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Abstract: The recent growth in Internet usage has motivated the creation of new malicious code for 
various purposes, including information warfare. Today’s signature-based anti-viruses can detect 
accurately known malicious code but are very limited in detecting new malicious code. New malicious 
codes are being created every day, and their number is expected to increase in the coming years. 
Recently, machine learning methods, such as classification algorithms, were used successfully for the 
detection of unknown malicious code. These studies were based on a test collection with a limited 
size of less than 3,000 files, and the proportions of malicious and benign files in both the training and 
test sets were identical. These test collections do not correspond to real life conditions, in which the 
percentage of malicious files is significantly lower than that of the benign files. In this study we present 
a methodology for the detection of unknown malicious code. The executable binary code is 
represented by n-grams. We performed an extensive evaluation using a test collection of more than 
30,000 files, in which we investigated the imbalance problem. Five levels of Malicious Files 
Percentage (MFP) in the training set (16.7, 33.4, 50, 66.7 and 83.4%) were used to train classifiers. 
17 levels of MFP (5, 7.5, 10, 12.5, 15, 20, 30, 40, 50, 60, 70, 80, 85, 87.5, 90, 92.5 and 95%) were set 
in the test set to represent various benign/malicious files ratio during the detection. Our evaluation 
results suggest that varying classification algorithms react differently to the various benign/malicious 
files ratio. For 10% MFP in the test set, representing real life conditions, in general the highest 
performance achieved for the use of less than 33.3% MFP in the training set, and in specific 
classifiers was above 95% of accuracy was achieved. Additionally we present a chronological 
evaluation, in which the dataset from 2000 to 2007 was divided to training sets and tests sets. 
Evaluation results show that an update in the training set is needed. 
 
Keywords: Malicious Code Detection, Anti Virus, Machine Learning, Text Categorization, Imbalance 
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1. Introduction  
The term malicious code (malcode) commonly refers to pieces of code, not necessarily executable 
files, which are intended to harm, generally or in particular, the specific owner of the host. Malcodes 
are classified, mainly based on their transport mechanism, into five main categories: worms, viruses, 
Trojans and new group that is becoming more common, which is comprised of remote access Trojans 
and backdoors. The recent growth in high-speed internet connections and in internet network services 
has led to an increase in the creation of new malicious codes for various purposes, based on 
economic, political, criminal or terrorist motives (among others). Some of these codes have been used 
to gather information, such as passwords and credit card numbers, as well as behavior monitoring. 
Current anti-virus technology is primarily based on two approaches: signature-based methods, which 
rely on the identification of unique strings in the binary code; while being very precise, it is useless 
against unknown malicious code. The second approach involves heuristic-based methods, which are 
based on rules defined by experts, which define a malicious behavior, or a benign behavior, in order 
to enable the detection of unknown malcodes [Gryaznov, 1999]. Other proposed methods include 
behavior blockers, which attempt to detect sequences of events in operating systems, and integrity 
checkers, which periodically check for changes in files and disks. However, besides the fact that these 
methods can be bypassed by viruses, their main drawback is that, by definition, they can only detect 
the presence of a malcode after it has been executed. 
Therefore, generalizing the detection methods to be able to detect unknown malcodes is crucial. 
Recently, classification algorithms were employed to automate and extend the idea of heuristic-based 
methods. As we will describe in more detail shortly, the binary code of a file is represented by n-grams 
and classifiers are applied to learn patterns in the code and classify large amounts of data. A classifier 
is a rule set which is learnt from a given training-set, including examples of classes, both malicious 
and benign files in our case. Recent studies, which we survey in the next section, have shown that 
this is a very successful strategy. However, these studies present evaluations based on test 
collections, having similar proportion of malicious versus benign files in the test collections (50% of 
malicious files). This proportion has two potential drawbacks. These conditions do not reflect real life 
situation, in which malicious code is commonly significantly less than 50% and additionally these 



 
 

conditions, as will be shown later, might report optimistic results. Recent survey
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 made by McAfee 

indicates that about 4% of search results from the major search engines on the web contain malicious 
code. Additionally, Shin et al [2006] found that above 15% of the files in the KaZaA network contained 
malicious code. Thus, we assume that the percentage of malicious files in real life is about or less 
than 10%, but we also consider other percentages. 
In this study, we present a methodology for malcode categorization based on concepts from text 
categorization. We present an extensive and rigorous evaluation of many factors in the methodology, 
based on eight types of classifiers. The evaluation is based on a test collection 10 times larger than 
any previously reported collection, containing more than 30,000 files. We introduce the imbalance 
problem, which refers to domains in which the proportions of each class instances is not equal, in the 
context of our task, in which we evaluate the classifiers for five levels of malcode content 
(percentages) in the training-set and 17 (percentages) levels of malcode content in the test-set. We 
start with a survey of previous relevant studies. We describe the methods we used, including: 
concepts from text categorization, data preparation, and classifiers. We present our results and finally 
discuss them. 
 
1.1 Detecting Unknown Malcode via Data Mining 
Over the past five years, several studies have investigated the direction of detecting unknown 
malcode based on its binary code. Shultz et al. [2001] were the first to introduce the idea of applying 
machine learning (ML) methods for the detection of different malcodes based on their respective 
binary codes. They used three different feature extraction (FE) approaches: program header, string 
features and byte sequence features, in which they applied four classifiers: a signature-based method 
(anti-virus), Ripper – a rule-based learner, Naïve Bayes and Multi-Naïve Bayes. This study found that 
all of the ML methods were more accurate than the signature-based algorithm. The ML methods were 
more than twice as accurate when the out-performing method was Naïve Bayes, using strings, or 
Multi-Naïve Bayes using byte sequences. Abou-Assaleh et al. [2004] introduced a framework that 
used the common n-gram (CNG) method and the k nearest neighbor (KNN) classifier for the detection 
of malcodes. For each class, malicious and benign, a representative profile was constructed and 
assigned a new executable file. This executable file was compared with the profiles and matched to 
the most similar. Two different data sets were used: the I-worm collection, which consisted of 292 
Windows internet worms and the win32 collection, which consisted of 493 Windows viruses. The best 
results were achieved by using 3-6 n-grams and a profile of 500-5000 features. Kolter and Maloof 
[2004] presented a collection that included 1971 benign and 1651 malicious executables files. N-
grams were extracted and 500 features were selected using the information gain measure [Mitchell, 
1997]. The vector of n-gram features was binary, presenting the presence or absence of a feature in 
the file and ignoring the frequency of feature appearances (in the file). In their experiment, they 
trained several classifiers: IBK (KNN), a similarity based classifier called TFIDF classifier, Naïve 
Bayes, SVM (SMO) and Decision tree (J48). The last three of these were also boosted. Two main 
experiments were conducted on two different data sets, a small collection and a large collection. The 
small collection included 476 malicious and 561 benign executables and the larger collection included 
1651 malicious and 1971 benign executables. In both experiments, the four best-performing 
classifiers were Boosted J48, SVM, boosted SVM and IBK. Boosted J48 out-performed the others. 
The authors indicated that the results of their n-gram study were better than those presented by 
Shultz and Eskin [2001]. Recently, Kolter and Maloof [2006] reported an extension of their work, in 
which they classified malcodes into families (classes) based on the functions in their respective 
payloads. In the categorization task of multiple classifications, the best results were achieved for the 
classes' mass mailer, backdoor and virus (no benign classes). In attempts to estimate the ability to 
detect malicious codes based on their issue dates, these techniques were trained on files issued 
before July 2003, and then tested on 291 files issued from that point in time through August 2004. 
The results were, as expected, lower than those of previous experiments. Those results indicate the 
importance of maintaining the training set by acquisition of new executables, in order to cope with 
unknown new executables. Henchiri and Japkowicz [2006] presented a hierarchical feature selection 
approach which enables the selection of n-gram features that appear at rates above a specified 
threshold in a specific virus family, as well as in more than a minimal amount of virus classes 
(families). They applied several classifiers: ID3, J48 Naïve Bayes, SVM- and SMO to the data set 
used by Shultz et al. [2001] and obtained results that were better than those obtained through 
traditional feature selection, as presented in [Shultz et al., 2001], which mainly focused on 5-grams. 
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However, it is not clear whether these results are more reflective of the feature selection method or 
the number of features that were used. 
 
1.2   The Imbalance Problem 
The class imbalance problem was introduced to the machine learning research community about a 
decade ago. Typically it occurs when there are significantly more instances from one class relative to 
other classes. In such cases the classifier tends to misclassify the instances of the low represented 
classes. More and more researchers realized that the performance of their classifiers may be 
suboptimal due to the fact that the datasets are not balanced. This problem is even more important in 
fields where the natural datasets are highly imbalanced in the first place [Chawla et al, 2004], like the 
problem we describe.  
 
2. Methods 
 
2.1   Data Set Creation 
We created a data set of malicious and benign executables for the Windows operating system, as this 
is the system most commonly used and most commonly attacked. To the best of our knowledge and 
according to a search of the literature in this field, this collection is the largest one ever assembled 

and used for research. We acquired the malicious files from the VX Heaven website
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. After removing 
obfuscated and compressed files, we had 7688 malicious files. To identify the files, we used the 

Kaspersky
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 anti-virus and the Windows version of the Unix ‘file’ command for file type identification. 
The files in the benign set, including executable and DLL (Dynamic Linked Library) files, were 
gathered from machines running Windows XP operating system on our campus. The benign set 
contained 22,735 files. The Kaspersky anti-virus program was used to verify that these files do not 
contain any malicious code. 
 
2.2   Data Preparation and Feature Selection 
We parsed the files using several n-gram lengths moving windows, denoted by n. Vocabularies of 
16,777,216, 1,084,793,035, 1,575,804,954 and 1,936,342,220, for 3-gram, 4-gram, 5-gram and 6-
gram respectively were extracted. Later each n-gram term was represented using its Term Frequency 
(TF), which is the number of its appearances in the file, divided by the term with the maximal 
appearances. Thus each term was represented by a value in the range [0,1]. 
In machine learning applications, the large number of features (many of which do not contribute to the 
accuracy and may even decrease it) in many domains presents a huge problem. Moreover, in our 
problem, the reduction of the amount of features is crucial, but must be performed while 
simultaneously maintaining a high level of accuracy. This is due to the fact that, as shown earlier, the 
vocabulary size may exceed billions of features, far more than can be processed by any feature 
selection tool within a reasonable period of time. Additionally, it is important to identify those terms 
that appear in most of the files, in order to avoid vectors that contain many zeros. Thus, we first 
extracted the top features based on the Document Frequency (DF) measure, which is the number of 
files the term was found at. We selected the top 5,500 features which appear in most of the files, 
(those with high DF scores). Later, three feature selection methods were applied to each of these two 
sets. Since it is not the focus of this paper, we will describe the feature selection preprocessing very 
briefly. We used a filters approach, in which the measure was independent of any classification 
algorithm to compare the performances of the different classification algorithms. In a filters approach, 
a measure is used to quantify the correlation of each feature to the class (malicious or benign) and 
estimate its expected contribution to the classification task. We used three feature selection 
measures. As a baseline, we used the document frequency measure DF (the amount of files in which 
the term appeared in), Gain Ratio (GR) [Mitchell, 1997] and Fisher Score (FS) [Golub et al., 1999]. 
We selected the top 50, 100, 200 and 300 features based on each of the feature selection techniques. 
 
2.3   Classification Algorithms 
We employed four commonly used classification algorithms: Artificial Neural Networks (ANN), 
Decision Trees (DT), Naïve Bayes (NB), as well as Support Vector Machines (SVM) with three kernel 
functions. We briefly describe the classification algorithms we used in this study. 
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2.3.1   Artificial Neural Networks 
An Artificial Neural Network (ANN) [Bishop, 1995] is an information processing paradigm inspired by 
the way biological nervous systems, such as the brain, process information. The key element is the 
structure of the information processing system, which is a network composed of a large number of 
highly interconnected neurons working together in order to approximate a specific function. An ANN is 
configured for a specific application, such as pattern recognition or data classification, through a 
learning process during which the individual weights of different neuron inputs are updated by a 
training algorithm, such as back-propagation. The weights are updated according to the examples the 
network receives, which reduces the error function.  
 

2.3.2   Decision Trees 
Decision tree learners [Quinlan, 1993] are a well-established family of learning algorithms. Classifiers 
are represented as trees whose internal nodes are tests of individual features and whose leaves are 
classification decisions (classes). Typically, a greedy heuristic search method is used to find a small 
decision tree, which is induced from the data set by splitting the variables based on the expected 
information gain. This method correctly classifies the training data. Modern implementations include 
pruning, which avoids the problem of over-fitting. In this study, we used J48, the Weka [Witten and 
Frank, 2005] version of the C4.5 algorithm [Quinlan, 1993]. An important characteristic of decision 
trees is the explicit form of their knowledge, which can be easily represented as rules. 
 
2.3.3   Naïve Bayes 
The Naïve Bayes classifier is based on the Bayes theorem, which in the context of classification 
states that the posterior probability of a class is proportional to its prior probability, as well as to the 
conditional likelihood of the features, given this class. If no independent assumptions are made, a 
Bayesian algorithm must estimate conditional probabilities for an exponential number of feature 
combinations. Naive Bayes simplifies this process by assuming that features are conditionally 
independent, given the class, and requires that only a linear number of parameters be estimated. The 
prior probability of each class and the probability of each feature, given each class is easily estimated 
from the training data and used to determine the posterior probability of each class, given a set of 
features. Empirically, Naive Bayes has been shown to accurately classify data across a variety of 
problem domains [Domingos and Pazzani, 1997]. 

2.3.4   Support Vector Machines 
SVM is a binary classifier, which finds a linear hyperplane that separates the given examples of two 
classes known to handle large amounts of features. Given a training set of labeled examples in a 
vector format, the SVM attempts to specify a linear hyperplane that has the maximal margin, defined 
by the maximal (perpendicular) distance between the examples of the two classes. The examples 
lying closest to the hyperplane are known as the supporting vectors. The normal vector of the 
hyperplane is a linear combination of the supporting vectors multiplied by LaGrange multipliers 
(alphas). Often the data set cannot be linearly separated, so a kernel function K is used. The SVM 
actually projects the examples into a higher dimensional space to create a linear separation of the 
examples. 
 
3   Evaluation 
 
3.1   Research Questions 
We wanted to evaluate the proposed methodology for the detection of unknown malicious codes 
through two main experiments. The first experiment was designed to determine the best conditions, 
including three aspects: 
1. Which n-gram is the best: 3, 4, 5 or 6? 
2. Which top-selection is the best: 50, 100, 200 or 300 and which features selection: DF, FS or GR? 
After identifying the best conditions, we performed a second experiment to investigate the imbalance 
problem introduced earlier. Additionally, we performed a chronological evaluation on the ANN as we 
will elaborate later. 
 
3.1.1   Evaluation Measures 
For evaluation purposes, we measured the True Positive Rate (TPR) measure, which is the number of 
positive instances classified correctly, as shown in Equation 1, False Positive Rate (FPR), which is the 
number of negative instances misclassified (Equation 1), and the Total Accuracy, which measures the 



 
 

number of absolutely correctly classified instances, either positive or negative, divided by the entire 
number of instances shown in Equation 2. 
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3.2   Experiments and Results 
 
3.2.1   Experiment 1 – Tuning Phase 
To answer the three questions, presented earlier, we designed a wide and comprehensive set of 
evaluation runs, including all the combinations of the optional settings for each of the aspects, in a 5-
fold cross validation format for all four classifiers. Note that the files in the test-set were not in the 
training-set representing unknown files to the classifier. 
 
Feature Selections and Top Selections. Figure 1 presents the mean accuracy of the three feature 
selections and the four top selections. Generally, the Fisher score was the best method, starting with 
high accuracy even with 50 features. Unlike the others, in which the 300 features out-performed, the 
DF’s accuracy decreased after the selection of more than 200 features, while the GR accuracy 
significantly increased as more features were added. 
 

 
Figure 1. The FS lead to very good results even with just 50 features and increased as the number of 
features increased. At 200 features, the accuracy of GR increased significantly and the accuracy of 
DF decreased. 
 
In Table 1, we present the results of each classifier under the conditions, in which the highest mean 
performance observed for all the classifiers: top 300 features selected by Fisher score where each 
feature is 5-gram represented by TF from the top 5500 features. The DT and ANN outperform and 
have low false positive rates, while the SVM-LIN also performed very well. The poor performance of 
the Naïve Bayes may be explained by the features independence assumption of the NB classifier. 
 
Table 1: The DT and ANN out-performed, while maintaining low levels of false positives. 

Classifier Accuracy FP FN 

ANN 0.941 0.033 0.134 

DT 0.943 0.039 0.099 

NB 0.697 0.382 0.069 

SVM-LIN 0.921 0.033 0.214 

3.2.2   Experiment 2 – The Imbalance Problem 
In the second experiment we present our main contribution, which was never investigated before. In 
this set of experiments, we used the top 300 features selected by Fisher Score where each feature is 



 
 

5-gram represented by TF from the top 5500 features (selected from the entire n-grams based on the 
DF measure). We created five levels of Malicious Files Percentage (MFP) in the training set (16.7, 
33.4, 50, 66.7 and 83.4%). For example, when referring to 16.7%, we mean that 16.7% of the files in 
the training set were malicious and 83.4% were benign. The test set represents the real-life situation, 
while the training set represents the set-up of the classifier, which is controlled. While we assume that 
a MFP above 30% (of the total files) is not a realistic proportion in real networks, but we examined 
high rates in order to gain insights into the behavior of the classifiers in these situations. Our study 
examined 17 levels of MFP (5, 7.5, 10, 12.5, 15, 20, 30, 40, 50, 60, 70, 80, 85, 87.5, 90, 92.5 and 
95%) in the test set. Eventually, we ran all the product combinations of five training sets and 17 test 
sets, for a total of 85 runs for each classifier. We created two sets of data sets in order to perform a 2-
fold cross validation-like evaluation to make the results more significant. 
 
Training-Set Malcode Percentage. Figure 2 presents the mean accuracy (for all the MFP levels in 
the test-sets) of each classifier for each training MFP level. The ANN and DT had the most accurate, 
and relatively stable, performance across the different MFP levels in the training set, SVM-LIN 
performed well, but not consistently, while NB generally performed poorly. 
 
10% Malcode Percentage in the Test Set. We consider the 10% MFP level in the test set as a 
realistic scenario. Figure 3 presents the mean accuracy in the 2-fold cross validation of each classifier 
for each malcode content level in the training set, with a fixed level of 10% MFP in the test set. 
Accuracy levels above 95% were achieved when the training set had a MFP of 16.7%, while a rapid 
decrease in accuracy was observed when the MFP in the training set was increased. Thus, the 
optimal proportion of malicious files in a training set for practical purposes should be less than 30% 
malicious files. 
 

  
Figure 2. Mean accuracy for various MFPs in the 
test set. ANN and DT out-performed, with 
consistent accuracy, across the different malcode 
content levels. 

Figure 3. Detection accuracy for 10% Malcode in 
the test set. Greater than 95% accuracy was 
achieved for the scenario involving a low level 
(16.7%) of malicious file content in the training 
set. 

3.2.3   Experiment 3 – Chronological Evaluation 
In this experiment we wanted to evaluate the importance and need in updating the training set. The 
question was how important it is to update the repository of malicious and benign files and whether in 
specific years the files were more contributive to the accuracy, when introduced in the training set or 
in the test set. In order to answer these questions we divided the entire test collection into years from 
2000 to 2007, in which the files were created. We had 7 training sets, in which each file contained 
files from 2000 to 2006 (according to the year). Each training set was evaluated separately on each 
following year till 2007. Additional we had two experimental setups, in which the training set had 
16.6% MFP and 50% MFP, while the MFP at the test was set to 10% representing real life conditions. 
We present the results of the chronological evaluation when we used the ANN classifier which 
outperformed in the previous experiments.  
Figure 4 presents the results when having 50% MFP at the training set. Generally, at most of the 
cases the accuracy was between 0.9, out of when using the 2000 training set and when testing on 
2006 and 2007. When testing on 2007 examples a decrease in the accuracy was observed, while 
when the training set of till 2006 was used the highest accuracy was achieved. 

 



 
 

 
Figure 4. The results for having 50% MFP at the training set and 10% MFP at the test set. A 

decrease in the performance is observed at the 2007 test set. 
 
Figure 5 presents the results when 16.6% MFP was in the training set. Generally the accuracy was 
higher, as expected, and there is a quite clear trend, in which as the training set is more updated the 
accuracy is higher, out of the training set of till 2005 which had bad performance when testing on 
2007. 

 

 
Figure 5. The results for having 16.6% MFP at the training set and 10% MFP at the test set. A 

decrease in the performance is observed at the 2007 test set. 
 

4   Discussion and Conclusions 
We presented a methodology for the representation of malicious and benign executables for the task 
of unknown malicious code detection. This methodology enables the highly accurate detection of 
unknown malicious code, based on previously seen other examples, while maintaining low levels of 
false alarms. In order to reduce the number of n-gram features, which ranges from millions to billions, 
we first used the DF measure to select the top 5500 features. Based on experiment 1, the Fisher 
Score feature selection outperformed the other methods and using the top 300 features resulted in 
the best performance. Generally, the ANN and DT achieved high mean accuracies, exceeding 94%, 
with low levels of false alarms. 



 
 

In the second experiment, we examined the relationship between the MFP in the test set, which 
represents real-life scenario, and in the training-set, which being used for training the classifier. In this 
experiment, we found that there are classifiers which are relatively inert to changes in the MFP level 
of the test set. In general, the best mean performance (across all levels of MFP) was associated with 
a 50% MFP in the training set (Fig. 2). However, when setting a level of 10% MFP in the test-set, as a 
real-life situation, we looked at the performance of each level of MFP in the training set. A high level 
of accuracy (above 95%) was achieved when less than 33% of the files in the training set were 
malicious, while for specific classifiers, the accuracy was poor at all MFP levels (Fig. 3).  
In the third experiment we wanted to learn the importance in updating the training set along the time. 
Thus, we divided the test collection into years and evaluated training sets of selected years on the 
next years. For 16% MFP in the training set and 10% MFP in the test set we found that the accuracy 
was high most of the time, while in 2007 it slightly decreased. As was presented in the second 
experiment 16.6% MFP in the training set was better. 
Based on our extensive and rigorous experiments, we conclude that when one sets up a classifier for 
use in a real-life situation, he should consider the expected proportion of malicious files in the stream 
of data. Since we assume that, in most real-life scenarios, low levels of malicious files are present, 
training sets should be designed accordingly. As future work we plan to apply this method on a dated 
test collection, in which each file has its initiation date, to evaluate the real capability to detect 
unknown malcode, based on previous known malcodes. 
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