
J Comput Virol
DOI 10.1007/s11416-006-0014-0

ORIGINAL PAPER

The Java mobile risk

Daniel Reynaud-Plantey

Received: 3 January 2006 / Accepted: 5 May 2006
© Springer-Verlag France 2006

Abstract Mobile security is a relatively new field of
research. The specific risks and counter-measures have
not been studied thoroughly yet. Java can be useful in
this field because it has been designed to run untrust-
ed code safely on mobile, heterogeneous networks. This
paper, based on an experimental study of the low-level
security of Java 2 Micro Edition (JSR 118 Expert Group,
2006), identifies some potential problems and their solu-
tions in case Java malicious applications appear in the
wild.

1 Introduction

Java technology is particularly interesting in mobile envi-
ronments because of its built-in security features and
portability. These features include downloading over the
air and running untrusted code in a safe environment, as
well as end-to-end security with networking and cryp-
tography APIs.

This paper focuses on the practical aspects of the risks
associated with Java 2 Micro Edition. Though the archi-
tecture is roughly the same as the standard edition, there
are differences that induce specific problems. An exper-
imental study of J2ME low-level security has been con-
ducted on a Series 60 phone in order to identify and
evaluate some of these risks.

After a quick introduction to J2ME, configurations,
profiles and the new verification scheme, the methodol-

D. Reynaud-Plantey (B)
Ecole Supérieure et d’Application des Transmissions,
Laboratoire de virologie et de cryptologie,
B.P. 18, 35998 Rennes Armées, France
e-mail: daniel.reynaud-plantey@esat.terre.defense.gouv.fr

ogy of the experimental study will be explained. Then,
Sect. 5 underlines some problems that are seldom men-
tioned for the user. Finally, Sect. 6 underlines a few
problems that analysts have to consider in order to
disassemble a midlet correctly.

2 Quick Introduction to J2ME

This section briefly explains what is J2ME compared to
J2SE and J2EE and how it is organised.

2.1 Different platforms, different flavours

Java was supposed to be a kind of universal language,
able to run on smart cards as well as on mainframes.
As obviously you do not expect the same features from
such different devices, the Java technology has to adapt
to what people expect from it and to the capabilities
of the device it is running on. For example, a Java pro-
gram must be able to run for days without rebooting
on an enterprise server. But on a workstation, you have
different expectations: you probably want to use short
term applications with an efficient graphical user inter-
face. That’s why Java comes in different flavours:

• Java 2 Enterprise Edition (J2EE), for running scal-
able enterprise applications;

• Java 2 Standard Edition (J2SE), aimed at worksta-
tions;

• Java 2 Micro Edition (J2ME), for mobile devices;
• Java Card, for smart cards.

For the Java developer, it means two things: with a single
language, you can write applications for every platform.

D. Reynaud-Plantey

But it also means that you will have to write code for a
given platform, and it usually means that you may have
to use different language constructs (for example you
might not perform floating point operations on a smart
card), and you will definitely have to use different APIs.
This might or might not be a big deal, depending on what
you want to do exactly. From a security perspective, the
broad range of devices might sound appealing to mali-
cious programmers but they will have to face another
drawback of the Java technology: the lack of low-level
control (such as pointer arithmetic or OS-specific fea-
tures).

3 A closer look at J2ME

3.1 Configurations

So far, we have seen that J2ME was intended to bring
Java to mobile devices. These devices include mobile
phones and PDAs as well as washing machines, TV set-
top boxes or car electronic equipment. What do they all
have in common? They are mobile, which means they
have a limited amount of memory and computing power.
All their other characteristics may vary, some of them
might need batteries, some might have a good band-
width or not, and some might not even have a screen.
As a consequence, Java needs again to be adapted to
different kinds of mobile devices, depending on their
capabilities. This is the role of a configuration [4]: pro-
vide the basic set of functionalities for a specific group
of devices with similar characteristics, such as the total
amount of memory and network connectivity. There-
fore, a configuration provides a virtual machine and a
set of core classes.

Two configurations have been defined:

• Connected, Limited Device Configuration (CLDC)
[10]: it is the configuration currently in use on mobile
phones and some PDAs. It is defined in the Java
Specification Request (JSR) 30.

• Connected Device Configuration (CDC): for de-
vices with more memory and processing power. From
the developer point of view it is closer to J2SE.

3.2 Profiles

We have seen that J2ME had to be split into configura-
tions in order to fit on different devices. But even similar
devices like mobile phones might offer different ranges
of memory and processing power. They also might have
more to offer in terms of underlying user interface, or
advanced features like Bluetooth. This is why configu-

rations are not enough and as a result profiles have been
defined. A profile is a set of APIs which sit on top of a
given configuration in order to take better advantage of
the features of a device.

Six profiles have been defined, but only one is a CLDC
profile: Mobile Information Device Profile (MIDP). It is
made to take advantage of the capabilities of the latest
mobile phones, and its APIs cover user interfaces, con-
nectivity, data storage, messaging and gaming. Profiles
only address security issues at the application and end-
to-end levels. For instance, they can provide cryptogra-
phy APIs or features such as access to the file system.

3.3 J2ME low-level security

The main difference between J2SE and J2ME from the
security approach is that J2ME introduces a new ver-
ification algorithm. A Java program is subject to some
restrictions: it cannot explicitly deallocate memory, ac-
cess a specific memory location, or interact directly with
the OS. To ensure that a Java program can’t perform
these operations, it is first loaded in memory and then
verified. The verification process is a very complex topic
and if it is not made correctly the whole security architec-
ture collapses. The new verification algorithm in J2ME
comes along with an important modification in the class
file format specification: a new attribute called Stack-
Map has been defined. Each method must contain a
StackMap attribute which makes the verification pro-
cess faster and less memory-consuming. Basically, there
must be a stack map at the beginning of each basic block
in a method indicating the number and the types of the
objects on the stack for this basic block. The former
algorithm consisted in inferring and then checking type
safety, with StackMap attributes the inference step can
be skipped.

From the developer’s point-of-view, it means that
additional steps are required before a program can be
run. After the compilation, the classes must be preveri-
fied (by the developer) and packed in a jar file. The so-
called preverification step adds the StackMap attributes
along with some other modifications. The name is quite
deceptive however, because it is actually an additional
compilation more than a verification. The real verifica-
tion can only take place on the virtual machine of the
user.

There are some other important differences between
J2ME and J2SE from the security perspective, for exam-
ple in J2ME there is no support for custom classloaders
and for the Java Native Interface (JNI). These two fea-
tures are very useful for virus writers and are almost
needed for high-level, sophisticated viruses.

The Java mobile risk

4 Experimental study

This section is a quick overview of the experimental
study which led to this paper [9]. The goal of this study
was to test the low-level security of a J2ME implemen-
tation on a telephone.

4.1 Testing strategy

There are two major strategies for testing software: white-
box (or structural) and black-box (or behavioural) test-
ing. The main difference between these strategies is that
white-box testing assumes that the tester has access to
the source code of the application. Though there is a
reference implementation of the KVM for which the
source code is available, there is no way to tell exactly
which VM is installed for a given phone (and even if the
reference KVM is used, it might have been compiled
with different options set). Another interest of white-
box testing is its ability to test each component of the
software individually. This is not extremely useful for
vulnerability assessment because bugs might be located
in “unreachable” parts of the code, and therefore might
not be exploitable. Moreover, due to the embedded na-
ture of the KVM it is impossible to instrument its code
on the telephone, and as a consequence white-box test-
ing the KVM would have meant working on a PC rather
than a telephone.

For all these reasons, black-box testing was chosen.
Practically speaking, it means that test midlets had to
be created, installed and run on the telephone, and then
the behaviour of the telephone had to be observed and
analysed.

4.2 Coverage

When people refer to Java low-level security they usu-
ally refer to the bytecode verifier. However, on a J2ME
implementation some lower levels are worth testing.
Here are the potential targets for a test:

• The installer;
• The jar file handler (of the installer or the KVM);
• The class file format integrity checker;
• The bytecode verifier;
• The runtime environment;
• The APIs.

In order to produce accurate results, the object of the
test had to be narrowed. Therefore, the focus has mainly
been put on the jar file handler and the class file format
integrity checker. It turned out that the installer was
tested too, though it was not a primary objective. Note

Fig. 1 Class files organisation

that the bytecode verifier has not been tested directly
because of the specific amount of work needed, it would,
however, be worth testing too.

4.3 Target

The next step was to define exactly the target of the
study, that is to say the kind of bugs to look for. Ulti-
mately, the goal was to find class files as shown in Fig. 1.
The expression class files is used instead of classes be-
cause the study involved creating invalid class files, which
may not represent any class (according to the specifica-
tion). This distinction is very important: jar files are cre-
ated, containing class files, which might eventually but
not necessarily be parsed and translated into working
classes. Figure 1 refers to the set of “safe” Java class
files. Giving a formal definition of “safe” is very hard,
and this is not very important for this study (we can as-
sume that “safe” and “valid” mean the same). The set
of verified Java class files is also mentioned, it is the set
of class files that will be declared valid by a verifier. The
mission of the verifier is to validate only safe class files,
but Fig. 1 shows that some unsafe class files are verified.
For this study, we assumed that the subset of unsafe but
verified class files existed, and this is what we are looking
for.

4.4 Tools Used

At the time of the study, no low-level manipulation tools
for jar (i.e. zip) files could be found. And one of the
only standard tools for manipulating classes was Jasmin,
a Java assembler. Its purpose, however, was more to
learn the virtual machine’s instruction set rather than
to create invalid files. Moreover, the existing Java disas-
semblers were not satisfying, most of them crashing or
giving no output when they encounter an invalid class
file. Therefore there was a need for new tools, fulfilling
the following requirements:

D. Reynaud-Plantey

• They must give sufficient low-level control over the
creation of binary files (zip and class);

• The disassembling tools must work on broken, in-
valid, illegal or truncated files. This is a very strong
constraint, and this is one of the top reasons to create
new tools;

• The tools must automate a maximum of the process
of creating invalid midlet suites.

The toolkit has been written in Java, it has a command-
line interface and has been released under the GNU
General Public License [8]. It contains the following
tools:

• zip2xml: a zip “disassembler”. It converts a zip file
to an equivalent xml file, each element in the xml
file representing a data structure defined in the ZIP
File Specification [6].

• xml2zip: the opposite tool, taking the xml represen-
tation of a zip file and producing the binary file. The
output file can be totally invalid because each value
in the specification can be modified manually.

• jasmin: the de-facto standard Java assembler. For
the occasion, it has been updated in order to give
more control over the output files. Some of the latest
Java attributes are now also supported.

• dejasmin: a Java disassembler, able to produce out-
put in the new Jasmin format.

A future improvement idea would be to provide tools
such as class2xml and xml2class in order to give absolute
control over the output class file.

4.5 Experimental protocol

Once the strategy, the target and the tools have been
found, an experimental protocol had to be defined. The
idea of producing test files, running them on the tele-
phone and then analysing its behaviour is fine but it
would have given nothing. The problem is that on the
tested telephone, when an error or an exception is thrown,
the VM shuts down silently. There is no error message or
stack trace that could help understanding the problem.
Therefore, it is impossible to make behavioural testing
with just a telephone, precisely due to the lack of ex-
plicit behaviour. A small workaround has been used:
first produce invalid jar and class files, and then run
them on a telephone, an emulator and a J2SE runtime
environment. This way, it is possible to understand the
behaviour of the KVM on the telephone, compared to
the other VMs. The test platform was the following:

• A Nokia 6680. It is a Series 60 v2 phone, with CLDC
1.1 and MIDP 2.0 on Symbian OS v8.0a;

• Sun Wireless Toolkit 2.3 Beta as the emulator;
• Java 1.5 SDK on Windows XP SP2 as the J2SE run-

time environment.

Finally, what is the nature of the errors in the jar and the
class files? The ZIP file format specification and the class
file format specification define data structures with cer-
tain structural or semantic constraints. The idea was to
create jar and class files with invalid values for each data
structure, one at a time. For example, for an unsigned
4-byte value in a class file, it can be tested for the values
0, 0xFFFF, 0x7FFFFFFF, 0xFFFFFFFF and some other
values that might seem interesting or are declared for-
bidden for this particular data structure. This technique
is inspired from a more general idea called fuzzing [1],
which can be applied to any input parser and which
consists in generating slightly invalid input for a given
parser, or valid input but with unusual sizes or values in
order to find implementation flaws.

4.6 Test results

First of all, no security flaw was discovered during the
study. However, some interesting results were found and
their consequences are going to be detailed in the fol-
lowing sections. Here is a quick summary:

• A serious J2SE bug has been found in the class file
parser and has been reported to Sun [3] (the attri-
bute_length, a 4-byte unsigned value, was parsed as
a signed value).

• There were many differences between the telephone
and the emulator, contrary to one of the initial asser-
tions in this study. For example, it was possible to
create a jar file that can run correctly only on the
telephone, not on the emulator.

• Some totally unexpected behaviours showed up, par-
ticularly in the Application Management Software
on the telephone. For example, the result of a given
installation can depend on the previous installations.
It was even possible to craft a particular jar file which
installation always fails but will also make the next
installation of a midlet fail.

• Many bugs seemed to come from the fact the the
installer unpacks and parses each class file in the jar
file (detailed in Sect. 5.3).

• The jar file parsing is totally different for J2SE, for
the emulator and for the VM on the telephone (de-
tailed in Sect. 6.2). This might be exploited by mal-
ware authors to protect their creations.

The Java mobile risk

A detailed analysis of the results as well as the results
raw data can be found at [9].

5 The Java mobile risk for the user

This section underlines the importance of mobile de-
vices security for the user and some problems that might
not always be obvious: namely that a nice logo does not
necessarily mean the product is secure and that installing
a program without even running it can be dangerous.

5.1 A sensitive environment

Why would there be a specific risk for mobile Java? The
short answer is the potential cost for the user. Java is
widely used on the web for applets and though there
have been historical security problems with them, hos-
tile applets have not been that important. Given the fact
that the average workstation can be considered compro-
mised in some way, people don’t seem to pay too much
attention to “exotic” threats such as Java malware. How-
ever, if a malicious application gains control of a mobile
phone, it may be able to send an arbitrary number of
SMS or MMS, or even issue calls. Therefore, the serious
risk here is to end up with a huge monetary cost for the
user.

Another problem specific to mobile phones is that
the damage done to the device can be hard to put back.
It might for example be impossible to totally disinfect
a virus or restore some data. The simplest solution in
many cases is probably to just replace the telephone
with a new one.

5.2 Signed midlets

To gain more privileges on the target device, a mid-
let can be signed. It can then access a different pro-
tection domain, depending on the MIDP version and
the root certificate used to sign the application. MIDP
2.0 defines four protection domains: Untrusted, Trusted
Third Party, Operator and Manufacturer. An unsigned
midlet runs in the untrusted protection domain, with
very few privileges. For example, an untrusted midlet
can only access the file system with explicit user approval
and the access to some files might not be permitted at
all. The trusted third party domain does not allow full
access to the system, as opposed to the situation with ap-
plets. And it is no longer interesting to self-sign midlets
because they will run in the untrusted domain. The sit-
uation is better for malware development with applets:
you can self-sign your malicious applet and the user just

has to answer yes when prompted and you have full
access to the system of the victim.

To have a midlet signed for the trusted third party do-
main, it is possible to use the Java Verified program [2].
It was initiated by the industry under the Unified Test-
ing Initiative label. It is a commercial program giving
you the opportunity to promote your midlet and to use
the Java Powered logo. In order to be signed, the midlet
has to be tested automatically and manually by a test
provider (which is a company). If the midlet is compli-
ant with some quality and behaviour rules it is signed
and will run in the trusted third party domain on mobile
phones for which the UTI Root Certificate is available.

Users have to be aware that running a Java program
with the Java Powered logo, which has been thoroughly
tested and digitally signed does not mean it is not a
malicious application. This is possible because programs
such as Java Verified are commercial and are therefore
made for commercial applications. It means that when
you submit your midlet for testing, you do not have to
provide the source code. And due to some intellectual
property legislation, the tester probably does not have
the right to reverse engineer the application to check
that there are no hidden features. So the tester can just
ensure that the program is not a malware by just using it a
few times, which is of course impossible. Consequently,
malicious applications can undergo the Java Verified
testing process successfully, the malware author just
has to implement something like:if (date < some-
Date) then showFakeGame() else launchReal
Malware(). This is not specific to the Java Verified
program, it is true for every behaviour-based testing
program.

5.3 Malicious installation

The study which led to this paper outlined many prob-
lems in the Application Management Software on the
telephone. It is the piece of software responsible for the
installation and removal of applications on the phone.
Most of these problems showed up while testing the
JAR file format. The purpose was to study the response
of the virtual machine to specially crafted JAR files
but it turned out that most of the time these JAR files
never reached the virtual machine at all because they
caused errors in the AMS. It was surprising because
some behaviours that have been observed were totally
unexpected, for example on the tested telephone the
AMS seemed to unpack each class file in the archive
(even unused class files) and to parse them up to this_
class (it is a field in class files located after the constant
pool). Though there must be a good reason for it to be
implemented this way, it is quite puzzling.

D. Reynaud-Plantey

The problem with these kind of behaviours is that they
are unexpected because they are totally undocumented.
For testers, it sounds more likely to find bugs in undocu-
mented pieces of software that in publicly specified and
reviewed processes such as the bytecode verification. It
turned out to be true: it was very easy to find bugs in the
AMS and they might eventually become security flaws.
This is even more deceptive for the user because we
naturally have the intuition that it might be dangerous
to run something. In this case, it might be dangerous
to install something, without even having to run it to
trigger the payload.

5.4 Need for more usability

The general impression is that the whole J2ME secu-
rity architecture is way too tight. Developers need more
features, and users want more usability. For example,
they want to be able to install a game without being
prompted five times with “are you sure?”, and then five
more times in the game when it tries to use Bluetooth
to connect to their friend and to access the file system to
save the game. In the early times there was no support
at all for Bluetooth or file I/O, now it is supported but
with a lot of security prompts. These security prompts
are likely to disappear or at least to be less omnipresent.
This approach, setting up a J2ME environment with “too
tight” security, must be intentional. The industry prob-
ably did not want a virus outbreak in the early days of
mobile Java but the situation is probably going to evolve
as J2ME environments mature.

On the tested telephone, it seemed to be impossible to
make a Java virus without breaking the sandbox because
the file connection attempts at other JAR files threw a
SecurityException. This is good news. However, the bad
news is that the file permission system is not transpar-
ent at all, and it is more than likely that it is telephone
dependant and maybe even firmware dependant. Any-
way, it is not transparent at all, therefore there is a risk
as explained above.

6 The Java mobile risk for the analyst

In this part of the paper, we assume that mobile Java
malicious applications exist in the wild (this is currently
not the case) and that they have to be analyzed quickly
in order to be stopped. So the word “analyst” refers to
a reverse engineer trying to figure out what a given mal-
ware does. Some of the problems analysts might encoun-
ter with their reverse engineering tools are going to be
underlined here.

6.1 What you see is not what you run

This is particularly true if midlets are to be reverse engi-
neered. Analysts are very skilled people but they are
humans: they are going to use tools to do their job. The
problem is that most Java reverse engineering tools are
outdated, if maintained at all. Most disassemblers and
decompilers have been developed at a time when people
found it revolutionary that you could translate accu-
rately Java bytecode back to source code. In the mean
time, the Java language has evolved and J2ME appeared.
J2ME introduces a new verification process with Stack-
Map attributes. If a vulnerability is found in the verifier,
it may use malformed StackMap attributes. Therefore
it might be impossible to understand the vulnerability
without looking at the StackMap attributes. And here is
a big problem for the analyst: StackMap attributes are
silently ignored by most Java reverse engineering tools,
along with other new attributes. So it is possible to spend
hours trying to figure out what a given program does, but
it is just impossible without some “hidden” attributes.

The last problem of analysis tools is the way they re-
solve ambiguities. Sometimes, file format specifications
might contain ambiguities that might complicate the file
parsing. The class file format is very well specified and
there are only very few ambiguities. Here is an exam-
ple of ambiguity: as specified in the Java Virtual Ma-
chine Specification, the attribute_length field of a
ConstantValue attribute must be 2. But what hap-
pens if a class file parser encounters an attribute with
name “ConstantValue”, a physical length of 2 but an
attribute_lengthvalue different from 2? The behav-
iour is implementation-dependant and might vary be-
tween a real virtual machine which might skip this attri-
bute and a reverse engineering tool which might not
know what to do with this strange attribute. These kinds
of ambiguities are very common in the zip file format.

The solution to these problems is to use up-to-date,
reliable and low-level reverse engineering tools. The tin-
apoc toolkit described in Sect. 4 has been created for this
purpose.

6.2 Multiple behaviors exploitation

Different systems have different reactions, or behav-
iours, when they have to deal with slightly invalid input.
Here are some of the possible behaviours:

• Clean exit;
• Error message and exit;
• Warning but the program tries to cope with the error;
• Bug or incorrect behavior;

The Java mobile risk

• Crash;
• Nothing: the error has not been noticed.

By running slightly invalid jar and class files on different
platforms, very different behaviours have been encoun-
tered:

• On the telephone: “clean exits” for the VM (some
crashes might have not been noticed, anyway there
was no error message). Lots of bugs and incorrect
behaviours in the AMS.

• On the emulator: very broad range of response,
there was a quite large number of crashes though.

• On the PC: usually an error message with the stack
trace, useful for debugging.

We can notice that the behaviours are very different on
each platform for the same input files. It means that for
a given input file, different virtual machines will react
differently. It is quite easy to craft a jar file that will run
only on a telephone but not on an emulator or a PC with
such results. The problem is that it can be exploited by
malware authors if they study the behaviour of a tele-
phone and compare it to the behavior of a debugger or
a disassembler. It is even easier for debuggers because
in order to debug a midlet, a debugger has to connect to
a running emulator. So if the emulator does not handle
the file successfully, the debugger will fail too. Disassem-
blers are harder to fool but in order to work, the class
files have to be extracted from the JAR file and it is very
easy to produce hard-to-parse JAR files.

To summarize: by studying the reactions to errors in
input files for different systems (a target phone, an emu-
lator, an extraction utility), it is easy to produce a midlet
that will run but cannot be analysed without modifica-
tions. The solution would be to specify the exact behav-
ior of an implementation when it encounters an error.
In practice this is impossible to achieve, therefore there
is a need for reliable and low-level analysis tools.

7 Conclusion

We have seen that the user must be aware of the spe-
cific risks of mobile Java. The threat is less serious than
on PCs but it might evolve. And in case the situation
evolves and malicious applications appear for J2ME,

analysts need to be equipped with efficient tools. Finally,
we have seen that a general but simple way to increase
the security of J2ME is to adopt more transparent imple-
mentations and to take care when removing security
measures.

The current security level of J2ME implementations
is satisfying but likely to decrease. Java viruses for J2ME
are probably going to appear, even as proof-of-concepts.

The last thing is that the landscape of Java malware
is almost empty. In the short run, real J2ME malware is
not likely to appear because it would need a lot more
work than native malware, for less benefit.

Acknowledgements My thanks go to Mr. John Healy, lecturer at
the Galway-Mayo Institute of Technology in Ireland, who directed
and helped me throughout this study. I would also like to thank
the Irish officers from USAC in Galway for their support and
invaluable friendship, as well as Lieutenant-Colonel Filiol for his
confidence in my work.

References

1. Holz, T., Van Sprundel I.: Recherche de vulnérabilités à l’aide
du fuzzing, MISC - Le magazine de la sécurité informatique,
23, janvier (2006)

2. Java Verified:Unified Testing Criteria for Java(TM) Tech-
nology-Based Applications for Mobile Devices, Version 2.0,
http://www.javaverified.com

3. J2SE Bug Report http://bugs.sun.com/bugatabase/view_bug.
do?bug_id=6352834 (2005)

4. JSR 118 Expert Group Mobile Information Device Profile
for J2ME, Version 2.0, http://www.jcp.org/en/jsr/detail?id=118
(2006)

5. Lindholm, T., Yellin, F.: The Java Virtual Machine Specifica-
tion (Java Series), 2nd ed., Addison-Wesley, Reading (1996)

6. PKWARE : ZIP File Format Specification 6.2.1.,
http://www.pkware.com/(2006)

7. Reynaud-Plantey, D.: Reverse Engineering and Java
Viral Analysis. In: Proceedings of the 2005 Virus
Bulletin International Conference, pp. 121–126.
http://www.esat.terre.defense.gouv.fr/cresat/articles/java_mal-
ware_analysis.pdf (2005)

8. Reynaud-Plantey, D.: J2ME Low-Level Security.
http://tinapoc.sourceforge.net/ (2005)

9. Reynaud-Plantey, D.: J2ME Low Level Security: Imple-
mentation Versus Specification, Engineer Diploma Thesis.
http://prdownloads.sourceforge.net/tinapoc/Reynaud_J2ME.
pdf?download (2005)

10. Sun Microsystems Inc: Connected, Limited Device Configu-
ration 1.1 (JSR-139). http://jcp.org/jsr/detail/139.jsp (2003)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

