
Fudging with Firmware

23C3
27-30 December 2006

Berlin, Germany

Firmware reverse-engineering tactics

27-30 December 2006 Fudging with Firmware
khorben

2

The (s)talker

khorben

I work for n.runs AG

I code for Open Source projects
(mostly my own)

and ÜberWall of course :)

“Who is this guy anyway”

27-30 December 2006 Fudging with Firmware
khorben

3

What's the plan?

I.How does it look?

II.First peek under the hood

III.Identification

IV.Is there more to it?

V.Have some fun

“Where you need slightly larger glasses”

27-30 December 2006 Fudging with Firmware
khorben

4

Before we start

● Focusing on firmwares likely to host an
Operating System

● Assumes you know how to obtain some:

– Read your hardware documentation
– Look for undocumented features
– Check web sites extensively
– Use your imagination...

“Someone tell him it's already started”

27-30 December 2006 Fudging with Firmware
khorben

5

I. How does it look?

● Unpacking

– Presentation
– Compression
– Bootloaders
– Extraction

● Storing

– Filesystems

“I'm looking better than good, I'm looking nice”

27-30 December 2006 Fudging with Firmware
khorben

6

Presentation

● Data may just be encoded in a trivial way
● ASCII versus EBCDIC

– Don't take anything for granted!

● ASCII-armored data transfers:
– UUENCODE
– Base64
– Intel HEX...

● History (or hype) decides

27-30 December 2006 Fudging with Firmware
khorben

7

XXENCODE Principles

● Groups of 3 bytes (trailing zeros)
● Split groups into four 6-bit numbers
● Apply the following translation table:

 0 1 2 3 4 5 6

 0123456789012345678901234567890123456789012345678901234567890123

 | | | | | | |

 +-0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

27-30 December 2006 Fudging with Firmware
khorben

8

UUENCODE Principles

● Same technique, using ASCII 32 to 95:

 0 1 2 3 4 5 6

 0123456789012345678901234567890123456789012345678901234567890123

 | | | | | | |

 !”#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_

● More efficient than XXENCODE
● Used in serial transfer on some ARM

platforms

27-30 December 2006 Fudging with Firmware
khorben

9

UUENCODE Example

● UUENCODE has filename and permission:
$ echo BOOTME > bootme.txt

$ uuencode -e bootme.txt bootme.txt

begin 640 bootme.txt

'0D]/5$U%"K\!

`

end

● Strings “begin” and “end”

27-30 December 2006 Fudging with Firmware
khorben

10

Base64 specifications

● Uses the same 3-to-4 byte technique
● Characters used vary, often [A-Za-z0-9+/]
● Some implementations have different

names:
– MIME
– BinHex
– Privacy-Enhanced Mail (PEM, as with SSL)
– OpenPGP's Radix-64 (appends a CRC)

27-30 December 2006 Fudging with Firmware
khorben

11

Base64 Example

● Output is usually as-is:
$ base64 -e bootme.txt

Qk9PVE1FCg==

● Easy to recognize: small set of characters
● More useful in protocol reversing (SOAP, ...)

27-30 December 2006 Fudging with Firmware
khorben

12

BinHex Example

● BinHex was found on Mac OS
● Used file extensions “hex”, “hqx”, “hcx”, ...

(This file must be converted with BinHex 4.0)

:$f*TEQKPH#jdCA0d,R0TG!"6594%8dP8)3#3"!&m!*!%EMa6593K!!%!!!&mFNa

KG3,r!*!$&[rr$3d,BQPZD'9i,R4PFh3!RQ+!!"AV#J#3!i!!N!@QKUjrU!#3'[q

● Look for patterns, like restricted sets of
characters!

(file sample from Wikipedia's “BinHex” article)

27-30 December 2006 Fudging with Firmware
khorben

13

Intel HEX Format

● From Wikipedia's definition:
« Intel HEX is a file format for conveying binary information

for applications like programming microcontrollers,
EPROMs, and other kinds of chips. It is one of the oldest
file formats available for this purpose. »

● Text file, line delimited (CR/LF/NUL)
● Hexadecimal values in uppercase ASCII

| 1 | 2 3 | 4 5 6 7 | 9 a | cnt... | n-1 n |

| : | cnt | address | typ | data | sum |

27-30 December 2006 Fudging with Firmware
khorben

14

Intel HEX Example

:10010000214601360121470136007EFE09D2190140

:100110002146017EB7C20001FF5F16002148011988

:00000001FF

(from http://www.cs.net/lucid/intel.htm)

● Even more limited character set
● Redundancy in the encoding (checksum)

is an interesting challenge for automation

27-30 December 2006 Fudging with Firmware
khorben

15

Compression

● Consumes resources
● Known formats

– GZIP
– ZIP
– ACE...

● May be modified by sneaky vendors
– Altered signatures
– Different algorithms supported

27-30 December 2006 Fudging with Firmware
khorben

16

GZIP

● Definition found in RFC1952
● Starts with \x1f\x8b
● Lots of false positives, check also

compression method and level
● Includes CRC, timestamp, OS fields, and

sometimes also filename and a comment
+---+---+---+---+---+---+---+---+---+---+

|ID1|ID2|CM |FLG| MTIME |XFL|OS |

+---+---+---+---+---+---+---+---+---+---+

27-30 December 2006 Fudging with Firmware
khorben

17

Bootloaders

● On 80x86 boot sector is 512 bytes long,
ends with partition table and 0xAA55

● Typically starts with a jump and stack
initialization

● Will talk about assembly later...

27-30 December 2006 Fudging with Firmware
khorben

18

Unpackers

● Thinking about:
– Executable unpackers
– Boot-time unpackers

● Look for known algorithms and signatures
● Play with checksums

27-30 December 2006 Fudging with Firmware
khorben

19

Filesystems

● FAT
● Ext2 (Linux)
● Ramdisks (ROMFS, CRAMFS, ...)

27-30 December 2006 Fudging with Firmware
khorben

20

File Allocation Table

● Poorly documented ...or brain-dead
● Lots of erratic implementations
● Always little-endian
● Starts jumping: 0xeb??90 or 0xe9????
● Often magic: “MSWIN4.1”, “FAT”,

“FAT12”, “FAT16”, 0x55AA, 0x61417272
● Often redundant: boot sector backup,

long filenames, ...

27-30 December 2006 Fudging with Firmware
khorben

21

CPIO

● As seen on Linux initrd ramdisks
● Just a list of members
● File header either binary or ASCII octal
● Otherwise looks like a stat struct:

magic “070707”, dev, ino, mode, uid,
gid, nlinks, rdev, mtime, filename length
and filename

27-30 December 2006 Fudging with Firmware
khorben

22

II. First peek under the hood

● Now you have a structure in mind
● ...or not
● Text forensics
● Binary forensics

“Where you feel naked”

27-30 December 2006 Fudging with Firmware
khorben

23

Use the luck, forth

● Intuition matters
● “strings” is your friend

– Common usernames
– Common passwords
– Operating System names, ...

● “hexdump” won't byte
● An automated tool would help a lot

27-30 December 2006 Fudging with Firmware
khorben

24

Actual example and demo

● CVE-2004-2556 Netgear WG602
super:5777364

● CVE-2004-2557 Netgear WG602 again
superman:21241036

● CVE-2006-1002 Netgear WGT624
Gearguy:Geardog

Vendors never learn...

27-30 December 2006 Fudging with Firmware
khorben

25

III. Identification

● Executable formats
● Processor architectures
● Operating Systems

“Papers please”

27-30 December 2006 Fudging with Firmware
khorben

26

Executable formats

● Tell a lot about the target platform
● Two major formats:

– Portable Executable (PE)
– Executable and Linking Format (ELF)

● Tend to be re-used:
– The wheel is a bit complex to reinvent
– Flexible and complete enough
– Many tools already support them

27-30 December 2006 Fudging with Firmware
khorben

27

Portable Executable (PE)

● Inspired by UNIX's COFF
● Still compatible with MS-DOS 2.0
● “Windows is not portable” ...but CE is:

ARM, MIPS, Hitachi SH3, SH4, SH5...
● Used for:

– Executables
– Libraries (DLL)
– Device drivers
– Screensavers

27-30 December 2006 Fudging with Firmware
khorben

28

PE: Format overview

| MS-DOS 2.0 EXE header |

| Unused |

| OEM Information |

| Offset to PE header |

| MS-DOS 2.0 Stub program |

| Unused |

|-------------------------|

| PE header |

| Section headers |

| Extra stuff |

27-30 December 2006 Fudging with Firmware
khorben

29

PE: MS-DOS header

4d5a 9000 0300 0000 0400 0000 ffff 0000 MZ..............

b800 0000 0000 0000 4000 0000 0000 0000 @.......

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 f000 0000

0e1f ba0e 00b4 09cd 21b8 014c cd21 5468 !..L.!Th

6973 2070 726f 6772 616d 2063 616e 6e6f is program canno

7420 6265 2072 756e 2069 6e20 444f 5320 t be run in DOS

6d6f 6465 2e0d 0d0a 2400 0000 0000 0000 mode....$.......

● Lots of magic to play with
● PE header is at 0xf0

27-30 December 2006 Fudging with Firmware
khorben

30

PE: Actual header at 0xf0

5045 0000 4c01 0300 1084 7d3b 0000 0000 PE..L.....};....

0000 0000 e000 0f01 0b01 0700 0028 0100 (..

009c 0000 0000 0000 7524 0100 0010 0000 u$......

0040 0100 0000 0001 0010 0000 0002 0000 .@..............

0500 0100 0500 0100 0400 0000 0000 0000

00f0 0100 0004 0000 fcd7 0100 0200 0080

● I386, PE32 executable, linker 7.0,
entrypoint at 0x00012475, created with
Windows XP, requires NT 4.0, ...

27-30 December 2006 Fudging with Firmware
khorben

31

Executable & Linkable Format (ELF)

● Used on most UNIX systems
● Simpler than PE
● Very easy to spot: starts with “\x7fELF”

27-30 December 2006 Fudging with Firmware
khorben

32

ELF: Format overview

| ELF header |

| Program header table |

| Section 1 |

| Section 2 |

| ... |

| Section n |

| Section header table |

27-30 December 2006 Fudging with Firmware
khorben

33

ELF: Header structure

typedef struct {

 unsigned char e_ident[16];Elf32_Half e_type;

 Elf32_Half e_machine; Elf32_Word e_version;

 Elf32_Addr e_entry; Elf32_Off e_phoff;

 Elf32_Off e_shoff; Elf32_Word e_flags;

 Elf32_Half e_ehsize; Elf32_Half e_phentsize;

 Elf32_Half e_phnum; Elf32_Half e_shentsiz

 Elf32_Half e_shnum; Elf32_Half e_shstrndx;

} Elf32_Ehdr;

27-30 December 2006 Fudging with Firmware
khorben

34

Processor architectures

● 80x86
● Sparc
● ARM
● MIPS
● m68k
● PowerPC

27-30 December 2006 Fudging with Firmware
khorben

35

80x86

● Known hardware:
– I think you have something on your lap...
– Soekris, Xbox, ...

● !!! Little-Endian !!!
● We know the standard boot processes
● There are other ways:

– Load kernel from filesystem (Cobalt RaQs)
– ...

27-30 December 2006 Fudging with Firmware
khorben

36

80x86: Assembly overview

● Multiple addressing modes
● Variable-size instructions
● Recurrent instructions:

– push %ebp, mov %esp, %ebp =>
\x55\x89\xe5

– leave, ret => \xc9\xc3

27-30 December 2006 Fudging with Firmware
khorben

37

Acorn RISC Machine

● Known hardware:
– embedded systems (music, games, phones)
– DEC StrongARM, Intel XScale (PDAs)

● 32-bit architecture and opcodes
● Little or Big-endian at will
● Newer support 16-bit opcodes (Thumb)

27-30 December 2006 Fudging with Firmware
khorben

38

MIPS

● Known hardware:
– Workstations: SGI, DECstation, ...
– Networking: Alcatel Speedtouch Pro, Linksys

WRT, Cisco 36*0 and 7*00, WebTV, ...
– Game consoles: N64, PSX, PS2, PSP

● 32-bit, 64-bit and hybrid versions
● Fixed-size opcodes
● Boots either little or big endian

27-30 December 2006 Fudging with Firmware
khorben

39

PowerPC / Cell

● Known hardware:
– Legacy Apple computers
– NCD Explora X-Terminals
– Game consoles

● Nintendo's GameCube
● Sony's PlayStation 3
● Microsoft's Xbox 360

27-30 December 2006 Fudging with Firmware
khorben

40

Operating Systems

● Well known: Linux, Windows CE
● Networking classics: Cisco's IOS,

JuniperOS, ...
● Real-time: QNX, VxWorks

27-30 December 2006 Fudging with Firmware
khorben

41

QNX

● UNIX for embedded systems
● Also found on regular PCs
● True microkernel
● Cisco IOS-XR (high availability) is based

on QNX

27-30 December 2006 Fudging with Firmware
khorben

42

VxWorks

● Another RTOS POSIX system
● Goes into space: Mars Orbiter
● ...and in your hardware:

– some Linksys WRT54G
– LiteON DVD recorders
– digital cameras
– Motorola SURFboard cable modems
– Some Xerox printers...

27-30 December 2006 Fudging with Firmware
khorben

43

IV. Is there more to it?

● Deciphering

“I didn't understand a damn thing”

27-30 December 2006 Fudging with Firmware
khorben

44

Deciphering

● Encrypted content is by definition random
for the eyes (without the key)

● Again looking for any clue:
– signatures
– patterns

● Definitely not my specialty :(
● There is encryption and encryption

27-30 December 2006 Fudging with Firmware
khorben

45

Some facts however

● Embedded systems are often slow
● Every hardware capability may not be

available when booting
● If it is an algorithm, the logic is there:

reverse it!
● If there is a key, it is there in the clear:

find it!
(exception: if really is inside the hardware
 better save a million €€€)

27-30 December 2006 Fudging with Firmware
khorben

46

Cryptographic signatures

● Ask, ermm... a cryptograph
● Or Da Kaminsky, he makes pretty

pictures and they don't lie
● Seriously, drawing graphs helps

27-30 December 2006 Fudging with Firmware
khorben

47

Cryptographic patterns

● Different
encryption
mechanisms
– ECB Electronic

Code Book
– CBC and PCBC
– CTR
– ...

27-30 December 2006 Fudging with Firmware
khorben

48

Cryptographic patterns

ECB versus CBC: patterns may still be found

27-30 December 2006 Fudging with Firmware
khorben

49

V. Have some fun

● Disassembly
● Emulation
● Debugging

“Where's the fun”

27-30 December 2006 Fudging with Firmware
khorben

50

Disassembly software

● nasm
● GNU binutils
● OllyDbg
● IDA Pro

27-30 December 2006 Fudging with Firmware
khorben

51

Disassembly: IDA Pro

Supported architectures:
● IA-32
● MIPS
● ARM... PDP-11

Supports operating systems:
● Windows
● Linux
● OS/2...

27-30 December 2006 Fudging with Firmware
khorben

52

Emulation software

● VMWare, VirtualPC, Plex86, ...
● Bochs, QEMU, ...
● CherryOS (haha, I mean PearPC)
● GXEmul, SimOS, MipsSim, vmips, ...
● MAME \o/
● Cisco 7200 Emulator
● I'm running out of space now

27-30 December 2006 Fudging with Firmware
khorben

53

Emulator: Bochs

● Available on Windows, Linux, *BSD, ...
● Free software (GPL)
● Emulates IA-32 and AMD64
● Software simulation only
● Includes a debugging system
● Works with gdb

27-30 December 2006 Fudging with Firmware
khorben

54

Emulator: QEMU

● Now for Linux, *BSD, MacOS X, Windows
● Free software (GPL)
● Emulates many platforms:

– IA-32 and AMD64, multiprocessor
– Sparc (sun4m/32 bits and sun4u/64 bits)
– ARM (ARM926E and ARM1026E)
– MIPS...

● Runs binaries cross platform (Linux only)
● Works with gdb too

27-30 December 2006 Fudging with Firmware
khorben

55

References

● http://en.wikipedia.org/wiki/Cipher_block_chaining

● http://en.wikipedia.org/wiki/QNX

● Well you know how to search on Wikipedia, do you?

● http://www.netbsd.org/Ports/emulators.html because
NetBSD is cool like that

● Assembly reference books

● The “specifications” part of your users manuals

● And so on...

“References by pointers, or pointers to references”

27-30 December 2006 Fudging with Firmware
khorben

56

Would you like a cup of tea?

● http://www.nruns.com/
We make the network run!

● http://www.uberwall.org/
UWfirmforce released, lots of space for
improvement if you want!
Stay tuned for more...

“This is the end, my friend”

http://www.nruns.com/
http://www.uberwall.org/

