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Die Erde, wie zie sich heute pridsentiert, ist mit einkr
Fiille von Lebensformen ausgestattet. In vergangenen Zeit-
epaochen hat es schon Leven gegeben. Zum Tell handelte es
sich dabel um die gleichen Formen wie heute, zum Teil um
ausgestoroene Arten., Die Biologie hat alle bekannten Le-
bensformen in ein einheitliches Svystem gestellt. So un-
terschiedlichh die einzelnen Lebensformen auch sind, so
entsprechen sie doch einem gemeinsamen Prinzip: Jedes Le-
vewesen ist aus Zellen aufgebaut, Zellen, die Grundein-
heiten des Lebens, sind hichst komplexe diochemische Appa-
rate. Auf CGrund der Abstammungslehre mul es irgendwann in
der Erdgeschichte eine erste Zelle gegeben hatven. Diese
Zelle hat sich als Ergebnis der chemischen Evolution auf
der Erde herangevildet und wurde zum Ausgangspunit der
biclogischen Evolution. Die Frage, wie es zu den ersten
Zellen auf der Erde und somit zu den ersten Lebensformen
kommen konnte, 133¢ sich im grofen und ganzen mit Hilfe
von zxperimenten und der Wahrscheinlichieifsrechnung zli-
ren [13] . Das Ergebnis ist, da3 EZantwicklunz und Txi-
stenz von Lebeéen vraktisch als Konsegquenzen der Xomplexi-
tit der Verhiltnisse auf der Fritherde anzusehen sind,
Sient man diese Auffassung als ricintig an, so ist es
durchaus denkbar, dafB sich auch in anderen geniizend kom-
plexen ,Welten' Leben 1 entyickeln kann oder diese ,,Wel-
ten” zumindest eine Txistenzmbglichkeit flir bestimmie For-
2en von Leben bieten,

Die Computertechnik hat in den letzten zwei Jahrzehnten
gewaltige Fortschritte gemacht. Die Entwicklung immer

1) Auf die Schwierigkeiten, die sich bei der Definition von
Leben ergeven, gehen wir ausfiihrlich in Lapltel 7 ein,.
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neuerer und leistungsfihigerer elektronischer Bauelemente
ermoglicht den Bau von digitalen Rechenanlacen, deren Ka-
pazitdt noch vor wenigen Jahren Utopie gewesen wire. Durch
7usammenschaltung mehrerer Rechenanlagsn bls hin zu iber=-
regionalen Rechnerneizen EEi] ist es mlglich, dis Kapa-
zitdt weiter zu steigern. Dem Benutzer stehen somif Syste-
me zur Verfiigung, die er kaum noch lberblicken kann. 50
wird z.B. die Verwaltung von Rechnernetzen durch Hilfscom-
puter vorgenommen. Insgesamt gibt es also heute schon Re-
cnenanlagen, die wie ein Universum - bestehend aus Schalt-
kreisen und Bits -« wirken. Die Komplexitiat solcher Rechen-
anlagen erinnert durchaus an die Komplexitii auf der Friih-
erde. st die Vorstellung richtig, dafll die Entstehung bzw.
die Existenz von Leben eine Folge der Komplexitat ist, sa
wire die spekulative Idee von Leben auf Computerebene zu-
mindsest denkbar. Bei der Vorstellung, wie ein solches Le-
ben aussehen xiénnte, xann man sich nur am gegenwidrtigen
biologischen Leben orientieren, da es das einzig bekannte
Leben liberhaupt ist. Eingzngs haben wir die Zelle als
Grundelement des biologischen Lebens angefiihrt. Chne Ka-
pitel 7 vorgreifen zu wollen, seien hier die FZhigkeit zur
identischen Reproduktion auf eigene Veranlassung (Autore-
sroduktion) und die Mdglichkeit zur fehlerhaften Reproduk-
tion (Mutation) als zwei ckarakteristische Eigenschaften
lebender Zellen genannt, Im Hinblick auf diese beiden Ei-
genschaften scheinen sich auf Computerebene selbstrepro-
duzierende Programme als brauchbares Analogon zu lebenden
Zellen zu erweisen, Wir werden in 1.2. selbstreproduzie~
rende Programme als Programme definieren, die in der Lags
sind, lhren eigenen Programntext wdhrend ihrer Laufzeit
auszugeoen, ohne dak ihnen dazu der ,Bauplan" ihres Tex-
tes von auferhalb mitgeteilt werden muB. Da elektronische
Rechenanlagen nicht hundertprozentig fehlerfrei arbeiten,
1st die Mdglichkeit einer fehlerhaften Ausgabe des Pro-
grammtextes, also einer Mutation, automatisch immer vor-
handen, Selbstreproduzierende Programme kimen also als
Tréger von Leben auf Computerebene durchaus in Frage.

'ﬁ' - L] F
fauptaufgabe dieser Arbeit ist es nicht nur, die BExistenz
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selbstreproduzierender Programme zu peweisan (Kapitel 2),
sondern konkrete Beisriele fir selbstreproduzierende Pro-
spamne in verschiedenen Programmiersprachen anzugeoen
?Kapitel 3 und 6) und deren Eigenschaften zu diskutieren
(apitel 4 und 5). Reproduktion und Mutation sind Eigen-
schaften, die zur Evolution befdhigen. Evolution tritt ein,
wenn Selektion als zusitzliche Komponente mitwirkt, Evolu-
tion ist die Ursache fiir die unerhdrte Artenflille irdischen
l.ebens und miilte auch bel selbstreproduzierenden Programmen
zu immer neuen Programmen mit verschiedensten Eigsnschaften
fiihren. Sinige Modelle zur Evolution selbstreproduzierender
Programme werden in den Kapiteln 8 und 9 erdrtert. Zuvor
ird jedoch in Kapitel 7 die Frage untersucht werden, in-
wieweit sich selbstreproduzierende Programme in der ,Umwelt”
Rechner wirklicn mit lebvenden Zelien vergleichen lassen.

1.2.0Definition selbstreproduzierender Programus

Die vorliegende Arbeit handelt in erster Linie von Progranm-
men und den Programmiersprachen, denen diese angehoren., Um
préazise zu sein, niiRte daher an dieser Stelle definiert wer-
den, was unter einer Programmierspracne zu verstehen ist,
wie Programme in einer jeweiligen konkreten Programmierspra-
che aufgebaut sind (Syntax) und wie ein konkretes Programm
auf einer konkreten Rechenmaschine zu intervpretieren ist
(Semantik) (vgl., etwa EQ] [jh] )e Derartige Definitio-~
nen wirden sicher den Rahmen dieser Arbeit svrengsn., In Ka-
Pitel 2 werden sie jedoch wenigstens ansatzweise fir die
abstrakte Programmiersprache PL durchgefiinrt. Bei konkreten
Programmiersprachen wird bzgl. der Syntax auf die jeweili-
gen Arbeiten verwiesen, in dener die Syntax beschrieben

ist. Im Hinblick auf die Semantik wird sich der Begriff der
von einem Programm realisierten Funktion als ausreichend
erweisen (vgls5.1.1)). Im iibrigen setzt die Arbeit voraus,
dal der Leser mit dem in der Informatik iiblichen Sprachge-

brauch bzgl, Programmen und Programmiersprachen vertraut
ist,



Konkrete Programmiersprachen lassen sich allgemein 1n ho-
nere Programmiersprachen und in Assembler-Sprachen diffe-
renzieren., Im Hinblick auf Selbstreproduktion sind folgen-

de Charakteristika wesentlicn,
issembler-Sprachen

zind direkte Produkte der jeweiligen Maschinenstruktur
und lassen sich deshalb als maschinenorientiert be-
zeichnen, Viele Kennzeichen einer konkreten Rechenan-
lage lassen sich an der zugehdrigen Assembler-Sprache
ablesen, unter anderem auch die Struxktur des Arceits-
speichers, auf den Assembler-rrogramme zugreifen kon-
nen. Ausfiihrbare Assembler-Programme befinden sich in
der Form ihres Maschinenkodes im Arbeltsspeicher,
Wihrend der Laufzeit kinnen Assembler-Prcgramme also
auf ihren eigenen Maschinenkode zugreifen und ihn
auch verarbeiten.

Héhere Programmiersprachen

sind Programmiersprachen, die die physikalische Struk-
tur des Rechners unberiicksichtigt lassen und somit
auch nicht an eine feste Rechenanlage gebunden sind,
Auf der Ebene von hiheren Programmiersprachen gibt es
daher auch in der Regel keine ZugriffsmSglichkeit auf
den Arbeitsspeicher des jeweiligen Rechners. Programme
in hdheren Programmiersprachen haben also nicht die
M&glichkeit, ihren eigeren Maschinenkode zu lesen und
zZu verarbeiten.

Programme werden im allgemeinen mit den von ihnen berech-
heten Funktionen identifiziert. Fiir die vorliegende Arbeit

ist jedoch ein anderer Aspekt von Programmen ebenso wich-
tig:

Programme sind endliche LZelchenketten, also Texte.

Im Verlauf seiner Verarbeitung durch den Rechner liegt ein
Und dasselbe Programm als unterschiedlicher Text iiber



5

varschiedenen Alphabeten wor, Bin Programm in Assembler-
sprache unterscheidet sich textuell von seiner Uberset-
E;ng in Maschinenkode, Widhrend Assembler-Programme zu-
nichst alphanumerische Texte darstellen, sind Programme
in Maschinenkode nur aus den 1€ Hexadezimalziffern ¥ bis
F aufgebaut. Zhnlich liegen die Verhilinisse bei hdheren
Programmiersprachen, Zwischen dem Quellprogramm in hihe-
rer Programmierspracine und dem Qbjektprogramm im Maschi-
nenkxode liegen unter Umstinden Jedoch noch ein oder meh-
rerzs Ubergangsformen in irgsndwelchen Zwischenkodes,

Genil den unterscniedlichen Charakterisierungen fir hi=
here Programmiersprachen und Assembler-Spracinen weisen
die Definitionen filr selbstreproduzierende Frogramme in
diesen peliden Sprachebensn Unterschiede auf,

Sel zunZchst S5 eine hinere Programmiersvrache im iiblichen
Sinn.

{1.2.1) Definition: Sei T ein (syntaktiseh korrelkies)

Programm aus S.

(i) Weist Tr keine Zingabe auf, so heit 1 (streng)
selbstreproduzisrend, falls m (zenaw seinen
Programmtext in S ausgibt,

(11) Weist T Eingabe auf, so heift T (streng)
gselbstreoroduzierend, fzlls T beli jeder zu-

lassigen Eingabe (genau) seinen Programmtext
in 5 ausgibt,

Definition (1.2.1) schlieRt also selbstreproduziersnde Pro-
tramme mit Eingabe nicht grundsdtzlich aus, verhindert je-
doch, daB der Eingabe Informationen entnommen werden, dis
Zur Selbstreproduktion benstigt werden; da die Selbstre-
Produktion bei jeder Eingabe erfolgt, erfolgzt sie unabhin-
8ig von der Eingabe.

Sei nun

M eine zu einer 4konkreten Rechenanlage gehirigs



Assemdler-Sperache. Die Definition fiir selbstreproiuzisren-
de Assemdler-Programne splegelt die Tatsache wider, da3
Assembler-Programne ihren eigensn Maschinenkode lesen kin-

net.

1.2.2) Definition: Sel T ein giiltiges Programm aus der
Assembler-Svyrache M,

(i) Weist vr keine Eingabe auf, so heilt 1r (streng)

gelbstrevroduziersnd, falls T (genau) seinen
Haszchinenkode ausgibt oder innerhalb des Ar-
ceitsspeichers kopiert,

(i1) Weist m Zingabe auf, so heilt T (streng)
selbstrevoroduzierend, falls Tr bei jeder Ein-

el

gabe (genau) seinen Maschinenkode ausgibt
oder innerhalb des Arbeitssveichers kopiert,

Im Gegensatz zu hineren Programmiersprachien brauchen die
Kopien selbstreproduzisrender Assembler-Programme vor der
Ausfiihrung nicht in Maschinenkode ibversetzt zu werden.
Abb, 1.2.4A zeigt die Unterschiede, die sich im Hinblick
auf Selostreprodukiion zZwischen hiheren Programniersvra-
chen und Assembler-Sprachen ergeben, im Zusamnenhang,

Aug Aer Tatsache, dal Asszemblsr-Frogramme ihren eigensen Ma-
schirenkade Im Arteifsspeicher lesen kinnen,lZ3% sich beieini-
ger Xenntnis von Assembler-Sprachen leicht die Existenz
Selostreproduzierender Assembler-Programme folgern. Auch die
Angabe von Beispielen flir selbstreproduzierende Assembler-
Programme f3E11t nicht schwer (Abschnift 3.4,.). Anders liegen
jedoch die Verh#ltnisse bei hheren Programmiersprachen,

Hier ist die Existenz selbstreproduzierender Programme durch-
aus nicht intuitiv klar und mufl daher in Kapitel 2 auf theo-
retischen Weg nachgewliesen werden, Auch die Angate von rea-
lisierbaren Beispielen ist bedeutend schwleriger als bei
Assembler-Sprachen, Ganz allgemein liegen im Hinblieck auf
Selbstreproduktion die Verhiltnisse bei Assembler-Sprachen
Sinfacher als bei htheren Programmiersprachen. Aus diesem
Grungd beschiftigen sich die Kapitel 5, 4 und 5 fast ausschilien-

lich mit der Selbstreprodulkttion bei hdheren Programmiersvrachen.
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2.1.Einleitung

In diesem Kapitel soll auf theoretischem Weg die Existenz
gelbstreproduzierender Programme in hoheren Programmier-
sprachen nachgewliesen werden. Wir werden dabei nicht mit
gilfe von realen Programmiersprachen (PASCAL,SIMULA,ALGOL
atc, ) und deren vielen Eigenarten argumentieren, Statt
dessen definieren wir, scwelt das in diesem Rahmen m&glich
ist, eine elgene einfache Programmiersvrache, die sich
durch besonders elnfache Datentypen und allgemeir in h#he-
ren Frogrammiersprachen benutzte Konstruktionsprinzipien
auszeichnet, Diese Programmiersprache wird PL heiflen. Trotz
threr Einfachheit wird PL die gleiche ,Berechenkapazitit”
haben wie alle gingigen Programmiersprachen, PL wird siecn
als gzelgneter Einstieg in die Theorie der ,berechenbaren
Funkticonen" erwsisen. Diese Theorie werden wir nur soweit
verfolgen, wie es zum Nachwels selbstrevroduzierender Pro-
gramne in PL notwendig ist.

Da alle gingigen Programmiersprachen die gleiche ,,Bere-
chenkapazitit" wie PIL haben, 1Z2t sich aus der Existenz
selbstreoroduzierendsr Programme in PL die Existenz selbst-
revroduzierender Programme in realen Programmisrsprachen -
sowotl in hiheren Programmiersprachen als auch in Assemblar-
Sprachen - folgsern,

5
Z2+2.Definition einer einfachen Jrogrammisrsprache PLIA)

1Ze y endli-
ches Alphabet ﬁ—{al,...,a }, neli. Die Menge & ler endli-
chen Wirter iber A stellt die Menge der Daten dar, auf denen

Programme in PL arbeiten. Das lesre Wort € € A* ist dabeil als
Datun zugelassen.

Grundlage ist zundchst ein belienizes, aber fastes
¥ a7

2.2.1) Definition (Ausdriicke):

(1) Die XKonstanten in PL sind die Tlener




(2.2.2)

(ii) Die Wariablen.K1,EE....,E,E,W sind Elemente
aus einer festen Menge VR. Jede Variable kann
Werte aus A* annehmen.

(iii) Operationen sind Xa und §(X) fir jedes Xe€ VR,
ag A,

Bedeutung:
¥a hat den Wert xza, falls x¢€ A" der Wert
von X ist,
O(X) hat den Wert x€ A%, falls xa der Wert
von X ist fiir ein Element a€ A. Andernfalls
hat §(X) den Werte .,

(iv) Bedingungen haben die Form w({X)=a oder ¥X=¢
mit Xe VR und a€ A.

Bedeutung:
W(X)=a ist genau dann wahr, wenn a der

laetzte Bucnstabe das Wertes der Variablen
X ist. X=¢ ist genau dann wahr, wenn £ der
Wert von X ist.

Definition (Grundanweisungen):

(2.2,3)

Die Grundanweisungen in PL sind:

Die leere Anweisung ry ¢ €

und die Wertzuweisungen y» @ Xi=§
3"’5 : X:=Xa
&y ¢ K=Y
Yo : X:=50x),

fir alle Variablen X und Y aus VR und a2 €4,

Definition (Kontrollstrukturen):

Die Kontrollstrukturen in PL sind:

% D:3

Bedsutqui

Hintereinanderausfilnrung von Anweisungen.
Vergleiche iibliche Programmiersprachen.



% : ifp then goto L

Bedeutung:
ﬁ; stellit einen bedingten Sprung dar. p steht
fiir eine Bedingung (vgl. (2.2.1)(iv)).
[, ist eine Marke (vgl. (2.2.4)).
Ansonsten wie in iiblichen Programmiersprachen.

: if p then P else Q fi

L
Bedeutung:
Verzweigung; p ist eine Bedingung. Die Anwei-
sungen P und Q stellen die Alternativen dar,
Vergleiche iibliche Programmiersprachen.

'xu . while ¥=€ do P od

Bedeutung:
while-Schleife; Bedingungen der Form w(X)=a,
XeVR, a€ A, sind nicht erlaubt, P ist eine An-
weisung. Ansonsten wie in Ublichen Programmier-

sprachen.

1% : loop X case aq —> P1,

FEleenaw

l

end

Sedeutung:
#; stellt eine loop-Schleife mit Fallunterschei-
dung dar. Bel der Auswertung wird zundchst eine
interne Kovie der Variablen X angelegt. Danach

wird der Wert von X veon links nach rechts durch-
laufen. Fiir jeden Buchstaben (d.h. Element aus
A) a4 des Wertes von X wird die zugehdrige An-
weisung P. ausgefiihrt., Fehlt fiir einen Buchsta-

J

ben a5 die Vorschrift as — Pj in der Liste der

Alternativen, so wird so verfahren, als wiirde in
der Liste a4 —3 € stehen, je([n].

{2.2.4) Definition (Marken):

Marken sind Elemente aus einer festen Menge



M= {L-} 3L23111'-} » mine Marke kann in der Form
L : P vor jeder Anweisung P stehszn,

(2.2.5) Definition (Anweisung):

Eine Anweisung in PL ist entweder eine Grundanwei-
sung, oder sie besteht aus Grundanweisungen, die

mittels der Kontrollstrukturen 2, bis 25 miteinan=
der verkniipft sind.

£) Definition (PL-Programme):

(2.2,

Ein Programm T in PT, hat die Form

M = inonut x-i,;.-,xr;
A-TH“';

output ZI,...,E r:* d4,5»0

S

wobel AWy eine Anweisung ist,
Die paarweise verschiedenen Variablen Xyseee3X € VR
heiflen Eingabevariable.

Die paarweise verschiedenen Variablen Z;,...,Z_e& VR
heiffen Ausgabevariable.

Tritt in AW, die Kontrollstruktur %2, ¢ 17 p then goto

auf, so darfi L in AWq nur einmal in der Form L : P
auftreten, wobei P eine Anweisung ist.

7) Definition (Ausfilhrung von PL-Programmen):

(2,2

ALK T

Die Ausfiihrung eines Programms w in PL beginnt da-~
mit, daf dle Eingabevariablen X,,...,X,. mit Einga-
bewerten belegt werden. Alle anderen in m vorkom-
menden Variablen werden mit € initialisiert, Danach
wird AWeq ausgefiihrt., Nach Ausfilhrung von AWy liegt
das Ergebnis der Programmausfiihrung in Fora der
Werte der Ausgabevariablen Ziisessyl, vOr,
H3lt das Programm nie an, so ist das Ergebnis von

T undefiniert.

8) Bezeichnung: Prinzipiell haben wir hier nicht genau

L—-I



eine Programmierspracne PL definiert, sondern eine
Klasse von Programmiersprachen, Das liegt daran,
dal wir noch Freiheit haben in der Wahl der Mengen
YR und L und insbesondere in der Wahl des Alphabets
A. Wdhrend die Elemente von VR und L nur programm-
interne Bezeichnungen darstellen, bestimmt das Al~-
phabet A die Datemnmenge, auf der PL-Programme ar-
beiten. Je nachdem, welches endliche Alphabet A wir
zugrunde legen, werden wir in Zukunft die in den
Definitionen (2.2.1)} bis (2.2.7) definierte Program-~
miersprache mit PL(A) bezeichnen.

(2.2.9) Bemerkung: Streng genommen haben wir keine formale
Definition von PL{A) vorgenommen. Fehlinterpreta-
tionen sind denkbar. Unsere Definition wire exakt,
hdtten wir sowohl die Syntax als auch die Semantik
von PL{A) mit formalen Methoden beschrieben. Beson=-
ders dle Bescareibung der Semantik ist sehr milhsam
und wiirde den gegebenen Rahmen sprengen. Es soll
aber wenigstens die Syntax von PL(A) in Form einer
kontextfreien Grammatik angegeben werden,

2e5.Eine kontextfreie Grammatik flir PL{A)

Die folgende kontextfreie erzeugende Grammatik

G(A) = (Vp,Vygs854:P) erzeugt alle giltigen PL(A)-Programme

zZu gegebenem Alphabet A. Leider werden nicht genau die giil-
tigen PL-Programme erzeugt, sondern auch Programme, die sich
nicht durchflihren lassen. Es sei hier auf Definition (2.2.7)
verwiesen. Dort finden sich einige umgangssprachliche Regeln,
wWie z.B. yeine Marke L darf nur einmal in der Form L : P in
AW . auftreten", Derartige Regeln lassen sich nicht mittels
einer kontextfreien Grammatik erfassen. Wir benotigen diese
Regeln, um unter den von G(A) erzeugten Programmen die giil-
tigen Programme von den nicht durchfiihrbaren zu unterschei-
den, Der gleiche Effekt tritt btei der Beschreibung realer
Programmiersprachen durch kontextfreie Grammatiken auf. Auch
hier kommt man i.a. nicht ohne umgangssprachliche Regeln aus,



13

Reispiel (SIMULA): »Spriinge in das Innere wvon while-Schlei-
fen gind vervoten', LT 'F‘] E'?]

(2.3.1)Angabe der Grammatik G(A)=(Vm,Vy,s5.,P):

Die Menge der terminalen Zeichen Vp 1st:

Vp = AUuMUVR v {invut , output , if , then , goto ,
else , fi , while , de , od , loop , case ,
Eﬂd,:,:,—-—},;,,,u,(,),f,u,

€] J

"

Grundsymbole

Die Menge der npichtterminalen Zeichen Vy ist:

Vg = { (program),(statement),{simple statement?,
(identifier), (label), (identifier list),
(condition) }

Das Startzeichen s, ist {orogram}

Die Menge P umfaft die Produktionen:
1. (program) — input (identifier list);
{statement);
output {identifier list)
2. {identifier list) -——3 (identifier list),{(identifier)
3. {identifier listd —3 (identifier)
L. {(identifier) -—— X, fir alle X & VR
5. (identifier) — g
6. (statement> —3 (label): (statement)
7. {(statement) — (statement);(statement)
8. (statement) —3 if (conditiom} then goto (label)
9. (statement) — if {cﬂnditiﬂn}_‘l_;@ {(statement)
else (statement) fi
10. (statementd — while (identifier)=g¢ do
(statement) od
11, {statement) — loop (identifier) case
a; — (statement),

Ty

a8, — {statement) , end



12, {statementd —> (simple statement)

13, (label) —> L, fir alle L€ M

14, {condition) —dw(¥X)=a fir alle ag A, Xe VR

15, {condition) — X=§ fir alle L elUR

16. (simple statement) ——> &

17, (simple statement) —> X:=§€ flr alle XeVR

18. {(simple statement) —> X:=Xa , fir alle X€VR,ae A
19. (simple statement) — X:=X', fiir alle X,X'eVR

20. (simple statement) — X:=§(X) , fir alle Xe VR

Wir konnen folgende Entsvrechungen feststellen:

Regel 1=5 2 Definition (2.2.6)

Regel 6 £ Definition (2.2.4)

Regel 7-13 2 Definitien (2.2.3),(2.2.5)
r.}

Regel 14-29 Definition (2.2.1),(2.2.2)

Die oben erwdZhnten umgangssprachlichen Regeln in den
Definitionen bleiben von G(A) unberiicksichtigt.

2.4.PL(A)-berechenbare Funktionen, Church’sche These

Sei nun A endliches Alphabet, mePL(A). mw besitzt r» o Ein-

gabe- und s3 o Ausgabevariable. Wahrend der Programmausfiih-
rung wird aus der Belegung der Eingabevariablen eine Bele=-

gung der Ausgabevariablen ermittelt, falls das Programm an-
hdlt. Hdilt das Programm an, was 1.a. nicht vorausgesetzt
werden kann, so stelilt die letzte Belegung der Ausgabevariab-
len das Ergebnis der Programmausfithrung dar. HHlt das Pro-
gramm nicht, so ist das Ergebnis undefiniert. In beiden Fil-
len interessieren etwaige Zwischenbelegungen irgendwelcher
Variablen widhrend der Programmausfiihrung nicht. Dieser Sicht-
weise entspricht Definition (2.4,.1).

(2.4.1) Definition: Sei Te€PL(A). Die von T berechnete
Funktion ist Q. : (A'}r —> (A*)S y T,8» 0.
Y ordnet jeder Anfangsbelegung (%y,e..,%.), X; € A*,
iE[ﬁf},der Eingabevariablen ein Ergebnis
(Zyyeeeszg) =Py lxy,ene,x,), 24€ 2*, je[sl, zu,

) Notation: [r] := [1,...,r} fir jedes reiN, nicht zu ver-
wechseln mit Literaturverweisen.



falls das Programm T anhilt, Hilt TT nicht an, so
ist Pr(Xqy.00,%,) undefiniert,

(2.4.2) Bemerkung: Aus Definitien (2.4.1) folgt:

I. ¢ ist i.a. eine partiells Funktion,

II.Die Sonderfdlle r=¢ und s=0 sind ausdricklich zuge-

(11)

(iii)

(2.4.3)

lassen, Die Bedeutung dieser SonderfiZlle sei hier
jedech kurz erldutert. Es bezeichne () das Null-
tupel:

@ (A%)T —— (A%)°, r>» 1, ordnet jedsm r-Tupel
{31,...,xr}5*(ﬂrjr das Nulltupel () zu, falls T
mit (X;,ee03%,) als Eingabebelegung anhilt,

() , falls Trhalt
(:{ T 4 } - '
$i 1? *r undefiniert sonst

y 2 (4*)° — (4")%, s 31, ordnet dem Nulltu-
vel () ein s-Tupel (z,,...,2_ )€ (4%)8 zu, falis T
anhdlt.

¢ () (Zyseees2.) € (A%)®, falls Thilt
= 4
™

_undefiniert sonst

?"1 (4%)° —— (A*)° ordnet dem Nulltupel ()
das Nulltupel (} zu, falls W hilt.

(), falls 7T hilt
undefiniert sonst

Definition: Sei A fest gewdhlt,

Yo O)

(i)

(ii)

fine Wortfunktion f : (a%¥)F — (4™)°, r,s3 0,
heit PL(A)~berechenbar oder kurz berechenbar,
falls ein Programm T, €PL(A) existiert mit "F-,rf=f.

Die Menge P (A):={ $z|me PL(2)} heift Menge der
PL(A)=berechenbaren Funktionen.

Um den intuitiven Begriff der Berechenbarkeit zu prizi-
sieren, hat es immer wieder Versuche gegeben, Klassen von
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 oerechenbaren" Funktionen zu definieren . All diese Versu-
che haben zu der gleichen Menge von ,berechenbaren" Funk-
tionen gefiihrt. So ist zum Beispiel die Menge der giit Tu-
ringmaschinen bersechenbaren" Funktionen mit der Menge dsr
,oartiell rekursiven" Funktionen identisch, Mit diesen Men-
gén wiederum ist bei festem A die Menge P(A) identisch.
Diese Identitidten geben Anlad zur Church”schen These,

(2.4.4) Church’sche These:
Jede intuitiv berechenbare Funktion ist PL(A}-be-
rechenbar und umgekehrt.

pus (2.4.4) folgt: Sind A1 und EE zwel veoneinander verschie-
dene endliche Alphabete, so lassen sich offensichtlich die
Mengen P (4,) und ®(a,) identifizieren. Wir geben daher die
Differenzierung nach dem zugrunde liegenden Alphabet auf und
schreiben von nun an einfach % fiir die Menge der berechen-
baren oder partiell rekursiven Funktionen (siehe auch (2.4.6)).
Nichtig ist die folgende Erginzung zur Church”schen These.

(2.4.5) Erginzung zur Church’schen These:
Zu jedar berechenbaren Funktion f 1lH0Bt sich flir be-

liebiges endliches A effektiv ein Programm wePL(A)
angeben mit f =9

(Zekob) Dafinition:

(1) BT := {re@[z : (&) —5 (AM5, 1,55 o}

(11) R:= {re®|r ist total] ist die Menge der total re-
kursiven Funktionen.

(111) 8 = Ra%%, r,s%0



c,Xodierungen, Godelisisrungen vﬂnﬁi

o

1

(2.5.1) Definition: Sei A endliches Alpnabet, Eine Menge
- Be (A‘]r, r» o, heifit entscheidbar oder auch re-

kursiv genau dann, wenn es eine total rexursive
: r x . =
Funktion Xp : (A* )" ——— A* gibt mit

XB(:{”I"“’KI‘) =E = [:x‘!;-'::{r}ea

(2.5.2) Definition: Selen A, und A, endliche Alpnabete,
Sine Funktion § : A} — AL heiSt genau dann
Kodierung von A7 durch A, , falls gilt:

1) Eek,

ii) € ist injektiv,
ii1) §(A;) ist entscheidbar,
iv) ¢~ e?

Sel AG={1}. Dann kann man Ag mit den natiirlichen Zahlen ein-
schlielich der Null, Wa, wie folgt identifizieren.

3 0

ﬂ11.......111:113 £ nemy

>

Ll

n Einsen

(2.5.3) Definition: Eine Kodierung §: A" ———> EE={T]ﬂEIﬁG
heidt Gddelisierung, £ (0} heiflt Gddelnummer von
fiir alleaaeﬂ;.

Es soll im folgenden eipe GOdelisierung aller PL(A)-Programme
mit festem A angegeben werden. Damit wird gleichzeitig eine
Godelisierung von ﬁ}angegeban. Sei A:={a1,..,an}fest gewihlt,
In der Menge B listen wir alle Sonderzeichen und alle Buch-
Staben auf, aus denen die Wortsymbole ,input s if , fi usw."
von PL(A) aufgebaut werden.

B:={: 1=y 6, 8,35 29uw,05,8,(,),a,c,d,e, f,g,h,1,1,n,0,p,8,t,u,w}
Die Mengen der Marken und Variablen in PL{A)-Programmen sind
Mi={t,,0L5,.00} bzw. VR:={v,,V,,...}. Dabei bezeichnen L; bzw,
?j, 1,J# 1, irgendwelche Namen flir Variable bzw. Marken. Es
War bisher nicht notig, die Wahl dieser Namen ginzuengsn, Fir
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die folgenden "Yoerlegungen mud jedoch sichnergestellt wsrden,
da’ die Namen Worteriiber einem endlichen Alphabet sind. BEs
wird daher wie folgt normiert.

Der Name :T igt taxtuell gleich L1V

Der Name L- ist textuell glsich ,L2" UeS.We
entsprechend
Der Name HT izt textuell gleich ViU UeS.Wa

Damit gilt:
' x T ¥
Mc{L,@,1,...,%}, VRc{V,8,1,...,9}
Sei nun C:=AuBu{L,V,4,7,...,5}. Jedes ProgrammwePL(A) 133t
gich somit als Wort aus C* und PL(2&) selbst als Teilmenge
von C* auffassen, Wir geben eine injektive Abbildung
o —a (1172 N, elementweise an:

: = 0 ¢ — 13 u  — 26
= b ] d 14 ¥ — 27
; 2 g — 15 L. — 28
y b= 3 f 3 16 T s 29
{ +— 4 g —2 17 0 e 30
} e 5 h ey 13 :
w6 i 3 19 f
— — 7 1 — 20 G —3 39
E — 8 n  — 21 a; = L0
E b 9 o r— 22 *
§f r— 10 0 e 23 :
@ e 11 5 ) 2L a, = 39+n
a »— 12 t — 25

Die injektive Abbildung H 1&Bt sich zu einer ebenfalls in-
jektiven Abbildung B* : C* —— N7 erweitern.

H* (&) b
H* (%y) — E*(X)H(y) , ¥yeC, ¥ xeC”

i

(2.5,4) Lemma: H* ist eine Kodierung von c* durch EH;.

Beweisz: (i) Nach Definition von E und H* ist H® natirlich
intuitiv berechenbar und auf Grund der




Church’schen These berechenbar. H* ist fir alle
Tlemente aus C¥ definiert. Also ist H* total und
ingsgesamt aus R .

(ii) H* ist trivialerweise injektiv.

(iii) Sei D := H*(C*). D ist Teilmenge von INj. Sei
fem®. I hat endliche Linge 1(1), I=m; .....mj oz
mit m,e M, fir je [l(iﬂ . 1 ist genau dann aus
D, wenn Jedes mj ein Urbild in C bzgl. H hat.

Um festzustellen, ob 1 €D ist, sind also héch-

stens 1(I).card(C) Tests ndtig. Es existiert

also eine total rekursive Funktion

| ko =

XD . IHG SR IHG mit
XD(i} =£ &= (Jedes Element von 1 hat
unter H Urbild in C) &= 1ieD,

Also ist D = H¥(C*) entscheidbar,

{(iv) In (iii) wurde schon gezeigt, dal man fir jedes
IeH"(C®) effektiv das Urbild in C*ermitteln
kann, Also ist (H*)”! tiverall dort, wo es defi-
niert ist, auch berechenbar. Also {H;]_IE ?.

pus (i) -~ (iv) folgt: H™ ist Kodierung.

o 2)

Wir betrachten nun die total rekursive Funktion f :lﬁ;——é-ﬁg
0,falls 1 =¢

mit 1 — m IIII(I]'FI )
P1 “ennea .Pl{i} "’*t,f&lls i=mT.,..,m1Ei)

wobei Pj die j=-te Primzahl ist.

Behauptung: f ist bijektiv.

Beweis: (i) f ist injektiv wegen der Eindeutigkeit der
Primfaktorzerlegung.

(ii) f ist surjektiv, weil jede Zahl me Wl mit m> 1
eine Primzahlzerlegung hat, in der mindestens
ein Primfaktor vorkommt. o

= —

1)Das Symbol 1 bezeichnet bei beliebigem Alphabet 2 dis Lidngen=
funktion flir Tlemente aus B¥,

2) %" wird als Endemarkierung flir Beweise benutzt,
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it EX als Kodierung von C* durch O) und feR als bijek-
tiver Funktion von INy nach I, folzt Lemma (2.5.5).

(2.5.5) Lemma: Die Funktion g := fel* : ¢* —5 N, ist

———rr

Gidelisierung von C¥ durch IN,.

Jedem Wort w aus C* und somit jedem Programm aus PL{A) ist
also eindeutig eine Zahl feH"(w) aus N, zugeordnet. Da o*
injektiv und f bijektiv ist, i1st die Avbildung g eine bi-

jektive Gddelisierung vom C¥,

(2.5.6) Lemma: Die Menge T := {g(x)|xePL(A)}c IV, ist
entscheidbar.

Bewels: I, i = O ist nicht aus T, da das leere Wort kein
Programm i1st.
IT. Sei ieIN. Dann 1l&aBt sich i eindeutig in der Form
'ELI Eﬂ!i+ i
L= Dy "eeeee®py =1 darstellen (k2 1).

Existiert fir eines der m; (je[k] ) kein Urbild
bzgl. der Funktion H. so ist i nicht zus dem
Bildbereich von g und damit auch nicht aus T,

Sei nun Jjedes my aus dem Bildbereich von H. Dann
existiert ein we C* mit glw)=i. Aus der Gramma-
tik @ aus 2.3. und den umgangssprachlichen Regeln
wle yDie Elngabevarilablen sind paarweise ver-
schieden," 13Bt sich ein Programm konstruieren
(vgle : yFormale Sprachen", nCompilerbau™),

das bel jeder Eingabe we C® hdlt und & ausgibt
genau dann, wenn we PL(A) ist. Insgesamt existiert
also eine total rekursive Funktion, deren Ergeb-
nis genau dann gieich & ist, wenn das Urbild ei-
nes Elementes aus IND, falls es existiert, ein
glltiges PL(A)-Programm ist, Also ist T ent-
scheidbar.

%

(2.5.7) Definition: Bc (4™)%, 930, heiflt aufzinlbar genau dann
L “alill,
wenn B Wertebereich einer

ist,

partisll rekursiven Funktion
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5.5.8) Lemma: B¢ (A*)%, g2 0, entscheidbar = B ist
anfzdhlbar,

Bewels: Sel B¢ (4*)Y entscheidbar, Nach Definition (2.5.1)
existiert eins total rekursive Funktion

Xg @ (AN — £mit
15{1{1 ,...,Eq] = £ & (:{],...,xq] € B
Aus X 143t sich eine partiell rekursive Abbildung

¥ gewinnen mit

‘{E ,falls jLBﬁK1|tit#Kq) - E
u

ndefiniert sonst.

fo: (AN —— 2

foxlgnihgxqj =

Dann ist die Abbildung gg : (4%)%® — (a*)4

mit gE(':E} =n‘$(‘3,%ﬁ]) , Te(A™)q, partiell re-

kursiv und hat als Wertebereich die Menge E.T}

(2.5.9) Korollar: T ist aufzdhlbar.

Beweis: Folgt aus Lemma (2.5.7), da T entscheidbar ist.
%

Wie im Rewels von (2.5.6) kann man zeigen, dafl auch fiir je-

des m,k 3 0 die Menge

Tm e ={g(m)|mePL(A), w hat genau m Eingabe- und k Ausgabe-
varlable]-c N,

entscheidbar ist. Man braucht dem Entscheidungsalgorithmus

im Beweis von (2.5.6) nur noch einen Test, ob ein Programm

VEPL(A) genau m Eingabe- und k Ausgabevariable aufweist,

hinzuzufiigen. Aus der Entscheidbarkeit von T, m, k folgt die

Aufzihlbarkeit von Tm ke und damit die EILEtEHE einer par-

tiell rekursiven Funktion von N, nach N,

T, ik als Wertebereich hat, Da Tm & # B ist, folgt sogar die
Existsnz einer fotal rekursiven Wunktlnn (vegl. [5] Seite 82)

—

die die Menge

n . . s .
3)TTi bezeichret in dem fiir n-Tupel iiblichen 3inne Aie Pro-
Jekiion auf die i-te ¥Komvonente.



> it
tm’_l{ - IIN'D _'+ Iﬂ'ﬂ mi

tm,k(iﬂo} ='Tm,¢

Eg hat also Sinn, wieder vom i-ten Element aus Tm,k
chen, Fir alle m,k» 0 1lE3t sich also auch die Menge aller
Programme mit m Eingabe- und k Ausgabevariablen in der Form
fmes s Toyesses} hinschreiben. Dabei ist us dasjenige
Programm aus PL{A) mit tm,ﬁth = g(ﬂ )

Insgesamt existiert also fir nllE m,x» 0 eine total re-

kursive Funktion

$poe = Ny, — {rr I wePL(A), m hat genau m Eingabe- und
3
k ﬂusgabevariahle} =: W,

Z1! spre-

mit der , Jmkehrung" ?m ke = Wo— II'ID mit
3

?m,k("} = min {j[ X-m,k(j)' =. *n}

Mit T m,k ist natiirlich auch die Menge ? fir alle m,k2 0
entsﬂhe1ﬁua” und damit aufzihlbar, Die Hengef?ﬁ 1837t sich
also in der Form {fu’fl’fa""*‘} hinschreiben, wobei flir
jedes fj gilt: fj =‘F"j Die GHdelnummer wvon T 3 iiber=
trdgt sich dabei auf fJ. In der obigen AufzZhlung vonf?m
xommen alle Funktionen aus ?E mehrfach vor., Das nedeutet
aver, dal die Funktionen aus :Fﬁ_mehrere Gidelnummern be-
sitzen. Es gilt sogar:

(2.5.10) Lemma: Fiir alle fe® gilt: f hat bzgl. der Gode-

lisierung g unendlich viele Gddelnummern (m,k3o0),

Bewels: Seien m,k» o, fE.’?’R. f wird realisiert durch das
Programm

- 'j_]'_'lHT._]_t }{1,-1-144 ,}:m;
Ally s

cutput 51*"""23

Es gilt ‘fnﬂ = f. f wird aber auch realisiert
durch diE PI‘DEI‘ammE Tr-“ “E, -lTB-,I-l----

mit w; = input X,,..4,K; Ay s

Eivenssk] output 31,...,ER

i-mal
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(2.5.11)

Es E"_lt f=?ﬂ-1=‘fﬂE=Tnﬁ= YRR

Wegen g(m,) # g(m,) # +.... hat f unendlich viele

Gidelnummern,
%

Definition: Sei 7 eine Menge wvon Wortfunktionen,

(2.5.12)

und sei TE 'z {f : (A%)F —— (A*}EI fe ?},r,saﬂ.
Eine Funktion V € F. ' heilt universell fir FT,
wenn gilt:

?g = {)\Er [y (x,5)] Ixea®, Fe (A*Jr}. 1)

Satz: Fir alle m,k2> o gilt:

Hewaisg:®

(2.5.13)

Es gibt zu ?E elne universelle Funkfion
m+ 1
Yo, € Py -

(mittels Church®scher These)
Die Menge aller Programme mit m Eingabe- und k Aus-

gabevariablen liege in aufgezihliter Form, etwa
durch r m,k? ror:

nﬂ’ TT]'TTE"-"-
Dann ist die Funktion

-L['ﬂl,k :=}RI,§[?I ﬁu k(x} {F)] s 7 E(ﬂ*}m

universell fir ¥, und ¥ i 1St intuitiv bere-

chenbar., Wegen der Church”schen These gibt es ein
TTﬁ’kEPL{ﬂ} nit m+1 Eingabe- und k Ausgabevariablen
it Y g = ‘f’ﬂﬁ,g :

% .

Bemerkung: Man kann (2.5.12)auch beweisen, indem

man auf komplizierte Weise direkt Ttﬁjk kon-
struiert,

1)%ur Lambda-Notation siehe [20] Seite 13,
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2.6.Lexikographische Ordnung von A¥

———

Wir wollen eine weitere Gidelisierung von A* einfiihren.
pazu definieren wir zunichst, was unter der lexikogravhi-
schen Ordnung auf A* zu verstenen ist.

(2.6.1) Definition: Sei A = {a,...,2,}. Die Nachfolger-
funktion v : A® —— A¥ ist definiert durch:

v(E) = a,
vixai} = Xaj
v(xa ) = v (x)a, fir ie[n-1], xe 4%, a e 4

(2.6.2) Lemma: Die Nachfolgerfunktion v : A* — A" ist
bijektiv.

Beweis: Zunidchst ist v injektiv, da zwei Elemente aus A”

nur. dann den gleichen Nachfolger haben kénnen,
wenn sie gleich sind. v ist surjektiv, da man
durch wiederholte Anwendung von v jedes Wort aus AY

auf das leere Wort reduzieren kann. Also
{yl(e)iem}= 2",

Wegen Wy = vi{E] fir jedes Element w; aus A¥ erhdlt man
eine Ordrnung auf A%, [5]

(2.6,3) Definition: Seien w; = y™(e) und W s =vJ(€) aus A¥,

dann ist wy ¢ wj genau dann, wenn i€ 3j gilt,
Diese Ordnung heifit lexikogravhische Ordnung auf A¥.

Man kann also alle Worteraus A* eindeutig in lexikographi-
scher Reihenfolge auflisten:
E= wc"':w]{wa . .r R

{2.6.4) Satz: Sei A = {31,...,an} und Aj = {1}. Set

Cp ¢ A ey ING'E {1}‘&15 Abbildung, die jedem
x€ A* die Fummer von % in der lexikographischen
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Reihenfolge zuordnet, also
x —s i mit v>(e) =x.
Dann ist C, eine bijektive GOdelisisrung.

Beweis: (1) EP ist total, da C, auf ganz A¥ definiert ist.
Fir jedes x 1#3t sich C_(x) durch endlich viele
Anwendungen der Definition von v effektiv er-

mitteln., Also ist GPER.

(ii) C, ist injektiv, da es keine zwei Elemente aus
L™ gibt mit gleicher Stellung in der lexiko-

graphischen Reihenfolgze.

(iii) Wegen C_(A%) = M

ist cﬁ(A‘) natirlich ent-
scheidbar. )

C

(iv) Beginnend mit dem leeren Wort kann man fiir jedes
ie N, mit Hilfe von v effektiv alle Worte aus A*
bis zum i-ten Wort in lexikographischer Reihen-
folge erzeugen., Dieses i-te Wort ist das Urbild
von 1 . Also ist CP_1 berechenbar und wegen

-1
Y
Cp{A ) = Iﬂﬂ sogar total. Also EP e R.

Aus (1) bis (iv) folgt: GP ist Gddelisierung,
Wegen (i) und C(4%) = N, folgt: C ist bijektiv,

%
{EiGiE} Lema: SE‘iEﬂ .A. = {5‘.1,--;1311} und B = {b'!j-lllljhm}
zwei Alphabete, dann ist die Funktion
e 1 . a¥ >
§n1m = Cp -aﬂn_. A" ——3 B
eine bijektive Kodierung von A¥ durch BY,
Beweis: Offensichtlich.
%

2:7.Reduktion auf jeweils eine Eingabe- und eine Ausgabe-
variable

Wir wollen zeigen, dad es mSglich ist, jedes Programm T
Us PL(A) mit r Eingabe- und s Ausgabevariablen in ein
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paguivalentes” Pragrammun’mit rur jeweils einer Eingabe-
und Ausgavevariablen zu transformieren. Wegen der Lni-
sprechung von ® und PL(A)} geniizgt es demnach also, dis
Funktionen aus:-?1 zu.hetrachten, un ganz ® zu behandeln.
Die universelle Funktinﬂ fir :P ist in diesem Sinne dann
universell fir ganz ?.

Sei nun me PL(A) mit r Eingabe- und s Ausgabevariablen,
r,32 1. Dann hat 7 folgenden Aufbau.

n = 11‘].1:}L1t Kl‘.‘.’:{r;
Aly;

output ZI!""EE

Als Eingabebelegung fiir 7 kommt jedes Element E=£ET,-..,xr)
aus (A¥)® vor. ¥ kann man auch wie folgt darstellen:

X = xthal...lxrs(ﬂu{]}}:i dabei seil¢ A.

In dieser Form wird X als Eingabe fir ein zu W gleichwer-
tiges Programm T mit nur einer Eingabe- und einer Ausgabe-
variablen benutzt,

m' = input X;
————

Ky 1200 e Xp o]
Bl p;

2=z, ] eene]2g];
output 7

Die Programmteile in Klammern lassen sich wie folgt reali-
sieren:

[x1:=11;-'11 lxr:z -r;]
durch: :{1:=E;1r-- t:{r::'“s;
loop X case ay — X, =X a,,
an —y .:{.r.'*-"x ang
I — }{1 i= E;
Kr—l:ixr;
XE:= s
end




und [Z:=31l lﬂ.lilzs]
durch: Li=§;
loop Z, case a; —> 2:=la,,
an—-—} Z---Zlan,
end;
Z:=2;
loop Z, case a; —> Z'fZa1,
aﬂ e E.:Fﬂan,
end;
Z:=2]:
.
Z:=21;
loop Z, case ay —> Li=ia,,
. .
a, — Li=Za,,
end

m'ist nicht Element aus PL{A), da das zugrunde liegende
Alphabet nicht A sondern AU {|}# A& ist., Wir kdnnen aber
aus ' ein ebenfalls zu ™ gleichwertiges Programmm " e PL{4)
mit nur einer Ein- und einer Ausgabevariablen gewinnen,
indem wir [At;ﬂ}}' durch A® kodieren., Als Kodierung kdnnen
wir die Funktion

§n+1.,n = Cp o Ch4

benutzen, wobei die Funktionen Gn"l und € ., in 2.6, defi=-

niert sind.

Im wesentlichen lassen sich also alle Programnme aus
PL(A) auf eine Eingabe- und eine Ausgabevariable reduzie-
ren, falls Uberhaupt Ein- bzw. Ausgabevariable vorhanden
Sind. Auf Grund der Church’schen These geniist es also,
Statt E}die.ﬁenge @: zu betrachten., Die universelle Funi-
tion 1P1’1 fir f?} ist in diesem Sinne universell fiipr ganz

- Un diesen Tatbestand deutlich zu machen, fihren wir die
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folgende Schresibwaise ein.

(2.7.1) Definition: Sei 1f131 universelle Funktion fﬁr*?%.
ke
‘Fx = AFT’“”FL:.[H’ ] ,1{K’En+1 ,n(-?ll '”!-'f'ﬁ]] J

E,YT_,*-.,}*EE A‘;
Dabel ist P%5 : (aM)* — 4%,

2.3 .5-m-n-Theorem, Rekursionstheorem

Im folgenden werden wir das Rekursionstheorem beweisen,
das uns ermdglicht, die Existenz selbstreproduzierender
PL{A}~Programme nachzuweisen. Sei A so gewihlt, dad jedes
PL(A)-Programm in A™ liegt (Vermeidung von Umkodierungern).

(2.8.1) Satz (s-m-n-Theorem):

Fiir alle m,ne€lN gibt es eine Funktion o ERMH
die fiir alle xe€ A¥, T e (A*)™, Z ¢ (a*)"

folgende Gleichung erfiillt:

Y "R(7,2) =
X T m(x,?)

Beweis: Seien n,meMN fest gewidhlt,

1.Fall: % ist kein giiltiger Programmtext., Dann ist

m+n
'f' undefiniert. In diesem Falle mup *F ”
s, (x,¥)
auch undefiniert sein, Es wird deshalhb

Sp(X,¥) = € gesetzt. Nun ist auch s™(x,¥)
kein giiltiger Programmtext, und es gilt:

¢ (3,2) = ‘fﬁm{x oy (Z) = underiniert

c.Fall: x ist ein gliltiger Programmtext. Also
Xx€PL(A). Dann hat x den Aufbau:

X = iﬂE“t ?111-1’2' ZT,---:ZEE
AW, ;
output W
D —— o —
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Mit F = (¥qsF0seees¥y) Wird gesetzt:
Ezix,?}:=innut ZT,...,ZH;

[ET :=:f1] AR E [Ym_:-_-ym.];
wa;

cutput W

Die Programmteile in eckigen Klammern lassen
sich leicht = wie am Beispiel von [YT:=31]
gezeigti - realisieren:

yy ist Element aus A" und hat somit endliche
Linge 1l(yq)e M

y]=5.1

'l'--!'!la-‘l

mit a, € A',
].’-'.5"1} J

Damit wird [II:=31] realisiert durch

1

_I'"ﬂ
pi

Auf Grund der Church’schen These ist sﬁe?&?*T.

(2.8.2) Korollar: Es gibt ein he'ﬂ"{l, so dal flur alle
f:fﬂ?n gilt:

£(7,%) = g(ﬂ(z) fir alle T€ (A")™, 7e (A%)0,

Beweig: Da f eine berechenbare Funktion ist, gibt es ein

Programm T, €A™, mit f =_.§,?;“. Aus (2.8.1) folgt

£f(7,%) = P90 ™Mg.8) = P2 (%) .
"o Tsﬁt.rrﬁ,?}

Setzt man h :=RF[E§( 'n*ﬂ,:?}] y 30 folgt das
Korollar,

%
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{2_8‘5} Eeggichﬂun& Sei ge@lf‘”- Dann existiert ein Pro-

gramm K€ &F mit .
E="f'xk T

Wir fihren nun folgende Notation ein:

Lf s
g, i=
< s;ix.f}

5 gilt mit dieser Notation:
e (¥) = g(x,¥) fir alle ¥e (a%)%,

Sei he @f und h(®) = undefiniert fir ein T € [ﬂ*)r, S50
ist nach obiger Notation die Funktion En (%) tiberall unde-
finiert.

Wir sind nun in der Lage, das Kleene'sche Rekursionstheorem
in der folgenden Fassung zu beweisen:

(2.8.4) Satz (Rekursionstheorem, Formulierung wie in [57]):

Zu jeder Funktion fe¢ ?.1' giot es einen Text xe A*,
so daid gilt:

LFx = "of{x}

Beweis: Die Funktion
e e~

g = Ay,X [‘ny(ﬂ,] (x0)]

liegt in®%  mit x,ye A*. In Korollar (2.8.2)
wurde gezeigt, daZ ein thQl existiert nit

1 = = H *

(1) ('Phl'_y] E.‘f ‘F‘f},(:;r) fir alle ye &

S5ei nun fe -‘J?':ll. Da hﬂﬂ:{ ist, kann man die Hinter-
elnanderausfihrung von f und h betrachten. feoh
liegt ebenfalls in 59}. Auf Grund der Churchichen

These kann man zu feh effektiv einen Programmtext
W aus PL(A) angeben nmit

(-E;' t‘P" = feh

Aus (1) und (2) folgt dann zusammen:



1) (2) @
(Fhﬁ*.rr} ‘4 “O‘P,,ﬂwi} - (ff-::h(*rrll

Damit ist x = h(mw) das gesuchts X.

Definition: Sei feff’,. Ein Tlement x € A* heiBt

(2.8.5)

(2.8.6)

Pixpunkt zu £, falls gilt ¢, = ﬁpf{:{).

Bewels:

Korollar: Zu Jjeder Funxtion EE@% existiert ein
‘ 1 e
Text x € A" mit ‘Fxﬂ = gxu .

Nach Korollar (2.8.2) existiert eine Funktion
1 j .. *
hE.ﬁ.1 mit lfh(}’) = 53' fir alle ye A™.,

h hat nach dem Rekursionstheorem einen Fixpunkt x

nit tFxﬂ = t’ph(xD) =8 o .

Q

(2.3.7) :

Beweis:

Satz: Es existiert in ?} eine Funktion mit einem
Programmtext x_ € A", der fiir jede Eingabe ye A®

0
seinen eigenen Text x. ausgibt,

o
Die Funktion g = '|-|"1?' : {A'}E — A% mit
glx,y):=x fir alle x,ye€ A" ist trivialerweise
aus \?‘?‘.

Aus Korollar (2.8.€) folgt damit, daB die Glei-
chung ¥, = g, eine Lésung x, besitzt. Es
existiert also ein x € AY mit

(10:{ = EED = ?\}'[:{D] = tfzt}(:-") = X, -"l‘}r'e A*

o

(Px ist also eine Funktion, die bei jeder Ein-
]

gabe y¢ A" 1hren elgenen Programmtext x X, ausgibt,

Mit ‘-P' DE ?] (trivial) ist der Satz vollstindig

bewiesen,

%

Der folgende Satz ist eine Verallgemeinerung von Satz (2,8.7).
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(2.8.8) Satz: Sei f : £ ——> A* aus fp}. Dann existiert
; in ‘?} eine Funxtion nmit einem Programmtext Xo € A’:
der fir jede Eingabe den Wert f(x,) ausgibt,

2
Bewels: Sedl fs@;‘ Die Funktion g : (A" — 5 A" mit

g(x,y) :=T15(8(x),y) = £(x) , x,ye A%,

liegt in P<. Dies folgt aus der Abgeschlossenheit
vcun-? gegenliber der Kombination und der Substitu-
tion von Funktionen (vgl. etwa [51 ). Aus (2.8.6)
folgt damit, daB die Gleichung ¥ = g, eine
Losung x, besitzt. Es existiert also ein x_€ AT mit

(on = gxc ==?\:f|__flfxuj:] =3 (PRD(:;F) = f(x,) ¥ren”

Da chD eine konstante Funktion ist, liegt £PK
0

trivialerweise in @}_. "Px ist die gesuchte
Funktion. 0

Aus Satz (2.8.8) folgt, daB es PL{A)-Programme gibt, die

sich nicht nur einfach selbstreproduzieren, sondern ihren
elgenen Text mehrmals ausgeben,.

(2.8.9) Korollar: Fiir jedes i€ I existiert eine Funktion

mit einem Programmtext x; € A%, der fir jede Eingabe
0

vy € A seinen eigenen Text ¥; i-mal hintereinander
a

ausgibt,
Beweis: Sei i¢ IN. Dann ergibt sich der Beweis aus dem Be-
weis von Satz (2.8.8) mit

f = f, 1 AY ——3 2®

i
fl(x} = xT (—3.“{(- X ).
i-mal

%

{2.8.10) Bemerkung: Satz (2.8.7) ergibt sich als Spezial=-
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fall von Satz (2.8.8) mit £ = id.

Mit Hilfe der vorangegansgenen Sdtze haben wir die Fxistenz
gelbstreoroduzierender PL(A)=Programme auf theoretischem
Hege nachgewliesen. Die Beweise sind zwar konstruktiv, je-
doch lassen sich die Konstruktionen nichkt nachvollzishen,
um ein konkretes selbstreproduzierendes PL(A)-Programm zu
erzeugen, In 2.5, haben wir gesehen, da die Menge
aller PL{A)~Programme aufzdhlbar ist. Zihlt man die Menge
aller PL(A)~Programme auf, etwa in lexikographischer Rei-
henfolge, s0 garantiert Satz (2.8.7) die Existenz einer
Zahl iDEiHﬂ mitfﬂiﬂ ist selbstreproduzierend. Fiir die
Zahl 1, ist Jjedoch eine GroRenordnung zu erwarten, die
Aufzdhlung als Mitfel zur Gewinnung eines selbstreprodu-
zierenden PL{A)-Programms ausschlieft,

Die Bedeutung von Kapitel 2 liegt darin, daB es nicht
prinzipiell sinnlos ist, selbstreproduzierende Programme
in hoheren Programmiersprachen zu suchen; sie existieren
wirklich,

(2.8411) Bemerkunz: Ir 4.3. werden zyklisch selbstrenrodu-
zierende Programme behandelt (vgl. Definition
(44347)). Die Existenz zyklisch selbstrepreoduzie~
render Programme 1203t sich wahrsecheinlich eben-
falls aus dem Rekursionstheorem folgern.
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In Kapitel 2 wurde gezeigt, dall in der fiktiven Program-
miersprache PL(A) selbstreproduzierende Programme existie-
ren., Da PL(A) die gleiche yBerechenkapazitdt” wie alle
gingligen Programmiersprachen hat, miissen auch in kxonkreten
Programmiersprachen selbstireproduzierende Programpe exi-
stieren. Ausgehend von praktischen Uberlegungen werden im
folgenden einige Beispiele fir m&glichst kurze selbstre-
produzierende Programme in den hcheren Programmiersprachen
SIMULA und PASCAL konstruiert. Wir werden dabei sowohl auf
selbstreproduzierende Programme stofllen, die sich ohne wei-
teres auf realen Rechenanlagen implementieren lassen, als
auch Programme finden, die zwar syntaktisch korrekt sind,
gich aber aus verschiedensten Grinden nicht realisieren
lassen. Wo es moglich ist, werden aus letzteren Programmen
implementierbare Versionen gewonnen.

In Abschnitt 3.4. werden einige Beizplele flir selbst-
reproduzierende Programme in einer maschinenorientierten
Sprache (SIEMENS-Assemblersprache) angegeben (vgl., 2.4. ),

2.2,5elbstreproduzierende Programme in SIHULA1}

In diegem Abschnitt sollen selbstreproduzierende Programnme
in der Programmiersprache SIMULA entwickelt werden, SIMULA
gteht hier als Beispiel fiir eine blockorientierte Program-
miersprache, Die in 3.3. behandelte Sprache PASCAL ist da-
geégen nicht blockorientiert., Fir uns wird sich jedoch ein
anderes Unterscheidungsmerkmal als wichtiger erweisen. Es
handelt gich dabei um die Verfiigbarkeit von Textvariablen.
¥ihrend PASCAL nur einfache Textkonstanten kennt, kann in
SIMULA mit echten Textvariablen operiert werden. Dureh In-
tegration in das SIMULA-Klassenkonzept kann die Rearbei-
EEEE von Variablen des Typs fext in SIMULA sehr komfortabel

'}EIHULn-Eeschreibung in [}é]-
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sein. Dies nutzen wir in Abschnitt 3.2.5, aus,

3.2.1.Naiver Ancatz

Um eine Vorstellung von der Problematik, ein selbstrevro-
duzierendes SIMULA-Programm ™ anzugeben, zu ernsalten, be=
tracnten wir folgenden naiven Ansatz:

T enthilt im wesentlichen nur eine Aus gabeanweisung.
Diese Anwelsung gibt den ganzen Programmtext von ™ aus.,

Ein solcher Ansatz fiihrt zu folgendem Programm LI
= bEElIl GUTTEXT{”i##l-lIliitlﬁllllilll'l”‘:] end;

An dieser Stelle mu? der Programm-
text von M, erscheinen, also:

begin OUTTELT (M. s ssannnaat) end ;

T

siehe obhen

FRessFERFAR TS

Insgesant entstent also ein sich rekursiv aufblihendes
Programm, das sich auch wie folgt schreiben 1HAt:

UD = begin QUTTEXT("BEGIN QUTTEXT("SRGIN
QUTTEXT("BEGIN OUTTEXT(".....

li!lllltli.ti..nia-ltiiiiiirq

seseeressa. BND) END") END')
end

T o ist natiirlich kein endlicher Text und damit cein
Prngramm mehr. Die ,UnmSglichkeit" von M lddt sich
auch an der Unerfiillbarkeit dar';extETElchung
X = begin QUPTEXT("x") end
ZWischen dem Text x und den Konstanten begin CUTTEXT("

ind ") end ablesen: Texte verschiedener Linge kZnnen
Aicht gleich sein!
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".E.E.Textzerlegpn# und Algnrithmus

e ——— g

pus 3.2.1, folgt, dal ein selbstreproduzierendes SIMULA-
Programm TT seinen eigenen Text nicht en bloc mit einer
ginzigen Ausgabeanweisung ausgeben kann. T muR seinen
Text also in mehreren Schritten aus einigen Teilstrings
gusammensetzen, Es nuf also eine

(1) Zerlegung des Textes 1T

vorgenommen werden. Da wir lber die Art der Zerlegung
nichts wissen, versuchen wir es zunichst mit der totalen
Zerlegung von ™ , das heiflt, wir zerlegen 7 in einzelne
Zeichen. Belassen wir es bel dieser MaBnahme, so kommen
wir zu folgendem Programm,

M, = begin OUTTEXT("B");
QUTTEXT("E");
QUTTEXT ("G");
QUTTEXT("I");
QUTTEXT("uM) ;
QUTTEXT ("u™);
QUTTEXT("OM);

LA R LR R

Bs ist klar, daB Ty einen unendlichen Text darstellt
und damit kein Programm sein kann.

Die Unendlichkeit von T, liegt darin begrindet,
daB zur Ausgabe eines Zeichens eine Anweisung - und
damit auch ein Text - bestehend aus insgesamt 13 Zei-
chen notwendig ist, Damit ist ein rein sequentielles
Programm wie Ty zZum Scheitern verurteilt, wenn der Pro-
Erammtext in einzelne Buchstaben zerlegt wird. Die Wahl

¢ines der Zerlegung des Programmtextes entsvrechend
sirukturierten

E&E} Algorithmus

ist ein bedeutendes Kriterium, das bei
fonstruktion selbstreprod

der praxtischen
uzlerender Prozramme beachtet
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werden muf,

(1) und (ii) stellen die beiden wichtigsten Aspekte
gelbstreproduzierender Programme dar. Bel den folgenden
Konstruktionen selbsireproduzierender Programme wird es
also darum gehen, eine geschicute Zerlegung des Programm-
textes und einen geeigneten Ausgabealgorithmus zu finden,

2ed.2in tabellengesteuertes Prozramm
3 g 2

Hir greifen mit Programm TTE die Idee von der totazlen Zer-
legung des Textes ms in einzelne Zeichen aus %.2.2. auf.
Diese Zerlegung wird aber nicht wie in m, explizit sicht-
bar, sondern sie Zuflert sich im verwendeten Algorithmus.
Dieger Algorithmus setzt den Text von T, aus einzelnen
Zeichen zusammen. Die Menge der zulidssigen Zeichen steht
im Algorithmus in Form eines Feldes

character array C [# : maxchar)
zur Verfigung. Jedes Element vorn C enthilt genau ein Zei-
chen, das zur Erstellung von SIMULA-Programmen verwendet
werden darf. Alle derartigen Zeichen sind in ¢ enthalten,

character array C [# : maxchar];

Clg]:=man, h

ﬂ[*li?"aﬂi . Buchstaben
CEﬁ] ;_.nzu; i
C26] :=mpn, )

E , Ziffern
0[35] ;=n9u; _

C 36] :=m;m, h
CB?_" s=ttym,

sonderzeichen

LE R J

[3 [!naxé har] :="s";

Der Algorithmus hat die Aufgabe, sukzessive Komponenten
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aus O auszugeben, so dall insgesanl der Programmtext W,

gedrucht wird:

I ist vom Typ
begin ({berechne neues I)» ; integer, p ist
QUTCHAR(C[1]); ein Pridikat,

while not p do |
oh |
|
}
(setze D) : das den Algorith-
I
|
}
I

mus stovpt, sobald
der Text T, ge=
druckt ist,

end

Insgesant sieht das Programm ms wie folgt aus:

j La l
P e e L -
' 5[9]3="A”I ; |
: G[1£=HBH; | :
l : ! |
: | I
1 . | i
! : | l
f . | |
l C[maxchar] :="s"; | |
L — — — i — —_— — e S— o S SR R A i o o e Iq- H—-1.
: while not p do : ,
| begin (berechne neues I); I I
| OUTCHAR(C[I]); | 111 !
: (setze p) : :
l end | |
Fe======= eI T T T T—~— ™
! end | Ib

Das Programm T, gliedert sich in 4 Teile. Man erkennt
Neben den initialisierenden und abschliefenden Teilen

Ia und Ib einen Teil II, der den Aufbau der Druckzeichen=-
tahelle vornimmt, und einen Teil IIT, der den Algorithnmus
Fealisiert,
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Die Programmteile Ia,Ib und II bereiten sicheriich keine
Schwierigkeiten, Auch der Algcorithmus vor Teil TIII macht
einen durchsichtigen Eindruck. Es bleiben eigentlich nur
noch die beiden Anweisungen <(berechne neues I> und
( setze p)} durch SIMULA~statements zu ersetzen. Das Fr-
setzen von (berechne neues I) ist dabei sicherlich die
schwierigere Aufgabe.

¥ir wollen zundchst genauer untersuchen, was der Al go-
rithmus aus Teil ITII und insbesondere die Anwelsung
{ berechre neues I> leisten miissen.

(3.2+3.1) Definition: Sei D die Menge aller in SIMULA-
Programmen zulissigen Zeichen:
D := {a.b,...,z,E,T,*..,9,;,:,...,f]
Dann ist ¥«L gD die Zahl i€ M, der Index, unter
dem das ZeichendeD in der Tabelle C abgelegt
ist: L = C[i&]

(3.2.3.2) Lemma: Die Abbildung & : D* ~— N mit
§(e) = ¢
§wd) = & (wyi, ¥weD*, {eD

ist Kodierung von D* durch m

Beweis: (1) .-_f{x} 1st filr jedes xeD* definiert., Also ist
d total. dist trivialerweise berechenbar,

(1i) Da in der Tabelle C jedes Zeichen aus D genau
einmal gespeichert ist, folgt: cgist injektiv,

(1ii) Sei J = Jpeveesd, aus N7, J ist genau dann
aus J{D"’],_ wenn jedes Jies kK€Mm], aus
{Eﬁ,.....,maxchar} ist. Also ist J(D¥) ent-
scheidbar.

(iv) Sei J = Jpeeeeddy, aus d(D*¥). Mit Hilfe der
Tabelle C l#Bt sich fiir jedes J.» ken], das
Zeichen aus D ermitteln, das durch Ji. kodiert
wird. Mit hdchstens n-maxchar Vergleichen
1aBt sich so das Urbild von J unter d ermit-
teln. Also ist &~/ berechenbar,

Aus (1) bis (iv) folgt: dist Kodierung (vgl-(E.E.E}J.
%
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(3.2.3.3) Bemerkung: Jedes SIMULA-Programm TT hat als end=-

liches Wort aus D* eine Kodierung J(Tr) in |H§.

Bei jedem Durchlauf durch die while-Schleife im Algorith-
mus von TTE wird ein neuer Wert fir I berechnet, I nimmt

also im Verlauf des Programms eine Folge von Werten an,
die sich als Wort aus IN; auffassen 1i3t:

PEEpdaeeeeeeendyg y 14€N, fhr alle jefi(m,]]

Damit 1T, seinen eigenen Text ausgeben xann, mufll gelten:

C[1q] Cfis] eevens c[il(naﬂ - T,
Es gilt daher:

- Die Funktion von <{berechne neues I) ist die suk-
Zessive Ermittlung der Kodierung von TTE beziiglich dh+

- Die Funktion des gesamten Algorithmus von T, ist die
Dekodierung der ermittelten Kodierung, alsc die Reali-
sierung von d-1.

Dle Berechnung der ij, je(l{rre}] ;1st das noch verbleibende
Problem, Die lj miissen iterativ mittels einer Funktion
F N, —= Jﬂg erzeugt werden:

Setze il;

Lopg = Py Je[l(my)-1] |.

Die Funktion F 1Bt sich ale Funktionsprozedur realisieren
und innerhalb von Teil Ia von T, vereinbaren, Die Anwei-

sung {berechne neues IY wird daun Zu der Prozeduranwei-
sung

I:= F(1)
Da es unser Ziel ist, ein selbstreproduzierendes SIMULA-
Programm anzugeben, das sich auch auf einerp konkreten

Rechenmaschine implementieren 1aldt, miissen an F folgende
Forderungen gestellt werden:



a) F mul in vertretbarer Zeit berecherbar sein
und

b) die von F benutzten Zwischenergebnisse miissen
im darstellbaren Zahlenbereich der Rechenma-
schine liegen.

Es ist mdglich, dal ein konkretes F nicht von I abhingt,

3.2.4,N2h1 der Iterationsfunktion F

—

In diesem Abschnitt werden zwel Funktionen diskutiert, die
als ITterationsfun«ztion denkbar wiren.

Je2.4.1,Eine Tterationsfunktion mittels Modulo=-Bildung

Wir erweitern die Kodierung o zu einer Gddelisierung
(vgl. (2.5.3) ). Dazu definieren wir die Abbildung £y

(3.2.4.1.1) Definition: Die Abbildung fg : INJ —— I,
sei wie folgt definiert:

@, falls I=¢
- k
fe(l) = 9 i
A gi: ij(maxchar+1}3“1, falls
=1
I i= i illi
1 K

Ist 1 ed(D*), so ist jedes iy, Jelk], kleiner oder gleich
(maxchar+1). Die Restriktion von f§ auf J(D¥) ist somit
injektiv und kodiert die Elemente von J(D*) durch IN,. Es
folgt somit:

3.2.4.1.2) Lemma: Die Abbildung f : D* — 0 N, mit
f i= ffod ist Gddelisierung von D¥,

Beweis: Of fensichtlich

Von Interesse ist fiir uns die Tatsache, dal man aus der
Zah] f(x) fir jedes xeD* effektiv die Komponenten von
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J(x) zuriickberechnen kann. Dies gilt insbesondere fiir
f{ﬂé}, und wir gewinnen mit

integer procedure F;
vegin F:=X mod(maxchar+1);
X:=X//(maxchar+1);

end t ganzzahlige Division

eine Iterationsvorschrift zur Erzeugung von cf(né}, wenn
wir fir X den Startwert f&na) wihlen.,

Da der Startwert venm X, also f(ﬂa}, von T, nicht ein-
gelesen werden darf, muB T, die Zuweisung

X &= f('ﬂ"E]

enthalten., f(wE} ist eine ganze Zahl und damit textueller
Bestandteil wvon ﬂ'a. um Zeitpunkt der Erstellung von T
ist die Zahl f(na) unbekannt, sie kann erst nachtréglich
ermittelt werden, Beim Aufschreiben des Programms ™5 mub in
der Anweisung K::f{na}; die Zahl f{ﬂé) zundchst ausge-
lassen werden, Erst nach Erstellung des Programms - das
f(7,) immer noch nichi enthilt - 1At sich dann

q := £(yy W, ohne den String £(m5)") errechnen, Mit dep

Zahl q als Startwert fir X wird T 5 nur seinen Text ohne

die Zahl g reproduzieren kinnen, Diesen MifBstand beseiti-
gen wir, indem wir den Algorithmus von T , abidndern:

2

Es 14Bt sich leicht feststellen, nach dem wievielten
Schritt des Algorithmus die Zahl f(ﬂE} ausgegeven werden
mufl, Es sei dies der r-te Iterationsschritt, Die Zahl r
Wird Bestandteil des Programms, Der Algorithmus von 'l'l'E
lautet dann:

Li=q;
Yi=1;
while ¥¢=1(,, T, ohne den String q") do
begin I:=F;
QUTCHAR(C[I]);
if Y=r then OUTINT(g,...):
Yi=¥+1
end

e ——

Und das Gesamtprogramm ist
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'ﬂé = begin
integer I1,X,1;
character array C[I ;maxchar];
integer procedure F;
begin F:=X mod(maxchar+i);
X:=X//{maxchar+1)

s
-
- R ]

reennnsn |

C [maxchar]:="x";
L1=q;
T:i=1;
while Y¢=1(,m, ohne den String q") do
begin I:=F;
OUTCHAR(C[I]);
if Y=r then OUTINT(qQ,...);
Yi=T+1
end

end
Die Tabelle C braucht natiirlich nur die Zeichen enthalten,
die auch wirklich in T 5 vorkommen. Dementsprechend kann
die Zahl maxchar moglichst klein gehalten werden. Die Zah-
len r,q und 1(,m, ohne den String ¢") lassen sich ermit-
teln, nachdem das iibrige Programm erstellt wurde, Es ist
leicht einzusehen, daf gilt:

ﬂé reproduziert sich selbst,

Das Programm iTE ist zwar ein syntaktisch richtiges Pro-

gramm, aber dennoch nicht auf Rechenmaschinen realisierbar.
Das liegt an der Grobenordnung der Zahl q. g liegt bei wei-
tem auBerhaldb des darstellbaren Zahlenbereichs iiblicher Re-

thenmaschinen. Um dies einzusehen, schitzen wir die Zahl q
lach unten ab.

Wie man leicht feststellt, xommen im Programm W, min-
destens 32 verschiedene Zeichen vor. Damit gilt maxchar232,



piir die Linge von TTE gilt, wenn man nur die unbedingt
nstigen blanks, die als Trennzeichen fungieren, mitrsch-

net:
1(y®, ohne die Zahl q") » 700
pug Definition (3.2.4.1.1) urd der Definition von q folgt

damit: Q> 3E?DG |
Trotz dleser sehr groben Abschitzung von q zeigt sich,

da® q in herkdmmlichen Rechnern nicht darstellbar ist.

3,2.L.,2.51ine Tterationsfunktion basierend auf der GS5dali-

sierung g aus 2,.5.

In Abschnitt 2.5. wurde die Godelisierunz g : C* —s Ny
eingeflhrt. Auf vSllig analoge Weise kann man eine Godeli-
sierung gy : D* e I konstruieren, indem man C durch
D und die Abbildung H : ¢ —— i, durch die Abbvildung
Hy ¢ D — M, mit H() := iy, fir alledeDd

ersetzt., Wie man aus jeder Godelnummer glw), weC™, effek-
tiv das Urbild w bestimmen kann, so kann man das gleiche
auch fur jede Gidelrummer gh(v), ve&D*, durchfiihren.

Damit 1&0Bt sich wie in 3,2.4.1. eine Prozedur F' ente
wickeln, mit deren Hilfe es mdglich ist, :f(né} iterativ
zu berechnen, wenn q':= gn(, w5 ohne die Zahl gplmy)n)
als Startwert fiir dis Tteratlun gewdhlt wird, Wir erhaltan
dann ein dhnliches selbstreproduzierendes Programm Tfa wie
in 3.2.4.1.. Auch dieses Programm ist syntaktisch korrekt,
aber ebensowenig realisierbar wie das Programm aus 3,2,4,1.
Dlese Tatsache liegt an der Nichtdarstellbarkeit der Jahl
q'. Wir schitzen gq* grob nach unten ab,

Die Liange von TTE betrigt mindestens 650 Zeichen,

Dann ist
i ip i, ip i i+
q 2 Dy E'PE E'P3 G’Pq I‘Ef‘, N'**"P58{?{ *1 , oeD
Da gchon die fiinfte Primzahl, nidmlich 11, grifer als 10
ist und das Zeichen a mit 1 ~u nur wenig in 172 auftritt,
gilt sicherlich:
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pamit ist q' ebenso wie q nichit in Uovlichen Recnenanlagen
darstellbar.

2_2,5.E¥p textgesteuertes SIMULA-Programm rr5

[n Abschnitt 3.2.4. wurden selbstreproduzierende Prozramme

2

m. und rr% entworfen, die zwar syntaktisch richtig waren,

sich aber micht auf konkreten RBechenanlagen realisieren
liefen. Wir wollen keine weiteren Anstrengungen unternehmen,
realisierbare Iterationsfunktionen und Startwerte zu finden,
gondern Zndern vielmehr Textzerlegung und Algorithmus der
Programme aus 3.2.4. ab. Wir gewinnen aus T 5 das Programm

LET
(1)

(ii)

indem wir folgende Anderungen vornehmen:

Zerlegung: Im Gegensatz zu T, wird Tl'5 nicht in ein-
zelne Zeichen, sondern in gréfere Teilstrings zerlegt.
Aus  character array C [I:maxchar| wird

text array C[J:maxtext] .
Damit findet erstmals das SIMULA-Textkonzept in unseren
Uberlegungen seine Anwendung,

Algorithmus: Die Aufgabe des Algorithmus von TTj be-
steht darin, den Programmtext Tfj aus Teilstrings, die
in dem Feld C gespeichert sind, zusammenzusetzen. Jede
Feldkomponente wird durch ihren Index kodiert, Der Text
T 136t sich dann als Folge von Indizes kodieren:
Mam> 1,00l 5 16 {1,...,maxtext}

Diese Folge von Indizes schreiben wir als Text in die
text-Variable X. Mittels der Lext-Prozeduren SUB und
GETINT ist der Zugriff auf die einzelnen Zahlen ij im
Text X gewdhrleistet, Der Algorithmus wvon 1'r3 braucht
also nur noch den Text X sequentiell zu durchlaufen
und fiir jedes i aus X den Text G[ij] auszugeben,

Durch eine derartige Ausnutzung des Text-Konzepts der Pro-
Erammiersprache SIMULA umgehen wir die Repridsentation von

T

war,

z durch eine ganze Zahl, wie dies in M, und ™', der Fall

und damit auch die nicht mehr darstellbaren Etartwerte

q bEW«t ql .

1)Standard-Funktion siehel}?]‘
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erTgxt ¥ enthilt jedoch nicht seine eigene Kodierung. Aus

4iesem Grund mufB das Ausdrucken des Textes X im Algorithmus
qun'”j eine Sonderstellung einnehmen. In Analogie zu

}*2'4,1. ~ dort machte die Ausgabe der Zahl X Zhnlichs
gcnwierigkeiten - wird die Ausgabe von X durch die ein-

fach ZU ermittelnde Zahl r gesteuert:

]{:-GGPY(”:LT t = a -’iLL!');
for I:=% step 1 until k do
begin

(ermittle nichstes i, aus s

OUTTEXT(C[i4]);
if I=r then QUTTEXT(X)

end;

3
1) begirn integer I,5,Z; text X;

2} text array C[1:34];

3} ¢ [1] :=COPY("BEGIN INTEGER I1,S,Z; TEXT X;"):
4) C (2] +-COPY("TEXT ARRAY C[i:34] ;");

5) C[3] :=COPY("X:~COPY(""");

6) C{4] :~COPY("FOR I:=1 STEP 1 UNTIL 105 DO "):
7) C[11] :-COPY("BEGIN S:=X,SUB(Z+1,2).GETINT");
8) ¢ [12] :-COPY("OUTTEXT(C[S] ):™);

9) C[13] :-COPY("Z:=(IF 5¢1f THEN 2 ELSE 3)+Z;");

10) C 14 :~COPY("IF I=99 THEN OUTTEXT(X) END END");

11} ¢ [21] :=coPY("C[");

12} G 23] : -COPY(" J:=COPY (111,

13) ¢ [23] :=coPT(nn) ), (Die blanks sind nur
14} C [24 :-cOpY(nnnm), zur besseren Gliede-
15} ¢ 51] :=COPY("1"); 4 rung eingefiigt. Der
16) ¢ 3] :-copy(ran); Algorithmus beachtst
17) ¢ [33] :~copy("3"); sie nicht,

18) C P31 :~COPY("44) “

19) X:-copv(n1,2, v

21, 31,22, 1, 23,
21, 32,22, 2, 23,
ET? 33122! 5124123,



21, 34,22, &, 23,
21,31,31,22, 11, 23,
21,31,32,22, 12, 23,
21,31,33,22, 15, 25,
21,31,54,22, 1L, 23,
21,3%32,31,22, 21, 23,
21,3%2,3%32,22, 22,24,23,
21,3%32,3%,22,24,23, 23,
21,32,54,22,24,24, 23,
21,33,%1,22, 31, 25,
21,33,3%2,22, 32, 23,
31153133!22: 33! 33*
21,22,54,22, oh, 23,
3,23,4,11,12,13,14,");
20) for I:=1 step 1 until 105 do

21) begin S:=X.SUB(Z+J],2),GETINT; (Bewirkt das

22) QUTTEXT(C[S]); = scannen
— m

23) Z::{ii S¢10 then 2 else 3)+Z; des Textes X

2h} if I=9% then QUTTEXT{X) end end

Verifikation wvon T'r3

Der algorithmische Telil des Programms arbeitet sequentiell
elne Folge von Zahlen ab, Diese Zahlen sind in dem Text X
gespeichert, Es sind genau 105 Zahlen. Jede Zahl j bewirkt
das Ausdrucken eines Textes C[j]. Zunichst werden die Texte
C{1] und C[2] ausgedruckt. Damit sind die ersten beiden Pro-
grammzeilen kopiert. Mit den folgenden 96 Zahlen werden die
Programmzeilen 3 bis 18 ausgedruckt, Diese 96 Zahlen beste-
hen aus 16 Gruppen. Jede Gruppe ist durch das Zahlenpaar
21,...,23 begrenzt und druckt genau eine Programmzeile aus.
Jede dieser Gruppen hat folgenden allgemeinen Aufban:

21, e cl

[ZahlJ e Ziffer 1 bzw. 2 bzw. 3

Zah]l , @ Ziffer 1 bzw. 2 bzw. 3 bzw, 4
22, & J:=copy(™

Phl] & "

Zahl, 2 text

[e;_h:l & I
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23, e ")

pamit entspricht der Aufbau der Zahlengruppen geprau dem
allgemeinen Aufbau einer der Programmzeilen 3 bis 12, Be-
pilcksichtigt man die im Programm vorkommende Kodierung, so
sgt klar, dall diese Zahlengruppen die Programmzeilen 3 bis
18 ausdrucken.

Mach diesen G6 Zahlen wird die Zahl 3 abgearbeitet.
nadurch wird das Drucken ven x:-copy("™ bewirkt, Gleich-
zeitig hat die Laufvariable I der for-Schleife nun den
wert 95 (99 Zahlen sind ja abgearbeitet). Deshalb wird nun
der Text X gedrucxkt, Die Abarbeitung der Zahl 23 schlieft
Programmzeile 19 ab. Die restlichen Programmzeilen 20 bis
2L, werden durch Abarbeitung der restlichen Zahlen L,11,12,
13 und 14 kopiert. Die Laufvariable hat dann den Wert 105,
und der Algorithmus bricht ak,

?erhesserung von 1-r3

(1) Die Textvariablen C[1]...C[3% und X enthalten die
Teilstrings des Programms, Besonders wichtig sind dabei die
mehrfach aufiretenden Teilstrings., Es sind dies:
cf21 = cf
cf2d = Jr-copy(n
¢23 ")
G[ELQ = "
¢[31] 1
ci}g] = 2
B = 3
C Bi;.] = b
Diese Strings stellen in ihrer Gesamtheit die ,Bauelemente"
dar, aus denen das Gerippe von W, aufgebaut ist, Auf sie
kann nicht verzichtet werden. Bei den anderen Teilstrings
ist eigentlich nicht einzusehen, warum sie gerade so aufge-
teilt sind. So kénnten zum Beispiel C[1] und C[2] zusammen-
Belegt werden. Grundsédtzlich ist zu sagen, da® maximale
Teilstrings gebildet werden kdnnen, die kein " enthalten.
Der String  xxx"xxx miBte z.B, als

k) C[i]:-copy{"xxx""xxx");
Vereinbart werden., Die Zahl J in dem Text X bewerkstelligt

|
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dann zwar das Ausdrucken von  xxx''xxx , aber es 1HA:
gich keine Zahlenfolge finden, die die Zeile k) druskt:

El’li'l',aaljla:i}
pewirkt

C E]] t=copyi Mxxx"xxx");

|

Hier fehlt ein ", Es kann nicht

durch Ausgave des Textes C [24]

eingefiligt werden, da es mitten

im Text von C[j] fenlt,
Das Einfiigen der Zahl 24 in X kann nur dann zum Erfolg fih=-
ren, wenn das Hochkomma am Anfang oder am Ende von Clil
steht. Vergleiche dazu die Programmzeilen 12),13) und 14)
und die dazugehdrenden Zahlengruppen im Text X.

(ii) Das obige Programm arbeitet mit sinem text array C

und einem text X. Sowohl die Komponenten von C als auch X
enthalten ;;;—iextkanstanten. Eine Sonderstellung von X
ist also nicht sufrechtzuerhalten, Die Komsegquenz: Wir er-
weitern das Feld C um eine Komponente C[x]. C[x] btekommt
den Wert von ¥ zugewiesen., Damit wird auch die algorithmi-
gche Sonderstellung des Textes X aufgegeben. Die if~Anwei-
sung in der for-Schleife entfZdllt. Der ehemalige Text X,
der jetzt in C[¥] steht, wird einfach durch Abarbeitung
der Zahl x ausgedruckt. x ist dabei selbst Element von

C G,

(1i1) Die Punkte (i) und (ii) deuten schon an, dal sich
Viel Programmtext und Komponenten von C einsparen lassen.
Weniger Xomponenten bedeutet aber, dal wir mit weniger
Liffern auskommen, um die Komponenten zu adressieren.
M5glicherweise kann die Programmzeile 18 weggelassen wer-

den, da die Ziffer 4 gar nicht zur Adressierung benstigt
Wird,

Pihrt man die Verbesserungen (i) bis (iii) an Programm TT
kOnsequent durch, so erhdlt man das folgende Programm 77’
Die Feldkomponenten C[1] und ¢[{31] zeigen ingbesondere

3
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sehr schin die Bildung ,maximaler" Texte (vgl.(i)).

ﬂ.?J:

begin integer I1,5,Z; text array C[1:31] ;
¢ 1] :=COPY("BEGIN INTEGER I,8,Z; TEXT ARRAY C[1:31] ;C[1]:-C
DPY(HHH};
¢ ] :=copY("ClM);
¢ [3] :=COPY(" J:=COPY(M11);
(1] «=COPY(M') 1),
1@ :-FGPY("""")'
yﬂ :=COPY(™1"):
¢ 1 :=copy(nam),;
¢ 2] :-corPy(n"3n);
¢ 3 :-copy(m,1,12,11,
2, 21,3, 2, 11,
2, 22,3, 3,12,11,
25,13,13,3,12,11, 11,
2,13,21,3,12,12, 11,
2,13,22,3, 13, 11,
2yalyl15,5, 21, 11,
2,21,21,3, 22, 11,
2,21,22,3, 23, 11,
2422,135,3, o1, 11,31,");
C[31] :~COPY("FOR I:=1 STEP 1 UNTIL 60 DO BEGIN S:=C[23].5UB
(Z+1,2) JGETINT ;QUTTEXT (C[S]);Z:=(IF S<10 THEN
2 ELSE 3)+Z END END");
for I:=1 step 1 until &0 do
begin S:=C[23].SUB(%+1,2),GETINT;
OUTTEXT(C [8]);
Z:=(1f 5<10 then 2 else 3)+Z

€

3

end

en

e

Piese Version von TT5 ist in ihrer logischen Funktionalitit
Bicht mehr zu verbessern. Strebt man aber ,textuell" kurze
Programme an, so gibt es noch eine weitere Verbesserungs-
n3glichkeit:

(Lv) Die Xomponenten von C kinnen so adressiert werden,

daB® die in C[}ﬁ] hdufig auftretenden Adressen miglichst
Rurz gind,



pdresse | Auftreten in C[23]| Zeichen insgesamt
: > 1% 2= 2
. 10 Tx10=10
3 10 1x10=10
11 10 2x10=20
"-?Er- N 2x b= 8
7z 3 2. 6212
21 8 2x 8=216
22 5 cx =10
—_23 1 ox 1= 2
B 31 2 2a 2= 4

Um ,optimal™ zu adressieren, miissen wir erreichen, dafl
die 3 einstelligen Adressen am hiufigsten auftreten, Wie
die Tabelle zeigt, ist das bisher nicht der Fall, Adresset
tritt nur 2-mal auf, wihrend die zweistellige Adresse 11
10=-mal auftritt. Wir erreichen eine ,0ptimale" Adressie-
rung, wenn wir die Imnhalte von C[1] und C[11] vertauscaen
und den Inhalt von C[23] entsprechend korrigieren,
Ersparnis: 8 Zeichen.

3.2.6.Implementierung des Programms ﬂ'3

Das Programm Tz gibt seinen Programmtext iliber die Stan-
darddatei SYSCUT aus. Da diese Ausgabe in Form eines ein-
zigen Strings ohne jede Blockung erfolgt, reicht die vor-
aingestellte Pufferlinge von SYSOUT nicht zus, Die Puffer-
lange muff im Programm g erhdht werden, damit keine Lauf-
zeltfehler aufireten. T3 wird daher um die Anweisung

SYSOUT, IMAGE :-BLANKS(200) ;

erginzt. Entsprechend wird die Textkonstante C[31] erwei-
tert, Das resultierende Prt:-gramm.ﬂ’5 zelgt Anhang A.1..
Der zur Verfiigung stehende SIMULA-Compiler hat die BEin-

gabelinge 72. Die Ausgabe von Ty bzw. ‘W% liefe sich nur

dann kompilieren, wenn sie in Blécke zu jeweils héchstens
22 Zeichen unterteilt wire. Dies ist aber weder bei UL
noch bei Tﬂ3 der Fall, Anhang A.2, zeight eine Version
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ng von Tr5,deren.ﬂusgabe in Zeilen a 72 Zeichen unter-
reilt ist. Dies wird durch einen komplizierten Anweisurngs-
teil errelcht. Die Ausgave von TT% 1iAt sich erneut iiber-
gsetzen. Sie stellt eln lauffZhiges SIMULA-Programm dar,

. H P
das gleich T3 ist,

3,247e51in prozedurgesteuertes Programm 1r

1
- -

In 3.2.0. Wwurde ein selbstreproduzierendes Programnm L
konstruiert, das seinen Text in Teilstrings zerlegt ent-
hielt., Diese Teilstrings brauchten von Tr 3 nur noch in der
richtigen Reihenfolge ausgedruckt zu werden, In Form von
Programm 77, lernen wir nun ein selbstreprcduzierendes
SIMULA-Programm kennen, das die Abspeicherung seiner Teil-
strings direkt mit der Ausgabe dieser Strings koppelt.

Statt C[Adresse]:-copy("text"): in Ty
schreiben wir procedure name;OUTTEXT("text"); in 1T

I
Die Zerlegung des Programmtextes von TTlr+ entspricht dabei

der Zerlegung des Programmtextes von L Der Algorithmus
von 1T, bestent nur noch aus einer Folge von Prozedurayf-
rufen. Mit Programm 7, lOsen wir uns wieder vom eigent-
lichen SIMULA-Textkonzept., Wir bendtigen lediglich die

Miglichkeit, Textkonstanten als Argumente fiir Ausgabean-
Welsungen zu benutzen.

'ITLI_:

") begin

2) procedure AA;OUTTEXT("BEGIN ");

5) procedure C;OUTTEXT("PROCEDURE ");
4) procedure A;OUTTEXT(";QUTTEXT("on):
5} procedure B;QUTTEXT (1) n),

6) procedure AC;QUTTEXT(rmvie ).

7) procedure BA;OUTTEXT("A™):

8) procedure BB; OUTTEXT("B");

9) procedurs BC;OUTTEXT("CM);
10) orocedure AE;DUTTEKTE"AE;C;EA;BA;A;AA;H*E;BC;R;E;B;C;BA
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:A;A;AC:B;C;BRB;A;AC;B;B;C;BA;BC;A;AC;AC;B;C;BB;BA:A;
BA;B;C;B3;BB;A;BB;B;C;B3;BC;A;3C;B;C;BA;38;A;A8;3:4A3
END"}

11) A&;

12) C;BA;BA;A;  AA;  Bj
13) C;3BC; Aj Cs B;
14) C;BA;  Aj A;A7;3;
t5) C;B3;  Aj;AC; By B
16) C;BA;BC;A;AC;AC; B;
17) C;B3;BAA; 34; B
18) C;BB;BB;A; BB;  B;
19) C;BB;BC;A;  BC; B
20) C;BA;BB;A; AB; B:
21) AB

22) end

Verifikation vom T,

AA; ist das erste statement des Anweisungsteils wvon L
Es bewirkt die Ausgabe der ersten Programmzeile., Die nich-
sten 9 Programmzeilen werden durch die Prozeduraufrufe der
9 Programmzeilen 12) bis 20) ausgegeben, was sich mit Hilfe
der tabellarischen Schreibweise des Anweisungsteils von my
leicht nachvollziehen 1&Bt. Das folgende und gleichzeitig
letzte statement ist ein Aufruf der Prozedur AR, Dieser Auf-
ruf bewirkt die Ausgabe der restlichen Programmzeilen 11)
bis 22), da die Textkonstante der Prozedur AB den algorith~
mischen Teil von ™y enthdlt, Durch Ausfithrung der Prozedur
AB holt die Ausgabe des Programms 7T, die Ausfihrung von
IT'I_E ein.

LQ.E.?.1} Bemerkung: Das selbstreproduzierende SIMULA-Programm
'n'iL bendtigt als Daten nur Textkonstanten., Zur
Strukturieruns verwendet T, neben der Hinterein-
anderausfiihrung von Anweisungen nur das Prozedur-
konzept, Insgesamt gesehen verwendet T, nur Ele-
mente, die die meisten hohsren Programmiersprachen
zur Verfligung stellen. Daher gesshen miissen dem




Programnm 1T4 dhnelnde selbstreoroduzierende Pro-

gramme in fast allen hoheren Programmiersorachen
existieren.

3,2.8. Implementierung des Programms 7T,
-_-_....—--l—l— - +

Fiir die Implementierung des Programms Trg gelten die glei-
chen Bemerkungen, die zur Implementierung von 1r3 in %3.2.6.
gemacht wurden. Aus 'ﬂh 188t sich mit geringem Aufwand ein
1auffihiges selbstreproduzierendes Programm Tﬂ# gewinnen,
indem die Anweisung

SYSOUT,IMAGE: -BLANKS(200);

in den Anweisungsteil von LR bzw., in die Textkonstante der
Prozedur AB eingefligt wird.

Aus Tr, 148t sich wie in 3.2.6, ein selbstreproduzieren-~
des Prugramm.Trl_ahleiten, dessen Ausgabe so formatiert ist,
dal ein lauffihiges Programm entsteht, Erreicht wird dies
durch

~ Einfilhrung der Prozedur
procedure @;O0UTIMAGE:;

~ Aufspalten der Textkonstanten der Prozedur AB auf die
Prozeduren
AB,CA,CB,CC,AAA und AAB

Die Ausgabe der zusidtzlichen Prozeduren CA bis AAB bewirkt

einen vergrdlerten Anweisungsteil in TTL.

Anhang A.3, und Anhang A.4, demonstrieren die aus ™,
resultierenden Programme ‘i'r',_E bzw. .

§33.Se1b$treprﬂduzierende Prng;gmme in PASCAL 1)

?n diesem Abschnitt sollen selbstreproduzierende Programme
0 der Programmiersprache PASCAL vorgestellt werden, PASCAL
1st neben der Tatsache, daB es nicht blockorientiert ist,
®ine Programmiersprache, die keine Textvariablen kennt;
EﬁSGAL sleht nur Textkonstanten vor. Von daher gesehen ist

Hpgsch-Eeschreihuns in ["ﬂ'
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es nicht onne weiteres mdglich, aus dem SIMULA-Progranmm T2
aus Je2.5. ein entsprechendes selbstreproduzierendes PASCAT-
programn zu gewinnen. Auf Grund von Bemerkung (3.2.7.1) wird
es jedoch keine Schwierigkeiten bereiten, das Programm ™y
aus 3.2.6. nach PASCAL zu iibertragen,

3,3.1.Ein textgesteuertes PASGAL—Pngramm‘n‘5

Wir versuchen trotz des Fehlens von Textvariablen in PASCAL,
das Programm Tr3 in ein selbstreproduzierendes PASCAL-Pro-
gramn 1T5 zu Ubertragen, Dazu gibt es verschiedene Migliche-
keiten, von denen zwel genannt sein sollen:

(1) Wir simulieren die in 1T3 vorkommenden Texte durch

character arrays. Auf diese Weise wird das Feld C zwei-
dimensional

yar I array D-..maxtait,t..maxlangthj ¢f char

wobel maxlength gleich der Linge des lingsten Teil-
strings ist, in die wir das PASCAL~Programm Mg zerle-~
gen, Jede Zelle von C beinhaltet genau einem String
der Zerlegung von Tr5.

Nachdem die textuelle Speicherung der Zerlegung ge-
glirt ist, konnen wir uns dem algorithmischen Teil von
g zuwenden. Da keine Texte und somit auch keine Pro-
zedur GETINT zur Verfiigung stehen, behelfen wir uns wie
folgt:

Wir kodieren jeden ,Text" C[j,...] durch einen Buch-
staben des Alphabets in der folgenden Weise:

Clse0e] — a
Cl2yess] =— D
CByvee] = <
Clh,ene] —s d

C [maxtext,..)— maxtext-ierBuchstabe.

Der Programmtext Ty 1408t sich mittels der Zeilen von
C zusammensetzen und daher auf eindeutige Weise durch
eine endliche Folge won Buchstaben beschreiben. Diese
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Buchstabenfolge ist der Inhalt von C[maxtext,...].
Der Algorithmus braucat dann nur noch disse Buchstaben-
folge in eine Folge von Druckanweisungen umzusetzen:

for I:=1 to (Liénge von C[maxtext,.]do
begin case C[maxtext,I] of
‘a’ : (Ausgabe von C[1,...]>

a
‘b” : {Ausgabe von C[2,...]D

BB PBpEREFE =

end

Lelder treten auf den linken Seiten der case-Alterna-
tiven viele Hochkommata ° auf, Das Zeichen * spielt in
PASCAL die gleiche Rolle wie das Zeichen " in der Proe-
grammiersprache SIMULA. Der Ailgorithmus miiBte also als
Text in sehr viele Teilstrings zerlegt werden (vgl.
3¢245+), was zu einem uniiberschaubaren Programm fiihren
wirde, Einen Ausweg bietet die Transferfunktion ORD
von char nach integer:

for I:=1 to (Linge von C[maxtext,..,> do
begin HELP:=0RD(C [maxtext,I])
case EELP of
(ORD(a )}
{ORD(b)>

{Ausgabe von C[1,...]>
(Ausgabe von C[2,...])>

LE N K N R N TN

end

Die Realisierung von TT5 nach der bisher entworfenen
Methode enthilt noch einige Schwierigkeiten, Z.B.:

- Es miiite eigens eine Ausgabeprozedur fiir die
statements vom Typ {Ausgabe C[I,...]d in 5
enthalten sein.

- Die Zeilen von C sind in der Regel mit blank-Zei-
chen aufgefiillt. Die Ausgabe dieser blanks ist zu
vermeliden,

Insgesamt wiirde ein durchaus korrektes, aber auch un-
lbersichtliches Programm s entstehen.
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(ii) Um die in (i) entstandenen Schwierigkeiten zu vermei-
den, speichern wir die Teilstrings von T nicht in
. =
elinem zweidimensionalen character array, sondern wir

verwenden die implizite Speicherung mittels Ausgabe-
prozeduren wie im SIMULA-Programm Ty 2us 36247

Der Algorithmus von 1T5 bleibt der gleiche wie der
Algorithmus unter (i), wenn man statt der Zeilen von
C nur die Ausgabeprozeduren durch Buchstaben kodiert,

Bei der Realisierung von 1'r5 durch Alternative (ii)bleibt
das Programm iiberschaubar.

Mit
ORD(a) '
ORD(b)
ORD(e) = 195
ORD(d) 196
ORD(e) = 197 bezogzen auf die zur
ORD(f) 148 ’ Verfiigzung stehende
ORD(g) = 199 PASCAL-Implementierung
ORD(h) = 200
ORD(i) = 201
ORD{(j) = 202
ORD(k) = 203

-

und der Kodierung

procedure A

procedure B p—
procedure C r—
brocedure AA —
rrocedure AB p—
Procedure AC —
Procedure BA —
procedure BB —>
Procedure EC —
Procedure CA »—

procedure CB

€rgibt gich:

i

193
194

1l

i

il

Wk P RO D RN D



Mg =

program SELF(QUTPUT);
var L1,HELP : integer;
— X : array [1..72] of char;
procedure A; begin WRITE(”PROGRAM SELF(OUTPUT);VAR I,HELP
INTEGER; X : ARRAY[1..72 OF CHAR;’) end;
procedure B; begin WRITE(""“;FOR I:=1 TO 72 DO BEGIN HELP
:=0RD(X [11 ); CASE HELP OF 193:A4;194:B;195:C;196:A4:197
:AB;198:AC;199: BA;200:BB;201:BC;202:C4;203%:C8; END; EN
D; WRITELN END.”) end;
procedure C;begin WRITE(“PROCEDURE “) end;
procedure AAjbegin WRITE(”;BEGIN WRITE(*’’) end;
procedure AB;begin WRITE(®’7) END;’) end;
procedure AC;begin WRITE("’"”") end;
procedure BAj;begin WRITE(’A’) en
procedure BB;begin WRITE(“B’) en
procedure BC;begin WRITE(’C’) end;
procedure CAj;begin WRITE(’BEGIN X:=""") end;
procedure CBj;begin WRITE("ACGDAECHDFBECIDCECGGDDFECGHDFEE
CGIDFFECHGDGECHHDKECHIDIECIGDIFEC IHDKEJKE” ) end;
begin
K::hGGEAEEHDFBECIDCECGGDDFEGGHDFEECGIDFFEGHGEEEGHHEHEEHIDIE
CIGDJFECIEDKEJKB” ;
for I:=t o 72 do
begin HELP:=0RD(X [11):
gage HELP of

L

.

|

195 : A;
194 : B;
185 : €;
196 : AA:
197 : AB;
198 : AC;
199 : BA;
20C : BB;
201 + BC;
202 : CA;
203 : CB;
end;

S wRTTERLN
end,
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yerifikation von T1r 5

pie Bedeutung der for-Schleife von Programm T wurde oben
erldutert. Fir jeden Buchstaben der Textkonstanten X wird
gine Altermative der case-Anweisung ausgefilhrt urnd somit
ein String der Zerlegung des Programmtextes von Tr5 ausge-
geben. Einfaches Nachvollzieher der Abarbeitung von X be-
gtitigt, dald 175 sich selbst revroduziert (vgl. Verifika-
tion von T 3).

3.3.2¢Implementierung des Programms s

L wird so implementiert, daR die Ausgabe von ™5 in Zei-

len zu hdchstens 132 Zeichen formatiert ist. Daher wird
zunichst die Prozedur

procedure Q; begin WRITELN end;

in Ty elngefiigt.,
Die Prozeduren A und B werden wegen ihrer relativ lan-
gen Textkonstanten in mehrere Prozeduren aufgespalten:
B » AAA
Die zusHtzlichen Prozeduren bewirken eine erliéngerung

der Xodierung von 5 Dadurch wird eins Aufspaltung der
Prozedur CB ebenfalls notwendig:

/\

CB

/

AAZ

InfTT5 enthdlt die Variable X die Kodierung des Programms.
Die peu hinzugekommenen Prozeduren verursachen eine solche
lunahme der Xodierung, daB eine Variable (bedingt durch

die vorhandene PASCAL-Implementierung) nicht mehr ausreicnt,
Ut die Kodierung aufzunehmen. Es wird neben X die Variable
1 array [1..68] of char zur Aufnahme der Kodierung von
TTS notwendig, was die Einfilhrung der Prozedur CCA bewirkt.
Der Algorithmus wird entsprechend geindert. Anhang A,S.
2eigt das so verdnderte Programm T im einzelnen. Die
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peuen Prozeduren sind dort wie folgl kodiert:

o —— 1L AAR e— 3 n
A —— m CCA — q
MC ——— D Q —— G
pit
grD(L) = 211 ORD(0} = 214
orD{m) = 212 QRD(p) = 215
0RD(n) = 213 ORD{q) = 216

3,3.3.51in vrozedurgesteuertes PASCAL-Programm 17

ille in Prugramm‘ﬂ'h aus Abschnitt 3.2.7. verwendeten
Sprachelemente finden sich auch in der Programmiersprache
PASCAL. Damit 1lERt sich -1-1-1!+ direkt in ein selbstreprodu-
zierendes PASCAL-Programm T iibersetzen.

'|T6=

program PI6(OUTPUT);
procedure AA; begin WRITE("PROGRAM PIA(QUTPUT);PROCEDURE AA
- BEGIN WRITE(""") end;

procedure C; begin WRITE(“PROCEDURE ‘) end;
procedure A; begin WRITE(”;BEGIN WRITE(’‘") end;
procedure B; begin WRITE(®"") END;”) end;

procedure AC; begin WRITE("“’") end;

procedure BA; begin WRITE(A’) end;

procedure BB; begim WRITE("B*) end;

procedure BC; begin WRITE(’C’) end;

procedure AB; begin WRITE(*BEGIN AATAASAC;B;C;BC;A;C;B:C:1BA
sAJA;AC;B;C BB A;AC;B;B;C; BA;BC;A;AC;AC;B;C;BB; BAjA; BA; B
;C;BB;BB;A;53;B;C;BB;BC;A;BC;B;C;34; BB; A; AB; B; A3; WRITELN
END,”) end;

begin A4, AA;AC;B;
C;BC; A; C; B;
C;BA; A; AsAC;B;
C;BB; A3 AC; B; B;
C;BA;BC;A;AC; AC;, B;
C;BB;BAjA; BAj; B;
C;BB;BB:A; BB; B;
C;BB;BC;A; 3C; B3
C;BA;8B;4, AB; B;AB;WRITELN end,
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vgrifikatinn von Mg

pie Verifikation von g erglbt sich direkt aus dzr Veri-

3.5.4.Imolenentierung des Programms TT

praogramm TT ¢ schrelbt seinen Text hintereinander ohne
Blockung auf die Ausgabvedatei QUTPUT. Das Ergebnis von T g
ist ein elnziger String. Dieser String ist sowohl fiir den
puffer des SIEMENS~Schnelldruckers, als auch fir den Puffer
des PASCAL-Compilers zu lang. Der String kann also weder
ausgedruckt noch erneut kompiliert werden.

Um ein sichtbares Ergebnis zu erhalten, benStigen wir
eine Ausgabe, die in Bldcke von hichstens 132 (=Pufferlinge
des Schnelldruckers) Zeichen unterteilt ist. Es nuBl also in
das Programm 7T o wiederholt die Prozedur WRITELN einge fiigt
verden. Wir kiirzen die Prozedur wie folgt ab:

procedure Q; begin WRITELN end;

Da mit dieser Prozedurvereinbarung der Vereinbarungsteil
von Trg grofer wird, muB die Prozedur AA entsprechend ab-
gedndert werden, Die lange Textkonstante von Prozedur AB
wird auf zwei Prozeduren verteilt. Zu diesem Zweck mufl eine
weitere Prozedur CA in das Programm aufgenommsn werden.
Anhang a.6. protokolliert das so verdnderte Prmgramm'ﬂ*é.

iih.Selbstrqprﬂduzierende Programme in STEIMENS-Assembler

In diesem Abschnitt werden Beispiele fiir selbstreproduzie-
Fende Programme in einer Assembler-3Sprache angegeben, Die
Beispiele verwenden den SIEMENS-Assembler. Die Tatsache,
11ﬂﬂ-ﬂasemhler-Prugramme in der Lage sind, den Speicherbe-
Peich, in dem sie sich befinden, zu adressisren und zu
IEEE“: vereinfacht das Schreiben selbstreproduzierender
kaaemhlsr—Prﬂgramme bedeutend, Selbstreproduzierende Pro-
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ramme in Assembler brauchen nicht ihren Programmtext
ebenfalls in Assembler auszugeshen, sondern kdnnen direkt
jhren Maschinenkode im Arbeitsspeicher kovieren (vgl.1.2.),
2lle in den folgenden Beispielen vorkommenden Adressis-
rungen bteziehen sich auf den Programmzfiler PCR und sind
somit relativ. Dadurch wird gewdhrleistet, dafl die Funk-
tionen der Kopien die gleichen sind wie die der jeweili-
gen Ursprungsprogranme. Die Kopien sind daher ebsnfalls
celbstrevroduzierend,
Die Belsvielnrogramme sind sowelt erlZutert, wis es
der Rahmen dieser Arbeit zulalit. NZhere Angaben bzgl. des
STEMENS-Assemblers entnehme man den Schriften [Eaj und

[23].

(3.5.1) Beispiel: Das selbstreproduziersnde Assembler-

Programm PROG! legt eine Xovie seines Maschinen-
kodes ab dem GL-ten auf den ersten Befenl von
PROG1 folgenden Byte im Arbeitsspeicher an.

E:Iien- Mame mnemot. Operanden Befenls- Befehlslinge
nummer Op.-Kode format (in Byte)
gr PROG1 START
g2 BALR t,8¢ RR 2
@3 LA 2,2{(#,8) RX L
L R 1,2 RR >
25 LM 4,2,7#(1) RS b
S ST 4,8,64(1) RS y
47 3VC X° 5B RR 2
a8 RND
—
Programmlinge in 3Byte 12

e
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Die beiden Assamblar-Anweisungen START und TND er-
zeugen keinen Mazchinenkode und brauchen dahar beim

)
ﬂ}

Loniervrozeld nicht beriicksichtizt zu werden,
Der erste ausfihrbhare 32efehl des Programms ist

BALR 1,00

Dieser Befenl 1Zdt in das Mehroweckregister R1 den
aittuellen Wert des Befehlszihlers PCE, Da der Ze-
fehlszihler vor Ausfihrung eines Befehls um die

dnge des betreffenden Befehls hochgezzhlt wird
enthidlt Register R1 nach Ausfilhrung des BALR-Ze-
fehls die Startadresse von PROGT im Arbeitssuei-
cher plus der Lings des BALR-Befehls, Der BALR-Be-
fenl hat das Format RR und somit die Lings 2, Der
Befehl

LA 2,2(8,¢)

stellt in Register R2 die Zahl 2 bersit, Der SR
(SubtrahierenRegister)-Befehl

SR 1,2

subtraniert den Inhalt des Registers P2 vom Inhalt
des Registers R1, Nach Ausfilhrung dieses Befehls
enthidlt demnach Register Rl genau die Startadresse
des Programms. R1 wird nachfolgend z2ls Basisre-

gister verwendet. Der Befehl in Zeile @5 ist ein
LM(Laden menrfach)-Befehl

M L,RB,8(1)

[M-Befehle kinnen aufeinanderfolgende Mehrzweckre-
glster - also hochstens 16 =~ nit aufeinander-
folgenden Worten aus dem Arbeitsspeicher laden.
Die ersten beiden Operanden bezeichnen das erste
und das letzte der benutzten Mehrzweckregister,
Der letzte Overand stellt die Adresse des ersten
der zu transferierenden Arbeitszpeicherworte dar,
In unserem Fall ist diese Adresse die Startadres
von PROGY. Deshalb wird der dritte Coerand aus der
Distanzadresse @ und dem Register R1 als Basisre-
glster zusammengesetzt. Das Programm PROGT umfalit

sSe
er



64

13 Bytes, Da ein Arbeitsspeicherwort 4 Bytes umfali,
geniigen also die 5 Mehrzweckregister RL bis 28, um
das gesamte Programm zu laden, Der nichste Befeh

ST™ L,8,64(1)

ist ein STM(Speichern mehrfach)-Befehl, Dieszr Be-
fehl ist das Gegenstiick zum LM-3efehl und legt die In-
halte der Register R4 bis RB beginnend bei der Adres-
se, die der dritte Operand angibt, hintereinander im
Arbeltsspeicher ab. Der dritte Operand des 3TM-Be-
fenls benutzt wleder das Register R] als Basisregi-
ster, die Distanzadresse ist €4, Nach Ausfilhrung des
STM-Befehls liegt also die Kopie von PROG1 hereits

im Arbeitsspeicher vor, Sie ist 64 Bytes vom Ur-~
sprungsprogranm entfernt, Der letzte Befehl

SVC X”5B°

dient nur dazu, PROG1 ordnungsgemi® zu beenden. Ein
ausfiihrliches Protokoll von PROG1 befindet sich in
Anhang B.1l..

Das folgende Beisplelprogramm PROG2 ist um 2 Bytes kiirzer
als PROG1. Erreicht wird dies durch Ersetzung des IM- und
des STM-Befehls durch einen MVC(Ubertragen Zeichenfolge)-
Befehl. PROG2 ist in der Lage, aufller sich selbst noch einen

Eewliss

en, auf das Programm folgenden Speicherbereich mit-

Zukopieren.

SE:E;?-] Beispiel:

leilen~ Wame mnemot, Operanden Befehls- Befehlslinge
mmer Op.-Kode format (in Byte)

191 PROG2 START

42 BALR 1,00 RR 2

73




.ﬁ# SR 1,2 rR 2
25 MYZ 6L(6d,1),8(1) S5 &
gé 3VC {7537 ER 2
47 END

Programmlinge in Byte 16

Die Programmzeilen @1 bis @4 sind mit denen von
PROG1 identisch. Sie bewirken, daf die Startadresse
in das Register R1 geladen wird., Der MVC=Befshl in
Zeile @5 bewirkt, da® beginnend tei der Adresse

Inhalt des Basisregisters Ri vzl, 2~ter
plus Distanzadresse ¢ Cpérand

€7 aufeinarnderfolgende Bytes des
Arbeitsspeichers in den mit der
Adresse vgl., I-ter

Inhalt des Basisregisters R Operand

plus Distanzadresse 64 p

beginnenden Arbeitsspeicherbereich geschrieben
werden. Da PROG2 selbst nur 16 Bytes lang ist,
werden durch den MVC-Befehl L& zusidtzliche Bytes
mitkoplert. Mit einem MVC~-Befehl lassen sich 50gar
maximal ES Bytes transferieren, wenn die Operan-
denlénge entsprechend angegeben wird (im Beispiel:
6 ).

Die Programmzeilen @€ und €7 entsprecher den
Zeilen @7 und @8 in PROGT. Fechnerprotokoll siehe
Anhang B.2..

Dle Zeilen #2 bis &5 von PROGD stellen einen Programmteil]
dar, durch den sich andere Assemblerprogrammabschniite
(0der ganze Programme) zu selbstrevroduzisrendasn rrogram-
I8 (bzw, Programmabschnitten) erginzan lassen (sishe
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Abh,_ﬁ.h.ﬁ]. Die Linge des resultierenden Programmabschnitts
(in Byte) wird als Operandenlinge fir den MVZ-Refshl vare
gendet. Auf diese Weise k3nnen Pgugrammabschnitte (bzw, Pro-
grammg} bls 2u elner Lénge von 2-1§ Bytes im Arbeitsspei-
cher kopiert werden. Entsprechend der Linge des Programm-
abschnitis muft die Distanzadresse, die die Laze der Konie
hestimmt, gewdZhlt werden,

¢1 PROGEAM  CSECT

g2 BALR 1,8

g3 LA 2,2(8,4)

gL SR 1,2

@5 MVC Distanzadresse Anzzhl der zu N1
der Kopie Zopierenden A B

Sytes

96 c

#7 :

E E Der zu kopierende Programmab-

E . ’ schnitt (maximal ES-TE Byteg)

. : j

END

Abb., 3.4.4

Das folgende Beispielprogramm PROG3 ist ein selbstreprodu-
Ziersndes Assembler-Programm, das nach seiner Abarbeitung
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die Kontrolle an die Kopie libergibt. Erreicht wird dies
durch einen unbedingten Sprung zur Startadresse der Kovie,
Da die Kopie das gleiche Verhalten zeight wie PROG3, ite-
riert sich dieser ProzeB. Der zur Verfiigung stehende
prbeitsspeicher wird also mit Kopien von PROGS vollge~
gchrieben. Die einzelnsn Xopien folgen mit konstantem Abh-
gtand aufeinander,

(3.4.3) Beispiel:

S——

Zeilen Name

mnemot. Operanden Befehls- Befehlslinge

nummer Op.-Kode format (in Byte)
a1 PROG3 START
g2 BALR 1,00 RR 2
@3 LA 2,2(8,8) RX &4
Bh SR 1,2 ER 2
g5 MVC eL(6g,1),8(1) 385 6
g6 LA 2,64(@,d) RX 4
g7 AR 1,2 RR 2
28 BR 1 RR 2
g9 END

Programmlinge in Byte 22

Die Zeilen #1 bis @5 sind mit denen von Programm
PROG2 identisch und bewirken bereits das Kopieren
von PROG3. Die Kopie wird beginnend beim bL~ten
auf den ersten Befehl von PROG3 folgenden Byte im
Arbeitsspeicher abgelegt. Der LA(Laden Adresse)-
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Befehl in Zeile @&
LA 2,0u(g,d)

stellt in Register BR1 die Zahl 64 bereit, Dar fol-
gende AR(Addieren Register)-Befehl

AR 1,2

erndat den Inhalt des Basisregisters B! um €4, R
enthilt nach Abarbeitung des AR-Befenls die 3tart-
adresse der Kopie. Daher erfolgt durch den BR(Sorin-
gen unbedingt)-Befehl

3R 1

eln Sprung zum ersten Befehl der Kovie und damit
die Abarbeitung der Kopie, Die Kopie legt darauf
eine erneute Kopie an u.s.w.

Anhang B,3, demonstriert PRCG3, Da PROG3 eine
nicht abbrechende Programmfolge erzeugt, kommt es
wegen Speichererschdpfung zu einem Fehlerabbruch,

In den vorangegangenen Beispielprogrammen erfolgte das ¥o-
plieren der Programme en bloc nit Hilfe des MVC-Befehls baw.
des LM- und des STM-Befehls. Das folgende Beispiel zeigt
eln Programm, das seinen Kode explizit in Abschnitten zu o
4 Bytes kopiert. Dieses Programm ist algorithmisch etwss
sufwendiger und dementsprechend lidnger als die bisherigsn
Beispielprogzramme dieses Abschnitts,

3.4.4) Beispiel:

———

rl? w .

“ellen~ Name mnemot, Cperanden Befehls~ Befehlslinge
Rummer Op=¥ode foramat  (in Byte)

|

1 PROGL START
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@3
a4
g5
g6
a7
3
79
g
11
12
15

BALR 1,40 RR a
LA 2,2(8,¢) R 4
32 1,2 3R 2
LA 3,4(2,2) R 4
LA L,43(d,8) RYX L
LA 19,22(8,8) =X A
AR 17,1 RR 2
MY 6L(L,1),8(1) S5 &
AR 1,3 RE 2
SR by RR 2
BRP 19 RR 2
Sve X" 58’ RR 2
END

Programmlinrge in Byte Z5

Die Befehle der Programmzeilen Z2 bis Ju bewirken,
da® das Register R1 die Anfangsadresse ven PROGL
im Arbeitsspeicher enthidli. Register R1 wird fort-
an als Basisregister benutzt, Die Befenle dar Zei-
len @5 bis @7 stellen in den Mehrzweckregistern R3,
B4 und R1¥ die Werte 4, 48 und 22 bereit, LB ist
die Gesamtzanl der Bytes, die das Programm PROGL
im Arbeitsspeicher kopiert. Der Befehl

AR 12,1

erhtht den Inhalt des Registers RI¥ um die Start-
adresse des Programms PROGL4, Nach Ausfithrung die-
ses AR-3efehls enthdlt Register R1Z die Sprung-
adresse, zu der der BRP(Springen, falls positiv)-
Befehl in Zeile 12 verzweigt, Es handelt sich da-
bei um die Adresse deg MVC-Befehls

MyC euly,1),2801)
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in Programmzeile @9. Der MVC-Befenl kopiert die
ersten L Bytes des Maschinenkodes von PROGL im
Aroeitsspeicner. Die Kople wird 64 Bytes vom er-
sten Befehl von PROGL entfernt angelegt. Der
MVC=RBefehl benutzt zur Adressierung das Basisre-
gigter R1. Der Inhalt von R! wird im carauffol-
genden Befehl

AR 1,3

um den Innalt des Registers R3, also nur den Wert
L, erhont. Der nichste Befehl

SR Ly2

subtrahiert vom Inhalt des Registers R4, der gleich
der momentanen Anzahl der noch zu kopierenden Byles
ist, den Wert 4. Hat diese Subtraktion einen posi-
tiven Wert ergeben, s¢ sind noch nicht alle der
insgesamt L8 Bytes kopiert, und es wird mittels

BRP 115 (5.0,

zum MVC-Befehl in Zeile @9 zuriickzesprungen, Der
MVC-Befehl kopiert dann die nidchsten 4 Bytes wvon
PROGL, da das Basisregister R1 bereits um 4 Bytes
erhdht worden ist, Das Programm bricht ab, nach-
dem alle 48 Bytes kopiert worden sind. Da PRO&4
nur 36 Bytes lang ist, werden also 12 zusidtzliche,
sich an PROGL anschliellende Bytes mitkovpeirt, Der
Befehl

SVGC X°5B’

in Zeile 13 beendet PROGL.
Anhang B.L, demonstriert PROGL.

Entsprechend PROG2 in Beispiel (3.4.2) lassen sich durch

die Zeilen @1 bis 12 groBere Abschnitte anderer Assembler-
‘rogramme (bzw. ganze Programme) zu selbstreproduzierenden
Programmabschnitten (bzw. Programmen) erginzen (siehe Abb.
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514-5)' Die Selbstireproduktion erfolgt jedocn nicht en

510C » sondern in Abschnitten zu je 4 Bytes, Die Linge des
orginzten Abschnitts (bzw. Programms) in Byte braucht dann
qur durch den Befehl in Zeile @6 in Register RL bereitge-
gtellt zu werden. Entsprechend der Linge des zu kopieren-
jen Programmabschnitts (bzw. Programms) mu3 die Distanz-
qdresse, die die Lagze der Xopie im Arbeitsspeicher be-
gtimmt, in Zeile 9 (MVC-Befehl) gesetzt werden,

41 PROGRAM CSECT

g3 LA 2,2(4,2)

g6 LA 4, (Linge des Gesamtabschnitts) (#,7)
A7 LA 1&,22(¢, 9

! AR 12,1

: MVC  {istanzadresse der Kopise) (4,1),8(1)
12 BRP 12

13 . )

E 5 r Der zu kovierende Programmabschnitt
. END

Abb 3.4.B

Im Gegensatz zu der aus PROG2 abgeleiteten Methode zur

SElbstreyraﬂuktiun griberer Programmabschnitte liezt keine
= 2
B8egrenzung auf 2°-16 Bytes vor,
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1n diesem Kapitel sel S5 eine beliebige hihere Programmierscra~

h.!tﬂati?atiﬂﬂ

In Abschnitt 1.2, haben wir eine Definition szalbstreprodu-
zierender Programme angegeben. Diese Definition lautete sinn-
Esmﬁ:iﬁ:

Sel W aus S. ™ heilt selbstreproduzierend, wenn T chne
Benutzung von Eingabe seinen Programmtext in S ausgint,

Betrachtet man diese Definition etwas differenzierter, so
ergeben sich zwel Anforderungen an die Ausgabe eines selbst-
reproduzierenden Programms Tr aus 3:

a) Die Ausgabe von Tr muf} ein syntaktisch korrektes Pro-
gramm TJr'aus der Programmiersprache S enthalten.

b) T muBl gleich Tr sein.

Lilt man die Forderung b) fallen, so ist das Programm i,.s.
nicht mehr selbstreproduzierend; es ist allenfalls als pre-
produzierend " zu bezeichnen.

Sel nun T ,reproduzierend", dann sind zum Beigpiel fol-
gende MSglichkeiten denkbar:

(1) Das Programm 1r gibt das Programm T aus. T seiner-
sgelils gibt das Programm T'aus, und es gilt W= .
mund w'sind dann sicher fiir sich nicht selbstrepro=-
duzierend. Trotzdem liegt aber ein gewisser Selbst-
revroduktionsmechanismus mit ,Zwischenstufe" vor,

(ii) Das Programm 7 = w©° gibt das Programm ! aus,1T1
seinerseits das Programm 1TE UeSeWas
Allgemein: Wt gibt it aus, 1% o.
Fiir alle 1,j» 0 gilt W' # wd, ralis 1 £ 1.

Aldererseits kénnte man die obige Definition der Selbstre-

'n - e "
frodulkktion verschirfen, indem man gewisse Zusatzforderungen
Stellt, o
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psgesamt sind also einige Iinteressante Varianten zur
Sglbstreproduktign denkbar, Einige dieser Varianten sollen
ip diesem Kapitel ordsentlert und in Dezug auf die rsalen
programmiersprachen SIMULA und PASCAL an Hand von Beispie-
len erldiutert werden,

L.2.Unendlich revroduzierende Programme

{h.2.3) Defipition: Sei 7r ein (syntaktisch korrektes) Pro-
gramm =us S,

(a}(i} Weist T keine Eingabe auf, so heiBt 7T
(streng) reprodugierend, wenn T (genau)
ein syntaktisch korrektes Programm mraus
S ausgibt.

(1i) Weist 7r Eingabe auf, so heilit T (streng)
reproduzierend, wenn T bei jeder zulissigen
Bingabe (genau) ein syntalkiisch korrektes
Programm 'aus S ausgibpt.

(b) R(S) bezeichnet die Menge aller reproduzie-
renden Programme aus S,

(4.2.2) Bemerkung: Jedes (streng) selbstreproduziersnde
Programm ist selbstverstindlich (streng) revrodu-
zilerend,

Aus (4.2.2) folgt, daB es in den Programmiersprachen SIMULA
Und PASCAL rearoduzierende Programme gibt, da in diesen
Sprachen selbstreproduzierende Programme existieren.

4.2.3) Lemma: In den Programmiersprachen SIMULA und PASCAL

existieren unendlich viele reproduzierende Programme,
die nicht selbstreproduzierend gind,




!

geweis: (i) Fir jedes ke ¥ ist das SIMULA-Programm

TorM(k) = begin |
QUTTEXT("BEGIN INTEGER I.:
I:=k;
QUTINT(k, { Stelligkeit von
mﬂj
end

reproduzierend, da die Textkonstante, die von

TrSIH{k} ausgegeben wird, ein gliltiges SIMULA-
Programm darstellt.

(ii) Ein analoges Programm 138t sich in PASCAL an-
geben:

thﬁ(k} = program T(QUTPUT);

beg}n
WRITE(“PROGRAM T{QUTPUT);

BEGIN

WRITE(k)

END.")
end.

|

gk-EtLI-J Definition: Sei ( ﬂ'ih e = FD’ Tr-rp TTE,.“. eine
(unendliche) Folge von P?ogrammen aus der Progranm-
miersprache 8. (1ri]

falls gilt
L reproduziert T 441 fir alle jeiN,.

jem DeiBt Reproduktionsfolge,
o

fus (4.2.4) folgt, daB jedes Programm einer Reprodukiions-
folge als Startprogramm einer neuen Reproduktionsfolge auf-
€efallt werden kann., Man braucht nur die entsprechende Teil-
folge zu bilden. Dies rechtfertigt die folgende Definition.

?)
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{B.g,ﬁ) Definition: Sei (1ri}151H eine Reproduktionsfolge
0

aus der Programmiersprache S. Sei 1Fd, jelN,, ein
Element dieser Folge.

(i) Fj heilt unendlich reproduzierend.

LY T : i .
(ii) Die Teilfolge {lrk}kemﬂ von (Fi}istﬁo mit

:rk = Tr,]'+k fiir alle ke JHG heit die ReErn-

duktionsfolge von LT

(1ii) U(S) bezeichnet die Menge aller unendlich re=-
produzierenden Programme aus S.

Reproduktionsfolge von T

'ﬂ_ﬁ.“'-_) wj_l"‘%"jﬂ “J_F\}"H---

Reproduktionsfolge von W 3
I'I'J. "'—-—-"? ]Tj‘l‘] _} N

Abb.: L4.2.4

(£L.2,6) Bemerkung: Jedes selbstreproduzierende Programm T

ist unendlich reproduzierend, Die Reproduktionsfolge
von T ist konstant.

{6,2.7) Satz: Es existiert ein unendlich reproduzierendes

Satz (4.2.7) wird durch das folgende Beispielprogramm
das den Forderungen des Satzes geniigt, bewiesen,

PASCAL~Programm, in dessen Reproduktionsfolge kein
Programm mehrfach vorkomnmt.

A

G’

{4.2.8) Beispiel:

T, = program UR(OUTEUT);
var I,K : integer;
procedure Z(J : integer); begin WRITE(J+1) end;




procedure AA; begin WRITE('PROGRAM UR(QUTPUT); Va
R I,K : INTEGER; PROCEDURE Z(J : INTEGER); BEG
IN NRITE(J+1) END; PROCEDURE AdA; BEGIN WRITE(-
"7) end;
procedure C; begin WRITE(’PROCEDURE *) end;
procedure A; begin WRITE(”"; BEGIN WRITE(”*”) end;
procedure Bj begin WRITE("“’) END;”) end;
procedure AC; begin WRITE(’’“) end;
procedure BA; begin WRITE(A’) end;
procedure BB; begin WRITE(’B") end;
procedure BC; begin WRITE(’C’) end;
brocedure CA; begin WRITE(*BEGIN K:=") end;
procedure AB; begin WRITE(®;FOR I:=1 TO K DO BEGI
N WRITELN(I,I»I,IxIxI) END;AA;AA;AC;B;C;BCA;C
;E;G;BA;A;A;AG;E;G;BE;A;AG;E;B;ﬂ;Bﬂ;EC;A;AG;AG
;B;G:EE;BA;A;BA;B:C;BE;BB;A;EB;B;G;EE;EC;A;EG;
B;G;EC;BA;A;EA;B;G;EA;BE;A;AE;B;GL;E{K);AB;WRI
TELN END.’) end;
begin
K::ﬂ;
for I:=1 to X do
begin WRITELN(I,I+I,IxIxI) end;
AA;AA4AC;B;
C;BC; A ¢; B;
C3;BA; A A;AC;B;
C;BB: A;AC; B; B;
C;BA;BC;A;AC;AC; B
C;BB;BA;A; BA; B
C;0B;BB;A; BB; B
B
B
B

1

W
¥
-

C;BB;BC;A; BC;
C;BC;BA;A; CA;
C;BA;BB;A; AB;
WRITELN

end.

¥
L
|
-
i |
]
]
-
]

CA;Z(K);AB:;

T, ist ein unendlich reproduzierendes Programm, in dessen
HEPruduktinnsfolge kein Programm mehrfach auftritt,
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ﬁrifikation:

fu entspricht im wesentlichen dem selbstreproduzierenden
programm T o aus 3+%+2, Dal3 ¥ o hicht ebenfalls selbstrepro-
quzlerend ist, wird durch Erhdhung der Obergrenze der Lauf-
gariablen I um 7 in der Kopie ﬁ1 von ﬁ"c verhindert, Diese
grhhung wird durch Aufruf der Prozedur Z erreicht, deren
rext in den Programmkopf integriert ist. Durch die Erhuhung
der Obergrenze der Laufvariablen ist die Kopie von Tu S0~
gohl textuell, als auch im Hinblick auf die Bedeutung des
programms, von FG verschieden. Da die Kopie sich lediglich
in einer integer-Konstanten von ﬁ*’ﬂ unterscheidet, bleibt
gie ein lauffaniges reprndusierandes Programm, In gleicher
Weise unterscheidet sich die Kopie 1!‘ des Prugramms Tl'1

von f1. Die Obergrenze der Laufvarlahlan T hat in ‘Il‘E einen

um 2 groferen Wert als in ¥ . Insgesamt gilt:

%D ist ein unendlich reproduzierendes Programm. In jedem
Element fj der Reproduktionsfolge von ﬁ"'n hat die Obergrenze
der Laufvariablen I den Wert j.

(4.2.9) Bemerkung:

I. Die Programme Fj, js I'HD, sind reproduzierend, aber
nicht streng reproduzierend. Aus den Programmen I
lassen sich aber durch Streichung der Anweisung

J
WRITELN(I,IxI,I*I*T)

streng reproduzierende Programme gewinnen,
Satz (4.2.7) lieBe sich also in dieser Hinsicht
auch schirfer formulieren,

II. Die Programme der mittels W,gewonnenen Reproduktions-
folge enthalten alle den kompletten Selbstreproduk-
tionsmechanismus von Programm Tg aus 3.3.2. Gefor-
dert war jedoch nur eine schwichere Eigenschaft,
namlich Reproduktion. Um nur Reproduktion zu erhal-
ten, hatten wir den Selbstreproduktionsmechanismus
durch Hinzunahme des zusdtzlichen Programmteils



abgeschwacht., Diese Vorgehensweise erscheint aunf
den ersten Blick widersinnig zu sein, Die Programme
der Folge (7 i)iE¢H bendtigen aber anscheinend den
EelhstrepraduktiDﬂsm@chanismus, um unendlich viele
voneinander verschiedene syntaktisch korrekte Prow-
gramme zu erzeugen,., Winschenswert widre eine Repro-
duktionsfolge mit Programmen, die mit schwicheren
Mechanismen als dem Selbstreproduktionsmechanismus
auskommen, Die Schwierigkeit, solche Folgen zu fin-
den, kann als Hinweis darauf interpretiert werden,
daB unendlich viele sukzessive auseinander hervor-
gehende Programme irgendwie ,dicht" beieinander
liegen miissen; so dicht, daB yQuasi-Selbstreproduk-
tion" n&tig ist, um sie iiberhaupt zu erzeugen,

ITI. Programm fﬁh enthilt nur Sprachkonzepte, die auch
in der Programmiersprache SIMULA enthalten sind,
Daher 1ldBt sich Satz (4.2.7) auch entsprechend fiir
die Programmiersprache SIMULA formulieren,

IV, Satz (4.2.7) hat in erster Linie theoretische Be-
deutung. In der Praxis gibt es zwar unendlich re-
produzierende Programme, aber nicht die entsprechen-
den Folgen, denn bei endlicher Speicherkapazitit
lassen sich auch nur endlich viele verschiedene Pro-
gramme darstellen,

= =
4221.Implementierung des Programms 7 o

Programm ¥, schreibt seine gesamteAusgabe unformatiert in
¢ine Zeile. Diese Zeile ist sowohl fir den Puffer des
Schnelldruckers als auch fiir den Eingabepuffer des PASCAL-
Compilers zu lang, Fiir eine ausreichende Demonstration des
PﬁPgramms ?D ist es aber wiinschenswert, die Ausgabe von
¥ o» némlich ¥ ,, zu ilbersetzen und auszufithren. Wir ver-
lahren deshalb wie in 54243+ und fithren zur Formatierung
der Eingabe die Prozedur Q ein:

procedure Q; begin WRITELN end;

Die relativ lange Textkonstante aus Prozedur AB wird auf

% Prozeduren aufgespalten. Zu diesem Zweck werden die Pro-
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eduren AAA, CB und CC zusdtzlich in das Programm aufge-
iumman. Anhang A.7. demonstriert das so veridnderte Pro-

grﬂmm H’-

bo3eD isch selbstreproduzierende Programme

(4,3.,1) Definitiom: Sei w_ eln unendlich reproduzierendes

e Q

Programm aus der Programmiersprache S, Sei ( T, ]:LEIN
die Reproduktionsiolge von T

o*
(1) Existiert j> 1 mit Tj = mT_, s0 heifit T, Zyklisch

D
E_glhstragrﬂ duzierend.

(ii) Ist T, Zyklisch selbstreproduzierend, so heifit das
kleinste j2> 1 mit T,= ¥, die Zykluslinge von T .

(iii) Die Menge aller zyklisch selbstreproduzierenden
Programme aus S wird mit Z(S) bezeichnet,

.ﬂ.bb- : Ll-l_; ..E.

{4.3.2) Bemerkung: Jedes Programm T;] aus der Reproduktions-
folge eines zyklisch selbstreproduzierenden Pro-
gramms T  1st zyklisch selbstreproduzierend und
hat die gleicheZykluslédnge wie T ,.



80

(4o

.3) Satz: In der Programmiersprache PASCAL existiert fiir

jedes k 21 ein zyklisch selbstreproduzierendes Pro-
gramm -}F mit der Zykluslinge k,

peweis: Das PASCAL-Programm ﬁ'ﬂ aus 4.5, ist unendlich repro-
o ——

Lo

duzierend. Man kann aber sehr einfach aus TTD ein
zyklisch selbstreproduzierendes Prugramm.-ﬁ o fUr
jedes k3 1 herleiten, indem man

procedure Z(J : integer); begin WRITE(J+1) end;
durch

procedure Z(J : integer); begin WRITE((J+1) mod k)end;

ersetzt,
Die Programme aus der Reproduktionsfolge von F?E
unterscheiden sich gerade in dem von Z ausgegebenen

Wert, Die geidnderte Prozedur 2 stellt sicher, daB
k k

fir jedes k21 gilt o= 17 o Mit

Jﬁ-ﬁ als -1? gilt der Satz. %

Wir wollen noch ein Beispilel fiir zyklisch selbstreprodu-
zierende Programme angeben.

(4.3.4) Beispiel: Das folgende Prngramm.rrgyk'ist, abgesehen

von elnigen Umbenennungen, eine Abwandlung von TTG
aus Abschnitt 3.3.2. ﬂ.gyk §0l1l sich erst nach einem
Zyklus von N = 9 Schritten selbstreproduzieren. Dies
wird dadurch erreicht, daB “.gyk einige seiner Pro-
zeduren in einer anderen Reihenfolge ausgibt. Das
resultierende Programm rr?yk verfdhrt mit den Pro-
zeduren in analoger Weise. Erst nach 9 Schritten

ist die Ausgangskonstellation der Prozeduren er-
reicht und Trzyk liegt wieder vor.

o

Irﬁyk hat gegeniiber TTE einen erweiterten Ver-

einbarungsteil durch:

(i) integer I,K;
procedure Z(J : integer); begin WRITE(J) end;




(ii) Aufspaltung der den Algorithmus von 11'33K
druckenden Prozedur in zwel Prozeduren BC
und CA.

Der Anweisungsteil wvon Trgyk muft bewirken, dafR sich

die direkte Kopie Trsz vnn.ﬂ‘zyk unterscheidet.
Erst nach 9 Schritten darf 1T33E‘wiedar hergestellt
sein. Der Anweisungsteil von “.gyk mul in allen
Kopien ,,fast™ der gleiche , aber doch variahal sein,
Daher kann der Anweisungsteil von ﬂ'zyﬁ nicht en
bloc kopiert werden. Daraus resultiert auch die
unter (ii) angegebene Aufspaltung., Mit den folgen-
den Prozeduraufrufen wird der Algorithmus wvon “.gyk

und seiner Kopien angegeben.

BC ; Z((k+2) mod 9) ; CA

K _:"II ‘q.. T
7 i
konstant konstant
variashel

TIyK
0

program ZYKLUS(QUTPUT);

Yar I,K : integer;

procedure Z(J : integer); begin WRITE(J) end;

procedure A; begin WRITE("PROGRAM ZYKLUS(QUTPUT);VAR I,K :
INTEGER ; PROCEDURE Z(J : INTEGER) ;:BEGIN WRITE(J) END; PRO
CEDURE A;BEGIN WRITE(®") end;

Procedure B; begin WRITE(“PROCEDURE “) end;

Procedure C; begin WRITE(”;BEGIN WRITE("“‘) end;

Rrocedure AA; begin WRITE(®”“) END;”) end:
Procedure AB; begin WRITE("’“’) end;
Procedure AC; begin WRITE(“A’) end;
Procedure BA; begin WRITE(“B”) end;

]

Procedure BB; beginm WRITE(’C’) end;

Procedure BC; begin WRITE('BEGIN A;A;AB;AA;K:=") end;

Procedure CA: begin WRITE(" ;FOR I:=1 TO 9 DO BEGIN B;CASE K
OF @:BEGIN BA;C;B END; 1:FEGIN BB;C;C;BA END;2:BEGIN AC:AC
yC;AB;AA END;3:BEGIN AC;BA;C;AB;AB END;:4:BEGIN AC;BB;C;A
C END;5:BEGIN BA;AC;C;BA END;6:BEGIN BA;BA;C;BB END;7:BE
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GIN BA;BB;:C;BC END;8:BEGIN BB;AC:C;:;CA END END;AA:Z:=(X+1) MO
D 9 END;BC;Z((X+1) MOD 9);CA;WRITELN IND.”) end;

2:begin AC;AC;C;AB;AA end;

z:begin AC;BA;C;AB;AB end;
j:begin AC;BB;C;AC end;
5:begin BA;AC;C;BA end;
6:begin BA;BA;C;BBE end;
7:begin BA;BE;C;BC end;
8:begin BB;AC;C;CA end

:=(K+1) mod 9
end;
BC;Z((K+1) mod 9);CA;
WRITELN
end,

Verifikation

Die Programme ngh ; H?Fk 3 eew 3 1T§yk stimmen bis auf

die Reihenfolge der Prozeduren R,...,CA und den Startwert
von K textuell iberein. Die Ausgabefolge dieser Prozeduren
¥ird iiber die Variable k gesteuert, Wir betrachten dazu
die folgende Tabelle:
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m jeder Zeile der Tabelle kommen alle Werte von @ bis 8
i den Spalten ,I=1" bis nI=8" genau einmal vor. Damit iaF
auf Grund der case-Anweisung sichergestellt, dal jedes‘riyﬁ
glle Prozeduren B bis CA ausgibt. Aus der letzten Spalte
folgt, daB der Startweri von k in jeder Kopie W g;rk! i=@..., 8
gerschieden ist. Ebenfalls aus der letzten Spalte folgt,

daf der Startwert von k in der Kopie von 7 Eyk gleich dem
startwert von k in T 27€ ist. Da sich die Anweisungsteile

O
der n'iyk nur in dem Startwert von k unterscheiden, gilt:

v zyk

(.3.5) Bemerkung:

I. Im wesentlichen gilt auch im Falle des zyklisch
selbstreproduzierenden Programms Trgfk Demerkung
(4.2.9)1I, fiir das unendlich reproduzierende Pro-
gramm 7 . Uberhaupt haben unsere Beispielprogramme
fir unendlich reproduzierende und zyklisch selbst-
reproduzierende Programme keine Vereinfachung des
Selbstreproduktionsmechanismus vorn Programm Te

gebrachnt.

IT. Satz (4.3.3) 148t sich natilirlich analog fiir die
Programmiersprache SIMULA formulieren.

(h.§.6) Beispiel: Als Beispiel fiir ein zyklisch selbstre-
produzierendes SIMULA-Programm sei hier die SIMULA-

Version des Programms Trgyk angegeben,

begin
integer I,K;

procedure Z{J); integer J; OUTINT(J,1);

procedure A; OUTTEXT("BEGIN INTEGER I,K; PROCEDURE
7(J); INTEGER J; OUTINT(J,1); PROCEDURE A; OUTTE
]{T{mm);

procedure B; OUPTEXT("PROCEDURE ");

procedure C; OUTTEXT(";QUTTEXT(""");

procedure AA; QUTTEXT(mnn) ;n).

procedure AB; QUITEXT(nnnw),

procedure AC; OUTTEXT("A");
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procedure BA; OUTTEXT("B");

procedure BB; OUTTEXT(YCY);

orocedure BC; OUTTEXT(MA;A;AB;44;K:="

procedure CA; OUTTEXT(";FOR I:=1 STEP 1 UNTIL 9 DO
BEGIN B;IF K=@ THIN BEGIN BA;C:;B END ELSE IF K=1
THEN BEGIN BE;C;C;AB END ELSE IF K=2 THEN BEGIN
AC;AC;C;AB;AA END ELSE IF K=3 THEN BEGIN AC;BA;C
;AB;AB END ELSE IF K=4 THEN BEGIN AC;BB;C:AC END
ELSE IF K=5 THEN BEGIN BA;AC;C;RBA END ELSE IF K=
6 THEN BEGIN BA;BB;C;BC END ELSE IF K=7 THEN BEG
IN BA;BB;C;BC END ELSE BEGIN BBjAC;C;CA END;AA:K
:=(K+1) MOD 9;END;BC;Z((K+2) MOD 9);CA END;");

LY

i g

w

A;A;AB AL,
K:=1;
for I:=1 step 1 until 9 do
begin B;
if K=@ then begin BA;C;B end
else if K=1 then begin BB;C;C;AB end
else 1f K=2 then begin AC;AC;C;AB;AA end
else if K=3 then begin AC;BA;C;AB;AB end
else if K=i4 then begin AC;BB;C;AC end
else if K=5 then begin BA;AC;C;BA end
else if E=6 then begin BA;BA;C;BB and
else if K=7 then begin BA;BB;C;BC end
else begin BB;AC;C;CA end;

AA;
K:=(E+1) mod 9;
end;
BC;Z2((K+1) mod 9);Ca
exnd;

Verifikation

Die Verifikation dieses SIMULA-Programms ist identisch mit
der des PASCAL-Programms m 2¥X,
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M—memierung des Programms 'H‘D
x : T o

fiir die ITmplementierung von 1 , gelten die gleichen Bemer-

wie in Abschnitt 4.2.1. zur Implementlerung von Pro-

mmsﬂﬂ !
ran #ﬂ, Niheres ist aus Anhang A.8. ersichtlich,.

H_Q.E.Imnlementierung des Programms rgfk

guch fir die Implementierung von T';’Hk

gen vOn Abschnitt 4.,2.1. Die Textkonstante, die den Algo-
rithmus von Wg‘m darstellt, muB aus Griinden der Formatie-
rung auf noch mehr Prozeduren aufgespalten werden, als dies
etwa in Fa der Fall ist., Alles Weitere siehe Anhang A.G.

gelten die Eemerkun-

4.4, Unter Wechsel der Programmiersprache sich zyklisch
selbstrevroduzierende Programme

In Abschnitt 4.3, haben wir zyklisch selbstreproduzierende
Programme als spezielle unendlich reproduzierende Programme
kennengelernt. Unendlich reproduzierende Frogramme sind
ihrerseits reproduzierende Programme. Nach Definition (4e241)
gibt ein reproduzierendes Programm T ein Programm T' aus.
Dabei gsind T und m'Programme aus derselben Programmierspra-
c¢he 8., Wir hitten reproduzierende Programme auch anders
definieren k®nnen, indem wir w' aus einer Programmiersprache
8'£ s zugelassen hitten., Eine solche Definition wire allge-
meiner als Definition (4.2.1). Entsprechend allgemeiner
¥iren dann auch die Definitionen fir unendlich reproduzie-
rende und zyklisch selbstreproduzierende Programme ausgefal-
len. Daf® eine solche Verallgemeinerung durchaus sinnvoll
¥ire, soll das folgende Beispiel demonstrieren. Beispiel
(4.4,1) stellt ein Programm vor, das nicht nur ein Programm
ln einer anderen Proprammiersprache ausgibt, sondern sich
duch noch zyklisch selbstreproduziert,



g]

Eh-h-‘} _Beispiel: Wir gehen aus von dem SIMULA-Programm T

L
aus 3.2.6, und dem PASCAL-Programm 7r6 aus 3,3%.2.

Beide Programme sind nahezu identisch, da sie prak-
tisch ihre gegenseitigen Ubersatzungan darstellen.
Aus beiden Programmen kombinieren wir jeweils ein
PASCAL-Programm F-PAS und ein SIMULA-Programm T oy

mit: "PAS glbt M 2us
TarMm giht1bﬂs aus

Tary und Tp,e sind also zyklisch selbstreprodu-
zierende Programme mit Wechsel der Programmierspra-

chen.

var T,F:boolean;
procedure A(Z:boolean);bezin if Z

then WRITE(”BEGIN BOOLEAN T,F;*)
else WRITE(’PROGRAM X(OUTPUT);VAR T,F:BOOLEAN;’) end:

procedure B(Z:boolean);begin if Z

then WRITE(’PROCEDURE “)
else WRITE(*PROCEDURE *) end:

procedure C(Z:boolean);begin if 2

then WRITE(" (Z);BOOLEAN Z23;IF 72 THEN QUTTEXT("")
else WRITE(”(Z:BOOLEAN);BEGIN IF Z THEN WRITE(’"") end;

procedure AA(Z:boclean);begin if 7

then WRITE("") ELSE QUTTEXT(%)
else WRITE(”’“) ELSE WRITE("’") end

L |

Procedure AB(Z:boolean);begin if Z

then WRITE(’");")
else WRITE(”’“) END;’) end;

focedure CB(Z:boolean);begin if Z

then WRITE(""*)
else WRITE(""““) end;

Procedure BA(Z:boolean);begin if %

then WRITE(’A”)
else WRITE(’A®) end:
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pocedure BB(Z:boolean);begin if Z
then WRITE(’B")
* -,
else WRITE("B”) end;
ocedure BC(Z:boolean);begin if Z
then WRITE('C?)
oy
else WRITE(’C®) end;
procedure AC(Z:boolean);begin if 2
" then WRITE(’T:=TRUE;F:=FALSE; §® END")
else WRITE(’BEGIN T:=TRUE;F:=FALSE; @ ;WRITELN END.”) end;

A(T);

B(T);BA(T); C(T); A(F);AA(T); A(T); AB(T);
a(T);BB(T); ¢(T); B(T);AA(T); B(T); AB(T);
B(T);BC(T); C(T); C(F);AA(T); C{T);CB(T);AB(T);
B(T);BA(T);BA(T);C(T);AA(F);AA(T);CB(T);AA(T);CB(T);AB(T);
B(T);BA(T);BB(T);C(T);AB(F);AA(T);CB(T);AB(T); AB(T);
B(T);BC(T);BB({T);C(T);CB(F);AA(T); CB(T);CB(T);AB(T); ¢ @
B(T);BB(T);BA(T);C(T);BA(T);AA(T); BA(T); AB(T):
B(T);BB(T);BB(T);C(T);BB(T);AA(T); BB(T); AB(T);
B(T);BB(T);BC(T);C(T);BC(T);AA(T); BC(T); AB(T);
B(T);BA{T);BC(T);C(T);AC(F);AA(T); AC(T); AB(T);
AC(T)

sWRITELN

end,

TPAS gibt das SIMULA-Programm 7w gTM 2us:

Fem =

%00lean T,F;

Procedure A(Z);boolean Z;if Z then
OUTTEXT ( "PROGRAM X(OUTPUT);VAR T,F:BOOLEAN;")
else OUTTEXT("BEGIN BOOLEAN T,F;");

Procedure B(Z);:;boolean 2;if Z
then OUTTEXT("PROCEDURE ")
else OUTTEXT("PROCEDURE ");

Procedure C(Z);boolean Z;if Z
then OUTTEXT("(Z:BOOLEAN);BEGIN IF Z THEN WRITE(’")
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else CUTTEXT("(Z);BOCLEAN Z; IF Z THEN OQUTTEXT (mnn).
ﬁ;;;;fe AA(Z);boolean Z;if 2
then QUTTEXT("") ELSE WRITE("")
;1_5-3- QUTITEXT (""" ) ELSE QUTTEXT(""");
Eu;;re AB(Z);boolean Z;if Z
then OUTTEXT (") END;")
_'E_}E_‘,'i UUTTEKT(""") ;n) -
Ezacedure CB(Z) ;boolean Z;if %
then QUTTEXT(n"")
.E.E QUTTE:{T(IHHHI};
procedure BA(Z);boolean Z;if Z
then OUTTEXT("A")
else OUTTEXT('"A");
procedure BB(Z);boglean Z;if 2
then OUTTEXT("B")
else OUTTEXT("B");
procedure BC(Z);boolean Z;if Z
then OUTTEXT("CH)
else OUTTEXT("CM);
procedure AC(Z);boolean Z; if Z
then OUTTEXT("BEGIN T:=TRUE;F:=FALSE; €5 ;WRITELN END,")
else OUTTEXT("T:=TRUE;F:=FALSE; €@ END");
Ti=true;Fi:=false; 68
end

j 4

Verifikation

]TPA.S und T oy enthalten jewells alle Teilstrings -
Sowohl der Zerlegung von T PAS als auch der Zerlegung von
WSIM = 1in den Prozeduren A bis AC. Da sich die Teil-

sirings der Zerlegungen von Tppg Und T oy eins zu eins
®ilsprechen, kinnen die Teilstrings alternativ in den Pro-
Zeduren abgelegt werden. Jede Prozedur von T ppg hat dann
den allgemeinen Aufbau:

Procedure < name) (Z:boolean);
Segin if 7 then WRITE(“¢Teilstring s aus Tgry> *)
else WRITE("{(dem Teilstring s entsprechender
Teilstring s'aus mp,q) ‘)

i
5
o
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¢ Teilstrings von Tppe Sind gleich ihren Entsprechungen

inig
iﬁSL“[' ie Prozeduren, die diese Teilstrings bearbeiten,
gnthalteln natiirlich Redundanz. Beisplel:

y@cedure BA(Z:boolean);
pegin 1f Z then WRITE(’A’) else WRITE('A”) erd;

pie Redundanz wird aber zugunsten eines einheitlichen Proze-
jgurschemas in Kauf genommen. Die Auswahl, welche Alternative
quegegeben werden soll, wird beim Aufruf der Prozeduren durch
inren aktuellen Parameter getroffen, Das PASCAL-Programm ent-
pilt die SIMULA-Teilstrings immsr im then-Zweig der Prozedu-
ren und die PASCAL-Teilstrings immer im else-Zweig. Beim
SIMULA~Programm sind die Verhiltnisse genau umgekehrt. Da-
durch wird erreicht, daf eine Prozedur, die im PASCAL-Pro-

gramm mit true aufgerufen wird, auch im SIMULA-Programm mit
true aufgerufen werden kann, Daraus felgt, dal die Anweisungs-
EEEE voRn Tary und Tops im wesentlichen identisch sind. Aus
dem bisher Gesagten und der Tatsache, daB mwgq; und mp,. bis
auf die alterrativen Prozeduren infnh unﬂ'w6 identisch sind,

- d s | 1 %
folgt: Trp,o reproduziert ooy und ungekenrt.

a2si-fach selbstreoroduzierende Programme

[n Abschnitt 4.2. habern wir Reproduktion als Abschwichung
der Selbstreproduktion kennengelernt, Wir wollen nun die
t-fache Selbstreproduktion von Programmen als Yerschiarfung
Ger einfachen Selbstreproduktion einfiihren:

£§.5.T} Definition: Sei k> 1. Sei m aus S.(syntakt, korrekt),

a) (1) Weist w keine Eingabe auf, so heillt Tr k~fach

selbstreproduzierend, falls v seinen Programm-
text in S k-mal ausgibt.

(i1) Weist m Eingabe auf, so heiflt 7 k-fach selbst
reproduzierend, falls 1 bei jeder zulsissigen
¥ingabe seinen Programmtext in 8§ k-mal ausgibt,

b) ERE{SJ tezeichnet die Menge aller k-fach selbst-

reproduzierendsn Programme aus S,
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Abb.: 4.5.4
pie Existenz k-fach selbstreproduzierender Programme folgt

pereits aus Korollar (2.8.9).

(4,5.2) Satz: Die Programmiersprache PASCAL enthdlt fir je-
des k> 1 ein k-fach selbstreproduzierendes Programm

(k).

Wir geben ein Beispiel eines fiir jedes k> 1 k-fach selbst-
reproduzierenden Programms an. Dieses Belspiel beweist
Satz (h'l.sig}#

{4.5.3) Beispiel:

k) =

program pPIK (OUTPUT);

Yar l:integer;
Procedure AAj;begin WRITE(“PROGRAM PIK(OUTPUT);VAR I:INTEGER

;PROCEDURE AA;BEGIN WRITE("“‘) end;
Procedure C;begin WRITE(’PROCEDURE “) end;
Procedure Aj;begin WRITE(” ;BEGIN WRITE(""") end;
bProcedure Bj;begin WRITE("*") END;”) end;
Procedure AC;begin WRITE("""") end;

Procedure BA;begin WRITE(“A") end;
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Frg:edure BB;begin WRITE("B®) end;

£EEngura BC;begin WRITE("C®) end;

gracedure AB;begin WRITE("BEGIN FOR I:=1 TO 5 DO BEGIN AA;A
A;AC;B;C3BC;A;C;B;C;BAJAA;AC;B;C;BB;A;AC;B;B;C;BA;BCA;
AC;AC;B;C;BB;BA;A;BA;B;C;BB;BBjA;BB;B;C;BB;BC;4;BC;B;C;B
A3;3B;A;AB;B;AB;WRITELN END END,”) end;

ggin

or I:=1 to 5 do

:

iy
(-

%\

AAZAC; B;

C;BC; A Cy  B;
C;BA; A5 AjAC;B;
C;B3; A;AC; B; B
C;BA;BC;A;AC;AC; B
C;BB;BA;A; DBA; B
C;BB;BB;A; BB; B;
B

B

E

C;BB;BC;A; BC;
C;BA;BB;4; AB;
end
end.

Verifikation

Die Verifikation von (k) ergibt sich direkt aus der Verifi-
kation von Programm T ¢ aus 3.5.2.. Der Unterschied zwischen
T(k) und W, besteht im wesentlichen nur in der for-Schlei-
fe

for I:=1 to k EE

begin ... end s

in die der Ausgabealgorithmus eingebettet ist. Der Ausgabe-
algorithmus von Mg wird also in w(k) gerade k-mal ausge-
fihrt, Dadurch wird w(k) zum k-fach reproduzierenden Pro-
Zramn,
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’n 5.4 Bemerkung:
\ #

[. Jedes k-fach selbstreproduzierende Programm mist
natiirlich selbstreproduzierend, aber nicht streng
selbstreproduzierend. Aullerdem ist ein k-fach
selbstreproduzierendes Programm zyxlisch selbstre-
produzierend mit der ZykluslZnge 1.

1T. Satz (4.5.2) gilt in analoger Formulierung fir die
Programmiersprache SIMULA. Zum Beweis liversetzt man
das Programm m{k) in ein entsprechendes SIMULA-Pro-
gramm, Das geht ohne Schwierigkeiten, da mw(k) keine
pascalspezifischen Konstruktionen enthilt.

§.5.1.Implementierung von (k)

Zur Implementierung von T(k) sind die gleichen Bemerkungen
vie in Abschnitt 5.5.5. 2u machen. Anhang A,10, zeigt die
Implementierung von m(k) mit k=5,

f.6.Reproduktionshierarchie bei Programmen

In den vorangegangenen Abschnitten haben wir fiir eine be-
lieblge Programmiersprache S die Mengen

R(S) , U(S) , Z(S) und SR®(S)
definiert. Fiir diese Mengen gilt

(1) SRE(S) ¢ SR(S) € Z(8) ¢ U(S) c R(S)

Wobei SR(S) die Menge der selbstreproduzierende Programme
&8s 5 ist. Im allgemeinen werden die Inklusionen echt sein,
Vie wir am Beispiel der Programmiersprache PASCAL gesehen
taben, Es gilt nimlich

wPﬁS(k} aus Abschnitt 4.2. ist reproduzierend, aber nicht
unendlich reproduzierend.

=)

Mo aus Abschnitt 4,2. ist unendlich reproduzierend,
aber nicht zyklisch selbstreproduzierend,

1T§3k aus Abschnitt 4.3. ist zyklisch selbstreprodu-~

zierend, aber nicht selbstreproduzierend.
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e aus Abschnitt 3.3.2. ist selbstreproduzierend,
aber nicht k-fach selbstreproduzierend fiir ein
k> 1.

q@(PASCAL) & SR(PASCAL) & Z(PASCAL) € U(PASCAL)< R(PASCAL)

jMﬂldung 4.6.A erldutert dieses Ergebnis graphisch,

/Hﬁ
f/f’ 7 SRE(PASCAL)
SR{PASCAL)
F
= —— 7 (PASCAL)
U(PASCAL)

N

Abb,: L.6.A

R(PASCAL)

{4.6.,1) Definition: Fiir jede Programmiersprache S heifit die
Inklusianenreihe (1) Heprnduktinnshierarchie_ynn S e




elbstrevroduzierende Programme mit Zusatzeligenschaften
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ip Kapitel 5 haben wir einige Beisplele flr selbstreprodu-~
gierende Programme kennengelernt, Diesen Beispielprogramnmen
jst gemeinsam, daB sie aufer der Ausgabe ihres eigenen Tex-
tes keinerlei Funktion ausfilhren, Eine interessante Frage-

stellung ist aber etwa:

wGibt es in der Programmiersprache $ Programme, die
mehr leisten als nur Selbstreproduktion?"

(1)

oder konkreter

n@ibt es in S selbstreproduzierende Programme, die zu-
sdtzlich einen Suchalgorithmus realisieren, oder die
Primzahlzerlegung asusfilhren, oder ein Datenbanksystem
verwalten, oder ... 2"

Angenommen, Frage (1) lieBe sich flir die Programmiersprache
S positiv beantiworten, so kdnnte man etwas schirfer fragen:

wEXistiert 2u jedem Programm W aus S ein selbstreprodu-
(2) =zierendes Programm ¥ aus S, das die gleiche Funktion

realisiert wiew?"

Ist die letzte Frage fiir die Programmiersprache S zu bejahen,
80 ist intuitiv klar, dafl ein selbstreproduzierendes Programm
W, das eine gegebene Funktion realisiert, umfangreicher und
komplizierter ist als ein nicht selbstreproduzierendes Pro-
gramm T , das die gleiche Funktion realisiert, Daher ist es
Vielleicht einfacher, auf der Suche nach ¥ zundchst ein nicht
Selbstreproduzierendes Programm T zu entwickeln, und dieses
a8nschlieflend in eine selbstreproduzierende Version ¥F zu
transformieren., In diesem Zusammenhang drdngt sich die fol-
geénde Frage auf:
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“Gibt gs fiir eine gegebene Programmiersprache S einen
Al__ﬁ_ﬂrithmus_, der zu jedem Programm w aus S ein selbst-

(3) reproduzierendes Programm ¥ aus S liefert, das die
gleiche Funktion realisiert wie 7 29

gill man die Beantwortung der Fragen (1) bis (3) in Angriff
pehmen, SO muf? zundchst geklirt werden, was unter der ,von
ginem Programm T aus S realisierten Funktion" zu verstehen
ist. Wegen der Vielfalt an realen Programmiersprachen, de~
ren unterschiedlichen Datentypen und der unterschiedlichen
Interpretation auf verschiedenen Rechenanlagen dirfte es
upméglich sein, den obigen Begriff formal exalki und zudam
noch allgemeingiiltig zu definieren., Flr unsere Zwecke sol-
len jedoch die folgenden Uberlegungen und Definitionen ge-

ET'.iE ell.

Auf realen Rechenanlagen verarbeiten Programme aus konkre-
ten Programmiersprachen in der Regel Daten, die auf mehre-
ren Eingahedataiqg stehen, und geben Ergebrnisse auf mehre-
re Ausgabedateien aus. Auf jeder dieser Dateien stehen Zei-
chenketten, die als ganze Zahlen, reelle Zahlen, Texte
U.s.W. von einem Programm T aus der Sprache S interpretiert
werden kdnnen, Diese Interpretation kann patiirlich nur dann
erfolgen, wenn die Zeichen, die auf den Dateien stehen, aus
dem fiir Daten fiir Programme aus S zulissigen endlichen Al-
Phabet he stammen. Der Inhalt einer Datei kann als Wort aus
15' aufgefallt werden. Dieser Sichtweise entspricht die fol-
gende Definition, die zudem den Fall zulidBt, daf wihrend
der Laufzeit von T einige Dateien sowohl als Tingabe- als
anch als Ausgabedatei benutzt werden.

{5.1.1) Definition: Sei T ein Programm aus S mit p2> o Ein-
und Ausgabedateien, von denen q, 0 £g ¢p, Dateien
als Ausgabedateien benutzt werden, Die von M reali-
sierte Funktion fy ist eine partielle Funktion von
(AF)* nach (A3), die jeder Belegung der p Ein- und
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Ausgabedateien mit Worten aus (Ag) genau eine Belegung
der q Ausgabedateien mit Worten aus (Ag) zuordaet,

(5.1.2) Beisviel: Gegeben sei das PASCAL-Programm
——

T, = program ¥ ( INPUT,QUTPUT);
var I : integer;

Y ¢ real;
begin

for I:=1 to 1¢ do
bezin READ(Y); WRITELN(SQRT(Y)) end
end.,

T, liest also 10 reelle Zahler aus der Eingabedatei
INPUT ein und gibt deren Quadratwurzeln auf die Aus-
gabedatel OUTPUT aus. Sel Ap,q die Menge aller Zei-
chen, die ein PASCAL-Programm verarbeiten kann.

Dann liefert Definition (5.1.1):

= -4 * *
T, realisiert die Funktion fr @ Ap,g > Apas

L b fﬂ'u{:‘{) ’

X€ Ao g
LaRt sich der Anfang von x nicht als Folge von 10
reellen Zahlen interpretieren, so ist f,nfx) unde-
finiert. Andernfalls ist fy,(x) ein Wort aus Apg,
dessen Anfang sich als Folge von ebenfalls 10 reel-
len Zahlen interpretieren 13HGt, Diese Folge ist
gleich der Folge der Quadratwurzeln der reellen Zah-
len der Eingabefolge.

Eine exakte Beschreibung von fir, wirde die explizite

Einfiihrung von Konvertierungsfunktionen von R nach
* *

AEAS und von APAS nach IR voraussetzen,

{5.1.3) Bemerkung:

I, Definition (5.1.1) ist natiirlich nicht formal exakt,
sondern eher als ,praxisnah" zu bezeichnen,
II, Definition (5.1.1) entspricht im wesentlichen der De-
finition der von PL(A)-Programmen realisierten Funk-
tion in (2.4.1) . Im Falle » und/oder q gleich O
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igt wie unter (2.4.2) 2zu verfahren.

4us pefinition (5.1.1) folgt, daB ein selbstreproduzieren-
jes Programm ¥ aus §, das ohne zusitzliche Eingabe die
II"g]_,~;¢:".+r.'::l:l'es:" Funktion realisiert wie ein anderes, nicht selbst-
repruduzierendes Programm mw aus S, natlirlich eine ganz an-
gere Funktion realisiert als 7, da die Ausgaben von T und
#verschieden sind. Um diesen verwirrenden Sprachgebrauch

su umgehen, geben wir Definition (5.1.4) an. Zuvor sei je-
doch bemerki, daf man jede Funktion F : Mt —5 M%, m,ne M,
als m=-Tupel F = (F1 yee-Fp) vOn Funktionen Fy : 7 —
j=1,++.,m, auffassen kann. Dabel 1st M eine bellebige Menge,
gs gilt: F(x) = (Fy(x),.0.,Fplx)) fiir alle xeM" .

(5.1.4) Definition: Sei 7 ein Programm aus S, Ein Prozramm
¥ aus S heift selbstreproduzierende Version von m,
falls fiir die von 7 und ¥ realisierten Funktionen

f s [A§1P1 — u;f‘ und fg ¢ L.mgjpg —_— {ﬁg‘;q‘?
(i) oder (ii) gilt.
(1) Pt = P

und qq = q

und Jgenau ein Jjs {I,...,qa} mit

(£ 24(F) = (£4)5(X) fUr i £ §

(257 )4(%) = Igif,:ajc'fng.w.p 1)

wabei “fe(ag} . a:,ﬁeag

und (f5)3 (%) = (£,);(X) fir 1e {1,...,q4]
_ = _ — : wy 1 "
{f“]{!g{x) =ode®off, wobei ¥ € (Ag) » i€ A
efinition (541.4) stellt sicher, da® % unabhingig von der
Eihgahe seinen eigenen Text ausgibt, ¥ hingt seinen Text

“Otweder an ein husgabewort, das auch w ausgidbt (Fall(i)),
“er # gibt seinen Text als zusitzliches Wort aus (Fall(ii)}.

e

':‘,.“ " bezeichnet die Konkatenation von Worten: hier aus AE.
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{5 1,5) Bemerkung: T.a. ist die selbstreproduzierende Version

f eines Programms m aus S nicht eindeutig,

wit Hilfe von Definition (5.1.4) sind wir in der Lage, die
rragestellungen (2) und (3) exakter zu formulieren:

sBxistiert zu jedem Programm w aus elner gegebenen Pro-
(2) grammiersprache S eine selbstreproduzierende Version
yon m M

wGibt es fir eine gegebene Programmiersprache S einen
(3) Algorithmus, der flir jedes Programm 7 aus S eine selbst-
reproduzierende Version ¥ von m liefert?®

wir werden im folgenden die Fragen (1) bis (3) fiir die Pro-
grammiersprachen SIMULA und PASCAL explizit beantworten.

f9«2.3elbstreprodukiionssatz fir die Prngrammiersprache FASCAL

Frage (1) aus 5.1. 143t sich fiir die Programmiersprache
PASCAL durch das folgende Beispiel beantworten.

{5.2.1) Beispiel: Wir geben eine selbstreproduzierende Ver-
sion i, zu dem Programm 7, aus Beispiel (5.1.2) an.

Wir gehen dabei aus von unserem kiirzesten PASCAL=-
Programm m o aus Abschnitt 3.3.2. und versuchen,
™, und 77, zu einer selbstreproduzierenden Versionf
zlu kombinieren. Zu diesem Zweck vergegenwidrtigen
wir uns noch einmal das Programm TTE* n‘E enthilt
in den Prozedurenm A,...,AC seinen eigenen Text in
Form von Teilstrings. Mehrfach vorkommende Teil-
gtrings sind natiirlich nur einmal gespeichert,
Der Text von TT. 136t sich aber durch Aneinander-
reihen dieser Teilstirings zusammensetzen. Der
erste Teilstring s, von M ¢ enthdlt die das Pro-
gramm einleitenden Phrasen bis zum ersten . Der
letzte, in der Prozedur AB enthaltene Teilstring
8q beinhaltet den kompletten Anweisungsteil von

TEe Abbildung 5.2.4 verdeutlicht diesen Zusam-
menhang.



DO

T = program PIG(QUTPUT); = S,
nrocedure AA; begin WRITE(’ S °7) end;
Prﬂcedure C, beglﬂ T R R T YT T YT T Eﬂd;

"SR
R EERIEY

procedure BC; Degin seeesercccecscosess 2nd:
")

procedure AB; begin WRITE(” Sq end;

T ———

begin
AA;AA;AC;B;
AB;WRITELN
end

end.

i
(5]
0

Abb,.: 5.2.4

Idee: Wir integrieren dem Programmkepf von T,

program X(INPUT,CUTPUT);
var I : integer;
Y : real;

in den String S und den Anweisungsteil won L

for I:=1 to 1¢ do
begin READ(Y)}; WRITELN(SQRT(Y)) end;

in den String 8gs
Wir erhalten die Teilstrings si und sé mit

s] = program PI6X(INPUT,CUTPUT);
var I : integer; Y : real; procedure AA;

begin WRITE("

5§ = begin

for I:=1 to 14 do
begin READ(Yl;WRITELH(SQRT(Y}J end



AAGAAAC:B: .ovienenns AB; WRITELN
end end,

gg liegt auf der Hand, dal die Ersetzung von s; und Sg durch
5] bZW. 8§ in Programm T wieder zu einem syntaktisch kor-
rekten selbstreproduzierenden Programa ﬁ’u finrt, 7 , finrt
guerst die for-Schleife von T, aus und reproduziert sich
anschliefend selbst. Es gilt fir die von i?ﬂ realisierte

Fupktilion fi’.r_y . A;ﬂﬂ """—:"A-;AE :

Damit geniigt TFD Definition (5.1.4)(i), und es gilt: fF, ist
eine selbstreproduzierende Version wvon T, . Anhang A.11,
zeigt Programm.rré_in implementierter Form, die aus der im-
plementierten Form von Programm Mg abgeleltet ist,

Die Konstruktionm von T, aus den beiden Programmen T, und
o zelgte keine Aspekte, die darauf hindeuten, dall diese
Konstruktion won irgendwelchen speziellen Eigenschaiten wvon
L abhZngt, Die Konstruktion miiBte sich also fiir beliebige
PASCAL~Frogramme verallgemeinern lassesn. Um diese Verallge-
meinerung komfortabel durchfilhren zu kdnnen, bendtigen wir
noch zwel Vereinbarungen:

In [10] dist eine kontextfreie Grammatik Gppgs Soweit
dies iiberhaupt mdglich ist (vergleiche 2,3, ), fir die
Programmiergprache PASCAL angegeben worden. Wir werden uns
im folgenden an dieser Grammatik orientieren.

géle.a) Vereinbarung: Sei y ein nichtterminales Zeichen aus
GPAS und T ein gliltiges PASCAL~-Programm, so bezeich-
nen wir mit vW den Teilstring des Programmtextes 1,
der sich aus dem nichtterminalen Zeichen y ableiten
1483t . Kommt das Zeichen ¥ im Ableitungsbaum von T
nicht vor, so identifizieren wir vW mit dem leeren
Wort.

Der Teilstring vm ist natiirlich abhédngig von der
Position von ¥ im Ableitungsbaum von i . Dieser Um-
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gtand wird fiir uns aber keine Bedeutung erlangen.
Durch die hier eingefilhrte Schreibwelse lassen

sich aus den Produktionen der Grammatik Gp,e Glei-
chungen gewlnnen.

Beisviel: GPES enthdlt die Produktion

(progr : s=¢program heading) {vlock)

Fir jedes giiltige PASCAL-Progranmm W gilt
damit die Gleichung

T = (preogram) W
= (program heading)w (blocik) T

Bei der Kombination von Programm 1T, und Programm 7r, zu T,
saren keine Konflikte mit Bezeichnern aufgetreten. Das
heldt, simtliche Prozedurnamen von TI'E' waren von den Variab-
lgnnamen aus T'_:: verschieden. Dies kann i.a. jedoch nicht
vorausgesetzt werden. Um den Test, ob in einem PASCAL-~-Zro-
iramm T Sezeilchner auftreten, die mit einem Prozedurnamen
HHEIT5 identisch sind, zu vereinfachen, normieren wir die
Prozedurnamen aus Wy, indem wir festlegen, dall jeder Pro-
dedurname ays Trg nur mit Hilfe des Buchstaben A gebildet
Yorden darf, Alle Prozedurnamen aus T sind also Elemente
o {AF und unterscheiden sich nur in ihrer Linge. Wir wer-
den spiter sehen, dal es bei einigen Programmen n#&tig ist,
::::E:‘?nzeduren Z\ generiereg. ]Eie Namen dieser Prozeduren
Wir ebenfalls aus {oA} wihlen. Durch diese Normie=-

fun
£ der Prozedurnamen werden einige Namen sehr lang. Unm
Sabray

Tung,

(3,
~%V&re'1111::.51111.11115:

(i) SE:L _ﬂ: PP .lEL ein E]_E:ﬂent Aals {A.J+j

¥
k-mal
dann schreiben wir statt dessen kiirzer hk.

arbeit zu sparen, treffen wir die folgende Vereinba=-
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(11) Wir klirzen r aufeinanderfolgende Aufrufe

ﬁji sesne ;Aj; der Prozedur 4J ab durch {nj;}r.
. v ’

r-mal

qnter Benutzung von Vereinmbarung (5.2.3) prisentiert sich
g nach der Umbenennung der Prozedurnamen in der folgenden

Welse:

TT6=

program PI6S(QUTPUT )

procedure A;begin WRITE(’PROGRAM PI6(OUTPUT);PROCEDURE A;EE
GIN W?ITE{"'} end;

procedure A%;begin WRITE(’PROCEDURE *) end

procedure 113 begin WRITE( ; BEGIN WRITE(*"*) end;

srocedure A%¥;begin WRITE(’“) END;’) end;

procedure 873 b begin WRITE(®*“’) end;

procedure A6 begln WRITE("A®) end;

Prncedure a’; b_§_3 WRITE('EEGIH A38;A7; A% A% (A5 )233 a%;a%
*AE (45 Jjaj,a 4554442, (46140315, A“-A“ 2, (46,1525, 2

5. a5 4142, (4660345, 42; (46 )73; 47, a%; a7 wrITELY B

ND.” ) end.

begin

4345475 4%,

0% (86;)283 ;4754

ia;(ns;)jﬁﬁ;hj;hg;ﬁa;

A%; (a0 )Ha3 ;49 4848,

125 (4%;)587;07;0%; 4%,

4%; (46;)043; 26,28,

AE;(AE;]?AE;A?;AM;A?;

YRITELN

end.

Nach diesen Vorbemerkungen sind wir nun in der Lage, den
Selbstreproduktionssatz fiir PASCAL-Programme zu beweisen.
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(5.2.4) Satz (Selbstreoroduktiongsatz fiir PASCAL-Programme)
L2

Zu Jjedem syntaxtisch korrexten PASCAL-Programa 17
existiert eine selbstrevroduzierende Version .

A
-

geweis: Der Beweis gliedert sich in zwei Teile. In Teil A

- wird eine Konstruxtion fir ein Programm T fiir be=-
liebiges T angegeben. In Teil B wird gezeigt, daf
das so konstruierte T eine selbstreproduzierende
Version von W ist., Der Bewels setzt die Grammatik
GPAS voraus.

Sel nun T ein beliebiges giltiges PASCAL-Pro-
gramm. Enthdlt W Bezeichner aus {A}", so werden
diese Bezeichner durch andere Bezeichner ersetzt,
die nmicht aus {A}" sind. Das resultierende Pro-
gramm ist textuell von T verschieden und wird mit
' bezeichnet, Enthi#lt Tr keine Bezeichner aus {Ar, R
so wird T':=T gesetzt.

Nach Gp,q hat m den folgenden Aufbau:

' = (program heading)m (block) T,

wobei <(program heading®¥ und (block)W ungleich dem leeren
#ort sind., Entsprechendes gilt fiir Mg und das zu konstru-
ierende T:

“'e = (progranm headiﬂg}ﬂ's {hlock}'ﬂé
T = (program heading) ¥ (block) T
Wir erhalten das Prugramm‘ﬁ", indem wir

(program heading)® aus (orogranm heading) ™ ¢
und {program heading) w'

bzw,

(block)™ aus {block}‘ﬂ'a
und <(blocky w'

kombinieren.

—
1)Menge aller Wsrter, die aus endlich vielen A zusammenge
St et ndli ‘-g"i’

sind.

setzt
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@) Egmbiﬂatiﬂﬂ von {program heading) 7F
folgt, daf fir (erogranm heading)m’ die allgemeine

jus Opas
Mi e hutl g

mrcgram headingdw' = progran z“(/ﬁ gers ’/HT};
ﬂhﬂi fl'l/x'l!'“*_tar!r > 0, PASCAL-giiltige Bezelichner sind,

gilbe A stellt den Namen des Programms dar, die 4., bezelch-
qen die von T benutzten Dateien. Benutzt 7 die Standarddatei

qmroUT, so sel o.B.duh. Ay = QUTPUT.
Fiir T|'E| gilt:
(program heading) Mg = Program PIG{QUTPUT);

papit kombinieren wir:

(program heading) 7 = program Pluq,s... ,/ah__,OUTPUT] :

mit {I‘-l, falls Hp = QUTPUT
k =

r sonst.

(i1) Kombination von (block) ¥

lus Gp,o folgt, daB fiir (block)w' gilt:

(blockym’ = (label declaration part)m'
{(constant declaration partdw
(type definition vart) =’
(variable declaration part) m'
frocedure and function declaration partdw’
{(statement partdw’

ille Strings bis auf (statement part)mw' kinnen leer sein.
Die Programme v' und ¥ haben einen entsprechenden Aufbau.
Da (label declaration part)mg,...,(variable declaration
part) ;o gleich dem leeren Wort sind, setzen wir:

{label declaration pa_rt} F 1= ¢ label declaration part) 1
(constant declaration part)i := onstant declaration part)T’
(type definition part) t=({type definition part) W'

(variable declaration part) ¥ :=(variable declaration vart) T
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in %,2+45. War bemerkt worden, dall es in SIMULA nicht mig-
yich 1st, Texte, die das Zeichen ™ enthalten, en bloc aus-
5u¢rucken. Die gleichen Schwierigkeiten macht in PASCAL das
geichen . Enthdlt ™das Zeichen ° ein- oder mehrmals, so
guf der Text 7 entsprechend zerlegt werden.

gs wird gesetzt:

g:= (label declaration part)w’
¢(constant declaraticn part) '
(type definition part)w'
(procedure and function declaration part) n'
f:= ((statement part)7 ohne die klammernden terminalen Zei-
chen begin und end.)
Mittels der Strings S und T 1l&dBt sich der Programmtext T
vie folgt darstellen:

r = {progran headingdm' o S e begin o T o end,

1.Fall: S ist ungleich dem leeren Wort (d.h. T hat einen
nichtleeren Vereinbarungsteil)

Zerlegung von S in eine Folge von n 21 Teilstrings s; mit

H

(1) s =" oder s 7", ie [n]
{.1.1) Ei# g S S8i¢1 = ‘ ' iE[Il-iJ
(lll} EIQEEQ li"lnEn=S
Sei p die Anzahl der Teilstrings von S, die ungleich *
sind, Es gilt: 1€p<n

Fir jeden Teilstring ungleich
¥ird eine Prozedur generiert:

r

y mit Ausnahme von s4,

?+ .-‘I. 1 # * . 3
Procedure AT Y47 ':begin WRITE( s;°) end; J=2,0e0,p

¥obei s; der j-te Teilstring ungleich * ist.
Sei AP die Menge der Namen der generierten Prozeduren.
Dann giit:

AP = {A?H A2 L Fiataly!
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sot § = {S150000058,} die Menge der Teilstrings der Zer-

Jegung von S.
ginfilhrung der Funiktionen @ und @ :

¢ : Pl —— &
j +—— S, , mit s, ist der j-te Tellstring # °

wF

g : fn] —) EPU[AE}
rd, falls 1=1T)

a7*1=1, falls s, der i-te Teilstring von
J 4 S £’ ist

-k5’ fﬂllﬂ E.j-.f- .

(Zur Erinnerung: Af’ ist die Prozedur, die in ‘IT6 das Zei-
chen ° ausgibt.)

Da weder (label declaration part) m!
noch (constant declaration part) 1w’
noch (type definition part) !
noch  (orocedure and function declaration part) m'

mit dem Zeichen ° anfangen oder enden kénnen, gilt:
& (1) = s und & (p) = s

Der String T wird in einen String T' transformiert, indem
T mit dem Zeichen ; konkateniert wird: P! o= P

T" wird analog zu S in m>1 Teilstrings t; zerlegt. Fiir
die Zerlegung von T' gilt:

(1) ti = * oder ti 5,: 1€ Eﬂ]

G0 43 = by e

. u ]
(1i1) ti0t50,000s 0ty = T

Sel q die Anzahl der Teilstrings von T', die ungleich
Sind, Es gilt: 1€q<m.

Fip jeden Teilstring t’.‘L ungleich “, mit Ausnzhme von tm’
¥ird eine Prozedur generiert:

. ——

Notation: . bedeutet undefiniert.
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prﬂﬂﬂdure 5?+J+P'];heg}ln WRITZ("ty") end;
cir § = 2ysee3q=1, wobei ty der j-te Teilstring £ ° ist

BZW e

procedure A7*P;begin WRITE("3EGIN t;*) end;

gir 3 = 1.

pabei ist tj der j-te Teilstring von T ungleich *,
gntsprechend AP, ¥, ¢ und & werden AQ,T,t und ¥ definiert:
1 := {A7TP, ... a7FPrasl]

T = {ty,eennnty])

¢ : [q] — (ti} i€ [n]
J > t;, mit t,_ ist der j-te Teilstring von T'
;f #
€:[n] — 100 {7}
(1, falls J = q

i

AP alis b ; der i-te Teilstring

J  — 4 £ 7 ist
4% , falis ty =’

Das erste Zeichen nach dem einleitenden begin wvon
{statement part'?‘n" kann nicht gleich ° sein., Daraus ergibt
sich nach Definition von T': (1) = t,

Das letzte Zeichen von T' ist : . Daraus folgt: =(q) = ty

Es ist nun mbglich, die beiden noch fehlenden Programmteile
von 9F, nimlich

(Procedure and function declaration part)¥ und
(statement part) 7F

AlZugeben:
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rocedure and function declaration part) ¥
@rnced‘ure and function declaration part) m!
procedurs A”*;begin ..... end;

——

procedure A?+P+q'1;begin eeess ©Nd;
procedure A;begin WRITE( (program heading)T &(1)*) end;

Eru:e&ure A?;hegin WRITE( v(q) €8 END.”) end;

(statement part) ¥
=hE‘EiI’l t1,1-rrt,tm @ end.,

@0 steht dabei als Abkiirzung fiir die Aufruffolge der Proze-
duren A bis Ap+q+2, die die Ausgabe von ¥ bewirkt.
Pamit ergibt sich insgesamt:

T = program Pluysess ?uk,DU‘I'PUT};

Ej aF FEEFFS En

procedure A? 1 begin WRITE("&(2)°) end;
procedure al* 2 begin WRITE(“6(3)°) end;

A R S A RN B R L R R R R R N R N NN REREYRE

procedure Xai:alF ;begin WRITE("g(p)”) end;
procedure A7 P; jbesin WRITE(*BEGIN v(1)°) end;
procedure 2P bee jbegin WRITE("«(2)") end;

AR T Y R E R R L R R R R T T T T T Y

procedure A?+P+q'2-hegin WRITE(*2(g=1)") end;

Brocedure A;begin WRITE(’PROGRAM P(uy, ... ,u,00TPUT);e(1)"
) end;

Procedure A~;begin WRITE( PRQCEDUERE ‘) end;

Drocedure 4”;begin WRITE(’;BEGIN WRITE(’®®) end;

Brocedure A’!‘L ;begin WRITE(""") END;”) end;

Brocedure A5 begin WRITE("“"") end;

Irocedure As begin WRITE("A”) end;

Rrocedure A7;begin WRITE(’¢(q) @ END.”) end;

begin
t
l LN N ) tm

2




A; Efilennummer

2); vessees_;5(n);
%2) 6.y7+1 43,71, k., ;
K v 13742, g 7
;‘%;EAG;}?+P'1 82571, Koun_1
LE;(AE;}?”" AB;A%?;AB‘; L Kary

1 + +]‘ )

AE;(Eéj}?-PP-‘- LE;A P AT E?+P—*’1
G \Peprqed 3. epiaed. b
12;(2 !% z A I'ﬂ‘ !A ¥ k?_l_p_ll_q_e
$254°;A7 ;A4 K,
ﬁE;LAE;)E Aﬁ;ﬂg;&#; .
12:(a%3)° a2;4%;87;0%; 5
225 (a%50% a3;a%; 20, 5
AE:(AE';JF’ AE';Aﬁ;AE;AJ*; :
ﬁ?;{ﬂﬁ;}s Aj;ﬂﬁ;ﬁu; s
AE;(AG;}? AE;A?;Aﬁ; k?
1) e eeea;¥(m=t);

4’ WRITELN

end .

¢.Fall: Der StringSist gleich dem leeren Wort (d.h. der
Vereinbarungsteil von w ist leer)

Dieser Pall ist ein Spvezialfall von Fall 1. Wip erhalten

das resultierende Programm aus dem in Fall 1 angegebenen

Programm ¥ durch Streichung der den String S betreffenden
Konstruktion, Im Einzelnen

=~ Streichung der Prozeduren A?+I bis A?+P-1

- Anderung der Prozedur A in
procedure Aj;begin WRITE(”PROGRAM Papq,..., 1, OUTPUT ) ;%)
end;

= Streichung der Programmzeile mit dem Inhalt
E[E);-lril;g{n};
~ Streichung der Programmzeilen
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¢, Fall: S igst ungleich dem leeren Wort.
.--'-"'__-
pie Konstruktion in Teil A liefert ein syntaktisch xor-

rgktEE PASGAL#P“DEI'EHMF- Es bleibt zZu zElgEE da% .ﬁ. eine
EelhﬂtrEperuzlﬂ?Fnda Version von T ist.

7 realisiert eine Funktion
(AP;E‘}T — (AP;S}H mit ocfusr.

per Vereinbarungsteil von W wird in Form des Textes

§= Sy +e.0e Sy in das Programm # unverdndert aufgenom-
gen. Im Anweisungsteil von ¥ wird der in der Form

P= Tty eocee ‘I:.IIL iihernommene Anweisungsteil von m zuerst
ausgefiihrt. Alle anderen Anweisungen sind nur Aufrufe von
prozeduren, die nicht in 5 wvereinbart sind. Bel jedem Auf-
ruf dieser Prozeduren wird genau eine Textkonstante auf die
Datei QUTPUT ausgegeben. Da T nur endlich viele Prozedur-
aufrufe aufweist, wird insgesamt ein endlicher Text, also
ein Wort y aus AP;S’ auf die Datei OUTPUT ausgegeben., Die
lufrufe dieser Ausgabeprozeduren erfolgen Jjedoch erst,
nachdem der Anweisungsteil T abgearbeitet worden ist., T

realisiert also die folgende Funktion:

(AP;E}I' — (APES)“ o&dusdr
mit [ ]
(£4)4 (%) fir igfr- .
(£3)1(F) = T e(hpyg)”
#/1 (%) {Lf,)in y firi=r [ T Eeas

o

falls My = QUTPUT, d.h. T gibt y auf eine Ausgabedatei
aus, die auch T benutzt,

bzw.
£t (Apye)T" ! —3 (A5,8)" 0 &u €+
mit
(f4)1 (X fiir ie[r]
( = - 1
)1 (%) {5’ fiir 1 = r+1 X E{Apﬁs}r-k

falls (o, # OUTPUT, d.h. T gibt y auf die Datei OUTPUT
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qus, die von 7 nicht als Ausgabedatei benutzt wird,

= erflillt also genau dann Definition (5.1.4), wenn der
roxt # Teilstring von y ist.
Fs gilt aber sogar y = ¥ , denn:
fach Abarbeitung von ty «..e. by gibt i zunichst durch
gjufruf der Prozedur A seinen eigsnen Programmzon{
¢progran heading)® und sy aus. Die nidchsten Prozedurauf-
rufe
#(2); ... bis ... ;&(n); erledigen die Ausgabe von
=5 ese D15 sas Spe
pie Prozeduraufrufe der Zeilen ko, Dis k?+p+q—2 und ky
bis k? bewirken_die Ausgarve de? Prgzedurvareinharungan von
o1 bis ACYP*A=2 by, von A bis A'. Es fehlt nur noch die
susgabe von (¢statement part)>T . Diese Ausgabe wird jedoch
durch die Folge
T(1); .....;E(m-IJ;A?; bewirkt. Das nachfolgende
WRITELN leert nur den Puffer der Datei OUTPUT.
Es gilt alsc y = #. Damit ist ¥ selbstreproduzierende
Version vonir.

2.Fall: 8 ist gleich dem leeren Wort

Fall 2 ergibt sich als Svezialfall von Fall 1. Es gilt
somit auch in diesem Fall, dal das erhaltene Programm
selbstreproduzierende Version von 7 ist,

Damit ist der Satz vollstdndig bewiesen.

Dem Beweis von Satz (5.2.4) 148t sich dirext ein Algo-
rithmus entnehmen, der zu jedem beliebigen PASCAL-Pro-
§ramm 1T eine selbstreproduzierende Version T findet,

(5.2.5) Aigorithmus:

Eingabe: Das PASCAL-Programm T .

1.8chritt: Test, ob keiner der in W vorkommenden
Bezeichnsr aus {A]+ ist., Gegebenenfalls Um-
benennung vornehmen,




2.8chritt: Formulierung von ¢orogram headingljr aus
(forogram heading) T unter Verwendung der Stan-
darddatei QUTPUT.

3.5chritt; Zerlegung von
S = {label declaration part)rr

(constant declaration part) T

(type definition part) m

(variable declaration part)w
n_und Ermittlung der An-
zahl p der Teilstrings § 5 ungleich 7 ,
Anschlieflend Formulierung der p-1 Prozeduren
A?+1 bis A?+p"1 und Aufstellung der Werteta-

bellen von & und & .

in Teilstrings SpseenyS

L.Schritt: Ist das letzte Zeichen von
T = (¢statement part)TT ochne klammerndss begin
end.) gleich ; , so wird T’ :=T gesetzt, an-
dernfalls T'::T;.
Zerlegung von T' in €y eee Ly und Ermittlung der

Zahl q. Anschlieflend Formulierung der g-1 Proze-
7*P pia pltPrQ-2
duren A bia A und Aufstellung der

Hertetabellen von T und ¥ .

D.Schritt: Einsetzen der erhaltenen Funktionswerte,
Prozeduremund Teilstrings sl,...,sn,tT,..,,tm
in das im Beweis angegebens Programmschena.

Aufwand: Der Algorithmus verhilt sich linsar zur
Linge l(mw) des Programms 1T .

(5.2.6) Beispiel: Gegeben sei das in [ES] Seite 17
zu findende Programm.

W= program CONVERT(QUTPUT);
const ADDIN=32;MULBY=1.8;LOW=@;HIGH=39;
SEPARATOR="_ __ __ ___ "

var DEGRER : LOW .. HIGH;
bEEin

WRITELN(SEPARATOR);

for DEGREE:= LOW to HIGH do



tegin WRITE(DEGREE, ‘C*,ROUND{DEGREE=MULBI+ADDIN), F" );
i f ODD{DEGREZE) then WRITELN

end;
WRITELN;
WRITELN(SEPARATOR)

end,

pgnwendung von Algorithmus (5.2.5):

{.Schritt: g enthdlt keinen Bezeichner aus {A} . Es sind
o also keine Umbenennungen notig,

2.8chritt: (program heading)W wird auf
program CONVERTX(OUTPUT};
gesetzt,

3¢E¢hrit£i S = 51 EE 5-5 ELP 55 mit
s, = const ADDIN=32;MULBY=1.8;LOW=Z;BIGE=39;
SEPARATOR=

s, =
s; = jvar DEGREE:LOW..HIGH;

Es gilt n=5, p=3

Die resultierenden Prozeduren sind:
procedure Aﬁ;begin WRITE(® ______.___") end;
procedure A%;begin WRITE(’;VAR DEGREE:LOW..

HIGH;") end;
Wertetabellen von & und & :
(1) = s4 §(1) = «
5(2) = s3 g(2) = &°
5(3) = sg g (3) = A°

&) = a°
§(5) = a°

beSchritt: T = tytotat totetotgty .y

t, = WRITELN(SEPARATOR);FOR DEGREX:=LOW TO
HIGH DO BEGIN WRITE(®DEGREE,

&+

t2=
C

M
|



-,

cr

It

"
tg = ,ROUND(DEGREE*MULBT+ADDIN),

tg =

S

u?—F

ta-'

tg = };IF ODD(DEGREE) THEN WRITZLN END;

WRITELN; ¥NRITELN(SEPARATOR) ;

Es gilt: m=% , q=5

Die resultierenden Prozeduren sind:

procedure Ajﬂ begin WRITE("BEGIN WRITELN(SEPARA
TOR) ;FOR DEGREE:=LOW TO HIGH DO BEGIN WRITE(
DEGREE),’} end;

procedure ' ;begin WRITE(“C’) end;

procedure A'2;begin WRITE(®ROUND(DEGREE#MULBY+A
DDIN),”) end;

pracedurg_h13;;égin WRITE(*F*) end;

Wertetabellen von © und ¥ :

(1) = t, (1) = 49 Z(6) = A’
w(2) = t; () = A7 2(7) = '3
w(3) = tg  ¥(3) = '] 7(8) = A’
w(4) = Ty T(4) = A‘?E %(9) = &

o5) = tg  x(5) = A

5+SChI‘it L.

= program CONVERTX(QUTPUT);
const ADDIN=32;MULBY=1.8;LOW=@;HICGH=39; SEPARATOR="

.

— - - ——— . ‘

var DEGREE:LOW..HIGH;

procedure AB begin WRITE(® __________°) end;

procedure A%;begin WRITE(’; VAR DEGREE:LOW..HIGH;”) end;

procedure A10 begin WRITE(BEGIN WRITELN(SEPARATOR);FOR
DEGREE:=LOW TO HIGH DO BEGIN WRITE(DEGREE)”) end;

procedure Ali ;begin WRITE('C”) end;

procedure A'2;begin WRITE(” ,ROUND(DEGREENMULBY+ADDIN),*
) end;

procedure A15;hegin WRITE("F*) end;

procedure Aj;begin WRITE( PROGRAM CONVERTX(OUTPUT ) ;CONST

ADDIN=32;MULBY=1.8;LOW=0;HIGH=39;SEPARATOR=") end;




srocedurs A;begin WRITE(’PROCEDURE ) ond

procedure A”;begin WRITE(”;BEGIN WRITE("’’) end end;

procedure AL“ ;joegin WRITE(""") END;’) end;

procedure A5 jpegin WRITE("“"7) end;

orocedurs A6 ;begin WRITE("A’) end;

procedure A;begin WRITE(’);IF ODD(DEGREE) THEN WRITEL
N EZND;WRITELN;WRITELN(SEPARATOR); €8 IND.”) end;

begin
WRITELN(SEPARATOR);
for DEGREE:= LOW to HIGH do
begin WRITE(DEGREE, "C” ,ROUND(DEGREL®MULBY+ADDIN), *F”):
if ODD(DEGREE) then WRITELN
end;
WRITELN;
WRITELN(SEPARATOR);
A;
25:48: 45, 49
22, {AE 8 33,48, 4k,
i >?;3’;i§*
b,
a Ei ;11 ij’il1’i4’
a {Ae )12 33,412, b, :
E {2.6 %13’ Ai, AENUS . &
A%;2%;80; 854
A‘,(Aé )2 A5 A? k.
LE )3 Az A5 A:r? A'{t.
.E. {AD }LP 3311_15 Af-hﬂ_h
22, (4615 43; ;493 4% ; k.
22; (8876 43, A“*A“
AE,{AE,)? AB,A?, .
A1G;A5;h1I;A5;AIE;A5;A13;A5;A?;
WRITELN
end.

chsedeutung‘vnn Satz FE.E.#} ist in erster Linie theore-

v E? und-nlcht praktischer Art., Satz (5.2.4) beweist

o LdlE En.st:enz einer selbstreproduzierenden Version #

mwu;:?es gﬁltlge PASCAL-Programm W und gibt auch eine Kon=-
ion fir ein syntaktisch richtiges % an, jedoch garan-
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sier

t die syntaktische Korrektheit noch nicht die Reali-

gerbarkeit von 7 auf einer konkreten Rechemmaschine.
pie Implementierung eines von Algorithmus (5.2.5) ge-

1iefe

rten Pragramms'ﬁ kann zu folgenden Schwierigkeiten

giihrens

(1) Der lingste Prozedurname von fF ist

(ii)

A?'*P"'Q'E . A?+P+Q"2

ist p+g+> Zelchen lang. Jedes dieser Zeichen ist sig-
nifikant, da auch der Prozedurname ATTP*A=3 it ger
Ldnge p+q+i in ¥ vorkommt. Die zulissige Signifikanz
von Bezeichnern ist bei implementierten PASCAL-Com-
pilern aber beschrinkt. Die Zahlen p und q sind je-
doch nur endlich, was zur Folge hat, da’ bei groRen

p und q einige Prozeduren nicht unterschieden werden
ktnnen.

Die Ldnge der durch (5.2.5) enistehenden Textkonstan-
ten in den Prozeduren AJ, je[p+q-2] , ist fir die Ge-
samthnelt aller PASCAL-Programme 7 nicht beschrankt.
Damit ist auch die Linge einer Programmzeile nicht
Jeschrinkt. Die Linge einer Programmzeile ist auf
realen Rechenanlagen aber oft durch die Linge des Ein-
gabepuffers des implementierten PASCAL-Compilers be-
schrinkt,

Die Schwierigkeiten (i) und (ii) lassen sich bei vielen in
der Praxis vorkommenden Programmen vermeiden, indem man

Algorithmus (5.2.5) um zwei ,praxisorientierte" Schritte
erganzt,

6.Schritt: Sei g die Anzahl der signifikanten Zeichen won

Bezeichnern bei dem vorliegenden PASCAL-Compiler., Sei
ai=7+p+q=-2=p+q+5 die Linge des Prozedurnamen Ap+q+5_
& 1st gleichzeitig die Anzahl der Prozedurnamen vonm
Typ AJ, je[a] . Dann wikhle man zwei natiirliche Zahlen
c§ 26 und bsg mit
(1) i cky a

g=]
Nun kdnnen die Prozedurnamen A1 bis A/*P*qQ-2 durch

Reue Namen ersetzt werden, die maximal b Zeichen lang



sind und aus den c ersten Buchstaben des Alvhabets
zusammengesetlzt sind. Auler dem Buchstaben A kdnnen
also c-1 weitere Buchstaben zur Bildung von Prozedur-
namen herangezogen werden., Zu diesen c-1 Buchstaben
miissen aber ¢-1 neue Prozeduren generiert werden, die
Jewells einen neuen Buchstabhen ausdruclken:

procedure ...;begin WRITE(“B’) end:
procedure ...;begin WRITE(’C”) end; c=1

LE RN RN NFY K

/

Fir diese Prozeduren werden aber auch Namen bendtigt,
Daher miissen die Zahlen ¢ und b auch die Relation

(1) Eft ck 3> atc-i erfiillen,
k=1

/.Schritt: Sei d die Eingabepufferlinge des zur Verfiigung
stehenden PASCAL-Compilers. Seien vy, i€ [p+q-3 , die
Textkonstanten der Prozeduren A* ( diese Prozeduren
sind mdglicherweise in Schritt 6 bereits umbenannt
worden ), Fiir jedes ie E:-+q-aﬂ mufll die folgende Berech-

nung ausgefiihrt werden:

Ist 1(WRITE(* Vs Vs d:]sa'hleiht Ai unverdndert,
Andernfalls wird vy in ky Teilstrings Vij zerlegt mit

LWRITE(® vi4 ")) Sd, ¥ Je[ky]e Dabei sei ky mini-
mal gewdhlt,.

Die Prozedur AT wird durch k; neue Prozeduren ersetzt:

procedure ...;begin WRITE(’ Vi4 “} end;

PSR ER
LA N T

procedure ...;begin WRITE(’ viki *) end;

Entsprechend der neu eingefiihrten Prozeduren wird die
Aufruffolge der Prozeduren, die die Ausgabe von # be-
wirkt, erginzt,

Dvgl. Fulnote auf Seite 19
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g Schritte 6 und 7 flihren jedoch nicht immer zum Ziel.
st die Eingabepufferlénge d des zur Verfiigung stehen-
dmlPASG&L-Gnmpilers relativ gering, so werden in Schritt 7
jp der Regel sehr viele neue Prozeduren generiert, Sicher-
lnﬂLWird dabei auch die Textkonstante der - mdglicher-
geise in Schritt 6 umbenannten - Prozedur A?, die den
Ausgabealgcrithmus fir ﬁenthﬁlt, auf mehrere neue Proze-
dquren aufgespvalten. Neue Prozeduren bedingen einen lingeren
jusgabealgorithmus, wenn 7 selbstreproduzierend bleiben
gcll. Das bedeutet aber, da? noch mehr Prozeduren zur Auf-
pahme des Ausgabealgorithmus ndtig sind. Noch mehr Prozew
duren bewirken aber eine erneute Verlingerung des Ausgabe-

pi

algorithmus, was noch mehr Prozeduren bewirkt, u.s.w.

Ist d nun relativ gering, so kann es geschehen, daf sich
dieser Prozel nicht stabilisiert und Schritt 7 zu einem un-
endlichen Programm fiunrt, Das ist genau dann der Fall, wenn
die Textkonstanten der den Ausgabealgorithmus enthaltenden
Prozeduren durchschnittlich weniger Prozeduraufrufe enthal-
ten, als zur Ausgabe der Prozedurvereinbarung einer Ausga-
beprozedur erforderlich ist. Das sprunghafte Anwachsen der
Anzanl der Ausgabeprozeduren kann zu einer wiederholten
Durchfilhrung von Schritt 6 filhren. Noch komplizierter werden
die Verh#Zltnisse, wenn die Ausgabe von F formatiert werden
soll,

2.7 Beispiel: Das in Beispiel (5.2.6) enthaltene Pro-
gramm ¥ soll implementiert werden.

6.Schritt: Programm 7f weist 13 Prozedurnamen vom Typ Ai auf,
Der vorhandene PASCAL-Compiler wertet nur die
ersten 8 Zeichen eines Bezeichners als signifi-
kant., Binige der A" miissen also umbenannt wer-
den. Die Prozeduren A11 und 413 stellen zufillig
die beiden Buchstaben C und F zur Verfiigung. Zur
Unbenennung der 13 Prozeduren A1,‘..,A13 sollen
aber insgesamt 4 Buchstaben herangezogen werden.
Es wird deshalb zusitzlich die Prozedur

brocedure BB;begin WRITE(’B’) end:

in das Programm ¥ aufgenommen.
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MIt den 4 Buchstaben A,B,C und F lassen sich

L verschiaedene Namen der Lange 1,

16 verschiedene Namen der Lidnge 2 und
64 verschiedene Namen der Linge 3 bilden.
Auch wenn Schritt 7 weitere Prozeduren liesfern
sollte, ist anzunehmen, daf nmit c=4 und b=3
geniigend viele Namen zur Verfigunzg stehen. Wir
werden versuchen, mit Namen der Léngen 1 und 2

auszukommen.
Die Prozeduren Ai, ie [13] , werden wie folgt

umbenannt:

Al in aa 2% in ar

2% in A A7 in cB

2> in B A% in ¢c

Aq in C AI1 in BC

A5 in F A12 in C

4 in ma 412 in BF

ﬁ?- in AT

7.Schritt: Die Linge jeder Programmzeile sei auf 132 Zei-
chen beschrdnkt. Damit braucht nur die Textkon-
stante der Prozedur AC auf mehrere Prozeduren
aufgespalten zu werden, Der fiir diese Prozeduren
notwendige Verwaltungsaufwand im Algorithmus
von ¥ bewirkt, daB insgesamt L neue Prozeduren
FA,FB,FC und FF eingefilirt werden miissen.

Anhang A.12, zelgt das durch die Schritte €
und 7 verdnderte Programm % . Zur Formatierung
der Ausgabe wurde in das Programm die aus 330,
bekannte Prozedur § eingefiigt.

§l5.Selhstrggrﬂduktinnasatz fﬁ{_die Frugrammiersprache
SIMULA

Yie in den Kapiteln 3 und 4 vorgestellten Beispielprogramme
n SIMULA und PASCAL entsprechen sich weitgehend., Zum
Selbstreproduzierenden PASCAL-Programmm T, aus (3.3.2)
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gxistiert eln nahezu identisches SIMULA-Programm LN in
5.2.7+ « Da der Beweis von Satz (5.2.4) im wesentlichen
guf der Existenz von 1T ¢ beruht, ist anzunehmen, daf bvezlig-
jich der Programmiersprache SIMULA ein enisprechender Satg
gilte Der Beweis dieses Satzes wird sich wie der Beweis

on (5.2.4) in zwei Teile A und B gliedern. In Teil A wird
1ie Konstruktion der selbstreproduzierenden Version ¥ eines
peliebigen SIMULA-Programms fr erfolgen. Trolz der Entsore-
¢hung von 7T, und 1T mull diese Konstruktion explizit ange-
geben werden, da SIMULA im Gegensatz zu PASCAL eine block-
orientierte Programmiersprache ist, Das aus Teil A resul-
tierende Programm 7 wird aber weitgehend dem in Teil A von
dem Beweis zu (5.2.4) konstruierten Programm entsprechen,
fum Nachweis, daB T selbstrevroduzierende Version von TT ist,
gird in Teil B ein Verweis auf Teil B vom Beweis zu (5.2.4)
geniigen. Der Bewels wird sich an der in [19] angegebenen
SIMULA-Grammatik orientieren. Diese Grammatik sel mit G_ i,
bezeichnet, Fir Gary ibernehmen wir die Vereinbarung (5.2.2).
fulerdem iibernehmen wir Vereinbarung (5.2.3%) fiir die Pro-
zedurnamen von TT4. Damit prédsentiert sich ™y in der Form:

ﬂ,l_l_f'-u

begin

Irocedure A;OUTTEXT("BEGIN PROCEDURE A ;QUTTEXT("mn);

procedure A°;OUTTEXT("PROCEDURE ");

procedure ﬂB;DUTTEXT(" ; OUDTEXT (1) .

brocedure Ah;GUTTEXT(""“);");

brocedure AZ;GUTTEKT(““"”);

procedure A°;OQUTTEXT(M"A");

Procedure A’ ;OUTTEXT("A;A;A%;4%;a%;(a8;)2 27,4284, a2, (15;)3
A ;A3;A5;ﬂ“;ﬁagﬂﬁs;lh Aj;ﬂ5;ﬂ4;ﬁq;ﬁg;(hé;35 AE;AS;A5;&u
225048576 a3;26;0%;02;(48;)7 A%;47;0%;27 Exov),

Aja;a7; a4,

AEI(AE;}E AB;AE;AH;

lg;(ﬂ_Z;)ﬁ AE;A?’;A-E;ALF;

£5;(a°5)" a2;07;0%; 4%,

Aa;(AB:)B A};Aﬁgﬂﬁ;ﬁq;

A%; (4626 a3;a5;a4;
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jz.ue;}? 47547545507
end

1,1) Satz (Selbstrevroduktionssatz fiir SIMULA-Programme)

e3e1)
Zu jedem syntaktisch korrekten SIMULA-Programm 1r
existiert eine selbstreprcduzierends Version ¥ .

Bewels:

Teil A:

Das Programm TT , hat laul Grammatik Ggry den folgenden
Aufbau:
Ty, = begin (Vereinbarung) -Folge T L
(Anweisung) ~Folge 7 L end

Sel 1 ein beliebiges STMULA-Programm. Dann hat T den
Aufbau:

m = (Klassenbezeichnung) 7T
(akt. Parameterteil) -optionTr
begin (Vereinbarung) -Folge
(Anweisung) -Folge 7w end

Dabei kdnnen (Klassenbezeichnung? ™ ,
{akt. Parameterteil? -option T
bzw., {(Vereinbarung> -Folge 7

leer sein (vgl. 7 RE
Besteht T nur aus

begin <Anweisung) -Folgemw end

80 nennt man T eine Verbundanweisung. Andernfalls ist 1T ein
Block. Sowohl Verbundanweisungen als auch Blécke sind an je-
der Stelle von (Anweisung) -Folge TT ,, zuldssig, an der eine
Anweisung zuldssig ist. Dies wird im folgenden ausgenutzt.

Kombination von ¥ aus TTh_rund T

Ist (¢Klassenbezeichnung)m nicht leer, so ist zunichst zu
tEEtEﬂ, ob (Klassenbezeichnung)mw aus {ﬂ}+ ist, Ist dies
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qer Fall, so wird ¢ Klassenbezeichoung)™ umbenannt, Es
ramﬂjiert das Programm ', das die gleiche Funition rea-
rjsiert wie 7. Andernfalls wird T := 7 gesetzt. Wegen
jes Konzepts der lokalen Giiltigkeit von Bezelchnsrn ist
pine Umbenennung der in - falls vorhanden - (Verein-
parung » -FolgeT und (Anweisung) -FolgeT vorkommendern

gezeichner auf jeden Fall nicht natig.
= begin

arocedure A; ...

(zusdtzliche Vereinbarungen)

nrocedure ﬁa; ce)
) mit gednderter
Prozedur A? aus 1,
s

(zusitzliche Anweisungen)
(Anweisung > -Folge W,

end

[E 3 B N2

.7
procedure A'; seej

Fs brauchen nur noch die Programmtelle

(zusitzliche Vereinbarungen)
und (zusitzliche Anweisungen)

realisiert zu werden.

Sei T gleich Tr mit angefiigtem ; . Also T =';. Der String
T wird analog zum String T' aus dem Bewels 2Zu (5.2.4) in
eine Folge von m» 1 Teilstrings ty zerlegt., Fir diese Zer-
legung von T gilt:

(1) ty =" oder 3, ie [m]

(ii) ti $ n == tivr =" s i€ [m'ﬂ

{lil} t‘1ﬂtaﬂ'--- ﬂ'tm=T

. yvon T, die ungleich "

Sei q die Anzahl der Teilstrings tJ

8lnd. Es gilt: 1£ q¢m.
Fir jeden Teilstring tj ungleich ", mit Ausnahme von t_,
Wird eine Prozedur generiert:

frocedure A7*J;OUTTEXT(M" ti "); je[a-1]
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gobel Yy der j-te Teilstring von T ungleich " ist.

e Menge der erzeugten Prozedurnamen ist
A o ' i
ﬂs{ﬂ?ﬂ,_....,ﬂ?q Joser T={eq,.i g} .

gie im Bewels zu (5.2.4) werden die Funktionen T und T de-
ﬂniert:

c: @ — T

j — t, mit %, = j=ter Teilstring # "

¢ : [ —— 8Qu {a°]

1, falls j = q

j 347", falls ty = i-ter Teilstring # "
A7, falls ty = "

1:1 ist ungleich ", da 7T nicht mit " anfangen kann. Da das
letzte Zeichen von T gleich ; ist, ist auch T, = tq un-

gleich ". tp wird in die Prozedur .EL? integriert.

Der Programmteil (zusdtzliche Vereinbarungen) bestenht aus
den q-1 Prozedurvereinbarungen von A?H bis A?J'q't.

Der Programmteil (zusitzliche Anweisungen) besteht aus der
Folge von Prozeduraufrufen, die ndtig sind, die g~! zusatz-
lichen Prozedurvereinbarungen auszugeben. Die Prozedur A?

wird entsprechend erweltert.
il
m=

beEgu
procedure A;OUTTEXT("BEGIN PROCEDURE AjOUTTEXT(""");

procedure A.?H QUITEXT ("2 (1))

R E X EEEEFEEE T x> x e B B N BN

brocedure A?+q-1 s QUITEXT ("x(g-1)");

procedure AS;OUTTEXT ("PROCEDURE ");

brocedure A ;OUTTEXT(" ;OUTTEXT("n);

Procedure A¥;OUTTEXT(M#1);0);

procedure A~ ;OUTTEXT (M),

Procedure AE’ ; OUTTEXT("AM);

Brocedure A?;DUTTE}{T{“*E(M) ;A;A;AB;PLL*HE; (AE: )7+ I’L'?J;-'”L?H A%
2.(26,)7+a=1 g3.47%a-1, 4%, 22, (4%;)2 a%;a%;0"

;"‘itllliliiﬂ
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*Ae‘{ﬂsilﬁ-ﬂiiﬁjiﬂﬁ‘ﬂhsﬁ;;{£6;14 Aﬁéﬂ5;A4;AQ;AE:(A6;)5
Aé"ﬁiﬁiﬁhiﬂa;{ﬂeﬂé 225050450287 0575000,
A (m-1);A¢ ZND");

.‘_-,-.I-'-

AAiA
55 (A

5; J'F”'Q-T ﬁ};ﬂ?-l-q—'l ?AJ'i‘

5;5#2

4% (2
f%iﬂsi}
{2: (4850 a%;547;a%54%,
12008507 825070755,
12: (16578 35085,
12008507 354754
F1); sevess ;%{m-—i];ﬁ?

2 754%50%

Die Konstruktion von T in Teil A fiihrt zu einem syntaktisch
korrekten SIMULA-Programm. Wegen der sehr engen Entsprechung
von dem SIMULA-Programm 17, und dem PASCAL-Prcgramm.Tr6 ent-
spricht 7 dem im Beweis von (5.2.4) erzeugten PASCAL-Pro-
gramm weitgehend. Zum Nachweis, daB 77 wirklich selbstrepro-
tuzierende Version von T ist, kann wegen der vdlligen Ana-
logie auf den Beweis von (5.2.4),Fall 2, verwiesen werden.

%

Aus dem Beweis zu Satz (5.3.1) 1ldat sich direkt ein Algo-
rithous herleiten, der zu jedem gililtigen SIMULA-~-Programm 7T
¢lne selbstreproduzierende Version T angibt,

(3.3.2) Algorithmus:

Eingabe: Das SIMULA-Programm 1T,

l.5chritt: Test, ob (Klassenbezeichnung)mw - falls

Uberhaupt vorhanden - ein Bezeichner
aus {A}" ist. Gegebenenfalls Umbenennung
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2.3chritt: Zerlegung von T:=T; in Teilstrings
tiyee0,ty und Ermittlung der Anzahl g
der Teilstrings tj ungleichn ".
AnschlieBend Formulierung der gq-1 Pro-
zeduren A?+1 bis A/79"Y ung Aufstellung

dar Wertetabellen von T und T .

3.S8chritt: Einsetzen der erhaltenen Prozeduren,
der Funktionswerte und des Programms T
in das im Beweis angegebene Programm-

achema.,

Aufwand: Der Aufwand des Algorithmus verhilt
sich linear zur Linge 1{w) des Pro-
gramms TT .

fegen der Analogie zu (5.2.5) sei an dieser Stelle auf ein
Beispiel fiir die Anwendung von Algorithmus (5.3.2) verzich-
tet, Zur Gewinnung implementierbarer selbstreproduzierender
Versionen mul (5.3.2) analog zu (5.2.5) um zwel jpraxis-
orientierte'" Schritte erweitert werdern.

Kapitel 5 hat insgesamt ergeben, dal sich die eingangs
(8.0. 5.1.) gestellten Fragen (1), (2) umd (5) beziglich
der Programmiersprachen SIMULA und PASCAL positiv beantwor-
ten lassen. Bei der Beantwortung werden keine simula- bzw.
pagscalspezifischen Sprachelemente bemiiht. Diese Tatsache
148t den SchluB zu, da® sich die Fragen (1) bis (3) im Fal-
le jeder hSheren Programmiersprache, die iiber

- Textkonstanten und
~ Prozedurkonzept

Verfiigt, positiv beantworten lassen.

Auch beziiglich der in 3.4, behandelten SIEMENS-Assembler-
Sprache fallen die Antworten auf die drei Fragen vositiv
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guse Die Antworten wurden bereits durch Beispiel (3elsal)
EE]_j_afEI‘t. Wenige Zeilen Assembler-Kode geniigen, um aus
sipem belisbigen Assembler-Programmabschnitt einen selibsi-
rggrgduzierenden Programmabschnitt zu machen. Die die
gelbstreproduktion ausmachenden Zeiler sind im wesentli-

chen immer gleich.
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¢.Selbstreoroduktion bei loop-Frogrammen

— i P A e i — o —— e e ol e i il — . i - =

5_-_==$=—!= ------ i N S R SR S e e T e o i . .
6.1.Einleitung

n den Kapiteln 3,4 und 5 haben wir Beispiele fir selbst-
reproduzierende Programme in hdheren Programmiersprachsn
gennengelernt, Allen Beispielen ist gemeinsam, dal sie al-
gorithmisch nicht senr aufwendig sind. Der jeweilige Kon-
trollflufl aller bisherigen Beispielprogramme ist recht ein-
fach. Es wire also interessant zu klHren, wie einfach Pro-
gramniersprachen strukturiert sein kdnren, um noch selbst-
reproduzierende Programme zu ermdglichen. Die folgenden
Betrachtungen werden also in erster Linie den in Program-
miersprachen iiblichen Kontrollstrukturen gelten und sich
nicht auf eine konkrete Programmiersprache beziehen. Die
Losldsung von konkreten Programmiersprachen wird dadurch
zum Ausdruck gebracht, dad wir unsere Uberlegungen auf der
Bagis der fiktiven Programmiersprache PL(A) aus Kapitel 2
durchfiihren.

In Kapitel 2 wurde die Menge der durch PL{A)=-Programme
realisierbaren Funktionen mit ¥ bezeichnet. Schrinkt man
die in PL(A) zur Verfiigung stehenden Grundanweisungen und
Kontrollstrukturen etwa auf

3-1_ jrg ’XI} :rs._ — Ry : P;Q
%, : if p then goto L

L

oder auf

3'1,3“3,3"5:!'5 "'""'"'11 Piq
%3, : 1f p then P else Q fi
x) while X=¢€ do P od

¢ln, so erhdlt man Programmiersprachen, die nur nZoto=Pro-
Eramme" bzw. nur ywhile-Programme" ermBglichen, Die Theorie
2eigt jedoch (vgl. dazu etwa [ 5] ), daB die Menge der
Wit while-Programmen realisierbaren Funktionen gleich der
Yenge der mit goto-Programmen realisierbaren Funktionen
gleich der Menge ® ist. (Unsere bisherigen Beispielpro-
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e filr selbstreproduzierende Programme in SIMULA und

pSCAL venutzen Prozeduren, ¥ollte man diese Programme in
ﬂin]-Prﬂgramme transformieren, so wirden goto-Frogramme
Eﬂtﬁtehen.) Erst die Einschrinkung von PL(A) auf

rl ,ra rri Irh_ — %1 : PiQ

xﬁ : loop X case a4 —-}131,
&y = Fp,
end ’

also auf reine ,loop-Programme", fihrt zu Programmen, mit
jenen sich nicht mehr alle Funktionen aus % realisieren
lagsen. Wir werden im folgenden untersuchen, unter welchen
Toraussetzungen selbstreproduzierende logp-Programme mog-
lich sind.

6.2.Definition der Programmiersprache LP(4)

(6.2.1) Definition: Sei & = {a;,...,a,} ein endliches

£6.2.2)

Alphabet. Sei PL(A) die in 2.2. definierte,zu A
gehdrige Programmiersprache. LP(A) ist die Pro-
grammiersprache, die entsteht, indem man aus PL(A)
alle Programme streicht, die Grundanweisungen vom

Tye 5 @ X:=§(X), X€VR, oder eine der Kontroll-
strukturen

%5 : if p then goto L ,

=1 D
':E:.-} : if p then P else @ fi
oder Kh : while X=€ do P od

enthalten.

Bezeichnung:

L. Neben der Hintereinanderausfithrung von Anweisungen

stellt die laan-ﬂﬂhleife*uﬁ das einzige Konstruk-
tionselement fiir Programme aus LP(A) dar., Die Pro-
gramme aus LP{A) werden daher auch als loop-Pro-
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gramme bezeicnnet.

7I. Die Menge aller durch Programme aus LP(A) rezli-
sierbaren Wortfunktionen
£ i (A%)Y —s (A")% , r,sy0
wird mit ¥ bezeichnet., &£ heifllt such Menge der
primitiv rekursiven Funktiomen. [ 5]

gus (6.2.1) ergibt sich, dad LP(A) eine echte Teilmenge von
pL(4) ist. DaB auch £ eine echte Teilmenge von P ist, er-
gibt sich schon aus der Tatsache, daBf loop-Programme immer
halten und somit die von loop~Programmen realisierten Funk-
tionen total sind. Es 1l&Bt sich aber auch zeigen, dal &£ sine
echte Teilmenge von R (vgl, (2.4.6)) ist, indem man die
Existenz einer total rekursiven Funktion, die nicht primitiv
rekursiv ist, nachweist(vgl. [5] Seite 41).

6.3.Eine kontextfreie Grammatik fiir LP(4)

Der Vollstdndigkeit halber sei hier eine kontextfreie Gram-
matik G'(A) fiir LP(A) angegeben. G'(A) entsteht durch Ein-
schrédnkung der CGrammatilk G(A) fiir PL(A)-Programme aus 2.3..

(6.3.1) Angabe der Grammatik G'(A) = {?é,?ﬁ,szzP'

Die Menge der Terminalzeichen ist

Vp = AVVRwv{input , output , loop , case , end ,

—"—'}l;iiruiiir::lz}:

wobel VR die Menge der zulissigen Variablennamen ist.

Die Menge der nicht terminalen Zeichen ist

?ﬁ = {{prﬂgram) , {statement) , {(simple statement ) ,
(identifier) , (identifier list) }

Das Startsymbol s, ist (program}

L

der Produktionen der Grammatik G(A) aus (2.3.1) ohne

die Produktionen mit den Nummern
6,8 ,9, 10, 13, 14 , 15 und 20,

Die Menge P' der Produktionen ist gleich der Menge P
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EJHErﬂaiterung der Sprache LP(A)
—_—

in Kapitel 2 wurde die Existenz selbstreprcduzierender Pro-
gramme in PL(A) theoretisch bewiesen. Ein analoger Beweis
giir die Existenz von selbstreproduzierenden Programmen in
(P(A) scheitert daran, daB es in & keine universelle Funk-
rion gibt (siehe [5] Seite 47), Wir werden uns daher denm
problem der Existenz selbstreproduzierender Programme in
1P{A) von der praktischen Seite aus nidhern, Das bedeutet
allerdings nicht, dall es prinzipiell unmdéglich ist, die
gxistenz selbstreprcduzierender LP(A)-Programme auf theo-
retischem Wege zu beweisen,

fm das praktische Schreiben von selbstreproduzierenden LP(4)-
Programmen fir uns zu ermdglichen, erweitern wir die Pro-
grammiersprache LP(A) um eine zusitzliche Grundanweisung.
Diese Erweiterung soll aber nicht bedeuten, daB es ohne sie
prinzipiell unmdglich ist, selbstreproduzierende LP(A)-Pro-
gramme zu schreiben,

I. Sei A ein endliches Alphabet. In der zu A gehfrigen Spra-
che LP(A) soll es die M&glichkeit geben, Variable mit je-
dem beliebigen Wert aus A¥ und nicht nur mit € zu initia-
lisieren, Wir filhren daher die Grundanweisung ¢ ein:

r—."' : X::FE- R R R = ’ 3 k;T

Q IL.E lk
XeVR, a, € A fir je [k] .
3

Es soll nicht ausgeschlossen werden, dal “eA sein darf.
Damit ist aber auch aijz’ fir beliebiges je [kJ zuldssig.
In hoheren Programmiersprachen ist es iiblich, daf Text-
trennzeichen, wenn sie innerhalb von Textkonstanten vor-
kommen, doppelt geschrieben werden miissen. Dieser Umstand
Ratte uns in den Kapiteln 3 und % das Schreiben von
selbstreproduzierenden Programmen in PASCAL und STMULA
sehr erschwert., Wir treffen daher eine andere Vereinba-
rung:

Auf eine Grundanwelsung y mub zwingend ein Semikolon fol-
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gen. Das Ende einer Textkonstantenwird demnach durch
¢, angezeigt. Der Binfachheit halber verbieten wir das
auftreten des Strings °“; als Teil einer Textkonstan-
ten. Um die Koppelung des Semikolons an Textkonstanten
deutlich zu machen, beziehen wir das Semikolon in die
Definition von ¥ g ein.

3-6 H X.:=,Ei‘l . a aik'; " Rz‘".l

X€VR, a; € A fir je [x] .
J

1I. Ist X €VR, so ist folgende Anweisung vom Typ L moglich:
X 1= X

Auf eine solche Anweisung wird in der Regel ein Semi-
kolon folgen,

L -

FE N E BN N W N K . k) & kB e R

Da wir nicht ausschliellen wollen, dal das Semixolon ein
Element aus A ist, kidnnte der String

X 1= &3

auch als Anweisung vom Typ ‘rz interpretiert werden. Um

nnppeldautigheitaJ

die Grundanweisung Jré :

*LU.Vermeiden, ersetzen wir 3 durch

J} . X:=Xla ¥ XeVR, aeA.
Die Bedeutung wvon f} ist die gleiche wie die von ;.

(6.4.2) Definition; Sei A ein endliches Alphabet., LP{A) ist
diejenige Programmiersprache, die durch Erweiterung
um die Grundanweisung )¢ und durch Ersetzung der
Grundanweisung X'z durch Y5 aus der Sprache LP(4)
entsteht.

Mg der Grammatik G'{A) fiir die Sprache LP(A) 1HBt sich
leicht eine kontextfreie Grammatik G'(A) fiir die Sprache

tﬁfﬂi herlieiten:

- Die Menge der terminalen Zeichen Vg wird um
| erweitert.

F

und

Dentstehen durch konkrete Wahl von A und traten daher in
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- Die Produktion

(simple statement) — X:="a, ..... a; ’;
1 L.

fir alle Xe VR, a; €A

wird der Menge P' hinzugefligt. J

- Die Produktion
(simple statement) —> X:=Xa , fir alle XeVR, ach
wird ersetzt durch

(simple statement) —— X:=Xla , filir alle X € VR, a€ 4

(6.4.3) Definition: (loop-Hierarchie der LP(A)-Programme)
Sei A ein endliches Alphabet.
(i) Es sel Lﬂfﬂi die Klasse der Programme
T= iEEut KI"””*KE;
AWy 5
cutput Tyseeea, Ty y I'yS%0

aus fﬁfﬁﬁ, deren Anweisungsteil AW 4 durch beliebi-
ges Hintereinanderschreiben von Anweisungen vom Typ

10 45 o r",) y ¥, und y¢  entsteht,

(ii) Die Klasse L;,,(A) enthalte alle Programme m , deren
Anwelsungsteile AWy durch Hintereinandersetzen von
Anwelsungsteilen von Programmen aus Lifﬁi und Anwei-
sungsteilen der Form

loop X case ?T —y AWIT,.

 ETE XY’

n > My
eI
aj€ A fiir jedes je [n]
wobedi AWy seees AW, Anweisungsteile von

Programmen aus L; (4) sind, entstehen (i3 o).
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6.5.5elbstreproduziersnde Programme in LP(A)

Sei Mn.p ein - falls es existiert - selbstrevnroduzie-
rendes IP(A)-Programm. Im Anweisungsteil von T pep mub

gchrittweise der Taxt TTrep 2ufgebaut werden., Die einzelnen
Buchstaben wvon M.an Missen auf der rechten Seite von Wert-

suwelsungen auftreten. Auf den rechten Seiten von Wertzuwei-
sungen stehen abver auler Variablennamen nur Buchstaben aus
A. Es mull also gelten: TI'I_EPEA* . Um dies zu gewihrlei~
gten,wird folgende Forderung an das Alphabet A gestellt:

Forderung (1): Fir jedes Programm melP(4) gilt:
me AX

Jedes Alphabet, das Forderung (1) erfiillt, muB alle Zeichen
enthalten, die zur Konstruktion von TP(A)-Programmen zulis-
sig sind. Das kleinste, Forderung (1) erfiillende Alphabet
ist demnach

&Miﬂ = {a:c,dje,i,1,11,0,;,5,1-,11,5,?1“,:,=,:,,,‘—} !F!’}

Die Definition von LP{A) schrinkt die Wahl der Variablen
menge VR in keiner Weise ein. Aus Forderung (1) ergibt sich
Jedoch, daR auch fiir die Variablennamen ecines selbstrepro-
duzierenden Programms rrrepE LP(A) nur Buchstaben aus A in
Frage kommen.

Forderung (2): VR E{A\B}r\ {case,1ﬂcp,end,input,output}\ {E}
Dabei ist B:={u s 193> 34333846, , I] die
Menge der Sonderzeichen.

In einem IP(X)-Programm, das Forderung (2) erfiillt,mug

streng zwischen denm Variablennamen x und dem Zeichen x unter-
Schieden werden, wobei x ein Buchstabe aus A igt, Die Defini-
tion von TP(AJ schliefht Fehlinterpretationen jedoch aus.

{6.5.2) Satz: Sei A endliches Alphabet mit Ayin CA. Dann

existiert in LEEA] ein selbstreproduzierendes Pro-
gramm, falls TP(A) Forderung (2) erfiillt.




E:=‘1nlnuncppmud§nnunepsuuuipumﬂu’ s

y:="1loop e case 1 —> loop a case 1 —=p ti=t|i,
n — biz=tlin,

7 —3 tizt]p,

u— tiztiu,

t —3 ti=t|t,

; — ti=tly,
a —» ti=t}a,
 —p tiz=t]:,
= =3 Liz=t]|=,
end,
n — loop d case ° — ti=t|’,
end,
o — ti=tlj,
e —p Liz=t]e,
p —3 loop ¢ case : — ti=tl:,
:—-—--}ti:‘;':,
f — ti=t]’,
end,
d —p ti=tld,
e —3 tiztle,

5 —3 loop e case 1 —9 ti=tl1,

end,
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u —> loop i case a —> t:i=tla,
c —>» ti=tlec,
4 — ti=tla,
e — Lizt]e,
1 — Lr=tli,
1 — ti=t]1,
n — ti=tin,
o — ti=t|o,
p — ti=tjp,
g —> t:=tls,
Tt —> ti=t|t,
u — ti=tliu,
: —y tiz=t],
= — Lizt|=,
‘- Bzt
; —> List];,
. — ti=t!,,
—) — b=t —,
u——-—}t:=t|u,
end,
end;
gutput t7;;
loop e E:_a__s_g_l-——-;]ﬂ:_ga case i—-—-—}t:=tli,
n — ti=t|n,
p -— t:=tlp,
u — ti=tiu,
t —) tiztlt,
; —— bLi=tl;,
a —) t:=tla,
: —y L=tz
= —p ti=t |=,

n —) loop d case © — ti=tl|”’,
end,

0 — t:=t1;:

c — ti=tic,
p — logp c case : — ti=t|,



e ——) tizt]e,
s —3 100D & case 1 —3 T:iz=t]l,
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end,

i — te=tldi,
B —3 loop 1 case

e B o T = B e R SR R & PR o T
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L
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Hoon
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cr o oF o ot

il

L]

PLLLLLLLLLLLLLLLLL

LR |
l

E e

o
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L]

end:
ouftput t

= TN

v ist offensichtlich ein giiltiges LP(A)-Programm.

ep
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me revroduziert sich selbst.

ELEEEEEEL ren
E i E-'.I e 1 1 = i k A 1
na'ﬂ}ﬁn=“ ine Eingabe besitzi, ist die Behauptung, dal sichn
‘.IT CeD selbstreproduziert, gleichwertig mit der Aussage, daB
jer Inhalt der Variablen t bei Ausfihrung der letzten Anwei-

2
reo ist.

qung wnoutout t" gleich 1T
1, Im folgenden vezeichne [x] den Inhalt der Variablen mit
dem Namen X. X € [a c i,e,i,t} < hpspe
1T. Auf Grund der Definition der loouv-Schleife ist klar, daB
die 4 irnneren loov-Schleifen jeweils den Inhalt ihrer
Laufvariablen an [t] hingen und [t] somit verlingern. Es
sel hier folgende Abkiirzung vereinbart:

—_
100D ¥ CAEE sus =3 oee

(Cel:=[tlLyvli:= <

L L NN N ]

end

|

ve {a,c,d,e,i} .

Die Abkiirzung [t] := [t] x hingegen bedeutet das AnhiEn-
gen des Zeichens x€ A an den Inhalt von [t] .
[IT. Mit Hilfe der unter II. getroffenen Abdkiirzungen 1liHAL

gich TTEEP in der folgenden Form formulieren:

e:="1nlnoocppnoodpnnooepsnocipunooun’;
i3="loop e case 1 — [t]):=[t][al,
n— [t]:=[t][d],
o — [t):=[t];,
o -3 [t]:=[t:l::,
p—3 [t]:=[t][],
d — [E]:=[t]d,
e — [t]::‘-[tje,
s — [thi=[t]le]d,
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i — [t]:=(=]4,
u —> [£1:=[]0d,
end;output t%;;
pke gupere loop-Schleife arbeitel nun die .Jaufvarlahle & ab,
Eanthﬁ'f" genau die stringweise Kodierung von Tr,,,EE. Die £o-
sterung ist durch Finschreiben der Alternativenliste gegeben.

fie suBere loop~Schleife selbst dekodiert (e] und erzeugt

. 2 o
qukzessive Trrep' In 'ITrETJ kommen nur Zeichen aus A*lﬁ VOT .

peher ist Tl'%en §LP(A) fiip jedes A:Amin, falls LP(A) For-
jerung (2) erfiillt.
pa die Schachtelungstiefe der loop-Scnleifen inﬂmiep 2 ist,

folgt der Sataz.
i

Aus dem Pragramm‘ﬂ%ep aus dem obigen Bewels 1H3t sich ein Pro-

gramm 'n'lﬁﬂ gewinnen, das mit der loop-Schachtelungstiefel aus-

kommt .

Wir konstruleren n'LEP aus 1T§EP, indem wir die Zullere
loop-Schleife eliminieren. Die Zufere loop-Schleife arbeitet
den Tnhalt der Variablen e ab, Der Inhalt von e igt 31 Zeichen
lang. Wir listem nun {iir jedes der 31 Zeichen den Anweisungs-
teil der Alternativenliste auf, den es kodiert. Da e ssine
Kodierung enthZlt urd die Variable e bel Eliminierung der Hu-
IHPEHILEEEfEGhlEifE iberflissig wird, reduziert sich die An~
zahl dieser Anweisungsteile auf 25, Bei nunmehr 25 Zeichen
und insgesamt 10 Alternativen ist klar, dal einige Alter~
nativen mehrfach geschrieben werden miissen. Damit wird gleich-
Zeitig deutlich, daB die Hulere loop-Schleife von Tr§EP nur
ablklirzenden Charakter besitzt,

1 , N
-Frep = input;
1nput a:=";:
c =J‘ -*-ll';,
d:="""3;
jr="¢Alternative fiir 1);

(Alternative fiir n);
{(Alternative fiir 1);
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{Alternative
{(Alternative
{Alternative
{ilternative
{Alternative
{Alternative
{d1ternative
{Alterrative
{Alternative
{({1ternative
{Alternative
{Alternative
{Alternative
{41ternative
{Alternative
{Alternative
{A1ternative
(Alternative
{(Alternative
{(Alternative
(Alternative
(Alternative
output t7;;

(A1lternative
(Alternative
(Alternative
(Alternative
(Alternative
{(Alternative
{Alternative
(Alternative
{(Alternative
{Alternative
{Alternative
(Alternative
{Alternative
Alternative
{Alternative
{Alternative

fir
fir
fir
fiir
fir
fur
fir
fir

fir r

fiir
fur
fiir
fir
fir
fiir

filr 1

fir
fir
fir
fir
fir
fiir
fir
fir
fir
fir
fir
fiir
fir
fir

fir

fiipr 2

fiir
fiir

fiir

p};
D);

uy;



{Alternative

{Alternative
(Alternative
{Alternative
(Alternative
(Alternative
{Alternative
{Alternative
{Alternative
{Alternative
outout €

pabei sind die Teile

(\lternative fiir 1)

fir

{(Alternative
(Alternative

{Alternative

(Alternative

(Alternative

fir

fir

fiir

fiir i

¢)

p?

d?

fijr
QY3
ir;

fir
fir
fir
fir
fiir
fir
fir
fiir

u;
n’;
0);
0);

up;

in spitzen Klammern zu ersetzen:

durch

durch

durch

durch

durch

durch

durch

loop a case i — ti=tii,
n— ti=t|n,
P o L=t P,
U -3 ti=t|u,
bt —3 ti=t)t,
; — ti=tly,
a — Liz=t|a,
: -~ izt :,
= -3 Tizt]=,
end
loop d case " — L:=t]’,
end
t:=t 3
t::tlﬂ
|loop ¢ case : —> t:i=tl:,
=-—-—-}t:=tt=,
e R
end
[
Li=tjd
t:=t|i
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/giternative fir uw» durch |loop i case a
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end

1
rep
ELmint kdnnen wir den folgenden Satz formulieren:

@ffensichtlich gilt: TT reproduziert sich selbst. Da

1
Frﬂp

(6.5.3) Satz: Sei A endliches Alphabet mit Ay CA. Dann
existiert in LIEE} ein selbstreproduzierendes Pro-
gramm, falls LP(A) Forderung (2) erfiillt,

Rach der recht einfachen Xonstruktion von ﬂ';EP aus Tr;ep
kinnte man versucht sein, aus Tr}:.EP ein selbstrevroduzieren-
des Prﬂgrammfﬂ'ren gewinnen zu wollen, das ganz ﬂhne loop-
Sthleifen auskommt. Zu diesem Zweck miiBten 1n.Tr dle

Roch verbleibenden loop-Schleifen

(Alternative fiir 1)
{(Alternative fiir nd
{Alternative fiir p)
{(Alternative fiir u)
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eliminiert werden. Die erste dieser loop=-Schleifen lielle
gich ohne weiteres in eine Folge von Grundanweisungen zer-
legen, da sie,wie scnon die ZufBere loop-Schleife vun'ﬂ'%eu,
aur abklirzenden Charakter hat. Schwierigkeiten ergeben sich
pei CAlternative fiir n)> . {Alternative fur n) lieRe sich

ohne loop wie folgt schreiben:
t:=t]”’

pa auf ¢(Alternative fiir n) ein Semikolon folgt, wiirde die
rextkonstante von 1 den Teilstring t:=t]7; und damit die
¢iir Textkonstanten verbotene Kombination *: enthalten
(vgle 6.b4.). {Alternative fiur n) 148t sich also nicht durch
einen sequentiellen Programmteil ersetzen., Dieser Umstand
liegt jedoch nur an der in 6.4, vorgemommenen Definition
der Textkonstanten in LP(A)=Programmen, Es ist durchaus
denkbar, daB er sich bei einer anderen Definition der Text-
konstanten vermeiden liefe, Ahnliches gilt fur {Alternative
fir pr .

Anders liegen allerdings die Verhiltnisse hei {Alter-
native fir u) . Diese loop-Schleife dient dazu, den Innalt
der Variablen i an den Inhalt der Variablen t 2zu hingen.
{Alternative fir u) ist nun aber selbst textueller Bestand-
teil des Inhalts von 1.

-

112% i ueenseesstAlternative fiir U e ssonoanss

¢\l ternative filr u>13At sich nicht durch elne Sequenz von
Grundanweisungen ersetzen, Es laft sich aus‘ﬂ';ep kein selbst-
reoroduzierendes Programm gewinnen, dags ohne loop=-3chleifen
auskommt. Es gilt sogar:

(6.5.4) Satz: Fiir jedes endliche Alphabet A gilt:
Fe existiert kein selbstreprcduzierendes Programm

in ﬁﬁDIA}

Beweis: Sei T.B(A) ‘iber dem endlichen Alphabet A vorgelegt.
Sei die notwendige Forderung (2) erfillt.

Annahme: Es existiert selbstreproduzierendes Programn
Hi DeLPﬂE o Dann hat ‘1T'D den Aufbau:




1.Fall:
e p——

Enﬂa]_l .

(6.5.5)

9 = inout; AWgqo0; outvut t

In A%qo muf dep Text Tr° aufgebaut werden. Da
keine loop-Schleifen zur Verfigung stehen, sind
nur zwei Méglichxeiten zur Erzeugung des Textes
% in AWgo gegeben.

Der Text T° wird en bloc mit Milfe einer CGrundan-
weisung vom Typ yg erzeugt. Dann gilt fir 1 die
Textgleichung

7° = iggﬂg;tzz'Trﬂ';nut:ut

Diese Gleichung kann aber von keinem endlichen
Text 77 C erflillt werden. Widerspruch!

NDer Text ? wird in A¥qo zeichenweise mit Anwei-
sungen vom Typ TE aufgebaut, Da 1T ° ungleich dem
leeren Wort sein muB, komamt in A¥po mindestens
einmal die Anweisung t:=tlx; mit €A vor. Diese
Anweisung umfa’t 7 Zeichen. Als String interpretiert
igt sie textueller Bestandteil von 7% Die Anweie
sung kann nur hidchstens eines seiner 7 Zelchen an
die Ausgabevariable t hingen., Daraus folgi, daf
mindesgtens 6 Zeichen unbearbeitet bleiben. Fir diese
& Zeichen sind darn weitere 6 Befehle vom Typ 353
notwendig. Diese € Anweisungen hinterlassen ihrer-
seits 36 unbearbeitete Zeichen, u.s.w,

Um also einen Text der Linge X3 0 mit Anwelsun-
gen vom Typ 3#% zu erzeugen, braucht man mindestens
ein Programm der Linge k+7.

Damit gibt es kein endlicnes Frogramm der Linge
k, das nur mit Anweisungen vom TyD JP% einen end-
lichen Text der Linge k aus dem leeren Wort auf-
bauen kann, insbesondere nicht seinen eigenen Text,
1t° ist also nicht endlich und damit kein Programm,
Widerspruch!

%

Bemerkung: In Kapltel 2 wurde die Existenz selbst-

reyroduzierender PL(A)-Programme nachgewiesen
(Satz (2.3.7)). Dieser MNachweis beruhte neben dem
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sekursionstheoren (Satz (2.3.4)) auf der Existenz
einer universellen Funktion fir die Funktionenkzlasse
(2P
Nie Klassze aller Wortfunxilonen

P, (A" —— (4% , r,ssc
iie sich mittels LP(A)~-Programmen derechnen lassen,
iast eine Funktionenklasse, die nur aus totalen Funk-
tionen besteht; LP(A)-Programme halten immer an.
In [ 5] Seite 47 wird gezeigt, dab es fiir TP(A)-
berechenbare Funktionen keine universelle LP(A)-be-
rechenbars Funktion geben kann, Trotzdem gibt es in
E?TE;;;j selbstreproduzierende Programme., Universa-
11tHt kann also keine notwendige Voraussetzung fur
Selbstreproduiction sein. Es mufl also zuch andere
(direktere!) Wege als der in Kapitel 2 beschrittene
Weg geben, um die Existenz gselbstreproduzierender
Progranme theoretisch nachzuweisean.

f.6.5elbstreproduktionssatz fur LP(A)-Programme

In Kapitel 5 zeigten die Sitze (5.2.4) und (5.3.1) die Exi-
stenz selbstreproduzierender Versionen beliebiger SIMULA-
bzw. PASCAL-Programme., Ein analoger Satz 183t sich auch fur
fﬁfﬁﬁ—?ragramme beweisen. Ersetzt man in Abschniti 5.1. die
Sprechweise ,Eingabedatei! und nhusgabedatei" wieder durch
wEingabevarisble" bzw. qAusgabevariable', so ist auch die
selbstreproduzierende Version fir LP(A)-Programme erklirt.
Sei A ein beliebiges endliches Alphabet, sel melP(A).
Mglicherweise existiert 1in LP(A) keine selbstreoproduzieren-
de Version Tt zu Tr{etwa weil die in LP(4) verwendeten Va-
riablennamen nicht aus A* sind), sondern erst in der Sprache
TP(B) mit einem entsprechend ,.grofen" Alphabet B> A, Nach
Definition (5.1.4) wdre ein solches ¥ eLP(B) keine selbst-
reproduzierende Version von 7T, da es mit einem anderen Da-
tenbereich arbeitet. Definition (5.1.4) ist aber erfiillt,
wenn man Tr ebenfalls als Programm aus LP(B) auffaBt, was ja
wegen A ¢B durchaus zu vertreten ist: Die von W €LP{4) rea-
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yisierte Funktion ist gleich der Restrixticn der von 7T als
ﬂqﬁj-Programm realisierten Funktion auf (a*)F, rs o (vgl.

nefinj_tlﬂﬂ (511 o1 }}i
pieser Sichtweise entspricht Satz (6.6.1).

¢6.6.1) Selbstreproduktionssatz fiir LP(A)-Programme

e

Seien A ein endliches Alphabet,w e LP{A). Dann gibt
es ein endliches Alphabet B, AC B, =0 dahh gilt:

(a) Es existiert eine selbstreproduzierende Version
77 € TP(B) von T (wobei Tr als Element aus LFP(B)
aufzufassen ist).

(v  _  |IP(B) , falls melP (&) , j§=0,1
m e A

LP; (

B) , falls welP;(A) , i3 2

—

Beweis: Seien A beliebiges endliches Alphabet,TTe LP(A).
0.B.d.A, seien alle Varilablennamen zus 77 nicht aus
fc,d,e,i,t}.

i —— ———

That den folgenden Aufbaun
'ﬂ': input ‘?1 ,-+---1Fr;
Alr;
ﬂﬂtEut E‘I’iiiil‘zw 3 rtw?ﬁ Q

Sei Aq die Menge aller Zeichen, aus denen das Programm 1T zue
sammengesetzt ist, Der String Se¢ A;,- sel wie folgt definiert:

Si=1nPut ¥i,eeeee,¥pihAWr;

f

(hiermit ist natiirlich der Text des
Anweisungsteils von 7T gemeint)

Es gilt: = Scoutput z,,.,,..,2,.

§ wird in eine Folge von n» 1 Teilstrings s, zerlegt mit:

(1) 55 = 73 oder ‘; ist nicht in s; enthalten
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(11) g; enthdlt ‘. micht =y 8,425 » 1¢n

(iii]' 5_1°$Eb --f.-ﬂ3n=3

(gur_Bripnerung: ‘. dient als Endemarkierung von Textkon-
-r."-"_--—-- e e e T

gtanten und darf selbst nicht Teilstring einer Textxon-
stanten sein,)

geitere Vorbereiiungen:
- T==[E1 5 & iliijsﬂ} EE_E-ELE d'E.'I" Tﬂilstr‘iﬂgs'

. q sei die Anzahl der Teilstrings von S, die ungleich
+ sind. Es gilt 1§ ag¢ n.

= XyyeeeseyXp, Selen Zeichen, die weder in {c,d,e,i,t]
noch als Variablennamen in T vorkommen.

- B:: AU .ﬂ.ﬂu.ﬂminﬂ {:{11llll"xaq}
B ist ein endliches Alphabet und 1&3t sich als solches
in der Form B::[bl,.....,th} schreiben, wobei o die
Kardinalitat von B ist,

- Definition der Funktionen @ und § :

6: [q] — 7
i+ 54 wobel 8 5 der i-te Teilstring ungleich
'; iﬂtp
§: [n] — B7

FI'I.D 3 falls E‘j_ = ";

Ij , falls sy der j-=te Teilstring ungleich
s ist.

e

- 8ai v eine zulissige Variable, dann sel dle Anwelsung

loop v case b, —= ti=t|b,,
end

dqurch loop v  abgekirzt.

Nach diezen Vorbereitungen 1483t sich™ & LP(B) angeben:



= innut Yyseeer¥ps A s

q .o
—  — -
gi= == ) 2

--l-' i .

dr""' 3 3

E‘:=’E‘{1] TR E(n)
prxq+innn
X, . noo
*qP%q+q | ‘
cppnecdprnooepsncolpunadu’ 53
f:1="1loop e case x; — ti=tx,
"R N E KR N R
X, — b=t ix
c — tiz=t]e,
d — ti=t|d,
e —3 Li=tle,
i —» Liztl|i,
X+ —3 100D X

:{quq - 100D X
n -— lL0O0Op d case
end,

0 - tizt]y,
— loop ¢ case : —> ti=t|:,
-—-}t:::‘t|=,
. t::t",{

end,

—_— t::t! ',

td

5 ——3 lOOp €,
u = lOoop i,
end; output 511“'*3w’t "3
loop e case x, — ti=tixy,

@ p 8 B FE R R B EE e N
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X —_ ti=tix_,

e  — Liztic,

4 —_ t:=tid,

e — tiz=tle,

i — ti=t]i,
Iq_+‘1 — .]"...{.:EE L1
Xo42 —p 100D X,
cesssssnssssaseneee
Rqeq T 2222 g

n~  — loop d case ‘— ti=t]”,

end,

E————

o} — t::ti;,

— 100D ¢ case : - ti=t]:,
= —) tiz=ti=,
‘) ti=t]’,

e

end,
s -3 100D €,
u ~— loop 1,
end;

output zt,...,zw,t

Behauptung: ist selbstrevroduzierende Version von Tr .

I .

Prugramm‘ﬁ'heginnt mit der Eingabe der Eingabevariablen
von 7 und der Abarbeitung des vollstidndigen Anwelsungstells
von T . Am Ende von JT werden die Ausgabevariablen von 7T
ausgegeben., Diese Ausgabevariablen ZijyeesyZy warden nicht
durch Anweisungen auBerhalb des Anweisungsteils von W ver-
dndert, TF cibt zusitzlich die Variable t aus. Zum Nachweis,
dal 7 selbstreproduzierende Version von Tr ist, genligi es
also zu zeigen, daB am Ende der Programmausfiihrung der In-
halt von t gleich 7T ist.

Die Variablen Xy,...,X,,C,d,8 und 1 enthalten - TDbis

q
auf einige einzelne Zeichen - den Pragrammtextﬁ%‘in A=) o
legter Form, Die Aufgabe der logp-Schleife von Tf ist es,

die in den Variablen gesveicherten Teilstrings zum Text T

zusamnenzufigen. Die Hulere loop=Schleife
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1o0n & CA52 s.a.s. 2043

gird durch die Variable e gesteuert. s ernthilt den Text Ff
ﬁlkadiarter Form. Die Kodierung ist direkt aus der Alter-
gativenliste ersichtlich, Fir jedes Zeichen der Textkon-
gtanten e wird genau ein Teilstring des Prosramns ¥ an

den Inhalt der Variablen t gehdingl. Die Texikonstante e
148t sich grob in drei Teile gliedern:

Tﬂil I : ﬁ(1} YRR E{D‘.)

reil II : prxQ+1nsm

X PX 00

feil III: cppnoodpnnoocepsnooipuncou

Teil I bewirkt, daB
input YyseeesTpi AVm;
an den Inhalt der zunidchst leeren Variablen t gehingt wird.

Teil Il verlingert den Inhalt wvon t um die Programmzeilen

Xy:="6(1)"5; bis

x :="g(a);;
Teil III bewirkt, daB der restliche Programmtext von ¥ an
den Inhalt von t gehingt wird., Dies folgt aus der viélligen
Analogie zu “'Eep aus dem Beweis von Satz (6.5.2),

Mit Teil IIT ist die Variable e vollstZndig abgearbei-
tet, und die Ausfilhrung der HuBeren loop~Schleife bricht ab,
Damit stoppt auch das Gesamtprogramm,und ¥ wird als Inhalt
von t ausgegeben., T erfiillt also Definition (5.1.4)(ii) und

1st somit selbstreproduzierende Version von T .

Die nreproduzierende’ loop-Schleife in F hat die loop=-Schach=~
telungstiefe 2 und steht neben dem Anweisungsteil wvon T ,

Die loop-Schachtelungstiefe von 7 ist daher mindestens 2,
aber beschrinkt durch die loop-Schachtelungstiefe von 1.
Damit ist auch die zweite Aussage des Satzes erfiillt,
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§.,6.2) Bemsrkung:

(6.6

I. Aus dem Beweis von Satz (6.6.1) 1358t sich dirskt

II.

ein Algorithmus zur Ermittlung einer selbstrepro-
duzierenden Version zu einem gegebenen fﬁfﬁj-?rn-
gramm gewinnen. Dieser Algorithmus ist jedoch
stark verbesserungsbediirftig,

Jeisviele: = Die Wahl des Alphabets B 1Hat sien

verfeinern., Man kommt mit ,kleine-
rem" Alphabet B aus, als im Beweis
angegeben,

- Die lcop=Schleifen wom Typ

loop v

enthalten viele unniitze Alternativen,
die im Beweis zugunsten einer ein-
heitlichen Schreibweise in Kauf ge-
nommen werden.,

Die im Beweis won (6.6.1) vorgenommene Konstruktion

orientiert sich eng an dem Programm n‘éep aus 6.5,

Eine Konstruktion mit Hilfe des LPT(Amln} Programms

T!';.EP wiirde zu selbstreproduzierenden Versionen It

filhren mit

LPHBE , falls TI'ELPQEA:;
LPiEBE , falls ﬂ*ELPiIAF, i21.

Diese Konstruktion wire aber noch schwieriger zu

liberschauen als die Konstruktion mittels T7 Eﬂm.

T € 3
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?.1.Einlaitun5

In den vorangegangenen Kapiteln wurde die Existenz selbst-
reproduzierender Programme sowohl in Assembler-Sprachen
als auch in hoheren Programmierspracnen nachgewlesen. Spe-
ziell Kapitel 9 zeight, dal es nicht nur unendlich viele
selbstreproduzierende Programme gibt, sondern dalR sich
jede Programmieraufgabe effektiv mit einem selbstrepro-
duzierenden Programm bewdltigen 1E83t; Grenzen sind nur
durch die technisch physikalischen Gegebenheiten einer
konkreten Rechenanlage gesetzit,

Elektronische Datenverarbeitungsanlagen arbeiten
nicht hundertprozentig fehlerfrei, Schalt- und Ubertra-
gungsfehler sind jederzeil mdglich, wenn auch sehr un-
wahrscheinlich.
deispiel: Aus Grinden der Effizienzsteigerung und der

besseren Nutzbarmachung einzelner hardware-Kom-
ponenten werden immer hdufiger einzelne Rechner
zu Rechnernetzen [21] zusammengeschaltet, Da
die Entfernung der Einzelrachner zueinander

oft mehrere Hundert Kilometer betrigt, stellt
die Ubertragung der Daten zwischen den Rech-
nern eines Netzes ein besonderes Problem dar.
Je nach Art des gewdhlten physikalischen Yher-
tragungsweges liegt die Fehlerrate bei der Da-
tenlibermittlung zwischen 1{}"£+ und 15'? oit/sec
(1077 bit/sec beim Gffentlichen Telefonnetz)
[Zﬂ [12] « Durch hard- und softwaremz-
3ige Madnahmen (z.B, Verwendung fehlerkorri-
gierender Kodes {11] , Kommunikationsproto-~
kolle [21] ), die in ihrer Gesamtheit als
Fehlerkontrolle bezeichnet werden, kann die
Rate der unerkannten Fehler niedriger gehalten
werden. So liegt z.B. Die Bitfehlerrate fiir

Bitiibertragung beim ARPA-Netz [12] bei 10712
bit/sec,
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Es besteht die Mdglichkeit, dal bei der Selbstreproduk-
tion eines Programms T Fehler unterlaufen (z.B8. bei der
Yoertragung der Kopie aus dem Arbeitsspeicher in den
Hintergrundspeicher). Diese Fehler kinnen dazu fithren,
daB effektiv ein anderes Programm ' # T reproduziert
wird., Falls 7' ein syntaktisch korrektes Programm ist,
kann T durchaus wieder selbstreproduzierend sein und
dabeli eine andere Funktion realisieren als w ., Dieser
Sachverhalt erinnnert stark an Reproduktion und Mutation
lebender Zellen in der Biologie. Reproduktion und Muta-
tion gehdren nach Ansicht der Biologie zu den Grundei-
genschaften alles Lebendigen. Es drangt sich in diesem
Zusammenhang die Frage auf, ob sich Programmen noch

weitere lebenskennzeichnende Prozesse zuordnen lassen.
Ist es vielleicht sogar mBglich, in Anlehnung an die
Biologie von lebendigen Programmen zu sprechen? Die Be-
antwortung dieser Fragestellungen stoBt auf eine Viel-
zahl von Schwierigkeiten, von denen die beiden folgenden

wohl zu den bedeutsameren gehiren,

Die moderne Biologie ist sich durchaus nicht einig,
wenn es darum geht, die charakteristischen Merkmale
des Lebens auf eindeutige Weise zu definieren (vgl,

7.2.).

Biologisches Leben basiert auf einem Hulerst viel-
schichtigen Zusammenspiel von biochemischen Reak-
tionen. Bestimmten Makromolekiilen, namentlich
Nukleinsdure- und AminosZuremolekiile, fallen dabei
Schllisselpositionen ZU [1§] . Alle irdischen
Lebensformen werden von dem Zusammenwirken von
Nuklein- und Aminosiduren bestimmt, Die Frage, ob
andere Lebensformen als die uns vertrauten denkbar
sind, versucht die Biologie zu beantworten, indem
sie das Problem untersucht, ob die Funktionen der
Nuxlein- bzw. Aminosduren durch andere Makromole-
kiillsorten ersetzt werden kdnnen [}3} . Diesem
Vorgehen 1EBt sich die Auffassung entnehmen, daf
Leben immer chemophysikalischen Ursprungs ist.
Leben bei Computerprogrammen wire in diesem Sinne



unméglich.

Die Suche nach ,Leben" beli Programmen wird also sicher-
iich won philosophischen Problemen und Problemen der
theoretischen Biclogie begleitet sein. Es liegt daher
auch nicht in der Absicht dieses und der beiden letzten
Kapitel, ,Leben" bei Programmen zu definieren, Die ab-
schlielenden XKapitel der vorliegenden Arbeit sind eher
als ein erster Versuch zur Erschlielung des dargelegten
Problemkreises,verbunden mit einigen Denkmtglichkeiten,
zu verstehen.

7.2.Biologisches Leben

Die moderne Bioclogie ist immer noch auf der Suche nach
einer einheitlichen Definition des Lebens. Aus der Viel-
zahl rezenter und ausgestorbener Lebensformen lassen sich
jedoch einige gemeinsame Eigenschaften alles Lebendigen
extrahieren, S0 sind nach einer weitverbreiteten Auffas-
sung

- Stoffwechsel ( + Regelung )
- Zellreproduktion und Mutation

die Schliisselprozesse des Lebens. Diese Schliisselpro-
zesse dienen der Erhaltung der Individuen, der Vermeh-
rung und dem Erbwandel (vgl. [35] Seite 24 ff). Es
gibt Auffassungen von Leben, die auch Reizbarkeit und
Bewegung als charakteristische Aspekte des Lebendigen
anfithren (vgl. [15] Seite 335).

Stoffwechsel

Die ,Grundeinheit™ des Lebens ist die Zelle. Alle Lebew
wesen sind aus Zellen aufgebaut, Sowchl Zellen als auch
Lebewesen stellen begrenzte Stoffsysteme dar. Eine Zelle
nimmt aus ihrer Umgebung stindig Stoffe auf, wandelt

sie intern um und gibt sie in verinderter Form wieder
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an ihre Umwelt ab. Da jede Zelle auf diese Weise stine
dig von Stoffen durchstrémt wird, wird das Systen
nZelle" als Flielsystem (Abb. 7.2,4) bezeichnet [13] .
FlieRsysteme sind offene Systeme [27] . Die Stoffum-
wandlungen in Zellen laufen in geordneten Bahnen ab., Ts
stellt sich ein sogenanntes FlieBgleichgewicht ein, (In

EE:j Seite 158 wird die Auffassung vertreten, dai
alle charakteristischen Eigenschaften lebender Organis-
men direkte Konsequenzen des Flielgleichgewichts sind).
Of fene Systeme im FlieRgleichgewicht streben unabhingig
von den Anfangsbedingungen einem konstanten Zustand
entgegen, Dieser Zustand heiBt stationirer Zustand,
Stofflich gleiche FlieBsysteme streben, sofern sie sich
in einer gleichen Umgebung befinden, dem gleichen sta-
tiondren Zustand entgegen, auch wenn die Anfangsbedin-
gungen unterschiedlich sein m&gen. Man kann -also von
einer gewissen Selbstregulationsfihigkeit der Lebewesen
bzgl. des Stoffwechsels sprechen.

A °1
] ]

Schema eines chemischen FlieBsystems: Die Stoffe Ai
treten in das System ein. Innerhalb des Systems werden
mittels Binnenreaktionen die Stoffe BJ erzeugt. Die
(Abfall-) Produkte C, treten aus dem System aus.

Abb. 7.2.4
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Der Stoffwechsel wird hdufig, rein heuristisch, in den
Baustoffwechsel und den Energiestoffwechsel differen-
ziert. Wahrend der Baustoffwechsel dem materiellen Auf=-
bau bzw. dem Wachstum der Lebewesen dient, liefert der
Energiestoffwechsel die zur Aufrechterhaltung der Lebens-
prozesse noilwendige Energle.

Reprodukiion und Mutaltion

Bel lebenden Organismen beruht die Vermehrung auf Zell-
tellung. Die Teilung einer Zelle erfolgt dabei so, dab
die entstehenden Tochterzellen die gleiche Struktur und
das gleiche Ablaufschema der Stoffwechselreaktionen er-
halten wie die Elterzelle(n) (Singular bei ungeschlecht-

icher, Plural bel geschlechtlicher Vermehrung). Aus dem
oben iiber Fliellsysteme Gesagten folgt, daf die Tochter-
zellen dem gleichen stationidren Zustand zustreben wie
die Elterzelle(n), vorausgesetzt, die Umweltbedingungen
sind wahrend und nach der Zellteilung identisch. Auf
diese Weise ,ererben" die Tochterzellen den Zustand der
Elterzelle(n). Die Struktur einer Zelle und die in der
Zelle ablaufenden Stoffwechselreaktionen werden durch
Proteine bestimmt. Damit eine Tochterzelle den gleichen
stationidren Zustand wie die Elterzelle(n) bei konstanten
Umweltverhdltnissen erreichen kann, geniigt es also, bei
der Zellreproduktion daflir zu sorgen, daB

~ 1in den Tochterzellen die gleichen Proteine gebildet
werden wie in der (den) Elterzelle(n).

- gich diese Bildung in der zeitlich richtigen Reihen-~
folge vollzieht.

Die zur Synthese der Proteine notwendige Information
enthidlt jede Zelle in Form speziell strukturierter
Nukleinsduremolekiile. Diese Malekiile werden als DNS,
einzelne funktionelle Molekiilabschnitte als Gene [Ef]
bezeichnet. Damit die Tochterzellen in der Lage sind,
die gleichen Proteine zu bilden wie die Elterzelle(n),
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bekommt jede Tochterzelle bei der Reprodukiion eine
identische Kopie der DNS-Molekiile der Elterzelle, also
identische Gene mit; bei geschlechtlicher Vermehrung
handelt es sich um eine Kombination der DNS-Molekiile
der Elterzellen (allele Gene)., Die Elterzellen verer-
ben also den Bauplan der in ihnen gebildeten Proteine.
Unterlaufen bei der Replikation der DNS-Molekiile Fehler
und werden die fehlerhaften Kopien an die Tochterzellen
weitergegeben, so werden in den Tochterzellen andere
Froteine erzeugt als in den Elterzellen. Es werden dann
i.a. in den Tochterzellen andere Binnenreaktionen er-
iolgen. In den Tochterzellen wird sich trotz sonst glei-
cher Umwelibedingungen ein anderes Fliefigleichgewicht
als in den Elterzellen einstellen. Auch der stationire
Zustand der Tochterzellen wird ein anderer sein, Man
bezeichnet bei lebenden Organismen solche sprunghaften
Anderungen des Erbgutes (Genom) als Mutation., Mutatio-
nen erfolgen immer zufillig und ungerichtet. Mutationen
werden nicht nur durch fehlerhafte Koplierprozesse her-
vorgerufen, sondern kidnnen auch bei bereits ,fertigen™
Zellen durch spontane Anderungen der DNS-Molekiile ent-
stehen.,

Diese beiden extrem kurzen und nicht annidhernd voll-
stdndigen Uberblicke iiber Stoffwechsel, Reproduktion

und Mutation von Lebewesen sollen als Grundlage zu den
folgenden Uberlegungen dienen.

7s3.8elbstreprodyzierende Programme und Leben

Im Gegensatz zu natirlichen Lebewesen sind Programme in
erster Linie Informationen und als solche nicht stoff-
liche. Damit Tnformation verfiigbar ist, muR sie in einer
interpretierbaren Form zugidnglich sein.

Beispiele:

- Lochstreifen
- Lochkarten

- Formulierung mit ,Papier und Beistift"

-
-
L)
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Programme werden in der Regel erstellt, um sie von einer
konkreten Rechenmaschine ausfilhren zu lassen. Im Rechner
sind dann Programme digital dargestellt und flir den Rech-
ner interpretierbar, vorausgesetzt sie werden als syntak-

tisch und semantiseﬁ'

zeptiert, Gehen wir einmal von der vertrauten Darstellung

eorrekt vom vorhandenen Rechner ak-

der Programme im Rechner aus, so miissen wir uns dennach
stindig im Klaren sein, daB Programme in ihrer Dxistenz
an keine der miglichen Darstellungsformen gebunden sind.
Wegen ihres mehr abstrakten als stofflichen Daseins be-
nstigen Prograame auch keinen Stoffwechsel, um ihre Exi-
stenz zu erhalten, Die Tatsache, dafll Energie benotligt
wird, um ein Programm T auf einer Rechenanlage auszu-
filhren, kann natiirlich nicht als (Energie-) Stoffwech-
sel betrachtet werden, da die Zufuhr von Energie

- nicht vom Programm T aktiv gesteuert wird,

- nicht der Erhaltung des Programms 7 , sondern der
Interpretation von T dient.

Programme sind auf Rechenanlagen in irgendwelchen Spei-
chermedien abgespeichert, Es gibt Speichertypen, gewlsse
Halbleiterspeicher {(Charge~Coupled Devices), die in ge-
wissen Zeitabstinden eine Erneuerung der enthaltenen In-
formation bendtigen Ej1] + In solchen Speichern abge-
legte Programme bendtigen alsc regelm&d®ig Energie, um
verfigbar zu bleiben. Auch eine sclche Energiezufuhr
kann man,aus den gleichen Griinden wie oben, nicht im
entferntesten als Energiestoffwechsel ansehen.

Es hat also wenig Sinn, im Hinblick auf Programme,
auch wenn man von der festen Darstellung auf einer Xxon-
kreten Rechenanlage ausgeht, ein Analogon zum Stoffwech-
sel lebender Organismen zu suchen.

Anders liegen die Verhdltnisse allerdings bzgl. Re-
produktion und Mutation. Die vielen Beispiele selbst-
reproduzierender Programme in den vorangegangenen Ka-
piteln zeigen, dad es durchaus Programme gibt, die zur
identischen Reproduktion fdhig sind. Allen Beispielpro-
grammen in hoéheren Programmiersprachen war gemeinsam,

T)semantisch hier im Sinne von: keine Laufzeitfehler.
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dal sie an irgendeiner Stelle ihren eigenen Bauplan in
kodierter Form enthalten (vgl. etwa Inhalt der Kompo-
nente C[23] in T aus Abschnitt 3.2.5., Textkonstante
der Prozedur AB in ™, aus Abschnitt 3.2.7.). Dieser
Bauplan 138t einen Vergleich mit der DNS lebender Zellen
zu. Der Zusammenbau der Kopien selbstreproduzierender
Programme mittels des Bauplans ist vergleichbar (zugege-
ben sehr gewagt) mit der Proteinsynthese bei Zellen. Man
sollte sich jedoch einschrénkend vergegenwidrtigen, dal
die Selbstreproduktion von Programmen im strengen Sinne
keine Autoreproduktion darstellt, wie dies bei Organis-~
men der Fall ist. Dies liegt daran, daf die Reproduktion
yon Programmen von aufen veranlaBt wird (Steuerung durch
das Retriebssystem) und die Initiative nicht beim Pro-
gramm selbst liegt.

Msgliche Schalt- und Ubertragungsfehler in elektro-
nischen Rechenanlagen kinnen dazu fihren, dad bei der
Selbstreproduktion von Programmen Fehler entstehen (vgl.
7+1.). Mutationen sind also in diesem Sinne jederzeit
moglich.

Insgesamt ergibt sich alsc, daf sich von den biologi-
sches Leben ausmachenden Schliisselprozessen bei Program-
men nur Entsprechungen bzgl. Reproduktion und Mutation
finden lassen. Systeme, die nur die Eigenschaften der
Reproduktion und Mutation enthalten, sind daher im Sinne
der Biologie nicht als lebendig zu bezeichnen. Insofern
sind auch selbsireproduzierende Programme nicht lebendig,
Selbstreproduzierende Programme lassen sich somit auch
nicht mit lebendigen Organismen vergleichen, Die Biolo-
gie kennt jedoch Strukturen, die durchaus einen Ver-
gleich mit selbstreproduzierenden Programmen zulassen.

7.4 .5elbstreproduzierende Programme und Viren

Viren wurden lange Zeit als einfachste Organismen ange-
sehen. Sie sind sehr viel einfacher gebaut als einzellige
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Lebewesen. In Wirklichkeit stellen Viren Jedoch keine
vollstédndigen Organismen dar, sondern sind subzellulare
Geblilde, die fast nur aus DNS bestehen. Bei manchen
Viren sind die DNS-Molekiile noch mit einer Hiille aus
Proteinen, Fettstoffen und anderen organischen Substan-
zen umgeben. Viren verfiigen iiber keinen eigenen Stoff-
wechsel., Erst wenn Viren in eine lebende Zelle eindrin-
gen, zeigen sie Lebenserscheinungen in Form von Repro-
duktion und Mutation. Sie bendtigen zu ihrer eigenen
Vermehrung also den Stoffwechsel echter Organismen,
Auberhalb lebender Organismen sind Viren tot, sie kidn-
nen sich dann sogar zu Kristallen anordnen, was von Le-
bewesen nicht bekannt ist, Von den Schliisselprozessen
des Lebens weisen Viren also nur Reproduktion und Muta-
tion auf und das auch nur dann, wenn eine fremde Stoff-
wechselmaschinerie Baustoffe und Energie zur Verfiigung
stellt. Diese Zusammenhinge sind in Hhnlicher Form auch
bel selbstrevroduzierenden Programmen festzustellen.
Solange ein selbstreproduzierendes Programm sich nicht
im Speicher einer Rechenanlage befindet, kommt ihm bis
auf seinen Informationsgehalt keine Bedeutung zu. Erst
im Rechner und dann auch erst , wenn das Programm wirk-
lich lauft, ist ein selbstreproduzierendes Programm in
der Lage zur Reproduktion und Mutation. Denm Programm
steht dann Energie, die vom Rechner geliefert wird, zur
Verfiigung. Es bleibt jedoch bei aller Annlichkeit zu
beachten, daB ein Virus aktiv seine Reproduktion ein-
leitet, indem es in das Baustoff und Energie liefernde
System ,Zelle" eindringt. Das kann ein selbstreproduzie-
rendes Programm nicht, auch wenn es sichn im Speicher-
platz und Energie liefernden System ,Rechner" befindet,

Es bleibt auf Aktivierung durch das Betriebssystem an-
gewiesen,
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8.Modelle fir konkurrierendes Verhalten selbstrevoroduzie-

rendarFrﬂgramme

B.1.Motivation

Wie die BRiologie lehrt, sind lebende Organismen vielschich-
tigen Konkurrenzkimpfen unterworfen. Diese Konkurrenzkampfe
betreffen nicht nur einzelne Individuen, sondern ganze Ar-
ten (bzw. Populationen [24] Seite 337 ). Um erfolgreich zu
sein, miissen diese Arten eine gewisse Variabilitat ilhres
Erbgutes (Genom) aufweisen, Nur so konnen sie sich einer-
seits gegeniiber der unbelebten Umwelt, die sich stindig
verdndert, und andererseits gegenliver der Konkurrenz anderer
Arten behaupten. Die Eigenschaften der Arten und Individuen
sind also stindig in Beziehung zur belebten und unbelebten
Umwelt zu sehen (Okologie, vgl. [27] Seite 199 £f).
Selbstreproduzierende Programme, die sich in einer Re-
chenanlage befinden, sind von der ,Umwelt'" Rechner (= hard-
ware + Systemsoftware) umgeben. Das Speichermedium, das die
Programme enthidlt, ist sogar ein Teil dieser Umwelt. Als
nbelebte" Umwelt lassen sich andere, ebenfalls im Rechner
befindliche selbstreproduzierende Programme ansehen, Die
Méglichkeit der Mutation (s.0. 7.3. ) befdhigt selbstrepro-
duzierende Programme zur Evolution (s.u. 9.1, ). Es ist
also nicht auszuschlieBen, dal die Wechselwirkungen selbst-
reproduzierender Programme miteinander und mit dem umgeben-
den Rechnersystem zu anderen selbstreproduzierenden Program-
men mit immer neuen Eigenschaften filhren kodnnen. Die folgen=-
den (spekulativen!) Modelle sollen versuchen, eine Vorstel-
lung von derartigen auf Wechselwirkungen beruhenden Verhal-
tensweisen selbstreproduzierender Programme zu vermitteln.

8+2.Ein einfaches Grundmodell

Das nachfolgend beschriebene Grundmodell MOD! geht von dem
Hintergrund einer herkdmmlichen Rechenanlage mit ,von Neu-
man Architektur" aus [ji] . Eine solche Rechenanlage

zeichnet sich in moderner Sicht durch einen (Zentral-)Pro-
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zessor und ein oder mehrere E/A-Kanile (extrem: E/A-Pro-
zessoren) aus. Es herrscht multiprogramming Betrieb: K Pro-
gramme 1r1,...,1r5 konnen zeitlich verzahnt, jedoch nicht
durchgehend parallel verarbeitet werden, Die Programme sind
nur zeitlich alternierend aktiv, In diesem Zusammenhang
sind auch Begriffe wie time slicing wund time sharing zu
erwdhnen [ Ij.

Selbstreproduzierende Programme werden in MOD1 durch 2
Grolen charakterisiert.

= Die Laufzeit (sprich: Reproduktionszeit)

= Die rdumliche Beziehung (bzgl. Speicher) zwischen Pro-
gramm  und dessen erzeugter Kopie.

S.E.I.Infﬂrmglle Beschreibung von MOD]

(1) Prngrammei Programme werden mit ihrem Namen ildentifi-
zliert. Hinter diesem Namen verschwindet die Programm-
struktur vollkommen. #ichtiger sind hingegen andere
Daten:

a) Die individuelle Anzahl der Zeittakte, die erfor-
derlich sind, damit ein Programm sich reproduzie-
ren kann,

b) Die Mindestentfernung, in der die Kopie im Spei-
cher angelegt wird (vgl., (ii)).

Das Modell eines Programms ist somit ein Tripel, beste~

hend aus Programmname, Reproduktionszeit und Kopie-
distanz,

(ii) Speicher: Der Speicher ist eindimensional, beidseitig
unendlich und in Speicherzellen unterteilt., Je zwei be-
nachbarte Speicherzellen sind direkt miteinander ver-
bunden, Jede Speicherzelle ist in der Lage, genau ein
Programm - unabhingig von dessen physikalischer Lin-
ge - aufzunehmen. Fast alle Speicherzellen sind leer.

(iii)Zeitverhalten: Anfangs wird der leere Speicher mit
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einer festen Zahl WNUM-von selbstreproduzierenden Pro-
grammen T q;ee e sTumy initialisiert. Jedes Programm 1rj
erhdlt zyklisch fir einen Zeitiakt die Aktivitit" zu-
getellt. Diese zyklische  Aktivierung" ist mdglich, da
sich zu jedem Zeitpunkt nur endlich viele Programme im
Speicher aufhalten. Wachst die Anzahl der Programme
durch Reproduktionen an, so vergrdflert sich der Zyklus
entsprechend. Jedes Programm im Speicher ist nach
einer individuellen Anzahl von Zeittakten, in denen
es paktiv" war (Reproduktionszeit), in der Lage, sich
selbst zu reproduzieren.

(iv) Rdumliches Verhalten: Ein Programm legt seine Kopie in
einem individuellen Mindestabstand nach rechts oder
links an. Ist die ausgewdhlte Speicherzelle besetzt,
so werden alle weiteren folgenden Speicherzellen ge-~
testet, Die Kopie wird dann in die erste freie Zelle
abgelegt. Diese existiert wegen (ii) immer., Es entste-
nen also hinsichtlich des Speicherplatzbedarfs keine
Konflikte.

MOD1 vermeidet Kollisionen. Die Programme kodnnen sich nicht
gegenseitig in Bedrdngnis bringen. Es gibt keine ausgezeich-
neten Programme, die in der Lage sind, andere Programme zu
zerstoren, indem sie deren Speicher beanspruchen. In diesem
Sinne sind alle Programme dquivalent, Die Vermeidung von
Kollisioner wird durch die Unendlichkeit des Speichers un-
terstiitzt, Jedes Programm (Individuum) ist bestdndig und
produziert wshrend seines ewigen Daseins identische Kopien
(Nachkommen). Die Menge der vorhandenen Programme (Popula-
tion) steigt stdndig an. Bildhaft gesprochen gibt es in
MOD1 keinen ,Kampf ums Dasein", sondern friedliche Koexi-
stenz. In einem solchen Modell gibt es keine Evolution, Die
Motoren der Evolution, Mutation und Selektion, sind ohne Be-
deutung, da es keinen Selektionsdruck gibt (s.u.).
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8.2.2,M0D1 als SIMULA-Programm

(1) Programme:

(ii)

Umsetzung des Programme bestimmenden Tripels in die
SIMULA-Struktur:

class PROGRAM;

begin
integer DELY,DISTANCE,IDENT;

end; ] ) T

Reproduk- Identifizierung
tionszeit des Programms
Mindestentfer-~

nung der Kopie

Speicher:

Jede Speicherzelle ist in der Lage, ein Objekt vom
Typ PROGRAM aufzunehmen. Sie ist aullerdem mit ihren
beiden Nachbarzellen verbunden. Diesen Eigenschaften
trigt die SIMULA-Struktur CELL Rechnung:

class CELL;
begin
ref (PROGRAM) CONTENS;
ref (CELL) LEFT,RIGET;
integer TIMECOUNT;
end;

(bzgl. TIMECOUNT s.u.)

Der Speicher selbst wird also als doppelt verkettete
lineare Liste dargestellt ( [28] Seite 233 ff). An-
fangs wird ein v8llig leerer Speicher der festen
Lange N angelegt., Je nach Bedarf werden an seine En-
den neue Speicherzellen angehidngt, so daB der Spei-
cher potentiell unendlich ist, aber zu jedem Zeit-
punkt eine feste Lénge aufweist. Die beiden Zeiger
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FIRST und LAST vom Typ ref (CELL) markieren das je-
weils aktuelle linke bzw. rechte Ende der Liste. Die

Funktionsprozeduren

ref (CELL) procedure ADDLEFT; und

ref (CELL) procedure ADDRIGHT:

bewerkstelligen das Anhdngen einer neuen Speicher-
zelle an die bisherige Liste.

Beispiel:
! |
l‘-l__- K > ..., #
. 3
1 g
FIRST

gituation vor Aufruf von ADDLEFT

I 1
l |
—H— - ¥ —
: = a e
) 1 8
I l + FIRST
ADDLEFT

Situation nach Aufruf von ADDLEFT

Analog ADDRIGHT.

(iii) Zeitverhalten:

ek il — —

noch leere Speicher mit einer festen Anzahl von Pro-
grammen (Qbjekten des Typs PROGRAM) m, i=1,,..,NUM,
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initialisiert. Es gibt M & NUM verschiedene Programme.
Daraus ergibt sich, daf schon anfangs Programme mehr-
fach im Speicher vorhanden sein konnen. Da in den Spei=-
cherzellen die Programme nicht explizit stehen, son-
dern durch Verweise repridsentiert werden, miissen die
Programme nj irgendwo ausfilhrlich gespeichert sein. Zu
diesem Zweck dient ref (PROGRAM) array P [1:M];
Uber den Zeiger P[Jj] besteht immer Zugriffsmdglichkeit
auf das Prﬂgramm‘ﬁj- Das Kopieren eines Prﬂgramms1TJ
wird durch Sefzen eines welteren Zeigers auf Hﬁ reali-
siert. Diese Vorgehensweise zwingt fast dazu, vom ,Pro-
rammt "'ﬂj zUu sprecnen, wahrend die Zeiger auf'n&
die eigentlichen Programme oder Exemplare dieses Tyovs
darstellen. Der Sprachgebrauch ist hier nicht eindeu-
tig festzulegen. Ohne sprachliche Verwirrung zu stiften,
werden wir deshalb im folgenden R sowohl als Programm
als auch als Programmtyp bezeichnen, je nachdem, welche
Bezeichnung gerade angebracht erscheint. Das Feld
integer array ST [1:M] enthdlt zu jedem Zeitpunkt der
Simulation in den Komponenten ST[j] die momentane Anzahl
der Exemplare des Programms P[j]. Zu deginn der Simula-

tion gilt also M

> sT|i|= NuM

£l
Einlesen der NUM Zahlenpaare (PI,¥HERE) liefert die
riumliche Anordnung der NUM Programme : Das Programm P[PI]
steht in der vom Zeiger LEFT aus gerechnet WHERE-ten
Speicherzelle., (siehe Abbildung 8.2.2.4)

TI'I : 3 -
. !gg.......l
1
. (5,2) {5,2) (1,7) [HIGHT
{PI,WHERE)

Abb, 8.2.2.4
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Simulation: TIME~mal wird der Speicher von links
nach rechts mittels des Zeigers C vom Typ ref (CELL)
durchlaufen. Bel jeder Zelle wird getestet, ob sie
leer ist oder nicht, Ist die Zelle leer, so0 geschieht
nichts. Ist die Zelle durch ein Programm belegt, so
wird weiter getestet, ob bel dieser Zelle
TIMECOUNT+1 = CONTENS.DELY
gilt, Im Ja-Fall wird eine Kopie des betreffenden
Programms angelegt und TIMECOUNT wieder auf @ ge-
setzt (ein neuer Reproduktionszyklus des betreffen-
den Programms kann beginnen). Andernfalls wird
TIMECQUNT um 1 erhoht. Es kann geschehen, daB zum
Anlegen einer Kopie der Speicher am rechten Ende ver-
lédngert werden mufi; dann ist darauf zu achten, daf
der Speicher nur bis zu seinem rechien Ende zu Beginn
des betreffenden Durchlaufs durchlaufen wird. Erst
der Durchlauf, der den nidchsten Zyklus simuliert, er=
faftt den nun zusdtzlichen Speicherbereich. Dies wird
durch die Variable

ref (CELL) OLD LAST

unterstiitzt.

for T:=1 step 1 until TIME do
begin
C:~FIRST;
OLD_LAST :-LAST; }
while C=/=OLD_LAST.RIGHT do
begin
[Erhdhe C.TIMECOUNT um 1];
if C.TIMECOUNT=C.CONTENS.DELY

then [Kopiere das Programm C.CONTENS;
Setze C.,TIMECOUNT zuriick auf J;
C:=C.RIGHT
end

T ——

end;

Initialisierung eines Durch-
laufs
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(iv) Rdumliches Verhalten:
Sei nun beim i-ten Durchlauf, i< TIME, durch den Spei-
cher der Zeiger C auf eine Speicherzelle gestofBlen,
deren Programm 'ﬂj = C.CONTENS revproduktionsbereit ist,
das heifBt:

C.TIMECOUNT+1 = C,CONTENS.DELY .,

. wird nun kopiert. Ob die Xopie rechts oder links
vug der Zelle, auf die C zeigt, angelegt wird, ent-
scheidet die Prozedur COPY mit Hilfe der SIMULA-Zu-
fallszahlenfunktion RANDINT. '’

procedure COPY(C); ref (CELL) C;
if RANDINT(1,2,U) = 1

then COPY_LEFT(C)

else COPY_RIGET(C);

Entsprechend der getroffenen Entscheidung wird also
die Prozedur COPY LEFT bzw. COPY_RIGHT aufgerufen, die
den eigentlichen ¥Xoplerprozeld durchfihrt.

procedure COPY RIGHT(C); ref (CELL) C;
begin

ref (CELL) HELP;
Setze HELP auf CJ;
Bewege HELP um soviele Zellen nach rechts,
wie die Komponente DISTANCE des Programms
W, (=C.CONTENS) angibt. Wird dabei vorzei-
tig das Ende des Sveichers erreicht, so er-
weitere mittels ADDRIGHT den Speicher um
entsprechend viele Zellen an seinem rechten
Ende.
if HELP.CONTENS==none
en riege die Kopie von 11‘j in “der leeren|
Zelle ab, auf die HELP zeigt
[= HELP.CONTENS:-P[j]] i
elge [Bewege HELP solange im Speicher weiter]
nach rechts, bis HELP auf eine leere
peicherzelle zeigt, oder das rechte
nde des Speichers erreicht ist. Ist
letzteres der Fall, s0 setze

< |
=

1) Siehe Beschreibung von RANDINT [25] Seite 4.-9
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HELP:-ADDRIGHT; Lege die Kopie von 1rj
in der Zelle ab, auf die HELP zeigt.

end;

Anhang C.1. zeigt MOD! in ausfiihrlicher Form als lauffahi-
ges SIMULA-Programm. Die Datenstrukturen dieses Programms
verdeutlicht Abbildung 8.2.2.B..

Eingabeparameter des_SIMULA-Programms_firx MOD1:

----- i o i — Y W O — ———— A X

- Die Anfangslinge des Speichers N
- Die Anzahl der unterschiedli-

chen Programmiypen M
- Die M Programme(Typen), charakteri-

siert durch M Zahlenpaare DELY, DISTANCE
- Die Anzahl der sich anfangs im

Speicher befindlichen Programme NUM

- Die Verteilung der NUM Program-
me im Speicher, angegeben durch

Num Zahlenpaare PI,WHERE
- Die Anzahl der vorgesehenen
Speicherdurchlédufe TIME

Be2edsAbsichten von MOD1

Simulationsmodelle bzw.-programme haben in der Regel expe-
rimentellen Charakter. Die Erkenntnisse, die sich mittels
MODT gewinnen lassen, sind beschrinkt und groBtenteils
vorherberechenbar; sie bendtigen kein Experiment, Der
einzige Nichtdeterminismus liegt in der zufdlligen Wahl der
Richtung, in der die Kopie eines Programss im Speicher ange=-
legt wird. MOD? ist als Grundmodell zu werten, auf das wei-
tere Modelle mit mehr Moglichkeiten aufbauen. AuBerdem de-
monstriert MOD1 einen gewissen Satz von Grundelementen, die
auch den weiteren Modellen MODZ2 und MOD3 zu eigen sind. Zs
handelt sich dabei um
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(i) Modell fiir Programme
(ii) Modell fiir Sveicher
(1i1i) zeitliches Verhalten

(iv) rdumliches Verhalten

Durch Anderung einer oder mehrerer dieser 4 Komponenten
lassen sich andere Grundmodelle erzielen; besonders (iv)
diirfte sehr viele Variationsméglichkeiten bieten. (i) bis
(iv) sind nicht ganz unabhingig von einander. Die Charak-
terisierung der Programme durch die Gréfen DELY und
DISTANCE bestimmt das zeitliche Verhalten (iii) (mittels
DELY) und das rdumliche Verhalten (iv) (mittels DISTANCE)
wesentlich mit.

Die Wahl von (i) bis (iv) ist auch vor dem Hintergrund

der unterstellten ,von Neuman Architektur" des Rechners zu
sehen . Eine charakteristische Eigenschaft der von Neuman-
Rechner ist die Tatsache, daB es zu Jjedem Zeitpunkt nur je-
weils einen Strom von Instrukiionen und Daten gibt. Man
spricht daher auch von SISD-Maschinen (single-instruction
single-data stream) [12] « Fiir moderne Rechnersysteme
trifft diese Charakterisierung jedoch nicht ganz zu, da
durch Hinzunahme weiterer Prozessoren, speziell E/A-Pro-
zessoren, das SISD-Prinzip durchbrochen wird; es liegt ei-
gentlich MIMD-Organisation (multiple-instruction multiple-
data stream) vor. Trotzdem wird man heutige Rechner kaum
als MIMD-Rechner bezeichnen, da die Anzahl der gleichzei=-
tig arbeitenden Prozessoren sehr klein ist, Die Idee, die
hinter MIMD steht, ist jedoch eine groRe Zahl (ca, 100 bis
1000) [267] unabhingiger Prozessoren, um ein HochstmaB an
Parallelverarbeitung zu erzielen., Neben SISD-und MIMD-Ma-
schinen gibt es auBerdem noch die Klassen der SIMD (single-
instruction multiple-data stream)- und der MISD (multiple-
instruction single-data stream)-Maschinen, Nahezu alle heu-
tigen Rechner sind im weitesten Sinne SISD-Maschinen., Es
entsteht also die Frage:

Welche Modelleigenschaften miitte MOD1 haben, wenn



MOD1 als Grundmodell fiir unorthodoxe Rechenanlagen
(=nicht SISD-Rechner) [ 6] gedacht wire?

Voraussetzung ist nariirlich die Existenz selbstreproduzie-
render Programme auf solchen Maschinen.

8.,2.4.Einige Aspekte des SIMULA-Programms fiir MOD1

I. Wie in 8.2.3%. erwdhnt liefert MOD! keine experimen-
tellen Ergebnisse bzgl., des zahlenmdfigen Verhaltens
der einzelnen Programmtypen. Da in MODT alle Program-
me besténdig sind und alle reproduktionsfihigen Exem=-
plare sich unbedingt reproduzieren, gilt fiir jeden
Programmtyp Wi, je[M]:

Die Anzahl SJ(T) der Exemplare nach dem T-ten
Speicherdurchlauf betrigt

sj[g)..giT +— DELY-Komponente von 1rj]

3

wobei Sj{ﬂ} die Anzahl der Exemplare von w4 vor
Beginn der Simulation ist,

Sj(T) kann fiir jedes TI'j nach jedem WHEN_CON-ten
Speicherdurchlauf mittels

procedure CONTROL;

in tabellarischer Form ausgedruckt werden.

IT. In Anbetracht des ungehinderten numerischen Anwach-
sens der Programmzahl ist sicherlich die riumliche
Anordnung der einzelnen Exemplare von grélRerem In-
teresse. Das rdumliche Verhalten (iv) im MOD1! ist
recht willkiirlich gewZhlt und so0ll hier auch nicht
ndher analysiert werden; andere rdumliche Verhalten
sind denkbar. Dem SIMULA-Programm fiir MOD1 sind
daher zweli Prozeduren beigefiigt, die unabhingig von

gewdhlten raumlichen Verhalten dessen Analyse unter-
gtitzen., Es handelt sich dabei um
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IV.

procedure DUMP;

DUMP gibt den Inhalt des gesamten Speichers von
links nach rechts aus, indem filir eine leere Zelle
das Zeichen %’ und fir eine besetzte Zelle die
Komponente IDENT des gespeicherten Programms aus=-
gedruckt wird.

procedure AVERAGE;

AVERAGE gibt in tabellarischer Form die durch-
schnittliche Entfernung der Exemplare der jewei-

ligen Programmtypen an, Grundlage ist der Abstand
1 flir direkt benachbarte Speicherzellen,

Die Aufrufe von DUMP und AVERAGE werden durch die
integer-Variablen WHEN_DUM und WHEN_AVE gesteuert.
DUMP wird nach jedem WHEN_DUM-ten Speicherdurch-
lauf aufgerufen, entsorechend AVERAGE,

Aus T und II ergibt sich, dall die in Anhang C,1,

wiedergegebene Implementierung von MOD1 drei mﬂL
dellunabhingige Eingabeparameter, nimlich

NHEN_CON
WHEN_DUM

WHEN_AVE

enthidlt, die die Ausgabe steuern.

Aufwand:

Speicherplatz: In MOD1 ist die Anzahl der vorhande-
nen Programmtypen konstant, Damit haben auch die
Felder ST und P widhrend der Simulation eine konstante
Grolie. Nur die den Speicher darstellende Liste wird

- bei hinreichend groBer Anzahl TIME der Speicher-
durchlédufe ~ widhrend der Simulation anwachsen.

Wie stark dieses Wachstum widhrend eines Speicher-

durchlaufs ist, hingt von den vorhandenen Programm-
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tyren ab, Bel kleinen Reproduktionszeiten (Kompo=-
nente DELY) der Programme und groRen Entfernungen
der Kopien (Komponente DISTANCE) erfolgt die Zu-
nahme besonders schnell. Da die Gesamtzahl der vor-
handenen Programmexemplare (siehe I,) exponentiell
ansteigt, widchst auch die Linge des Speichers im
Verlauf der Simulation insgesamt exponentiell;

die vorgenannten Kriterien machen daher nur einen
Faktor aus.

Laufzeit: Die Laufzeitl des SIMULA=-Programms fir MODI
hingt von allen Modellparametern ab. Eine genaue Ab-
schitzung kann im Rahmen dieser Arbeit nicht mehr

vorgenommen werden. Da der Zeitaufwand fiir einen
Speicherdurchlauf wvon der Linge des Speichers ab-
hiangt, ergibt sich auf Jjeden Fall ein exponentieller

Zusammenhang zwischen der Anzahl der Speicherdurch-
liufe und der Laufzeit von MOD1.

Das exponentielle Verhalten des Auiwands macht MODI

fiir statistische Zwecke wenig brauchbar und unter-
streicht die Bedeutung von MOD1 als ein ledigliches
Grundmodell. Das ungehinderte exponentielle Anwach-
sen an Programmexemplaren wird in den folgenden Mo-
dellen durch ein gedndertes rdumliches Verhalten
und durch Einfiihrung von konkurrierendem Verhalten
verhindert.
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R.3.Ein Modell mit konkurrierendem Verhalten

Im Grundmodell MOD! kann jedes reproduktionsfihige Pro-
gramm T seine Kopie T ungehindert in einer freien Speicher-
zelle ablegen. Insofern gibi es zwischen den Programmen
keine echten Konfliktsituationen und damit keine Konkur-
renz. Das Fehlen von Konkurrenz in MOD1 macht das Zintre-
ten von Evolution unmdglich. Ein weiterer Aspekt wvon MOD1
ist die Bestidndigkeit der Programme,

In Form von MODZ2 soll nun MOD1 dazhingehend erweitert
werden, dal Programme in der Lage sind, ihre Kopien in
bereits durch andere Programme besetzte Speicherzellen zu
schreiben, Dabei werden die alten Inhalte der Speicher-
zellen, also Programme, geltscht, Es wird zweierlei er-
reicht:

- ¥s gibt Konflikte zwischen den Programmen, Die Kon-
sequenz ist Konkurrenz,
- Das Ubverschreiben von Programmen bedeutet deren Ver-

nichtung. Es tritt also eine Art ,Sterben" von Pro-
grammen auf.,

Konkurrierendes Verhalten ist ein spezielles Verhalten

von Programmen untereinander, Wir fihren daher ganz all=-
gemein

(v) Verhalten der Programme untereinander

als weitere Modellkomponente ein., In 8.3.1. erfolgt eine
detaillierte Beschreibung von MODZ2.

8.3.1.Informelle Beschreibung von MOD2

(1) Programme: Die einzige charakteristische Gréfe eines
Programms ist seine Laufzeit (=Reproduktionszeit),
Die Laufzeit ist gleich der Anzahl von Zeittakten,

die das Programm jeweils aktiv sein muB, um sich re-
produzieren zu kdnnen,

Das Modell eines Programms ist somit ein 2-Tupel,

testehend aus der Programmidentifikation und der
Laufzeit.
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(1i) Speicher: Wie in MODI.

(iii) Zeitverhalten: Wie in MODI.

(iv) Raumliches Verhalien: Zu jedem Zeitpunkt t sind nur
endlich viele Speicherzellen belegt. Unter den be-

legten Speicherzellen gibt es daher immer eine am
weitesten links und ceine am weitesten rechts stehen-
de Speicherzelle 1(t) bzw. r(t). 1(t) und r(t) be-
grenzen den Speicherbereich, in dem sich belegte
Zellen befinden., Die Speicherzelle, in der ein Pro-
gramm T seine Kopie T ablegt, so0ll nicht beliebig
von diesem abgegrenzten Speicherbereich entfernt
liegen, sondern nur um eine konstante Anzahl von
Zellen., Es ergibt sich also als Zielbereich fiir
eine Kopie ein durch L(t) und R(t) abgegrenzter
Speicherbereich (Abb, 8.3.1.A). Innerhalb dieses
Speicherbereichs ist jede Zelle gleichwahrschein-
liches Ziel fir die Kopie T .

leer kopieren leer

L ]
L]
: I
.|
-
-
L ]
L]

—_

T i

= =

!

| ' '

o(t) 1 1(t) r(t) R(t) !

L - — J

S ) - :

} const + belegter Spei- : const "

i s I

¥ : cherbereich ! :
t

. : = j

Zielbereich

Abb.: 8.3.1.4

Ein derartiges rdumliches Verhalten garantiert eine
kontrollierte Ausbreitung der Programme. Ez k&nnen
nicht plotzlich beliebig weit entfernte und isolier-
te ,Populationen" entstehen,
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(v) Verhalten der Programme untereinander: Ist ein Pro-
gramm T reproduktionsfihig, so wird gemdB (iv) eine
beliebige Speicherzelle ausgewdhlt, in der die Kopie
i abgelegt werden soll. Ist diese Speicherzelle leer,
so0 tritt kein Konflikt auf. Andernfalls ist die Spei-
cherzelle bereits mit eirnem Programm w'besetzt, und
ein Entscheidungsmechanismus mull herangezogen werden
um zu bestimmen, ob W das Programm = {iberschreiben
darf oder nicht. Fdllt die Entscheidung positiv aus,
so iiberschreibt ¥ das Programm W', ist sie negativ,

50 hat W keine Ausweichmdglichkeit und wird elimi-
niert. Ein Konfliktfall endet also immer fiir eines der
beteiligten Programme ,tddlich",

Erst durch Angabe des in (v) genannten Entscheidungsme-
chanismus wird die Beschreibung von MOD2 vollstandig. Es
sind sicherlich sehr viele Entscheidungsmechanismen fiir
MOD2 denkbar, die auf unterschiedlichsten Faktoren be-
runen., Wir wollen, um MODZ2 moglichst einfach zu halten,
einen Entscheidungsmechanismus angeben, der nur auf den
beiden jeweils aufeinandertreffenden Programmen beruht.
Damit dieser Entscheldungsmechanismus rnicnt zu starr wird,
wird er mit Wahrscheinlichkeiten belegt, was indirekt doch
eine Berlicksichtigung weiterer, allerdings unbekannter,
Faktoren bedeutet,

(8.%241.1) Definition: Sei nelN, Eine nsxn-Matrix
V = (vij)q W _(R) (Ring der n-reihigen Matrizen
iber dem K&rper der reellen Zahlen) heifit
n-reilhige Vorrangmatrix, falls gilt:

vijz (0,1]C IR fir alle i, je[n]

Sei P:= {Tr1 "'”""M} die Menge der in MOD2 vorkommenden
Programmiypen. Eine M-reihige Vorrangmatrix zusammen mit
einer entsprechenden Interpretation liefert einen Ent-
scheidungsmechanismus fiir MOD2.
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(8.%3.1.2) Definition: Sei M die Anzahl der in MOD2 vor-
kommenden Programmtypen. Sei V = {vij) eine

M-reihige Vorrangmatrix. Die Komponenten vij
werden wie folgt interpretiert:

Soll die Kopie T eines Programms 1w vom Typ ™5
in einer Speicherzelle abgelegt werden, in der
sich bereits ein Programm m'des Typs 1rj befin-
det, s0 bedeutet vij:

Mit der Wahrscheinlichkeit ?ij iiberschreibt T
das Programm TT'.

Mit der Wahrscheinlichkeit (T-vij] Uberschreibt
T das Programm TW'nicht, 7' bleibt erhalten und
T wird eliminjert.

Als Entscheidungsmechanismen fiir MOD2 sind genau die
M=reihigen Vorrangmatirizen zugelassen. Die Vorrangmatrix
ist also ein Parameter von MOD2. Durch die Vorrangmatrix

erhdit MOD2 einen nichtdeterministischen Charakter.

8.3.2.M0D2 als SIMULA-Programm

(i) Programme:

In Gegensatz zu MOD1 werden Programme durch die ein-
fachere SIMULA-Struktur

class PROGRAM;

begin
integer IDENT,DELY;

end; T 1

Reproduktionszeit
Identifizierung

dargestellt,
(ii) Sveicher:

Die Realisierung des Speichers ist mit Schwierig-
keiten verbunden. Einerseits muB der Speicher po-
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tentiell unendlich sein (Listenkonzept), anderer-
seits ist wegen 8.3.2.(iv) direkter Zugriff auf die
Speicherzellen wiinschenswert (Arraykonzept). Da
Listenkonzept und Arraykonzept nicht miteinander ver-
einbar sind, muB bei einer Kompromiflosung irgendwo
die Prioritit gesetzt werden. Direkter Zugriff wirkt
sich giinstig auf die Laufzeit von MOD2 aus. Wir set-
zeén deshalb hier die Pricritdt und stellen den Svei-
cher als array dar. Um der geforderten Unendlichkeit
des Speichers wenigstens gerecht zu werden, muil es
sich dabeil um dynamische arrays handeln. Dynamische
arrays sind in SIMULA im Rahmen des Klassenkonzepts
moglich:

class STORAGE(Q); integer Q;

begin
ref (CELL) array ELEMENT(1:Q);
end:

wobei die einzelnen Sveicherzellen (Typ : CELL) wie
in MOD?! dargestellt werden:

class CELL;
begin
ref (PROGRAM) CONTENS;
integer TIMLCOUNT;
end;

Zugriff auf den Speicher liefert der globale Zeiger
ref (STORAGE) STOREPOINTER.

Zu Beginn der Simulation wird der Sveicher mit N
Speicherzellen initialisiert., Dies geschieht durch
die Zuweisung

STOREPOINTER:~new STORAGE(N):

Weahrend der Simulation wird der Speicher immer dich-
ter mit Programmen ,besiedelt" und muf von Zeit zu
Zeit erweitert werden. Wann der Sneicher erweitert
wird, gibt die integer Variable PERCENT an: Ist der
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Speicher zu PERCENT % belegt =~ getestet wird dies
mit Hilfe von boolean vrocedure QVERFLON - , so
wird eine Erweiterung des Speichers vorgenoamen. Die
Erweiterung des Speichers wird durch die Prozedur

orocedure NEW_STORAGE(MORE); integer MORE;

vorgenommen, NEW_STORAGE generiert ein neues Objekt
der Linge N+2=MORE vom Typ STORAGE, kopiert den In-
halt des alten Sveichers in dieses neue Objekt und
setzt den globalen Zeiger STOREPOINTER entsprechend
um (Abb. B.3.2.A). Nach Ablauf von NEW_STORAGE ist
der Speicher an jedem Ende um MORE Zellen erweitert
und die Variable N, die immer die aktuelle Linge
des Sveichers angibt, um 2*MORX vergroflert,

0 e
|

STOREPOINTER ...kopieren .. ..

bl J. 1 vl

N+ 2+« MORT l ‘ 1_ T

MORE ___MORE

Abhﬁ: 8-3-E-A .

Die den Mechanismus der Speichererweiterung bestim-
menden Griolfen PERCENT und MORE sind wichtige Para-
meter von MOD2 als SIMULA-Programm. Je kleiner
PERCENT und je grofier MORE gewdhlt sind, desto
besser wird die Unendlichkeit des Speichers ange-
ndhert, Setzt man PERCENT > 100, so artet die Reali-
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sierung von MOD2 in ein Modell mit endlichem Spei-
cher aus.

Zeitverhalten:

Startsituation: Zu Beginn der Simulation werden wie
in MOD1 die M Programme (besser: Programmtypen) T,
eeey My eingelesen und im Feld

ref (PROGRAM) array P [1:M];
abgespeichert., Das Feld

integer array sT [1:M]
enthilt zu jedem Zeitpunkt der Simulation in den
Komponenten ST[j] die momentane Anzahl der im Spei-
cher befindlichen Exemplare des Prcgramms'wj‘ Die
Anfangshelegung von ST wird ebenfalls eingelesen,
da sie angibt, mit wievielen Exemplaren der einzel-
nen Programme der Speicher initialisiert wird. Der
leere Speicher mit der Startlange N wird initiali-
siert, indem fiir jedes j € [M] die ST[j] Exemplare
des Programms ‘n"_.,| in den Speicher geschrieben {(durch
Setzen von Verweisen) werden. Die zufidllige Vertei-
lung der Programme im Speicher wird mittels des Zu-
fallszahlengenerators RANDINT(1,K,U) gewidhrleistet;
jede Speicherzelle ist gleichwahrscheinlich, Es wird
jedoch verhindert, daB bereits bei Initialisierung
Programme iiberschrieben werden. Selbstverstidndlich
mul gelten:

% ST[il <« N
=1

Zum Abschluft der Initialisierung wird die M-reihige
Vorrangmatrix eingelesen und im Feld

CONFLICT [1:M, 1:M]

abgespeichert,

Simulation: TIME-mal wird der Speicher von rechts

T —— - —

nach links bzw., von links nach rechts durchlaufen.
Jede Durchlaufrichtung ist gleichwahrscheinlich.
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Durch zufdllige Wahl der Durchlaufrichtung soll
eine Bevorzugung einzelner Programme vermieden
werden, Wahrend eines Durchlaufs wird fir jede
nicht leere Speicherzelle die Prozedur MATCH auf-
gerufen, MATCH testet, ob das in der bhetreffenden
Speicherzelle befindliche Programm reproduktions-
fdhig ist und legt eventuell eine Kopie des Pro-
gramms an, Damit ist es moglich, daR ein Aufruf
von MATCH die prozentuale Speicherbelegung griter
als PERCENT werden lalt und ein Aufruf wvon NEW_-
STQRAGE notwendig wird:

for T=1 step 1 until TIME do
begin
[T_.ege Durchlaufrichtung fest];
if [Durchlaufrichtung = “von rechts nach links’]
then
begin
for 1:=1 step 1 until N do
if [I-te Zelle ungleich leer]
then
begin
MATCH(I);
if OVERFLOW then NEW_STORAGE(MORE)
end
EE

|~

else
for I:=N step =1 until 1 do
LE,EI-tE Zelle ungleich leer]

then
begin

MATCH(I);

if OVERFLOW then NEW STORAGE(MORE)
end

end «% % S T MULATTION*®»x;
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Funktionsweise

FE R EE

orocedure MATCH(I); integer I;

beEin

L]
.-
L ]

boo

lean IS_COPY;

IS_

thﬁhe'PIMEGDUHT-Kumpunente der IL-ten Sveicher-
ze

if

COPY:=false;

lle um 1 ;

cherzelle befindlichen Programms

then

-

begin

comment ss« Reproduktion des in der I-ten

) Zelle befindlichen Programms ss »
Setze TIMECOUNT-Komoonente der I-ten Spei-

cherzelle auf @

Sei die Wahl auf die W-te Speicherzelle ge-

jallen

comment ==as siehe dazu unten (iv) s«« :

ii.[W‘tE Speicherzelle gleich leer]
Lhen

beEin

comment # s« [ngehindertes Ablegen der Kopie x«=

[Schreibe Kople in die W-te Speicherzelle)] ;
IS_COPY:=true

end
else

heg}n

comment =»s W-te Speicherzelle ist bereits

) besetzt == » ;

Treffe Entscheidung mittels der ?orrangma—.
trix, ob die Kopie des in der I-ten Zelle
befindlichen Programms das Programm in der
Yi-ten Zelle iiberschreiben darf

comment = =s siehe unten (v) awae

&IHECDUET-Kumpﬂnente der I-ten Sneicherzelle
gleich DELY=-Komponente des in der IL-ten Spei-

Winhle eine zufdllige Zelle des Speichers aus.)

L}

3

)




if lherschreiben nicht mﬁglich]
then comment #» = g5 geschieht nichts s =2

else

begin
[S::hreihe Kopie in die W-te Speicherzelle] :
IS _COPY:=true

end

end;

comment x=x Falls das Programm aus Speicherzelle
I seine Kopie im Speicher ablegen
konnte, mull noch in Abhingigkeit wvon
der Durchlaufrichtung die Komponente
TIMECOUNT der W-ten Speicherzelle
gesetzt werden ==« « ;

if IS_COPY
then
begin
if Werl
then
begin
i£_[burchlaufri:htung ='von links nach rechts]
then EPIMECGUHT-KDmpUnente von Zelle W:=g]
else {rIMECOUNT-Komponente vomr Zelle W:=-1]
end
else
if [Durchlaufrichtung = von links nach rechts’]
then [['IMECOUNT-Komponente von Zelle W:=-1]
else [ﬁ.‘IMEGDUHT—Knmpanente von Zelle W:=@]
end
end
end s¢s M AT CH »~x;

;

F

(iv) Riumliches Verhalten:

Dle Auswahl der Sveicherzelle, in die ein Programm
seine Kovie ablegt, erfolgt iiber die SIMULA-Zufalls-
funktion RANDINT in Form des Aufrufs

RANDINT(1,N,U _CELL),
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(v)

wobel N die aktuelle Linge des Speichers und U _CELL
ein von RANDINT bendtigter name-Paramester ist. Jede
der N Speicherzellen ist gleichwahrscheinlich (vgl.
genaue Beschreibung der Funktion RANDINT in [éﬁ] Do
Die Auswahl der Speicherzellen fiir die Kopie weicht
geringfiigig von der in 8.3.1.(iv) beschriebenen ab.
Zusammen mit der Speichererweiterungsstrategie aus
8.3,2.(1ii) ergibt sich jedoch der in 8.3,1.(iv)
beschriebene Gesamteffekt.

Verhalten der Prﬂgramme untereinander:

In der SIMULA-Version von MOD2 wird die Vorrang-
matrix V = (vy;) nicht als Element aus %y(R), son-
dern als Element aus'ﬁﬁHﬂW) dargestellt:

integer array CONFLICT [1:M, 1:M]

Jedes Vij (=CONFLICT[i,J]) wird als nVy g Hundert-
stel" interpretiert, Daher nimmt Jedes vij néch-
stens den Wert 100 an. vij = 0 kann aus programm-
technischen Griinden nicht zugelassen werden (Ab-

weichung von 8.3.1.(v)).

M=25

Konflikt eines Programms m vom Typ T

mit einem Programm w' vom Typ LEY d.h,

™ versucht W' zu iiberschreiben:

Entscheidung (vgl. Beschreibung der Pro-
zedur MATCH) :

if CONFLICT[2,3]<RANDINT(1,100,U_CONFLICT)
then [T iberschreibt w'nicht]
lse | Tiiberschreibt ']

D

Anhang C.2. zeigt MOD2 als ausfiihrlich kommentiertes
SIMULA-Programm. Einen Uberblick iiber die in diesem Pro-
gramm benutzten Datenstrukturen gibt Abb, 8.3.2.B..
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Eingabeparameter_des SIMULA-Programms_flir MODZ2:

—— — — — e T T o — e —

- Die Anfangsliange des Speichers N
- Die Anzahl der unterschiedli- M
chen Programmtypen
- Die M Programmtypen, charak-
terisiert durch die GroBe
DELY, und ihre Jjeweilige An-
fangshdufigkeit DELY,ST [...]
- Die MxM Elemente der Vorrang-
matrix, Jedes Element ist aus

[100] CONFLICT
- Die Anzahl der vorgesehenen

Speicherdurchliufe TIME
- Die Speicherparameter MORE, PERCENT

[

8.3.3.Einige Aspekte des SIMULA-Programms fur tUD2

I. Das SIMULA-Programm fiir MOD2 gestattet Simulationen

sowohl mit endlichem als auch mit unendlichem Spei-
cher (abhingig von PERCENT).

ITI. Zur Unterstiitzung der Ausgabe werden die Prozeduren
DUMP und CONTROL in das Programm eingefiigt, Daher
enthidlt das Programm die beiden modellunabhingigen
Parameter

WHEN _DUM und WHEN_CON (vgle 8.2.4.T,undII,)

[II. Mit Hilfe des Programms fir MODZ2 lassen sich gewisse

Fragestellungen experimentell untersuchen.
ZlEi:

- Inwiewelt kann eine relativ schwache Stellung
eines Programmtyps in der Vorrangmatrix durch
eine kleine Reproduktionszeit kompensiert wer-

den, so dahb sich dieser Programmtyp gegeniiber
seinen Konkurrenten behaupten kann?

~ Selen M Programmtypen, reprisentiert durch ihre
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IV.

DELY-Komponenten, und eine entsprechende Vorrang-
matrix gegeben. Wie entwickelt sich das anzahlmi-
fige VerhdZltnis der Exemplare der einzelnen Pro-
grammtypen bei fortschreitender Simulationsdauer?
Wie lange dauert es, bis der eine oder andere Pro-
grammiyp ausgemerzt ist? Kann ein Programmtyp nach
endlicher Simulationsdauer alle anderen Programm-
typen verdrédngen?

- Fragen der obigen Art in Abhangigkeit von der
nFopulationsdichte" (gesteuert durch die Speicher-
parameter MORE und PERCENT).

- viele weltere Fragen.

Das SIMULA-Programm fiir MOD2 bietet ein weites Experi-
mentierfeld, was schon aus der Vielzahl der Eingabepa-
rameter ersichtlich ist. Leider kann keine der obigen
Fragestellungen im Rahmen dieser Arbeit mehr niher un-
tersucht werden.

Aufwand:

Speicherplatz: Die Anzahl der in MOD2 vorhandenen ver-
schiedenen Programmtypen bleibt wdhrend der gesamten
Simulation konstant. Damit bleibt auch der durch die
Felder CONFLICT, ST und P bedingte Speicherplatzauf-
wand konstant, Nur das den Soveicher simulierende dyna-
mische Feld, auf das der Zeiger STOREPOINTER verweist,
kann wahrend der Simulation groRer werden. In welchem
Mafle dieses Feld wichst, hidngt von den Parametern MORE
und PERCENT ab (vgl. 8.3.2.(ii)). Ist PERCENT > 100 ge-
wihlt, so bleibt die Grolle des Feldes immer konstant,
andernfalls nimmt die Grofde im Verlauf der Simulation
z2Uu. Die Zunahme erfolgt exponentiell mit der Anzahl
der Speicherdurchldufe, Der Faktor (100-PERCENT)/100
(=relative Anzahl der freien Speicherzellen) sorgt je-
doch dafiir, daB diese Zunahme nicht so ungehemmt er-
folgt wie im SIMULA-Programm zu MOD1, Zu beachten ist,
dall eine Vergrdflerung des Feldes immer mit der Gene-
rierung eines neuen Objekts vom Typ STORAGE verbunden
ist (Aufruf von NEW_STORAGE). Das jeweils alte Objekt
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V.

bleibt im Speicher vorhnanden.

Laufzeit: Die Laufzeit ist im wesentlichen von der An-
zahl der Speicherdurchliufe und der LiZnge des den Spei-
cher simulierenden Feldes abhdngig. Da die Grofle dieses
Feldes exponentiell zur Anzahl der Speicherdurchlidufe

widchst, hingt auch die Laufzeit exponentiell von der

Anzahl der Speicherdurchlzufe ab. Auch in bezug auf die
Laufzeit hat der Faktor (100-PERCENT)/100 eine hemmende

Wirkung. Extremfdlle:

a2} Die Lénge des Speichers ist nicht beschridnkt, aber
der Speicher ist zu Jjedem Zeitounkt der Simulation
relativ wenig belegt (PERCENT klein gewihlt). Dann
sind Konflikte relativ selten und die Programme kidn-
nen ihre Kopnien nahezu ungehindert ablegen; die Ge-
samtzahl der Programmexemplare steigt fast ungehemmt
exponentiell an. Die Situation ist dann mit der in
MOD1 vergleichbar (vgl. 8.2.4.IV.).

b) Die Lange des simulierten Speichers ist konstant
(PERCENT > 10C). Dann sind von irgendeinem Speicher-
durchlauf an alle Speicherzellen besetzt. Die Lauf-
zeit ist dann im wesentlichen proportional zur An-
zahl der Speicherdurchliufe, da die Laufzeit der
Prozedur MATCH (eine andere wird nicht mehr aufge-
rufen) durch eine Konstante beschrinkt ist,

Beim Aufruf wvon NEW _STORAGE wird der Speicher um die
konstante Anzahl von 2*MORE Elementen erweitert. Giin-
stiger wdre es wohl, wenn die Anzahl der zusidtzlichen
Elemente in einem konstanten prozentualen Verhiltnis
zur jeweils momentanen Linge des Speichers stehen
wirde.



190

— — i R R S— — — e b — i —
— e =i ol o Em g a e ——— —

Q.7 .Mpotivation

Lebende Pflanzen- und Tierorganismen waren nicht immer
so beschaffen wie heute. Vielmehr haben sie sich unter
langsamer, aber stetiger Abwandlung ihrer Eigenschaften
aus anderen (einfacheren) Lebewesen entwickelt. Man be-
zeichnet diesen Vorgang als biologische Evolution. Evo-
lution findet auch heute noch, allerdings kaum merklich,
statt. Eine kausale Erklirung fiir die biologische Evo-
lution versucht die Evolutionstheorie anzugeben, Die
moderne Evolutionstheorie 158t sich in wenigen Worten

wie folgt darlegen (vgl. [24] [13] [27] 5] ) :

Lebewesen erzeugen viel mehr Nachkommen,als zur Er-
haltung ihrer Jjewelligen Art notwendig wire. Diese Nach-
kommen variieren in ihrem Genbestand {s. 7.2.). Auch
Nachkommen derselben Eltern sind in der Regel nicht alle
gleich. Die Veridnderlichkeit des Genbestands wird durch
die Fdhigkeit der Gene zur Mutation (s, 7.2.) bewirkt.
Die Mutationsrate lebender Organismen ist HuBerst gering
und liegt bei etwa ID—“ bis TD"? pro Gen. (Diese Werte
gelten unabhidngig von der Generationsdauer der einzel-
nen Arten und sind selbst ein Ergebnis der Evolution :
Sie bewirken eine ausreichende Anpassungsféhigkeit der
Arten, ohne dafh die Arten in ihrem Genbestand instabil
werden). Da die Gene die Eigenschaften eines Individuums
ausmachen, unterscheiden sich die iiberzahlreichen Nach-
kommen in ihren Eigenschaften. Die Lebewesen stehen un-
tereinander in einem stidndigen Wettbewerb um giinstige
Lebensbedingungen, Es herrscht ein permanenter Kampf ums
Dasein (struggle for life). Es iiberleben nur die an die
Umwelt bestangepafBten Nachkommen (survival of the fit-
test). Nur diese Individuen gelangen zur Fortpflanzung.
Die anhaltende natiirliche Auslese (natural selection)
bewirkt, daB die weniger tauglichen Individuen einer Po-
pulation ( [24] S.3%7) zurtickgedringt und schlieBlich
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ausgemerzt werden. Der Zwang zur bestmdglichen Anpas-
sung an die Umwelt (Selektionsdruck) fihrt zu immer op-
timaleren Eigenschaften der Lebewesen (transformierende
Selektion). Ungeachtet, ob eine solche Anpassung - bei
gleichgebliebener Umwelt -~ bereits eingetreten ist,
entstehen mit konstanter Rate neue Mutationen. Ist die
Anpassung weit fortgeschritten, s¢ nimmt die Wahrschein-
lichkeit fiir ,,positive"™ Mutationen ab. In diesem Fall
sorgt die Selektion dafiir, dal} die genetische Zusammen-
setzung einer Population konstant bleibt, indem auftre-
tende ,negative" Mutationen -« wenn diese nicht schon
letal verlaufen sind -~ wieder beseitigt werden (sta-
bilisierende Selektion). Entstehen jedoch positive Mu-
tationen, oder verdndert sich die Umwelt erneut, so
tritt wieder transformierende Selektion ein, Mutation
und Selektion stellen die eigentlichen ,Motoren" der
Evolution dar,., Fiir die Evolution ké&nnen allerdings noch
andere Faktoren eine Rolle spielen, z.B. Isolation, Zu-
fallswirkung ( [15] Seite 317 ff,), geschlechtliche
oder ungeschlechtliche Vermehrung.

In 7.4 wurden selbstreproduzierende Programme mit
Viren verglichen. Obwohl Viren keine Lebewesen sind,
143t sich an ihnen Evolution beobachten. Die Griinde da-
fiir sind:

- Viren sind zu Mutationen fZ2hig
- Viren befinden sich ebenfalls in einem Kampf ums
Dasein und sind daher der Selektion unterworfen.

Es liegt der Schlufd nahe, dal Evolution auch bei selbst-
reproduzierenden Programmen mdglich ist, falls diese
Mutation und Selektion gleichzeitig ausgesetzt sind. In
8.%. haben wir mit MODZ2 ein Modell fiir konkurrierendes
Verhalten ( = Kampf ums Dasein ) von Programmen entwik-
kelt. Die Programmtypen in MOD2 lassen sich durch ihre
Reproduktionszeit und ihre Stellung in der Vorrangma-
trix beschreiben. In MOD2 werden sich diejenigen Pro-
gramme behaupten, die in der Vorrangmatrix eine ginstige
Stellung einnehmen, also relativ leicht Speicherplatz



192

fiir ihre Kopien finden, bzw,., die eine kurze Reproduk-
tionszeit aufweisen. Es herrscht in MODZ2 also Selek-
tionsdruck in Richtung

- kurze Reproduktionszeit
- giinstige Stellung in der Vorrangmatrix.

Wirde es einem Programmtyp gelingen, eine kiirzere Re-
produktionszeit zu erlangen, oder eine bessere Stellung
in der Vorrangmatrix einzunehmen, so wiirden seine eine
Zzelnen Exemplare den in MODZ2 vorhandenen Konkurrenz-
kampf besser bestehen kdnnen. Als Ursache filir solche
Veranderungen kommt Mutation in Frage. In 9.2. wird
MOD2 dahingehend erweitert, daR Programme die Mdglich-
keit erhalten zu mutieren., Damit liegt dann ein Modell
vor, in dem alle Voraussetzungen fiir das Eintreten von
Evolution gegeben sind, Die SIMULA-Version dieses Mo-
dells stellt dann ein Rechnerprogramm zur Simulation
von Evolution beli selbstreproduzierenden Programmen dar.

Bei dieser Gelegenheit sei erwZhnt, dall Rechnerprogramme
ganz allgemein ein adiquates Mittel zur Simulation von

Evolutionsprozessen darstellen. Der Grund ist, daf Evo-
lution (biclogische, chemische, kosmische,...) in der
Regel einen sehr langen Zeitraum benttigt, um merkliche
Verdnderungen hervorzurufen und daher Simulationsmodelle
immer vor dem Problem stehen, diesen Zeitraum, in dem ja
stdndig etwas ,geschieht", zu simulieren, MNur mit schnel-
len Rechenanlagen, die eine Vielzahl von Operationen in
Sekundenbruchteilen durchfilhren kdnnen, ist man in der
Lage, diesen Zeitraum auf ein ertrigliche=z Mal zu kom-
primieren (vgl. [8] ).

Q.2.Ein Modell MOD3 fiir Evolution selbstreproduzierender

Prngramme

Wir gehen von der Vorstellung aus, da® wihrend der Re-
produktion eines Programms w mit einer gewissen Wahr-
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scheinlichkeit p, (Modellparameter) Fehler unterlaufen,
so dal die Koplie % von w verschieden ist und in diesem
3inne eine Mutation des Programms T darstellt. I.a. wer-
den die Fehler minimal und die Unterschiede von wund T
gering sein,., Da in MOD3 Programme durch ihre Reproduk-
tionszeit und ihre Stellung in der Vorrangmatrix be-
schrieben werden, miissen sich Mutationen in einer Ande-
rung dieser Werte nach aullen bemerkbar machen, veoraus-
gesetzt, TF ist noch ein selbstreproduzierendes Programm,
Fiihrt eine Mutation nicht zu einem selbstreproduzieren-
den Programm, so liegt eine Letalmutation vor. Da Muta-
tionen immer sprunghaft und ungerichtet verlaufen, ist
das Auftreten einer Letalmutation jederzeit mdglich. In
MOD3 gibt die Wahrscheinlichkeit p, (Modellparameter)
ein Mal fiir die Hiufigkeit der letal ausgehenden Muta-
tionen an. Jede nicht letal verlaufende Mutation bringt
im Grunde ein erstes Exemplar eines neuen Programmtyps
hervor. Entsprechend werden Mutanten in MOD3 registriert,
ohne dal jedoch die ,Abstammung"™ der Mutante verloren
geht. Jedes Auftreten einer nicht letalen Mutation be-
wirkt also in MOD% immer eine Vergrdlerung der Vielfalt
an vorhandenen Programmtypen. Da durch den Konkurrenz-
kampf der Programme untereinander ein Selektionsdruck

in Richtung klirzere Reproduktionszeit (hohere Vermeh-
rungsrate) bzw. glinstige Stellung in der Vorrangmatrix
besteht, werden diejenigen Mutanten gegeniiber ihren Ori-
ginalprogrammen im Vorteil sein, die bzgl. dieser Werte
Verbesserungen aufweisen (Erhhung der Fitne?). Solche
Mutanten werden - unter gewissen Nebenbedingungen -
in der Lage sein, die Programatypen, denen die Ursr»rungs-
orogramme angehidren, zu verdringen (Selektion). Selbst-
verstandlich stellen durch Mutation entstehende Programm-
typen keine endgiiltigen Formen dar, sondern konnen selbst
#ieder Mutationen hervorbringen. Da die Reproduktion von

Programmen wie eine ,ungeschlechtliche” Vermehrung ver-
lduft, kann jede Mutante als Ausgangspunkt einer sich poten-
tiell aufzeigenden ,Linie" auseinander hervorgehender Pro-

gramme (Typen) (Klons siehe EE#] Seite 313) verstanden
werden.
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9.2.1.Informelle Beschreibung von MOD3

(1)

(ii)

(iii)

(iv)

(v)

Programme: In MOD3 werden Programme durch ihre Re-

produktionszeit und ihren Namen reprisentiert.
tellt ein Programm eine Mutation dar, so gibl der

Name Aufschluf iiber die ,Abstammung" des Programms,

Speicher: Wie in MODZ2.

Zeitverhalten: Wie in MOD2. Allerdings ist ein Pro-
gramm, das zum Zeitpunkt t reproduktionsfihig ist,
also s0 viele Zeittakte aktiv war, wie seine Repro-
duktionszeif angibt, in der Lage, eine Mutation her-
vorzubringen, Die Wahrscheinlichkeit f{iir eine Muta=-
tion betragt Py Mit der Wahrscheinlichkeit p, Ver-
lauft die Mutation letal. Verlauft die Mutation nicht
letal, so unterscheiden sich Mutante und Originalpro-
gramm mit der Wahrscheinlichkeit Pz in der Komponente
DELY. Mit der Wahrscheinlichkeit 1--1::;,5 liegt der Un-
terschied im Xonfliktverhalten (Vorrangmatrix) gegen-
iiber anderen Programmen. Das Auftreten einer nicnt
letalen Mutation bewirkt die ErhShung der Anzahl M
der momentanen Programmtypen in MOD3 um 1. Stellt die
Kopie eines Programms eine Mutation dar, so wird mit
der Mutante weiter verfahren, als handele es sich um
eine korrekte Kopie.

Raumliches Verhalten: Wie in MOD2. Mutanten und kor-
rekte Kopien werden gleich behandelt.

Verhalten der Programme untereinander: Wie in MOD?2

wird das Verhalten der Programme untereinander durch
eine Vorrangmatrix gesteuert, Beim Auftreten einer
nicht letalen Mutation muR die Vorrangmatrix um eine
Spalte und eine Zeile erweitert werden, um die Kon-

fliktf&dlle zwischen Programmen des neuen Typs mit den
Programmen der alten Typen zu regeln.

9.2.2.MOD3 als SIMULA-Programm

(1)

Prggrammei

Ein Programm{-typ) wird durch die SIMULA-Struktur
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class PROGRAM;

begin
integer IDENT,DELY,MUT;
_— e &

text PROGNAME,
end: 0

Anzahl der Mutationen

—Reproduktionszeit

Identifizierung

Name des Programms

dargestellt. Die Komponenten DELY und PROGNAME
ergeben sich aus der Beschreibung in 9.2.1.(i).
Die Komponente PROGNAME wiirde zur Identifizierung
der einzelnen Programmtypen ausreichen. Trotzdem
kann auf die Griéle IDENT aus programmiecnnischen
Griinden (array-Zugriffe) nicht verzichtet werden.
Die Komponente MUT gibt zu jedem Zeitpunkt die
Anzahl der Mutanten an, die aus dem dargestellten
Programm hervorgegangen sind,

(ii) Speicher:

(iii)

Die Darstellung des Speichers erfolgt wie im SI-
MULA-Programm fir MODZ2. Auch der Mechanismus der
Spelchererwelterung sowie dessen Steuerung ilber
die integer-GrdBen MORE und PERCENT werden iiber-
nommen. (Prozeduren: NEW_STORAGE,OVERFLOW)

Zait?erhaltﬁgi

Zundchst ist zu bemerken, daB wihrend der Simula-
tion die Anzahl M der vorhandenen Programmtypen
l.a. micht konstant bleibt. Somit sind alle Felder
die in MODZ M Komponenten aufweisen, in MOD3 von
variabler Linge. Entsprechendes gilt flir die Vor-
rangmatrix. Es miissen also in MOD3 einige Felder
dynamisch angelegt werden:

3
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class PROG(P);integer P;

begin

ref (PROGRAM) array VECTOR [1:P];
end;

ref (PROG) PROGPOINTER;

class ST(P);integer P;

begin

integer array S[1:P];

end;

ref (ST) STPOINTER; -

class CONFLICT(P);integer P;
begin

integer array MAT {1:P,1:P]; (

end;

-]

ref (CONFLICT) CONPOINTER;

anstelle von
ref (PROGRAM)

array P [1:M]

anstelle von

integer array
ST [1 :I-[]

anstelle von

integer array
CONFLICT [1:M,1:M]

Startsituatigp: Die Beschreibung der Startsituation
tbertridgt sich aus 8.3.2.(iii) unter Beriicksichti-
gung der gerade beschriebenen organisatorischen An-
derungen der Datenstrukturen. Es bleibt nur zu ver-
merken, wie die beiden zusdtzlichen Komponenten MUT
und PROGNAME initialisiert werden. Sei {W;,..., Wy}
die Menge der anfangs vorkommenden Programmtypen,

dann wird bei der Imitialisierung

- die Komponente MUT fiir jedes ™5 auf g ge-

setzt

- der Textkomponenten PROGNAME der Wert ,P1M
fir den Programmtyp Ty, wP2" fir den Pro-
grammtyp Mo, U.S.w., Zugewiesen,

Simulation: Die Beschreibung der Simulation kann

im wesentlichen aus 8,3,2.(iii) iibernommen werden,
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Da MOD3 eine echte Erweiterung von MOD2 darstellt,
bedarf es Jjedoch einiger Erginzungen, die die Er-
zeugung und Behandlung von Mutationen betreffen.
Diese Erginzungen Eullern sich in einem Satz von
Prozeduren, die si@mtlich von der Prozedur MATCH
aufgerufen werden. Bevor wir die so erweiterte
Prozedur MATCH angeben koOnnen, miissen diese zu-
sdtzlichen Prozeduren erliutert werden.

Die modellwirksamen Eigenschaften eines Pro-
gramms sind die Komponente DELY und die Stellung
des Programas in der Vorrangmatrix. Nur Mutatio-
nen in einer dieser beiden Eigenschaften haben in
MOD3 einen Selektionswert, In der SIMULA-Version
von MOD3 werden Mutationen ven Programmen mittels
der Funktionsprozedur

ref (PROGRAM) procedure MUTANT(X); ref (PROGRAM) X;

erzeugt. MUTANT liefert als Ergebnis einen Zeiger
auf eiln Objekt vom Typ PROGRAM, Dieses Objekt un-
terscheidet sich geringfiigig in einer der gben
genannten modellwirksamen Eigenschaften von dem in
Form des Zeigers X an die Prozedur iibergebenen Ori-
ginalprogramm und stellt in diesem Sinne eine Mu-
tante dar. Das Auftreten einer Mutation bewirkt
immer das Erscheinen eines neuen Programmtyps und
macht die ErhShung der Variablen M, die zu jedem
Zeitpunkt die Anzahl der im Modell vorhandenen Pro-
grammtypen angibt, um 1 erforderlich. Diese Erhs-

hung wird bereits vor dem Aufruf der Prozedur
MUTANT vorgenommen,

Funktionsweise von MUTANT:

l'l'll'lll‘l.‘.-‘hil-llﬁil{"‘.

1. Zunichst legt MUTANT ein neues Objekt vom Typ
PROGRAM an und initialisiert die nicht unmittel-
bar modellrelevanten Komponenten., Dieses i{jber

den Zeiger HELP adressierte Objekt wird als Mu-
tante des Programms X aufgebaut.
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ref (PROGRAM) HELP;

HELP:-new PROGRAM;

HELP.MUT :=0;

HELP.IDENT :=M;

HELP.PROGNAME : =CREATE _NAME;

comment Beschreibung von CREATE NAME s.u.;
XHMUT : =X JMUT+ 1,

comment x = x Die Komponente MUT des Original-

programms X wird erhdht, um die
Mutation dieses Programms zu re-
gistrieren, s = ;

II. Da die Mutante einen neuen Programmtyp dar-
stellt, mufll die Vorrangmatrix um eine zusitz-
liche Zeile und Spalte erweitert werden. Zum
Zeitpunkt des Aufrufs von MUTANT steht noch
nicht fest, ob sich die Mutante etablieren
kann oder im Anschluf an ihre Generierung
wieder eleminiert wird (vgl. unten Funktions-
weise der Prozedur MATCH). Daher filhrt MUTANT
die Erweiterung der Vorrangmatrix noch niecht
aus, sondern erzeugt als Seiteneffekt nur die
Zeile. und die Spalte, um die die Vorrangmatrix
bel Etablierung erweitert werden muf, Die Zeile
und die Spalte werden in Form des Datentyps

class FIELD(P); integer P;
begin
integer array V[1:2,1:P];
comment sxx* V(1,...] entspricht der Spalte
v[z,.. .1 entspricht der Zeile *xx;

end .

h'

zusammengefalit., MUTANT erzeugt ein Objekt vom

Typ FIELD und weist es der globalen Variablen
CHANGE _CONFLICT zu:

CHANGE_CONFLICT:-new FIELD(M);

Die Komponenten der X.IDENT-ten Zeile bzw.
Spalte der Vorrangmatrix regeln die Konflikte
zwischen Exemplaren des Programms X und den
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Exemplaren der anderen Programmtypen., Bzgl.
der Konflikte weist die Mutante ein dem Pro-
gramm X shnliches Verhalten auf, Daher wird
die X.IDENT-te Spalte in die erste Zeile von
CHANGE CONFLICT.V und die X.IDENT=-te Zeile
in die zwelite Zeile von CHANGE_CONFLICT.V

kopiert. Siehe Abb. 9.2.2.A.

X.IDENT M-1

T Tk — CONPOINTER

L
r

—

1

i

Lt R T —
-
L aE R -

- - — -

K.IDENT:

- e o e e

Kopieren

CHANGE_CONFLICT e

Abb, G.2,2.A
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ITI.

CHANGE _CONFLICT.V(1,M),

CHANGE _CONFLICT.V(1,X.IDENT) und
CHANGE_CONFLICT.V(2,X.IDENT) stellen die Kompo-
nenten dar, die in der erweiterten Vorrangmatrix
die innerartlichen Konflikte zwlschen Exemplaren
der Mutante HELP bzw. zwischen Exemvlaren der
Mutzante und des Originalprogramms i regeln sol-
len und werden zu diesem Zweck neu generiert.
Dies geschieht mit Hilfe der Zufallsfunktion
RANDINT, Wegen der engen Verwandschaft zwischen
Mutante und Originalprogramm weichen die Werte
dieser Komponenten um héchstens 100% von der
Komponente in der allen Vorrangmatrix ab, die
die innerartlichen Konflikte zwischen Exemplaren
des Programms X regelt, Bis auf diese 3% notwen-
digerweise neuen Werte weist die Mutante also
bisher das gleiche Konfliktverhalten auf wie das
Originalprogramm.

In welcher der beiden modellrelevanten BEigen-
schaften sich das Programm X von seiner Mutante
unterscheidet, wird bestimmt mittels der Grsfe
PROB_DELY (PROB_DELY stelit den Modellparameter
pz auf Programmebene dar). Mit der Wahrschein-
lichkeit PROB_DELY*10™~ mutiert (iiber Zufalls-
funktion RANDINT) die DELY-Komponente deg Pro-
gramms X, Mit der Wahrscheinlichkeit
1-PROB_DELY#10™> erhilt die Mutante ein in Bezug
auf einen der anderen in MOD3 vorhandenen Pro-
grammtypen (also nicht X) verindertes Konflikt-
verhalten als das Originalprogramm X.

- Unterscheiden sich die Mutante und das Ori-
ginalprogramm in ihren DELY-Komvonenten, so
liegt der Unterschied bei hdchstens 100%:

HELP.DELY:=RANDINT (1,2%X.DELY,U_DELY2)
while HELP.DELY=X.DELY do
HELP.DELY:=RANDINT(1,2«X.DELY,U_DELY2)

= Erh3lt dle Mutante ein anderes Konfliktver-
halten als das Originalprogramm £y s0 wird
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genau eine Komponente des Feldes
CHANGE_CONFLICT um hichstens 100% gedndert,
Es muf} sich dabel um eine Komponente han-
deln, die aus der alten Vorrangmatrix iiber-
nommen worden ist. Die Komponente darf also
nicht die Indizes [1,M], [2,M], [1,X.IDENT]
und [2,X.IDENT ] aufweisen und wird mittels
der Zufallsfunktion RANDINT ausgewzhlt:
integer 1,J,X,U_CONFLICT;

L ]
-
&

J:=X,IDENT;

while J=X.IDENT do

begin
J:i=RANDINT(1,2s(M-1),U_CONFLICT);
if Jé M-1

F

K :=RANDINT(1,2#CHANGE_CONFLICT.V[I,J],U_CONFLICT);
while K=CHANGE_CONFLICT.V[I,J] do

K:=RANDINT(1,22CHANGE_CONFLICT.V[I,J] ,U_CONFLICT):
CHANGE_CONFLICT.V[I,J] :=K;

IV, Nach AbschluBl von ITI. liegen die fertige Mutante
sowie die Anderungszeile und -spalte der Vorrang-
matrix in Form von HELP bzw. CHANGE_CONFLICT vor.
Da MUTANT eine Funktionsprozedur ist, wird MUTANT
mit der Anweisung MUTANT:=ERTLP beendet.
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Beigpiel:
M=3
IDENT DELY MUT PROGN AME
1 2 b

CONPQINTER * 12 588 617

: 128 5 799

875 35 16
Fine Mutation tritt auf:
M := M+1

L e > 2 11 L p2

CHANGE_CONFLICTs
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Mutation

DELY-Komponente

Mutation

Konfliktverhalten

MUTANT

{"* Li1g| g | P2t

CHANGE_CONFLICT wie oben

MUTANT

L |11 J 2 | P2.1 I

CHANGE_CONFLICT

1

—geinderte Komponente

In der Prozedur MUTANT wird die Komponente PROGNAME
der gehnerierten Mutante durch Aufruf der Funktions-

prozedur

text procedure CREATE_NAME(X); ref (PROGRAM) X:

gesetzt,
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Egg@@innswei_?.?gg CREATE _NAME:

s & @ @ & - & F § 6 B @ 4 @ & B B 5 @

CREATE_NAME besitzt als formalen Eingabeparameter
X einen Zeiger auf ein Objekt vom Typ PROGRAM und
liefert als Srgebnis einen Text. Dieser Text stellt
den Namen einer Mutante des Programms X dar und
wilrd aus den Komponenten X,MUT und X.PROGMNAME er-
zeugt, indem an den Text X.PROGNAME das Zeichen

ne'' gefolgt von der Zahl X.MUT (als Text interore-
tiert) gehdngt wird.

Beispiel: o) ye— 1 | 11 | 3 | P
Pt 1 1

IDENT DELY MUT PROGNAME

CREATE_KAME = Pi1.3

b) Xe—— 5 3 1 P1.3

CREATE_NAME = P1.3.1

Da beim Auftreten einer Mutation eines Programms
dessen Komponente MUT um 1 erhdht wird, liefert
dieser Mechanismus fir aufeinanderfolgende Muta=-
tionen desselben Programms verschiedene Namen. Da
der aktuelle Parameter fiir X selbst eine Mutante
sein lkann (s. Beispiel b)), 13Rt sich der Kompo-
nente PROGNAME eines Programms stets dessen ,stam-
mesgeschichtliche Entwicklung" zuriickverfolgen
(siehe Abb, 9.2.2.B). Dies widre an Hand der
integer-Komponenten IDENT, die in MOD2 zur Iden-

tifizierung der Programme ausreichte, nicht mdg-
lich.
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Pl.1.1

%?1.1.2
P1.1 .
P1&F——— P1.2 :

%?1.2.1

.2

FINEERE N
g
i
]
P

Illilii'il-.l--‘j-.i"...-‘.-‘...-ﬁ-

LI O I
[ ]

o
M
A
o o Mo
- ] L ]
Wy =
[ EEE RN NN ETE SN

Name der Origi- Namen der Mu- Namen der
nalprogramme tanten erster Mutanten zwei- cera
Stufe ter Stufe

Abh, 9.2.2.B

Wie schon wiederholt erwidhnt, stellt das Auftreten
einer Mutation i.a. eine Vergrdberung der Anzahl
der aktuellen Parametertypen dar, Das macht sich
schon in der (zundchst vorldufigen) ErhShung der
Variablen M bemerkbar. Kann sich die Mutante eta-
blieren (s.u. Beschreibung der Prozedur MATCH), so
miissen die dynamischen arrays erweitert werden, die
die Mutante speichern, registrieren bzw. verwalten.
Diese Erweiterungen werden durch Aufrufe der Pro-
zeduren

procedure NEW_PROG(P); ref (PROGRAM) P;
procedure NEW_ST(T); ref (PROGRAM) T; und
procedure NEW_CONFLICT(A); integer array A4;

gewdhrleistet,

Funktionsweise von NEW_PROG:

LEE S B I B N B B BN BN B BN NN RN O BN BN OB RN BN i U

Der Zelger PROGPOINTER verweist auf dasjenige Feld,
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mit dessen Hilfe die eigentliche Abspeicherung der
Programme (Typen) erfolgt, Beim Auftreten einer
Mutation = die Mutante wird in Form des Zeigers
P als Parameter an NEW_PROG Ubergeben - muf
dieses Feld um eine Komponente erweitert werden.
Realisiert wird dieses durch Generierung eines
neuen Feldes (Objekt vom Typ PROG), einen einfa-
chen Koplerprozed und anschlielendes Umsetzen des
Zeigers PROGPOINTER. Siehe Abb. 9.2.2.C.

PROGPOINTER g e
Y Y
12 | > Pl [* ’ 1
2: | * ? p2 [© ) 2
. )
: ! : I
! | | )
) ) | !
f ' ' :
! ' : )
! | i
M=T: . ™ e . tM-1
Mutante: p PM I( . M

Abb, 9.2.2.C
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Funktionsweise von NEW ST:

TR E R E R R R R R E R E

Das Feld, auf das der Zeiger STPOINTER verweist,
enthidlt zu jedem Zeitpunkt der Simulation in der
i-ten Komponente die momentane Anzahl der Exem-
plare des i~ten Programmtyps. Das Feld wird beim
Auftreten einer Mutation um eine Komponente zur
Registrierung der Exemplare der Mutante erweitert.
Die zusdtzliche Komponente wird mit 1 initialisiert.
Ansonsten analog zu NEW_PROG. Siehe Abb. 9.2.2.D.

STPOINTER %

1: 1

Kopieren

— S e
— e R e e e
- . . e
i T ——

=
A
|
=
L

Abb. 5.2.2.D

Funktionsweise von NEW CONFLICT:

F R BB E R R AR R A R s T e e

Der Zeiger CONPOINTER verweist auf das Feld, das die
Vorrangmatrix speichert. Beim Auftreten einer Muta-
tion mufl dieses Feld um eine Spalte und eine Zeile
erweitert werden. Diese Zeile und Spalte entspre-
chen dem Konfliktverhalten der Mutante. Zeile und
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Spalte werden in Form des formalen Parameters
integer array A an NEW_CONFLICT fibergeben, Der
Aufruf von NEYW_CONFLICT erfolgt mit dem durch
CHANGE_CONFLICT adressierten Feld als aktueller
Parameter, Dieses Feld wird vor Aufruf von

NEW _CONFLICT von der Prozedur MUTANT generiert
(s.0. Funktionsweise der Prozedur MUTANT). Im
ibrigen erfolgt der Ablauf von NEW_CONFLICT, wie
Abb. 9.2,2.E zeigt, analog zu NEW_PROG und
NEY_ST.

Abb, 9.2.2.E greift das Beispiel aus der Beschrei-
bung der Prozedur MUTANT auf.

alte Vor- neue Vor-
rangmatrix rangnatrix
1 2 3 X 1 2 3 4=M
T: |12 5831617 1:112 | 538|617 538 |
2: |128] 5 |799|( 2.l 128 5 | 799
3: |875(35 |16 J 3: 35 |
x
L:

Konlere:

GONPOINTER

CHANGE_CONFLICT

Abb. 9,2,2.E
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Nach ErlHuterung der der Erzeugung und Behandlung
von Mutationen dienenden Prozeduren sind wir in der

Lage, die Prozedur MATCH anzugeben. MATCH stellt,
wie schon im SIMULA-Programm zu MOD2 (s. 8.3.,2.),
das Herezstiick der Simulation dar. Das ibergecrd-
nete Simulationsschema, wie es in 8.3.2.(iii) 3ei-
te 182 angegeben ist, kann vollstdndig libernommen
werden.

procedure MATCH(I); integer I;
begin

boolean IS_COPY;
IS_COPY:=false;

Erhéhe TIMECQUNT-Komponente der I-ten Speicher-
zelle um 1.

if [ TIMECOUNT-Komponente der I-ten Speicherzelle
glelch DELY-Komponente des in der I-ten Spvei-
| cherzelle befindlichen Programms

-

then

begin
comment « s x Reproduktion des in der I-ten Felle
befindlichen Programms = = = ;

I?etze TTMECOUNT~-Komponente der I=ten E':;ptsb]‘.::h.»ar--_I
zelle auf @

Wihle eine zufdllige Zelle des Speichers aus.:
Sel die Wahl auf die W-te Speicherzelle gefal-
len.

comment =+« Siehe dazu oben 8.3,2.(iv) sx= ;

[?reffe Entscheidung, ob das in der I-ten Spei—]

—

cherzelle befindliche Programm mutiert.

comment =« « Die Mutationswahrscheinlichkeit be-
trigt PRDE_HUT#1D'8 = Py (Modell-
parameter). Die integer-Grdfe PROB.
MUT stellt den Modellparameter P4

auf Programmebene dar, « x x ;
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if [ rogramm in der I-ten Speicherzelle mutiertJ
then

begin
Erraffe Entscheidung, ob die Mutation letal ?erlﬁuftJ -

comment «» » Die Wahrscheinlichkeit fiir den letalen Ver:
lauf einer Mutation betrigt PROB_LETALx10™°
= p, (Modellparameter). Die integer-Groie
PROB_LETAL stellt den Modellparameter p,
auf Programmebene dar, = =x

if [Letaler Verlauf der }Iutatinn]

then [érhﬁhe die Komponente MUT des in der I-ten Zelle

gespeicherten Programms um 1,

comment ==« Dies geschieht zur Registrierung der
Mutation. Im Falle einer nicht letalen
Mutation wird die Erhthung der Kompo-
nente MUT von der Prozedur MUTANT vor-
genomnen, &&=

else
begin
comment = x « Existenzfihige Mutation = ax
M:i=M+1;
comment x« =« Rettung der alten Vorrangmatrix und des
alten Programmspeichers « s = ;
OLD_CONPOINTER:-CONPOINTER;
OLD_PROGPOINTER :-PROGPOINTER;
-ﬁrzeuge Mutante des in der I«ten Speicherzelle be~
findlichen Programas (Aufruf MUTANT). Trage den von
MUTANT erzeugten neuen Programmtyp in den Programm-
speicher ein (Aufruf NEW_PROG). Erweitere die Vor-
rangmatrix (Aufruf NEW_CONFLICT),
comnent » *x CONPOINTER und PROGPOINTER verweisen auf“|
die neue Vorrangmatrix bzw. den neuen
Programmspeicher = x x ;
if [W-te Speicherzelle leer]
then
begin
comment zx«x Ungehindertes Ablegen der erzeugten
Mutante im Speicher » xx;

———




[échreibe die Mutarnte in die W-te Speicheraell%] r

NEW_ST;
IS_COPY:=true
end
else
begin

comment sxx W-te Speicherzelle ist bereits be-

setzt, xx=x |
Treffe Entscheidung mittels der neuen Uﬂrrangma:
trix, ob die Mutante das in der W-ten Zelle be-
findliche Programm iliberschreiben darf, ]
comment xxx Siehe unten (v) xxx ;
if [Uherst:hreiben nicht m-’:iglir.:h]
then

begin
comment s 2+ Vernichtung der Mutante, Wiederher-
stellung der alten Tabellen sxx ;

M:=M=1;
CONPOINTER:~OLD_CONPOINTER;
PROGPOINTER:~-OLD_PROGPOINTER

end
else

begin

comment »x« Die Mutante kann das in der ¥-ten

Zelle befindliche Programm iiberschrei=-

ben. x x x ;
[Echreihe Mutante in die W-=te Speicherzelle] ;
NEW_ST;
IS_COPY:=true
end
end
end

end

else

begin

comment * x x Das Programm in der I-ten Speicherzelle er-
zeugt eine korrekte Kopie ohne Mutation xx x ;

if [W-te Speicherzelle leer]

then




begin

comment xxx Ungehindertes Ablegen der Kople x¥x ;
[En:hreibe Kopie in die VW-te Sneicherzelle] -
IS_UGFY::E}E

end

glse

begin

comment xx x W-te Speicherzelle bereits besetzt »xx ;

Treffe Entscheidung mittels der Vorrangmatrix, ob
die Kopie des in der I-ten Zelle befindlichen
Programms das Programm in der W-ten Zelle iiber=-
schreiben darf. .
comment xx x Siehe unten (v) ¥xx ;
if [Uberschreiben nicht méglich]
then comment ¥xxx Es geschieht nicints xxx ;
else
begin
[Schreibe Kopie in die W-te Speicherzella] -
IS_COPY:=true
end
end

end;
comment xxx Falls das Programm aus Sveicherzelle I

seine Mutante/Kopie im Sveicher ablegen
konnte, mufl noch in Abhidngigkeit wvon
der Durchlaufrichtung die Komponente
TIMECQOUNT der W-ten Speicherzelle ge-
gsetzt werden x xx;

@ (s.5.184)

end

end xxx MATCH ¥ x «;
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(iv) Rdumliches Verhalten:

Wie im SIMULA=-Programm fiir MOD2, da die M&glichkeit
der Mutation hier keine Anderung bedingt.

(v) Verhalten der Programme untereinander:

Wie im SIMULA-Programm fir MOD2. Jedes Element v, .

J

der momentanen Vorrangmatrix wird jedoch als-“vij

Tausendstel" interpretiert, was eine Verfeinerung
gegeniiber dem Programm fiir MOD2 darstellt., Die Ele-
mente der Jeweiligen Vorrangmatrix sind somit Ele-

mente der Menge [1000],

Anhang C.3. zeigt die Realisierung wvon MOD3 als ausfiihr-
lich kommentiertes SIMULA-Programm. Einen Uberblick iiber
die in diesem Programm benutzten Datenstrukturen gibt

Abb, 9.2.2.F.

Eingabeparameter des SIMULA-Prograums_ fiir MOD3:

. _-— . A S T S I T AR e T o - S T —— i — - —

- Die Anfangslidnge des Speichers

~ Die anfé&ngliche Anzahl der un-
terschiedlichen Programmtypen

- Die M anfanglichen Programmty-
pen, in Form der Grolke DELY
und der Anfangshdufigkeit

- Die MxM Elemente der anfing-
lichen Vorrangmatrix. Jedes
Element ist aus [1000].

- Die Zahlen, die die Wahr-
scheinlichkeiten fiir Muta-
tionen, Letalmutationen und
Mutationsart festlegen

- Die Anzahl der vorgesehenen
Speicherdurchliufe

- Die Speicherparameter

- — —

DELY, STPOINTER.S[ v+ ]

CONPOINTER,MAT

PROB_MUT € [108]
PROB_LETAL € [106]
PROB_DELY € [10°]

TIME
MORE , PERCENT
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9.2.3.Einige Aspekte des SIMULA-Programms fiir MODS

Le

II.

III.

Iv.

Das SIMULA-Programm fiir MOD? gestattet Simulation so-
wohl mit endlichem als auch mit unendlichem Speicher
Gbhdngig von PERCENT).

7ur Unterstiitzung der Ausgabe wurden die Prozeduren

DUMP, CONTROL und AVERAGE in das Programm eingefiigt.
Daher enthilt das Programm die drei modellunabhéngi-
gen Parameter

WHEN_DUM
WHEN _CON und
WHEN_AVE (vgl. 8.2.4, I. und II.)

Wird PROB_MUT auf @ gesetzt, also das Auftreten von
Mutationen unterdriickt, so ergibt sich die SIMULA-
Version von MODZ2.

Mit Hilfe des Programms fiir MOD3 lassen sich gewisse
Fragestellungen experimentell untersuchen. Aus III.
folgt, daB sich alle im Zusamnmenhang mit dem SIMULA-
Programm fiir MOD2 stellenden Fragen auch mit dem
Programm fiir MOD3 bearbeiten lassen. Das Programm fiir
MOD3 ermdglicht dariiber hinaus, Fragen im Hinblick
auf Evolution zu bearbeiten. Z.B.:

~ Welche Mutationshaufigkeit ist im vorhandenen
Modell optimal?

- Welche Mutationsrate darf kKeinesfalls iiberschrit-

ten werden, um die auftretenden Mutanten nicht
instabil werden zu lassen?

- Durch entsprechendes Setzen von PROB_DELY sind
differenzierte Betrachtungen im Hinblick auf die
Selektionswirksamkeit der Reproduktionszeit

(DELY-Komponente) und der Stellung in der Vor-
rangmatrix mdglich,

- Wie konnen sich Mutanten einerseits gegeniiber
Exemplaren ihres eigenen Ursprungstyps und ande-
rerseits gegeniiber Exemplaren anderer Programm-



typen durchsetzen? (Die Beantwortung wird unter-
stiitzt durch die Programmnamen der Mutanten, die
die ,stammesgeschichtliche"” Entwicklung der Mu-

tanten enthalten (vgl. CREATE_NAME).

- Qbige Fragen mit unterschiedlicher ,Populations-
dichte" (Steuerung liber MORE und PERCENT)

- viele weitere Fragen.

Das SIMULA-Programm fiir MOD3 bietet also ebenfalls ein
weites Experimentierfeld. Leider kann die eine oder
andere der obigen Fragestellungen im Rahmen dieser Ar-
beit nicht mehr ndher untersucht werden.

Aufwand:

Ohne in Einzelheiten zu gehen ist klar, dal sowohl fiir
den Speicherplatzaufwand, als auch fiir die Laufzeit _
die fir das Programm fir MOD2 gemachten Aussagen giil-
tig sind. Der Aufwand wichst also i.a. exponentiell
mit der Anzahl der Speicnerdurchldufe. Gehemmt wird
dieses Wachstum durch einen Faktor, der um so einflu?-
reicher ist, je hfher die zulidssige Belegungsdichte
des simulierten Speichers ist (vgl. 8.3%.,3%.IV.). Ein
gewisser Mehraufwand wird durch die komplizierten Da-
tenstrukturen und die mutationsgenerierenden- und ver-
waltenden Prozeduren bewirkt (siehe Abb. ©.2.3%,.4),

Prozedur Aufwand fir grofles M
MUTANT O(M)
CREATE_NAME konstant
NEW_PROG O(M)
NEW_ST 0(M)
NEW_CONFLICT 0(M°)
(M = Aktuelle Anzahl der vor-
handenen Programmtypen)

Abb, 9.2.3.A



VIi.

VII.

Dieser Mehraufwand fdllt jedoch kaum ins Gewicht, zu-
mal es realistisch ist, von kleinen Mutationsraten
auszugehen, so daB M ebenfalls klein bleibt,

Es gilt auch fiir das SIMULA-Programm fiir MOD3 bzgl.
des Speichererweiterungsmechanismus die Bemerkung

8.3.3.IV..

Im SIMULA-Programm fiir MOD3 unterscheiden sich Mutan-
ten von ihren Originalprogrammen in genau einer mo-
dellrelevanten Grdfe um maximal 100% (vgl. Beschrei-
obung der Prozedur MUTANT). Dieser Spielraum von 100%
ist willkiirlich gewdhlt und liefe sich sicher auch in
Form eines variablen Parameters festlegen. Die kleinst-
mogliche Mutationsrate betrigt in der SIMULA-Version
von MQD3 TG“B. Dieser Wert orientiert sich an der Bio-
logie und ist im Zusammenhang mit Evolution bei Rech-
nerprogrammen zumindest fraglich. Es bietet sich daher
an, auch diesen Wert durch einen variablen Eingabepa-
rameter zu ersetzen,

Analog: kleinstmogliche Rate fiir Letalmutationen,
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