnstr, vsnnum, vsnban global variables. Calling sprintf().
String 2 Calling kkxvsn().
String 3 Calling lmxver().
String 4 Calling npinli(), nrtnsvrs().
String 5 Calling lxvers().

That’s how corresponding functions are called for determining each module’s version.

58.2 X$KSMLRU table in Oracle RDBMS

There is a mention of a special table in the Diagnosing and Resolving Error ORA-04031 on the Shared Pool or Other Memory
Pools [Video] [ID 146599.1] note:

There is a fixed table called X$KSMLRU that tracks allocations in the shared pool that cause other objects
in the sharedpool to be agedout. This fixed table canbeused to identifywhat is causing the large allocation.

If many objects are being periodically flushed from the shared pool then this will cause response time
problems and will likely cause library cache latch contention problems when the objects are reloaded into
the shared pool.

One unusual thing about the X$KSMLRU fixed table is that the contents of the fixed table are erased
whenever someone selects from the fixed table. This is done since the fixed table stores only the largest
allocations that haveoccurred. The values are reset a�erbeing selected so that subsequent largeallocations
canbenotedeven if theywerenotquite as largeasothers that occurredpreviously. Becauseof this resetting,
the output of selecting from this table should be carefully kept since it cannot be retrieved back a�er the
query is issued.

However, as it can be easily checked, this table’s contents is cleared each time table querying. Are we able to find why?
Let’s back to tables we already know: kqftab and kqftap which were generated with oracle tables4 help, containing all
information about X$-tables, now we can see here, the ksmlrs() function is called to prepare this table’s elements:

Listing 58.10: Result of oracle tables
kqftab_element.name: [X$KSMLRU] ?: [ksmlr] 0x4 0x64 0x11 0xc 0xffffc0bb 0x5
kqftap_param.name=[ADDR] ?: 0x917 0x0 0x0 0x0 0x4 0x0 0x0
kqftap_param.name=[INDX] ?: 0xb02 0x0 0x0 0x0 0x4 0x0 0x0

4http://yurichev.com/oracle_tables.html

463

http://yurichev.com/oracle_tables.html

58.2. X$KSMLRU TABLE IN ORACLE RDBMS CHAPTER 58. ORACLE RDBMS
kqftap_param.name=[INST_ID] ?: 0xb02 0x0 0x0 0x0 0x4 0x0 0x0
kqftap_param.name=[KSMLRIDX] ?: 0xb02 0x0 0x0 0x0 0x4 0x0 0x0
kqftap_param.name=[KSMLRDUR] ?: 0xb02 0x0 0x0 0x0 0x4 0x4 0x0
kqftap_param.name=[KSMLRSHRPOOL] ?: 0xb02 0x0 0x0 0x0 0x4 0x8 0x0
kqftap_param.name=[KSMLRCOM] ?: 0x501 0x0 0x0 0x0 0x14 0xc 0x0
kqftap_param.name=[KSMLRSIZ] ?: 0x2 0x0 0x0 0x0 0x4 0x20 0x0
kqftap_param.name=[KSMLRNUM] ?: 0x2 0x0 0x0 0x0 0x4 0x24 0x0
kqftap_param.name=[KSMLRHON] ?: 0x501 0x0 0x0 0x0 0x20 0x28 0x0
kqftap_param.name=[KSMLROHV] ?: 0xb02 0x0 0x0 0x0 0x4 0x48 0x0
kqftap_param.name=[KSMLRSES] ?: 0x17 0x0 0x0 0x0 0x4 0x4c 0x0
kqftap_param.name=[KSMLRADU] ?: 0x2 0x0 0x0 0x0 0x4 0x50 0x0
kqftap_param.name=[KSMLRNID] ?: 0x2 0x0 0x0 0x0 0x4 0x54 0x0
kqftap_param.name=[KSMLRNSD] ?: 0x2 0x0 0x0 0x0 0x4 0x58 0x0
kqftap_param.name=[KSMLRNCD] ?: 0x2 0x0 0x0 0x0 0x4 0x5c 0x0
kqftap_param.name=[KSMLRNED] ?: 0x2 0x0 0x0 0x0 0x4 0x60 0x0
kqftap_element.fn1=ksmlrs
kqftap_element.fn2=NULL

Indeed, with the tracer help it is easy to see this function is called each time we query the X$KSMLRU table.
Here we see a references to the ksmsplu_sp() and ksmsplu_jp() functions, each of them call the ksmsplu() finally. At

the end of the ksmsplu() function we see a call to the memset():

Listing 58.11: ksm.o
...

.text:00434C50 loc_434C50: ; DATA XREF: .rdata:off_5E50EA8

.text:00434C50 mov edx, [ebp-4]

.text:00434C53 mov [eax], esi

.text:00434C55 mov esi, [edi]

.text:00434C57 mov [eax+4], esi

.text:00434C5A mov [edi], eax

.text:00434C5C add edx, 1

.text:00434C5F mov [ebp-4], edx

.text:00434C62 jnz loc_434B7D

.text:00434C68 mov ecx, [ebp+14h]

.text:00434C6B mov ebx, [ebp-10h]

.text:00434C6E mov esi, [ebp-0Ch]

.text:00434C71 mov edi, [ebp-8]

.text:00434C74 lea eax, [ecx+8Ch]

.text:00434C7A push 370h ; Size

.text:00434C7F push 0 ; Val

.text:00434C81 push eax ; Dst

.text:00434C82 call __intel_fast_memset

.text:00434C87 add esp, 0Ch

.text:00434C8A mov esp, ebp

.text:00434C8C pop ebp

.text:00434C8D retn

.text:00434C8D _ksmsplu endp

Constructions like memset (block, 0, size) are o�en used just to zero memory block. What if we would take a risk,
block memset() call and see what will happen?

Let’s run tracer with the following options: set breakpoint at 0x434C7A (the point where memset() arguments are to be
passed), thus, that tracer set program counter EIP at this point to the point where passed to the memset() arguments are to
be cleared (at 0x434C8A) It can be said, we just simulate an unconditional jump from the address 0x434C7A to 0x434C8A.

tracer -a:oracle.exe bpx=oracle.exe!0x00434C7A,set(eip,0x00434C8A)

(Important: all these addresses are valid only for win32-version of Oracle RDBMS 11.2)
Indeed, now we can query X$KSMLRU table as many times as we want and it is not clearing anymore!
Do not try this at home ("MythBusters") Do not try this on your production servers.
It is probably not a very useful or desired system behaviour, but as an experiment of locating piece of code we need, that

is perfectly suit our needs!

464

58.3. V$TIMER TABLE IN ORACLE RDBMS CHAPTER 58. ORACLE RDBMS
58.3 V$TIMER table in Oracle RDBMS
V$TIMER is another fixed view, reflecting a rapidly changing value:

V$TIMER displays the elapsed time in hundredths of a second. Time is measured since the beginning of
the epoch, which is operating system specific, and wraps around to 0 again whenever the value overflows
four bytes (roughly 497 days).

(From Oracle RDBMS documentation 5)
It is interesting the periods are di�erent for Oracle for win32 and for Linux. Will we able to find a function generating this

value?
As we can see, this information is finally taken from X$KSUTM table.

SQL> select * from V$FIXED_VIEW_DEFINITION where view_name=’V$TIMER’;

VIEW_NAME

VIEW_DEFINITION
--

V$TIMER
select HSECS from GV$TIMER where inst_id = USERENV(’Instance’)

SQL> select * from V$FIXED_VIEW_DEFINITION where view_name=’GV$TIMER’;

VIEW_NAME

VIEW_DEFINITION
--

GV$TIMER
select inst_id,ksutmtim from x$ksutm

Nowwe stuck in a small problem, there are no references to value generating function(s) in the tables kqftab/kqftap:

Listing 58.12: Result of oracle tables
kqftab_element.name: [X$KSUTM] ?: [ksutm] 0x1 0x4 0x4 0x0 0xffffc09b 0x3
kqftap_param.name=[ADDR] ?: 0x10917 0x0 0x0 0x0 0x4 0x0 0x0
kqftap_param.name=[INDX] ?: 0x20b02 0x0 0x0 0x0 0x4 0x0 0x0
kqftap_param.name=[INST_ID] ?: 0xb02 0x0 0x0 0x0 0x4 0x0 0x0
kqftap_param.name=[KSUTMTIM] ?: 0x1302 0x0 0x0 0x0 0x4 0x0 0x1e
kqftap_element.fn1=NULL
kqftap_element.fn2=NULL

Let’s try to find a string KSUTMTIM, and we find it in this function:

kqfd_DRN_ksutm_c proc near ; DATA XREF: .rodata:0805B4E8

arg_0 = dword ptr 8
arg_8 = dword ptr 10h
arg_C = dword ptr 14h

push ebp
mov ebp, esp
push [ebp+arg_C]
push offset ksugtm
push offset _2__STRING_1263_0 ; "KSUTMTIM"
push [ebp+arg_8]

5http://docs.oracle.com/cd/B28359_01/server.111/b28320/dynviews_3104.htm

465

http://docs.oracle.com/cd/B28359_01/server.111/b28320/dynviews_3104.htm

58.3. V$TIMER TABLE IN ORACLE RDBMS CHAPTER 58. ORACLE RDBMS
push [ebp+arg_0]
call kqfd_cfui_drain
add esp, 14h
mov esp, ebp
pop ebp
retn

kqfd_DRN_ksutm_c endp

The function kqfd_DRN_ksutm_c() is mentioned in kqfd_tab_registry_0 table:

dd offset _2__STRING_62_0 ; "X$KSUTM"
dd offset kqfd_OPN_ksutm_c
dd offset kqfd_tabl_fetch
dd 0
dd 0
dd offset kqfd_DRN_ksutm_c

There are is a function ksugtm() referenced here. Let’s see what’s in it (Linux x86):

Listing 58.13: ksu.o
ksugtm proc near

var_1C = byte ptr -1Ch
arg_4 = dword ptr 0Ch

push ebp
mov ebp, esp
sub esp, 1Ch
lea eax, [ebp+var_1C]
push eax
call slgcs
pop ecx
mov edx, [ebp+arg_4]
mov [edx], eax
mov eax, 4
mov esp, ebp
pop ebp
retn

ksugtm endp

Almost the same code in win32-version.
Is this the function we are looking for? Let’s see:

tracer -a:oracle.exe bpf=oracle.exe!_ksugtm,args:2,dump_args:0x4

Let’s try again:

SQL> select * from V$TIMER;

HSECS

27294929

SQL> select * from V$TIMER;

HSECS

27295006

SQL> select * from V$TIMER;

HSECS

27295167

466

58.3. V$TIMER TABLE IN ORACLE RDBMS CHAPTER 58. ORACLE RDBMS
Listing 58.14: tracer output

TID=2428|(0) oracle.exe!_ksugtm (0x0, 0xd76c5f0) (called from oracle.exe!__VInfreq__qerfxFetch+0
xfad (0x56bb6d5))

Argument 2/2
0D76C5F0: 38 C9 "8. "
TID=2428|(0) oracle.exe!_ksugtm () -> 0x4 (0x4)
Argument 2/2 difference
00000000: D1 7C A0 01 ".|.. "
TID=2428|(0) oracle.exe!_ksugtm (0x0, 0xd76c5f0) (called from oracle.exe!__VInfreq__qerfxFetch+0

xfad (0x56bb6d5))
Argument 2/2
0D76C5F0: 38 C9 "8. "
TID=2428|(0) oracle.exe!_ksugtm () -> 0x4 (0x4)
Argument 2/2 difference
00000000: 1E 7D A0 01 ".}.. "
TID=2428|(0) oracle.exe!_ksugtm (0x0, 0xd76c5f0) (called from oracle.exe!__VInfreq__qerfxFetch+0

xfad (0x56bb6d5))
Argument 2/2
0D76C5F0: 38 C9 "8. "
TID=2428|(0) oracle.exe!_ksugtm () -> 0x4 (0x4)
Argument 2/2 difference
00000000: BF 7D A0 01 ".}.. "

Indeed —the value is the same we see in SQL*Plus and it is returning via second argument.
Let’s see what is in slgcs() (Linux x86):

slgcs proc near

var_4 = dword ptr -4
arg_0 = dword ptr 8

push ebp
mov ebp, esp
push esi
mov [ebp+var_4], ebx
mov eax, [ebp+arg_0]
call $+5
pop ebx
nop ; PIC mode
mov ebx, offset _GLOBAL_OFFSET_TABLE_
mov dword ptr [eax], 0
call sltrgatime64 ; PIC mode
push 0
push 0Ah
push edx
push eax
call __udivdi3 ; PIC mode
mov ebx, [ebp+var_4]
add esp, 10h
mov esp, ebp
pop ebp
retn

slgcs endp

(it is just a call to sltrgatime64() and division of its result by 10 (14))
And win32-version:

_slgcs proc near ; CODE XREF: _dbgefgHtElResetCount+15
; _dbgerRunActions+1528

db 66h
nop
push ebp

467

58.3. V$TIMER TABLE IN ORACLE RDBMS CHAPTER 58. ORACLE RDBMS
mov ebp, esp
mov eax, [ebp+8]
mov dword ptr [eax], 0
call ds:__imp__GetTickCount@0 ; GetTickCount()
mov edx, eax
mov eax, 0CCCCCCCDh
mul edx
shr edx, 3
mov eax, edx
mov esp, ebp
pop ebp
retn

_slgcs endp

It is just result of GetTickCount() 6 divided by 10 (14).
Voilà! That’s whywin32-version and Linux x86 version showdi�erent results, just because they are generated by di�erent

OS functions.
Drain apparently means connecting specific table column to specific function.
I added the table kqfd_tab_registry_0 to oracle tables7, now we can see, how table column’s variables are connected

to specific functions:

[X$KSUTM] [kqfd_OPN_ksutm_c] [kqfd_tabl_fetch] [NULL] [NULL] [kqfd_DRN_ksutm_c]
[X$KSUSGIF] [kqfd_OPN_ksusg_c] [kqfd_tabl_fetch] [NULL] [NULL] [kqfd_DRN_ksusg_c]

OPN, apparently, open, and DRN, apparently, meaning drain.

6http://msdn.microsoft.com/en-us/library/windows/desktop/ms724408(v=vs.85).aspx
7http://yurichev.com/oracle_tables.html

468

http://msdn.microsoft.com/en-us/library/windows/desktop/ms724408(v=vs.85).aspx
http://yurichev.com/oracle_tables.html

CHAPTER 59. HANDWRITTEN ASSEMBLY CODE

Chapter 59

Handwritten assembly code

59.1 EICAR test file
This .COM-file is intended for antivirus testing, it is possible to run in in MS-DOS and it will print string: “EICAR-STANDARD-
ANTIVIRUS-TEST-FILE!” 1.

Its important property is that it’s entirely consisting of printable ASCII-symbols, which, in turn, makes possible to create
it in any text editor:

X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*

Let’s decompile it:

; initial conditions: SP=0FFFEh, SS:[SP]=0
0100 58 pop ax
; AX=0, SP=0
0101 35 4F 21 xor ax, 214Fh
; AX = 214Fh and SP = 0
0104 50 push ax
; AX = 214Fh, SP = FFFEh and SS:[FFFE] = 214Fh
0105 25 40 41 and ax, 4140h
; AX = 140h, SP = FFFEh and SS:[FFFE] = 214Fh
0108 50 push ax
; AX = 140h, SP = FFFCh, SS:[FFFC] = 140h and SS:[FFFE] = 214Fh
0109 5B pop bx
; AX = 140h, BX = 140h, SP = FFFEh and SS:[FFFE] = 214Fh
010A 34 5C xor al, 5Ch
; AX = 11Ch, BX = 140h, SP = FFFEh and SS:[FFFE] = 214Fh
010C 50 push ax
010D 5A pop dx
; AX = 11Ch, BX = 140h, DX = 11Ch, SP = FFFEh and SS:[FFFE] = 214Fh
010E 58 pop ax
; AX = 214Fh, BX = 140h, DX = 11Ch and SP = 0
010F 35 34 28 xor ax, 2834h
; AX = 97Bh, BX = 140h, DX = 11Ch and SP = 0
0112 50 push ax
0113 5E pop si
; AX = 97Bh, BX = 140h, DX = 11Ch, SI = 97Bh and SP = 0
0114 29 37 sub [bx], si
0116 43 inc bx
0117 43 inc bx
0118 29 37 sub [bx], si
011A 7D 24 jge short near ptr word_10140
011C 45 49 43 ... db ’EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$’
0140 48 2B word_10140 dw 2B48h ; CD 21 (INT 21) will be here
0142 48 2A dw 2A48h ; CD 20 (INT 20) will be here
0144 0D db 0Dh
0145 0A db 0Ah

1{https://en.wikipedia.org/wiki/EICAR_test_file}

469

 {https://en.wikipedia.org/wiki/EICAR_test_file}

59.1. EICAR TEST FILE CHAPTER 59. HANDWRITTEN ASSEMBLY CODE

I added comments about registers and stack a�er each instruction.
Essentially, all these instructions are here only to execute this code:

B4 09 MOV AH, 9
BA 1C 01 MOV DX, 11Ch
CD 21 INT 21h
CD 20 INT 20h

INT 21hwith 9th function (passed in AH) just prints a string, address of which is passed in DS:DX. By the way, the string
should be terminatedwith ’$’ sign. Apparently, it’s inherited fromCP/M and this functionwas leaved in DOS for compatibility.
INT 20h exits to DOS.

But as we can see, these instruction’s opcodes are not strictly printable. So the main part of EICAR-file is:

∙ preparing register (AH and DX) values we need;

∙ preparing INT 21 and INT 20 opcodes in memory;

∙ executing INT 21 and INT 20.

By the way, this technique is widely used in shellcode constructing, when one need to pass x86-code in the string form.
Here is also a list of all x86 instructions which has printable opcodes: 80.6.6.

470

CHAPTER 60. DEMOS

Chapter 60

Demos

Demos (or demomaking)was an excellent exercise inmathematics, computer graphics programming and very tight x86hand
coding.

60.1 10 PRINT CHR$(205.5+RND(1)); : GOTO 10
All examples here are MS-DOS .COM files.

In [9] we can read about one of the most simplest possible random maze generators. It just prints slash or backslash
character randomly and endlessly, resulting something like:

There are some known implementations for 16-bit x86.

60.1.1 Trixter’s 42 byte version
The listing taken from his website1, but comments are mine.

00000000: B001 mov al,1 ; set 40x25 videomode
00000002: CD10 int 010
00000004: 30FF xor bh,bh ; set videopage for int 10h call
00000006: B9D007 mov cx,007D0 ; 2000 characters to output
00000009: 31C0 xor ax,ax
0000000B: 9C pushf ; push flags
; get random value from timer chip
0000000C: FA cli ; disable interrupts
0000000D: E643 out 043,al ; write 0 to port 43h

1http://trixter.oldskool.org/2012/12/17/maze-generation-in-thirteen-bytes/

471

http://trixter.oldskool.org/2012/12/17/maze-generation-in-thirteen-bytes/

60.1. 10 PRINT CHR$(205.5+RND(1)); : GOTO 10 CHAPTER 60. DEMOS
; read 16-bit value from port 40h
0000000F: E440 in al,040
00000011: 88C4 mov ah,al
00000013: E440 in al,040
00000015: 9D popf ; enable interrupts by restoring IF flag
00000016: 86C4 xchg ah,al
; here we have 16-bit pseudorandom value
00000018: D1E8 shr ax,1
0000001A: D1E8 shr ax,1
; CF currently have second bit from the value
0000001C: B05C mov al,05C ;’\’
; if CF=1, skip the next instruction
0000001E: 7202 jc 000000022
; if CF=0, reload AL register with another character
00000020: B02F mov al,02F ;’/’
; output character
00000022: B40E mov ah,00E
00000024: CD10 int 010
00000026: E2E1 loop 000000009 ; loop 2000 times
00000028: CD20 int 020 ; exit to DOS

Pseudo-randomvalue here is in fact the timepassed from the systemboot, taken from8253 time chip, the value increases
by one 18.2 times per second.

By writing zero to port 43h, we mean the command is "select counter 0", "counter latch", "binary counter" (not BCD2
value).

Interrupts enabled back with POPF instruction, which restores IF flag as well.
It is not possible to use IN instruction with other registers instead of AL, hence that shu�ling.

60.1.2 My attempt to reduce Trixter’s version: 27 bytes
We can say that since we use timer not to get precise time value, but pseudo-random one, so we may not spent time (and
code) to disable interrupts. Another thing wemight say that we need only bit from a low 8-bit part, so let’s read only it.

I reduced the code slightly and I’ve got 27 bytes:

00000000: B9D007 mov cx,007D0 ; limit output to 2000 characters
00000003: 31C0 xor ax,ax ; command to timer chip
00000005: E643 out 043,al
00000007: E440 in al,040 ; read 8-bit of timer
00000009: D1E8 shr ax,1 ; get second bit to CF flag
0000000B: D1E8 shr ax,1
0000000D: B05C mov al,05C ; prepare ’\’
0000000F: 7202 jc 000000013
00000011: B02F mov al,02F ; prepare ’/’
; output character to screen
00000013: B40E mov ah,00E
00000015: CD10 int 010
00000017: E2EA loop 000000003
; exit to DOS
00000019: CD20 int 020

60.1.3 Take a randommemory garbage as a source of randomness
Since it is MS-DOS, there are no memory protection at all, we can read fromwhatever address. Even more than that: simple
LODSB instruction will read byte from DS:SI address, but it’s not a problem if register values are not setted up, let it read 1)
random bytes; 2) from randommemory place!

So it is suggested in Trixter webpage3to use LODSBwithout any setup.
It is also suggested that SCASB instruction can be used instead, because it sets flag according to the byte it read.
Another idea to minimize code is to use INT 29h DOS syscall, which just prints character stored in AL register.

2Binary-coded decimal
3http://trixter.oldskool.org/2012/12/17/maze-generation-in-thirteen-bytes/

472

http://trixter.oldskool.org/2012/12/17/maze-generation-in-thirteen-bytes/

60.1. 10 PRINT CHR$(205.5+RND(1)); : GOTO 10 CHAPTER 60. DEMOS
That is what Peter Ferrie and Andrey “herm1t” Baranovich did (11 and 10 bytes) 4:

Listing 60.1: Andrey “herm1t” Baranovich: 11 bytes
00000000: B05C mov al,05C ;’\’
; read AL byte from random place of memory
00000002: AE scasb
; PF = parity(AL - random_memory_byte) = parity(5Ch - random_memory_byte)
00000003: 7A02 jp 000000007
00000005: B02F mov al,02F ;’/’
00000007: CD29 int 029 ; output AL to screen
00000009: EBF5 jmp 000000000 ; loop endlessly

SCASB also use value inAL register, it subtract randommemory byte value from5Ch value inAL.JP is rare instruction, here
it used for checking parity flag (PF), which is generated by the formulae in the listing. As a consequence, the output character
is determined not by some bit in randommemory byte, but by sum of bits, this (hoperfully) makes result more distributed.

It is possible to make this even shorter by using undocumented x86 instruction SALC (AKA SETALC) (“Set AL CF”). It was
introduced in NEC V20 CPU and sets AL to 0xFF if CF is 1 or to 0 if otherwise. So this code will not run on 8086/8088.

Listing 60.2: Peter Ferrie: 10 bytes
; AL is random at this point
00000000: AE scasb
; CF is set accoring subtracting random memory byte from AL.
; so it is somewhat random at this point
00000001: D6 setalc
; AL is set to 0xFF if CF=1 or to 0 if otherwise
00000002: 242D and al,02D ;’-’
; AL here is 0x2D or 0
00000004: 042F add al,02F ;’/’
; AL here is 0x5C or 0x2F
00000006: CD29 int 029 ; output AL to screen
00000008: EBF6 jmps 000000000 ; loop endlessly

So it is possible to get rid of conditional jumps at all. The ASCII5 code of backslash (“\”) is 0x5C and 0x2F for slash (“/”).
So we need to convert one (pseudo-random) bit in CF flag to 0x5C or 0x2F value.

This is done easily: by AND-ing all bits in AL (where all 8 bits are set or cleared)with 0x2Dwehave just 0 or 0x2D. By adding
0x2F to this value, we get 0x5C or 0x2F. Then just ouptut it to screen.

60.1.4 Conclusion
It is also worth adding that result may be di�erent in DOSBox, Windows NT and even MS-DOS, due to di�erent conditions:
timer chip may be emulated di�erently, initial register contents may be di�erent as well.

4http://pferrie.host22.com/misc/10print.htm
5American Standard Code for Information Interchange

473

http://pferrie.host22.com/misc/10print.htm

Part VIII

Other things

474

CHAPTER 61. NPAD

Chapter 61

npad

It is an assembly language macro for label aligning by a specific border.
That’s o�enneed for thebusy labels towhere control flow iso�enpassed, e.g., loopbodybegin. So theCPUwill e�ectively

load data or code from the memory, throughmemory bus, cache lines, etc.
Taken from listing.inc (MSVC):
By the way, it is curious example of di�erent NOP variations. All these instructions has no e�ects whatsoever, but has

di�erent size.

;; LISTING.INC
;;
;; This file contains assembler macros and is included by the files created
;; with the -FA compiler switch to be assembled by MASM (Microsoft Macro
;; Assembler).
;;
;; Copyright (c) 1993-2003, Microsoft Corporation. All rights reserved.

;; non destructive nops
npad macro size
if size eq 1

nop
else
if size eq 2

mov edi, edi
else
if size eq 3

; lea ecx, [ecx+00]
DB 8DH, 49H, 00H

else
if size eq 4

; lea esp, [esp+00]
DB 8DH, 64H, 24H, 00H

else
if size eq 5

add eax, DWORD PTR 0
else
if size eq 6

; lea ebx, [ebx+00000000]
DB 8DH, 9BH, 00H, 00H, 00H, 00H

else
if size eq 7

; lea esp, [esp+00000000]
DB 8DH, 0A4H, 24H, 00H, 00H, 00H, 00H

else
if size eq 8
; jmp .+8; .npad 6
DB 0EBH, 06H, 8DH, 9BH, 00H, 00H, 00H, 00H

else
if size eq 9

475

CHAPTER 61. NPAD
; jmp .+9; .npad 7
DB 0EBH, 07H, 8DH, 0A4H, 24H, 00H, 00H, 00H, 00H

else
if size eq 10
; jmp .+A; .npad 7; .npad 1
DB 0EBH, 08H, 8DH, 0A4H, 24H, 00H, 00H, 00H, 00H, 90H

else
if size eq 11
; jmp .+B; .npad 7; .npad 2
DB 0EBH, 09H, 8DH, 0A4H, 24H, 00H, 00H, 00H, 00H, 8BH, 0FFH

else
if size eq 12
; jmp .+C; .npad 7; .npad 3
DB 0EBH, 0AH, 8DH, 0A4H, 24H, 00H, 00H, 00H, 00H, 8DH, 49H, 00H

else
if size eq 13
; jmp .+D; .npad 7; .npad 4
DB 0EBH, 0BH, 8DH, 0A4H, 24H, 00H, 00H, 00H, 00H, 8DH, 64H, 24H, 00H

else
if size eq 14
; jmp .+E; .npad 7; .npad 5
DB 0EBH, 0CH, 8DH, 0A4H, 24H, 00H, 00H, 00H, 00H, 05H, 00H, 00H, 00H, 00H

else
if size eq 15
; jmp .+F; .npad 7; .npad 6
DB 0EBH, 0DH, 8DH, 0A4H, 24H, 00H, 00H, 00H, 00H, 8DH, 9BH, 00H, 00H, 00H, 00H

else
%out error: unsupported npad size
.err

endif
endif

endif
endif

endif
endif

endif
endif

endif
endif

endif
endif

endif
endif

endif
endm

476

CHAPTER 62. COMPILER INTRINSIC

Chapter 62

Compiler intrinsic

A function specific to a compiler which is not usual library function. Compiler generate a specific machine code instead of
call to it. It is o�en a pseudofunction for specific CPU instruction.

For example, there are no cyclic shi� operations in C/C++ languages, but present in most CPUs. For programmer’s conve-
nience, at least MSVC has pseudofunctions _rotl() and _rotr()1 which are translated by compiler directly to the ROL/ROR x86
instructions.

Another example are functions enabling to generate SSE-instructions right in the code.
Full list of MSVC intrinsics: http://msdn.microsoft.com/en-us/library/26td21ds.aspx.

1http://msdn.microsoft.com/en-us/library/5cc576c4.aspx

477

http://msdn.microsoft.com/en-us/library/26td21ds.aspx
http://msdn.microsoft.com/en-us/library/5cc576c4.aspx

CHAPTER 63. COMPILER’S ANOMALIES

Chapter 63

Compiler’s anomalies

Intel C++ 10.1, whichwasused forOracleRDBMS 11.2 Linux86 compilation,mayemit twoJZ in row, and there areno references
to the second JZ. Second JZ is thus senseless.

Listing 63.1: kdli.o from libserver11.a
.text:08114CF1 loc_8114CF1: ; CODE XREF:

__PGOSF539_kdlimemSer+89A
.text:08114CF1 ; __PGOSF539_kdlimemSer

+3994
.text:08114CF1 8B 45 08 mov eax, [ebp+arg_0]
.text:08114CF4 0F B6 50 14 movzx edx, byte ptr [eax+14h]
.text:08114CF8 F6 C2 01 test dl, 1
.text:08114CFB 0F 85 17 08 00 00 jnz loc_8115518
.text:08114D01 85 C9 test ecx, ecx
.text:08114D03 0F 84 8A 00 00 00 jz loc_8114D93
.text:08114D09 0F 84 09 08 00 00 jz loc_8115518
.text:08114D0F 8B 53 08 mov edx, [ebx+8]
.text:08114D12 89 55 FC mov [ebp+var_4], edx
.text:08114D15 31 C0 xor eax, eax
.text:08114D17 89 45 F4 mov [ebp+var_C], eax
.text:08114D1A 50 push eax
.text:08114D1B 52 push edx
.text:08114D1C E8 03 54 00 00 call len2nbytes
.text:08114D21 83 C4 08 add esp, 8

Listing 63.2: from the same code
.text:0811A2A5 loc_811A2A5: ; CODE XREF:

kdliSerLengths+11C
.text:0811A2A5 ; kdliSerLengths+1C1
.text:0811A2A5 8B 7D 08 mov edi, [ebp+arg_0]
.text:0811A2A8 8B 7F 10 mov edi, [edi+10h]
.text:0811A2AB 0F B6 57 14 movzx edx, byte ptr [edi+14h]
.text:0811A2AF F6 C2 01 test dl, 1
.text:0811A2B2 75 3E jnz short loc_811A2F2
.text:0811A2B4 83 E0 01 and eax, 1
.text:0811A2B7 74 1F jz short loc_811A2D8
.text:0811A2B9 74 37 jz short loc_811A2F2
.text:0811A2BB 6A 00 push 0
.text:0811A2BD FF 71 08 push dword ptr [ecx+8]
.text:0811A2C0 E8 5F FE FF FF call len2nbytes

It is probably code generator bug was not found by tests, because, resulting code is working correctly anyway.
Another compiler anomaly I described here (17.2.4).
I demonstrate such cases here, so to understand that such compilers errors are possible and sometimes one should not

to rack one’s brain and think why compiler generated such strange code.

478

CHAPTER 64. OPENMP

Chapter 64

OpenMP

OpenMP is one of the simplest ways to parallelize simple algorithm.
As an example, let’s try to build a program to compute cryptographic nonce. In my simplistic example, nonce is a number

added to the plain unencrypted text in order to produce hash with some specific feature. For example, at some step, Bitcoin
protocol require to find a such nonce so resulting hash will contain specific number of running zeroes. This is also called
“proof of work” 1 (i.e., system prove it did some intensive calculations and spent some time for it).

My example is not related to Bitcoin, it will try to add a numbers to the “hello, world!_” string in order to find such number
when “hello, world!_<number>” will contain at least 3 zero bytes a�er hashing this string by SHA512 algorithm.

Let’s limit our brute-force to the interval in 0..INT32_MAX-1 (i.e., 0x7FFFFFFE or 2147483646).
The algorithm is pretty straightforward:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include "sha512.h"

int found=0;
int32_t checked=0;

int32_t* __min;
int32_t* __max;

time_t start;

#ifdef __GNUC__
#define min(X,Y) ((X) < (Y) ? (X) : (Y))
#define max(X,Y) ((X) > (Y) ? (X) : (Y))
#endif

void check_nonce (int32_t nonce)
{

uint8_t buf[32];
struct sha512_ctx ctx;
uint8_t res[64];

// update statistics
int t=omp_get_thread_num();

if (__min[t]==-1)
__min[t]=nonce;

if (__max[t]==-1)
__max[t]=nonce;

__min[t]=min(__min[t], nonce);
__max[t]=max(__max[t], nonce);

1https://en.wikipedia.org/wiki/Proof-of-work_system

479

https://en.wikipedia.org/wiki/Proof-of-work_system

CHAPTER 64. OPENMP

// idle if valid nonce found
if (found)

return;

memset (buf, 0, sizeof(buf));
sprintf (buf, "hello, world!_%d", nonce);

sha512_init_ctx (&ctx);
sha512_process_bytes (buf, strlen(buf), &ctx);
sha512_finish_ctx (&ctx, &res);
if (res[0]==0 && res[1]==0 && res[2]==0)
{

printf ("found (thread %d): [%s]. seconds spent=%d\n", t, buf, time(NULL)-start);
found=1;

};
#pragma omp atomic
checked++;

#pragma omp critical
if ((checked % 100000)==0)

printf ("checked=%d\n", checked);
};

int main()
{

int32_t i;
int threads=omp_get_max_threads();
printf ("threads=%d\n", threads);

__min=(int32_t*)malloc(threads*sizeof(int32_t));
__max=(int32_t*)malloc(threads*sizeof(int32_t));
for (i=0; i<threads; i++)

__min[i]=__max[i]=-1;

start=time(NULL);

#pragma omp parallel for
for (i=0; i<INT32_MAX; i++)

check_nonce (i);

for (i=0; i<threads; i++)
printf ("__min[%d]=0x%08x __max[%d]=0x%08x\n", i, __min[i], i, __max[i]);

free(__min); free(__max);
};

check_nonce() function is just add a number to the string, hashes it by SHA512 and checks for 3 zero bytes in the result.
Very important part of the code is:

#pragma omp parallel for
for (i=0; i<INT32_MAX; i++)

check_nonce (i);

Yes, that simple, without #pragma we just call check_nonce() for each number from 0 to INT32_MAX (0x7fffffff or
2147483647). With #pragma, a compiler adds a special codewhichwill slice the loop interval to smaller intervals, to run them
by all CPU cores available 2.

The example may be compiled 3 in MSVC 2012:

cl openmp_example.c sha512.obj /openmp /O1 /Zi /Faopenmp_example.asm

2N.B.: I intentionally demonstrate here simplest possible example, but in practice, usage of OpenMPmay be harder andmore complex
3sha512.(c|h) and u64.h files can be taken from the OpenSSL library: http://www.openssl.org/source/

480

http://www.openssl.org/source/

64.1. MSVC CHAPTER 64. OPENMP
Or in GCC:

gcc -fopenmp 2.c sha512.c -S -masm=intel

64.1 MSVC
Now that’s how MSVC 2012 generates main loop:

Listing 64.1: MSVC 2012
push OFFSET _mainomp1
push 0
push 1
call __vcomp_fork
add esp, 16 ; 00000010H

All functions prefixed by vcomp are OpenMP-related and stored in the vcomp*.dll file. So here is a group of threads are
started.

Let’s take a look on _mainomp1:

Listing 64.2: MSVC 2012
$T1 = -8 ; size = 4
$T2 = -4 ; size = 4
_mainomp1 PROC ; COMDAT

push ebp
mov ebp, esp
push ecx
push ecx
push esi
lea eax, DWORD PTR $T2[ebp]
push eax
lea eax, DWORD PTR $T1[ebp]
push eax
push 1
push 1
push 2147483646 ; 7ffffffeH
push 0
call __vcomp_for_static_simple_init
mov esi, DWORD PTR $T1[ebp]
add esp, 24 ; 00000018H
jmp SHORT $LN6@main$omp$1

$LL2@main$omp$1:
push esi
call _check_nonce
pop ecx
inc esi

$LN6@main$omp$1:
cmp esi, DWORD PTR $T2[ebp]
jle SHORT $LL2@main$omp$1
call __vcomp_for_static_end
pop esi
leave
ret 0

_mainomp1 ENDP

This function will be started 𝑛 times in parallel, where 𝑛 is number of CPU cores. vcomp_for_static_simple_init() is
calculating interval for the for() construct for the current thread, depending on the current thread number. Loop begin and
end values are stored in $T1 and $T2 local variables. Youmay also notice 7ffffffeh (or 2147483646) as an argument to the
vcomp_for_static_simple_init() function—this is a number of iterations of the whole loop to by divided evenly.

Then we see a new loop with a call to check_nonce() function which do all work.
I also added some code in the beginning of check_nonce() function to gather statistics, with which arguments the func-

tion was called.

481

64.1. MSVC CHAPTER 64. OPENMP
This is what we see while run it:

threads=4
...
checked=2800000
checked=3000000
checked=3200000
checked=3300000
found (thread 3): [hello, world!_1611446522]. seconds spent=3
__min[0]=0x00000000 __max[0]=0x1fffffff
__min[1]=0x20000000 __max[1]=0x3fffffff
__min[2]=0x40000000 __max[2]=0x5fffffff
__min[3]=0x60000000 __max[3]=0x7ffffffe

Yes, result is correct, first 3 bytes are zeroes:

C:\...\sha512sum test
000000

f4a8fac5a4ed38794da4c1e39f54279ad5d9bb3c5465cdf57adaf60403df6e3fe6019f5764fc9975e505a7395fed78

0fee50eb38dd4c0279cb114672e2 *test

Running time is ≈ 2..3 seconds on my 4-core Intel Xeon E3-1220 3.10 GHz. In the task manager I see 5 threads: 1 main
thread + 4more started. I did not any further optimizations to keepmy example as small and clear as possible. But probably
it can be donemuch faster. My CPU has 4 cores, that is why OpenMP started exactly 4 threads.

By looking at the statistics table we can clearly see how loopwas finely sliced by 4 even parts. Ohwell, almost even, if not
to consider the last bit.

There are also pragmas for atomic operations.
Let’s see how this code is compiled:

#pragma omp atomic
checked++;

#pragma omp critical
if ((checked % 100000)==0)

printf ("checked=%d\n", checked);

Listing 64.3: MSVC 2012
push edi
push OFFSET _checked
call __vcomp_atomic_add_i4

; Line 55
push OFFSET _$vcomp$critsect$
call __vcomp_enter_critsect
add esp, 12 ; 0000000cH

; Line 56
mov ecx, DWORD PTR _checked
mov eax, ecx
cdq
mov esi, 100000 ; 000186a0H
idiv esi
test edx, edx
jne SHORT $LN1@check_nonc

; Line 57
push ecx
push OFFSET ??_C@_0M@NPNHLIOO@checked?$DN?$CFd?6?$AA@
call _printf
pop ecx
pop ecx

$LN1@check_nonc:
push DWORD PTR _$vcomp$critsect$
call __vcomp_leave_critsect

482

64.2. GCC CHAPTER 64. OPENMP
pop ecx

As it turns out, vcomp_atomic_add_i4() function in the vcomp*.dll is just a a tiny function having LOCK XADD instruc-
tion4.

vcomp_enter_critsect() eventually calling win32 API function EnterCriticalSection() 5.

64.2 GCC
GCC 4.8.1 produces the program which shows exactly the same statistics table, so, GCC implementation divides the loop by
parts in the same fashion.

Listing 64.4: GCC 4.8.1
mov edi, OFFSET FLAT:main._omp_fn.0
call GOMP_parallel_start
mov edi, 0
call main._omp_fn.0
call GOMP_parallel_end

Unlike MSVC implementation, what GCC code is doing is starting 3 threads, but also runs fourth in the current thread. So
there will be 4 threads instead of 5 as in MSVC.

Here is a main._omp_fn.0 function:

Listing 64.5: GCC 4.8.1
main._omp_fn.0:

push rbp
mov rbp, rsp
push rbx
sub rsp, 40
mov QWORD PTR [rbp-40], rdi
call omp_get_num_threads
mov ebx, eax
call omp_get_thread_num
mov esi, eax
mov eax, 2147483647 ; 0x7FFFFFFF
cdq
idiv ebx
mov ecx, eax
mov eax, 2147483647 ; 0x7FFFFFFF
cdq
idiv ebx
mov eax, edx
cmp esi, eax
jl .L15

.L18:
imul esi, ecx
mov edx, esi
add eax, edx
lea ebx, [rax+rcx]
cmp eax, ebx
jge .L14
mov DWORD PTR [rbp-20], eax

.L17:
mov eax, DWORD PTR [rbp-20]
mov edi, eax
call check_nonce
add DWORD PTR [rbp-20], 1
cmp DWORD PTR [rbp-20], ebx
jl .L17

4Readmore about LOCK prefix: 80.6.1
5Readmore about critical sections here: 50.4

483

64.2. GCC CHAPTER 64. OPENMP
jmp .L14

.L15:
mov eax, 0
add ecx, 1
jmp .L18

.L14:
add rsp, 40
pop rbx
pop rbp
ret

Here we see that division clearly: by calling to omp_get_num_threads() and omp_get_thread_num() we got number
of threads running, and also current thread number, and then determine loop interval. Then run check_nonce().

GCC also inserted LOCK ADD instruction right in the code, where MSVC generated call to separate DLL function:

Listing 64.6: GCC 4.8.1
lock add DWORD PTR checked[rip], 1
call GOMP_critical_start
mov ecx, DWORD PTR checked[rip]
mov edx, 351843721
mov eax, ecx
imul edx
sar edx, 13
mov eax, ecx
sar eax, 31
sub edx, eax
mov eax, edx
imul eax, eax, 100000
sub ecx, eax
mov eax, ecx
test eax, eax
jne .L7
mov eax, DWORD PTR checked[rip]
mov esi, eax
mov edi, OFFSET FLAT:.LC2 ; "checked=%d\n"
mov eax, 0
call printf

.L7:
call GOMP_critical_end

Functions prefixed with GOMP are from GNU OpenMP library. Unlike vcomp*.dll, its sources are freely available: https:
//github.com/mirrors/gcc/tree/master/libgomp.

484

https://github.com/mirrors/gcc/tree/master/libgomp
https://github.com/mirrors/gcc/tree/master/libgomp

CHAPTER 65. ITANIUM

Chapter 65

Itanium

Although almost failed, another very interesting architecture is Intel Itanium (IA64). While OOE1 CPUs decides how to rear-
range instructions and execute them in parallel, EPIC2 was an attempt to shi� these decisions to the compiler: to let it group
instructions at the compile stage.

This result in notoriously complex compilers.
Here is one sample of IA64 code: simple cryptoalgorithm from Linux kernel:

Listing 65.1: Linux kernel 3.2.0.4
#define TEA_ROUNDS 32
#define TEA_DELTA 0x9e3779b9

static void tea_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{

u32 y, z, n, sum = 0;
u32 k0, k1, k2, k3;
struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
const __le32 *in = (const __le32 *)src;
__le32 *out = (__le32 *)dst;

y = le32_to_cpu(in[0]);
z = le32_to_cpu(in[1]);

k0 = ctx->KEY[0];
k1 = ctx->KEY[1];
k2 = ctx->KEY[2];
k3 = ctx->KEY[3];

n = TEA_ROUNDS;

while (n-- > 0) {
sum += TEA_DELTA;
y += ((z << 4) + k0) ^ (z + sum) ^ ((z >> 5) + k1);
z += ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);

}

out[0] = cpu_to_le32(y);
out[1] = cpu_to_le32(z);

}

Here is how it was compiled:

Listing 65.2: Linux Kernel 3.2.0.4 for Itanium 2 (McKinley)
0090| tea_encrypt:
0090|08 80 80 41 00 21 adds r16 = 96, r32 // ptr to ctx->KEY

[2]

1Out-of-order execution
2Explicitly parallel instruction computing

485

CHAPTER 65. ITANIUM
0096|80 C0 82 00 42 00 adds r8 = 88, r32 // ptr to ctx->KEY

[0]
009C|00 00 04 00 nop.i 0
00A0|09 18 70 41 00 21 adds r3 = 92, r32 // ptr to ctx->KEY

[1]
00A6|F0 20 88 20 28 00 ld4 r15 = [r34], 4 // load z
00AC|44 06 01 84 adds r32 = 100, r32;; // ptr to ctx->KEY

[3]
00B0|08 98 00 20 10 10 ld4 r19 = [r16] // r19=k2
00B6|00 01 00 00 42 40 mov r16 = r0 // r0 always

contain zero
00BC|00 08 CA 00 mov.i r2 = ar.lc // save lc

register
00C0|05 70 00 44 10 10 9E FF FF FF 7F 20 ld4 r14 = [r34] // load y
00CC|92 F3 CE 6B movl r17 = 0xFFFFFFFF9E3779B9;; // TEA_DELTA
00D0|08 00 00 00 01 00 nop.m 0
00D6|50 01 20 20 20 00 ld4 r21 = [r8] // r21=k0
00DC|F0 09 2A 00 mov.i ar.lc = 31 // TEA_ROUNDS is

32
00E0|0A A0 00 06 10 10 ld4 r20 = [r3];; // r20=k1
00E6|20 01 80 20 20 00 ld4 r18 = [r32] // r18=k3
00EC|00 00 04 00 nop.i 0
00F0|
00F0| loc_F0:
00F0|09 80 40 22 00 20 add r16 = r16, r17 // r16=sum, r17=

TEA_DELTA
00F6|D0 71 54 26 40 80 shladd r29 = r14, 4, r21 // r14=y, r21=k0
00FC|A3 70 68 52 extr.u r28 = r14, 5, 27;;
0100|03 F0 40 1C 00 20 add r30 = r16, r14
0106|B0 E1 50 00 40 40 add r27 = r28, r20;; // r20=k1
010C|D3 F1 3C 80 xor r26 = r29, r30;;
0110|0B C8 6C 34 0F 20 xor r25 = r27, r26;;
0116|F0 78 64 00 40 00 add r15 = r15, r25 // r15=z
011C|00 00 04 00 nop.i 0;;
0120|00 00 00 00 01 00 nop.m 0
0126|80 51 3C 34 29 60 extr.u r24 = r15, 5, 27
012C|F1 98 4C 80 shladd r11 = r15, 4, r19 // r19=k2
0130|0B B8 3C 20 00 20 add r23 = r15, r16;;
0136|A0 C0 48 00 40 00 add r10 = r24, r18 // r18=k3
013C|00 00 04 00 nop.i 0;;
0140|0B 48 28 16 0F 20 xor r9 = r10, r11;;
0146|60 B9 24 1E 40 00 xor r22 = r23, r9
014C|00 00 04 00 nop.i 0;;
0150|11 00 00 00 01 00 nop.m 0
0156|E0 70 58 00 40 A0 add r14 = r14, r22
015C|A0 FF FF 48 br.cloop.sptk.few loc_F0;;
0160|09 20 3C 42 90 15 st4 [r33] = r15, 4 // store z
0166|00 00 00 02 00 00 nop.m 0
016C|20 08 AA 00 mov.i ar.lc = r2;; // restore lc

register
0170|11 00 38 42 90 11 st4 [r33] = r14 // store y
0176|00 00 00 02 00 80 nop.i 0
017C|08 00 84 00 br.ret.sptk.many b0;;

First of all, all IA64 instructions are grouped into 3-instruction bundles. Each bundle has size of 16 bytes and consists of
template code + 3 instructions. IDA shows bundles into 6+6+4 bytes —youmay easily spot the pattern.

All 3 instructions from each bundle usually executes simultaneously, unless one of instructions have “stop bit”.
Supposedly, Intel andHPengineers gathered statistics ofmost occurred instruction patterns anddecided to bring bundle

types (AKA “templates”): a bundle code defines instruction types in the bundle. There are 12 of them. For example, zeroth
bundle type is MII, meaning: first instruction is Memory (load or store), second and third are I (integer instructions). Another
example is bundle type 0x1d: MFB: first instruction is Memory (load or store), second is Float (FPU instruction), third is Branch

486

CHAPTER 65. ITANIUM
(branch instruction).

If compiler cannot pick suitable instruction to relevant bundle slot, it may insert NOP: you may see here nop.i instruc-
tions (NOP at the place where integer instructrionmight be) or nop.m (a memory instructionmight be at this slot). NOPs are
inserted automatically when one use assembly language manually.

And that is not all. Bundles are also grouped. Each bundle may have “stop bit”, so all the consecutive bundles with
terminating bundle which have “stop bit” may be executed simultaneously. In practice, Itanium 2may execute 2 bundles at
once, resulting execution of 6 instructions at once.

So all instructions inside bundle and bundle group cannot interfere with each other (i.e., should not have data hazards).
If they do, results will be undefined.

Each stop bit is marked in assembly language as ;; (two semicolons) a�er instruction. So, instructions at [180-19c] may
be executed simultaneously: they do not interfere. Next group is [1a0-1bc].

We also see a stop bit at 22c. The next instruction at 230 have stop bit too. This mean, this instruction is to be executed
as isolated from all others (as in CISC). Indeed: the next instructrion at 236 use result from it (value in register r10), so they
cannot be executed at the same time. Apparently, compilerwas not able to find abetterway to parallelize instructions, which
is, in other words, to load CPU as much as possible, hence too much stop bits and NOPs. Manual assembly programming is
tedious job as well: programmer should group instructions manually.

Programmer is still able to add stop-bits to each instructions, but this will degrade all performance Itanium was made
for.

Interesting examples of manual IA64 assembly code can be found in Linux kernel sources:
http://lxr.free-electrons.com/source/arch/ia64/lib/.
Another introductory Itanium assembly paper: [5].
Another very interesting Itanium feature is speculative execution and NaT (“not a thing”) bit, somewhat resembling NaN

numbers:
http://blogs.msdn.com/b/oldnewthing/archive/2004/01/19/60162.aspx.

487

http://lxr.free-electrons.com/source/arch/ia64/lib/
http://blogs.msdn.com/b/oldnewthing/archive/2004/01/19/60162.aspx

CHAPTER 66. 8086 MEMORY MODEL

Chapter 66

8086memory model

Dealingwith 16-bit programs forMS-DOS orWin16 (55.3 or 30.5), we can see that pointer consisting of two 16-bit values. What
it means? Oh yes, that is another MS-DOS and 8086 weird artefact.

8086/8088 was a 16-bit CPU, but was able to address 20-bit address RAM (thus resulting 1MB external memory). External
memory address space was divided between RAM (640KBmax), ROM1, windows for video memory, EMS cards, etc.

Let’s also recall that 8086/8088 was in fact inheritor of 8-bit 8080 CPU. The 8080 has 16-bit memory spaces, i.e., it was
able to address only 64KB. And probably of old so�ware porting reason2, 8086 can support 64KB windows, many of them
placed simultaneously within 1MB address space. This is some kind of toy-level virtualization. All 8086 registers are 16-bit, so
to address more, a special segment registers (CS, DS, ES, SS) were introduced. Each 20-bit pointer is calculated using values
from a segment register and an address register pair (e.g. DS:BX) as follows:

𝑟𝑒𝑎𝑙_𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = (𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 ≪ 4) + 𝑎𝑑𝑑𝑟𝑒𝑠𝑠_𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟

For example, graphics (EGA3, VGA4) video RAM window on old IBM PC-compatibles has size of 64KB. For accessing it, a
0xA000 value should be stored in one of segment registers, e.g. into DS. Then DS:0 will address the very first byte of video
RAM and DS:0xFFFF is the very last byte of RAM. The real address on 20-bit address bus, however, will range from 0xA0000
to 0xAFFFF.

The programmay contain hardcoded addresses like 0x1234, but OSmay need to load program on arbitrary addresses, so
it recalculates segment register values in such a way, so the programwill not care about where in the RAM it is placed.

So, any pointer it old MS-DOS environment was in fact consisted of segment address and the address inside segment,
i.e., two 16-bit values. 20-bit was enough for that, though, but one will need to recalculate the addresses very o�en: passing
more information on stack is seems better space/convenience balance.

By the way, because of all this, it was not possible to allocate the memory block larger than 64KB.
Segment registers were reused at 80286 as selectors, serving di�erent function.
When 80386 CPU and computers with bigger RAM were introduced, MS-DOS was still popular, so the DOS extenders are

emerged: thesewere in fact a step toward “serious”OS, switchingCPU into protectedmodeandprovidingmuchbettermem-
ory APIs for the programs which still needs to be runned from MS-DOS. Widely popular examples include DOS/4GW (DOOM
video game was compiled for it), Phar Lap, PMODE.

By the way, the same was of addressing memory was in 16-bit line of Windows 3.x, before Win32.

1Read-only memory
2I’m not 100% sure here
3Enhanced Graphics Adapter
4Video Graphics Array

488

CHAPTER 67. BASIC BLOCKS REORDERING

Chapter 67

Basic blocks reordering

67.1 Profile-guided optimization
This optimization methodmaymove some basic blocks to another section of the executable binary file.

Obviously, there are parts in functionwhich are executedmost o�en (e.g., loopbodies) and less o�en (e.g., error reporting
code, exception handlers).

The compiler adding instrumentation code into the executable, then developer run it with a lot of tests for statistics
collecting. Then the compiler, with thehelp of statistics gathered, prepares final executable filewith all infrequently executed
code moved into another section.

As a result, all frequently executed function code is compacted, and that is very important for execution speed and cache
memory.

Example from Oracle RDBMS code, which was compiled by Intel C++:

Listing 67.1: orageneric11.dll (win32)
public _skgfsync

_skgfsync proc near

; address 0x6030D86A

db 66h
nop
push ebp
mov ebp, esp
mov edx, [ebp+0Ch]
test edx, edx
jz short loc_6030D884
mov eax, [edx+30h]
test eax, 400h
jnz __VInfreq__skgfsync ; write to log

continue:
mov eax, [ebp+8]
mov edx, [ebp+10h]
mov dword ptr [eax], 0
lea eax, [edx+0Fh]
and eax, 0FFFFFFFCh
mov ecx, [eax]
cmp ecx, 45726963h
jnz error ; exit with error
mov esp, ebp
pop ebp
retn

_skgfsync endp

...

; address 0x60B953F0

489

67.1. PROFILE-GUIDED OPTIMIZATION CHAPTER 67. BASIC BLOCKS REORDERING
__VInfreq__skgfsync:

mov eax, [edx]
test eax, eax
jz continue
mov ecx, [ebp+10h]
push ecx
mov ecx, [ebp+8]
push edx
push ecx
push offset ... ; "skgfsync(se=0x%x, ctx=0x%x, iov=0x%x)\n"
push dword ptr [edx+4]
call dword ptr [eax] ; write to log
add esp, 14h
jmp continue

; ---

error:
mov edx, [ebp+8]
mov dword ptr [edx], 69AAh ; 27050 "function called with invalid FIB/IOV

structure"
mov eax, [eax]
mov [edx+4], eax
mov dword ptr [edx+8], 0FA4h ; 4004
mov esp, ebp
pop ebp
retn

; END OF FUNCTION CHUNK FOR _skgfsync

The distance of addresses of these two code fragments is almost 9 MB.
All infrequently executed codewas placed at the end of the code section of DLL file, among all function parts. This part of

function was marked by Intel C++ compiler with VInfreq prefix. Here we see that a part of function which writes to log-file
(presumably in case of error or warning or something like that) which was probably not executed very o�en when Oracle
developers gathered statistics (if was executed at all). The writing to log basic block is eventually return control flow into the
“hot” part of the function.

Another “infrequent” part is a basic block returning error code 27050.
In Linux ELF files, all infrequently executed code is moved by Intel C++ into separate text.unlikely section, leaving all

“hot” code in the text.hot section.
Froma reverse engineer’s perspective, this informationmay help to split the function to its core and error handling parts.

490

Part IX

Books/blogs worth reading

491

CHAPTER 68. BOOKS

Chapter 68

Books

68.1 Windows
[30].

68.2 C/C++

[16].

68.3 x86 / x86-64

[14], [1]

68.4 ARM

ARMmanuals: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/
index.html

492

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html

CHAPTER 69. BLOGS

Chapter 69

Blogs

69.1 Windows
∙ Microso�: Raymond Chen

∙ http://www.nynaeve.net/

493

http://blogs.msdn.com/oldnewthing/
http://www.nynaeve.net/

CHAPTER 70. OTHER

Chapter 70

Other

There are two excellent RE1-related subreddits on reddit.com: ReverseEngineering and REMath (for the topics on the inter-
section of RE andmathematics).

There are also RE part of Stack Exchange website:
http://reverseengineering.stackexchange.com/.

1Reverse Engineering

494

http://www.reddit.com/r/ReverseEngineering/
http://www.reddit.com/r/remath
http://reverseengineering.stackexchange.com/

Part X

Exercises

495

There are two questions almost for every exercise, if otherwise is not specified:
1) What this function does? Answer in one-sentence form.
2) Rewrite this function into C/C++.
It is allowed to use Google to search for any leads. However, if you like to make your task harder, you may try to solve it

without Google.
Hints and solutions are in the appendix of this book.

496

CHAPTER 71. LEVEL 1

Chapter 71

Level 1

Level 1 exercises are ones youmay try to solve in mind.

71.1 Exercise 1.1

71.1.1 MSVC 2012 x64 + /Ox

a$ = 8
b$ = 16
f PROC

cmp ecx, edx
cmovg edx, ecx
mov eax, edx
ret 0

f ENDP

71.1.2 Keil (ARM)

CMP r0,r1
MOVLE r0,r1
BX lr

71.1.3 Keil (thumb)

CMP r0,r1
BGT |L0.6|
MOVS r0,r1

|L0.6|
BX lr

71.2 Exercise 1.2
Why LOOP instruction is not used by compilers anymore?

71.3 Exercise 1.3

Take an loop example from “Loops” section (12), compile it in your favorite OS and compiler and modify (patch) executable
file, so the loop range will be [6..20].

497

CHAPTER 72. LEVEL 2

Chapter 72

Level 2

For solving exercises of level 2, you probably will need text editor or paper with pencil.

72.1 Exercise 2.1
This is standard C library function. Source code taken from OpenWatcom.

72.1.1 MSVC 2010

_TEXT SEGMENT
_input$ = 8 ; size = 1
_f PROC

push ebp
mov ebp, esp
movsx eax, BYTE PTR _input$[ebp]
cmp eax, 97 ; 00000061H
jl SHORT $LN1@f
movsx ecx, BYTE PTR _input$[ebp]
cmp ecx, 122 ; 0000007aH
jg SHORT $LN1@f
movsx edx, BYTE PTR _input$[ebp]
sub edx, 32 ; 00000020H
mov BYTE PTR _input$[ebp], dl

$LN1@f:
mov al, BYTE PTR _input$[ebp]
pop ebp
ret 0

_f ENDP
_TEXT ENDS

72.1.2 GCC 4.4.1 + -O3

_f proc near

input = dword ptr 8

push ebp
mov ebp, esp
movzx eax, byte ptr [ebp+input]
lea edx, [eax-61h]
cmp dl, 19h
ja short loc_80483F2
sub eax, 20h

498

72.2. EXERCISE 2.2 CHAPTER 72. LEVEL 2
loc_80483F2:

pop ebp
retn

_f endp

72.1.3 Keil (ARM) + -O3

SUB r1,r0,#0x61
CMP r1,#0x19
SUBLS r0,r0,#0x20
ANDLS r0,r0,#0xff
BX lr

72.1.4 Keil (thumb) + -O3

MOVS r1,r0
SUBS r1,r1,#0x61
CMP r1,#0x19
BHI |L0.14|
SUBS r0,r0,#0x20
LSLS r0,r0,#24
LSRS r0,r0,#24

|L0.14|
BX lr

72.2 Exercise 2.2

. This is also standard C library function. Source code is taken from OpenWatcom andmodified slightly.
This function also use these standard C functions: isspace() and isdigit().

72.2.1 MSVC 2010 + /Ox

EXTRN _isdigit:PROC
EXTRN _isspace:PROC
EXTRN ___ptr_check:PROC
; Function compile flags: /Ogtpy
_TEXT SEGMENT
_p$ = 8 ; size = 4
_f PROC

push ebx
push esi
mov esi, DWORD PTR _p$[esp+4]
push edi
push 0
push esi
call ___ptr_check
mov eax, DWORD PTR [esi]
push eax
call _isspace
add esp, 12 ; 0000000cH
test eax, eax
je SHORT $LN6@f
npad 2

$LL7@f:
mov ecx, DWORD PTR [esi+4]
add esi, 4

499

72.2. EXERCISE 2.2 CHAPTER 72. LEVEL 2
push ecx
call _isspace
add esp, 4
test eax, eax
jne SHORT $LL7@f

$LN6@f:
mov bl, BYTE PTR [esi]
cmp bl, 43 ; 0000002bH
je SHORT $LN4@f
cmp bl, 45 ; 0000002dH
jne SHORT $LN5@f

$LN4@f:
add esi, 4

$LN5@f:
mov edx, DWORD PTR [esi]
push edx
xor edi, edi
call _isdigit
add esp, 4
test eax, eax
je SHORT $LN2@f

$LL3@f:
mov ecx, DWORD PTR [esi]
mov edx, DWORD PTR [esi+4]
add esi, 4
lea eax, DWORD PTR [edi+edi*4]
push edx
lea edi, DWORD PTR [ecx+eax*2-48]
call _isdigit
add esp, 4
test eax, eax
jne SHORT $LL3@f

$LN2@f:
cmp bl, 45 ; 0000002dH
jne SHORT $LN14@f
neg edi

$LN14@f:
mov eax, edi
pop edi
pop esi
pop ebx
ret 0

_f ENDP
_TEXT ENDS

72.2.2 GCC 4.4.1
This exercise is slightly harder since GCC compiled isspace() and isdigit() functions as inline-functions and inserted their bod-
ies right into the code.

_f proc near

var_10 = dword ptr -10h
var_9 = byte ptr -9
input = dword ptr 8

push ebp
mov ebp, esp
sub esp, 18h
jmp short loc_8048410

loc_804840C:

500

72.2. EXERCISE 2.2 CHAPTER 72. LEVEL 2
add [ebp+input], 4

loc_8048410:
call ___ctype_b_loc
mov edx, [eax]
mov eax, [ebp+input]
mov eax, [eax]
add eax, eax
lea eax, [edx+eax]
movzx eax, word ptr [eax]
movzx eax, ax
and eax, 2000h
test eax, eax
jnz short loc_804840C
mov eax, [ebp+input]
mov eax, [eax]
mov [ebp+var_9], al
cmp [ebp+var_9], ’+’
jz short loc_8048444
cmp [ebp+var_9], ’-’
jnz short loc_8048448

loc_8048444:
add [ebp+input], 4

loc_8048448:
mov [ebp+var_10], 0
jmp short loc_8048471

loc_8048451:
mov edx, [ebp+var_10]
mov eax, edx
shl eax, 2
add eax, edx
add eax, eax
mov edx, eax
mov eax, [ebp+input]
mov eax, [eax]
lea eax, [edx+eax]
sub eax, 30h
mov [ebp+var_10], eax
add [ebp+input], 4

loc_8048471:
call ___ctype_b_loc
mov edx, [eax]
mov eax, [ebp+input]
mov eax, [eax]
add eax, eax
lea eax, [edx+eax]
movzx eax, word ptr [eax]
movzx eax, ax
and eax, 800h
test eax, eax
jnz short loc_8048451
cmp [ebp+var_9], 2Dh
jnz short loc_804849A
neg [ebp+var_10]

loc_804849A:
mov eax, [ebp+var_10]

501

72.2. EXERCISE 2.2 CHAPTER 72. LEVEL 2
leave
retn

_f endp

72.2.3 Keil (ARM) + -O3

PUSH {r4,lr}
MOV r4,r0
BL __rt_ctype_table
LDR r2,[r0,#0]

|L0.16|
LDR r0,[r4,#0]
LDRB r0,[r2,r0]
TST r0,#1
ADDNE r4,r4,#4
BNE |L0.16|
LDRB r1,[r4,#0]
MOV r0,#0
CMP r1,#0x2b
CMPNE r1,#0x2d
ADDEQ r4,r4,#4
B |L0.76|

|L0.60|
ADD r0,r0,r0,LSL #2
ADD r0,r3,r0,LSL #1
SUB r0,r0,#0x30
ADD r4,r4,#4

|L0.76|
LDR r3,[r4,#0]
LDRB r12,[r2,r3]
CMP r12,#0x20
BEQ |L0.60|
CMP r1,#0x2d
RSBEQ r0,r0,#0
POP {r4,pc}

72.2.4 Keil (thumb) + -O3

PUSH {r4-r6,lr}
MOVS r4,r0
BL __rt_ctype_table
LDR r2,[r0,#0]
B |L0.14|

|L0.12|
ADDS r4,r4,#4

|L0.14|
LDR r0,[r4,#0]
LDRB r0,[r2,r0]
LSLS r0,r0,#31
BNE |L0.12|
LDRB r1,[r4,#0]
CMP r1,#0x2b
BEQ |L0.32|
CMP r1,#0x2d
BNE |L0.34|

|L0.32|
ADDS r4,r4,#4

|L0.34|

502

72.3. EXERCISE 2.3 CHAPTER 72. LEVEL 2
MOVS r0,#0
B |L0.48|

|L0.38|
MOVS r5,#0xa
MULS r0,r5,r0
ADDS r4,r4,#4
SUBS r0,r0,#0x30
ADDS r0,r3,r0

|L0.48|
LDR r3,[r4,#0]
LDRB r5,[r2,r3]
CMP r5,#0x20
BEQ |L0.38|
CMP r1,#0x2d
BNE |L0.62|
RSBS r0,r0,#0

|L0.62|
POP {r4-r6,pc}

72.3 Exercise 2.3

This is standard C function too, actually, two functions working in pair. Source code taken from MSVC 2010 and modified
slightly.

The matter of modification is that this function can work properly in multi-threaded environment, and I removed its
support for simplification (or for confusion).

72.3.1 MSVC 2010 + /Ox

_BSS SEGMENT
_v DD 01H DUP (?)
_BSS ENDS

_TEXT SEGMENT
_s$ = 8 ; size = 4
f1 PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _s$[ebp]
mov DWORD PTR _v, eax
pop ebp
ret 0

f1 ENDP
_TEXT ENDS
PUBLIC f2

_TEXT SEGMENT
f2 PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _v
imul eax, 214013 ; 000343fdH
add eax, 2531011 ; 00269ec3H
mov DWORD PTR _v, eax
mov eax, DWORD PTR _v
shr eax, 16 ; 00000010H
and eax, 32767 ; 00007fffH
pop ebp
ret 0

f2 ENDP

503

72.3. EXERCISE 2.3 CHAPTER 72. LEVEL 2
_TEXT ENDS
END

72.3.2 GCC 4.4.1

public f1
f1 proc near

arg_0 = dword ptr 8

push ebp
mov ebp, esp
mov eax, [ebp+arg_0]
mov ds:v, eax
pop ebp
retn

f1 endp

public f2
f2 proc near

push ebp
mov ebp, esp
mov eax, ds:v
imul eax, 343FDh
add eax, 269EC3h
mov ds:v, eax
mov eax, ds:v
shr eax, 10h
and eax, 7FFFh
pop ebp
retn

f2 endp

bss segment dword public ’BSS’ use32
assume cs:_bss
dd ?

bss ends

72.3.3 Keil (ARM) + -O3

f1 PROC
LDR r1,|L0.52|
STR r0,[r1,#0] ; v
BX lr
ENDP

f2 PROC
LDR r0,|L0.52|
LDR r2,|L0.56|
LDR r1,[r0,#0] ; v
MUL r1,r2,r1
LDR r2,|L0.60|
ADD r1,r1,r2
STR r1,[r0,#0] ; v
MVN r0,#0x8000
AND r0,r0,r1,LSR #16
BX lr
ENDP

504

72.4. EXERCISE 2.4 CHAPTER 72. LEVEL 2

|L0.52|
DCD ||.data||

|L0.56|
DCD 0x000343fd

|L0.60|
DCD 0x00269ec3

72.3.4 Keil (thumb) + -O3

f1 PROC
LDR r1,|L0.28|
STR r0,[r1,#0] ; v
BX lr
ENDP

f2 PROC
LDR r0,|L0.28|
LDR r2,|L0.32|
LDR r1,[r0,#0] ; v
MULS r1,r2,r1
LDR r2,|L0.36|
ADDS r1,r1,r2
STR r1,[r0,#0] ; v
LSLS r0,r1,#1
LSRS r0,r0,#17
BX lr
ENDP

|L0.28|
DCD ||.data||

|L0.32|
DCD 0x000343fd

|L0.36|
DCD 0x00269ec3

72.4 Exercise 2.4
This is standard C library function. Source code taken fromMSVC 2010.

72.4.1 MSVC 2010 + /Ox

PUBLIC _f
_TEXT SEGMENT
_arg1$ = 8 ; size = 4
_arg2$ = 12 ; size = 4
_f PROC

push esi
mov esi, DWORD PTR _arg1$[esp]
push edi
mov edi, DWORD PTR _arg2$[esp+4]
cmp BYTE PTR [edi], 0
mov eax, esi
je SHORT $LN7@f
mov dl, BYTE PTR [esi]
push ebx
test dl, dl

505

72.4. EXERCISE 2.4 CHAPTER 72. LEVEL 2
je SHORT $LN4@f
sub esi, edi
npad 6

$LL5@f:
mov ecx, edi
test dl, dl
je SHORT $LN2@f

$LL3@f:
mov dl, BYTE PTR [ecx]
test dl, dl
je SHORT $LN14@f
movsx ebx, BYTE PTR [esi+ecx]
movsx edx, dl
sub ebx, edx
jne SHORT $LN2@f
inc ecx
cmp BYTE PTR [esi+ecx], bl
jne SHORT $LL3@f

$LN2@f:
cmp BYTE PTR [ecx], 0
je SHORT $LN14@f
mov dl, BYTE PTR [eax+1]
inc eax
inc esi
test dl, dl
jne SHORT $LL5@f
xor eax, eax
pop ebx
pop edi
pop esi
ret 0

_f ENDP
_TEXT ENDS
END

72.4.2 GCC 4.4.1

public f
f proc near

var_C = dword ptr -0Ch
var_8 = dword ptr -8
var_4 = dword ptr -4
arg_0 = dword ptr 8
arg_4 = dword ptr 0Ch

push ebp
mov ebp, esp
sub esp, 10h
mov eax, [ebp+arg_0]
mov [ebp+var_4], eax
mov eax, [ebp+arg_4]
movzx eax, byte ptr [eax]
test al, al
jnz short loc_8048443
mov eax, [ebp+arg_0]
jmp short locret_8048453

loc_80483F4:
mov eax, [ebp+var_4]

506

72.4. EXERCISE 2.4 CHAPTER 72. LEVEL 2
mov [ebp+var_8], eax
mov eax, [ebp+arg_4]
mov [ebp+var_C], eax
jmp short loc_804840A

loc_8048402:
add [ebp+var_8], 1
add [ebp+var_C], 1

loc_804840A:
mov eax, [ebp+var_8]
movzx eax, byte ptr [eax]
test al, al
jz short loc_804842E
mov eax, [ebp+var_C]
movzx eax, byte ptr [eax]
test al, al
jz short loc_804842E
mov eax, [ebp+var_8]
movzx edx, byte ptr [eax]
mov eax, [ebp+var_C]
movzx eax, byte ptr [eax]
cmp dl, al
jz short loc_8048402

loc_804842E:
mov eax, [ebp+var_C]
movzx eax, byte ptr [eax]
test al, al
jnz short loc_804843D
mov eax, [ebp+var_4]
jmp short locret_8048453

loc_804843D:
add [ebp+var_4], 1
jmp short loc_8048444

loc_8048443:
nop

loc_8048444:
mov eax, [ebp+var_4]
movzx eax, byte ptr [eax]
test al, al
jnz short loc_80483F4
mov eax, 0

locret_8048453:
leave
retn

f endp

72.4.3 Keil (ARM) + -O3

PUSH {r4,lr}
LDRB r2,[r1,#0]
CMP r2,#0
POPEQ {r4,pc}
B |L0.80|

507

72.4. EXERCISE 2.4 CHAPTER 72. LEVEL 2
|L0.20|

LDRB r12,[r3,#0]
CMP r12,#0
BEQ |L0.64|
LDRB r4,[r2,#0]
CMP r4,#0
POPEQ {r4,pc}
CMP r12,r4
ADDEQ r3,r3,#1
ADDEQ r2,r2,#1
BEQ |L0.20|
B |L0.76|

|L0.64|
LDRB r2,[r2,#0]
CMP r2,#0
POPEQ {r4,pc}

|L0.76|
ADD r0,r0,#1

|L0.80|
LDRB r2,[r0,#0]
CMP r2,#0
MOVNE r3,r0
MOVNE r2,r1
MOVEQ r0,#0
BNE |L0.20|
POP {r4,pc}

72.4.4 Keil (thumb) + -O3

PUSH {r4,r5,lr}
LDRB r2,[r1,#0]
CMP r2,#0
BEQ |L0.54|
B |L0.46|

|L0.10|
MOVS r3,r0
MOVS r2,r1
B |L0.20|

|L0.16|
ADDS r3,r3,#1
ADDS r2,r2,#1

|L0.20|
LDRB r4,[r3,#0]
CMP r4,#0
BEQ |L0.38|
LDRB r5,[r2,#0]
CMP r5,#0
BEQ |L0.54|
CMP r4,r5
BEQ |L0.16|
B |L0.44|

|L0.38|
LDRB r2,[r2,#0]
CMP r2,#0
BEQ |L0.54|

|L0.44|
ADDS r0,r0,#1

|L0.46|
LDRB r2,[r0,#0]
CMP r2,#0

508

72.5. EXERCISE 2.5 CHAPTER 72. LEVEL 2
BNE |L0.10|
MOVS r0,#0

|L0.54|
POP {r4,r5,pc}

72.5 Exercise 2.5
This exercise is rather on knowledge than on reading code.

. The function is taken from OpenWatcom.

72.5.1 MSVC 2010 + /Ox

_DATA SEGMENT
COMM __v:DWORD
_DATA ENDS
PUBLIC __real@3e45798ee2308c3a
PUBLIC __real@4147ffff80000000
PUBLIC __real@4150017ec0000000
PUBLIC _f
EXTRN __fltused:DWORD
CONST SEGMENT
__real@3e45798ee2308c3a DQ 03e45798ee2308c3ar ; 1e-008
__real@4147ffff80000000 DQ 04147ffff80000000r ; 3.14573e+006
__real@4150017ec0000000 DQ 04150017ec0000000r ; 4.19584e+006
CONST ENDS
_TEXT SEGMENT
_v1$ = -16 ; size = 8
_v2$ = -8 ; size = 8
_f PROC

sub esp, 16 ; 00000010H
fld QWORD PTR __real@4150017ec0000000
fstp QWORD PTR _v1$[esp+16]
fld QWORD PTR __real@4147ffff80000000
fstp QWORD PTR _v2$[esp+16]
fld QWORD PTR _v1$[esp+16]
fld QWORD PTR _v1$[esp+16]
fdiv QWORD PTR _v2$[esp+16]
fmul QWORD PTR _v2$[esp+16]
fsubp ST(1), ST(0)
fcomp QWORD PTR __real@3e45798ee2308c3a
fnstsw ax
test ah, 65 ; 00000041H
jne SHORT $LN1@f
or DWORD PTR __v, 1

$LN1@f:
add esp, 16 ; 00000010H
ret 0

_f ENDP
_TEXT ENDS

72.6 Exercise 2.6

72.6.1 MSVC 2010 + /Ox

PUBLIC _f
; Function compile flags: /Ogtpy
_TEXT SEGMENT

509

72.6. EXERCISE 2.6 CHAPTER 72. LEVEL 2
_k0$ = -12 ; size = 4
_k3$ = -8 ; size = 4
_k2$ = -4 ; size = 4
_v$ = 8 ; size = 4
_k1$ = 12 ; size = 4
_k$ = 12 ; size = 4
_f PROC

sub esp, 12 ; 0000000cH
mov ecx, DWORD PTR _v$[esp+8]
mov eax, DWORD PTR [ecx]
mov ecx, DWORD PTR [ecx+4]
push ebx
push esi
mov esi, DWORD PTR _k$[esp+16]
push edi
mov edi, DWORD PTR [esi]
mov DWORD PTR _k0$[esp+24], edi
mov edi, DWORD PTR [esi+4]
mov DWORD PTR _k1$[esp+20], edi
mov edi, DWORD PTR [esi+8]
mov esi, DWORD PTR [esi+12]
xor edx, edx
mov DWORD PTR _k2$[esp+24], edi
mov DWORD PTR _k3$[esp+24], esi
lea edi, DWORD PTR [edx+32]

$LL8@f:
mov esi, ecx
shr esi, 5
add esi, DWORD PTR _k1$[esp+20]
mov ebx, ecx
shl ebx, 4
add ebx, DWORD PTR _k0$[esp+24]
sub edx, 1640531527 ; 61c88647H
xor esi, ebx
lea ebx, DWORD PTR [edx+ecx]
xor esi, ebx
add eax, esi
mov esi, eax
shr esi, 5
add esi, DWORD PTR _k3$[esp+24]
mov ebx, eax
shl ebx, 4
add ebx, DWORD PTR _k2$[esp+24]
xor esi, ebx
lea ebx, DWORD PTR [edx+eax]
xor esi, ebx
add ecx, esi
dec edi
jne SHORT $LL8@f
mov edx, DWORD PTR _v$[esp+20]
pop edi
pop esi
mov DWORD PTR [edx], eax
mov DWORD PTR [edx+4], ecx
pop ebx
add esp, 12 ; 0000000cH
ret 0

_f ENDP

510

72.6. EXERCISE 2.6 CHAPTER 72. LEVEL 2
72.6.2 Keil (ARM) + -O3

PUSH {r4-r10,lr}
ADD r5,r1,#8
LDM r5,{r5,r7}
LDR r2,[r0,#4]
LDR r3,[r0,#0]
LDR r4,|L0.116|
LDR r6,[r1,#4]
LDR r8,[r1,#0]
MOV r12,#0
MOV r1,r12

|L0.40|
ADD r12,r12,r4
ADD r9,r8,r2,LSL #4
ADD r10,r2,r12
EOR r9,r9,r10
ADD r10,r6,r2,LSR #5
EOR r9,r9,r10
ADD r3,r3,r9
ADD r9,r5,r3,LSL #4
ADD r10,r3,r12
EOR r9,r9,r10
ADD r10,r7,r3,LSR #5
EOR r9,r9,r10
ADD r1,r1,#1
CMP r1,#0x20
ADD r2,r2,r9
STRCS r2,[r0,#4]
STRCS r3,[r0,#0]
BCC |L0.40|
POP {r4-r10,pc}

|L0.116|
DCD 0x9e3779b9

72.6.3 Keil (thumb) + -O3

PUSH {r1-r7,lr}
LDR r5,|L0.84|
LDR r3,[r0,#0]
LDR r2,[r0,#4]
STR r5,[sp,#8]
MOVS r6,r1
LDM r6,{r6,r7}
LDR r5,[r1,#8]
STR r6,[sp,#4]
LDR r6,[r1,#0xc]
MOVS r4,#0
MOVS r1,r4
MOV lr,r5
MOV r12,r6
STR r7,[sp,#0]

|L0.30|
LDR r5,[sp,#8]
LSLS r6,r2,#4
ADDS r4,r4,r5
LDR r5,[sp,#4]
LSRS r7,r2,#5
ADDS r5,r6,r5

511

72.7. EXERCISE 2.7 CHAPTER 72. LEVEL 2
ADDS r6,r2,r4
EORS r5,r5,r6
LDR r6,[sp,#0]
ADDS r1,r1,#1
ADDS r6,r7,r6
EORS r5,r5,r6
ADDS r3,r5,r3
LSLS r5,r3,#4
ADDS r6,r3,r4
ADD r5,r5,lr
EORS r5,r5,r6
LSRS r6,r3,#5
ADD r6,r6,r12
EORS r5,r5,r6
ADDS r2,r5,r2
CMP r1,#0x20
BCC |L0.30|
STR r3,[r0,#0]
STR r2,[r0,#4]
POP {r1-r7,pc}

|L0.84|
DCD 0x9e3779b9

72.7 Exercise 2.7

This function is taken from Linux 2.6 kernel.

72.7.1 MSVC 2010 + /Ox

_table db 000h, 080h, 040h, 0c0h, 020h, 0a0h, 060h, 0e0h
db 010h, 090h, 050h, 0d0h, 030h, 0b0h, 070h, 0f0h
db 008h, 088h, 048h, 0c8h, 028h, 0a8h, 068h, 0e8h
db 018h, 098h, 058h, 0d8h, 038h, 0b8h, 078h, 0f8h
db 004h, 084h, 044h, 0c4h, 024h, 0a4h, 064h, 0e4h
db 014h, 094h, 054h, 0d4h, 034h, 0b4h, 074h, 0f4h
db 00ch, 08ch, 04ch, 0cch, 02ch, 0ach, 06ch, 0ech
db 01ch, 09ch, 05ch, 0dch, 03ch, 0bch, 07ch, 0fch
db 002h, 082h, 042h, 0c2h, 022h, 0a2h, 062h, 0e2h
db 012h, 092h, 052h, 0d2h, 032h, 0b2h, 072h, 0f2h
db 00ah, 08ah, 04ah, 0cah, 02ah, 0aah, 06ah, 0eah
db 01ah, 09ah, 05ah, 0dah, 03ah, 0bah, 07ah, 0fah
db 006h, 086h, 046h, 0c6h, 026h, 0a6h, 066h, 0e6h
db 016h, 096h, 056h, 0d6h, 036h, 0b6h, 076h, 0f6h
db 00eh, 08eh, 04eh, 0ceh, 02eh, 0aeh, 06eh, 0eeh
db 01eh, 09eh, 05eh, 0deh, 03eh, 0beh, 07eh, 0feh
db 001h, 081h, 041h, 0c1h, 021h, 0a1h, 061h, 0e1h
db 011h, 091h, 051h, 0d1h, 031h, 0b1h, 071h, 0f1h
db 009h, 089h, 049h, 0c9h, 029h, 0a9h, 069h, 0e9h
db 019h, 099h, 059h, 0d9h, 039h, 0b9h, 079h, 0f9h
db 005h, 085h, 045h, 0c5h, 025h, 0a5h, 065h, 0e5h
db 015h, 095h, 055h, 0d5h, 035h, 0b5h, 075h, 0f5h
db 00dh, 08dh, 04dh, 0cdh, 02dh, 0adh, 06dh, 0edh
db 01dh, 09dh, 05dh, 0ddh, 03dh, 0bdh, 07dh, 0fdh
db 003h, 083h, 043h, 0c3h, 023h, 0a3h, 063h, 0e3h
db 013h, 093h, 053h, 0d3h, 033h, 0b3h, 073h, 0f3h
db 00bh, 08bh, 04bh, 0cbh, 02bh, 0abh, 06bh, 0ebh
db 01bh, 09bh, 05bh, 0dbh, 03bh, 0bbh, 07bh, 0fbh
db 007h, 087h, 047h, 0c7h, 027h, 0a7h, 067h, 0e7h

512

72.7. EXERCISE 2.7 CHAPTER 72. LEVEL 2
db 017h, 097h, 057h, 0d7h, 037h, 0b7h, 077h, 0f7h
db 00fh, 08fh, 04fh, 0cfh, 02fh, 0afh, 06fh, 0efh
db 01fh, 09fh, 05fh, 0dfh, 03fh, 0bfh, 07fh, 0ffh

f proc near

arg_0 = dword ptr 4

mov edx, [esp+arg_0]
movzx eax, dl
movzx eax, _table[eax]
mov ecx, edx
shr edx, 8
movzx edx, dl
movzx edx, _table[edx]
shl ax, 8
movzx eax, ax
or eax, edx
shr ecx, 10h
movzx edx, cl
movzx edx, _table[edx]
shr ecx, 8
movzx ecx, cl
movzx ecx, _table[ecx]
shl dx, 8
movzx edx, dx
shl eax, 10h
or edx, ecx
or eax, edx
retn

f endp

72.7.2 Keil (ARM) + -O3

f2 PROC
LDR r1,|L0.76|
LDRB r2,[r1,r0,LSR #8]
AND r0,r0,#0xff
LDRB r0,[r1,r0]
ORR r0,r2,r0,LSL #8
BX lr
ENDP

f3 PROC
MOV r3,r0
LSR r0,r0,#16
PUSH {lr}
BL f2
MOV r12,r0
LSL r0,r3,#16
LSR r0,r0,#16
BL f2
ORR r0,r12,r0,LSL #16
POP {pc}
ENDP

|L0.76|
DCB 0x00,0x80,0x40,0xc0
DCB 0x20,0xa0,0x60,0xe0
DCB 0x10,0x90,0x50,0xd0

513

72.7. EXERCISE 2.7 CHAPTER 72. LEVEL 2
DCB 0x30,0xb0,0x70,0xf0
DCB 0x08,0x88,0x48,0xc8
DCB 0x28,0xa8,0x68,0xe8
DCB 0x18,0x98,0x58,0xd8
DCB 0x38,0xb8,0x78,0xf8
DCB 0x04,0x84,0x44,0xc4
DCB 0x24,0xa4,0x64,0xe4
DCB 0x14,0x94,0x54,0xd4
DCB 0x34,0xb4,0x74,0xf4
DCB 0x0c,0x8c,0x4c,0xcc
DCB 0x2c,0xac,0x6c,0xec
DCB 0x1c,0x9c,0x5c,0xdc
DCB 0x3c,0xbc,0x7c,0xfc
DCB 0x02,0x82,0x42,0xc2
DCB 0x22,0xa2,0x62,0xe2
DCB 0x12,0x92,0x52,0xd2
DCB 0x32,0xb2,0x72,0xf2
DCB 0x0a,0x8a,0x4a,0xca
DCB 0x2a,0xaa,0x6a,0xea
DCB 0x1a,0x9a,0x5a,0xda
DCB 0x3a,0xba,0x7a,0xfa
DCB 0x06,0x86,0x46,0xc6
DCB 0x26,0xa6,0x66,0xe6
DCB 0x16,0x96,0x56,0xd6
DCB 0x36,0xb6,0x76,0xf6
DCB 0x0e,0x8e,0x4e,0xce
DCB 0x2e,0xae,0x6e,0xee
DCB 0x1e,0x9e,0x5e,0xde
DCB 0x3e,0xbe,0x7e,0xfe
DCB 0x01,0x81,0x41,0xc1
DCB 0x21,0xa1,0x61,0xe1
DCB 0x11,0x91,0x51,0xd1
DCB 0x31,0xb1,0x71,0xf1
DCB 0x09,0x89,0x49,0xc9
DCB 0x29,0xa9,0x69,0xe9
DCB 0x19,0x99,0x59,0xd9
DCB 0x39,0xb9,0x79,0xf9
DCB 0x05,0x85,0x45,0xc5
DCB 0x25,0xa5,0x65,0xe5
DCB 0x15,0x95,0x55,0xd5
DCB 0x35,0xb5,0x75,0xf5
DCB 0x0d,0x8d,0x4d,0xcd
DCB 0x2d,0xad,0x6d,0xed
DCB 0x1d,0x9d,0x5d,0xdd
DCB 0x3d,0xbd,0x7d,0xfd
DCB 0x03,0x83,0x43,0xc3
DCB 0x23,0xa3,0x63,0xe3
DCB 0x13,0x93,0x53,0xd3
DCB 0x33,0xb3,0x73,0xf3
DCB 0x0b,0x8b,0x4b,0xcb
DCB 0x2b,0xab,0x6b,0xeb
DCB 0x1b,0x9b,0x5b,0xdb
DCB 0x3b,0xbb,0x7b,0xfb
DCB 0x07,0x87,0x47,0xc7
DCB 0x27,0xa7,0x67,0xe7
DCB 0x17,0x97,0x57,0xd7
DCB 0x37,0xb7,0x77,0xf7
DCB 0x0f,0x8f,0x4f,0xcf
DCB 0x2f,0xaf,0x6f,0xef
DCB 0x1f,0x9f,0x5f,0xdf
DCB 0x3f,0xbf,0x7f,0xff

514

72.7. EXERCISE 2.7 CHAPTER 72. LEVEL 2
72.7.3 Keil (thumb) + -O3

f2 PROC
LDR r1,|L0.48|
LSLS r2,r0,#24
LSRS r2,r2,#24
LDRB r2,[r1,r2]
LSLS r2,r2,#8
LSRS r0,r0,#8
LDRB r0,[r1,r0]
ORRS r0,r0,r2
BX lr
ENDP

f3 PROC
MOVS r3,r0
LSLS r0,r0,#16
PUSH {r4,lr}
LSRS r0,r0,#16
BL f2
LSLS r4,r0,#16
LSRS r0,r3,#16
BL f2
ORRS r0,r0,r4
POP {r4,pc}
ENDP

|L0.48|
DCB 0x00,0x80,0x40,0xc0
DCB 0x20,0xa0,0x60,0xe0
DCB 0x10,0x90,0x50,0xd0
DCB 0x30,0xb0,0x70,0xf0
DCB 0x08,0x88,0x48,0xc8
DCB 0x28,0xa8,0x68,0xe8
DCB 0x18,0x98,0x58,0xd8
DCB 0x38,0xb8,0x78,0xf8
DCB 0x04,0x84,0x44,0xc4
DCB 0x24,0xa4,0x64,0xe4
DCB 0x14,0x94,0x54,0xd4
DCB 0x34,0xb4,0x74,0xf4
DCB 0x0c,0x8c,0x4c,0xcc
DCB 0x2c,0xac,0x6c,0xec
DCB 0x1c,0x9c,0x5c,0xdc
DCB 0x3c,0xbc,0x7c,0xfc
DCB 0x02,0x82,0x42,0xc2
DCB 0x22,0xa2,0x62,0xe2
DCB 0x12,0x92,0x52,0xd2
DCB 0x32,0xb2,0x72,0xf2
DCB 0x0a,0x8a,0x4a,0xca
DCB 0x2a,0xaa,0x6a,0xea
DCB 0x1a,0x9a,0x5a,0xda
DCB 0x3a,0xba,0x7a,0xfa
DCB 0x06,0x86,0x46,0xc6
DCB 0x26,0xa6,0x66,0xe6
DCB 0x16,0x96,0x56,0xd6
DCB 0x36,0xb6,0x76,0xf6
DCB 0x0e,0x8e,0x4e,0xce
DCB 0x2e,0xae,0x6e,0xee
DCB 0x1e,0x9e,0x5e,0xde
DCB 0x3e,0xbe,0x7e,0xfe
DCB 0x01,0x81,0x41,0xc1

515

72.8. EXERCISE 2.8 CHAPTER 72. LEVEL 2
DCB 0x21,0xa1,0x61,0xe1
DCB 0x11,0x91,0x51,0xd1
DCB 0x31,0xb1,0x71,0xf1
DCB 0x09,0x89,0x49,0xc9
DCB 0x29,0xa9,0x69,0xe9
DCB 0x19,0x99,0x59,0xd9
DCB 0x39,0xb9,0x79,0xf9
DCB 0x05,0x85,0x45,0xc5
DCB 0x25,0xa5,0x65,0xe5
DCB 0x15,0x95,0x55,0xd5
DCB 0x35,0xb5,0x75,0xf5
DCB 0x0d,0x8d,0x4d,0xcd
DCB 0x2d,0xad,0x6d,0xed
DCB 0x1d,0x9d,0x5d,0xdd
DCB 0x3d,0xbd,0x7d,0xfd
DCB 0x03,0x83,0x43,0xc3
DCB 0x23,0xa3,0x63,0xe3
DCB 0x13,0x93,0x53,0xd3
DCB 0x33,0xb3,0x73,0xf3
DCB 0x0b,0x8b,0x4b,0xcb
DCB 0x2b,0xab,0x6b,0xeb
DCB 0x1b,0x9b,0x5b,0xdb
DCB 0x3b,0xbb,0x7b,0xfb
DCB 0x07,0x87,0x47,0xc7
DCB 0x27,0xa7,0x67,0xe7
DCB 0x17,0x97,0x57,0xd7
DCB 0x37,0xb7,0x77,0xf7
DCB 0x0f,0x8f,0x4f,0xcf
DCB 0x2f,0xaf,0x6f,0xef
DCB 0x1f,0x9f,0x5f,0xdf
DCB 0x3f,0xbf,0x7f,0xff

72.8 Exercise 2.8

72.8.1 MSVC 2010 + /O1

(/O1: minimize space).

_a$ = 8 ; size = 4
_b$ = 12 ; size = 4
_c$ = 16 ; size = 4
?s@@YAXPAN00@Z PROC ; s, COMDAT

mov eax, DWORD PTR _b$[esp-4]
mov ecx, DWORD PTR _a$[esp-4]
mov edx, DWORD PTR _c$[esp-4]
push esi
push edi
sub ecx, eax
sub edx, eax
mov edi, 200 ; 000000c8H

$LL6@s:
push 100 ; 00000064H
pop esi

$LL3@s:
fld QWORD PTR [ecx+eax]
fadd QWORD PTR [eax]
fstp QWORD PTR [edx+eax]
add eax, 8
dec esi
jne SHORT $LL3@s

516

72.8. EXERCISE 2.8 CHAPTER 72. LEVEL 2
dec edi
jne SHORT $LL6@s
pop edi
pop esi
ret 0

?s@@YAXPAN00@Z ENDP ; s

72.8.2 Keil (ARM) + -O3

PUSH {r4-r12,lr}
MOV r9,r2
MOV r10,r1
MOV r11,r0
MOV r5,#0

|L0.20|
ADD r0,r5,r5,LSL #3
ADD r0,r0,r5,LSL #4
MOV r4,#0
ADD r8,r10,r0,LSL #5
ADD r7,r11,r0,LSL #5
ADD r6,r9,r0,LSL #5

|L0.44|
ADD r0,r8,r4,LSL #3
LDM r0,{r2,r3}
ADD r1,r7,r4,LSL #3
LDM r1,{r0,r1}
BL __aeabi_dadd
ADD r2,r6,r4,LSL #3
ADD r4,r4,#1
STM r2,{r0,r1}
CMP r4,#0x64
BLT |L0.44|
ADD r5,r5,#1
CMP r5,#0xc8
BLT |L0.20|
POP {r4-r12,pc}

72.8.3 Keil (thumb) + -O3

PUSH {r0-r2,r4-r7,lr}
MOVS r4,#0
SUB sp,sp,#8

|L0.6|
MOVS r1,#0x19
MOVS r0,r4
LSLS r1,r1,#5
MULS r0,r1,r0
LDR r2,[sp,#8]
LDR r1,[sp,#0xc]
ADDS r2,r0,r2
STR r2,[sp,#0]
LDR r2,[sp,#0x10]
MOVS r5,#0
ADDS r7,r0,r2
ADDS r0,r0,r1
STR r0,[sp,#4]

|L0.32|
LSLS r6,r5,#3

517

72.9. EXERCISE 2.9 CHAPTER 72. LEVEL 2
ADDS r0,r0,r6
LDM r0!,{r2,r3}
LDR r0,[sp,#0]
ADDS r1,r0,r6
LDM r1,{r0,r1}
BL __aeabi_dadd
ADDS r2,r7,r6
ADDS r5,r5,#1
STM r2!,{r0,r1}
CMP r5,#0x64
BGE |L0.62|
LDR r0,[sp,#4]
B |L0.32|

|L0.62|
ADDS r4,r4,#1
CMP r4,#0xc8
BLT |L0.6|
ADD sp,sp,#0x14
POP {r4-r7,pc}

72.9 Exercise 2.9

72.9.1 MSVC 2010 + /O1

(/O1: minimize space).

tv315 = -8 ; size = 4
tv291 = -4 ; size = 4
_a$ = 8 ; size = 4
_b$ = 12 ; size = 4
_c$ = 16 ; size = 4
?m@@YAXPAN00@Z PROC ; m, COMDAT

push ebp
mov ebp, esp
push ecx
push ecx
mov edx, DWORD PTR _a$[ebp]
push ebx
mov ebx, DWORD PTR _c$[ebp]
push esi
mov esi, DWORD PTR _b$[ebp]
sub edx, esi
push edi
sub esi, ebx
mov DWORD PTR tv315[ebp], 100 ; 00000064H

$LL9@m:
mov eax, ebx
mov DWORD PTR tv291[ebp], 300 ; 0000012cH

$LL6@m:
fldz
lea ecx, DWORD PTR [esi+eax]
fstp QWORD PTR [eax]
mov edi, 200 ; 000000c8H

$LL3@m:
dec edi
fld QWORD PTR [ecx+edx]
fmul QWORD PTR [ecx]
fadd QWORD PTR [eax]
fstp QWORD PTR [eax]
jne HORT $LL3@m

518

72.9. EXERCISE 2.9 CHAPTER 72. LEVEL 2
add eax, 8
dec DWORD PTR tv291[ebp]
jne SHORT $LL6@m
add ebx, 800 ; 00000320H
dec DWORD PTR tv315[ebp]
jne SHORT $LL9@m
pop edi
pop esi
pop ebx
leave
ret 0

?m@@YAXPAN00@Z ENDP ; m

72.9.2 Keil (ARM) + -O3

PUSH {r0-r2,r4-r11,lr}
SUB sp,sp,#8
MOV r5,#0

|L0.12|
LDR r1,[sp,#0xc]
ADD r0,r5,r5,LSL #3
ADD r0,r0,r5,LSL #4
ADD r1,r1,r0,LSL #5
STR r1,[sp,#0]
LDR r1,[sp,#8]
MOV r4,#0
ADD r11,r1,r0,LSL #5
LDR r1,[sp,#0x10]
ADD r10,r1,r0,LSL #5

|L0.52|
MOV r0,#0
MOV r1,r0
ADD r7,r10,r4,LSL #3
STM r7,{r0,r1}
MOV r6,r0
LDR r0,[sp,#0]
ADD r8,r11,r4,LSL #3
ADD r9,r0,r4,LSL #3

|L0.84|
LDM r9,{r2,r3}
LDM r8,{r0,r1}
BL __aeabi_dmul
LDM r7,{r2,r3}
BL __aeabi_dadd
ADD r6,r6,#1
STM r7,{r0,r1}
CMP r6,#0xc8
BLT |L0.84|
ADD r4,r4,#1
CMP r4,#0x12c
BLT |L0.52|
ADD r5,r5,#1
CMP r5,#0x64
BLT |L0.12|
ADD sp,sp,#0x14
POP {r4-r11,pc}

72.9.3 Keil (thumb) + -O3

519

72.10. EXERCISE 2.10 CHAPTER 72. LEVEL 2

PUSH {r0-r2,r4-r7,lr}
MOVS r0,#0
SUB sp,sp,#0x10
STR r0,[sp,#0]

|L0.8|
MOVS r1,#0x19
LSLS r1,r1,#5
MULS r0,r1,r0
LDR r2,[sp,#0x10]
LDR r1,[sp,#0x14]
ADDS r2,r0,r2
STR r2,[sp,#4]
LDR r2,[sp,#0x18]
MOVS r5,#0
ADDS r7,r0,r2
ADDS r0,r0,r1
STR r0,[sp,#8]

|L0.32|
LSLS r4,r5,#3
MOVS r0,#0
ADDS r2,r7,r4
STR r0,[r2,#0]
MOVS r6,r0
STR r0,[r2,#4]

|L0.44|
LDR r0,[sp,#8]
ADDS r0,r0,r4
LDM r0!,{r2,r3}
LDR r0,[sp,#4]
ADDS r1,r0,r4
LDM r1,{r0,r1}
BL __aeabi_dmul
ADDS r3,r7,r4
LDM r3,{r2,r3}
BL __aeabi_dadd
ADDS r2,r7,r4
ADDS r6,r6,#1
STM r2!,{r0,r1}
CMP r6,#0xc8
BLT |L0.44|
MOVS r0,#0xff
ADDS r5,r5,#1
ADDS r0,r0,#0x2d
CMP r5,r0
BLT |L0.32|
LDR r0,[sp,#0]
ADDS r0,r0,#1
CMP r0,#0x64
STR r0,[sp,#0]
BLT |L0.8|
ADD sp,sp,#0x1c
POP {r4-r7,pc}

72.10 Exercise 2.10

If to compile this piece of code and run, a number will be printed. Where it came from? Where it came from if to compile it in
MSVC with optimization (/Ox)?

#include <stdio.h>

520

72.11. EXERCISE 2.11 CHAPTER 72. LEVEL 2

int main()
{

printf ("%d\n");

return 0;
};

72.11 Exercise 2.11
As a practical joke, “fool” your Windows Task Manager to showmuchmore CPUs/CPU cores than your machine actually has:

Figure 72.1: Fooled Windows Task Manager

72.12 Exercise 2.12
This is a well-known algorithm. How it’s called?

72.12.1 MSVC 2012 x64 + /Ox

s$ = 8
f PROC

cmp BYTE PTR [rcx], 0
mov r9, rcx
je SHORT $LN13@f
npad 8

$LL5@f:
movzx edx, BYTE PTR [rcx]
lea eax, DWORD PTR [rdx-97]
cmp al, 25

521

72.12. EXERCISE 2.12 CHAPTER 72. LEVEL 2
ja SHORT $LN3@f
movsx r8d, dl
mov eax, 1321528399 ; 4ec4ec4fH
sub r8d, 84 ; 00000054H
imul r8d
sar edx, 3
mov eax, edx
shr eax, 31
add edx, eax
imul edx, 26
sub r8d, edx
add r8b, 97 ; 00000061H
jmp SHORT $LN14@f

$LN3@f:
lea eax, DWORD PTR [rdx-65]
cmp al, 25
ja SHORT $LN1@f
movsx r8d, dl
mov eax, 1321528399 ; 4ec4ec4fH
sub r8d, 52 ; 00000034H
imul r8d
sar edx, 3
mov eax, edx
shr eax, 31
add edx, eax
imul edx, 26
sub r8d, edx
add r8b, 65 ; 00000041H

$LN14@f:
mov BYTE PTR [rcx], r8b

$LN1@f:
inc rcx
cmp BYTE PTR [rcx], 0
jne SHORT $LL5@f

$LN13@f:
mov rax, r9
ret 0

f ENDP

72.12.2 Keil (ARM)

f PROC
PUSH {r4-r6,lr}
MOV r4,r0
MOV r5,r0
B |L0.84|

|L0.16|
SUB r1,r0,#0x61
CMP r1,#0x19
BHI |L0.48|
SUB r0,r0,#0x54
MOV r1,#0x1a
BL __aeabi_idivmod
ADD r0,r1,#0x61
B |L0.76|

|L0.48|
SUB r1,r0,#0x41
CMP r1,#0x19
BHI |L0.80|
SUB r0,r0,#0x34

522

72.13. EXERCISE 2.13 CHAPTER 72. LEVEL 2
MOV r1,#0x1a
BL __aeabi_idivmod
ADD r0,r1,#0x41

|L0.76|
STRB r0,[r4,#0]

|L0.80|
ADD r4,r4,#1

|L0.84|
LDRB r0,[r4,#0]
CMP r0,#0
MOVEQ r0,r5
BNE |L0.16|
POP {r4-r6,pc}
ENDP

72.12.3 Keil (thumb)

f PROC
PUSH {r4-r6,lr}
MOVS r4,r0
MOVS r5,r0
B |L0.50|

|L0.8|
MOVS r1,r0
SUBS r1,r1,#0x61
CMP r1,#0x19
BHI |L0.28|
SUBS r0,r0,#0x54
MOVS r1,#0x1a
BL __aeabi_idivmod
ADDS r1,r1,#0x61
B |L0.46|

|L0.28|
MOVS r1,r0
SUBS r1,r1,#0x41
CMP r1,#0x19
BHI |L0.48|
SUBS r0,r0,#0x34
MOVS r1,#0x1a
BL __aeabi_idivmod
ADDS r1,r1,#0x41

|L0.46|
STRB r1,[r4,#0]

|L0.48|
ADDS r4,r4,#1

|L0.50|
LDRB r0,[r4,#0]
CMP r0,#0
BNE |L0.8|
MOVS r0,r5
POP {r4-r6,pc}
ENDP

72.13 Exercise 2.13
This is a well-known cryptoalgorithm of the past. How it’s called?

523

72.14. EXERCISE 2.14 CHAPTER 72. LEVEL 2
72.13.1 MSVC 2012 + /Ox

_in$ = 8 ; size = 2
_f PROC

movzx ecx, WORD PTR _in$[esp-4]
lea eax, DWORD PTR [ecx*4]
xor eax, ecx
add eax, eax
xor eax, ecx
shl eax, 2
xor eax, ecx
and eax, 32 ; 00000020H
shl eax, 10 ; 0000000aH
shr ecx, 1
or eax, ecx
ret 0

_f ENDP

72.13.2 Keil (ARM)

f PROC
EOR r1,r0,r0,LSR #2
EOR r1,r1,r0,LSR #3
EOR r1,r1,r0,LSR #5
AND r1,r1,#1
LSR r0,r0,#1
ORR r0,r0,r1,LSL #15
BX lr
ENDP

72.13.3 Keil (thumb)

f PROC
LSRS r1,r0,#2
EORS r1,r1,r0
LSRS r2,r0,#3
EORS r1,r1,r2
LSRS r2,r0,#5
EORS r1,r1,r2
LSLS r1,r1,#31
LSRS r0,r0,#1
LSRS r1,r1,#16
ORRS r0,r0,r1
BX lr
ENDP

72.14 Exercise 2.14

Another well-known algorithm. The function takes two variables and returning one.

72.14.1 MSVC 2012

_rt$1 = -4 ; size = 4
_rt$2 = 8 ; size = 4
_x$ = 8 ; size = 4
_y$ = 12 ; size = 4

524

72.14. EXERCISE 2.14 CHAPTER 72. LEVEL 2
?f@@YAIII@Z PROC ; f

push ecx
push esi
mov esi, DWORD PTR _x$[esp+4]
test esi, esi
jne SHORT $LN7@f
mov eax, DWORD PTR _y$[esp+4]
pop esi
pop ecx
ret 0

$LN7@f:
mov edx, DWORD PTR _y$[esp+4]
mov eax, esi
test edx, edx
je SHORT $LN8@f
or eax, edx
push edi
bsf edi, eax
bsf eax, esi
mov ecx, eax
mov DWORD PTR _rt$1[esp+12], eax
bsf eax, edx
shr esi, cl
mov ecx, eax
shr edx, cl
mov DWORD PTR _rt$2[esp+8], eax
cmp esi, edx
je SHORT $LN22@f

$LN23@f:
jbe SHORT $LN2@f
xor esi, edx
xor edx, esi
xor esi, edx

$LN2@f:
cmp esi, 1
je SHORT $LN22@f
sub edx, esi
bsf eax, edx
mov ecx, eax
shr edx, cl
mov DWORD PTR _rt$2[esp+8], eax
cmp esi, edx
jne SHORT $LN23@f

$LN22@f:
mov ecx, edi
shl esi, cl
pop edi
mov eax, esi

$LN8@f:
pop esi
pop ecx
ret 0

?f@@YAIII@Z ENDP

72.14.2 Keil (ARMmode)

||f1|| PROC
CMP r0,#0
RSB r1,r0,#0
AND r0,r0,r1

525

72.14. EXERCISE 2.14 CHAPTER 72. LEVEL 2
CLZ r0,r0
RSBNE r0,r0,#0x1f
BX lr
ENDP

f PROC
MOVS r2,r0
MOV r3,r1
MOVEQ r0,r1
CMPNE r3,#0
PUSH {lr}
POPEQ {pc}
ORR r0,r2,r3
BL ||f1||
MOV r12,r0
MOV r0,r2
BL ||f1||
LSR r2,r2,r0

|L0.196|
MOV r0,r3
BL ||f1||
LSR r0,r3,r0
CMP r2,r0
EORHI r1,r2,r0
EORHI r0,r0,r1
EORHI r2,r1,r0
BEQ |L0.240|
CMP r2,#1
SUBNE r3,r0,r2
BNE |L0.196|

|L0.240|
LSL r0,r2,r12
POP {pc}
ENDP

72.14.3 GCC 4.6.3 for Raspberry Pi (ARMmode)

f:
subs r3, r0, #0
beq .L162
cmp r1, #0
moveq r1, r3
beq .L162
orr r2, r1, r3
rsb ip, r2, #0
and ip, ip, r2
cmp r2, #0
rsb r2, r3, #0
and r2, r2, r3
clz r2, r2
rsb r2, r2, #31
clz ip, ip
rsbne ip, ip, #31
mov r3, r3, lsr r2
b .L169

.L171:
eorhi r1, r1, r2
eorhi r3, r1, r2
cmp r3, #1
rsb r1, r3, r1

526

72.15. EXERCISE 2.15 CHAPTER 72. LEVEL 2
beq .L167

.L169:
rsb r0, r1, #0
and r0, r0, r1
cmp r1, #0
clz r0, r0
mov r2, r0
rsbne r2, r0, #31
mov r1, r1, lsr r2
cmp r3, r1
eor r2, r1, r3
bne .L171

.L167:
mov r1, r3, asl ip

.L162:
mov r0, r1
bx lr

72.15 Exercise 2.15

Well-known algorithm again. What it does?
Take also notice that the code for x86 uses FPU, but SIMD-instructions are used instead in x64 code. That’s OK: 24.

72.15.1 MSVC 2012 x64 /Ox

__real@412e848000000000 DQ 0412e848000000000r ; 1e+006
__real@4010000000000000 DQ 04010000000000000r ; 4
__real@4008000000000000 DQ 04008000000000000r ; 3
__real@3f800000 DD 03f800000r ; 1

tmp$1 = 8
tmp$2 = 8
f PROC

movsdx xmm3, QWORD PTR __real@4008000000000000
movss xmm4, DWORD PTR __real@3f800000
mov edx, DWORD PTR ?RNG_state@?1??get_rand@@9@9
xor ecx, ecx
mov r8d, 200000 ; 00030d40H
npad 2

$LL4@f:
imul edx, 1664525 ; 0019660dH
add edx, 1013904223 ; 3c6ef35fH
mov eax, edx
and eax, 8388607 ; 007fffffH
imul edx, 1664525 ; 0019660dH
bts eax, 30
add edx, 1013904223 ; 3c6ef35fH
mov DWORD PTR tmp$2[rsp], eax
mov eax, edx
and eax, 8388607 ; 007fffffH
bts eax, 30
movss xmm0, DWORD PTR tmp$2[rsp]
mov DWORD PTR tmp$1[rsp], eax
cvtps2pd xmm0, xmm0
subsd xmm0, xmm3
cvtpd2ps xmm2, xmm0
movss xmm0, DWORD PTR tmp$1[rsp]
cvtps2pd xmm0, xmm0
mulss xmm2, xmm2

527

72.15. EXERCISE 2.15 CHAPTER 72. LEVEL 2
subsd xmm0, xmm3
cvtpd2ps xmm1, xmm0
mulss xmm1, xmm1
addss xmm1, xmm2
comiss xmm4, xmm1
jbe SHORT $LN3@f
inc ecx

$LN3@f:
imul edx, 1664525 ; 0019660dH
add edx, 1013904223 ; 3c6ef35fH
mov eax, edx
and eax, 8388607 ; 007fffffH
imul edx, 1664525 ; 0019660dH
bts eax, 30
add edx, 1013904223 ; 3c6ef35fH
mov DWORD PTR tmp$2[rsp], eax
mov eax, edx
and eax, 8388607 ; 007fffffH
bts eax, 30
movss xmm0, DWORD PTR tmp$2[rsp]
mov DWORD PTR tmp$1[rsp], eax
cvtps2pd xmm0, xmm0
subsd xmm0, xmm3
cvtpd2ps xmm2, xmm0
movss xmm0, DWORD PTR tmp$1[rsp]
cvtps2pd xmm0, xmm0
mulss xmm2, xmm2
subsd xmm0, xmm3
cvtpd2ps xmm1, xmm0
mulss xmm1, xmm1
addss xmm1, xmm2
comiss xmm4, xmm1
jbe SHORT $LN15@f
inc ecx

$LN15@f:
imul edx, 1664525 ; 0019660dH
add edx, 1013904223 ; 3c6ef35fH
mov eax, edx
and eax, 8388607 ; 007fffffH
imul edx, 1664525 ; 0019660dH
bts eax, 30
add edx, 1013904223 ; 3c6ef35fH
mov DWORD PTR tmp$2[rsp], eax
mov eax, edx
and eax, 8388607 ; 007fffffH
bts eax, 30
movss xmm0, DWORD PTR tmp$2[rsp]
mov DWORD PTR tmp$1[rsp], eax
cvtps2pd xmm0, xmm0
subsd xmm0, xmm3
cvtpd2ps xmm2, xmm0
movss xmm0, DWORD PTR tmp$1[rsp]
cvtps2pd xmm0, xmm0
mulss xmm2, xmm2
subsd xmm0, xmm3
cvtpd2ps xmm1, xmm0
mulss xmm1, xmm1
addss xmm1, xmm2
comiss xmm4, xmm1
jbe SHORT $LN16@f
inc ecx

528

72.15. EXERCISE 2.15 CHAPTER 72. LEVEL 2
$LN16@f:

imul edx, 1664525 ; 0019660dH
add edx, 1013904223 ; 3c6ef35fH
mov eax, edx
and eax, 8388607 ; 007fffffH
imul edx, 1664525 ; 0019660dH
bts eax, 30
add edx, 1013904223 ; 3c6ef35fH
mov DWORD PTR tmp$2[rsp], eax
mov eax, edx
and eax, 8388607 ; 007fffffH
bts eax, 30
movss xmm0, DWORD PTR tmp$2[rsp]
mov DWORD PTR tmp$1[rsp], eax
cvtps2pd xmm0, xmm0
subsd xmm0, xmm3
cvtpd2ps xmm2, xmm0
movss xmm0, DWORD PTR tmp$1[rsp]
cvtps2pd xmm0, xmm0
mulss xmm2, xmm2
subsd xmm0, xmm3
cvtpd2ps xmm1, xmm0
mulss xmm1, xmm1
addss xmm1, xmm2
comiss xmm4, xmm1
jbe SHORT $LN17@f
inc ecx

$LN17@f:
imul edx, 1664525 ; 0019660dH
add edx, 1013904223 ; 3c6ef35fH
mov eax, edx
and eax, 8388607 ; 007fffffH
imul edx, 1664525 ; 0019660dH
bts eax, 30
add edx, 1013904223 ; 3c6ef35fH
mov DWORD PTR tmp$2[rsp], eax
mov eax, edx
and eax, 8388607 ; 007fffffH
bts eax, 30
movss xmm0, DWORD PTR tmp$2[rsp]
mov DWORD PTR tmp$1[rsp], eax
cvtps2pd xmm0, xmm0
subsd xmm0, xmm3
cvtpd2ps xmm2, xmm0
movss xmm0, DWORD PTR tmp$1[rsp]
cvtps2pd xmm0, xmm0
mulss xmm2, xmm2
subsd xmm0, xmm3
cvtpd2ps xmm1, xmm0
mulss xmm1, xmm1
addss xmm1, xmm2
comiss xmm4, xmm1
jbe SHORT $LN18@f
inc ecx

$LN18@f:
dec r8
jne $LL4@f
movd xmm0, ecx
mov DWORD PTR ?RNG_state@?1??get_rand@@9@9, edx
cvtdq2ps xmm0, xmm0
cvtps2pd xmm1, xmm0

529

72.15. EXERCISE 2.15 CHAPTER 72. LEVEL 2
mulsd xmm1, QWORD PTR __real@4010000000000000
divsd xmm1, QWORD PTR __real@412e848000000000
cvtpd2ps xmm0, xmm1
ret 0

f ENDP

72.15.2 GCC 4.4.6 -O3 x64

f1:
mov eax, DWORD PTR v1.2084[rip]
imul eax, eax, 1664525
add eax, 1013904223
mov DWORD PTR v1.2084[rip], eax
and eax, 8388607
or eax, 1073741824
mov DWORD PTR [rsp-4], eax
movss xmm0, DWORD PTR [rsp-4]
subss xmm0, DWORD PTR .LC0[rip]
ret

f:
push rbp
xor ebp, ebp
push rbx
xor ebx, ebx
sub rsp, 16

.L6:
xor eax, eax
call f1
xor eax, eax
movss DWORD PTR [rsp], xmm0
call f1
movss xmm1, DWORD PTR [rsp]
mulss xmm0, xmm0
mulss xmm1, xmm1
lea eax, [rbx+1]
addss xmm1, xmm0
movss xmm0, DWORD PTR .LC1[rip]
ucomiss xmm0, xmm1
cmova ebx, eax
add ebp, 1
cmp ebp, 1000000
jne .L6
cvtsi2ss xmm0, ebx
unpcklps xmm0, xmm0
cvtps2pd xmm0, xmm0
mulsd xmm0, QWORD PTR .LC2[rip]
divsd xmm0, QWORD PTR .LC3[rip]
add rsp, 16
pop rbx
pop rbp
unpcklpd xmm0, xmm0
cvtpd2ps xmm0, xmm0
ret

v1.2084:
.long 305419896

.LC0:
.long 1077936128

.LC1:
.long 1065353216

.LC2:

530

72.15. EXERCISE 2.15 CHAPTER 72. LEVEL 2
.long 0
.long 1074790400

.LC3:
.long 0
.long 1093567616

72.15.3 GCC 4.8.1 -O3 x86

f1:
sub esp, 4
imul eax, DWORD PTR v1.2023, 1664525
add eax, 1013904223
mov DWORD PTR v1.2023, eax
and eax, 8388607
or eax, 1073741824
mov DWORD PTR [esp], eax
fld DWORD PTR [esp]
fsub DWORD PTR .LC0
add esp, 4
ret

f:
push esi
mov esi, 1000000
push ebx
xor ebx, ebx
sub esp, 16

.L7:
call f1
fstp DWORD PTR [esp]
call f1
lea eax, [ebx+1]
fld DWORD PTR [esp]
fmul st, st(0)
fxch st(1)
fmul st, st(0)
faddp st(1), st
fld1
fucomip st, st(1)
fstp st(0)
cmova ebx, eax
sub esi, 1
jne .L7
mov DWORD PTR [esp+4], ebx
fild DWORD PTR [esp+4]
fmul DWORD PTR .LC3
fdiv DWORD PTR .LC4
fstp DWORD PTR [esp+8]
fld DWORD PTR [esp+8]
add esp, 16
pop ebx
pop esi
ret

v1.2023:
.long 305419896

.LC0:
.long 1077936128

.LC3:
.long 1082130432

.LC4:

531

72.15. EXERCISE 2.15 CHAPTER 72. LEVEL 2
.long 1232348160

72.15.4 Keil (ARMmode): Cortex-R4F CPU as target

f1 PROC
LDR r1,|L0.184|
LDR r0,[r1,#0] ; v1
LDR r2,|L0.188|
VMOV.F32 s1,#3.00000000
MUL r0,r0,r2
LDR r2,|L0.192|
ADD r0,r0,r2
STR r0,[r1,#0] ; v1
BFC r0,#23,#9
ORR r0,r0,#0x40000000
VMOV s0,r0
VSUB.F32 s0,s0,s1
BX lr
ENDP

f PROC
PUSH {r4,r5,lr}
MOV r4,#0
LDR r5,|L0.196|
MOV r3,r4

|L0.68|
BL f1
VMOV.F32 s2,s0
BL f1
VMOV.F32 s1,s2
ADD r3,r3,#1
VMUL.F32 s1,s1,s1
VMLA.F32 s1,s0,s0
VMOV r0,s1
CMP r0,#0x3f800000
ADDLT r4,r4,#1
CMP r3,r5
BLT |L0.68|
VMOV s0,r4
VMOV.F64 d1,#4.00000000
VCVT.F32.S32 s0,s0
VCVT.F64.F32 d0,s0
VMUL.F64 d0,d0,d1
VLDR d1,|L0.200|
VDIV.F64 d2,d0,d1
VCVT.F32.F64 s0,d2
POP {r4,r5,pc}
ENDP

|L0.184|
DCD ||.data||

|L0.188|
DCD 0x0019660d

|L0.192|
DCD 0x3c6ef35f

|L0.196|
DCD 0x000f4240

|L0.200|
DCFD 0x412e848000000000 ; 1000000

532

72.16. EXERCISE 2.16 CHAPTER 72. LEVEL 2
DCD 0x00000000
AREA ||.data||, DATA, ALIGN=2

v1
DCD 0x12345678

72.16 Exercise 2.16
Well-known function. What it computes? Why stack overflows if 4 and 2 are supplied at input? Are there any error?

72.16.1 MSVC 2012 x64 /Ox

m$ = 48
n$ = 56
f PROC
$LN14:

push rbx
sub rsp, 32
mov eax, edx
mov ebx, ecx
test ecx, ecx
je SHORT $LN11@f

$LL5@f:
test eax, eax
jne SHORT $LN1@f
mov eax, 1
jmp SHORT $LN12@f

$LN1@f:
lea edx, DWORD PTR [rax-1]
mov ecx, ebx
call f

$LN12@f:
dec ebx
test ebx, ebx
jne SHORT $LL5@f

$LN11@f:
inc eax
add rsp, 32
pop rbx
ret 0

f ENDP

72.16.2 Keil (ARM) -O3

f PROC
PUSH {r4,lr}
MOVS r4,r0
ADDEQ r0,r1,#1
POPEQ {r4,pc}
CMP r1,#0
MOVEQ r1,#1
SUBEQ r0,r0,#1
BEQ |L0.48|
SUB r1,r1,#1
BL f
MOV r1,r0
SUB r0,r4,#1

|L0.48|

533

72.17. EXERCISE 2.17 CHAPTER 72. LEVEL 2
POP {r4,lr}
B f
ENDP

72.16.3 Keil (thumb) -O3

f PROC
PUSH {r4,lr}
MOVS r4,r0
BEQ |L0.26|
CMP r1,#0
BEQ |L0.30|
SUBS r1,r1,#1
BL f
MOVS r1,r0

|L0.18|
SUBS r0,r4,#1
BL f
POP {r4,pc}

|L0.26|
ADDS r0,r1,#1
POP {r4,pc}

|L0.30|
MOVS r1,#1
B |L0.18|
ENDP

72.17 Exercise 2.17

This program prints some information to stdout, each time di�erent. What is it?
Compiled binaries:

∙ Linux x64

∙ MacOSX x64

∙ Win32

∙ Win64

As of Windows versions, you may need to install MSVC 2012 redist.

534

http://yurichev.com/RE-exercises/2/17/17_Linux_x64.tar
http://yurichev.com/RE-exercises/2/17/17_MacOSX_x64.tar
http://yurichev.com/RE-exercises/2/17/17_win32.exe
http://yurichev.com/RE-exercises/2/17/17_win64.exe
http://www.microsoft.com/en-us/download/details.aspx?id=30679

CHAPTER 73. LEVEL 3

Chapter 73

Level 3

For solving level 3 tasks, you’ll probably need considerable ammount of time, maybe up to one day.

73.1 Exercise 3.1
Well-known algorithm, also included in standard C library. Source code was taken from glibc 2.11.1. Compiled in GCC 4.4.1
with -Osoption (code size optimization). Listingwas doneby IDA 4.9 disassembler fromELF-file generated byGCCand linker.

For those who wants use IDA while learning, here you may find .elf and .idb files, .idb can be opened with freeware IDA
4.9:

http://yurichev.com/RE-exercises/3/1/

f proc near

var_150 = dword ptr -150h
var_14C = dword ptr -14Ch
var_13C = dword ptr -13Ch
var_138 = dword ptr -138h
var_134 = dword ptr -134h
var_130 = dword ptr -130h
var_128 = dword ptr -128h
var_124 = dword ptr -124h
var_120 = dword ptr -120h
var_11C = dword ptr -11Ch
var_118 = dword ptr -118h
var_114 = dword ptr -114h
var_110 = dword ptr -110h
var_C = dword ptr -0Ch
arg_0 = dword ptr 8
arg_4 = dword ptr 0Ch
arg_8 = dword ptr 10h
arg_C = dword ptr 14h
arg_10 = dword ptr 18h

push ebp
mov ebp, esp
push edi
push esi
push ebx
sub esp, 14Ch
mov ebx, [ebp+arg_8]
cmp [ebp+arg_4], 0
jz loc_804877D
cmp [ebp+arg_4], 4
lea eax, ds:0[ebx*4]
mov [ebp+var_130], eax
jbe loc_804864C
mov eax, [ebp+arg_4]

535

http://yurichev.com/RE-exercises/3/1/

73.1. EXERCISE 3.1 CHAPTER 73. LEVEL 3
mov ecx, ebx
mov esi, [ebp+arg_0]
lea edx, [ebp+var_110]
neg ecx
mov [ebp+var_118], 0
mov [ebp+var_114], 0
dec eax
imul eax, ebx
add eax, [ebp+arg_0]
mov [ebp+var_11C], edx
mov [ebp+var_134], ecx
mov [ebp+var_124], eax
lea eax, [ebp+var_118]
mov [ebp+var_14C], eax
mov [ebp+var_120], ebx

loc_8048433: ; CODE XREF: f+28C
mov eax, [ebp+var_124]
xor edx, edx
push edi
push [ebp+arg_10]
sub eax, esi
div [ebp+var_120]
push esi
shr eax, 1
imul eax, [ebp+var_120]
lea edx, [esi+eax]
push edx
mov [ebp+var_138], edx
call [ebp+arg_C]
add esp, 10h
mov edx, [ebp+var_138]
test eax, eax
jns short loc_8048482
xor eax, eax

loc_804846D: ; CODE XREF: f+CC
mov cl, [edx+eax]
mov bl, [esi+eax]
mov [edx+eax], bl
mov [esi+eax], cl
inc eax
cmp [ebp+var_120], eax
jnz short loc_804846D

loc_8048482: ; CODE XREF: f+B5
push ebx
push [ebp+arg_10]
mov [ebp+var_138], edx
push edx
push [ebp+var_124]
call [ebp+arg_C]
mov edx, [ebp+var_138]
add esp, 10h
test eax, eax
jns short loc_80484F6
mov ecx, [ebp+var_124]
xor eax, eax

loc_80484AB: ; CODE XREF: f+10D
movzx edi, byte ptr [edx+eax]

536

73.1. EXERCISE 3.1 CHAPTER 73. LEVEL 3
mov bl, [ecx+eax]
mov [edx+eax], bl
mov ebx, edi
mov [ecx+eax], bl
inc eax
cmp [ebp+var_120], eax
jnz short loc_80484AB
push ecx
push [ebp+arg_10]
mov [ebp+var_138], edx
push esi
push edx
call [ebp+arg_C]
add esp, 10h
mov edx, [ebp+var_138]
test eax, eax
jns short loc_80484F6
xor eax, eax

loc_80484E1: ; CODE XREF: f+140
mov cl, [edx+eax]
mov bl, [esi+eax]
mov [edx+eax], bl
mov [esi+eax], cl
inc eax
cmp [ebp+var_120], eax
jnz short loc_80484E1

loc_80484F6: ; CODE XREF: f+ED
; f+129

mov eax, [ebp+var_120]
mov edi, [ebp+var_124]
add edi, [ebp+var_134]
lea ebx, [esi+eax]
jmp short loc_8048513

; ---

loc_804850D: ; CODE XREF: f+17B
add ebx, [ebp+var_120]

loc_8048513: ; CODE XREF: f+157
; f+1F9

push eax
push [ebp+arg_10]
mov [ebp+var_138], edx
push edx
push ebx
call [ebp+arg_C]
add esp, 10h
mov edx, [ebp+var_138]
test eax, eax
jns short loc_8048537
jmp short loc_804850D

; ---

loc_8048531: ; CODE XREF: f+19D
add edi, [ebp+var_134]

loc_8048537: ; CODE XREF: f+179
push ecx
push [ebp+arg_10]

537

73.1. EXERCISE 3.1 CHAPTER 73. LEVEL 3
mov [ebp+var_138], edx
push edi
push edx
call [ebp+arg_C]
add esp, 10h
mov edx, [ebp+var_138]
test eax, eax
js short loc_8048531
cmp ebx, edi
jnb short loc_8048596
xor eax, eax
mov [ebp+var_128], edx

loc_804855F: ; CODE XREF: f+1BE
mov cl, [ebx+eax]
mov dl, [edi+eax]
mov [ebx+eax], dl
mov [edi+eax], cl
inc eax
cmp [ebp+var_120], eax
jnz short loc_804855F
mov edx, [ebp+var_128]
cmp edx, ebx
jnz short loc_8048582
mov edx, edi
jmp short loc_8048588

; ---

loc_8048582: ; CODE XREF: f+1C8
cmp edx, edi
jnz short loc_8048588
mov edx, ebx

loc_8048588: ; CODE XREF: f+1CC
; f+1D0

add ebx, [ebp+var_120]
add edi, [ebp+var_134]
jmp short loc_80485AB

; ---

loc_8048596: ; CODE XREF: f+1A1
jnz short loc_80485AB
mov ecx, [ebp+var_134]
mov eax, [ebp+var_120]
lea edi, [ebx+ecx]
add ebx, eax
jmp short loc_80485B3

; ---

loc_80485AB: ; CODE XREF: f+1E0
; f:loc_8048596

cmp ebx, edi
jbe loc_8048513

loc_80485B3: ; CODE XREF: f+1F5
mov eax, edi
sub eax, esi
cmp eax, [ebp+var_130]
ja short loc_80485EB
mov eax, [ebp+var_124]
mov esi, ebx

538

73.1. EXERCISE 3.1 CHAPTER 73. LEVEL 3
sub eax, ebx
cmp eax, [ebp+var_130]
ja short loc_8048634
sub [ebp+var_11C], 8
mov edx, [ebp+var_11C]
mov ecx, [edx+4]
mov esi, [edx]
mov [ebp+var_124], ecx
jmp short loc_8048634

; ---

loc_80485EB: ; CODE XREF: f+209
mov edx, [ebp+var_124]
sub edx, ebx
cmp edx, [ebp+var_130]
jbe short loc_804862E
cmp eax, edx
mov edx, [ebp+var_11C]
lea eax, [edx+8]
jle short loc_8048617
mov [edx], esi
mov esi, ebx
mov [edx+4], edi
mov [ebp+var_11C], eax
jmp short loc_8048634

; ---

loc_8048617: ; CODE XREF: f+252
mov ecx, [ebp+var_11C]
mov [ebp+var_11C], eax
mov [ecx], ebx
mov ebx, [ebp+var_124]
mov [ecx+4], ebx

loc_804862E: ; CODE XREF: f+245
mov [ebp+var_124], edi

loc_8048634: ; CODE XREF: f+21B
; f+235 ...

mov eax, [ebp+var_14C]
cmp [ebp+var_11C], eax
ja loc_8048433
mov ebx, [ebp+var_120]

loc_804864C: ; CODE XREF: f+2A
mov eax, [ebp+arg_4]
mov ecx, [ebp+arg_0]
add ecx, [ebp+var_130]
dec eax
imul eax, ebx
add eax, [ebp+arg_0]
cmp ecx, eax
mov [ebp+var_120], eax
jbe short loc_804866B
mov ecx, eax

loc_804866B: ; CODE XREF: f+2B3
mov esi, [ebp+arg_0]
mov edi, [ebp+arg_0]
add esi, ebx
mov edx, esi

539

73.1. EXERCISE 3.1 CHAPTER 73. LEVEL 3
jmp short loc_80486A3

; ---

loc_8048677: ; CODE XREF: f+2F1
push eax
push [ebp+arg_10]
mov [ebp+var_138], edx
mov [ebp+var_13C], ecx
push edi
push edx
call [ebp+arg_C]
add esp, 10h
mov edx, [ebp+var_138]
mov ecx, [ebp+var_13C]
test eax, eax
jns short loc_80486A1
mov edi, edx

loc_80486A1: ; CODE XREF: f+2E9
add edx, ebx

loc_80486A3: ; CODE XREF: f+2C1
cmp edx, ecx
jbe short loc_8048677
cmp edi, [ebp+arg_0]
jz loc_8048762
xor eax, eax

loc_80486B2: ; CODE XREF: f+313
mov ecx, [ebp+arg_0]
mov dl, [edi+eax]
mov cl, [ecx+eax]
mov [edi+eax], cl
mov ecx, [ebp+arg_0]
mov [ecx+eax], dl
inc eax
cmp ebx, eax
jnz short loc_80486B2
jmp loc_8048762

; ---

loc_80486CE: ; CODE XREF: f+3C3
lea edx, [esi+edi]
jmp short loc_80486D5

; ---

loc_80486D3: ; CODE XREF: f+33B
add edx, edi

loc_80486D5: ; CODE XREF: f+31D
push eax
push [ebp+arg_10]
mov [ebp+var_138], edx
push edx
push esi
call [ebp+arg_C]
add esp, 10h
mov edx, [ebp+var_138]
test eax, eax
js short loc_80486D3
add edx, ebx

540

73.1. EXERCISE 3.1 CHAPTER 73. LEVEL 3
cmp edx, esi
mov [ebp+var_124], edx
jz short loc_804876F
mov edx, [ebp+var_134]
lea eax, [esi+ebx]
add edx, eax
mov [ebp+var_11C], edx
jmp short loc_804875B

; ---

loc_8048710: ; CODE XREF: f+3AA
mov cl, [eax]
mov edx, [ebp+var_11C]
mov [ebp+var_150], eax
mov byte ptr [ebp+var_130], cl
mov ecx, eax
jmp short loc_8048733

; ---

loc_8048728: ; CODE XREF: f+391
mov al, [edx+ebx]
mov [ecx], al
mov ecx, [ebp+var_128]

loc_8048733: ; CODE XREF: f+372
mov [ebp+var_128], edx
add edx, edi
mov eax, edx
sub eax, edi
cmp [ebp+var_124], eax
jbe short loc_8048728
mov dl, byte ptr [ebp+var_130]
mov eax, [ebp+var_150]
mov [ecx], dl
dec [ebp+var_11C]

loc_804875B: ; CODE XREF: f+35A
dec eax
cmp eax, esi
jnb short loc_8048710
jmp short loc_804876F

; ---

loc_8048762: ; CODE XREF: f+2F6
; f+315

mov edi, ebx
neg edi
lea ecx, [edi-1]
mov [ebp+var_134], ecx

loc_804876F: ; CODE XREF: f+347
; f+3AC

add esi, ebx
cmp esi, [ebp+var_120]
jbe loc_80486CE

loc_804877D: ; CODE XREF: f+13
lea esp, [ebp-0Ch]
pop ebx
pop esi
pop edi

541

73.2. EXERCISE 3.2 CHAPTER 73. LEVEL 3
pop ebp
retn

f endp

73.2 Exercise 3.2
There is a small executable file with a well-known cryptosystem inside. Try to identify it.

∙ Windows x86

∙ Linux x86

∙ MacOSX (x64)

73.3 Exercise 3.3
There is a small executable file, some utility. It opens another file, reads it, calculate something and prints a float number.
Try to understand what it do.

∙ Windows x86

∙ Linux x86

∙ MacOSX (x64)

73.4 Exercise 3.4

There is an utility which encrypts/decrypts files, by password. There is an encrypted text file, password is unknown. En-
crypted file is a text in English language. The utility uses relatively strong cryptosystem, nevertheless, it was implemented
with a serious blunder. Since the mistake present, it is possible to decrypt the file with a little e�ort..

Try to find the mistake and decrypt the file.

∙ Windows x86

∙ Text file

73.5 Exercise 3.5

This is so�warecopyprotection imitation,whichuseskey file. Thekey file containuser (or customer)nameandserial number.
There are two tasks:

∙ (Easy) with the help of tracer or any other debugger, force the program to accept changed key file.

∙ (Medium) your goal is to modify user name to another, however, it is not allowed to patch the program.

∙ Windows x86

∙ Linux x86

∙ MacOSX (x64)

∙ Key file

73.6 Exercise 3.6
Here is a very primitive toyweb-server, supporting only static files, without CGI1, etc. At least 4 vulnerabilities are leaved here
intentionally. Try to find them all and exploit them in order for breaking into a remote host.

∙ Windows x86

∙ Linux x86

∙ MacOSX (x64)
1Common Gateway Interface

542

http://yurichev.com/RE-exercises/3/2/unknown_cryptosystem.exe
http://yurichev.com/RE-exercises/3/2/unknown_encryption_linux86.tar
http://yurichev.com/RE-exercises/3/2/unknown_encryption_MacOSX.tar
http://yurichev.com/RE-exercises/3/3/unknown_utility_2_3.exe
http://yurichev.com/RE-exercises/3/3/unknown_utility_2_3_Linux86.tar
http://yurichev.com/RE-exercises/3/3/unknown_utility_2_3_MacOSX.tar
http://yurichev.com/RE-exercises/3/4/amateur_cryptor.exe
http://yurichev.com/RE-exercises/3/4/text_encrypted
http://yurichev.com/RE-exercises/3/5/super_mega_protection.exe
http://yurichev.com/RE-exercises/3/5/super_mega_protection.tar
http://yurichev.com/RE-exercises/3/5/super_mega_protection_MacOSX.tar
http://yurichev.com/RE-exercises/3/5/sample.key
http://yurichev.com/RE-exercises/3/6/webserv_win32.rar
http://yurichev.com/RE-exercises/3/6/webserv_Linux_x86.tar
http://yurichev.com/RE-exercises/3/6/webserv_MacOSX_x64.tar

73.7. EXERCISE 3.7 CHAPTER 73. LEVEL 3
73.7 Exercise 3.7
With the help of tracer or any otherwin32debugger, reveal hiddenmines in theMineSweeper standardWidnows gameduring
play.

Hint: [34] have some insights about MineSweeper’s internals.

543

CHAPTER 74. CRACKME / KEYGENME

Chapter 74

crackme / keygenme

Couple of my keygenmes:
http://crackmes.de/users/yonkie/

544

http://crackmes.de/users/yonkie/

Part XI

Exercise solutions

545

CHAPTER 75. LEVEL 1

Chapter 75

Level 1

75.1 Exercise 1.1
That was a function returning maximal value from two.

546

CHAPTER 76. LEVEL 2

Chapter 76

Level 2

76.1 Exercise 2.1
Solution: toupper().

C source code:

char toupper (char c)
{

if(c >= ’a’ && c <= ’z’) {
c = c - ’a’ + ’A’;

}
return(c);

}

76.2 Exercise 2.2

Solution: atoi()
C source code:

#include <stdio.h>
#include <string.h>
#include <ctype.h>

int atoi (const *p) /* convert ASCII string to integer */
{

int i;
char s;

while(isspace (*p))
++p;

s = *p;
if(s == ’+’ || s == ’-’)

++p;
i = 0;
while(isdigit(*p)) {

i = i * 10 + *p - ’0’;
++p;

}
if(s == ’-’)

i = - i;
return(i);

}

547

76.3. EXERCISE 2.3 CHAPTER 76. LEVEL 2
76.3 Exercise 2.3
Solution: srand() / rand().

C source code:

static unsigned int v;

void srand (unsigned int s)
{

v = s;
}

int rand ()
{

return(((v = v * 214013L
+ 2531011L) >> 16) & 0x7fff);

}

76.4 Exercise 2.4
Solution: strstr().

C source code:

char * strstr (
const char * str1,
const char * str2
)

{
char *cp = (char *) str1;
char *s1, *s2;

if (!*str2)
return((char *)str1);

while (*cp)
{

s1 = cp;
s2 = (char *) str2;

while (*s1 && *s2 && !(*s1-*s2))
s1++, s2++;

if (!*s2)
return(cp);

cp++;
}

return(NULL);

}

76.5 Exercise 2.5
Hint #1: Keep in mind that __v—global variable.

Hint #2: The function is called in CRT startup code, before main() execution.
Solution: early Pentium CPU FDIV bug checking1.
C source code:
1http://en.wikipedia.org/wiki/Pentium_FDIV_bug

548

http://en.wikipedia.org/wiki/Pentium_FDIV_bug

76.6. EXERCISE 2.6 CHAPTER 76. LEVEL 2

unsigned _v; // _v

enum e {
PROB_P5_DIV = 0x0001

};

void f(void) // __verify_pentium_fdiv_bug
{

/*
Verify we have got the Pentium FDIV problem.
The volatiles are to scare the optimizer away.

*/
volatile double v1 = 4195835;
volatile double v2 = 3145727;

if((v1 - (v1/v2)*v2) > 1.0e-8) {
_v |= PROB_P5_DIV;

}
}

76.6 Exercise 2.6

Hint: it might be helpful to google a constant used here.
Solution: TEA2 encryption algorithm.
C source code (taken from http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm):

void f (unsigned int* v, unsigned int* k) {
unsigned int v0=v[0], v1=v[1], sum=0, i; /* set up */
unsigned int delta=0x9e3779b9; /* a key schedule constant */
unsigned int k0=k[0], k1=k[1], k2=k[2], k3=k[3]; /* cache key */
for (i=0; i < 32; i++) { /* basic cycle start */

sum += delta;
v0 += ((v1<<4) + k0) ^ (v1 + sum) ^ ((v1>>5) + k1);
v1 += ((v0<<4) + k2) ^ (v0 + sum) ^ ((v0>>5) + k3);

} /* end cycle */
v[0]=v0; v[1]=v1;

}

76.7 Exercise 2.7

Hint: the table contain pre-calculated values. It is possible to implement the function without it, but it will work slower,
though.

Solution: this function reverse all bits in input 32-bit integer. It is lib/bitrev.c from Linux kernel.
C source code:

const unsigned char byte_rev_table[256] = {
0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,

2Tiny Encryption Algorithm

549

http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm

76.8. EXERCISE 2.8 CHAPTER 76. LEVEL 2
0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,

};

unsigned char bitrev8(unsigned char byte)
{

return byte_rev_table[byte];
}

unsigned short bitrev16(unsigned short x)
{

return (bitrev8(x & 0xff) << 8) | bitrev8(x >> 8);
}

/**
* bitrev32 - reverse the order of bits in a unsigned int value
* @x: value to be bit-reversed
*/

unsigned int bitrev32(unsigned int x)
{

return (bitrev16(x & 0xffff) << 16) | bitrev16(x >> 16);
}

76.8 Exercise 2.8
Solution: two 100*200matrices of double type addition.

C/C++ source code:

#define M 100
#define N 200

void s(double *a, double *b, double *c)
{

for(int i=0;i<N;i++)
for(int j=0;j<M;j++)

*(c+i*M+j)=*(a+i*M+j) + *(b+i*M+j);
};

550

76.9. EXERCISE 2.9 CHAPTER 76. LEVEL 2
76.9 Exercise 2.9
Solution: twomatrices (one is 100*200, second is 100*300) of double type multiplication, result: 100*300matrix.

C/C++ source code:

#define M 100
#define N 200
#define P 300

void m(double *a, double *b, double *c)
{

for(int i=0;i<M;i++)
for(int j=0;j<P;j++)
{

*(c+i*M+j)=0;
for (int k=0;k<N;k++) *(c+i*M+j)+=*(a+i*M+j) * *(b+i*M+j);

}
};

76.10 Exercise 2.11

Hint: Task Manager get CPU/CPU cores count using function call
NtQuerySystemInformation(SystemBasicInformation, ..., ..., ...), it is possible to find that call and to substi-
tute resulting number.

And of course, the Task Manager will show incorrect results in CPU usage history.

76.11 Exercise 2.12

This is a primitive cryptographic algorithm named ROT13, once popular in UseNet andmailing lists 3.
Source code.

76.12 Exercise 2.13

The cryptoalgorithm is linear feedback shi� register 4.
Source code.

76.13 Exercise 2.14

This is algorithm of finding greater common divisor (GCD).
Source code.

76.14 Exercise 2.15

Pi value calculation using Monte-Carlo method.
Source code.

76.15 Exercise 2.16
It is Ackermann function 5.

3https://en.wikipedia.org/wiki/ROT13
4https://en.wikipedia.org/wiki/Linear_feedback_shift_register
5https://en.wikipedia.org/wiki/Ackermann_function

551

http://yurichev.com/RE-exercise-solutions/2/12/ROT13.c
http://yurichev.com/RE-exercise-solutions/2/13/LFSR.c
http://yurichev.com/RE-exercise-solutions/2/14/GCD.c
http://yurichev.com/RE-exercise-solutions/2/15/monte.c
https://en.wikipedia.org/wiki/ROT13
https://en.wikipedia.org/wiki/Linear_feedback_shift_register
https://en.wikipedia.org/wiki/Ackermann_function

76.16. EXERCISE 2.17 CHAPTER 76. LEVEL 2

int ack (int m, int n)
{

if (m==0)
return n+1;

if (n==0)
return ack (m-1, 1);

return ack(m-1, ack (m, n-1));
};

76.16 Exercise 2.17
This is 1D cellular automation working by Rule 110:
https://en.wikipedia.org/wiki/Rule_110.

Source code.

552

https://en.wikipedia.org/wiki/Rule_110
http://yurichev.com/RE-exercise-solutions/2/17/CA.c

CHAPTER 77. LEVEL 3

Chapter 77

Level 3

77.1 Exercise 3.1
Hint #1: The code has one characteristic thing, if considering it, it may help narrowing search of right function among glibc
functions.

Solution: characteristic —is callback-function calling (20), pointer to which is passed in 4th argument. It is quicksort().
C source code.

77.2 Exercise 3.2
Hint: easiest way is to find by values in the tables.

Commented C source code.

77.3 Exercise 3.3
Commented C source code.

77.4 Exercise 3.4

Commented C source code, and also decrypted file.

77.5 Exercise 3.5

Hint: as we can see, the string with user name occupies not the whole file.
Bytes a�er terminated zero till o�set 0x7F are ignored by program.
Commented C source code.

77.6 Exercise 3.6
Commented C source code.

As another exercise, now youmay try to fix all vulnerabilities you found in this web-server.

553

http://yurichev.com/RE-exercise-solutions/3/1/2_1.c
http://yurichev.com/RE-exercise-solutions/3/2/gost.c
http://yurichev.com/RE-exercise-solutions/3/3/entropy.c
http://yurichev.com/RE-exercise-solutions/3/4/
http://yurichev.com/RE-exercise-solutions/3/5/crc16_keyfile_check.c
http://yurichev.com/RE-exercise-solutions/3/6/

A�erword

554

CHAPTER 78. QUESTIONS?

Chapter 78

Questions?

Do not hesitate to mail any questions to the author: <dennis@yurichev.com>
Please, also do not hesitate to send me any corrections (including grammar ones (you see how horrible my English is?)),

etc.

555

Part XII

Appendix

556

CHAPTER 79. COMMON TERMINOLOGY

Chapter 79

Common terminology

word usually is a variable fitting into GPR of CPU. In the computers older than personal, memory size was o�en measured
in words rather then bytes.

557

CHAPTER 80. X86

Chapter 80

x86

80.1 Terminology
Common for 16-bit (8086/80286), 32-bit (80386, etc), 64-bit.

byte 8-bit. DB assembly directive is used for defining array of bytes.

word 16-bit. DW assembly directive —”—.

double word (“dword”) 32-bit. DD assembly directive —”—.

quad word (“qword”) 64-bit. DQ assembly directive —”—.

tbyte (10 bytes) 80-bit or 10 bytes (used for IEEE 754 FPU registers).

paragraph (16 bytes)—term was popular in MS-DOS environment.

Data types of the same width (BYTE, WORD, DWORD) are also the same in Windows API.

80.2 General purpose registers

It is possible to accessmany registers by byte or 16-bit word parts. It is all inheritance from older Intel CPUs (up to 8-bit 8080)
still supported for backward compatibility. For example, this feature is usually not present in RISC CPUs.

Registers prefixed with R- appeared in x86-84, and those prefixed with E- —in 80386. Thus, R-registers are 64-bit, and
E-registers —32-bit.

8 more GPR’s were added in x86-86: R8-R15.
N.B.: In the Intelmanuals byte parts of these registers are prefixed by L, e.g.: R8L, but IDA names these registers by adding

B su�ix, e.g.: R8B.

80.2.1 RAX/EAX/AX/AL
7th (byte number) 6th 5th 4th 3rd 2nd 1st 0th

RAXx64

EAX
AX

AH AL

AKA accumulator. The result of function if usually returned via this register.

80.2.2 RBX/EBX/BX/BL
7th (byte number) 6th 5th 4th 3rd 2nd 1st 0th

RBXx64

EBX
BX

BH BL

558

80.2. GENERAL PURPOSE REGISTERS CHAPTER 80. X86
80.2.3 RCX/ECX/CX/CL

7th (byte number) 6th 5th 4th 3rd 2nd 1st 0th
RCXx64

ECX
CX

CH CL

AKA counter: in this role it is used in REP prefixed instructions and also in shi� instructions (SHL/SHR/RxL/RxR).

80.2.4 RDX/EDX/DX/DL
7th (byte number) 6th 5th 4th 3rd 2nd 1st 0th

RDXx64

EDX
DX

DH DL

80.2.5 RSI/ESI/SI/SIL
7th (byte number) 6th 5th 4th 3rd 2nd 1st 0th

RSIx64

ESI
SI
SILx64

AKA “source”. Used as source in the instructions REP MOVSx, REP CMPSx.

80.2.6 RDI/EDI/DI/DIL
7th (byte number) 6th 5th 4th 3rd 2nd 1st 0th

RDIx64

EDI
DI
DILx64

AKA “destination”. Used as a pointer to destination place in the instructions REP MOVSx, REP STOSx.

80.2.7 R8/R8D/R8W/R8L
7th (byte number) 6th 5th 4th 3rd 2nd 1st 0th

R8
R8D

R8W
R8L

80.2.8 R9/R9D/R9W/R9L
7th (byte number) 6th 5th 4th 3rd 2nd 1st 0th

R9
R9D

R9W
R9L

80.2.9 R10/R10D/R10W/R10L
7th (byte number) 6th 5th 4th 3rd 2nd 1st 0th

R10
R10D

R10W
R10L

559

80.2. GENERAL PURPOSE REGISTERS CHAPTER 80. X86
80.2.10 R11/R11D/R11W/R11L

7th (byte number) 6th 5th 4th 3rd 2nd 1st 0th
R11

R11D
R11W

R11L

80.2.11 R12/R12D/R12W/R12L
7th (byte number) 6th 5th 4th 3rd 2nd 1st 0th

R12
R12D

R12W
R12L

80.2.12 R13/R13D/R13W/R13L
7th (byte number) 6th 5th 4th 3rd 2nd 1st 0th

R13
R13D

R13W
R13L

80.2.13 R14/R14D/R14W/R14L
7th (byte number) 6th 5th 4th 3rd 2nd 1st 0th

R14
R14D

R14W
R14L

80.2.14 R15/R15D/R15W/R15L
7th (byte number) 6th 5th 4th 3rd 2nd 1st 0th

R15
R15D

R15W
R15L

80.2.15 RSP/ESP/SP/SPL
7th (byte number) 6th 5th 4th 3rd 2nd 1st 0th

RSPx64

ESP
SP
SPLx64

AKA stack pointer. Usually points to the current stack except those cases when it is not yet initialized.

80.2.16 RBP/EBP/BP/BPL
7th (byte number) 6th 5th 4th 3rd 2nd 1st 0th

RBPx64

EBP
BP
BPLx64

AKA frame pointer. Usually used for local variables and arguments of function accessing. More about it: (6.2.1).

560

80.2. GENERAL PURPOSE REGISTERS CHAPTER 80. X86
80.2.17 RIP/EIP/IP

7th (byte number) 6th 5th 4th 3rd 2nd 1st 0th
RIPx64

EIP
IP

AKA “instruction pointer” 1. Usually always points to the current instruction. Cannot be modified, however, it is possible
to do (which is equivalent to):

mov eax...
jmp eax

Or:

push val
ret

80.2.18 CS/DS/ES/SS/FS/GS
16-bit registers containing code selector (CS), data selector (DS), stack selector (SS).

FS in win32 points to TLS, GS took this role in Linux. It is done for faster access to the TLS and other structures like TIB.
In the past, these registers were used as segment registers (66).

80.2.19 Flags register

AKA EFLAGS.

Bit (mask) Abbreviation (meaning) Description
0 (1) CF (Carry)

The CLC/STC/CMC instructions are used
for setting/resetting/toggling this flag

2 (4) PF (Parity) (15.3.1).
4 (0x10) AF (Adjust)
6 (0x40) ZF (Zero) Setting to 0

if the last operation’s result was 0.
7 (0x80) SF (Sign)
8 (0x100) TF (Trap) Used for debugging.

If turned on, an exception will be
generated a�er each instruction execution.

9 (0x200) IF (Interrupt enable) Are interrupts enabled.
The CLI/STI instructions are used
for the flag setting/resetting

10 (0x400) DF (Direction) A directions is set for the
REP MOVSx, REP CMPSx, REP LODSx, REP SCASx instructions.
The CLD/STD instructions are used
for the flag setting/resetting

11 (0x800) OF (Overflow)
12, 13 (0x3000) IOPL (I/O privilege level)80286

14 (0x4000) NT (Nested task)80286

16 (0x10000) RF (Resume)80386 Used for debugging.
CPU will ignore hardware breakpoint in DRx
if the flag is set.

17 (0x20000) VM (Virtual 8086 mode)80386

18 (0x40000) AC (Alignment check)80486

19 (0x80000) VIF (Virtual interrupt)Pentium

20 (0x100000) VIP (Virtual interrupt pending)Pentium

21 (0x200000) ID (Identification)Pentium

All the rest flags are reserved.
1Sometimes also called “program counter”

561

80.3. FPU-REGISTERS CHAPTER 80. X86
80.3 FPU-registers
8 80-bit registers working as a stack: ST(0)-ST(7). N.B.: IDA calls ST(0) as just ST. Numbers are stored in the IEEE 754 format.

long double value format:

06263647879

S exponent I mantissa or fraction

(S—sign, I—integer part)

80.3.1 Control Word
Register controlling behaviour of the FPU.

Bit Abbreviation (meaning) Description
0 IM (Invalid operation Mask)
1 DM (Denormalized operand Mask)
2 ZM (Zero divide Mask)
3 OM (Overflow Mask)
4 UM (Underflow Mask)
5 PM (Precision Mask)
7 IEM (Interrupt Enable Mask) Exceptions enabling, 1 by default (disabled)
8, 9 PC (Precision Control)

00 — 24 bits (REAL4)
10 — 53 bits (REAL8)
11 — 64 bits (REAL10)

10, 11 RC (Rounding Control)
00 — (by default) round to nearest
01 — round toward−∞
10 — round toward+∞
11 — round toward 0

12 IC (Infinity Control) 0 — (by default) treat+∞ and−∞ as unsigned
1 — respect both+∞ and−∞

The PM, UM, OM, ZM, DM, IM flags are defining if to generate exception in case of corresponding errors.

80.3.2 Status Word

Read-only register.

Bit Abbreviation (meaning) Description
15 B (Busy) Is FPU do something (1) or results are ready (0)
14 C3
13, 12, 11 TOP points to the currently zeroth register
10 C2
9 C1
8 C0
7 IR (Interrupt Request)
6 SF (Stack Fault)
5 P (Precision)
4 U (Underflow)
3 O (Overflow)
2 Z (Zero)
1 D (Denormalized)
0 I (Invalid operation)

The SF, P, U, O, Z, D, I bits are signaling about exceptions.
About the C3, C2, C1, C0 readmore: (15.3.1).
N.B.: When ST(x) is used, FPU adds 𝑥 to TOP (by modulo 8) and that is how it gets internal register’s number.

562

80.4. SIMD-REGISTERS CHAPTER 80. X86
80.3.3 Tag Word
The register has current information about number’s registers usage.

Bit Abbreviation (meaning)
15, 14 Tag(7)
13, 12 Tag(6)
11, 10 Tag(5)
9, 8 Tag(4)
7, 6 Tag(3)
5, 4 Tag(2)
3, 2 Tag(1)
1, 0 Tag(0)

For each tag:

∙ 00 — The register contains a non-zero value

∙ 01 — The register contains 0

∙ 10 — The register contains a special value (NAN2,∞, or denormal)

∙ 11 — The register is empty

80.4 SIMD-registers

80.4.1 MMX-registers
8 64-bit registers: MM0..MM7.

80.4.2 SSE and AVX-registers
SSE: 8 128-bit registers: XMM0..XMM7. In the x86-64 8 more registers were added: XMM8..XMM15.

AVX is the extension of all these registers to 256 bits.

80.5 Debugging registers

Used for hardware breakpoints control.

∙ DR0— address of breakpoint #1

∙ DR1 — address of breakpoint #2

∙ DR2— address of breakpoint #3

∙ DR3— address of breakpoint #4

∙ DR6— a cause of break is reflected here

∙ DR7 — breakpoint types are set here

80.5.1 DR6
Bit (mask) Description
0 (1) B0 — breakpoint #1 was triggered
1 (2) B1 — breakpoint #2 was triggered
2 (4) B2 — breakpoint #3 was triggered
3 (8) B3 — breakpoint #4 was triggered
13 (0x2000) BD—modification attempt of one of DRx registers.

may be raised if GD is enabled
14 (0x4000) BS — single step breakpoint (TF flag was set in EFLAGS).

Highest priority. Other bits may also be set.
15 (0x8000) BT (task switch flag)

2Not a Number

563

80.6. INSTRUCTIONS CHAPTER 80. X86
N.B. Single step breakpoint is a breakpoint occurring a�er each instruction. It can be enabled by setting TF in EFLAGS

(80.2.19).

80.5.2 DR7

Breakpoint types are set here.

Bit (mask) Description
0 (1) L0 — enable breakpoint #1 for the current task
1 (2) G0 — enable breakpoint #1 for all tasks
2 (4) L1 — enable breakpoint #2 for the current task
3 (8) G1 — enable breakpoint #2 for all tasks
4 (0x10) L2 — enable breakpoint #3 for the current task
5 (0x20) G2 — enable breakpoint #3 for all tasks
6 (0x40) L3 — enable breakpoint #4 for the current task
7 (0x80) G3 — enable breakpoint #4 for all tasks
8 (0x100) LE — not supported since P6
9 (0x200) GE — not supported since P6
13 (0x2000) GD— exception will be raised if any MOV instruction

tries to modify one of DRx registers
16,17 (0x30000) breakpoint #1: R/W— type
18,19 (0xC0000) breakpoint #1: LEN— length
20,21 (0x300000) breakpoint #2: R/W— type
22,23 (0xC00000) breakpoint #2: LEN— length
24,25 (0x3000000) breakpoint #3: R/W— type
26,27 (0xC000000) breakpoint #3: LEN— length
28,29 (0x30000000) breakpoint #4: R/W— type
30,31 (0xC0000000) breakpoint #4: LEN— length

Breakpoint type is to be set as follows (R/W):

∙ 00 — instruction execution

∙ 01 — data writes

∙ 10 — I/O reads or writes (not available in user-mode)

∙ 11 — on data reads or writes

N.B.: breakpoint type for data reads is absent, indeed.

Breakpoint length is to be set as follows (LEN):

∙ 00 — one-byte

∙ 01 — two-byte

∙ 10 — undefined for 32-bit mode, eight-byte in 64-bit mode

∙ 11 — four-byte

80.6 Instructions
Instructionsmarked as (M) are not usually generated by compiler: if you see it, it is probably hand-written piece of assembly
code, or this is compiler intrinsic (62).

Only most frequently used instructions are listed here. Read [14] or [1] for a full documentation.

564

80.6. INSTRUCTIONS CHAPTER 80. X86
80.6.1 Prefixes
LOCK force CPU tomake exclusive access to the RAM inmultiprocessor environment. For the sake of simplification, it can be

said that when instruction with this prefix is executed, all other CPUs in multiprocessor system is stopped. Most o�en
it is used for critical sections, semaphores, mutexes. Commonly used with ADD, AND, BTR, BTS, CMPXCHG, OR, XADD,
XOR. Readmore about critical sections (50.4).

REP usedwithMOVSx and STOSx: execute the instruction in loop, counter is located in the CX/ECX/RCX register. For detailed
description, read more about MOVSx (80.6.2) and STOSx (80.6.2) instructions.

Instructions prefixed by REP are sensitive to DF flag, which is used to set direction.

REPE/REPNE (AKAREPZ/REPNZ)usedwithCMPSxandSCASx: execute the last instruction in loop, count is set in theCX/ECX/RCX
register. It will terminate prematurely if ZF is 0 (REPE) or if ZF is 1 (REPNE).

For detailed description, read more about CMPSx (80.6.3) and SCASx (80.6.2) instructions.

Instructions prefixed by REPE/REPNE are sensitive to DF flag, which is used to set direction.

80.6.2 Most frequently used instructions
These can be memorized in the first place.

ADC (addwith carry) add values, increment result if CF flag is set. o�en used for addition of large values, for example, to add
two 64-bit values in 32-bit environment using two ADD and ADC instructions, for example:

; work with 64-bit values: add val1 to val2.
; .lo mean lowest 32 bits, .hi means highest.
ADD val1.lo, val2.lo
ADC val1.hi, val2.hi ; use CF set or cleared at the previous instruction

Onemore example: 21.

ADD add two values

AND logical “and”

CALL call another function: PUSH address_after_CALL_instruction; JMP label

CMP compare values and set flags, the same as SUB but no results writing

DEC decrement. CF flag is not touched.

IMUL signedmultiply

INC increment. CF flag is not touched.

JCXZ, JECXZ, JRCXZ (M) jump if CX/ECX/RCX=0

JMP jump to another address. Opcode has jump o�set.

Jcc (where cc—condition code)

A lot of instructions has synonyms (denoted with AKA), this was done for convenience. Synonymous instructions are
translating into the same opcode. Opcode has jump o�set.

JAE AKA JNC: jump if above or equal (unsigned): CF=0

JA AKA JNBE: jump if greater (unsigned): CF=0 and ZF=0

JBE jump if lesser or equal (unsigned): CF=1 or ZF=1

JB AKA JC: jump if below (unsigned): CF=1

JC AKA JB: jump if CF=1

JE AKA JZ: jump if equal or zero: ZF=1

JGE jump if greater or equal (signed): SF=OF

JG jump if greater (signed): ZF=0 and SF=OF

JLE jump if lesser or equal (signed): ZF=1 or SF̸=OF

JL jump if lesser (signed): SF̸=OF

565

80.6. INSTRUCTIONS CHAPTER 80. X86
JNAE AKA JC: jump if not above or equal (unsigned) CF=1
JNA jump if not above (unsigned) CF=1 and ZF=1
JNBE jump if not below or equal (unsigned): CF=0 and ZF=0
JNB AKA JNC: jump if not below (unsigned): CF=0
JNC AKA JAE: jump CF=0 synonymous to JNB.
JNE AKA JNZ: jump if not equal or not zero: ZF=0
JNGE jump if not greater or equal (signed): SF̸=OF
JNG jump if not greater (signed): ZF=1 or SF̸=OF
JNLE jump if not lesser (signed): ZF=0 and SF=OF
JNL jump if not lesser (signed): SF=OF
JNO jump if not overflow: OF=0
JNS jump if SF flag is cleared
JNZ AKA JNE: jump if not equal or not zero: ZF=0
JO jump if overflow: OF=1
JPO jump if PF flag is cleared
JP AKA JPE: jump if PF flag is set
JS jump if SF flag is set
JZ AKA JE: jump if equal or zero: ZF=1

LAHF copy some flag bits to AH

LEAVE equivalent of the MOV ESP, EBP and POP EBP instruction pair—in otherwords, this instruction sets the stack pointer
(ESP) back and restores the EBP register to its initial state.

LEA (Load E�ective Address) form address
This instruction was intended not for values summing andmultiplication but for address forming, e.g., for forming ad-
dress of array element by adding array address, element index, with multiplication of element size3.

So, the di�erence between MOV and LEA is that MOV forms memory address and loads value from memory or stores
it there, but LEA just forms an address.

But nevertheless, it is can be used for any other calculations.

LEA is convenient because the computations performing by it is not alter CPU flags.

int f(int a, int b)
{

return a*8+b;
};

Listing 80.1: MSVC 2010 /Ox
_a$ = 8 ; size = 4
_b$ = 12 ; size = 4
_f PROC

mov eax, DWORD PTR _b$[esp-4]
mov ecx, DWORD PTR _a$[esp-4]
lea eax, DWORD PTR [eax+ecx*8]
ret 0

_f ENDP

Intel C++ uses LEA evenmore:

int f1(int a)
{

return a*13;
};

3See also: http://en.wikipedia.org/wiki/Addressing_mode

566

http://en.wikipedia.org/wiki/Addressing_mode

80.6. INSTRUCTIONS CHAPTER 80. X86
Listing 80.2: Intel C++ 2011

_f1 PROC NEAR
mov ecx, DWORD PTR [4+esp] ; ecx = a
lea edx, DWORD PTR [ecx+ecx*8] ; edx = a*9
lea eax, DWORD PTR [edx+ecx*4] ; eax = a*9 + a*4 = a*13
ret

These two instructions instead of one IMUL will perform faster.

MOVSB/MOVSW/MOVSD/MOVSQ copy byte/ 16-bit word/ 32-bit word/ 64-bit word address of which is in the SI/ESI/RSI into
the place address of which is in the DI/EDI/RDI.

Together with REP prefix, it will repeated in loop, count is stored in the CX/ECX/RCX register: it works like memcpy() in
C. If block size is known to compiler on compile stage, memcpy() is o�en inlined into short code fragment using REP
MOVSx, sometimes even as several instructions.

memcpy(EDI, ESI, 15) equivalent is:

; copy 15 bytes from ESI to EDI
CLD ; set direction to "forward"
MOV ECX, 3
REP MOVSD ; copy 12 bytes
MOVSW ; copy 2 more bytes
MOVSB ; copy remaining byte

(Supposedly, it will work faster then copying 15 bytes using just one REP MOVSB).

MOVSX load with sign extension see also: (13.1)

MOVZX load and clear all the rest bits see also: (13.1)

MOV load value. this instruction was named awry resulting confusion (data are notmoved), in other architectures the same
instructions is usually named “LOAD” or something like that.

One important thing: if to set low 16-bit part of 32-bit register in 32-bit mode, high 16 bits will remain as they were. But
if to modify low 32-bit of register in 64-bit mode, high 32 bits of registers will be cleared.

Supposedly, it was done for x86-64 code porting simplification.

MUL unsignedmultiply

NEG negation: 𝑜𝑝 = −𝑜𝑝

NOP NOP. Opcode is 0x90, so it is in fact mean XCHG EAX,EAX idle instruction. This means, x86 do not have dedicated NOP
instruction (as in many RISC). More examples of such operations: (61).

NOP may be generated by compiler for aligning labels on 16-byte boundary. Another very popular usage of NOP is to
replace manually (patch) some instruction like conditional jump to NOP in order to disable its execution.

NOT op1: 𝑜𝑝1 = ¬𝑜𝑝1. logical inversion

OR logical “or”

POP get value from the stack: value=SS:[ESP]; ESP=ESP+4 (or 8)

PUSH push value to stack: ESP=ESP-4 (or 8); SS:[ESP]=value

RET : return from subroutine: POP tmp; JMP tmp.

In fact, RET is a assembly language macro, in Windows and *NIX environment is translating into RETN (“return near”)
or, in MS-DOS times, where memory was addressed di�erently (66), into RETF (“return far”).

RETmay have operand. Its algorithm thenwill be: POP tmp; ADD ESP op1; JMP tmp. RETwith operand usually end
functions with stdcall calling convention, see also: ??.

SAHF copy bits from AH to flags, see also: 15.3.3

SBB (subtraction with borrow) subtract values, decrement result if CF flag is set. o�en used for subtraction of large values,
for example, to subtract two 64-bit values in 32-bit environment using two SUB and SBB instructions, for example:

567

80.6. INSTRUCTIONS CHAPTER 80. X86

; work with 64-bit values: subtract val2 from val1.
; .lo mean lowest 32 bits, .hi means highest.
SUB val1.lo, val2.lo
SBB val1.hi, val2.hi ; use CF set or cleared at the previous instruction

Onemore example: 21.

SCASB/SCASW/SCASD/SCASQ (M) compare byte/ 16-bit word/ 32-bit word/ 64-bit word stored in the AX/EAX/RAX with a
variable address of which is in the DI/EDI/RDI. Set flags as CMP does.
This instruction is o�en used with REPNE prefix: continue to scan a bu�er until a special value stored in AX/EAX/RAX is
found. Hence “NE” in REPNE: continue to scan if compared values are not equal and stop when equal.
It is o�en used as strlen() C standard function, to determine ASCIIZ string length:
Example:

lea edi, string
mov ecx, 0FFFFFFFFh ; scan 2^32-1 bytes, i.e., almost "infinitely"
xor eax, eax ; 0 is the terminator
repne scasb
add edi, 0FFFFFFFFh ; correct it

; now EDI points to the last character of the ASCIIZ string.

; let’s determine string length
; current ECX = -1-strlen

not ecx
dec ecx

; now ECX contain string length

If to use di�erent AX/EAX/RAX value, the functionwill act asmemchr() standard C function, i.e., it will find specific byte.

SHL shi� value le�

SHR shi� value right:

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0CF 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 00 CF

This instruction is frequently used for multiplication and division by 2𝑛. Another very frequent application is bit fields
processing: 17.

SHRD op1, op2, op3: shi� value in op2 right by op3 bits, taking bits from op1.
Example: 21.

STOSB/STOSW/STOSD/STOSQ store byte/ 16-bit word/ 32-bit word/ 64-bit word from AX/EAX/RAX into the place address of
which is in the DI/EDI/RDI.
Together with REP prefix, it will repeated in loop, count is stored in the CX/ECX/RCX register: it works like memset() in
C. If block size is known to compiler on compile stage, memset() is o�en inlined into short code fragment using REP
MOVSx, sometimes even as several instructions.
memset(EDI, 0xAA, 15) equivalent is:

568

80.6. INSTRUCTIONS CHAPTER 80. X86

; store 15 0xAA bytes to EDI
CLD ; set direction to "forward"
MOV EAX, 0AAAAAAAAh
MOV ECX, 3
REP STOSD ; write 12 bytes
STOSW ; write 2 more bytes
STOSB ; write remaining byte

(Supposedly, it will work faster then storing 15 bytes using just one REP STOSB).

SUB subtract values. frequently occurred pattern SUB reg,regmeaning write 0 to reg.

TEST same as AND but without results saving, see also: 17

XCHG exchange values in operands

XOR op1, op2: XOR4 values. 𝑜𝑝1 = 𝑜𝑝1⊕ 𝑜𝑝2. frequently occurred pattern XOR reg,regmeaning write 0 to reg.

80.6.3 Less frequently used instructions

BSF bit scan forward, see also: 22.2

BSR bit scan reverse

BSWAP (byte swap), change value endianness.

BTC bit test and complement

BTR bit test and reset

BTS bit test and set

BT bit test

CBW/CWD/CWDE/CDQ/CDQE Sign-extend value:

CBW : convert byte in AL to word in AX

CWD : convert word in AX to doubleword in DX:AX

CWDE : convert word in AX to doubleword in EAX

CDQ : convert doubleword in EAX to quadword in EDX:EAX

CDQE (x64): convert doubleword in EAX to quadword in RAX

These instructions consider value’s sign, extending it to high part of newly constructed value. See also: 21.4.

CLD clear DF flag.

CLI (M) clear IF flag

CMC (M) toggle CF flag

CMOVcc conditional MOV: load if condition is true The condition codes are the same as in Jcc instructions (80.6.2).

CMPSB/CMPSW/CMPSD/CMPSQ (M) compare byte/ 16-bit word/ 32-bit word/ 64-bit word from the place address of which
is in the SI/ESI/RSI with a variable address of which is in the DI/EDI/RDI. Set flags as CMP does.

Togetherwith REP prefix, it will repeated in loop, count is stored in the CX/ECX/RCX register, the processwill be running
util ZF flag is zero (e.g., until compared values are equal to each other, hence “E” in REPE).

It works like memcmp() in C.

Example fromWindows NT kernel (WRK v1.2):
4eXclusive OR

569

80.6. INSTRUCTIONS CHAPTER 80. X86
Listing 80.3: base\ntos\rtl\i386\movemem.asm

; ULONG
; RtlCompareMemory (
; IN PVOID Source1,
; IN PVOID Source2,
; IN ULONG Length
;)
;
; Routine Description:
;
; This function compares two blocks of memory and returns the number
; of bytes that compared equal.
;
; Arguments:
;
; Source1 (esp+4) - Supplies a pointer to the first block of memory to
; compare.
;
; Source2 (esp+8) - Supplies a pointer to the second block of memory to
; compare.
;
; Length (esp+12) - Supplies the Length, in bytes, of the memory to be
; compared.
;
; Return Value:
;
; The number of bytes that compared equal is returned as the function
; value. If all bytes compared equal, then the length of the original
; block of memory is returned.
;
;--

RcmSource1 equ [esp+12]
RcmSource2 equ [esp+16]
RcmLength equ [esp+20]

CODE_ALIGNMENT
cPublicProc _RtlCompareMemory,3
cPublicFpo 3,0

push esi ; save registers
push edi ;
cld ; clear direction
mov esi,RcmSource1 ; (esi) -> first block to compare
mov edi,RcmSource2 ; (edi) -> second block to compare

;
; Compare dwords, if any.
;

rcm10: mov ecx,RcmLength ; (ecx) = length in bytes
shr ecx,2 ; (ecx) = length in dwords
jz rcm20 ; no dwords, try bytes
repe cmpsd ; compare dwords
jnz rcm40 ; mismatch, go find byte

;
; Compare residual bytes, if any.
;

rcm20: mov ecx,RcmLength ; (ecx) = length in bytes

570

80.6. INSTRUCTIONS CHAPTER 80. X86
and ecx,3 ; (ecx) = length mod 4
jz rcm30 ; 0 odd bytes, go do dwords
repe cmpsb ; compare odd bytes
jnz rcm50 ; mismatch, go report how far we got

;
; All bytes in the block match.
;

rcm30: mov eax,RcmLength ; set number of matching bytes
pop edi ; restore registers
pop esi ;
stdRET _RtlCompareMemory

;
; When we come to rcm40, esi (and edi) points to the dword after the
; one which caused the mismatch. Back up 1 dword and find the byte.
; Since we know the dword didn’t match, we can assume one byte won’t.
;

rcm40: sub esi,4 ; back up
sub edi,4 ; back up
mov ecx,5 ; ensure that ecx doesn’t count out
repe cmpsb ; find mismatch byte

;
; When we come to rcm50, esi points to the byte after the one that
; did not match, which is TWO after the last byte that did match.
;

rcm50: dec esi ; back up
sub esi,RcmSource1 ; compute bytes that matched
mov eax,esi ;
pop edi ; restore registers
pop esi ;
stdRET _RtlCompareMemory

stdENDP _RtlCompareMemory

N.B.: this function uses 32-bit words comparison (CMPSD) if block size ismultiple of 4, or per-byte comparison (CMPSB)
otherwise.

CPUID get information about CPU features. see also: (18.6.1).

DIV unsigned division

IDIV signed division

INT (M): INT x is analogous to PUSHF; CALL dword ptr [x*4] in 16-bit environment. It waswidely used inMS-DOS, func-
tioning as syscalls. Registers AX/BX/CX/DX/SI/DI were filled by arguments and jump to the address in the Interrupt
Vector Table (located at the address space beginning) will be occurred. It was popular because INT has short opcode
(2 bytes) and the program which needs some MS-DOS services is not bothering by determining service’s entry point
address. Interrupt handler return control flow to called using IRET instruction.

Most busy MS-DOS interrupt number was 0x21, serving a huge amount of its API. See also: [4] for themost comprehen-
sive interrupt lists and other MS-DOS information.

In post-MS-DOS era, this instruction was still used as syscall both in Linux and Windows (48), but later replaced by
SYSENTER or SYSCALL instruction.

INT 3 (M): this instruction is somewhat standing aside of INT, it has its own 1-byte opcode (0xCC), and actively used while
debugging. O�en, debuggers just write 0xCC byte at the address of breakpoint to be set, and when exception is raised,
originalbytewill be restoredandoriginal instructionat this addresswill be re-executed. AsofWindowsNT,anEXCEPTION_BREAKPOINT
exception will be raised when CPU executes this instruction. This debugging event may be intercepted and handled

571

80.6. INSTRUCTIONS CHAPTER 80. X86
by a host debugger, if loaded. If it is not loaded, Windows will o�er to run one of the registered in the system debug-
gers. If MSVS5 is installed, its debugger may be loaded and connected to the process. In order to protect from reverse
engineering, a lot of anti-debugging methods are checking integrity of the code loaded.
MSVC has compiler intrinsic for the instruction: __debugbreak()6.
There are also a win32 function in kernel32.dll named DebugBreak()7, which also executes INT 3.

IN (M) input data from port. The instruction is usually can be seen in OS drivers or in old MS-DOS code, for example (55.3).

IRET : wasused inMS-DOSenvironment for returning from interrupthandler a�er itwas calledby INT instruction. Equivalent
to POP tmp; POPF; JMP tmp.

LOOP (M) decrement CX/ECX/RCX, jump if it is still not zero.

OUT (M) output data to port. The instruction is usually can be seen in OS drivers or in old MS-DOS code, for example (55.3).

POPA (M) restores values of (R|E)DI, (R|E)SI, (R|E)BP, (R|E)BX, (R|E)DX, (R|E)CX, (R|E)AX registers from stack.

POPCNT population count. counts number of 1 bits in value. AKA “hamming weight”. AKA “NSA instruction” because of
rumors:

This branch of cryptography is fast-paced and very politically charged. Most designs are secret; a
majority of military encryptions systems in use today are based on LFSRs. In fact, most Cray computers
(Cray 1, Cray X-MP, Cray Y-MP) have a rather curious instruction generally known as “population count.”
It counts the 1 bits in a register and can be used both to e�iciently calculate the Hamming distance
between two binary words and to implement a vectorized version of a LFSR. I’ve heard this called the
canonical NSA instruction, demanded by almost all computer contracts.

[31]

POPF restore flags from stack (AKA EFLAGS register)

PUSHA (M) pushes values of (R|E)AX, (R|E)CX, (R|E)DX, (R|E)BX, (R|E)BP, (R|E)SI, (R|E)DI registers to the stack.

PUSHF push flags (AKA EFLAGS register)

RCL (M) rotate le� via CF flag:

7 6 5 4 3 2 1 0 CF

CF 7 6 5 4 3 2 1 0

RCR (M) rotate right via CF flag:

CF 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 CF

ROL/ROR (M) cyclic shi�
ROL: rotate le�:

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0CF

5Microso� Visual Studio
6http://msdn.microsoft.com/en-us/library/f408b4et.aspx
7http://msdn.microsoft.com/en-us/library/windows/desktop/ms679297(v=vs.85).aspx

572

http://msdn.microsoft.com/en-us/library/f408b4et.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms679297(v=vs.85).aspx

80.6. INSTRUCTIONS CHAPTER 80. X86
ROR: rotate right:

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 CF

Despite the fact that almost all CPUs has these instructions, there are no corresponding operations in the C/C++, so the
compilers of these PLs are usually not generating these instructions.

For programmer’s convenience, at least MSVC has pseudofunctions (compiler intrinsics) _rotl() and _rotr()8, which are
translated by compiler directly to these instructions.

SAL Arithmetic shi� le�, synonymous to SHL

SAR Arithmetic shi� right

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 CF

Hence, sign bit is always stayed at the place of MSB9.

SETcc op: load 1 toop (byteonly) if condition is trueor zerootherwise. Theconditioncodesare the sameas inJcc instructions
(80.6.2).

STC (M) set CF flag

STD (M) set DF flag

STI (M) set IF flag

SYSCALL (AMD) call syscall (48)

SYSENTER (Intel) call syscall (48)

UD2 (M) undefined instruction, raises exception. used for testing.

80.6.4 FPU instructions
-R inmnemonic usuallymeans that operands are reversed, -Pmeans that one element is popped from the stack a�er instruc-
tion execution, -PP means that two elements are popped.

-P instructions are o�en useful when we do not need a value in the FPU stack to be present anymore.

FABS replace value in ST(0) by absolute value in ST(0)

FADD op: ST(0)=op+ST(0)

FADD ST(0), ST(i): ST(0)=ST(0)+ST(i)

FADDP ST(1)=ST(0)+ST(1); pop one element from the stack, i.e., summed values in the stack are replaced by sum

FCHS : ST(0)=-ST(0)

FCOM compare ST(0) with ST(1)

FCOM op: compare ST(0) with op

FCOMP compare ST(0) with ST(1); pop one element from the stack

FCOMPP compare ST(0) with ST(1); pop two elements from the stack
8http://msdn.microsoft.com/en-us/library/5cc576c4.aspx
9Most significant bit/byte

573

http://msdn.microsoft.com/en-us/library/5cc576c4.aspx

80.6. INSTRUCTIONS CHAPTER 80. X86
FDIVR op: ST(0)=op/ST(0)

FDIVR ST(i), ST(j): ST(i)=ST(j)/ST(i)

FDIVRP op: ST(0)=op/ST(0); pop one element from the stack

FDIVRP ST(i), ST(j): ST(i)=ST(j)/ST(i); pop one element from the stack

FDIV op: ST(0)=ST(0)/op

FDIV ST(i), ST(j): ST(i)=ST(i)/ST(j)

FDIVP ST(1)=ST(0)/ST(1); pop one element from the stack, i.e., dividend and divisor values in the stack are replaced by quo-
tient

FILD op: convert integer and push it to the stack.

FIST op: convert ST(0) to integer op

FISTP op: convert ST(0) to integer op; pop one element from the stack

FLD1 push 1 to stack

FLDCW op: load FPU control word (80.3) from 16-bit op.

FLDZ push zero to stack

FLD op: push op to the stack.

FMUL op: ST(0)=ST(0)*op

FMUL ST(i), ST(j): ST(i)=ST(i)*ST(j)

FMULP op: ST(0)=ST(0)*op; pop one element from the stack

FMULP ST(i), ST(j): ST(i)=ST(i)*ST(j); pop one element from the stack

FSINCOS : tmp=ST(0); ST(1)=sin(tmp); ST(0)=cos(tmp)

FSQRT : 𝑆𝑇 (0) =
√︀

𝑆𝑇 (0)

FSTCW op: store FPU control word (80.3) into 16-bit op a�er checking for pending exceptions.

FNSTCW op: store FPU control word (80.3) into 16-bit op.

FSTSW op: store FPU status word (80.3.2) into 16-bit op a�er checking for pending exceptions.

FNSTSW op: store FPU status word (80.3.2) into 16-bit op.

FST op: copy ST(0) to op

FSTP op: copy ST(0) to op; pop one element from the stack

FSUBR op: ST(0)=op-ST(0)

FSUBR ST(0), ST(i): ST(0)=ST(i)-ST(0)

FSUBRP ST(1)=ST(0)-ST(1); pop one element from the stack, i.e., summed values in the stack are replaced by di�erence

FSUB op: ST(0)=ST(0)-op

FSUB ST(0), ST(i): ST(0)=ST(0)-ST(i)

FSUBP ST(1)=ST(1)-ST(0); pop one element from the stack, i.e., summed values in the stack are replaced by di�erence

FUCOM ST(i): compare ST(0) and ST(i)

FUCOM : compare ST(0) and ST(1)

FUCOMP : compare ST(0) and ST(1); pop one element from stack.

FUCOMPP : compare ST(0) and ST(1); pop two elements from stack.
The instructions performs just like FCOM, but exception is raised only if one of operands is SNaN, while QNaN numbers
are processed smoothly.

FXCH ST(i) exchange values in ST(0) and ST(i)

FXCH exchange values in ST(0) and ST(1)

574

80.6. INSTRUCTIONS CHAPTER 80. X86
80.6.5 SIMD instructions

80.6.6 Instructions having printable ASCII opcode
(In 32-bit mode).

It can be suitable for shellcode constructing. See also: 59.1.

ASCII character hexadecimal code x86 instruction
0 30 XOR
1 31 XOR
2 32 XOR
3 33 XOR
4 34 XOR
5 35 XOR
7 37 AAA
8 38 CMP
9 39 CMP
: 3a CMP
; 3b CMP
< 3c CMP
= 3d CMP
? 3f AAS
@ 40 INC
A 41 INC
B 42 INC
C 43 INC
D 44 INC
E 45 INC
F 46 INC
G 47 INC
H 48 DEC
I 49 DEC
J 4a DEC
K 4b DEC
L 4c DEC
M 4d DEC
N 4e DEC
O 4f DEC
P 50 PUSH
Q 51 PUSH
R 52 PUSH
S 53 PUSH
T 54 PUSH
U 55 PUSH
V 56 PUSH
W 57 PUSH
X 58 POP
Y 59 POP
Z 5a POP
[5b POP
\ 5c POP
] 5d POP
^ 5e POP
_ 5f POP
‘ 60 PUSHA
a 61 POPA
f 66 (in 32-bit mode) switch to

16-bit operand size
g 67 in 32-bit mode) switch to

16-bit address size
h 68 PUSH

575

80.6. INSTRUCTIONS CHAPTER 80. X86
i 69 IMUL
j 6a PUSH
k 6b IMUL
p 70 JO
q 71 JNO
r 72 JB
s 73 JAE
t 74 JE
u 75 JNE
v 76 JBE
w 77 JA
x 78 JS
y 79 JNS
z 7a JP

Summarizing: AAA, AAS, CMP, DEC, IMUL, INC, JA, JAE, JB, JBE, JE, JNE, JNO, JNS, JO, JP, JS, POP, POPA, PUSH, PUSHA,
XOR.

576

CHAPTER 81. ARM

Chapter 81

ARM

81.1 General purpose registers
∙ R0— function result is usually returned using R0

∙ R1

∙ R2

∙ R3

∙ R4

∙ R5

∙ R6

∙ R7

∙ R8

∙ R9

∙ R10

∙ R11

∙ R12

∙ R13 — AKA SP (stack pointer)

∙ R14 — AKA LR (link register)

∙ R15 — AKA PC (program counter)

R0-R3 are also called “scratch registers”: function arguments are usually passed in them, and values in them are not
necessary to restore upon function exit.

577

81.2. CURRENT PROGRAM STATUS REGISTER (CPSR) CHAPTER 81. ARM
81.2 Current Program Status Register (CPSR)

Bit Description
0..4 M— processor mode
5 T — Thumb state
6 F — FIQ disable
7 I — IRQ disable
8 A — imprecise data abort disable
9 E — data endianness
10..15, 25, 26 IT — if-then state
16..19 GE — greater-than-or-equal-to
20..23 DNM— do not modify
24 J — Java state
27 Q— sticky overflow
28 V — overflow
29 C— carry/borrow/extend
30 Z — zero bit
31 N — negative/less than

81.3 VFP (floating point) and NEON registers

0..31bits 32..64 65..96 97..127
Q0128 bits

D064 bits D1
S032 bits S1 S2 S3

S-registers are 32-bit ones, used for single precision numbers storage.
D-registers are 64-bit ones, used for double precision numbers storage.
D- and S-registers share the same physical space in CPU—it is possible to access D-register via S-registers (it is senseless

though).
Likewise, NEONQ-registers are 128-bit ones and share the same physical space in CPUwith other floating point registers.
In VFP 32 S-registers are present: S0..S31.
In VFPv2 there are 16 D-registers added, which are, in fact, occupy the same space as S0..S31.
In VFPv3 (NEON or “Advanced SIMD”) there are 16 more D-registers added, resulting D0..D31, but D16..D31 registers are

not sharing a space with other S-registers.
In NEON or “Advanced SIMD” there are also 16 128-bit Q-registers added, which share the same space as D0..D31.

578

CHAPTER 82. SOME GCC LIBRARY FUNCTIONS

Chapter 82

Some GCC library functions

name meaning
__divdi3 signed division
__moddi3 getting remainder (modulo) of signed division
__udivdi3 unsigned division
__umoddi3 getting remainder (modulo) of unsigned division

579

CHAPTER 83. SOME MSVC LIBRARY FUNCTIONS

Chapter 83

Some MSVC library functions

ll in function namemean “long long”, e.g., 64-bit data type.

name meaning
__alldiv signed division
__allmul multiplication
__allrem remainder of signed division
__allshl shi� le�
__allshr signed shi� right
__aulldiv unsigned division
__aullrem remainder of unsigned division
__aullshr unsigned shi� right

Multiplication and shi� le� procedures are the same for both signed and unsigned numbers, hence only one function for
each operation here.

The source code of these function can be founded in the installed MSVS, in VC/crt/src/intel/*.asm.

580

Acronyms used

581

CHAPTER 83. SOME MSVC LIBRARY FUNCTIONS
OS Operating System . xiv

FAQ Frequently Asked Questions . xiv

OOP Object-Oriented Programming . 252

PL Programming language . 3

PRNG Pseudorandom number generator . 170

RA Return Address . 12

PE Portable Executable: 50.2 .345

SP Stack Pointer . 9

DLL Dynamic-link library . 345

PC Program Counter. .9

LR Link Register . 9

IDA Interactive Disassembler . 5

IAT Import Address Table . 346

INT Import Name Table. .346

RVA Relative Virtual Address . 346

VA Virtual Address . 346

OEP Original Entry Point .342

MSVC Microso� Visual C++

MSVS Microso� Visual Studio . 572

ASLR Address Space Layout Randomization . 346

MFC Microso� Foundation Classes . 348

TLS Thread Local Storage . xiv

AKA Also Known As

582

CHAPTER 83. SOME MSVC LIBRARY FUNCTIONS
CRT C runtime library: sec:CRT . 5

CPU Central processing unit . xiv

FPU Floating-point unit . 108

CISC Complex instruction set computing . 10

RISC Reduced instruction set computing . 10

GUI Graphical user interface . 342

RTTI Run-time type information. .267

BSS Block Started by Symbol . 64

SIMD Single instruction, multiple data . 183

BSOD Black Screen of Death . 334

DBMS Database management systems . xiv

ISA Instruction Set Architecture . xiv

CGI Common Gateway Interface . 542

HPC High-Performance Computing . 212

SOC System on Chip . 9

SEH Structured Exception Handling: 50.3 . 19

ELF Executable file format widely used in *NIX system including Linux . xiv

TIB Thread Information Block . 131

TEA Tiny Encryption Algorithm. 549

PIC Position Independent Code: 49.1 . xiv

NAN Not a Number . 563

NOP No OPeration . 49

BEQ (PowerPC, ARM) Branch if Equal . 52

583

CHAPTER 83. SOME MSVC LIBRARY FUNCTIONS
BNE (PowerPC, ARM) Branch if Not Equal . 101

BLR (PowerPC) Branch to Link Register . 384

XOR eXclusive OR . 569

MCU Microcontroller unit . 407

RAM Random-access memory . 43

ROM Read-only memory . 488

EGA Enhanced Graphics Adapter . 488

VGA Video Graphics Array . 488

API Application programming interface . 316

ASCII American Standard Code for Information Interchange . 473

ASCIIZ ASCII Zero (null-terminated ASCII string) . 49

IA64 Intel Architecture 64 (Itanium): 65 . 310

EPIC Explicitly parallel instruction computing . 485

OOE Out-of-order execution . 485

MSDN Microso� Developer Network . xv

MSB Most significant bit/byte . 573

STL (C++) Standard Template Library: 34 . 277

PODT (C++) Plain Old Data Type . 289

HDD Hard disk drive . 301

VM Virtual Memory

WRK Windows Research Kernel . 328

GPR General Purpose Registers .3

SSDT System Service Dispatch Table . 334

584

CHAPTER 83. SOME MSVC LIBRARY FUNCTIONS
RE Reverse Engineering . 494

SSE Streaming SIMD Extensions . 201

BCD Binary-coded decimal . 472

BOM Byte order mark . 319

GDB GNU debugger . 24

585

BIBLIOGRAPHY

Bibliography

[1] AMD. AMD64 Architecture Programmer’s Manual. 2013. Also available as http://developer.amd.com/resources/
documentation-articles/developer-guides-manuals/.

[2] Apple. iOS ABI Function Call Guide. 2010. Also available as http://developer.apple.com/library/ios/
documentation/Xcode/Conceptual/iPhoneOSABIReference/iPhoneOSABIReference.pdf.

[3] blexim. Basic integer overflows. Phrack, 2002. Also available ashttp://yurichev.com/mirrors/phrack/p60-0x0a.
txt.

[4] Ralf Brown. The x86 interrupt list. Also available as http://www.cs.cmu.edu/~ralf/files.html.

[5] Mike Burrell. Writing e�cient itanium 2 assembly code. Also available as http://yurichev.com/mirrors/RE/
itanium.pdf.

[6] Marshall Cline. C++ faq. Also available as http://www.parashift.com/c++-faq-lite/index.html.

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein. Introduction to Algorithms, Third Edition.
The MIT Press, 3rd edition, 2009.

[8] Stephen Dolan. mov is turing-complete. 2013. Also available as http://www.cl.cam.ac.uk/~sd601/papers/mov.
pdf.

[9] Nick Montfort et al. 10 PRINT CHR$(205.5+RND(1)); : GOTO 10. The MIT Press, 2012. Also available as http:
//trope-tank.mit.edu/10_PRINT_121114.pdf.

[10] Agner Fog. The microarchitecture of Intel, AMD and VIA CPUs / An optimization guide for assembly programmers and
compiler makers. 2013. http://agner.org/optimize/microarchitecture.pdf.

[11] Agner Fog. Optimizing so�ware in C++: An optimization guide for Windows, Linux and Mac platforms. 2013. http:
//agner.org/optimize/optimizing_cpp.pdf.

[12] Agner Fog. Calling conventions. 2014. http://www.agner.org/optimize/calling_conventions.pdf.

[13] IBM. PowerPC(tm) Microprocessor Family: The Programming Environments for 32-Bit Microprocessors. 2000. Also
available as http://yurichev.com/mirrors/PowerPC/6xx_pem.pdf.

[14] Intel. Intel R○ 64 and IA-32 Architectures So�ware Developer’s Manual Combined Volumes:1, 2A, 2B, 2C, 3A, 3B,
and 3C. 2013. Also available as http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-manual-325462.pdf.

[15] ISO. ISO/IEC 9899:TC3 (C C99 standard). 2007. Also available as http://www.open-std.org/jtc1/sc22/WG14/www/
docs/n1256.pdf.

[16] ISO. ISO/IEC 14882:2011 (C++ 11 standard). 2013. Also available as http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2013/n3690.pdf.

[17] Brian W. Kernighan. The C Programming Language. Prentice Hall Professional Technical Reference, 2nd edition, 1988.

[18] Donald E. Knuth. The Art of Computer Programming Volumes 1-3 Boxed Set. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2nd edition, 1998.

[19] Eugene Loh. The ideal hpc programming language. Queue, 8(6):30:30–30:38, June 2010.

[20] Advanced RISC Machines Ltd. The ARM Cookbook. 1994. Also available as http://yurichev.com/ref/ARM%
20Cookbook%20(1994).

586

http://developer.amd.com/resources/documentation-articles/developer-guides-manuals/
http://developer.amd.com/resources/documentation-articles/developer-guides-manuals/
http://developer.apple.com/library/ios/documentation/Xcode/Conceptual/iPhoneOSABIReference/iPhoneOSABIReference.pdf
http://developer.apple.com/library/ios/documentation/Xcode/Conceptual/iPhoneOSABIReference/iPhoneOSABIReference.pdf
http://yurichev.com/mirrors/phrack/p60-0x0a.txt
http://yurichev.com/mirrors/phrack/p60-0x0a.txt
http://www.cs.cmu.edu/~ralf/files.html
http://yurichev.com/mirrors/RE/itanium.pdf
http://yurichev.com/mirrors/RE/itanium.pdf
http://www.parashift.com/c++-faq-lite/index.html
http://www.cl.cam.ac.uk/~sd601/papers/mov.pdf
http://www.cl.cam.ac.uk/~sd601/papers/mov.pdf
http://trope-tank.mit.edu/10_PRINT_121114.pdf
http://trope-tank.mit.edu/10_PRINT_121114.pdf
http://agner.org/optimize/microarchitecture.pdf
http://agner.org/optimize/optimizing_cpp.pdf
http://agner.org/optimize/optimizing_cpp.pdf
http://www.agner.org/optimize/calling_conventions.pdf
http://yurichev.com/mirrors/PowerPC/6xx_pem.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3690.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3690.pdf
http://yurichev.com/ref/ARM%20Cookbook%20(1994)
http://yurichev.com/ref/ARM%20Cookbook%20(1994)

BIBLIOGRAPHY BIBLIOGRAPHY
[21] Michael Matz / Jan Hubicka / Andreas Jaeger / MarkMitchell. System v application binary interface. amd64 architecture

processor supplement, 2013. Also available as http://x86-64.org/documentation/abi.pdf.

[22] Aleph One. Smashing the stack for fun and profit. Phrack, 1996. Also available as http://yurichev.com/mirrors/
phrack/p49-0x0e.txt.

[23] Matt Pietrek. A crash course on the depths of win32TM structured exception handling. MSDNmagazine.

[24] Matt Pietrek. An in-depth look into the win32 portable executable file format. MSDNmagazine, 2002.

[25] Eric S. Raymond. The Art of UNIX Programming. Pearson Education, 2003. Also available as http://catb.org/esr/
writings/taoup/html/.

[26] D. M. Ritchie and K. Thompson. The unix time sharing system. 1974. Also available as http://dl.acm.org/citation.
cfm?id=361061.

[27] Dennis M. Ritchie. The evolution of the unix time-sharing system. 1979.

[28] Dennis M. Ritchie. Where did ++ come from? (net.lang.c). http://yurichev.com/mirrors/C/c_dmr_
postincrement.txt, 1986. [Online; accessed 2013].

[29] Dennis M. Ritchie. The development of the c language. SIGPLAN Not., 28(3):201–208, March 1993. Also available as
http://yurichev.com/mirrors/C/dmr-The%20Development%20of%20the%20C%20Language-1993.pdf.

[30] Mark E. Russinovich and David A. Solomon with Alex Ionescu. Windows R○ Internals: Including Windows Server 2008
and Windows Vista, Fi�h Edition. 2009.

[31] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C. 1994.

[32] Igor Skochinsky. Compiler internals: Exceptions and rtti, 2012. Also available as http://yurichev.com/mirrors/RE/
Recon-2012-Skochinsky-Compiler-Internals.pdf.

[33] SunSo� Steve Zucker and IBM Kari Karhi. SYSTEM V APPLICATION BINARY INTERFACE: PowerPC Processor Supplement.
1995. Also available as http://yurichev.com/mirrors/PowerPC/elfspec_ppc.pdf.

[34] trew. Introduction to reverse engineering win32 applications. uninformed. Also available as http://yurichev.com/
mirrors/RE/uninformed_v1a7.pdf.

[35] Henry S. Warren. Hacker’s Delight. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[36] Dennis Yurichev. Finding unknown algorithm using only input/output pairs and z3 smt solver. 2012. Also available as
http://yurichev.com/writings/z3_rockey.pdf.

[37] Dennis Yurichev. C/C++ programming language notes. 2013. Also available as http://yurichev.com/writings/
C-notes-en.pdf.

587

http://x86-64.org/documentation/abi.pdf
http://yurichev.com/mirrors/phrack/p49-0x0e.txt
http://yurichev.com/mirrors/phrack/p49-0x0e.txt
http://catb.org/esr/writings/taoup/html/
http://catb.org/esr/writings/taoup/html/
http://dl.acm.org/citation.cfm?id=361061
http://dl.acm.org/citation.cfm?id=361061
http://yurichev.com/mirrors/C/c_dmr_postincrement.txt
http://yurichev.com/mirrors/C/c_dmr_postincrement.txt
http://yurichev.com/mirrors/C/dmr-The%20Development%20of%20the%20C%20Language-1993.pdf
http://yurichev.com/mirrors/RE/Recon-2012-Skochinsky-Compiler-Internals.pdf
http://yurichev.com/mirrors/RE/Recon-2012-Skochinsky-Compiler-Internals.pdf
http://yurichev.com/mirrors/PowerPC/elfspec_ppc.pdf
http://yurichev.com/mirrors/RE/uninformed_v1a7.pdf
http://yurichev.com/mirrors/RE/uninformed_v1a7.pdf
http://yurichev.com/writings/z3_rockey.pdf
http://yurichev.com/writings/C-notes-en.pdf
http://yurichev.com/writings/C-notes-en.pdf

Glossary

Glossary

decrement Decrease by 1. 9, 89, 99, 101, 331, 432, 565, 567, 572

increment Increase by 1. 10, 89, 92, 99–101, 408, 428, 565

product Multiplication result. 184

stack pointer A register pointing to the place in the stack. SP/ESP/RSP in x86. 5, 6, 10, 14, 17, 20, 30, 31, 39, 55, 239, 254, 560,
566, 577

tail call It is when compiler (or interpreter) transforms recursion (with which it is possible: tail recursion) into iteration for
e�iciency: http://en.wikipedia.org/wiki/Tail_call. 13

quotient Division result. 146

anti-pattern Generally considered as bad practice. 16, 39

atomic operation “𝛼𝜏𝑜𝜇𝑜𝜍”mean “indivisible” in Greek, so atomic operation is what guaranteed not to be broke up during
operation by other threads. 376, 482

basic block a group of instructions not having jump/branch instructions, and also not having jumps inside block from the
outside. In IDA it looks just like as a list of instructions without breaking empty lines . 489, 490

callee A function being called by another. 13, 16, 45, 53, 55, 58, 81, 193, 239, 254

caller A function calling another. 5, 45, 53, 54, 57, 61, 81, 193, 200, 205, 254

compiler intrinsic A function specific to a compilerwhich is not usual library function. Compiler generate a specificmachine
code instead of call to it. It is o�en a pseudofunction for specific CPU instruction. Readmore: (62). 572

CP/M Control Program for Microcomputers: a very basic disk OS used before MS-DOS. 470

debuggee A program being debugged. 127

dongle Dongle is a small piece of hardware connected to LPT printer port (in past) or toUSB. Its functionwas akin to security
token, it has somememory and, sometimes, secret (crypto-)hashing algorithm.. 383

endianness Byte order: 36. 12, 41, 569

GiB Gibibyte: 230 or 1024 mebibytes or 1073741824 bytes. 8

heap usually, a big chunk of memory provided by OS so that applications can divide it by themselves as they wish. mal-
loc()/free() works with heap.. 14, 16, 152, 273, 275, 289, 290, 345, 346

jump o�set a part of JMP or Jcc instruction opcode, it just to be added to the address of the next instruction, and thus is
how new PC is calculated. May be negative as well.. 49, 50, 73, 565

kernel mode A restrictions-free CPUmode in which it executes OS kernel and drivers. cf. user mode.. 589

keygenme A program which imitates fictional so�ware protection, for which one needs to make a keys/licenses generator.
544

leaf function A function which is not calling any other function. 16

588

http://en.wikipedia.org/wiki/Tail_call

Glossary Glossary
link register (RISC) A register where return address is usually stored. This makes calling leaf functions without stack usage,

i.e., faster.. 16, 384, 577

loop unwinding It is when a compiler instead of generation loop code of 𝑛 iteration, generates just 𝑛 copies of the loop
body, in order to get rid of loopmaintenance instructions. 91

namemangling used at least in C++, where compiler need to encode name of class, method and argument types in the one
string, which will become internal name of the function. read more here: 31.1.1. 252, 313, 314

NaN not a number: special cases of floating point numbers, usually signaling about errors . 117, 487

NEON AKA “Advanced SIMD”—SIMD from ARM. 578

NOP “no operation”, idle instruction. 331

POKE BASIC language instruction writing byte on specific address. 331

register allocator Compiler’s function assigning local variables to CPU registers. 98, 139, 193

reverse engineering act of understanding, how the thing works, sometimes, in order to clone it. xiv, 572

security cookie A random value, di�erent at each execution. Readmore about it: 16.3. 365

stack frame Part of stack containing information specific to the current functions: local variables, function arguments, RA,
etc. 35, 54, 365

thunk function Tiny function with a single role: call another function.. 12, 176, 384, 394

tracer My own simple debugging tool. Readmore about it: 52. 93, 94, 127, 317, 325, 329, 361, 371, 453, 459, 464, 467, 542, 543

user mode A restricted CPUmode in which it executes all applied so�ware code. cf. kernel mode.. 402, 588

Windows NT Windows NT, 2000, XP, Vista, 7, 8. 191, 238, 320, 334, 346, 375, 473, 571

xoring o�en used in English language, meaning applying XOR operation. 365, 397, 400

589

Index

.NET, 350
AT&T syntax, 7, 18
Bu�er Overflow, 126, 365
C language elements

Pointers, 34, 39, 63, 173, 193
Post-decrement, 101
Post-increment, 101
Pre-decrement, 101
Pre-increment, 101
C99, 61
bool, 137
restrict, 210
variable length arrays, 133

const, 4, 44
for, 89, 148
if, 69, 80
restrict, 210
return, 5, 45, 61
switch, 79–81
while, 97

C standard library
alloca(), 17, 133
assert(), 322
atexit(), 278
atoi(), 547
calloc(), 421
close(), 339
localtime(), 248
longjmp(), 81
malloc(), 153
memchr(), 568
memcmp(), 323, 569
memcpy(), 7, 34, 567
memset(), 464, 568
open(), 339
qsort(), 173, 553
rand(), 316, 407, 548
read(), 339
scanf(), 34
srand(), 548
strcmp(), 339
strcpy(), 7, 407
strlen(), 97, 189, 568
strstr(), 548
time(), 248
tolower(), 427
toupper(), 547

Compiler’s anomalies, 143, 478
C++, 454

C++11, 289, 333

ostream, 269
References, 271
STL
std::forward_list, 289
std::list, 279
std::map, 297
std::set, 297
std::string, 272
std::vector, 289

grep usage, 94, 119, 312, 325, 329, 452
Intel syntax, 7, 9
position-independent code, 9, 336
RAM, 43
ROM, 43, 44
Recursion, 13, 15

Tail recursion, 13
Stack, 14, 53, 81
Syntactic Sugar, 80, 157
iPod/iPhone/iPad, 9
OllyDbg, 21, 36, 41, 64, 71, 92
Oracle RDBMS, 5, 183, 321, 353, 455, 463, 465, 478, 489

8080, 100
8086, 402
8253, 472
80286, 402, 488
80386, 488

Angry Birds, 119
ARM, 100, 229, 233, 383

ARMmode, 9
Instructions
ADD, 11, 77, 81, 95, 105, 146
ADDAL, 77
ADDCC, 86
ADDS, 59, 81
ADR, 9, 77
ADREQ, 77, 81
ADRGT, 77
ADRHI, 77
ADRNE, 81
ASRS, 105, 143
B, 30, 77, 78
BCS, 78, 121
BEQ, 52, 81
BGE, 78
BIC, 143
BL, 10, 12, 77
BLE, 78
BLEQ, 77
BLGT, 77

590

INDEX INDEX
BLHI, 77
BLS, 78
BLT, 95
BLX, 12
BNE, 78
BX, 59, 87
CLZ, 524, 525
CMP, 52, 77, 81, 86, 95, 146
IDIV, 103
IT, 119, 132
LDMCSFD, 77
LDMEA, 14
LDMED, 14
LDMFA, 14
LDMFD, 10, 14, 77
LDMGEFD, 77
LDR, 32, 39, 125
LDR.W, 136
LDRB, 161
LDRB.W, 101
LDRSB, 100
LSL, 146
LSL.W, 146
LSLS, 125
MLA, 59
MOV, 10, 105, 146
MOVT, 11, 105
MOVT.W, 12
MOVW, 12
MULS, 59
MVNS, 101
ORR, 143
POP, 9, 10, 14, 16
PUSH, 14, 16
RSB, 136, 146
SMMUL, 105
STMEA, 14
STMED, 14
STMFA, 14, 33
STMFD, 9, 14
STMIA, 31
STMIB, 33
STR, 31, 125
SUB, 31, 136, 146
SUBEQ, 102
SXTB, 162
TEST, 98
TST, 140, 146
VADD, 111
VDIV, 111
VLDR, 111
VMOV, 111, 118
VMOVGT, 118
VMRS, 118
VMUL, 111

Registers
APSR, 118
FPSCR, 118
Link Register, 10, 16, 30, 87, 577
R0, 60, 577
scratch registers, 100, 577

Z, 52, 578
thumbmode, 9, 78, 87
thumb-2 mode, 9, 87, 119
armel, 111
armhf, 111
Condition codes, 77
Data processing instructions, 105
DCB, 10
hard float, 111
if-then block, 119
Leaf function, 16
Optional operators
ASR, 105, 146
LSL, 125, 136, 146
LSR, 105, 146
ROR, 146
RRX, 146

so� float, 111
ASLR, 346
AWK, 327

bash, 61
BASIC

POKE, 331
binary grep, 324, 381
BIND.EXE, 350
Bitcoin, 479
Borland C++Builder, 314
Borland Delphi, 314
BSoD, 334
BSS, 347

C11, 333
Callbacks, 173
Canary, 129
cdecl, 20
COFF, 392
column-major order, 133
Compiler intrinsic, 17, 477
CRC32, 146, 396
CRT, 342, 361
Cygwin, 313
cygwin, 317, 351, 380

Delphi, 318
DES, 183, 193
dlopen(), 339
dlsym(), 339
DOSBox, 473
DosBox, 329
double, 108
dtruss, 380

EICAR, 469
ELF, 42
Error messages, 321

fastcall, 8, 33, 138
float, 108
FORTRAN, 133, 210, 313
Function epilogue, 13, 30, 31, 77, 161, 327
Function prologue, 6, 13, 16, 31, 129, 327

591

INDEX INDEX
Fusedmultiply–add, 59

GCC, 313, 579
GDB, 24, 27, 128

Hiew, 49, 73, 318, 347, 348, 351

IAT, 346
IDA, 45, 320

var_?, 31, 39
IEEE 754, 108, 170, 201, 558
Inline code, 96, 143, 213, 258
INT, 346
int 0x2e, 335
int 0x80, 334
Intel C++, 5, 184, 478, 489, 566
Itanium, 485

jumptable, 83, 87

Keil, 9
kernel panic, 334
kernel space, 334

LD_PRELOAD, 338
Linux, 455

libc.so.6, 138, 176
LLVM, 9
long double, 108
Loop unwinding, 91

Mac OS Classic, 383
MacOSX, 380
MD5, 323, 396
MFC, 348
MIDI, 323
MinGW, 313
MIPS, 231, 234, 347, 383
MS-DOS, 130, 323, 329, 331, 345, 402, 469, 471, 558, 571

DOS extenders, 488
MSVC, 580

Namemangling, 252
NEC V20, 473

objdump, 338, 351
OEP, 345, 350
opaque predicate, 236
OpenMP, 315, 479
OpenWatcom, 314, 498, 499, 509
Ordinal, 348

Page (memory), 191
Pascal, 318
PDB, 312, 347, 451
PDP-11, 101
PowerPC, 383

Raspberry Pi, 9, 112
ReactOS, 359
Register allocation, 193
Relocation, 12
row-major order, 133

RTTI, 267
RVA, 346

SAP, 312, 451
SCO OpenServer, 391
Security cookie, 129, 365
SHA1, 396
SHA512, 479
Shadow space, 56, 58, 202
Shellcode, 470, 575
shellcode, 235, 334, 346
Signed numbers, 71, 309
SIMD, 201
SSE, 201
SSE2, 201
strace, 338, 380
syscall, 334
syscalls, 138, 380

TCP/IP, 310
thiscall, 252, 254
ThumbTwoMode, 11
TLS, 130, 333, 347, 350, 561

Callbacks, 351

Unicode, 319
Unrolled loop, 96, 132
uptime, 338
user space, 334
UTF-16LE, 319
UTF-8, 319

VA, 346

Watcom, 314
Win32, 319, 488

RaiseException(), 351
SetUnhandledExceptionFilter(), 353

Windows
GetProcAddress, 350
KERNEL32.DLL, 137
LoadLibrary, 350
MSVCR80.DLL, 174
ntoskrnl.exe, 455
Structured Exception Handling, 19, 351
TIB, 130, 351, 561
Windows 2000, 346
Windows NT4, 346
Windows Vista, 345
Windows XP, 346, 350

Windows 3.x, 238, 488
Windows API, 558
Wine, 359
WolframMathematica, 106, 107

x86
Instructions
AAA, 576
AAS, 576
ADC, 178, 243, 565
ADD, 5, 20, 54, 243, 565
ADDSD, 201

592

INDEX INDEX
ADDSS, 204
AND, 6, 138, 141, 144, 165, 565
BSF, 192, 526, 569
BSR, 569
BSWAP, 310, 569
BT, 569
BTC, 569
BTR, 376, 569
BTS, 569
CALL, 5, 15, 349, 565
CBW, 569
CDQ, 182, 569
CDQE, 569
CLD, 569
CLI, 569
CMC, 569
CMOVcc, 77, 497, 569
CMP, 45, 565, 576
CMPSB, 323, 569
CMPSD, 569
CMPSQ, 569
CMPSW, 569
COMISD, 203
COMISS, 204
CPUID, 163, 571
CWD, 243, 569
CWDE, 569
DEC, 99, 565, 576
DIV, 571
DIVSD, 201, 326
FABS, 573
FADD, 573
FADDP, 109, 110, 573
FCHS, 573
FCOM, 115, 117, 573
FCOMP, 114, 573
FCOMPP, 573
FDIV, 109, 325, 548, 574
FDIVP, 109, 574
FDIVR, 110, 573
FDIVRP, 573
FILD, 574
FIST, 574
FISTP, 574
FLD, 112, 114, 574
FLD1, 574
FLDCW, 574
FLDZ, 574
FMUL, 109, 574
FMULP, 574
FNSTCW, 574
FNSTSW, 114, 117, 574
FSINCOS, 574
FSQRT, 574
FST, 574
FSTCW, 574
FSTP, 112, 574
FSTSW, 574
FSUB, 574
FSUBP, 574
FSUBR, 574

FSUBRP, 574
FUCOM, 117, 574
FUCOMP, 574
FUCOMPP, 117, 574
FWAIT, 108
FXCH, 574
IDIV, 571
IMUL, 54, 565, 576
IN, 402, 472, 572
INC, 99, 565, 576
INT, 470, 571
IRET, 571, 572
JA, 71, 309, 565, 576
JAE, 71, 565, 576
JB, 71, 309, 565, 576
JBE, 71, 565, 576
JC, 565
JCXZ, 565
JE, 80, 565, 576
JECXZ, 565
JG, 71, 309, 565
JGE, 70, 565
JL, 71, 309, 565
JLE, 70, 565
JMP, 15, 30, 349, 565
JNA, 565
JNAE, 565
JNB, 565
JNBE, 117, 565
JNC, 565
JNE, 45, 70, 565, 576
JNG, 565
JNGE, 565
JNL, 565
JNLE, 565
JNO, 565, 576
JNS, 565, 576
JNZ, 565
JO, 565, 576
JP, 115, 473, 565, 576
JPO, 565
JRCXZ, 565
JS, 565, 576
JZ, 52, 80, 478, 565
LAHF, 566
LEA, 35, 56, 149, 155, 566
LEAVE, 6, 566
LES, 408
LOCK, 375
LODSB, 472
LOOP, 89, 327, 497, 572
MAXSD, 204
MOV, 5, 7, 348, 567
MOVDQA, 187
MOVDQU, 187
MOVSB, 567
MOVSD, 202, 426, 567
MOVSDX, 202
MOVSQ, 567
MOVSS, 204
MOVSW, 567

593

INDEX INDEX
MOVSX, 98, 100, 161, 162, 567
MOVZX, 98, 153, 383, 567
MUL, 567
MULSD, 201
NEG, 567
NOP, 149, 475, 567
NOT, 99, 101, 430, 567
OR, 141, 567
OUT, 402, 572
PADDD, 187
PCMPEQB, 192
PLMULHW, 183
PLMULLD, 183
PMOVMSKB, 192
POP, 5, 14, 15, 567, 576
POPA, 572, 576
POPCNT, 572
POPF, 472, 572
PUSH, 5, 6, 14, 15, 35, 567, 576
PUSHA, 572, 576
PUSHF, 572
PXOR, 192
RCL, 327, 572
RCR, 572
RET, 5, 15, 129, 254, 567
ROL, 477, 572
ROR, 477, 572
SAHF, 117, 567
SAL, 573
SALC, 473
SAR, 573
SBB, 178, 567
SCASB, 472, 473, 568
SCASD, 568
SCASQ, 568
SCASW, 568
SETALC, 473
SETcc, 117, 573
SETNBE, 117
SETNZ, 98
SHL, 123, 144, 568
SHR, 145, 165, 568
SHRD, 181, 568
STC, 573
STD, 573
STI, 573
STOSB, 568
STOSD, 568
STOSQ, 568
STOSW, 568
SUB, 5, 6, 45, 80, 569
SYSCALL, 571, 573
SYSENTER, 335, 571, 573
TEST, 98, 138, 140, 569
UD2, 573
XADD, 376
XCHG, 569
XOR, 5, 45, 99, 327, 397, 569, 576

Registers
Flags, 45
EAX, 45, 60

EBP, 35, 54
ECX, 252
ESP, 20, 35
JMP, 84
RIP, 338
ZF, 45, 138

8086, 100, 142
80386, 142
80486, 108
AVX, 183
FPU, 108, 562
MMX, 183
SSE, 183
SSE2, 183

x86-64, 7, 8, 26, 34, 38, 51, 55, 193, 201, 222, 338, 558, 563
Xcode, 9

594

	Preface
	I Code patterns
	Short introduction to the CPU
	Hello, world!
	x86
	MSVC—x86
	GCC—x86
	GCC: AT&T syntax

	x86-64
	MSVC—x86-64
	GCC—x86-64

	ARM
	Non-optimizing Keil + ARM mode
	Non-optimizing Keil: thumb mode
	Optimizing Xcode (LLVM) + ARM mode
	Optimizing Xcode (LLVM) + thumb-2 mode

	Function prologue and epilogue
	Stack
	Why stack grows backward?
	What is the stack used for?
	Save the return address where a function must return control after execution
	Passing function arguments
	Local variable storage
	x86: alloca() function
	(Windows) SEH
	Buffer overflow protection

	Typical stack layout

	printf() with several arguments
	x86: 3 arguments
	MSVC
	MSVC and OllyDbg
	GCC
	GCC and GDB

	x64: 8 arguments
	MSVC
	GCC
	GCC + GDB

	ARM: 3 arguments
	Non-optimizing Keil + ARM mode
	Optimizing Keil + ARM mode
	Optimizing Keil + thumb mode

	ARM: 8 arguments
	Optimizing Keil: ARM mode
	Optimizing Keil: thumb mode
	Optimizing Xcode (LLVM): ARM mode
	Optimizing Xcode (LLVM): thumb-2 mode

	By the way

	scanf()
	About pointers
	x86
	MSVC
	MSVC + OllyDbg
	GCC

	x64
	MSVC
	GCC

	ARM
	Optimizing Keil + thumb mode

	Global variables
	MSVC: x86
	MSVC: x86 + OllyDbg
	GCC: x86
	MSVC: x64
	ARM: Optimizing Keil + thumb mode

	scanf() result checking
	MSVC: x86
	MSVC: x86: IDA
	MSVC: x86 + OllyDbg
	MSVC: x86 + Hiew
	GCC: x86
	MSVC: x64
	ARM: Optimizing Keil + thumb mode

	Accessing passed arguments
	x86
	MSVC
	MSVC + OllyDbg
	GCC

	x64
	MSVC
	GCC
	GCC: uint64_t instead int

	ARM
	Non-optimizing Keil + ARM mode
	Optimizing Keil + ARM mode
	Optimizing Keil + thumb mode

	One more word about results returning.
	Pointers
	Global variables example
	Local variables example
	Conclusion

	Conditional jumps
	x86
	x86 + MSVC
	x86 + MSVC + OllyDbg
	x86 + MSVC + Hiew
	Non-optimizing GCC
	Optimizing GCC

	ARM
	Optimizing Keil + ARM mode
	Optimizing Keil + thumb mode

	switch()/case/default
	Few number of cases
	x86
	ARM: Optimizing Keil + ARM mode
	ARM: Optimizing Keil + thumb mode

	A lot of cases
	x86
	ARM: Optimizing Keil + ARM mode
	ARM: Optimizing Keil + thumb mode

	Loops
	x86
	OllyDbg
	tracer

	ARM
	Non-optimizing Keil + ARM mode
	Optimizing Keil + thumb mode
	Optimizing Xcode (LLVM) + thumb-2 mode

	One more thing

	strlen()
	x86
	ARM
	Non-optimizing Xcode (LLVM) + ARM mode
	Optimizing Xcode (LLVM) + thumb mode
	Optimizing Keil + ARM mode

	Division by 9
	x86
	ARM
	Optimizing Xcode (LLVM) + ARM mode
	Optimizing Xcode (LLVM) + thumb-2 mode
	Non-optimizing Xcode (LLVM) and Keil

	How it works
	Getting divisor
	Variant #1
	Variant #2

	Working with FPU
	Simple example
	x86
	ARM: Optimizing Xcode (LLVM) + ARM mode
	ARM: Optimizing Keil + thumb mode

	Passing floating point number via arguments
	x86
	ARM + Non-optimizing Xcode (LLVM) + thumb-2 mode
	ARM + Non-optimizing Keil + ARM mode

	Comparison example
	x86
	Now let's compile it with MSVC 2010 with optimization option /Ox
	GCC 4.4.1
	GCC 4.4.1 with -O3 optimization turned on
	ARM + Optimizing Xcode (LLVM) + ARM mode
	ARM + Optimizing Xcode (LLVM) + thumb-2 mode
	ARM + Non-optimizing Xcode (LLVM) + ARM mode
	ARM + Optimizing Keil + thumb mode

	x64

	Arrays
	Simple example
	x86
	ARM + Non-optimizing Keil + ARM mode
	ARM + Optimizing Keil + thumb mode

	Buffer overflow
	Buffer overflow protection methods
	Optimizing Xcode (LLVM) + thumb-2 mode

	One more word about arrays
	Multidimensional arrays
	x86
	ARM + Non-optimizing Xcode (LLVM) + thumb mode
	ARM + Optimizing Xcode (LLVM) + thumb mode

	Bit fields
	Specific bit checking
	x86
	ARM

	Specific bit setting/clearing
	x86
	ARM + Optimizing Keil + ARM mode
	ARM + Optimizing Keil + thumb mode
	ARM + Optimizing Xcode (LLVM) + ARM mode

	Shifts
	x86
	ARM + Optimizing Xcode (LLVM) + ARM mode
	ARM + Optimizing Xcode (LLVM) + thumb-2 mode

	CRC32 calculation example

	Structures
	SYSTEMTIME example
	Let's allocate space for structure using malloc()
	struct tm
	Linux
	ARM + Optimizing Keil + thumb mode
	ARM + Optimizing Xcode (LLVM) + thumb-2 mode

	Fields packing in structure
	x86
	ARM + Optimizing Keil + thumb mode
	ARM + Optimizing Xcode (LLVM) + thumb-2 mode

	Nested structures
	Bit fields in structure
	CPUID example
	Working with the float type as with a structure

	Unions
	Pseudo-random number generator example

	Pointers to functions
	GCC

	64-bit values in 32-bit environment
	Arguments passing, addition, subtraction
	Multiplication, division
	Shifting right
	Converting of 32-bit value into 64-bit one

	SIMD
	Vectorization
	Intel C++
	GCC

	SIMD strlen() implementation

	64 bits
	x86-64
	ARM
	Float point numbers

	Working with float point numbers using SIMD in x64
	Simple example
	Passing floating point number via arguments
	Comparison example
	Summary

	Temperature converting
	Integer values
	MSVC 2012 x86 /Ox
	MSVC 2012 x64 /Ox

	Float point values

	C99 restrict
	Inline functions
	Incorrectly disassembled code
	Disassembling started incorrectly (x86)
	How random noise looks disassembled?
	Information entropy of average code
	x86
	ARM (Thumb)
	ARM (ARM mode)
	MIPS (little endian)

	Obfuscation
	Text strings
	Executable code
	Inserting garbage
	Replacing instructions to bloated equivalents
	Always executed/never executed code
	Making a lot of mess
	Using indirect pointers

	Virtual machine / pseudo-code
	Other thing to mention

	Windows 16-bit
	Example#1
	Example #2
	Example #3
	Example #4
	Example #5
	Example #6
	Global variables

	II C++
	Classes
	Simple example
	MSVC—x86
	MSVC—x86-64
	GCC—x86
	GCC—x86-64

	Class inheritance
	Encapsulation
	Multiple inheritance
	Virtual methods

	ostream
	References
	STL
	std::string
	Internals
	More complex example
	std::string as a global variable

	std::list
	GCC
	MSVC
	C++11 std::forward_list

	std::vector
	std::map and std::set
	MSVC
	GCC
	Rebalancing demo (GCC)

	III Important fundamentals
	Signed number representations
	Integer overflow

	Endianness
	Big-endian
	Little-endian
	Bi-endian
	Converting data

	IV Finding important/interesting stuff in the code
	Identification of executable files
	Microsoft Visual C++
	Name mangling

	GCC
	Name mangling
	Cygwin
	MinGW

	Intel FORTRAN
	Watcom, OpenWatcom
	Name mangling

	Borland
	Delphi

	Other known DLLs

	Communication with the outer world (win32)
	Often used functions in Windows API
	tracer: Intercepting all functions in specific module

	Strings
	Text strings
	Unicode

	Error/debug messages

	Calls to assert()
	Constants
	Magic numbers
	DHCP

	Constant searching

	Finding the right instructions
	Suspicious code patterns
	XOR instructions
	Hand-written assembly code

	Using magic numbers while tracing
	Other things
	Old-school techniques, nevertheless, interesting to know
	Memory ``snapshots'' comparing

	V OS-specific
	Thread Local Storage
	System calls (syscall-s)
	Linux
	Windows

	Linux
	Position-independent code
	Windows

	LD_PRELOAD hack in Linux

	Windows NT
	CRT (win32)
	Win32 PE
	Terminology
	Base address
	Subsystem
	OS version
	Sections
	Relocations (relocs)
	Exports and imports
	Resources
	.NET
	TLS
	Tools
	Further reading

	Windows SEH
	Let's forget about MSVC
	Now let's get back to MSVC
	Windows x64
	Read more about SEH

	Windows NT: Critical section

	VI Tools
	Disassembler
	IDA

	Debugger
	System calls tracing
	strace / dtruss

	Other tools

	VII More examples
	Dongles
	Example #1: MacOS Classic and PowerPC
	Example #2: SCO OpenServer
	Decrypting error messages

	Example #3: MS-DOS

	``QR9'': Rubik's cube inspired amateur crypto-algorithm
	SAP
	About SAP client network traffic compression
	SAP 6.0 password checking functions

	Oracle RDBMS
	V$VERSION table in the Oracle RDBMS
	X$KSMLRU table in Oracle RDBMS
	V$TIMER table in Oracle RDBMS

	Handwritten assembly code
	 EICAR test file

	Demos
	10 PRINT CHR$(205.5+RND(1)); : GOTO 10
	Trixter's 42 byte version
	My attempt to reduce Trixter's version: 27 bytes
	Take a random memory garbage as a source of randomness
	Conclusion

	VIII Other things
	npad
	Compiler intrinsic
	Compiler's anomalies
	OpenMP
	MSVC
	GCC

	Itanium
	8086 memory model
	Basic blocks reordering
	Profile-guided optimization

	IX Books/blogs worth reading
	Books
	Windows
	C/C++
	x86 / x86-64
	ARM

	Blogs
	Windows

	Other

	X Exercises
	Level 1
	Exercise 1.1
	MSVC 2012 x64 + /Ox
	Keil (ARM)
	Keil (thumb)

	Exercise 1.2
	Exercise 1.3

	Level 2
	Exercise 2.1
	MSVC 2010
	GCC 4.4.1 + -O3
	Keil (ARM) + -O3
	Keil (thumb) + -O3

	Exercise 2.2
	MSVC 2010 + /Ox
	GCC 4.4.1
	Keil (ARM) + -O3
	Keil (thumb) + -O3

	Exercise 2.3
	MSVC 2010 + /Ox
	GCC 4.4.1
	Keil (ARM) + -O3
	Keil (thumb) + -O3

	Exercise 2.4
	MSVC 2010 + /Ox
	GCC 4.4.1
	Keil (ARM) + -O3
	Keil (thumb) + -O3

	Exercise 2.5
	MSVC 2010 + /Ox

	Exercise 2.6
	MSVC 2010 + /Ox
	Keil (ARM) + -O3
	Keil (thumb) + -O3

	Exercise 2.7
	MSVC 2010 + /Ox
	Keil (ARM) + -O3
	Keil (thumb) + -O3

	Exercise 2.8
	MSVC 2010 + /O1
	Keil (ARM) + -O3
	Keil (thumb) + -O3

	Exercise 2.9
	MSVC 2010 + /O1
	Keil (ARM) + -O3
	Keil (thumb) + -O3

	Exercise 2.10
	Exercise 2.11
	Exercise 2.12
	MSVC 2012 x64 + /Ox
	Keil (ARM)
	Keil (thumb)

	Exercise 2.13
	MSVC 2012 + /Ox
	Keil (ARM)
	Keil (thumb)

	Exercise 2.14
	MSVC 2012
	Keil (ARM mode)
	GCC 4.6.3 for Raspberry Pi (ARM mode)

	Exercise 2.15
	MSVC 2012 x64 /Ox
	GCC 4.4.6 -O3 x64
	GCC 4.8.1 -O3 x86
	Keil (ARM mode): Cortex-R4F CPU as target

	Exercise 2.16
	MSVC 2012 x64 /Ox
	Keil (ARM) -O3
	Keil (thumb) -O3

	Exercise 2.17

	Level 3
	Exercise 3.1
	Exercise 3.2
	Exercise 3.3
	Exercise 3.4
	Exercise 3.5
	Exercise 3.6
	Exercise 3.7

	crackme / keygenme

	XI Exercise solutions
	Level 1
	Exercise 1.1

	Level 2
	Exercise 2.1
	Exercise 2.2
	Exercise 2.3
	Exercise 2.4
	Exercise 2.5
	Exercise 2.6
	Exercise 2.7
	Exercise 2.8
	Exercise 2.9
	Exercise 2.11
	Exercise 2.12
	Exercise 2.13
	Exercise 2.14
	Exercise 2.15
	Exercise 2.16
	Exercise 2.17

	Level 3
	Exercise 3.1
	Exercise 3.2
	Exercise 3.3
	Exercise 3.4
	Exercise 3.5
	Exercise 3.6

	Afterword
	Questions?

	XII Appendix
	Common terminology
	x86
	Terminology
	General purpose registers
	RAX/EAX/AX/AL
	RBX/EBX/BX/BL
	RCX/ECX/CX/CL
	RDX/EDX/DX/DL
	RSI/ESI/SI/SIL
	RDI/EDI/DI/DIL
	R8/R8D/R8W/R8L
	R9/R9D/R9W/R9L
	R10/R10D/R10W/R10L
	R11/R11D/R11W/R11L
	R12/R12D/R12W/R12L
	R13/R13D/R13W/R13L
	R14/R14D/R14W/R14L
	R15/R15D/R15W/R15L
	RSP/ESP/SP/SPL
	RBP/EBP/BP/BPL
	RIP/EIP/IP
	CS/DS/ES/SS/FS/GS
	Flags register

	FPU-registers
	Control Word
	Status Word
	Tag Word

	SIMD-registers
	MMX-registers
	SSE and AVX-registers

	Debugging registers
	DR6
	DR7

	Instructions
	Prefixes
	Most frequently used instructions
	Less frequently used instructions
	FPU instructions
	SIMD instructions
	Instructions having printable ASCII opcode

	ARM
	General purpose registers
	Current Program Status Register (CPSR)
	VFP (floating point) and NEON registers

	Some GCC library functions
	Some MSVC library functions

	Acronyms used
	Bibliography
	Glossary
	Index

