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Preface

On behalf of the Program Committee, it is our pleasure to present the pro-
ceedings of the 6th GI International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA).

Since 2004, DIMVA annually brings together leading researchers and
practitioners from academia, government and industry to present and discuss
novel security research. DIMVA is organized by the Special Interest Group
Security—Intrusion Detection and Response (SIDAR)—of the German Infor-
matics Society (GI).

The DIMVA 2009 Program Committee received 44 submissions from indus-
trial and academic organizations from 17 different countries. Each submission
was carefully reviewed by at least three Program Committee members or exter-
nal experts. The submissions were evaluated on the basis of scientific novelty,
importance to the field and technical quality. The final selection took place at
the Program Committee meeting held on March 23, 2009, in Brussels, Belgium.
Ten full papers and three extended abstracts were selected for presentation and
publication in the conference proceedings.

The conference took place during July 9–10, 2009, at Villa Gallia, Lake Como,
Italy, with the program grouped into five sessions. Two keynote speeches were
presented by Richard A. Kemmerer (University of California, Santa Barbara)
and Henry Stern (Ironport / Cisco). The conference program was complemented
by the Capture-the-Flag contest CIPHER (Challenges in Informatics: Program-
ming, Hosting and ExploRing) organized by Lexi Pimenidis (iDev GmbH) and
a rump session organized by Sven Dietrich (Stevens Institute of Technology).

A successful conference is the result of the joint effort of many people. In
particular, we would like to thank all the authors who submitted contributions.
We also thank the Program Committee members and the additional reviewers for
their hard work and diligent evaluation of the submissions. In addition we thank
Thorsten Holz (University of Mannheim) for sponsor arrangements and Sebastian
Schmerl (Technical University of Cottbus) for advertising the conference.

July 2009 Ulrich Flegel
Danilo Bruschi
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Sven Dietrich Stevens Institute of Technology, USA
Toralv Dirro McAfee Avert Labs, Germany
Thomas Dullien Zynamics, Germany
Bernhard Hämmerli Acris GmbH and HSLU Lucerne, Switzerland
Marc Heuse Baseline Security Consulting, Germany
Thorsten Holz University of Mannheim, Germany
Erland Jonsson Chalmers University of Technology, Sweden
Klaus Julisch IBM Zurich Research Laboratory,

Switzerland
Engin Kirda Eurecom, France
Christian Kreibich International Computer Science Institute,

USA
Christopher Kruegel UC Santa Barbara, USA
Pavel Laskov University of Tuebingen, Germany
Wenke Lee Georgia Institute of Technology, USA
Javier Lopez University of Malaga, Spain



VIII Organization

John McHugh UNC and Dalhousie University, Canada
Michael Meier Technical University of Dortmund, Germany
George Mohay Queensland University of Technology,

Australia
Martin Rehák Czech Technical University in Prague,

Czech Republic
Konrad Rieck Berlin Institute of Technology, Germany
Sebastian Schmerl BTU-Cottbus, Germany
Robin Sommer ICSI/LBNL, USA
Salvatore Stolfo Columbia University, USA
Peter Szor Symantec Corporation, USA
Bernhard Thurm SAP Research, Germany
Al Valdes SRI International, USA

Additional Reviewers

Martin Apel
Marco Balduzzi
Ulrich Bayer
Armin Büscher
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A Case Study on Asprox Infection Dynamics

Youngsang Shin1, Steven Myers2, and Minaxi Gupta1

1 Computer Science Department,
Indiana University,

Bloomington, Indiana
{shiny,minaxi}@cs.indiana.edu

2 School of Informatics,
Indiana University,

Bloomington, Indiana
samyers@indiana.edu

Abstract. The Asprox infection weaves a complex chain of dependen-
cies involving bots that perform SQL injections on vulnerable web servers,
and visitors whose machines get compromised simply by visiting infected
websites. Using real-world data sets, we study Asprox bots, infected web
servers, and the malicious infrastructure behind Asprox propagation. We
find that the malware-propagation infrastructure in Asprox is aggressively
provisioned to resist take-down efforts. This, combined with the easy avail-
ability of vulnerable user machines and web servers whose administrators
are probably constrained in time and resources necessary to fix the prob-
lem, indicates that cleaning up Asprox infections is not going to be easy.

Keywords: Asprox, Malware, SQL Injection, Security.

1 Introduction

The Asprox botnet has been around since 2007. It was initially used exclusively
for sending phishing emails. Around May 2008, a new update was pushed to
Asprox bots in an attempt to grow the size of the botnet [1]. This update added
an SQL injection vector. The updated bots could attack legitimate websites and
inject scripts that redirected the browsers of visitors to these sites to infrastruc-
ture that cause the drive-by-download of malware. This malware is normally the
Asprox botnet itself, but other payloads have been observed. Since the SQL in-
jection vector was added, a significant number of web servers have been attacked
and their unsuspecting visitor machines turned into Asprox bots [2] [3].

The Asprox botnet has a multi-step life-cycle, shown in Figure 1. The bots
begin by using a search engine, such as Google, to find vulnerable web servers.
Specifically, they search for servers that use asp, aspx, or php scripts to dy-
namically generate web pages from SQL databases. Next, the bots attempt an
SQL injection attack on each server. If successful, the injection inserts malicious
JavaScripts that invisibly redirects the browsers of visiting machines to malicious
infrastructure. The infrastructure is also typically comprised of Asprox bots. Any
visitor that browses an SQL-injected web server is at the risk of being infected

U. Flegel and D. Bruschi (Eds.): DIMVA 2009, LNCS 5587, pp. 1–20, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Malware delivery
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Fig. 1. Components of a typical Asprox infection. 1) A bot performs a successful
SQL injection attack on a vulnerable web server. 2) A user visits the attacked server
and views infected web pages, causing the download and execution of JavaScript code
with <script> tags. 3-4) The (hidden) JavaScript invisibly directs the user’s browser
to a malicious host by exploiting <iframe> tags. 5) JavaScript of the malicious host
scans the visitor’s machine for vulnerabilities in the browser and OS, and redirects
accordingly to potentially yet another final malicious site. 6-7) The final malicious
site launches a drive-by-download that takes specific advantage of the vulnerability
discovered in Step 5.

with Asprox malware, with infection ultimately depending on whether or not the
visitor’s system is vulnerable to the attacks targeted by the drive-by-download.
If the drive-by-download is successful, the typical payload includes—at the very
least—the Asprox bot code. The life-cycle is complete, and ready to repeat.

As with all botnets, there are many types of harm and fraud that can be com-
mitted with Asprox. We have directly observed it being used to commit fraud
through traditional phishing activities and fake virus protection scams. However,
what makes Asprox interesting to study is both the multi-stage infection tech-
niques it uses to spread, and the counter-countermeasures it uses to defend itself
from take-down and detection attempts. Examples of such techniques include
fast flux and JavaScript obfuscation.

Goals of the Study: In this paper, we analyze Asprox from three perspec-
tives. First, we study the beginning of Asprox life-cycle by looking at the bots
that were attempting to perform SQL injection on the web servers at Indiana
University. Second, we study the extent to which the SQL injection attack is
successful on a global population of web servers, and how long the infection per-
sists by directly searching for infected servers on the Web. Finally, we study the
defensive posture of the infrastructure responsible for scanning for vulnerabili-
ties and delivering malicious content to machines whose browsers are redirected
due to successful SQL injections. We also consider how it is provisioned to resist
take-down attempts. Our study offers a unique perspective on the Asprox infec-
tion, a perspective that would not be possible through passive data collections
techniques, such as honeypots.
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Key Observations: We make several observations about the Asprox infection
from our data: Though Asprox is a global phenomenon, over one third of the
Asprox bots that were detected injecting SQL into vulnerable web servers were
physically located in China. Yet only 5% of the SQL-injected web servers we
found were located in China. Additionally, the the majority of the infrastruc-
ture that hosted the malicious JavaScripts and drive-by-downloads was located
in the USA. This suggests that the botmasters are actively partitioning their
infrastructure along technical, geographic or jurisdictional boundaries.

The Asprox bots exhibited activity patterns that strongly suggested that
many of them were residential machines. Miscreants also seemed to rotate the
bots, we hypothesize this is to prevent them from being sterilized by blacklisting
of the bots. Our data did not contain any popular web servers (as defined by the
Alexa data set [4]), indicating that those are either better secured or are quickly
cleaned when SQL injections are found. A number of high-profile sites that gar-
nered media attention when they were found to be infected suggest that it might
be the latter case, more than the former. Unfortunately, we measured that over
1/4 of the infected web servers in our data set continued to host SQL-injected
pages for over 100 days, and many of them are likely still hosting the injection!
The remaining 3/4 of the sites were cleaned, but 60% of these took over a month
to be cleaned. This clearly points to the need for either better awareness and/or
resources for the operators of these servers. We note we cannot definitively say
if the sites remain uncleaned for so long because the administrators are not
aware of the injection, or if it is because they lack the tools to easily clean their
databases.

Finally, we found that 58% of the hosts that delivered malicious JavaScripts
were provisioned using fast flux to actively resist take-down efforts.

Roadmap: The remainder is organized as follows: Section 2 describes the data
collection; Section 3 presents our analysis of Asprox infection dynamics; related
work is discussed in Section 4; and Section 5 concludes the paper.

2 Data Collection and Overview

We collected three types of data for analysis. The first data set contains a network
log of the Asprox bots that tried to launch numerous SQL injection attacks on
various Indiana University web servers in August of 2008. The second data set
contains the URLs of the infrastructure that delivered the malicious JavaScript.
The last data set contains information gathered about infected web servers, and
how quickly they were cleaned, if at all. Although the first two data sets play
different roles in the Asprox infection process, we believe that they are in the
same Asprox botnet. This is because even though we gathered the two data
sets over different time periods and from different sources, we actually saw 8
common IP addresses in those two data sets. This is a small overlap, but it
implies that infected machines can act as either SQL injection attackers, or as
JavaScript/drive-by-download hosts. In the following subsections we describe
them and their collection method in a detail.
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2.1 Data on Asprox Bots

The first data set contains the IP addresses and time stamps of the Asprox bots
that launched SQL injection attacks on various Indiana University web servers
in August 2008. The attacks were filtered via a router’s firewall by looking for
an Asprox SQL injection-specific string [5]. The attacks peaked in August 2008
causing massive amounts of unwanted traffic for the university. Table 1 shows
the overview of this data set.

Table 1. Asprox bots and their targets

Collection period 8/9/2008 - 8/25/2008

Unique IP addresses of attacking bots 57,419
Autonomous systems attackers belonged to 1,847
Web servers targeted 581

Figure 2 depicts the geographical distribution of the IP addresses of the As-
prox bots in our data. Though most of the bots belonged to North America,
Europe, or East Asia, they cover much of the globe. China had the largest num-
ber of Asprox bots; accounting for 36.68% of the attackers. No other country
accounted for more than 8% of the bots.

Fig. 2. Geographical distribution of Asprox bots (IP addresses) performing SQL injec-
tion attacks on Indiana University web servers (August 2008). Icon size is proportional
to the number of attackers (IP addresses) in that location.
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2.2 Data on JavaScript-Delivery Hosts

The second data set consists of URLs of the malicious infrastructure that de-
livered the malicious JavaScript and drive-by-downloads, and meta information
about servers provisioning the domains related to such URLs. We refer to the
hosts of theses URLs as JavaScript-delivery hosts throughout this paper. These
URLs were collected from [6], which has been tracking such URLs since the 5th
of May, 2008.1 On average, the site posted two new URLs each day. From Oc-
tober 2008 to the end of January 2009, we monitored all of the URLs that had
previously appeared on [6], or that were newly added. (The attack continues
but [6] stopped reporting new URLs on 11/26/08.)

Table 2. Overview of JavaScript-delivery URLs and host names

Collection period 10/26/2008 - 1/31/2009

Number of URLs 373

TLDs 13
gTLDs 5 (.com, .mobi, .net, .org, .name)

ccTLDs 8 (.ru, .cn, .jp, .cc, .tk, .kz, .eu, .me)

Unique host names 324
with gTLDs 151 (.com: 105, .name: 28, .mobi: 11, .net: 4, .org: 3)

with ccTLDs 173 (.ru: 127, .cn: 34, .jp: 4, .cc: 4, .tk: 1, .kz: 1, .eu: 1, .me: 1)

Table 2 breaks down the 373 URLs that were observed into different top level
domains (TLDs), both generic (gTLD) and country-code TLD (ccTLD). The
most popular TLDs for JavaScript-delivery hosts are .com and .ru.

To learn about how the JavaScript-delivery were provisioned, we collected
metadata on the URLs. Specifically, DNS lookups were performed to obtain the
IP address(es) of each host. We also periodically looked up the DNS servers used
by these hosts in each level of the DNS hierarchy. For each of the IP addresses
corresponding to the host name discovered in the A records2 and each of their
DNS servers (on all levels) we looked up their geographic location using the
IP2Location software [7]. The lookups were performed every 15 minutes, until
the host was no longer alive. We chose the 15-minute granularity to strike a
balance between the validity of retrieved DNS records, which is typically no
more than 5 minutes, and the overhead on our institution’s DNS resolver.

Table 3 provides an overview of the data obtained from our DNS resolutions
and geolocation for the JavaScript-delivery hosts. Of the 324 hosts that delivered
malicious JavaScripts, we could resolve only 55. This is because when we began
data collection in October 2008, many of the older URLs posted on [6] were
already inactive. The 55 resolved names yielded 2,214 unique IP addresses over
1 We initially were collecting such data ourselves, but were forced to abandon this

direction due to University requirement that we disconnect our infected bots.
2 An A record is a DNS resource record used for storing an IP address associated with

a domain name.

.com
.mobi
.net
.org
.name
.ru
.cn
.jp
.cc
.tk
.kz
.eu
.me
.com
.name
.mobi
.net
.org
.ru
.cn
.jp
.cc
.tk
.kz
.eu
.me
.com
.ru
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Table 3. Data collected through DNS resolutions of JavaScript-delivery hosts

(a) JavaScript-delivery
hosts

Resolved host names 55
IP addresses 2,214
Autonomous systems 308
BGP prefixes 898
Countries 64

(b) DNS servers for JavaScript-
delivery hosts

Resolved DNS server names 619
IP addresses 147
Autonomous systems 67
BGP prefixes 115
Countries 11

our entire monitoring period for the DNS resolutions. Interestingly, while more
than 1/3 of the Asprox bots were located in China, 2/3 of the JavaScript-delivery
hosts were located in the US. Similar findings that say that the primary malware-
serving infrastructure is located in the US have been reported in other botnet
studies as well [8]. Our data set has fewer IP addresses than DNS server host
names. This is because several DNS server host names resolve to the same IP
address. Although a relatively small number of IP addresses are used to host
DNS servers, they are distributed over different networks according to their
ASN, BGP prefix, and country information, to make detection and take-down
difficult.

2.3 Data on Infected Web Servers

Our third data set gathers information about web servers that were affected by
the SQL injection attacks. To collect this data set we searched for web pages
that contained the URLs pointing to the malicious JavaScript hosts listed in
the second data set. We automated this search by using the Google AJAX Web
Search API [9] and Yahoo! Web Search API [10]. Both APIs are limited: i) The
Google API returns at most 64 results per query; and ii) The Yahoo! API limits
each querier’s IP address to 1000 queries per day, but, unlike Google, there is
no limit on the number of returned results per query. We invoked both of types
of search APIs, using the malicious URLs as query keywords, and merged the
returned results.

The result of these searches was a set of URLs from potentially-SQL injected3

web servers around the world. For each URL, we first extracted the cached pages
from both Google and Yahoo!, and the date the cache was made. Next, we visited
the URLs. Each visit could fail or succeed. A failure result could be due to either
the unavailability of the web server or the page. Specifically, a page may be

3 Some web sites introduce Asprox and provide some of the URLs as an example, not
as actual JavaScript embedding. Furthermore, Google or Yahoo search presents a
few false positives that do not actually have URLs which we specify as keywords.
Thus, we need to verify the infection of the web servers returned from Google or
Yahoo search.
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unavailable because the page was dynamically generated and is no longer valid.
In contrast, success denotes that the requested page was returned.

If a page’s cache has the SQL injection, but our subsequent visit to the URL
results in a failure, we cannot be sure if the server is still infected. Therefore,
we classify such servers as infected but unreachable. For cases in which the visit
succeeds, the retrieved page may be clean or infected (i.e., it does or does not
respectively contain an SQL-injection of the given URL). When clean, we cannot
be certain that the server or page was ever infected. To verify, we again turn to
the cached page and only if the cached page confirms the presence of an infection
do we consider the server to be infected. In this case we can deduce that the
server was cleaned some time before our data collection, but after the page
was cached. This case is labeled infected, reachable, but undecidable in Table 4.
Finally, only in cases when the visit succeeds and the retrieved page contains the
offending URL can we determine the duration for which the infection persisted
with a high degree of accuracy. This case represents 56% of all the servers we
examined. They are labeled infected, reachable, and identifiable in Table 4.

Table 4. Web servers infected by Asprox for a data collection period between
11/01/2008 - 01/31/2009

Class # of Servers % of Servers

Total number of infected web servers 8926 100%

Infected but unreachable 2751 30.82%
Infected, reachable, but undecidable 1141 12.78%
Infected, reachable, and identifiable 5034 56.40%

2.4 Limitations of Our Data Sets

There are a few limitations to our data sets. The first is our inability to comment
on how many and which bots compromised which web servers. The Asprox bots
in our first data set are not necessarily the ones that compromised the web
servers we studied. Getting data from servers that knew they were under attack
is difficult due to either an unwillingness to share the data, or a lack of data
from the organization that ran these servers – they may not be collecting at
the time of the attack, or they may be unaware that they were being attacked.
Our second limitation is that our data on Asprox bots performing SQL injection
attacks is only for the massive August 2008 attack on Indiana University web
servers. This precludes studying attacker evolution. The third limitation stems
from the inability to guarantee that there may have been other JavaScript-
delivery hosts during our data collection period that were not reported by [6].
The fourth limitation is that we do not have data to understand how and when
the JavaScript-delivery hosts redirected visitors to malware-delivery sites. Doing
so would have required us to execute the malicious JavaScript and visit the
malware-delivery infrastructure. Unfortunately, this limitation is a direct result
of our University’s policy preventing us from knowingly installing malware and
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then doing the traversals necessary to collect this data set. Finally, our data on
infected web servers is limited by the Google and Yahoo! Web search APIs that
only permitted us to collect a subset of the highest ranked search results. And
those results were only in the English-dominated regions of the Web.4 In spite
of all the limitations, we believe our data allows us to gain important
insights into the Asprox infection.

3 Analysis of Asprox Infection Dynamics

We now analyze each data set described in Section 2 to understand the dynamics
of Asprox infections.

3.1 Analysis of Asprox Bots

Figure 3 shows the numbers of unique SQL-injection attackers and the web
servers they target on each day for which we have data (August 2009). One trend
is clear: The number of attacking bots is lesser on weekdays than weekends. This
comes as no surprise as this has been previously observed in other botnets, and
is an artifact of the fact that many bots are residential machines which are likely
to be available for longer on the weekends than weekdays. Correspondingly, the
total number of attacks launched on the weekends are also higher than those on
the weekdays. Further, the number of web servers attacked is also higher on the
weekends than weekdays, as expected.

Next, we look at bot reuse. Figure 4 shows how many new attacking bots are
observed each day and how they compare with those seen the day before or even
prior. Clearly, new bots are added to the pool as the week progresses, with peaks
on Saturdays. Furthermore, some modest number of bots (up to 3000) are being
reused. The change in the number of daily reused ones also follows that of new
ones. This explains why more bots are observed on the weekends.

To study in detail the differential between the behavior of Asprox bots on
weekends versus weekdays, we picked a representative day from each. Figure 5
shows the number of attacks on these representative days broken down for every
hour. (We normalized the time of attack in our data based on attacker’s time
zone (based on IP address) in this figure, and not the time zone of the attacked.)
On the weekday, the attacks peak at three times, 10am, 5pm, and 8:30pm. These
peaks roughly correspond to the start and end of the work day, and an early
evening period after dinner. On weekends there is a more uniform distribution
of attack times corroborating the lack of synchronization among users’ schedules
outside of the work week.

We also looked at the active lifetime of attacking bots. Figure 6a shows both
how many days of the SQL injection attack at Indiana University a specific
attacker was seen, and for how long a given Indiana University web server was
4 We did not attempt to increase the probability that web pages based on other

language were returned in our searches by explicitly choosing a language other than
English as a search selection option in the Google or Yahoo search API.
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the specific number of occurrences exists.

attacked. Roughly 95% of attacking bots were observed for less than 2 days. We
hypothesize that this is to avoid any IP blacklisting. On the other hand, over
50% of web servers were continuously attacked for over 8 days. This seems to
imply that the attackers are not systematic about avoiding repeat attacks on
web servers – as they replace bots, the newer bots continue to attack servers
that proved to be not vulnerable in the past.

Finally, we looked at the number of times an attacker repeatedly attacked any
given target in Figure 7. We find that 90% of the bots attacked the same web
server about 10 times. In fact, in some cases one attacker hit the same target
over 500 times. Clearly, the Asprox bots are not synchronizing among themselves
in choosing who they attack, nor keeping any individual state information on
whom they have already attacked. This suggests that the bots independently
search for web servers serving asp, aspx, and php pages and blindly attack the
returned list. We cannot definitively say if the same machines that perform the
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web-searches are those that launch the SQL injection attacks, or if one set of
bots queries and passes lists off to another set of attackers. However, given the
apparent lack of coordinate we hypothesize that they are the same. This would
then explain the high frequency of attacks on some web servers. Additionally
and/or alternately, since search engines are likely to index many pages from the
same web server, the server gets targeted again and again.

3.2 Analysis of Infected Web Servers

An SQL injection attack is successful only if people visit the websites with
infected pages. To see how often popular web servers get infected, we cross-
referenced our list of infected web servers with the list of popular web servers
reported by the Alexa [4]. There were no matches, confirming that the popular
web servers are either better secured or quickly cleaned when successfully at-
tacked. This certainly does not imply that the attackers do not target popular
web servers. For example, there are confirmed attacks against Sony’s Playstation
website [11]. Further, when looking at which web servers were targeted most of-
ten in our Asprox-bot data, we found that the two most popular web servers at
Indiana University were those most frequently targeted in the attack. This, of
course, also makes sense when we remember the targets are chosen based on the
results of search engine queries, which generally put some emphasis in ordering
based on popularity of the site.

Recall from Section 2.3, that of the 8,926 web servers we confirmed to have
been infected at some point of time, 31% were unreachable. Another 13% were
reachable and had been cleaned but not enough information was available to
precisely lower-bound when they were cleaned up. For the rest of the 56% of
the infected servers that were also reachable, we had sufficient data to estimate
lower bounds on how long the servers stayed infected. Table 5 shows the TLDs
these 56% web servers belonged to. As expected, .com was the TLD with most
of the infected servers, claiming almost half of the positions. Other TLDs with
more than a hundred infected web servers include: .pl (Poland), .net, .org, .cn
(China), .kr (Korea) and .uk (United Kingdom). The infected servers belong
to 6 other gTLDs and 87 other ccTLDs, confirming that the Asprox infection is
truly a global epidemic.

The 5,034 web servers reported in Table 5 were all victim to SQL injection
because when we first retrieved their URLs found through Google and Yahoo!
web searches, the URL inserted by SQL injection was still present in those pages.
To determine how long the servers would remain SQL-injected, we both retrieved
the same pages from Google and Yahoo! caches and retrieved them actively every
day throughout our data collection process. When the page’s cache date was not
available in the cache, which was the case for 54% of the servers, we considered
only the infection duration from our active measurements. In either case, both are
lower bounds for how long web servers stayed infected, and thus are conservative
bounds.

Figure 8 shows the CDF of the servers that were cleaned up. Figure 9 shows
the CDF of servers that still contained SQL-injections at the end of our data

.com
.pl
.net
.org
.cn
.kr
.uk
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Table 5. TLDs of infected web servers that were reachable and whose infection dates
could be estimated

TLD Number of web servers

.com 2307

.pl 341

.net 313

.org 294

.cn 242

.kr 201

.uk 125

Other gTLDs 105

Other ccTLDs 1070

No server name, just IP address 36

Total # of web servers 5034

collection. Overall, 77% of the servers were cleaned and the rest stayed infected.
In fact, it took over a month for 60% of the web servers to be cleaned. Of those,
55% stayed infected for over 100 days! These observations reveal that the SQL
injection component of Asprox is effective for the attackers and damaging to the
visitors of these web servers. Because there are no usage statistics on any of the
sites, we could not estimate how many browsers might have visited the sites over
such a time period.
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3.3 Analysis of JavaScript-Delivery Hosts

We now analyze the infrastructure that serves malicious JavaScripts (and poten-
tially drive-by-downloads) to the unsuspecting visitors of infected web servers.
Recall that our data contains the DNS resolutions for JavaScript-delivery hosts
that were live, including the DNS servers and their IP addresses, and for each
level of the DNS hierarchy.

.com
.pl
.net
.org
.cn
.kr
.uk
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Fig. 10. Number of unique IP addresses and live days for each JavaScript-delivery host.
Live days is defined as the days when we succeed to do DNS resolution for a host. Ob-
servation days is the period for which we tried to do a DNS resolution for a host.

We focus on Asprox’s use of fast flux to provision the infrastructure used to
deliver the malicious JavaScript. Fast flux is a recent technique used by attackers
to keep their phishing and malware campaigns afloat for longer, and its goal is
to prevent take-down and blacklisting. The key idea involved in fast flux is to
have the attacker rapidly change the DNS bindings between the host name and
its IP address. Two key indicators that fast flux is being used is that in the
DNS resolutions of hosts are: 1) Host names resolve to a large number of IP
addresses, generally scattered across many domains; and 2) each IP address has
a short validity. The large number of IP addresses ensure availability under take-
down attempts. The short validity ensures that any subsequent queries for the
host name gives the attacker an opportunity to revise the list of IP addresses,
should an IP address be taken down, blacklisted, or the supporting bot is shutoff.
It is not known if IP addresses are spread across many administrative domains
simply due to an artifact of a random subset of the botnet population, or if it
results from an active attempt to prevent too many IP addresses under the same
domains from coming down.

Fast flux comes in two flavors, which can be used independently or concur-
rently. The first is when the host itself fluxes. The second is when the DNS
servers used to resolve the host name themselves flux. To distinguish the two
cases we will term the former as fast flux and the latter as DNS flux. When both
types of flux are used, we term the case as double flux. The Asprox botnet uses
double flux.

Recall, as discussed in Sec. 2.2, that we collected data on the live JavaScript-
delivery hosts, including information about their DNS servers. For each host
observed, Figure 10 presents the number of unique IP addresses it resolved to
through our observations, as well as the number of days each host was up. While
phishing servers are often known to be taken down within a few days [12], the
Asprox JavaScript-delivery hosts seem to survive for a surprisingly long time.

We note that hosts 1 trough 28 were reported by [6] before we started collect-
ing data. Thus, the fact that most of these hosts had only one IP address over the
data collection period suggests that it may be in an artifact of data collection.
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In particular, the botnet masters may have given up on using them, due to their
detection. We do note that all of these hosts except one are currently blacklisted
by Google, as we verified with a Firefox browser. In an attempt to validate the
above hypothesis we verified the whois information for domains 1 through 28. It
was returned for only 7 of them. Two of the seven seem to have been bought by a
domain management company. Another two have been created and maintained
by two organizations; one of them has even been removed from the blacklists.
The remaining 3 hosts had very poor quality whois information, which is a com-
mon feature for attacker-controlled domains, and so these are likely to be still
under the control of Asprox’s bot masters. One might question why the Asprox
botnet masters would even want to maintain control of these domains, if they
do not seem to be used, and they are blacklisted. We hypothesize that they are
no longer in use precisely because they are blacklisted, but the masters keep
control of the domain in case they are removed from the blacklists. It should
of course be noted that any web server that has an SQL injection which points
to an inactive host is safe for its legitimate users to visit. Hosts 29 through 55
in Figure 10 were part of the JavaScript-delivery infrastructure during our data
collection period. 58% of these hosts appear to be actively fluxing. We examine
this in more detail next.

To examine the details of fast flux, we use the three fluxiness metrics proposed
by Holz et al in [13]:

FA = NA/nA average single (1)

FNS = NNS/nNS average single (2)

fNSA = NNSA/nNSA average single (3)

FNSA = (ΣfNSA)/NNS (4)

Here, FA represents the degree of fast flux for each JavaScript-delivery host.
NA is the number of unique A records, that is, IP addresses returned in all
DNS resolutions for a host. The value, nA average single is the average number
of A records returned for a single DNS resolution. [13] uses nsingle which is the
number of A records for a single lookup. However, as we observe the returned A
records, the number are periodically changed. Thus, we use an average value for
it instead. Host 29 and 32 give the highest value for it. Another fast fluxing hosts
present a similar degree of fast flux. The others do not show fast flux at all. For
double flux, FNS , and FNSA describe the degree of DNS flux for the DNS servers
of the JavaScript-delivery hosts. NNS is the number of unique NS records, that is,
DNS servers returned in all DNS resolutions for a host. nNS average single is the
average number of NS records returned for a single DNS resolution. NNSA is the
number of unique A records, that is, IP addresses returned in all DNS resolutions
for a DNS server. nNSA average single the average number of A records for a DNS
server, which is returned for a single DNS resolution. Thus, fNSA is fluxiness for
each DNS server. FNSA is the average of fNSA . FNS shows that in the double
fluxing hosts, the returned NS records for them are changed although its degree
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is low. FNSA shows that each DNS server also does fast flux and its degree is
higher than FNS .

Figure 11 shows all types of flux for each host. Although FNSA seems to be
comparable to FA for each host except those for Host 29 and 32, NNS is much
smaller than nA average single. The small number of IP addresses for the DNS
servers implies that taking the DNS servers down is a fruitful avenue to fight the
Asprox malware-serving infrastructure.

 0

 20

 40

 60

 80

 100

 120

 0  10  20  30  40  50  60

F
lu

xi
ne

ss

JavaScript delivery host ID

FA
FNS

FNSA

Fig. 11. Fluxiness: FA, FNS , and FNSA

Hosts 29 and 32 are www.81dns.ru and www.berjke.ru exhibiting the highest
degree of fast flux. They are active for over 40 days and resolve to 1669 and 1542
unique IP addresses respectively. We now examine them in detail. First, we see if
they share IP addresses. Surprisingly, they shared 1397 (over 82% ) IP addresses.
Since these hosts are very similarly provisioned, we examine www.berjke.ru in
more detail.

Figure 12 shows the number of A records returned by DNS resolution for the
host name, www.berjke.ru. On average, most of resolutions for www. berjke.ru
have 14 A records. Around 4 A records are changed each resolution with a standard
deviation of 4. However, for most of the 4th week of observation they resolved into
7 fixed A records. We hypothesize that this may be the result of a bug on their
part, which they fixed over the period of a week. In addition to seeing listed A
records, we checked to ensure they are reachable by connecting to the IP address
via port 80 (the JavaScript URL is over the HTTP protocol whose default port
number is 80). On average, over 90% of IP addresses were reachable. Thus, they
were highly available. Although modern web browsers understand round robin
DNS and try another IP address when the chosen IP address is not reachable,
this high availability makes the infection less detectable.

Figure 13 depicts the geolocational distribution of IP addresses returned in
our DNS lookups for www.berjke.ru. The IP addresses for www. berjke.ru is
geographically spread throughout 60 countries, representing over 25% of country

www.81dns.ru
www.berjke.ru
www.berjke.ru
www.berjke.ru
www.berjke.ru
www.berjke.ru
www.berjke.ru
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codes. This indicates that the bots in Asprox botnet are geographically well
distributed even though the number of its observed TLDs are small.

Figure 14 illustrates the geographical distribution of the IP addresses of the
JavaScript-delivery hosts in our data. Unlike the geographical distribution of
Asprox bots in Figure 2, most of the bots belonged only to North America or
Europe. While China had only 2.67% of he JavaScript-delivery hosts, the United
States had the largest number, which was 65.90% of them. Potentially related,
at one point during our observations we found that the malicious JavaScript-
delivery hosts would check to see if the default language on the visiting browser
was Chinese, and not attempt to infect the browser if it was. No other country
accounted for more than 4% of the hosts.
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Fig. 14. Geographical distribution of IP addresses of JavaScript-delivery hosts. The
size of icons for each point is proportional to the number of IP addresses for that
location.

4 Related Work

Various case studies have been done to understand worms. These studies share
a flavor similar to ours. A recent such study traced the Blaster worm for an
extensive period and showed that it persisted in spite of significant mitigation
effort [14]. Botnets have been studied extensively, particularly in the context
of spam and phishing [15] [8] [16] [17] [18]. The Asprox botnet shares many
of the features reported by these studies, particularly as they relate to the use
of residential machines. Recently, Brown presented the anatomy of the Asprox
in [19]. It presents Asprox’s history and comprehensive infection process, and
infected machine’s behaviors with various examples. It also introduces the case
where Asprox botnet is used by Rock Phish hosts [20]. However, it does not in-
vestigate and quantify the detail infrastructural provisioning for Asprox botnet.
Furthermore, it does not trace the web severs infected by Asprox SQL injection
attack.

SQL injection is central to the Asprox infection discussed in this paper. It
is a well known attack on web servers with back-end databases. Consequently,
various approaches have been proposed for detection and prevention of SQL
injection. They can be categorized into three types [21]: coding practices with
defensive mechanisms, vulnerability detection by static analysis, and defense
techniques preventing vulnerabilities as well as detecting them. The defensive
techniques transform programs to prevent SQL injection attack so that the
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programmers do not have to validate inputs. Furthermore, [21] proposes a tech-
nique to dynamically infer programmer intentions to overcome the limitation
of static analysis, and transform applications based on the conjecture. If im-
plemented, these techniques can prevent SQL injection, without which Asprox
would fail to be as effective without a significant evolution.

Fast flux is an important aspect of the Asprox botnets. The use of this tech-
nique is the latest trend among botnets and several research works have studied
it well. The Honeynet Project and Research Alliance wrote a whitepaper on fast
flux [22]. While the paper does not provide a model which can be used to identify
fast flux, it provides several pieces of valuable information including two real-
world examples of DNS resolutions for fast flux host names, and a case study of
the activities of an infected system. Nazario et al. [23] investigated the behaviors
of botnets behind fast flux. They found that 80% of fast flux domains were regis-
tered at least a month before actual use. They also found a long lifetime for fast
flux domains, a median of 18.5 days after the domain has become actively used,
with several lasting over 50 days. Holz et al. [13] examined fast flux networks
through resolutions of domains contained in spam mails. Toward the same goal,
Passerini et al. [24] make use a more extensive number of features. They find
that 8-30% of spam domains use fast flux today. We simply use these works to
study fast flux among hosts serving malicious JavaScripts in our data.

5 Concluding Remarks

The Asprox botnet continues to grow and infect web servers around the world.
With extensive use of fast flux, it is well provisioned to resist take-down at-
tempts. Honeypots, while useful for detecting individual phases of the attack,
are insufficient to understand the attack in its entirety or to detect changes
or modifications to the final vulnerabilities used to attack users machines, or
the malware payload delivered. Therefore, an active monitoring—and thus more
costly—approach will be necessary to monitor changes to this botnet. Due to the
use of JavaScript obfuscation, multi-layer fast flux, and redirects, a take-down
of the JavaScript-delivery hosts and malware-delivery hosts seems unlikely to
succeed, unless better mitigation techniques are developed in the community for
specifically these problems. Thus, there is an urgent need to ensure that users
use anti-virus software and keep their operating systems patched.

While there are a number of web servers that have fallen prey to the SQL
injection attack, halting this portion of the life-cycle seems unlikely as well. The
ability to patch a large number of improper SQL-accessing scripts to perform
proper input validation or use SQL bind parameters on different web servers
can only be effectively done through a long education cycle that is unlikely to
yield results any time soon. Positively and as expected, we did not find any
of the popular sites injected with Asprox. Note that this is not due to a lack
of attacks, but rather because these servers are secured better and/or restored
quickly. Unfortunately, this is not true of a large portion of the Web, for many
web severs are small, and are unlikely to be updated (or fixed) frequently or in
a timely manner.
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The most vulnerable part of the Asprox life-cycle that we could discern was the
specific URLs that are injected as part of the SQL injection segment of the life-
cycle. These URLs point to the JavaScript-delivery hosts and can be blacklisted,
if identified quickly. In fact, Google is currently blacklisting many of the them
already, so Firefox and other modern browsers that use their blacklisting services,
are protected if the blacklists are properly updated.
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Abstract. Malware detectors are applications that attempt to identify
and block malicious programs. Unfortunately, malware detectors might
not always be able to preemptively block a malicious program from in-
fecting the system (e.g., when the signatures database is not promptly
updated). In these situations, the only way to eradicate the infection
without having to reinstall the entire system is to rely on the remedia-
tion capabilities of the detectors. Therefore, it is essential to evaluate the
efficacy and accuracy of anti-malware software in such situations. This
paper presents a testing methodology to assess the quality (complete-
ness) of the remediation procedures used by malware detectors to revert
the effect of an infection from a compromised system. To evaluate the
efficacy of our testing methodology, we developed a prototype and used
it to test six of the top-rated commercial malware detectors currently
available on the market. The results of our evaluation witness that in
many situations the tested malware detectors fail to completely remove
the effects of an infection.

Keywords: Malware, malware detection, software testing.

1 Introduction

One of the biggest problems the Internet community has to face today is the
widespread diffusion of malware, malicious programs written with the explicit
intent to damage users and to use compromised systems for various types of
frauds. The second half of 2007 witnessed a drastic increase (about 135%) of
the number of threats related to malware [1]. This can be ascribed to a num-
ber of different root causes, but the main reason is probably the easy financial
gain malware authors obtain by selling their creations in the underground mar-
ket [2]. Besides the rapid spread of malware, we are observing a parallel advance
in the techniques for protecting end-users against malicious code. In order to
face the growing complexity in the techniques employed by malware writers
to evade detection, traditional signature-based anti-malware solutions are now
being supported by behavioural, semantics-aware, approaches [3,4], that main-
stream commercial products are starting to include [5,6,7].

To defend against malicious programs, users typically rely on malware de-
tectors, which try to detect and prevent threats before the system is damaged.
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Unfortunately, in many cases detection and prevention are not possible. Imagine
for example a user that is not running a malware detector or a user that is run-
ning a malware detector but who gets infected before the appropriate detection
signature is released. In such a situation, post-infection remediation remains the
only solution to get rid of a malware and of the damages it may have caused to
the system, other than reinstalling the entire system. However, the experience
has taught us that sometimes automatic remediation procedures could cause
more problems than they would solve [8,9].

As any kind of software application, malware detectors require thorough test-
ing. Users do not only need a stable application, but also a product capable of
detecting threats with low false-negative and false-positive rates, and capable of
remediating their system from a damage caused by a malicious program that
was not detected in time. For these reasons, the testing and the evaluation of
a malware detector require particular attentions, to the point that the leading
industries and researchers in the field have recently defined common guidelines
to test this particular class of software [10]. Although these guidelines describe
what should be evaluated, they do not describe any precise methodology to
do that.

In this paper we address the problem of evaluating the remediation capabilities
of a malware detector and we propose a fully automated testing methodology
to evaluate this characteristic. The proposed methodology is dynamic. We run
a malicious program in a victim system and we monitor the execution to detect
what modifications are made to the environment. Subsequently, we trigger the
remediation procedure of the tested malware detector to clean up the victim
system. Finally, we analyse the state of the environment to verify which of the
modifications previously caused by the malicious program have been successfully
reverted. We have implemented the proposed methodology in a prototype and
evaluated six of the most rated malware detectors on the marked. Our evaluation
testifies the effectiveness of our tests and shows that the remediation procedures
of the tested detectors suffers incompleteness. For example, we have empirically
observed that only about 80% of the untrusted executables dropped by malicious
programs on infected systems are properly removed by malware detectors.

To summarise, the paper makes the following contributions:

– a fully automated testing methodology to evaluate the completeness of re-
mediation procedures in commercial malware detectors;

– a prototype implementation of our testing methodology;
– an empirical evaluation of six malware detectors currently available on the

market, with about 100 malware samples each.

The paper is organised as follows. Section 2 motivates the importance of com-
plete post-infection remediation. Section 3 presents the requirements of the ideal
remediation procedure and sketches an overview of our testing methodology.
Section 4 discusses the implementation of the infrastructure we have developed.
Section 5 discusses the results of our experimental evaluation. Section 6 presents
the related work. Finally, Section 7 concludes the paper.
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2 The Importance of Remediation

To comprehend why remediation is a key issue in defeating malware, let us con-
sider a sample malicious program. Fig. 1 shows a fragment of an execution trace
of the sample malware, reporting the most important modifications to the system
performed by the application. The malicious program replicates itself into a new
executable (c:\windows\poq.exe), creates a registry key to configure the system
to start the new executable automatically at boot, and tampers the configura-
tion of the resolver (writing into c:\windows\system32\drivers\etc\hosts)
to hijack network traffic, directed to www.google.com and www.citi.com, to a
malicious web site. Moreover, let us imagine a user whose system gets infected
by this malware and that, at the time of infection, his system was not properly
protected (e.g., the infection took place before a signature for detecting the mal-
ware was released). Only after a while, when the appropriate signature becomes
available, the malware detector can detect the presence of the malware on the
system and can remediate the damages.

What the user expects from the detector is that it is able to remediate com-
pletely the system. That is, the malware detector has to revert all the modifica-
tions made to the system by the malicious program. In the case of the example, that
means that the original malicious executable (malware.exe), the executable cre-
ated (c:\windows\poq.exe), and the registry key (\HKLM\Software\Microsoft\
Windows\CurrentVersion\Run\v) have to be removed from the system. Similarly
the process started has to be killed, and the malicious entries added to the config-
uration of the resolver removed (c:\windows\system32\drivers\etc\hosts).

If the remediation procedure is not complete, the system can be left in an un-
safe state. Imagine for example that the malware detector reverts all the actions
performed by the malicious program, but that it is not able to restore the proper
configuration of the resolver (i.e., to remove the malicious entries added to the
file c:\windows\system32\drivers\etc\hosts). Even though all the malicious
executables dropped by the malware are removed from the system, the security
of the user is still compromised because part of the network traffic is hijacked to
a malicious web site. This site can be used to steal sensitive information or to
deliver new malware to the user.

WriteFile("c:\windows\poq.exe", "malicious code")

CreateProcess("c:\windows\poq.exe")

QueryKeyValue("\HKLM\...\CurrentVersion\Run", "v") → ""

CreateKeyValue("\HKLM\...\CurrentVersion\Run", "v", "c:\windows\poq.exe")

ReadFile("c:\...\drivers\etc\hosts") → "Copyri... 127.0.0.1 localhost"

WriteFile("c:\...\drivers\etc\hosts", "67.23.124.83 www.google.com\n

67.23.124.85 www.citi.com\n")

DeleteFile("c:\malware.exe")

Fig. 1. High-level execution trace of a sample malicious program (malware.exe)
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3 Testing Methodology

This section defines the ideal remediation procedure (Section 3.1) and presents
the testing methodology we have developed to verify whether the remedia-
tion procedures available in a malware detector resemble the ideal one or not
(Section 3.2).

3.1 The Ideal Remediation Procedure

For the purpose of defining the ideal remediation procedure, we can think the ex-
ecution of a malicious program as characterised only by interactions with the en-
vironment, where each interaction corresponds to the invocation of a particular
OS routine (or system call). Let S = 〈s0, s1, . . . , sn〉 be the execution trace of
our malware sample. The system calls in S can be classified in two classes: those
that modify the state of the environment and those that do not. For example, to
replicate itself into a system folder, a malicious program has to create a file and
to copy its code into the file. Similarly, to install itself at boot, the program has
to create a particular registry key. Both activities involve a modification of the
state of the environment. On the other hand, a program that reads and parses the
content of a file does not alter the state of the environment. For our purpose, it is
sufficient to consider only a subset of all the system calls executed by the malicious
program, including only the ones that modify the state of the local environment:
S′ = 〈sj ∈ S : sj contributes to modify the state of the local system〉.

To achieve a particular high-level goal, the malicious program has to execute
multiple system calls. As an example, to replicate itself, the program has to cre-
ate a file and then to write its payload into the file (typically in multiple passes).
Nevertheless, for remediating a system from a malware infection, it is not impor-
tant to know which system calls the malicious program executed to modify the
system, but instead what modifications were made to the local system by the pro-
gram. For this reason, we can abstract the sequence of system calls S′ executed
by the malicious program to infect the system through a set of high-level system
state transitions T . Each transition t ∈ T represents the effect on the local system
produced by the execution of a sequence of related system calls. Let us consider
again our sample malicious behaviour of Fig. 1 and the corresponding system calls
trace shown in Fig. 2, where each high-level behaviour is associated with the se-
quence of system calls executed by the malware and that produces a particular
state transition. In the figure, irrelevant system calls (i.e., the system calls that do
not modify the state of the system) are reported in gray. As an example, to create
a file on the file system (which consists in a copy of the malicious program) the
following system calls are executed: NtCreateFile, NtWriteFile, and NtClose.
The high-level state transition associated with this sequence of system calls is the
creation of a new file on the system.

The set of high-level system state transitions T can be divided in multiple
classes, each of which represents a state transition involving a particular class of
OS resource. For example, for a Microsoft Windows system we have T = F ∪
R ∪ P ∪ S where: F represents the state transitions involving files, R the state
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System call trace (S) High-level behaviour (T )

NtCreateFile("...\poq.exe") → f
NtWriteFile(f, "malicious code")
NtWriteFile(f, "other malicious code")
NtClose(f)

WriteFile("...\poq.exe", "malicious ...")

. . .
NtOpenFile("...\poq.exe") → f
NtCreateSection(...) → s
NtMapViewOfSection(h, s)
NtCreateProcess(h) → p
NtCreateThread(p) → t

CreateProcess("...\poq.exe")

. . .

NtOpenKey("...\Run") → r
NtQueryValueKey(r, "v") → FAILURE
NtSetValueKey(r, "v", "...\poq.exe")
NtClose(r)

CreateKeyValue("...\Run", "v", "...\poq.exe")

. . .
NtOpenFile("...\etc\hosts") → f
NtReadFile(f, 1024) → "Cop..."
NtWriteFile(f, "67... www.google...")
NtWriteFile(f, "67... www.citi...")
NtClose(f)

WriteFile("...\hosts", "67... www.citi.com\n")

. . .
NtDeleteFile("c:\malware.exe") DeleteFile("c:\malware.exe")

Fig. 2. System call trace of our sample malicious program (malware.exe) and corre-
sponding high-level execution trace

transitions involving registry keys, P those involving processes, and S those in-
volving system services. This separation is important because each class of state
transition requires a specific mechanisms for remediation. It is worth pointing out
that, in our context, we are interested only in the state transitions that modify the
local system, as no remediation could be accomplished for transitions that affect
remote hosts. Furthermore, we do not consider system state transitions caused by
other benign processes that might be running in the test environment.

A remediation procedure P is complete if it is able to revert all the effects (i.e.,
the high-level state transitions) of the execution of the malware: ∀ t ∈ T , t is re-
verted by P . The ideal remediation procedure is the one that is complete. Revert-
ing a particular state-transition means to bring the state of the system back to that
preceding the transition. Practically speaking, if a malicious program creates a file
we expect the malware detector to remove the file; if the malicious program recon-
figures the resolver, we expect the malware detector to adjust the configuration
of the resolver.

3.2 Testing the Completeness of a Remediation Procedure

Testing scenarios. The following paragraphs present two real-world scenarios
that resemble the one we use to perform the testing of a malware detector. The first
scenario involves a system protected by a conventionalmalware detector, while the
second one involves a system protected by a behaviour-based detector.
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Scenario 1 – Conventional malware detector. A user’s system gets infected by a
malicious program because the conventional (signature based) malware detector
running on the system is not able to promptly detect and to prevent the infection
(e.g., because the appropriate signature has not been published yet). Only later,
the malware detector detects the presence of the malicious program on the system
and cleans the system to get rid of the threat.

Scenario 2 – Behaviour-based malware detector. A user is running a behaviour-
based malware detector on his system. The system is infected by a malicious pro-
gram but the detector does not detect it until any malicious activity is observed.
For example, consider malicious program that creates some files on the system
and then tries to infect a running process. As the initial activity is legitimate, the
malicious program is blocked only when it tries to infect other processes (or after
the infection has taken place). The malware detector, after having detected the
malicious behaviour, repairs the system to rollback all the potentially dangerous
activities performed before the detection.

Overview of the testing methodology. Our goal is to measure remediation
capabilities of the detector in any of the aforementioned scenarios. To accomplish
this goal, we select a set of sample malware and we use each of these programs to
infect a test system, we let to the detector to remediate the damages caused to the
system by each infection, and finally we check the state of the system to see if the
detector was able to revert the state to that prior to the infection. In other words,
by infecting our test system with a malicious program we identify the set of system
state transitions which are direct consequences of the infection and then we use
these information to measure the completeness of the remediation procedure.

(P1) Execute & trace malware
S = 〈s0, s1, . . . , sn〉

(P2) Freeze malicious processes

(P3) Abstract high-level behaviours
S ′ = {s ∈ S : s modifies local system}
T = {t : t abstracts a set of syscalls}

(P4) Discard intangible transitions
T ′ = {t ∈ T : t is still valid}

(P5) Trigger remediation

(P6) Check for reverted transitions
R = {t ∈ T ′ : t has been reverted}

Fig. 3. Overview of our testing methodology. In gray we report the outcome of each
phase.
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A generalisation of our testing methodology is outlined in Fig. 3 and is sum-
marised in the following paragraphs.

(P1) – Execute and trace the malicious sample. We select a malicious program we
know in advance is detected by the malware detector under testing, and we run
it in the test system. To simulate the scenario involving a conventional malware
detector it is sufficient to disable the detector temporarily. On the other hand,
to simulate the scenario involving a behaviour-based detector the malicious pro-
gram is run with the detector enabled. The execution is stopped when a timeout
is reached or when the behaviour-based malware detector detects a malicious be-
haviour. As the execution of the malicious program is monitored by an external
monitor, at the end of the execution we obtain S, the complete trace of the system
calls invoked by the program during the execution.

(P2) – Freeze malicious processes. We freeze the state of the malicious program to
prevent it from further altering the state of the system. Subsequent steps of the
analysis will refer to that state.

(P3) – Abstract high-level behaviours. We analyse the recorded execution trace S
to extract S′, by excluding all the system calls that do not alter the state of the
system (e.g., those used to open a file in read-only mode, or to read a registry
key). Then, we analyse the resulting trace to infer the high-level behaviours of the
program and the corresponding set T of high-level system state transitions.

It is worth noting that we analyse only the behaviour of the malicious process,
and its children, and we do not consider high-level state-transitions associated
with other processes running concurrently on the system. Thus, some of the high-
level state transitions we analyse could conflict with those associated with other
processes. To mitigate this problem without increasing the complexity of the anal-
ysis, we trace the malicious program in highly passive environments, with a mini-
mal number of potentially conflicting processes and with no user interaction at all.

(P4) – Discard intangible transitions. Not all the observed high-level program be-
haviours lead to tangible system state transitions. As an example imagine our sam-
ple malicious programs that deletes the original executable after it has replicated.
It is important to preemptively detect intangible state transitions because other-
wise one might think that the transitions is reverted by the remediation procedure.
For this reason, we identify such transitions and filter them out. The next phases
of the testing will target only tangible transitions: T ′ = {t ∈ T : t is tangible on
the test system}.

(P5) – Trigger remediation. Having collected all the information necessary to test
the completeness of the remediation procedure, we can now trigger the malware
detector to remediate the infection and to cleanup the system. In the case of a
conventional detector we have to launch a full-system scan, which includes the
scanning of all files and running processes. In the case of a behaviour-based detec-
tor we have to authorise the detector to quarantine the malicious program; recall
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the behaviour-based detector has been active since the beginning of the execution
of the malicious program and it has already blocked the execution of the program.

(P6) – Check for reverted transitions. Once the malware detector has completed
the remediation, we have to check whether each of the high-level state transitions
t ∈ T ′ has been properly reverted. Practically speaking, that means that we have
to compare the state of the system prior to the infection with the state after the
infection and the remediation, to detect any mismatch that can be ascribed to
the malicious program. It is worth pointing out that we cannot expect the con-
ventional malware detector to revert state transitions that caused data loss. On
the other hand, it is legitimate to expect that from the behaviour-based malware
detector, as it has observed the whole execution of the malicious program since the
beginning. At the end of this phase, we obtain a set R ⊆ T ′ of abstract transitions
that have been reverted by the malware detector. If the remediation procedure is
complete, then R = T ′; instead, if R ⊂ T ′, then every transition t ∈ T ′ \ R
testifies the incompleteness of the remediation procedure for the malicious pro-
gram used for the testing. It is worth noting that R could also include some state
transitions that are not in T . This happens when the malware detector incorrectly
attributes a spurious action to the malicious program [8]. However, as our analysis
is driven by the observed behaviours, we do not handle this situation.

4 Implementation

We have developed a prototype that implements the testing methodology dis-
cussed in the previous section, specific for testing malware detectors for Microsoft
Windows. In this section, we discuss the technical details regarding the implemen-
tation of our testing infrastructure. The methodology described previously can be
used to test the completeness of remediation procedures of both conventional and
behaviour-based malware detectors. In the following, we describe in detail only
the implementation specific for the testing of conventional detectors. Neverthe-
less, the implementation for behaviour-based detectors only differs in the fact the
detector is active when the malicious program is executed and traced.

Fig. 4 depicts our testing infrastructure. The main components of our archi-
tecture are the victim test system, where the malware sample and the detector
are located, and the analysis environment, where execution traces are analysed.
The malicious sample is uploaded into the test machine and its execution is mon-
itored. Syscall traces are subsequently analysed in the analysis environment, and
further abstracted into high-level state transitions that are then verified. Finally,
the malware detector is allowed to scan the whole system, and then the state of
the system is checked to detect the set of transitions that have been reverted.

4.1 Tracing the Malware Sample

The malware sample is executed and traced in the test system (steps 1–3 in Fig. 4).
For the tracing we relay on our home made system call tracer, codenamed
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Fig. 4. Architecture of the testing infrastructure

WUSSTrace [11], a user-space system call tracer for Windows. WUSSTrace parses
the majority of the arguments of system calls, thus allowing a subsequent fine-
grained analysis of the behaviour of the program. Each intercepted system call is
logged into an easy-to-parse XML trace, together with its input and output ar-
guments. If the monitored process creates other processes or threads, these are
monitored recursively. We are aware that user-space tracing can be easily circum-
vented by a nasty malware and that safer solutions exist (e.g., hooking from kernel
space or through virtual machine introspection). However, we made this decision
only to ease the development of our prototype.

We set a timeout on the execution of the malicious program and the other pro-
cesses it creates. If a monitored process does not terminate spontaneously be-
fore the timeout expires, we freeze the process, by suspending the execution of
all its threads. By freezing the malicious process instead of terminating it, we al-
low the malware detector to operate in a “best-case scenario”, where it can apply
in-memory scanning techniques to analyse the memory image of the processes and
to apply all the available heuristics.

4.2 Analysis of the System Call Trace

In order to analyse the system calls issued by the monitored malware sample, we
developed a trace analysis tool that off-line performs the abstractions needed to
infer the high-level program behaviours and the corresponding system state tran-
sitions. In our current implementation, we focus on the identification of the files,
registry keys, processes, and system services that have been created or tampered
by the malicious sample or by any of its child processes. For this reason, start-
ing from a trace S, we obtain (steps 4 and 5 in Fig. 4) the set of system calls
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that modify the state of the environment (S′) by including only those syscalls
that lead to the system state transitions of interest: file-system modifications (e.g.,
NtCreateFile, NtOpenFile, NtWriteFile), modifications of registry keys (e.g.,
NtCreateKey, NtSetValueKey), process creation or infection (e.g., NtCreate-
Process, NtOpenProcess), etc.

To abstract S′ into high-level behaviours and the corresponding set of state
transitions T , we need to correlate together the system calls that contribute to
the same high-level behaviour (step 6). In order to identify the syscalls responsi-
ble for a particular behaviour (i.e., those that operate on the same resource) we
employ standard data-flow analysis techniques [12]. The data-flow analysis is not
fine-grained, as we do not log every single machine instruction executed by the
monitored processes. Thus, dependency relationships between system calls are
identified through handles (i.e., Windows resources identifiers): if system call s2

uses handle h and the system call s1 is the (dynamic) reaching definition for h,
then we can assume that s1 and s2 operate on the same resource. As an example,
when we find in the execution trace a NtSetValueKey(r, "v", "...\poq.exe")
system call we need to determine the name of the key that is being written; for
this purpose, we compute the dynamic backward slice for the key handle r and we
analyse the arguments of the system call that originally defined it [13]. Similarly,
in order to compute the name of the files that are actually modified by the mal-
ware, we calculate the dynamic reaching definition for the file handle f used by the
system call NtWriteFile(f, "..."); this reaching definition will correspond to
a NtCreateFile or NtOpenFile, and through the analysis of its input arguments
we can infer the name of the file being written.

4.3 Filtering of Intangible High-Level Transitions

Having built the set T of high-level state transitions that represent the modifica-
tion of the system caused by the malicious program, it is important to ensure that
each transition t ∈ T is valid (i.e., it represent an actual modification of the state
of the environment, that is tangible after the malicious program has terminated
or it has been frozen). Indeed, any spurious state transition must be discarded,
as it could negatively affect the accuracy of the evaluation of the remediation
procedure.

As an example consider again our sample malicious program, whose high-level
behaviour is summarised in Fig. 1. The program replicates its payload and then
deletes the original executable. When the execution of the program in the test
system terminates (or is frozen) the executable no longer exists on the system.
If we do not test whether the file still exists on the system prior to the invoca-
tion of the malware detector we might erroneously praise the malware detector
for something it has not done. On the other hand we want to be sure that sys-
tem state-transition, even if not annihilated by the malicious program itself, are
effectively tangible. The assumption that each write access to a resource of the
system produces a modification of the system state might be too broad. For ex-
ample, several malware often overwrite registry keys with the actual content of
the keys; thus, despite the keys are overwritten, the system state does not mutate
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(this is probably a side effect caused by the use of some high-level libraries). A
similar situation might occur with memory mapped files, because these files are
written without invoking system calls and thus we have to conservatively assume
that a file mapped with write permission is eventually modified.

We identify intangible state transitions by querying directly the test system in
the exact same way we query it to detect if a transitions has been reverted by the
malware detector (steps 7 and 8). Only tangible transitions T ′ ⊆ T are targeted
by the remaining phases of the testing. We detect registry keys or files that are ef-
fectively modified by comparing their actual content with their content preceding
the infection. To do that we maintain a database of hashes of the content of all
files and registry keys of the test-system before the infection. We discard all the
behaviours that preserve the content of these resources. Similarly we also discard
all the behaviours that involve the creation of files, registry keys, and processes
that cannot be found on the test system at the end of the execution of the mali-
cious program. Further details about how the test system is queried are given in
the next paragraphs.

4.4 Execution and Evaluation of the Remediation Procedure

At this point it is possible to trigger the malware detector to analyse the system
and clean it from the infection. We invoke it to perform a full-scan of the file sys-
tem, of the registry, and of the image of running processes (step 9 in Fig. 4). We
also enable all the heuristics supported to improve the detection and remediation
rate. When the detector terminates the analysis of the system, we verify which
of the state transitions associated with the execution of the malicious program
have been reverted (step 10 and 11). Recall that the system state transitions T ′

can be divided in multiple classes according to the type of resource affected by a
transition. That is, T ′ = F ∪ R ∪ P ∪ S, where F , R, P , and S are the classes
of transitions involving respectively files, registry keys, processes, and system ser-
vices. Each class of transitions requires a particular procedure to verify whether
the transition has been reverted or not. A transition t ∈ T ′ is considered to be re-
verted by the malware detector when one of the following conditions is satisfied:

– if t ∈ F , the file subject of the transition is deleted or modified by the malware
detector;

– if t ∈ R, the registry key subject of the transition is removed or modified by
the malware detector;

– if t ∈ P , the process spawned by the malicious program is terminated;
– if t ∈ S, the system service created by the malicious program is disabled.

Note that we optimistically assume that any modification made by the remedia-
tion procedure to a resource manipulated by the malicious program successfully
restores the initial state of the resource.

To test the aforementioned conditions, we leverage a small helper program we
run in the test system, that allows us to query the state of a particular resource.
For example, if we have observed the malicious program to create a registry key,
we query the helper to check whether the key still exists on the system and, if so,
to retrieve its contents and perform the appropriate comparisons.
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5 Experimental Results

This section presents the results of the testing of six of the top-rated commercial
malware detectors. The goal of our experimental evaluation was to prove the ef-
fectiveness of the proposed testing methodology and not to compare the tested
malware detectors to tell which was the best and which was the worst. The ex-
periments witnessed the effectiveness of our testing methodology. Indeed, they
highlighted that none of the tested malware detector has complete remediation
procedures. Furthermore, the experiments showed that the type and percentage
of system state transitions reverted varies substantially among detectors.

5.1 Experimental Setup

We tested the following malware detectors: Avast Professional 4.8, Kaspersky
Anti-virus 2009, McAfee VirusScan Enterprise 8.5.0, Nod32 Anti-virus 3.0, Panda
Anti-virus 9.0.5 and Sophos Anti-virus 7.6. We selected the malware detectors
that facilitated the most the batch analysis, that is, those invokable directly from
the command line and with the ability to cleanup the system automatically. We as-
sumed that the detection capabilities of the command line version (with the proper
arguments) and the GUI version corresponded. The virus definitions of each prod-
uct were last updated on 15 January 2009. To discourage any direct comparison
among the malware detectors, they were tested using different sets of about 100
malware samples, chosen randomly from a corpus composed by several thousand
samples collected in the last quarter of 2008. All the samples tested were detected
by the six detectors.

We performed the evaluation of our testing methodology using as test systems
multiple VirtualBox virtual machines, each one running a different malware detec-
tor. To prevent other processes to alter the state of the system resources affected
by the malicious programs used for the testing, we stripped down the virtual envi-
ronments used for the analysis: we stopped all unnecessary services and processes
and we did not interact at all with the environments. We traced the execution of
the selected malicious program for five minutes and we performed all the steps of
the analysis without restarting the test system. After each test, we restored the
original clean state of the virtual machine.

5.2 Evaluation of State-of-the-Art Malware Detectors

Fig. 5 presents the overall results of our experiments. The names of the malware
detectors have been anonymised to discourage comparisons. For each malware de-
tector, we report the average percentage of system state transitions that were re-
verted. The average is computed on the total number of malware used to test each
detector. The transitions are separated in two groups, according to their security
impact on the system: primary and ancillary. Primary transitions are those that
have a high impact on the system, while ancillary transitions have a minor impact.
A user should expect all primary transitions to be reverted by the malware detec-
tor, while he could tolerate if some ancillary transitions were not reverted. The
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Fig. 5. Average percentage of system state transitions reverted by each malware
detector

partitioning of transitions in the two groups has a certain degree of subjectivity.
We divided each of the transitions classes F , R, P , and S in primary and ancillary
as follows:

– F (files): we consider as primary transitions all those that involve executable
files (e.g., .exe, .dll, .bat, .pif, .scr), while as ancillary those involving
the remaining types of files.

– R (registry keys): we consider primary transitions those that involve registry
keys that can be used to start programs automatically and ancillary all the
remaining ones.

– P (processes): we consider primary the transitions that create processes where
the executed files match any of the files dropped on the system by the mali-
cious program; the remaining processes started by the malware but executing
programs already present on the system are instead considered ancillary.

– S (services): for simplicity we treat system services as normal processes.

The graph in Fig. 5 clearly shows the effectiveness of our testing methodology at
evaluating the completeness of remediation procedures. None of the tested mal-
ware detectors turned out to be complete, even if only primary transitions are
taken into account: about 75% of the total primary transitions and only 4% of the
total ancillary transitions were reverted.

A more detailed overview of the average distribution of primary and ancillary
system state transitions reverted, for each transition class, is reported in Fig. 6
(product names have been anonymised). While all malware detectors reverted the
majority of primary transitions involving files, some of them (e.g., Vendor C and
Vendor F) did not revert transitions involving registry keys at all. Other detec-
tors instead (e.g., Vendor A and Vendor B) did not seem to terminate malicious
processes, although we did not check the state of the system after a reboot.
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Fig. 6. Average percentage of primary and ancillary state transitions, partitioned by
the system resources involved, reverted by each malware detector

We did not test interactively whether the system continued to work properly
after infection and remediation. Indeed, there could exist situations in which an
incomplete or improper remediation might render the system unusable. For ex-
ample, imagine a malicious program that creates a registry key pointing to an
executable, and that the existence of the key mandates the existence of the file
(e.g., in Windows XP, the Image File Execution Options registry key). If the
executable were removed, but the key were not, the system would stop working.
We plan to address this problem in the future.

6 Related Work

In this section we briefly review the work done by the research community on mal-
ware detection and analysis. We also present some recent results that focus on
execution of untrusted applications without any risk for the system and on the
problem of testing malware detectors.

6.1 Malware Detection and Analysis

The traditional approach for the detection of malicious code is based on signa-
ture matching of various complexity [14]. A signature can be a sequence of bytes
that identifies pieces of data or code of the malicious program, but even very com-
plex algorithms that test whether a particular programsatisfies certain properties.
The advantage of using sophisticated detection methods is that signatures become
more generic and thus a single signature can be used to detect multiple variants de-
rived from the same family. On the other hand, from the remediation point of view,
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excessively generic signatures do not allow to distinguish variants. If single vari-
ants cannot be told apart, the remediation procedure cannot take variant-specific
behaviours into account and cannot perform a complete cleanup.

Purely signature-based approaches have demonstrated their weaknesses when
packed, polymorphic and metamorphic malware appeared. The research
community started to move toward behaviour-based solutions. Behaviour-based
detection [3,4] and analysis [15,16,17,18] approaches do not focus on the syntac-
tic structure of the analysed program, but try to consider its semantics. Because
these solutions work by observing a concrete execution of the malicious sample,
they could provide much more accurate remediation procedures.

6.2 Execution of Untrusted Applications

In [19], Hsu et al. present a framework to automatically remove a malicious pro-
gram from the system and also to repair any damage it could have done. The safe
state of the system is restored by using the logs of the execution and by reverting
each logged operation. An alternative approach is proposed by Liang et al. [20].
Untrusted programs are executed in a sandbox and the changes made to the “vir-
tual” system are committed to the real one at the end of the execution, only if the
program can be considered innocuous.

In the operating systems and self-healing communities, a number of different
works investigate the problem of automatically reverting the modifications made
by an unwanted program. As an example, in [21] the authors present Speculator,
a modified Linux kernel that allows speculative execution of user-space processes.
Speculator avoids blocking user processes during slow I/O operations (such as re-
mote I/O operations): the system predicts the operation’s result, checkpoints the
process and allows it to continue; later, if the prediction is found to be incorrect,
the process is reverted to the checkpointed state.

6.3 Evaluation of State-of-the-Art Malware Detectors

The need for automatic testing methodologies targeting anti-malware products
has been clearly stated by the Anti-Malware Testing Standards Organisation
(AMTSO) [10]. However, little research work focuses on the evaluation of mal-
ware detection and remediation solutions. One of the few examples is represented
by [22]; in this paper, Christodorescu et al. present a technique for generating
test-cases to stress malware detectors. They use program obfuscation techniques
to evaluate the resilience of malware detectors to various transformations of the
malicious code. The goal of our paper instead is to estimate the completeness of
remediation procedures. For this reason, the testing infrastructure described in
our paper could complement their work, in order to produce more comprehensive
testing methodologies.

Other researchers highlighted the importance cleaning infected systems and the
importance of testing such functionality [23,24]. Motivated by the same convic-
tions, this paper contributes to address this problem by proposing a fully auto-
mated testing methodology and an extensive evaluation of several state-of-the-art
commercial products.
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7 Conclusions

Malware detectors are essential components for preserving the security of com-
puter systems. They allow to detect and prevent malicious software and, when
malware cannot be stopped from infecting a system, they allow to recover from
the infection. In this paper we presented an automated testing methodology to
assess the completeness of remediation procedures used by malware detector to
clean up compromised systems. We used this methodology to test six of the most
rated malware detectors on the market and found out that the dangerous effects of
an infection are seldom completely removed. In the future we plan to investigate
automatic techniques for generating more complete remediation procedures.
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Abstract. With increasing security measures in network services, re-
mote exploitation is getting harder. As a result, attackers concentrate on
more reliable attack vectors like email: victims are infected using either
malicious attachments or links leading to malicious websites. Therefore
efficient filtering and blocking methods for spam messages are needed.

Unfortunately, most spam filtering solutions proposed so far are re-
active, they require a large amount of both ham and spam messages to
efficiently generate rules to differentiate between both. In this paper, we
introduce a more proactive approach that allows us to directly collect
spam message by interacting with the spam botnet controllers. We are
able to observe current spam runs and obtain a copy of latest spam mes-
sages in a fast and efficient way. Based on the collected information we
are able to generate templates that represent a concise summary of a
spam run. The collected data can then be used to improve current spam
filtering techniques and develop new venues to efficiently filter mails.

1 Introduction

In the recent years, we observe a shift how attackers proceed to compromise
system on a larger scale: instead of using random scanning and remote exploits
against common Windows network services, more and more attacks use email
messages as propagation vector. These spam messages either contain a malicious
attachment or a link to a malicious web page to compromise victims by exploiting
client side applications, like the victim’s browser [8,11,18].

Current approaches to deal with email spam have the problem that they are
commonly reactive: Given a large collection of email messages collected at end-
user mailboxes or dedicated mailboxes (so called spamtraps), the algorithms
extract features of all messages that can be used to distinguish spam from ham
messages, for example by using a Bayesian model [2,14] or other machine learn-
ing techniques [3]. A complementary approach is to generate a blacklist of IP
addresses that are known to be related to spam. Such blacklists can for exam-
ple be constructed by extracting frequently appearing sender IP addresses from
spam email headers [6]. Another example are URIBLs (Uniform Resource Iden-
tifier Blacklists) that list domain names that appear in URIs such as web sites
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mentioned in messages more than a given threshold of times [7]. All these ap-
proaches have the drawback that they need a larger collection of email messages
in order to generate precise rules, to distinguish ham and spam emails.

In this paper, we present an approach to deal with spam in a more proactive
way: instead of waiting at the end-user’s mailboxes or spamtraps for spam to ar-
rive and decide whether or not this is spam, we directly interact with the servers
that are used to send spam. The basic idea is that we execute spambots, i.e.,
malicious software dedicated to sending spam emails, in a controlled environ-
ment and collect all email messages sent by the bots. This enables us to directly
interfere with botnet control servers to collect current spam messages sent by a
specific botnet. Based on the collected information, we can generate models of
how spam messages look like (so called spam templates), identify unique spam
runs, and extract information that can be used to enhance spam filtering tech-
niques. Current research shows that the actual number of unique spam botnets
out there is not very large (in the order of hundreds or thousands [5,15,16]), and
thus it may be feasible to continuously collect information about a significant
number of spam botnets in the wild with only a limited amount of resources.

The contributions of this paper are threefold. First, we propose a proactive
approach to filter email messages. With the help of controlled spambot execu-
tions, we are able to collect spam messages in the very early phases of a spam
run and can continuously observe different kinds of bots. Second, we show how
the collected information allows us to generate filter rules which can be used to
detect spam messages, or to generate blacklists to efficiently block spam, way
ahead of current techniques to mitigate spam. Third, we implemented the system
and present first results of running the system for a limited amount of time.

2 Related Work

Concurrent with our work, Xie et al. [20] and John et al. [5] introduced similar
techniques to study current spambots. The basic idea of all three projects is to
execute spambots in a controlled environment and collect current spam messages
by observing the behavior of the bots. In contrast to the other two projects, our
focus is on generating spam templates that can then be used to filter incoming
spam. We use the complete email text and not only embedded URLs to be able to
detect a wider range of spam. For example, image-based spam or spam messages
that contain links to popular websites can potentially not be handled correctly
by the other two projects.

Venkataraman et al. introduced a method to use the network structure for
proactive spam mitigation [17]. Their approach is orthogonal to ours and could
be combined: we use information about the actual spam sources and the spam
messages sent, whereas their approach focusses on filtering known bad IP net-
blocks. Ramachandran et al. studied DNSBLs and the techniques used by spam-
mers in detail [13,12]. These techniques also complement our work, since we focus
on directly interacting with the spam botnets to extract information about new
spam runs as early as possible.
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The effectiveness of blacklists was studied by Jung et al. [6]. Since spam-
mers behave very dynamic and change their tactics frequently, it is questionable
whether or not the results from 2004 still hold. Especially due to the spammer’s
move to (reverse) SOCKS proxies and template-based spamming, the effective-
ness of blacklists is limited. Kreibich et al. studied Storm Worm in great detail
and provide more information about template-based spamming [8], one of the
most popular techniques used by spammers.

3 Overview of Current Spamming Techniques

Traditional Spamming Techniques. The traditional technique for sending spam
is direct spamming: a spammer uses a set of machines under his control to send
spam mails to the intended recipients directly. This specific behavior can easily be
detected by an ISP (e.g., a large amount of outgoing SMTP connections or many
complaints about a specific IP address), who then shuts down the spammer’s
account or blocks further SMTP requests from the specific IP addresses.

As a result, spammers started to use open email relays to send out spam
mails [6]. The basic idea is that misconfigured mail servers can be easily abused to
send out large amounts of spam: a spammer has to scan the network for such open
mail relays and then send all his spam emails using this server. This technique
was mainly used by spammers several years ago, thus efficient techniques exist to
block spam sent via open relays, e.g., blacklists as explained in Section 4. Proxy
pots (i.e, honeypots that act as open relays [1,10]) can be used to study spammers
that still use open relays and provide additional input to spam detection filters.

A similar technique to send out spam emails is based on open proxies : the
spammer scans the network for open proxies (typically either SOCKS protocol
version 4 or 5). Once he has found an open proxy, he uses this machine to relay
SMTP commands to the recipient’s mail server via the proxy. The open proxies
thus acts as a intermediary between the spammer and the mail server, efficiently
hiding the spammer’s true identity. Nevertheless, there exist several blacklists
which contain IP addresses of current open proxies.

(Reverse) SOCKS Proxy-based Spamming. To counter the success of blacklists,
spammers use compromised machines as proxies: the attacker installs a SOCKS
proxy on the compromised machine and then uses these proxies to send SMTP
commands to the mail server (see Figure 1(a) for an illustration). Since the
IP address of the bots changes frequently — for example due to reboots of the
infected machine or other DHCP effects — blacklists have a hard time to keep up
with the dynamic changes. In order to be more efficient, the attackers invented
the concept of reverse proxy-based spamming [4]. The bot connects in the first
phase to the controller and establishes a reverse SOCKS proxy connection. All
SMTP commands are then relayed through this tunnel from the controller to
the actual mail server. The basic concept is the same, the main advantage is
that the bots announce to the controller once they are available and can then
immediately be used for spamming purposes. Furthermore, the approach also
has the fundamental advantage that bots behind a NAT gateway can be used by
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the spammer as well: these machines are typically not directly reachable and can
thus not be used for proxy-based spamming. However, if they use a reverse proxy
approach, also these machines, which are typically end-user machines running
behind a DSL router, can be used for spamming purposes. Again, due to the
dynamic nature of these machines, blacklists are often not able to accurately
list these machines. Therefore, reverse proxy-based spamming is an interesting
method from an attacker’s point of view to send out spam emails.

Fig. 1. Schematic overview of (a) SOCKS proxy-based spamming (b) template-based
spamming, two common spamming techniques nowadays

Template-based Spamming. Another modern technique used by spammers is
template-based spamming, as illustrated in Figure 1(b). Instead of relaying the
SMTP commands through the compromised machines, the attacker sends the
bots a spam template that describes the structure of the spam message to be
sent. Furthermore, the attacker sends meta-data like recipient list, subject list,
and a list of URLs that are used to fill in variables in the template. The bots then
construct an email based on the template and the meta-data, and send this email
to the targets. As a result, the actual work of handling the SMTP communication
is moved from the control server to the bots. Nowadays this technique is used
by most large spam botnets, like Storm Worm, Bobax, Rustock, and a lot of the
other major spam botnets [15,16].

One indication that this technique is widely used by spammers can be seen
by the huge drop in spam emails after the web hosting service provider McColo
was shutdown in November 2008 [9]. This provider is suspected to have sup-
ported spammers by hosting many control servers used in template-based spam-
ming [16]. When the provider McColo was disconnected on Tuesday, November
11, 2008, the average number of detected spam mails dropped more than half
on many networks [9].
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4 Towards Proactive Spam Filtering

In this section we discuss a few of the current techniques to filter spam mails. A
DNS blacklist (DNSBL) contains a list of IP addresses that mail servers should
block and not accept mail from. A DNSBL can be queried with the help of the
DNS system and allows an efficient way to perform lookups. DNSBLs typically
list either open mail relays or open proxies. However, there exist also DNSBLs
that list other suspicious hosts, e.g., machines running within specific networks
or supposedly infected machines.

Closely related to DNSBLs are URIBLs (Uniform Resource Identifier Black-
lists). An URIBL contains domain names and IP addresses that appear in URIs
such as web sites mentioned in message bodies more than a given threshold of
times. In contrast to DNSBLs, which are used to check the sender’s address, an
URIBL checks the content of mail messages for suspicious links and complements
the DNSBL check.

Another approach to detect spam mail are hashing systems: the intuition
behind this approach is that if the same message body is sent to many people, it
is bulk and should be filtered. Unfortunately, these systems require that many
people receive the same mail in order to be effective. This can be defeated by a
spammer with the help of random content which is added to the mail body.

Bayesian spam filtering [14] and rule-based filtering systems such as SpamAs-
sassin focus on the mail content to detect spam. Given a large repository of
both spam and ham messages, these approaches extract features of all messages
that can be used to distinguish spam from ham messages, e.g., via a Bayesian
model [2,14] or other machine learning techniques [3].

An orthogonal approach to prevent spam messages is greylisting: a mail server
does not accept an incoming messages from an unknown sender and responds
with a temporarily reject message (often SMTP return code 450 or 451). A
legitimate mail server will typically re-send the message after a short timeout,
whereas current bots commonly try to send a message only once. Therefore,
messages sent via bots are effectively blocked. Unfortunately, this approach only
works since bots do not try to re-send messages. Once enough mail servers use
greylisting, the spammers will presumably adopt and also re-send messages.

4.1 Infrastructure for Proactive Spam Collection

Most approaches to filter mail as discussed in the previous section require a
corpus of both spam and ham messages. Based on these two sets, filtering rules
are extracted. These rules can for example be either a model how spam messages
look like (Bayesian or rule-based filtering) or a threshold-based approach to
classify a given message as spam if it contains certain URIs. To be more efficient,
it is desirable to obtain spam messages as accurately and early as possible when
the bots start spamming. In this section, we introduce an approach to collect
spam messages in an automated way by directly communicating with the spam
botnet control servers. This approach can be used to study both (reverse) proxy-
and template-based spamming operations in an automated way.
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A straightforward approach to collect spam mails is based on high-interaction
honeypots: we execute a spambot on a native Windows machine and let it com-
municate with the controller such that the bot can either establish a SOCKS
tunnel or receive the template and meta-information from the controller. How-
ever, we prevent outgoing spam messages by intercepting SMTP communication
at the local gateway and emulating the behavior of the target mail server. For
example, if the bot wants to connect to gsmtp183.google.com, we first inter-
cept this communication and redirect it to the local mail server running at the
gateway. Furthermore, we grab the banner from the intended server and then
replay the banner to the bot. As a result, the bot is tricked into thinking that it
actually communicates with the intended server, whereas it only communicates
with our mail server. We can collect all mail messages at the gateway and obtain
an overview of the current spam messages sent via this spam botnet.

After a certain amount of time, we reset the machine to a clean system using
a software-based restore mechanism and execute the next spambot. Different
strategies exist to determine when we have collected “enough” unique email
messages to reset the honeypot. Simple heuristics include using a predefined
timeout or a predefined number of email messages that should be collected,
e.g., resetting the honeypot once 5,000 spam messages are collected. Advanced
techniques analyze the collected spam messages and reset the honeypot once a
complete spam run was observed: our preliminary results indicate that one spam
run typically consists of 10 – 100 different domains being advertised in different
kind of spam emails. These domains are advertised in a round-robin fashion, and
thus we can reset the honeypot once we have observed each URI several times.
We have implemented several heuristics to decide if we have already collected
enough useful emails and still evaluate which technique works best in practice.

Furthermore, we have implemented a priority queue that enables us to pe-
riodically monitor a given spam botnet: Once we have collected enough spam
messages from a given binary and thus do not obtain any new information, we
revert the honeypot back to a clean state and start the next bot. However, we en-
queue the binary for another analysis run since the spam campaign could change
and we could observe new spam mails when we execute the bot again later on.

4.2 Towards Proactive Spam Filtering

The spam mails collected with the help of the system proposed in the previous
section can be used to generate spam filtering rules in a proactive way: since we
observe a live spambot, we can be sure that we observe only spam messages.
Based on the collected information, we can generate detection rules. The easiest
rule is an URI blacklist based on the advertised URIs we observe in the collected
messages. We can also analyze the spam message in more detail: quite often, the
spam engine of a bot contains unique artifacts that can be used to identify the
spambot and classify a given message as spam. These artifacts could be specific
header fields or the arrangement of certain header fields or body text. Finally, we
can generate a model describing the overall structure of the spam message. This
model would include the complete template we extracted by analyzing several

gsmtp183.google.com
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spam samples. An incoming mail message could then be checked against this
model and if it matches, the mail would be classified as spam.

We analyze all collected spam mails and extract common parts to generate
a model that matches the spam emails collected from a single spambot. For
extraction we use a variation of the longest common substring (LCS) algorithm.
We generate all common substrings of all emails contained in a single observed
spam run and fill the gaps with placeholders to form a raw template. More
specifically, we use the following algorithm to compute a single raw template:

1. First, we read all emails belonging to a single observed spam run and sort
them according to their text length. Thus, longer emails are processed first.

2. In the second step, we take the first email from the sorted list and consider
it as our first raw template named α.

3. Then, we take the next email from the list and merge it with α to form a
second raw template named β, which is then one step more specific than the
previous template α.

4. Now, we compare the two raw templates α and β and determine the amount
of text that was replaced by placeholders. If the percentage of removed text
is below a predefined threshold θ, β becomes our new α, the email used to
form β is removed from the list and we continue with step three. That way
only emails that do not modify α too much are added to the final template
of this run. If the percentage of changed text is above θ, the current β is too
generic and is therefore discarded. The email that was used to generate β is
moved back to the list of emails and we take the next email from the list to
create a new β, as described in step three.

5. As long as emails are in the list we continue with step three. At some point
no more emails are left for processing or only those emails are left that did
not fulfill the threshold criteria θ. That means that α becomes static. At
this point, the raw template is finished and a new raw template generation
process begins, with all emails that are left from the previous run.

After the template generation process we end up with a certain number of raw
templates, and the number of email that were used to form each. The generated
raw templates do not contain any regular expressions yet, but only placehold-
ers. Thus, we generate from each email that was used to form the template a
regular expression to replace the placeholders. To achieve this we analyze the
variable parts of the emails, i.e., the parts of the email that are replaced by
placeholders in the raw template, and store the length of the longest and short-
est variable part. Furthermore, we analyze the characters of the variable part
to decide if the resulting regular expression should contain digits, characters, or
special characters, or all together.

Once all placeholders are replaced with a regular expression, we have a pre-
cise template in form of a single regular expression matching all emails of the
particular spam run captured in our monitoring environment. Note, that in case
a spambot sends messages with permuted words, sentences, or various synonym
words, templates can either become too generic or several templates are gener-
ated for each message with a permuted sentence for example.
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Subject: ([\:\’\,\?\w]){3,11} ([\,\’\?\s\w]){14,35}
X-Mailer: Microsoft Outlook Express 6.00.2900.2180

Body:
Lose Weight -Burn Fat -Look great and feel=20
great -
&nbsp;
http://([A-Za-z]){9,14}.chat.ru
&nbsp;
And do all this with a miracle weight loss fruit &#8211; ACAI BERRY &#8211;=
Best=20
of all &#8211; it&#8217;s completely FREE for a limited time! Click here to=
receive your=20

completely free bottle of ACAI BERRY supplemnt!

Fig. 2. Final spam template extracted from analyzing over one thousand emails re-
ceived by a single spambot

Figure 2 shows the results of such a template generation process. The template
was generated from 431 spam emails sent by a single spambot. During this
spam run only a single campaign was advertised. The figure shows that the
template used by the spambot contains very little variable parts. Most of the
text is completely fixed, leaving only the subject, and the advertised URL as
variable parts within the generated template. Note that the URL is only partially
variable, the domain name of the URL is fixed.

In the current template generation process, we only consider the subject,
x-mailer, and the complete body of spam messages. Any other information in-
cluding attachments are stripped from the emails, as most of the header fields
like “From:” and “To:” contain only variable parts which do not add more in-
formation to the conciseness of the template.

5 Preliminary Results

We obtain malware samples with the help of different honeypot solutions. For ex-
ample, we use different honeypots to collect samples of autonomously spreading
bots and worms, and honeyclients to collect samples of malware that is installed
via malicious websites. Furthermore, suspicious samples can be manually sub-
mitted to our analysis environment. In total, we receive between 400 and 1,500
unique samples per day using this setup. All samples are analyzed with the help
of an automated tool called CWSandbox [19], and a sample that shows signs
of spam behavior can then be analyzed in the honeypot environment described
above. We keep the samples in a queue and periodically execute them again,
such that we can observe changes in the spam runs of a given spam botnet and
obtain the latest set of spam messages.

Executing a spambot allows us to efficiently collect spam messages. In the
current setup, we use a time-out of 30 minutes after which we reset the honeypot
and execute the next malware sample. During this period, the bot typically sends
a few hundred up to a few thousand spam messages, we even observed several
bots sending more than 50,000 spam messages in this short amount of time.
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So far we have executed 40 different spambots in the analysis environment.
This resulted in a total of 100.977 spam emails to use for template generation.
First checks against a local spam folder with 20.290 spam emails revealed that
30% of the spam email belong to spam campaigns we were able to collect in our
observation environment. Some of these spam emails are even more than one
year old and still use the same template. As this first test was rather quick and
did not consider the full templates we generate, we guess that the detection rate
is even higher. The reason why we were not able to use full templates yet is that
for the spam campaigns found in the local spam folder we do not have enough
emails that were also sent by the bots that ran in our analysis environment. As
the detection rate of the spam emails with the help of templates highly depends
on the diversity of the emails used to generate the template, a slight variation
in the spam campaign can render a template useless.

The following example describes the problem. We used 493 emails from a
Casino advertising spam campaign collected during June and November 2008 to
evaluate the template generation process. We collected 71 emails in the analy-
sis environment advertising the same campaign on November 10th, 2008. From
these 71 emails we generated a single template and tested it against the 493
emails from the spam folder. Only 26 emails matched the template (5% detec-
tion rate). The reason for this low detection rate is the low diversity of spam
emails collected in the analysis environment during the 30 minutes of execution
time: they are all the same. If we take a single slightly different email from the
493 emails and add it to the template generation process, the detection rate
rises to 26%. If we add another email to the template generation process, we
even achieve 99% detection and all that changes within the template is the ad-
vertised URL, the text message is untouched. As a result, the number of emails
needed to form a good template depends on the diversity of the spam campaign
and the time span the template should be used without update. For the exam-
ple above it suffices to use three emails for template generation to obtain a 99%
detection rate.

6 Conclusion

In this paper, we introduced a technique to learn more about current spambots.
We execute a spambot in a controlled environment and collect all mails sent
from this bot by emulating mail servers. The technique is proactive in the sense
that we do not wait for a message to arrive at an end-users mailbox before
using it for classification, but we directly interact with the spambots and botnet
controllers. This allows us to obtain information about new spam runs earlier
than with current approaches. Furthermore, since we only collect spam messages,
we can use them to generate filtering rules. We presented a simple approach to
enhance current URIBLs, but the collected information can also be used to
extract the message template used by the bot. This information can then be
used to examine an incoming message, and if it matches the template, it is highly
likely spam.
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Abstract. Despite many advances in system security, rootkits remain
a threat to major operating systems. First, this paper discusses why
kernel integrity verification is not sufficient to counter all types of ker-
nel rootkits and a confidentiality-violation rootkit is demonstrated to
evade all integrity verifiers. Then, the paper presents, DARK, a rootkit
prevention system that tracks a suspicious loadable kernel module at a
granite level by using on-demand emulation, a technique that dynami-
cally switches a running system between virtualized and emulated exe-
cution. Combining the strengths of emulation and virtualization, DARK
is able to thoroughly capture the activities of the target module in a
guest OS, while maintaining reasonable run-time performance. To ad-
dress integrity-violation and confidentiality-violation rootkits, we create
a group of security policies that can detect all avialiable Linux rootkits.
Finally, it is shown that normal guest OS performance is unaffected. The
performance is only decreased when rootkits attempt to run, while most
rootkits are detected at installation.

Keywords: Rootkit Prevention, Virtual Machine Monitor, Emulator,
On-demand Emulation.

1 Introduction and Background

The security issue of the operating system extensions has been studied for years.
Unfortunately, the fact is that many commodity operating systems (e.g., Win-
dows XP and numerous Linux distributions) don not provide the defense against
those malicious kernel extensions. In recent years, academics propose a ”Out-
of-the-Box” approach [2][3][4][5][6][32][35][36][37] to protect detection software
by placing it outside the target (guest) OS, e.g. hypervisors (virtual machine
monitor), external co-processor. This approach creates strong isolation between
detection software and malware such that the former is ”invisible” to the latter,
(most likely) surviving its attacks accordingly.

Rutkowska [7] proposed a taxonomy that classifies rootkits according to how
they interact with operating systems. Type I rootkits refers to those that tamper
with the static part of an operating system, e.g. kernel text, system call table
and IDT; Type II rootkits refers to those that modify the dynamic part of an op-
erating system, e.g., the data section. Since contemporary OSs are not designed
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to be verifiable, a large amount of dynamic kernel objects that can potentially
be exploited by type II rootkits present challenges to security communities [8].
Recent progresses made in rootkit researches [9][10][11][13][14] reveal that hack-
ers may take advantage of some hardware features to construct stealthy rootkits
to beat the existing rootkit detectors.

Kernel run-time protection mechanisms can be categorized as detection and
prevention. Inherent limitations of rootkit detection mechanisms are discussed
in Section 2. Previous run-time rootkit prevention approaches [31][32] focus on
protecting the benign kernel code and thwarting malicious kernel code. One key
issue here is how to determine the goodness and trustworthiness of any piece of
kernel code. Unfortunately, previous approaches did not give in-depth analysis
of this problem and just simply assume it is a priori knowledge to end users
or protection systems, which is not true in practice. To date, there is no such
commodity operating system that strictly control the kernel code loading based
on both goodness and trustworthiness of kernel code. Even Microsoft’s driver
code signing [34] is just employed for the identification of driver code authors,
but not for assuring the goodness of signed drivers [33]. The effectiveness and
robustness of this mechanism are still being questioned [1][33]. In the end, people
have to make decision on whether to install a useful but potentially unsecure
driver, which is a challenge that is not addressed by previous approaches.

In this paper, we propose a rootkit prevention approach that tackles the chal-
lenge above, while enhancing the existing prevention approaches. The basic idea
is to sandbox a suspicious loadable kernel module in an emulator and to assure
its goodness by enforcing a group of well-selected security policies. Based on open
source software Qemu and Kqemu [12], we designed and implemented a software
system, namely DARK that uses on-demand emulation to provide powerful de-
fense against kernel malware. In DARK, when a rootkit tampers with a kernel
object or hardware object, its illegal behavior is captured and blocked. In the
meanwhile, VM emulation takes place only at the time that a suspicious module
is executed. Further, most operations of the VM are performed in virtualization
mode. Thus, the substantial execution overhead caused by emulation is avoided.
Our contribution in this work includes:

1. Identification of non-integrity-violation rootkits that can escape kernel in-
tegrity verifiers.

2. Implementation of a novel rootkit prevention system based on on-demand
emulation to sandbox a suspicious kernel module.

3. Creation of a group of security policies to detect and block all rootkits we
collected.

The rest of paper is structured as follows. First, we explain the limitation
of current rootkit detection mechanisms in Section 2. Section 3 presents the
design and implementation of on-demand emulation. Section 4 and 5 describe
the details of creating and enforcing security policy. We present the security
and performance evaluation results in Section 6 and introduce related work in
Section 7, while Section 8 concludes the paper.
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2 Limitations of Rootkit Detection Techniques

Run-time rootkit detection methods proposed by researchers can be divided into
two categories: specific rootkit detection and generic rootkit detection. Methods
in the first category focus on capturing specific type of rootkits. For example,
Cross-view diff-based method [6][25] just targets rootkits that conceal disk ob-
jects (files and registries); Lycosid [35] is intended to discover hidden process
only. On the contrary, methods in the second category are designed to counter
broad types of rootkits. To the best of our knowledge, the most generic rootkit
detectors known to the public are kernel integrity verifiers [2][3][4][5][21][24][37].
Kernel integrity verifiers concentrate on examining the states of some kernel ob-
jects to ensure that illegal tampering of these objects don not occur. They are
effective at defeating integrity-violation rootkits. Unfortunately, theses kernel
integrity verifiers suffer two fundamental weaknesses: incompleteness of assur-
ing the integrity of dynamic kernel objects; inability of detecting non-integrity-
violation rootkits, like confidentiality-violation rootkits and hardware-exploiting
rootkits. These two weaknesses are discussed in detail below.

2.1 Dynamic Kernel Objects

Most kernel rootkits are implemented in the form of kernel modules (drivers).
Hence, they share the same virtual memory environments as operating system.
No matter whether a kernel object (structure, list, text and so on) is exported
or not by the OS, a rootkit can always directly access and tamper with it after
being loaded to the kernel. In fact, direct kernel object manipulation (DKOM)
is one common technique employed by rootkit writers [28]. A kernel object could
reside on either permanent memory area (text, dss) or transient memory area
(stack and heap); its content could be constant or changeable. A kernel object
is static if its memory address is permanent. Otherwise, this object is dynamic.
Defending a static kernel object is straightforward, as its location and content
are relatively easy to identify. On the other hand, protecting a dynamic object
could become challenging due to the following four reasons. First, in comparison
with static objects, the population of dynamic objects is much larger, and enu-
merating all dynamic kernel objects at any time could be impractical. Second,
since integrity verifiers have to wake up to work periodically, they miss catch-
ing lots of short-lived dynamic objects, e.g., local variables in stacks. Third, a
detector’s recognition of dynamic objects can be attacked by rootkits so that
those objects are invisible to the detector. For examples, rootkits can alter the
page table to hide kernel objects from detectors, or remove an element from a
link list to make it untraceable. Last, the content of a kernel object can be un-
predictable and detectors are unable to differentiated good and bad values. One
such example is the entropy pool of Linux kernel, which can be manipulated by
rootkits to compromise Linux Pseudo-Random Number Generator (PRNG) [8].
In summary, kernel integrity verifiers cannot assure the integrities of all dynamic
objects in a kernel.
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Fig. 1. Key data flow in Linux desktop

2.2 Non-integrity-violation Rootkits

Non-integrity-violation rootkits are rootkits that launch attacks while not ma-
nipulating any kernel objects, so kernel integrity verifiers can not catch them.
One type of non-integrity-violation rootkits is hardware-exploiting the rootkit,
which misuses hardware feature or configuration to achieve their goals. Another
type of non-integrity-violation rootkits: confidentiality-violation rootkits. They
break the kernel data confidentiality while preserving the data integrity. One
class of candidates for the confidentiality-violation rootkits is data theft rootkits,
e.g., keyloggers and network sniffers. Next, we demonstrate one confidentiality-
violation rootkit: a Linux keylogger (called darklogger) that can sniff keystrokes
without illegally changing any kernel object.

Today, common Linux desktop environments like Gnome and KDE use X
window systems to manage terminal service: interacting with the keyboard and
mouse, drawing and moving windows on the screen. The key data flow in a typical
X window system is shown in figure 1. On the X server, the key reading path from
keyboard to user space consists of at least two threads working in tandem: a top
thread originating from a user process that issues read requests, and a bottom
thread originating from the interrupt service routine that reads the key data from
the keyboard. Two kernel buffers, tty flip buffer (tty_struct.flip.char_buf)
and tty read buffer (tty_struct.read_buf), store the key data (interpreted by
keyboard driver) and provide the synchronization between the top thread and
the bottom thread. When the top thread asks for data and the tty flip buffer is
empty, the thread goes to sleep; when the bottom thread fills new key data to
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the tty flip buffer, it awakens the top thread who copies the new data from the
tty flip buffer to tty read buffer and then to user space. In figure 2, when a key
is generated by keyboard and travels to the shell, it may be kept in four kernel
buffers. By adding hooks or patching code, traditional keyloggers hijack the
control flow of kernel’s processing key data. Darklogger takes a passive approach
based on the observation that tty read buffer is a large-size circular buffer and a
char data, representing a key, in the buffer is not wiped off until the head pointer
of the buffer moves back to its location, where a new char data is written. Since
human’s keystroke speed is relatively slow (less than 30 characters/second) and
the size of tty read buffer is large (4k), it takes more than 2 minutes to fill up
the entire buffer. Darklogger is a kernel thread that wakes up every 10 seconds
to read the tty read buffer and acquire all key data. Based on the positions of
the head and tail pointers in the buffer, Darklogger is able to extract the key
data of the last period. Because Darklogger just uses the legal kernel APIs and
does not maliciously hook any function or modify any kernel data object, it can
evade all kernel integrity verifiers.

Following the spirit of sandboxing program [29], DARK captures the inter-
actions between a rootkit and the rest of a kernel. The kernel objects visited
(memory read, write and function call) by a rootkit are recorded and analyzed
regardless of their locations, lifespan and contents. To DARK, the rootkit defense
is an access control problem and its success depends on the effectiveness of the
security policies. Last, it should be pointed out that DARK is not designed to
withstandrookits that access the kernel in abnormal ways, e.g., directly writing
kernel memory or injecting malicious code to kernel by exploiting the vulnerabil-
ities of benign kernel code. These attacks have been well addressed by previous
rootkit prevention systems [31][32].

3 On-demand Emulation

Virtual Machine Monitors (VMM) and emulators are two types of hypervisors
that support and manage multiple virtual machines (VM). A VMM seeks to
achieve high performance by directly executing most instructions of a VM on the
host (physical) CPU. In contrast, an emulator translates each VM’s instruction
to host instructions so to provide different types of virtual CPUs to its VMs,
paying the cost of poor performance. Due to their deep inspection capabilities,
some researchers use emulators to perform various security related tasks, e.g.
malware detection and analysis.

DARK is a hybrid system that combines the strengths of VMMs and emulators
to offer better system security and performance. It contains three components:
a VMM, an emulator and a virtual machine (VM) where a guest OS is installed.
In virtualization mode, the virtual machine runs on top of the VMM to gain
nearly native speed. When a suspicious module is to be executed in the VM, the
VMM is informed to take control of the VM. Then, the VMM collects the virtual
CPU state and MMU status data, and sends them to the emulator. Thus, DARK
is switched to emulation mode. Once receiving the VMM’s virtual CPU state,
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the emulator restores the VM’s operation and start monitoring the module’s
activities and enforcing the security policies accordingly. When the execution of
the module’s code is completed, the emulator suspends the VM and passes its
control back to VMM with the current virtual CPU state and MMU status data.
The VMM restores the VM and DARK is switched to virtualization mode. The
emulation is required only when the target module is executed, and most of VM
codes still run on VMM.

3.1 Design

The primary task of the on-demand emulation is to trap the module execution in
a VM. However, a module may have many non-privilege instructions and their
executions in a VM cannot trigger exception or interrupt, which is the only
way of transferring the control from VM to VMM in a virtual machine system.
DARK addresses this problem by exploring the paging mechanism of operating
systems. A present bit in the page table entry indicates whether a virtual page
has been assigned a physical page frame. When the CPU accesses a virtual page
whose present bit is 0, memory management unit (MMU) generates a page fault.
Then, an interrupt routine is invoked to allocate a physical page frame and copy
the page data from the swap area or disk file (demand paging) to this physical
page frame. As Linux never swaps kernel codes to disk, the present bits of kernel
code pages are always set to 1. DARK can trap a module by clearing the present
bits of its code pages in the virtualization mode. Later, when the module is to
be executed, VM issues a page fault. Thus, the VMM of DARK intercepts the
exception and passes the control to emulator, who sets those present bits back
to 1 and starts executing and monitoring the module in the emulation mode.
To maintain the integrity of the existing page fault mechanisms, the page fault
handler of guest OS should be modified to properly deal with these manipulated
page faults.

Before loading a module to guest OS, the DARK user decides whether to
monitor the module or not. If yes, the emulator is notified of the module name.
To change the present bits of the module before its execution, the guest OS
issues a software interrupt through instruction ”int 0x90”. The VMM catches
the interrupt, and hand it over to the emulator. Then, the emulator fetches
the module name from the VM image and compares it with the one defined
by DARK user to decide if the current module is right target. If two names
are different, DARK gives up monitoring and switches back to virtualization.
Otherwise, DARK kicks off the monitoring with the following steps. First, the
emulator queries the text (code) range of the target module from the module list
of the guest OS, and sends it to the VMM. Then, it clears the module present
bits and transfers the control to VMM, forcing the system into the virtualization
mode. Later, when the module is to be executed, the VM generates a page
fault, which is trapped to the VMM. The VMM uses the text range of the
module to identify that the faulty instruction comes from the target module,
and transfers the VM control to emulator. After setting the module present
bits to 1, emulator restores the VM sessions and starts the monitoring process
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Fig. 2. Partial on-demand emulation process

again. In this way, DARK moves the VM control between VMM and emulator
back and forth depending on if the VM executes module code. Figure 2 depicts
this on-demand emulation process. When the module is unloaded, DARK turns
off on-demand emulation by cleaning up their monitoring records and set the
corresponding present bits in the VM to 1.

3.2 Implemenation

DARK is built on Qemu and Kqemu [12], who run on any X86 CPU regardless
of the hardware virtualization support. Both the guest OS and the host OS are
Redhat Linux. Qemu is a hardware emulator that uses binary translation to sim-
ulate processor and peripherals, while maintaining a reasonable speed. Kqemu is
a kernel module that works with Qemu to provide virtual machine monitor func-
tion. In the full virtualization mode of a Qemu/Kqemu system, all user-mode
instructions and some kernel-mode instructions of a VM can be directly executed
on the host CPU. For security reason, the kernel-mode instructions for memory
accesses in the VM have to be intercepted and interpreted by Kqemu. This is
done by clearing the global descriptor table (GDT) and local descriptor table
(LDT) when VM runs in kernel mode. Thus, any kernel-mode memory access in
the VM will cause a general protection fault. Kqemu captures these faults and
interprets the instructions in the kernel. Because Kqemu needs Qemu to handle
some corner cases such as interpreting HLT instruction, some components of
the on-demand emulation framework are already available in orginal Qemu and
Kqemu software. To enable the module tracking, DARK modifies the switch con-
trol code of the existing on-demand emulation framework. In particular, DARK
adds the following business logics to the interrupt handler and V-to-E (virtual-
ization to emulation) control code (in common/module.c and common/kernel.c)
of Kqemu:
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1. If an interrupt vector number is 0x90 or 0x91, perfom emulation switching
2. For a page fault, if the faulty instruction address is within the text range of

target module, perfom emulation switching.

Moreover, we add one boolean variable to Qemu’s E-to-V (emulation to virtu-
alization) control code to ensure that virtualization switch is disabled when the
current instruction is from the target module and vice versa.

In addition, we instrument the guest OS kernel (Linux version 2.4.18):
adding two assembly instructions to sys_init_module and sys_delete_module
functions in kernel/module.c. The first instruction issues a software interrupt
0x90 before loading a module; the second one issues the interrupt 0x91 after
unloading a module. DARK obtains a module name by reading the module de-
scriptor from the kernel module list. Further, we modify the Linux module loader
(insmod.c) to put the module text range in the runsize and kernel_data fields
of the module descriptor, which allows DARK to read the text range later. In
Linux, all processes share one kernel page table that can be accessed from the
kernel master page global directory swapper_pg_dir. We use this global variable
to locate the page table entries of the target module and rewrites the module
present bits as described in Section 3.1. Last, we alter the page fault handler of
the guest OS such that it ignores the page faults caused by the target module
execution.

4 Security Policy

DARK does not aim to build perfect security policies to catch all rootkits. In fact,
modern operating systems are not designed to be traceable and verifiable, so the
creation of such ”perfect” policies may be impossible. Rather, similar to SELinux
[30], DARK provides a policy framework that gives security administrators the
flexibility to write their own security policies. To demonstrate the effectiveness of
DARK, we compose a group of security policies that are good enough to detect
most existing Linux rootkits and raise the bar for future kernel exploits.

4.1 Policy Framework

DARK treats the rootkit detection as an access control problem: a malicious
module needs to illegally access the other part of kernel to perform the attack.
DARK’s security policy is composed of a group of access control rules whose
format is given in table 1.

In table1, subject is a kernel module that is to be monitored. A module’s
home space contains: object (code and global data) section, stack and heap.
Any instruction issued from a module space is regarded as a representative of
this module, and should be monitored. Note DARK can apply various policies
to different modules, which is discussed later. Operation indicates the way that
a module interacts with the rest of kernel. DARK tracks three types of opera-
tions performed by a module: read, write and call. First two are memory access
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Table 1. Rule format of Dark

Subject Operation Object Action

{module a, b, c
. . . } {read, write, call} {hardware objects, kernel

objects} {reject, alarm}

operations; call is an action where a module invokes functions exported by OS
and other modules. Although a module may influence the kernel objects in other
means, e.g., return of an external call, creating a system exception, these three
operations are sufficient for DARK to detect the rootkits we know.

Object refers to those system resources and services accessed by a module.
Two types of system objects are included in DARK: hardware objects and ker-
nel objects. The former contains dedicated registers, IO ports and IO mapped
memory. Many of these hardware objects are crucial to system security. For ex-
ample, the register IDTR holds the linear address of interrupt descriptor table
which is used by CPU to transfer an interrupt to the corresponding Interrupt
handler. Hijacking this register allows hacker to amount various attacks, e.g.,
installing a virtual-machine-monitor based rootkits [13][14]. Kernel object is
a software concept, and one kernel object is a group of kernel data or code that is
semantically meaningful to software developer such as a pointer and a function.

In DARK, a policy rule that contains a hardware object is called system rule;
a rule whose object field is a kernel object is called kernel rule. A hardware object
that has only one representation in DARK, and it may be a register name, or
IO port number or memory address. One kernel object has two representations:
one is software-level representation such as variable names and function names,
which is used by DARK users to make policies; the other is hardware-level rep-
resentation and it is a memory address of the corresponding software object.
Since DARK enforce policy at hardware level, fore a kernel rule, it’s necessary
to translate its software-level representation to the hardwarelevel representation,
which is called policy translation.

DARK’s kernel rules may contain both static kernel objects and dynamic
kernel objects. A static kernel object’s memory address is determined when the
kernel is build, so this object’s location is fixed all the time, e.g., system call
table. Conversely, a dynamic kernel object’s location can only be decided at run
time, e.g., a process’ page table. A kernel rule containing a static object is called
static kernel rule; a kernel rule containing a dynamic object is called dynamic
kernel rule. Unlike static kernel rules whose policy translation can be performed
before a VM is powered on, policy translation of the dynamic kernel rules has
to be postponed to run time.

DARK takes two actions on a policy violation: reject and alarm. Reject de-
notes that DARK immediately stops executing the target module and prevents
any further damages. In Linux, removing a module is more complex and risky
than deleting a process from the system, and the former can corrupt the OS’s
operation integrity and reliability. Current implementation of reject action ter-
minates the VM, and writes a warning message to a log file on the host OS.
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Granular failure remediation is of the future work. DARK’s alarm action only
requires generating the logging messages instead of turning off the whole system.
Determination of a reject or alarm action for a rule is based on the consider-
ation of multiple factors: severities to system security, reliability and stability.
For those attacks that not only compromise the security but also greatly degrade
the system reliability and satiability, reject should be the choice, e.g., runtime
patching of the kernel text; For other attacks, terminating the current system
operation is not necessary, and alarming is probably sufficient such as sniffing
network traffics.

4.2 Established Rules

DARK’s policies are constructed based on common knowledge of the OS security
and observation of attack patterns of the existing rootkits. Total 19 kernel rules
were created and shown in table 2. Among them, four read rules and one call rule
are used to address the data theft rootkits as discussed in 2.2. The remaining
14 write rules deal with kernel integrity. Eleven dynamic rules employ seven
global variables as the starting points of policy translation. Among them, six
global variables are single/double linked lists and the other one (proc_root) is
associated with binary tree data structure. Note these global variables should be
write-protection as well. Otherwise, rootkits may modify the variables to hinder
the policy translation. We found that early-stage rootkits tend to manipulate the
static kernel objects such as system call table and kernel text. These objects are
critical to the system reliability and stability, any illegal modification of them
should be rejected at once. Kernel objects contained in Rule 5 and 17 are such
examples. On the other hand, some kernel rules are devised to counter the threats
in the future, while not being hit by any existing Linux rootkit. For example, it
has been reported that some Windows rootkits tamper with the kernel memory
management system to hide some kernel objects. It can be foreseen that hackers
may apply the same technique to Linux rootkits down to the road. Rule 6 and
10 are designed to achieve such purpose. Rule 9 and 16 in table 3 are optional,
because many normal networking drivers may violate them and enforcing these
rules possibly generates false alarms. The usages of optional rules depend on
user’s knowledge to the target modules. In addition to kernel rules, we created
11 system rules, and most of them are applied to special system instructions
that handle critical system-level functions, e.g., SGDT and WRMSR.

5 Enforcement

DARK stores the security rules to a local file called policy.dat. This file contains
the system rules, static kernel rules and software-level dynamic rules. When a
VM is started, DARK forks a thread that performs three tasks: 1. loading the
policy.dat to the RAM; 2. periodically translating dynamic kernel rules to the
hardware-level representation; 3. transforming all memory-access rules to the hash-
table based rules as discussed in Section 5.1. This thread stores all the rules in
several global variables, which are used to enforce the policy at run time.
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Table 2. Kenrel Rules of Dark

ID Name Operation Kernel Object Data Type Action Dynamic Optional

1
Console
TTY
Buffer

Read console_table tty_struct Alam No No

2
Exception
Table

Write __start_ext__table Exception_table_entry Alarm No No

3
GDT Ta-
ble

Write gdt_table Array Reject No No

4
IDT Ta-
ble

Write idt_table Array Reject No No

5
Kernel
Text

Write _text N/A Reject No No

6 MM List Write init_task mm_struct Alarm Yes No

7
Module
List

Write module_list Module Alarm Yes No

8
Module
Text

Write module_list N/A Reject Yes No

9
Netfilter
Hooks

Call nf_rejister_hook N/A Alarm No Yes

10
Page Ta-
ble

Write init_task N/A Reject Yes No

11
Proc Dir
Entry
List

Write proc_root proc_dir_entry Alarm Yes No

12
Proc Inod
Ops List

Write proc_root proc_inode_operation Alarm Yes No

13
Proc file
Ops List

Write proc_root Proc_file_operation Alarm Yes No

14
PTM
TTY
Buffer

Read ptm_table tty_struct Alarm Yes No

15
PTS
TTY
Buffer

Read ptm_table tty_struct Alarm Yes No

16
Socket
Buffer
List

Read skbuff_head_cache sk_buff Alarm yes Yes

17
Syscall
Table

Write syscall_table Array Reject No No

18 Task List Write init_task task_struct Alarm Yes No

19
Task
State
Segment

Write init_tss Array Reject No No
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When a suspicious module is to be executed, the emulator takes control of the
VM and begins policy enforcement. Concretely, DARK intercepts all memory ac-
cess instructions and some system instructions at the binary translation of Qemu.
Note an alternative method is to change the Qemu’s simulated MMU to capture
the memory accesses. However this method cannot enjoy the benefit of code caching
and suffers more performance penalty. For each of the monitored instructions,
DARK checks the corresponding rules. If an instruction hit a rule, DARK takes
the action defined in the rule. For alarm, DARK writes one warning messages to
the system log on the host machine. The message includes the module name, the
instruction’s address and the rule id. For reject, DARK generates an alarm and
then power off the VM by terminating the current Qemu process.

5.1 Hash Table

The data structures that hold memory access rules should be selected pruden-
tially, as inappropriate data structure might hurt system performance. DARK’s
memory access rules are initially defined as a series of memory intervals. One
memory interval, like (0xC03254fa, 0xC03256a0), is called one memory bucket.
Some dynamic rules, like socket buffer descriptors, comprise a large amount of
memory buckets. If they are stored in linked lists, DARK needs traverse thou-
sands of memory buckets (with various sizes) to inspect one instruction in linear
time of n. We present a data transformation method that converts a link list of
memory buckets to two hash tables. Since hash table lookups have the complex-
ity of O(1), it can significantly reduce the enforcement overhead.

Similar to the OS concept of a 32-bit page frame, DARK uses 10-bit and 5-bit
page frames in the transformation. The memory interval of a bucket is broken
into multiple 10-bit or 5-bit page frames and each page frame has one entry in a
hash table. Two hash tables stores 10-bit and 5-bit page frame rules respectively.
Figure 3 lists the C implementation of the converting routine. The selection of
10 and 5 bit page frames is based on the observation that most memory buckets
created by DARK are either large (at the page level) or small (less than 200
bytes). This division ensures that each hash table is not overwhelmed due to the
hash conflictions. Given a target memory address, DARK first computes its 5-bit
page frame address by removing last 5 bit of the memory address, and searches
the frame address from the 5-bit hash table; if not found, it then does the same
check for 10-bit hash. Thus, only two bit operations and two hash table lookups
are needed at most.

5.2 Code Cache

To reduce the emulation overhead, DARK takes advantage of the performance
optimization in Qemu. The key technique is to cache the translated code se-
quences so that they can be directly executed in the future. Each sequence of
instructions ending with a single control transfer instruction is called a block.
Qemu translates a block in each main control loop and places the translated
block to a code cache. All the translated blocks are organized as a hash table
and a cached block can be found fast. A block can be linked to another one if
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Fig. 3. Source code of the memory bucket transformation routine

it does not contain the indirect branches, avoiding the extra loop cost. DARK
only performs the security check at binary translation, so once a block of code is
put into the cache, DARK does not examine it any more. Finally, when the code
cache is full, Qemu simply purges all blocks in the cache and refills the cache
with new blocks. Since DARK’s emulator only caches small-size module code,
the chance of overflowing the cache is small.

5.3 Security Log

DARK provides the logging capability that keeps record of the interactions be-
tween a module and the rest of the kernel. The log includes: memory write and
read, function call and IO operations. For memory read and write, DARK prints
out the instruction address, and target memory address and content. For func-
tion invocation, DARK records the function address, calling instruction address,
the first two parameters and return value of the function. However, parameter
semantics of a function are unknown, so DARK logs the first 16 bytes in the stack
parameter area of the function. Note that DARK only logs the external memory
accesses and function invocation. In addition, we create a tool that interprets
log records, identifies all heaps that are assigned to the module, and removes
them from the log. Combining this logging capability with Qemu’s snapshot can
provide the abundant data sources for forensic analysis.

6 Evaluation

This section presents the empirical results of the DARK system. The evaluation is
composed of two subsections. In the first subsection, the functional effectiveness
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of DARK is investigated: whether the security policies are made properly in terms
of false positive and false negative detection rates. Then, we conduct the perfor-
mance evaluation and study the performance impact of on-demand emulation on
the VM. DARK is built based on the QEUM 0.8.2 and KQEMU 1.3.0prell. All the
experiments are performed on a Dell machine with Intel P4 CPU (2.8 GHz) and 1
GB RAM. The host OS is Fedora Core 5.0 and the guest VM was assigned 256M
RAM and 6G hard drive; Guest OS is Red Hat Linux 8.0 with 2.4.18-14 kernel.

6.1 Security

Beside the classification of rootkits given by [7], Petroni [5] classified the rootkits
according to their intentions: user-space object hiding (HID), privilege escalation
(PE), reentry/backdoor (REE), reconnaissance (REC), and defense neutraliza-
tion (NEU). In this experiment, we collect 18 rootkits that cover a wide range
of attacks. Among them, there are 10 type I rootkits, 8 type II rootkits, 8 HID
rootkits, 7 PE rootkits, 3 REE rootkits, 5 REC rootkits and 3 NEU rootkits.
In addition, one rootkit from [15] is devised to attack the hardware resources
(system BIOS). Unfortunately, the Qemu’s BIOS is not updatable, so the rootkit
cannot be successfully installed to the test VM. The other 17 rootkits are listed
in table 6. A rootkit may have several operation modes and different modes may
use different attack tactics. For example, with the technique described in [16],

Table 3. Detection Result of Dark

ROOTKIT
FUNCTION

TYPE
HIT KERNEL RULES

ACTION
HID PE REE REC NEU Load Operation

Adore X X I 17 18 Reject

Adore-ng X X X II 7,12,13 18 Alarm

Adore-ng(hidden) X X X II 7,12,13 18 Alarm

Darklogger X II 15 Alarm

Exception X X I 2 18 Reject

fileh-lkm X I 17 Reject

Hookstub X I 4 18 Reject

Hp X X II 18 7,12,13 Alarm

KIS X X I 17 Reject

Knark X X X I 17 18 Reject

Linspy2 X I 16 Reject

Nfsniffer X II 9 16 Alarm

Nushu X II 16 Alarm

Pizzaicmp X II 9 16 Alarm

Prrf X X II 11,12,13 18 Alarm

Sebek X I 7,17 Reject

Srookit X I 5 Reject

Vologger X I 17 14 Reject

Vologger(local) X II 1 Alarm
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Adore-ng can optionally hide itself into a benign module, forming a ”combo”
module. We test the regular Adore-ng and hidden Adore-ng separately. To com-
prehensively understand the rootkits’ behavior, we run several Linux utilities
like ls, ps, netstat and ssh to verify whether a rootkit works as expected after
its installation. Moreover, when a rootkit violates a reject rule, we intentionally
instruct DARK not to shutdown the guest VM and make the rootkit continue
to run until all testing utilities are finished. Thus, we can catch all security rules
that the rootkit hits.

The test result in table 3 suggests that DARK is able to detect all the rootkits
with the security rules in table 3. Some rootkits violate multiple rules at the
loading stage and operation stage. System call table (rule 17) and task list (rule
18) are primary kernel objects that rootkits target on. Several type I rootkits
hijack system call table to hide user-space objects or steal private data. IDT table
and kernel exception table are another two static kernel objects that the rootkits
tamper with in the test. To type II HID rootkits, proc file system provides
exploitable kernel objects that are alternatives to system call table: two such
rootkits (adore-ng and prrf) alter the relevant data objects of the proc system
to hide processes and network connections. All the PE rootkits modify the user
id and group id in the task_struct objects to raise a process’ privilege level.
Another observation is that all rootkits are captured at the loading stage except
the Darklogger and Nushu. As we pointed out before, Darklogger is a non-
integrity-violation rootkit and does not illegally change any kernel object in the
kernel. It just creates a kernel thread and initializes some data structures at
the loading stage. Yet, its reading of the PTS buffer is caught by DARK at the
operation stage. Nushu manipulates the packets from/to local network adapters
by indirectly registering hooks to the kernel through the function dev_add_pack.
Because this function is not defined in table 3, Nushu escapes the loading-stage
inspection. But DARK detects the intrusion when it reads socket buffers at the
operation stage. Note that powerful kernel integrity verifiers are still likely to
catch the Nushu due to its hooking behavior.

In the experiment, Adore-ng is embedded in the module iptables_filter
to create a combo module. By comparing the hidden Adore-ng with the regular
Adore-ng, we find that they hit the same set of rules. However, the combo module
can not be unloaded from the kernel even after we flush the iptable rules and
stop the iptable service. After further investigation, we found the reason. Both
hidden Adore-ng and the regular Adore-ng modify the kernel module list, which
is a list of module objects. The regular Adore-ng changes the next fields of the
previous and next module objects with the purpose of hiding itself, while the
combo module alters the uc.usecount field of the current module object to
persist its existence in the kernel. Vlogger is also tested in two operation modes.
Although the regular mode offers more powerful features than local mode, the
latter turns out to be stealthier: it only alters the dynamic kernel objects and is
a type II rootkit.

To estimate the false positive rate of the detection system, we choose 7 cate-
gories and total 20 drivers from the Linux source, and execute them in the DARK
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system. When we test the network drivers, we deactivate the optional rules 9
and 16 to avoid the false alarms. The test result indicates that 19 of 20 drivers
pass the test. The failed module is jdb and it is a journaling block device driver
used by Ext3 file system for data recovery. This driver alters the journal_info
filed of two process’ task_struct objects, leading to the violation of rule 18.
This false alarm implies that the rule 18 is too restrictive and should be revised
to only include the sensitive fields that task list members. But, on the other side,
this violation does not incur the system termination and we believe that overall
quality of the security rules is good.

6.2 Performance

Performance evaluation is intended to measure the impact of on-demand emu-
lation on overall system performance. The module iptable_filter from Linux
source is chosen to be monitored. First, this module operates at the kernel net-
work stack, which is one of major attacking targets of rootkits. Second, running
this module in emulation mode is expected to only degrade the performance of
the network subsystem in the kernel, and other subsystems should not be af-
fected. Iptable_filter registers three hooks to netfilter and applies the iptable
rules to network traffics at three guarding points of the netfilter: input, output
and forward. We write a number of input and output iptable rules and neither
of them actually blocks the network traffics during the test. Three benchmarks:
bonnie [17], iperf [18] and lmbench [19], are performed to examine the perfor-
mance of disk IO, network IO and the entire system respectively.

Comparing with VMM-only system (pure virtualization system), DARK’s over-
head comes from on-demand emulation, which is composed of two parts: 1.
Context switch between virtualization and emulation; 2. Execution overhead in
emulator, including binary translation, policy enforcement and execution of trans-
lated code sequences. To identify the contribution of each part to the overall cost,
we devise another test system: DARK-CS. It does the context switch from vir-
tualization to emulation when an iptable_filter function starts to run. Then,
emulator returns the control back to VMM immediately and the iptable_filter
function is actually executed over VMM. Therefore, context switch between vir-
tualization and emulation is the only overhead of DARK-CS. In the experiment,
we run each benchmark in DARK, DARK-CS and VMM-only system.Table 4
shows the test result of bonnie. It’s observed that the three systems have little

Table 4. Bonnie test result for 100 M files

SEQUENTIAL OUTPUT SEQUENTIAL INPUT — RANDOM

Per Char block Rewrite Per Char block Seeks

K/Sec %CPU K/Sec %CPU K/Sec %CPU K/Sec %CPU K/Sec %CPU /Sec %CPU

VMM 8528 64 12755 45 19082 53.0 15805 75 129292 71 3515 84

DARK-CS 8038 61 11715 41 17402 48.2 16860 80 130266 74 4969 85

DARK 8168 67 13949 43 18742 49.8 14480 73 125493 72 5117 83
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Table 5. Bonnie test result for 100 M files

VM as Server (M/Sec) VM as Client (M/Sec)
TCP UDP TCP UDP

VMM 21.81.2 1.050.1 26.82.3 1.130
DARK-CS 19.730.5 1.010 23.991.4 1.080.1
DARK 19.600.6 1.000.1 24.051.0 1.080.1

performance difference when running bonnie. This is because bonnie just accesses
the files on disk and iptable_filter is not being executed. Bonnie’s test result
suggests that DARK’s overall performance is same as VMM-only system when
on-demand emulation doesn’t take place.

The iperf test result in table 5 reveals the impact of on-demand emulation
on overall system performance. TCP and UDP throughputs of DARK-CS are
slightly (about 10%) lower than VMM-only’s, which indicates that the overhead
of context switching is non-negligible but not significant. CPU state transfer-
ring, shadow page table synchronization and page fault handling are three main
components of context switching in DARK. However, It is still unknown which
component should take the responsibility of performance penalty at the moment.
Further, it seems that neither component has much room left for performance
improvement. Table 5 also suggests that DARK and DARK-CS have indistin-
guishable TCP and UDP throughputs. This result can be explained by the code
caching technique introduced in section 5.2: to a block of module code, binary
translation and policy enforcement are performed only at the first time this block
of code is executed, and its translated code sequence in the code cache plays the
primary role of deciding the performance in the long run. So code caching is
effective to reduce the emulation overhead. We also did the performance test
with the Lmbench, and test result confirmed the conclusions we draw above. We
can not present the test result under the space constraint.

7 Related Work

Ho [20] proposed the concept of On-demand Emulation that can be used to solve
the security problems. His system modified the emulator’s hardware support to
enable the data tainting at the system level. The system was built on Qemu and
Xen VMM, and its main application is prevention of malicious code injection
by tracking data received from the network as it propagates through the target
VM. DARK does not tamper with any VM’s hardware setting, and focuses on
kernel rootkit detection.

Kernel Integrity Verification [4][5][21][22][24][37] is one popular rootkit de-
tection approach that follows the spirit of Tripwire [23] in protecting the file
systems. It builds a baseline database for the measurable objects (e.g., text,
static data) of the target guest and periodically queries current states of those
measurable objects to detect intrusions by comparing them with the baseline
database. As we mentioned before, these integrity verification methods suffers
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dealing with dynamic kernel objects and are also incapable of detecting non-
integrity-violation rootkits.

Kruegel [27] and Limbo [26] use static and dynamic program analysis tech-
niques to inspect the innocence of a driver off-line. Similar to DARK, both
systems create a group of security policies and monitor module behavior. How-
ever, they are not run-time rookit detection system, so they suffer fundamental
hurdles to static and dynamic program analysis, e.g., code obfuscation, or inac-
curate and incomplete analysis result. HookFinder [38] and HookMap [39] are
two systems that explore hooking behavior. The former employs the dynmic
data tainting to caputer the hooks implanted by rookits, and the later uses the
data slicing to identify all potential hooks on the kernel-side execution paths of
testing programs such as ls, and netstat.

SecVisor [31] and NICKLE [32] are two rootkit prevention systems that rely
on trusted VMM to enforce life-time kernel integrity. A trusted VMM ensures
that only authenticated code can execute in kernel mode, which is a stronger se-
curity property than Vista’s driver signing. Both systems can protect kernel from
code injection attacks including zero-day kernel exploits. DARK is intended to
handle the unauthenticated drivers. As long as these drivers follow the behavior
specification (security policies) defined in DARK, they are allowed to run in the
kernel. So, DARK is an enhancement to the existing prevention solutions.

8 Conclusion

In this paper, we presented a rootkit prevention system to dynamically moni-
tor a suspicious module using on-demand emulation. In addition, we develop a
group of security rules to effectively detect rootkits that we gathered, which was
demonstrated in the security evaluation. In the end, we show that the perfor-
mance of a VM is not affected for the majority of system operations. Context
switches between emulator and VMM slightly decrease the system performance.
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Abstract. Remote code-injection attacks are one of the most frequently
used attacking vectors in computer security. To detect and analyze
injected code (often called shellcode), some researchers have proposed
network-level code emulators. A network-level code emulator can detect
shellcode accurately and help analysts to understand the behavior of
shellcode. We demonstrated that memory-scanning attacks can evade
current emulators, and propose Yataglass, an elaborated network-level
code emulator, that enables us to analyze shellcode that incorporates
memory-scanning attacks. According to our experimental results,
Yataglass successfully emulated and analyzed real shellcode into which
we had manually incorporated memory-scanning attacks.

Keywords: Network-level code emulation, Code-injection attack,
Memory-scanning attack, Intrusion detection, Intrusion analysis.

1 Introduction

Remote code-injection attacks are one of the most serious threats in computer
security today. In the attack scheme, an attacker injects his own malicious code
(often called shellcode) into a victim server by exploiting various vulnerabilities,
such as stack overflow [1], heap overwrite [2,3] and format string attack [4]. Then,
he compromises the control flow of the victim to execute it (e.g., by overwriting a
return address on the stack). To evade detectors for such attacks [5,6,7], attackers
are developing more sophisticated shellcode [8,9,10,11]. For example, encryption
changes the appearance of malicious code to evade detectors that rely on the byte
patterns of the code [5,6]. Obfuscation complicates the code so as to confuse static
control-flow-based analyzers [7,12]. These techniques diminish the effectiveness
of existing detectors and hinder code analysts from extracting malicious behavior
from the shellcode.

To detect and extract the behaviors of sophisticated shellcodes, some
researchers are proposing network-level code emulators [13,14,15,16,17]. A
network-level code emulator inspects a network message, regards it as shell-
code, and runs the instructions of the shellcode in an emulated environment.
This allows us to decode encrypted shellcode or extract the malicious behavior
of obfuscated shellcode. In fact, Polychronakis et al. [13,16] and Zhang et al. [15]
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proposed emulators to detect encrypted shellcode. Ma et al. [14] used emulation
to analyze the relationship between multiple shellcodes. Spector [17] emulates
instructions symbolically and analyzes Win32 API calls issued by the shellcode.

In response to the development of network-level code emulation, attackers
are trying to evade such emulators by making more sophisticated shellcode.
For example, the TAPiON encoder [9] converts shellcode to confuse emulators
by inserting meaningless FPU instructions and rdtsc instructions. This allows
attackers to evade partially-implemented emulators that cannot decode FPU
instructions or execute rdtsc instructions. Although Polychronakis et al.’s em-
ulator [13] could decode shellcode obfuscated by TAPiON, attackers continue
to develop new evasion techniques. To maintain the advantage in the never-
ending battle against attackers, we must foresee potential problems and possible
evasions by network-level code emulators.

Our goal is to improve the effectiveness of network-level code emulation. To
achieve this, we describe potential problems with current emulators and how
attackers can evade them. Memory-scanning attacks [18], originally developed
within the context of host-based IDS, effectively prevent network-level code em-
ulators. Memory-scanning attacks disrupt code emulation by accessing memory
outside the control of code emulators. Since a network-level code emulator ex-
amines network packets, it cannot inherently access the memory regions of a
victim process. If shellcode accesses the victim memory, the emulator can not
continue its emulation. For example, an attacker scans the victim code region
for 0xC3 (ret instruction in Intel x86), and then jumps to the location. If this
shellcode is executed in the victim process, the control returns immediately to
the original location. Unfortunately, the emulator cannot emulate this behavior
of shellcode because the code region of the victim is not available to the server.
Polychronakis et al. [13] mentioned the possibility of using the victim code to
evade network-level emulators, but did not discuss this further.

The contribution of this paper is twofold. It:

– Explains how memory-scanning attacks evade network-level code
emulators. Memory-scanning attacks scan memory regions of the victim
process for a useful fragment of code. Polychronakis et al. [13] claimed that
using the victim code makes shellcode fragile because the shellcode heavily
depends on memory layout that tends to change across different software
and OS versions. Memory-scanning attacks can be more general and eas-
ily applied to existing shellcodes. We explain how memory-scanning attacks
successfully evade current emulators and compromise various real-server ap-
plications.

– Proposes Yataglass1, a network-level code emulator that analyzes
memory-scanning attacks. We propose Yataglass, a network-level code
emulator that defends against memory-scanning attacks. Yataglass extracts
Win32 APIs or Linux system calls issued by a given shellcode. To de-
tect memory-scanning attacks, Yataglass analyzes evasion code used in

1 Yataglass is named after Yatagarasu, a mythological Japanese tripedal bird that
guided the first Japanese Emperor, Jimmu.
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memory-scanning attack. The evasion code typically contains a scanning
loop that searches for a code fragment useful for evasion. Yataglass uses
symbolic execution to extract the conditions under which a scanning loop
exits. Then, Yataglass prepares a code region that satisfies the extracted
conditions to cheat the shellcode to believe it has found the searched-for
code fragment. By doing this, Yataglass successfully emulates the behavior
of memory-scanning attacks and thus, prevents the shellcodes from evading
network-level code emulators.

Note that Yataglass does not require a memory image of victim processes. Since
Yataglass is supposed to be used in offline analysis, it would be impractical for
Yataglass to acquire the memory image of victim processes. To obtain the memory
image of a victim process, the shellcode must actually be injected into the victim.
Since the memory image of post injection depends on the vulnerability exploited
by the shellcode, we cannot reproduce it without actually injecting the code.

We implemented a prototype of Yataglass for the Intel x86 architecture. It ex-
tracted Win32 APIs as well as Linux system calls. To demonstrate how effective
Yataglass was, we compared it with Spector [17], a state-of-art network-level
code emulator. Since the original Spector is not available, we implemented
our own version. Unlike Yataglass, Spector lacks the capability of handling
memory-scanning attacks. We prepared seven real shellcodes that incorporated
memory-scanning attacks for the evaluation. According to our experimental re-
sults, Yataglass successfully emulated the behavior of all these shellcodes and
produced a list of system calls. However, Spector was disrupted by memory-
scanning attacks and failed to emulate the behavior of the shellcodes.

This paper is organized as follows. The next section introduces the con-
cept of network-level code emulators. Memory-scanning attacks are described in
Section 3 and Section 4 gives an overview of Yataglass. Section 5 describes Yata-
glass’s symbolic-execution architecture. The experimental results are reported in
Section 6. Section 7 discusses possible evasions and more sophisticated memory-
scanning attacks. Section 8 compares related work with ours. Finally, we con-
clude the paper in Section 9.

2 Network-Level Code Emulation

2.1 Emulators for Code-Injection Attacks

The network-level code emulator inspects the payload of network messages,
which may include malicious code for remote code-injection attacks. A network-
level code emulator has its own virtual registers and virtual stack to emulate
instruction execution. Figure 1 shows frequently used registers in the x86 archi-
tecture. Using the virtual registers and stack, the emulator executes a shellcode
contained in the payload. Since the actual location of the shellcode is not known
in advance, the emulator starts execution from every position or uses the help in
another NIDS to determine possible shellcode locations. Polychronakis et al. [13]
chose the former approach, and Spector [17] used the latter one.
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Table 1. Frequently used registers in Intel x86 architecture. Registers in upper half
are directly accessible in instruction operands and those in lower half are not.

Register names Description

eax, ebx, ecx, edx General-purpose registers
esi, edi Registers for string operations
esp Stack pointer
ebp Base pointer (function frame)

eip Instruction pointer
eflags Flags for special instructions (e.g., conditions for jcc)

The main advantage of network-level code emulation is twofold. First, it is
robust to code conversion such as encryption and obfuscation. Because it exe-
cutes shellcode, an encrypted shellcode is naturally decoded during execution.
Obfuscation is useless because the result of emulation is not affected by obfus-
cation. Second, the rate of false positives is low. Many researchers have shown
that very few innocuous messages can be executed as instructions of signifi-
cant length [12,13,19]. Thus, network-level code emulators generate fewer false
positives than conventional signature-based NIDSs [5,6].

The result of emulation can be used for two main purposes of:
– Analyzing shellcode.The network-level code emulator helps us analyze

shellcode, because the result of emulation includes all the executed instruc-
tions and API calls issued by the shellcode. This result helps analysts
understand shellcodes without manual reverse-engineering. For example,
Spector [17] uses Win32 API calls issued by shellcode to reveal malicious
behavior by the shellcode. Ma et al. [14] used execution traces to under-
stand how much variation there was in shellcodes for exploits.

– Detecting polymorphic shellcode. A network-level code emulator can
detect a message that contains polymorphic shellcode. Existing emulators use
various heuristics to detect shellcode. Polychronakis et al. [13] and Zhang et
al. [15] proposed detectors that used two heuristics: 1) the shellcode obtains
the instruction pointer (held in the eip register) by executing GetPC instruc-
tions (call, fstenv, and fnstenv), and 2) it reads its payload to decrypt
encrypted instructions. Polychronakis et al. later revised their heuristics to
detect shellcode that did not use GetPC code and generated code without
reading their payloads [16]. Their emulator detected polymorphic shellcode
if it executed a memory region that was written to by the shellcode itself.

2.2 Possible Evasions

There are two main evasion vectors possible in network-level code emulators.
First, shellcode may inspect the result of system functions. If the emulator cannot
emulate the result of system functions, shellcode can detect the fact that it is
not running on a real machine. Consequently, it may cease to run to avoid
revealing its behavior. For example, shellcode opens a file in a specific format
(e.g., a configuration file), and then checks whether the format is correct, and
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terminates itself if the check has failed. By doing this, an attacker can prevent
the emulator from analyzing any further behavior by the shellcode. The defense
against this type of evasion is well-known in other areas [20,21,22]. If the emulator
traces both branches of a conditional jump, it can continue to execute as if it
had successfully passed the check. Thus, we will not discuss this type of evasion
further in this paper.

Second, shellcode may refer to instructions embedded inside victim processes.
Because existing network-level emulators do not have a memory image of the
victim, they cannot correctly emulate the execution of shellcode that refers to
the victim memory. Memory-scanning attacks belong to this type of evasion.
It disrupts existing emulators by jumping to a code fragment inside the victim
process. Polychronakis et al. [13] mentioned this type of evasion but did not
discuss it further. This paper focuses on this type of evasion because, to our
knowledge, no solutions have yet been proposed.

3 Memory-Scanning Attack

3.1 Attack scheme

Attackers can disrupt network-level code emulators by using code external to the
emulator but embedded in a victim process. This section describes how attackers
can use code fragments in a victim process.

An attacker can use code fragments in a victim process in two ways.

– Jumps to fixed address. The shellcode jumps to a fixed address and
executes a code fragment in the victim process. The attacker can determine
the address by preliminary experiments on his own machine. However, as
Polychronakis et al. pointed out [13], this kind of attack is fragile because
the address for useful instructions often differs between the victim machine
and the machine used in the experiment. A slight difference in execution
environments often leads to a large difference in memory layout. For example,
the memory image of the Apache Web server differs on RedHat Linux and
Gentoo Linux. An advanced attacker may conduct a two-step attack; the
memory layout of the victim process is inspected in the first step, and later
the main attack is conducted. We will discuss this in Section 7.

– Jumps to scanned address (memory-scanning attacks). The shellcode
scans the code region of a victim process for useful instructions and iden-
tifies their address. It then jumps there to execute the found instructions.
Linn et al. [18] pointed out this attack within the context of host-based
IDSs. However, to our knowledge, no one has reported this attack can evade
network-level code emulators. This kind of attack is less fragile because the
attacker does not depend on a specific address for useful instructions.

This paper explains how memory-scanning attacks allow attackers to evade ex-
isting network-level code emulators, and we propose a technique of invalidating
memory-scanning attacks.
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Fig. 1. An example memory-scanning attack. It first gets its own address by using
GetPC code and obtains the address for the code region from the return address. After
that, it scans a ret instruction from the program code, jumps to the found address,
then returns and continues to a decryption loop.

In memory-scanning attacks, shellcode contains three code fragments; 1) it
obtains the address of a code region from which to start scanning, 2) it executes
a scanning loop that searches for the address of useful instructions embedded in
the victim, and 3) it transfers control to the found instructions.

The scanning address can be determined from the return addresses in the
stack. Although the overall memory image is difficult to deduce, the stack lay-
out is much easier to estimate because it is mostly fixed according to the calling
convention. To improve matters, we have only to know the offset of the return
address from the stack top. This offset is usually constant if the same vulnera-
bility of the same program is exploited. Even if the stack layout is not known, an
attacker can scan the stack for a return address. According to the ELF specifica-
tions [23], the code regions are located above the addresses 0x8048000. Thus, if
shellcode finds a value between 0x8048000 and 0x8060000, the value is a return
address with a high degree of confidence.

The simplest form of memory-scanning attack is to scan ret instruction
(0xC3) and jump there. Figure 1 shows the structure of the shellcode that incor-
porates a memory-scanning attack. The shellcode consists of five parts: GetPC,
obtain scanning address, scanning loop, control transfer, and decryption loop.
The shellcode first identifies its own address by using the GetPC code. Because
the x86 architecture does not have eip-relative memory access, many shellcodes
use the GetPC code to access encrypted data in the payload. For example, the
GetPC code uses call instruction to push the eip register into the stack. After
that, shellcode obtains a scanning address from a return address as has already
been mentioned. Then, it searches the code region for 0xC3, starting from the
scanning address. If found, shellcode pushes the address of a decryption loop to
the stack and jump there (e.g., by call instruction). Then, the control of the
shellcode goes to the ret instruction and immediately returns.

This simplest form of memory-scanning attack can evade current network-
level code emulators. The current emulators stop execution and raise an error
when shellcode refers to the code region of a victim process because this region is



74 M. Shimamura and K. Kono

beyond the control of the emulator. If this error is ignored to force execution, the
emulator cannot track the call to the code outside the emulator’s control. Some
might think the emulator can continue execution if this call is replaced with
nop instruction. This is not the case because an attacker can use various sets of
instructions in a victim process. If the shellcode uses pop ebp; ret (a typical
function epilogue), esp and ebp registers are changed; to continue undisrupted
execution, the emulator must change their virtual registers.

We assume that the memory-scanning attack code directly scans for useful
instructions from the code region of a victim process. However, an advanced
attacker may indirectly scan for useful code fragment (e.g., scans for a prelude
to ret). We will discuss attacks of this style in Section 7.

3.2 Evasion of Existing Emulation Systems

Memory-scanning attacks can be incorporated into existing shellcodes in var-
ious ways. To successfully evade emulation-based detectors and analyzers, the
location to which the evasion code is inserted is important. We present some
examples where existing detectors and analyzers are evaded.

First, the evasion code can be inserted between the GetPC part and a decryp-
tion loop as shown in Fig. 1. This allows attackers to evade detectors that rely
on GetPC code [13,15]. If an emulator starts execution from the GetPC part, the
execution stops at the evasion. If the execution is started after the evasion, the
emulator cannot correctly execute a decryption loop because the GetPC part is
mandatory for the decryption loop.

Second, if shellcode dynamically generates code on the stack, the evasion
code is inserted just before control is transferred to the generated code. This al-
lows attackers to evade Polychronakis et al. [16]’s advanced detector that counts
memory writes and the executed instructions in the written memory.

Last, the evasion code can be inserted just before the call of system functions
to hide the arguments and invocations of system functions. This enables attackers
to evade emulation-based analyzers [17]. The analyzers might ignore the control
transfer to scanned instructions, but the stack pointer is changed at this point.
Thus, the analyzer cannot extract the arguments of system functions from the
stack. In addition, shellcode can invoke arbitrary functions from the victim pro-
gram. For example, if the scanning loop scans for int 0x80 and jumps there, a
shellcode can invoke Linux system calls. Arbitrary Win32 APIs can be invoked if
shellcode scans for ret instruction and pushes the address of the required API on
the stack; the ret instruction naturally jumps to the specified API.

4 Yataglass Overview

Yataglass is a shellcode analyzer whose analysis output is not disrupted by
memory-scanning attacks. Yataglass shares the same goal as Spector [17], a state-
of-art shellcode analyzer. The goal of Spector and Yataglass is to help analysts
understand the behavior of the shellcode. Both systems generate 1) a low-level
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output of a fully commented disassembly of the shellcode, and 2) a high-level
trace of the system-function calls and their parameters. The primary advantage
of Yataglass over Spector is that Yataglass correctly analyzes shellcode that ex-
ploits memory-scanning attack. Memory-scanning attacks can evade Spector since
it lacks the capability of analyzing scanning loops in detail. In other words, Yata-
glass is an extension of Spector that enables detailed analysis of scanning loops.

To fight against memory-scanning attacks, Yataglass uses symbolic execution.
The symbolic-execution engine of Yataglass infers a code fragment that a scan-
ning loop searches for, forges a code region that contains the code fragment, and
deceives the shellcode into finding the code fragment. The symbolic-execution
engine carefully traces a scanning loop, and analyzes the exit conditions of the
loop to infer the searched-for fragment of code. By doing this, Yataglass dis-
ables memory-scanning attacks. Once a memory-scanning attack is disabled,
Yataglass can continue to analyze shellcode almost in the same way as Spector.
While Spector is tailored to shellcode for Windows, Yataglass has been slightly
extended to deal with shellcode for Linux as well as Windows.

Yataglass is designed to take the executable portion of an attack payload as
its input. To feed Yataglass executable payloads, we must 1) identify network
messages that contain shellcodes, and (2) determine the starting points of code
execution within each payload. There are already a number of intrusion-detection
systems, such as Snort [5] and Bro [6], which can monitor traffic at the network
layer and detect shellcode attacks. Given the output of the IDS, Yataglass starts
execution from every position of the payload.

Yataglass uses a custom x86 processor emulator to monitor and record the
behavior of shellcode. When Yataglass starts up, it initializes its own virtual
stack and registers, and loads the shellcode into its own memory segment. Then,
Yataglass executes the shellcode starting with the first instruction, runs until
the shellcode executes an invalid instruction, calls system functions to termi-
nate execution (e.g., exit()), or switches execution to another program (e.g.,
execve()). At each instruction, Yataglass records the decoded instruction and
operand(s). It also records the function name and arguments if it finds a call to
a system function during execution.

5 Symbolic Execution in Yataglass

To infer the code fragment that a scanning loop is searching for, Yataglass uses
symbolic execution tailored for memory-scanning attacks. Due to the space lim-
itations, we have focused on an extension of Spector.

5.1 Values in Yataglass

To enable symbolic execution, Yataglass treats objects in every register and
memory word as values. A value is classified into four classes: number, symbol,
expression, and unknown. A number represents concrete data during execution
(e.g., a 32-bit integer read from the payload). An expression is a 3-tuple that
takes an opcode and two operands. An example of expression is (ADD X Y ),
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where X and Y are values. The concreteness of an expression depends on its
operands; an expression is only concrete if both operands are concrete.

Yataglass associates a constraint with each symbolic value. This constraint
represents a range of a concrete number that the associated symbol can have.
For example, if symbol X can hold a number from 10 to 20, X is associated with
the constraint [10, 20]. If symbol Y (8-bit value) is not equal to 120, it is as-
sociated with the constraints [0,119], and [121,255]. Using these constraints,
Yataglass deals with non-deterministic conditional jumps, and analyzes scanning
loops in memory-scanning attack. The detailed use of constraints is explained in
Section 5.2.

Yataglass makes a distinction between unknown and symbol values. A symbol
is not concrete but related to the execution of shellcode. For example, Yataglass
initially assigns symbol STACK PTR to esp (stack pointer). However, unknown
values are derived from uninitialized memory and usually do not affect the exe-
cution of shellcode.

To defend against memory-scanning attacks, Yataglass carefully deals with the
code region of a victim process accessed from a scanning loop. Since this region is
unknown to the symbolic-execution engine, a naive engine would assign unknown
values to the entire region. Unfortunately, this is not correct because the values
from the code region do affect the execution of shellcode in memory-scanning
attacks. In Yataglass, if an unknown code region is accessed from shellcode, a
special symbol, CODEn, is assigned to each memory byte in the accessed region.
To discern the access to a code region, Yataglass keeps track of code pointers
used in shellcode. At the time of initialization, Yataglass assigns another special
symbol, CODE PTRn, to every memory byte that may be used as a code pointer.
For example, Yataglass initializes its own virtual stack with CODE PTRn symbols
because shellcode often obtains a code pointer (return address) from the stack.
If some memory regions (such as a table to dynamically linked libraries) contain
code pointers, they are also initialized with CODE PTRn symbols.

Yataglass optimizes its symbolic execution in similar ways to other symbolic-
execution engines [17,20]. It simplifies the result of every operation if possible. We
used the following rules to simplify the operation result with symbolic operands
X and Y .

– If both X and Y are concrete, then compute and set the result to the desti-
nation symbol.

– Check for special cases, such as (SUB X X ), (XOR X X ), (AND X X ), and
(OR X X ), where the result is equal to zero or X .

– If the operand is addition or subtraction, check all the nested expressions of
symbolic operands and cancel out operands if possible. For example, (ADD
(SUB X Y ) Y ) is simplified to X .

This optimization reduces the complexity of symbolic execution in most com-
mon cases. In addition, it makes Yataglass robust to encoders like TAPiON [9]
that insert garbage operations. For example, TAPiON inserts (XOR (OR X X )
X )) and (ADD (SUB X Y ) Y ) recursively into shellcode. If the simplification
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is not implemented, 2n symbols are generated where n is the depth of garbage
instructions.

5.2 Conditional Jumps and Inferring Code Fragments

Yataglass’s symbolic-execution engine carefully executes conditional loops to in-
fer a code fragment that a scanning loop is searching for. Conditional loops are
usually constructed from conditional jumps and some instructions that set the
flag register (eflags in x86). When Yataglass encounters a conditional jump,
it examines eflags to determine whether the jump is taken or not. If the flags
that affect the jump condition are all concrete, Yataglass can continue the ex-
ecution deterministically. If some flags affecting the condition are not concrete,
the execution is non-deterministic and special care must thus be taken.

As pointed out by Borders et al. [17], shellcode tends to execute in a deter-
ministic manner due to its small size and limited functionality. Unfortunately,
memory-scanning attacks introduce non-deterministic execution into shellcode.
Figure 2 shows a code snippet of a scanning loop. This scanning loop searches
for 0xC3 (ret instruction) from the starting address ADDR. The conditional jump
in line 5 is non-deterministic because whether the jump is taken depends on the
result of cmp in line 4. Since the cmp in line 4 refers to a memory location outside
the control of Yataglass, Yataglass cannot know the result of cmp (recall that a
scanning loop scans the code region of a victim program).

To overcome this non-determinism, Yataglass forks itself to execute in parallel
both the case where the jump is taken and the case where it is not. However,
forking at every conditional jump leads to combinatorial explosion because 2n

instances of Yataglass may be generated, where n is the maximum number of
iterations of the loop. An instance of Yataglass terminates execution when it
detects a conditional jump to an already-executed basic block that leads to the
same non-deterministic jump instruction. In Fig. 2, Yataglass forks at line 5, and
two instances of Yataglass are executed; 1) one jumps to line 7 and 2) the other
continues to line 6 and then jump to line 2. The latter instance encounters an
already-executed conditional jump at line 5, and thus terminates itself. However,
the other instance exits the loop and continues execution.

To infer the instructions that a scanning loop is searching for, Yataglass de-
termines non-concrete values that set the conditions for the non-deterministic
conditional jump of interest. Yataglass associates each flag of eflags with the
instruction that set the flag most recently. When Yataglass encounters a condi-
tional jump, it examines eflags and extracts a set of instructions that affect non-
concrete flags of eflags. In the example of Fig. 2, the cmp instruction at line 4
sets ZF (zero flag), SF (sign flag), OF (overflow flag), and PF (parity flag), and thus
Yataglass associates (CMP CODE1 0xC3) with these flags. CODE1 is a new symbol
that points to a value loaded from CODE PTR+1 inside the victim’s memory.

After extracting the instruction that sets the conditional flag, Yataglass cal-
culates the value of the non-concrete operand for the one case where the jump
is taken and for the other where it is not taken. In the example in Fig. 2, Yata-
glass concludes that CODE1 (or [edi]) equals 0xC3 where the jump at line 5 is
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# ADDR is an address of code region

1: mov edi, ADDR # edi = ADDR (CODE_PTR)

2: loop:

3: inc edi # [edi] = CODE1

4: cmp byte [edi], 0xC3 # cmp with ’ret’

5: je loopout # if(*edi==’ret’) goto 7;

6: jmp loop # else goto 2

7: loopout:

8: call edi # push CONT and jump to ’ret’

9: CONT:

Fig. 2. Example of scanning loop

# ADDR is an address of code region

1: mov edi, ADDR # edi = ADDR (CODE_PTR)

2: loop:

3: inc edi # [edi] = CODE1

4: cmp byte [edi], 0xC3 # cmp with ’ret’

5: jg loop # if(*edi>’ret’) goto 2;

6: cmp byte [edi], 0xC3 # cmp with ’ret’

7: jl loop # if(*edi<’ret’) goto 2;

8: loopout:

9: call edi # push CONT and jump to ’ret’

10: CONT:

Fig. 3. Example of scanning loop that uses two constraints

taken. Otherwise, CODE1 is not equal to 0xC3. Here, Yataglass imposes constraints
([0, 0xC2] and [0xC4, 0xFF]) on CODE1, which denotes CODE1 is not equal
to 0xC3. By doing this, Yataglass can deceive the shellcode to have found the
scanned-for instruction. When the control reaches line 8, the value of [edi] (or
CODE1) is set to 0xC3.

This mechanism of Yataglass allows us to deal with a more complicated scan-
ning loop as shown in Fig. 3. When Yataglass reaches line 6, the symbol, CODE1,
has the constraint [0, 0xC3] (not greater than 0xC3). When Yataglass proceeds
to line 7, this constraint is merged with [0xC3, 0xFF]. As a result, Yataglass
concludes that CODE1 equals 0xC3.

The x86 architecture supports scas and cmps string instructions that can be
used in scanning loops. Figure 4 uses repne scas instruction to find the target
instruction, ret. The repne scasb starts scanning a memory region from the
address in edi until it either finds the value stored in the al register or the
value of ecx becomes zero. To execute both cases, Yataglass forks at the repne
scas instruction; one instance of Yataglass assigns al to [edi] and increments
edi. The other instance assigns zero to ecx. Figure 5 shows the use of cmps
instruction. repe cmpsb compares a byte at esi with a byte at edi until it
either finds the difference between the two values or the value of ecx becomes
zero. In other words, it compares memory regions. Yataglass forks at the repe
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# ADDR is an address of code region

1: mov edi, ADDR # edi = ADDR

2: mov al, 0xC3 # al = 0xC3 (’ret’)

3: mov ecx, 0xffffffff # infinite

4: repne scasb # while(ecx != 0){ ecx--; if(al==*edi++)break;}
5: dec edi # line 4 sets edi to the found address + 1

6: call edi # jump to ’ret’

Fig. 4. Example of scanning by scas

# ADDR is an address of code region

1: mov edi, ADDR # edi = ADDR

2: mov [esi], 0xC35D # *esi = ’pop ebp; ret’

3: mov eax, esi # save esi

4: loop:

5: mov ecx, 0x2 # length + 1

6: repe cmpsb # while(ecx != 0){ecx--;if(*edi++!=*esi++)break;}
7: jecxz loopout # if (ecx == 0) goto 10

8: mov esi, eax # load esi

9: jmp loop # goto 4

10: loopout:

11: sub edi, 0x2 # line 6 sets edi to the found address + 2

12: call edi # jump to ’pop ebp; ret’

13: CONT:

Fig. 5. Example of scanning by cmps

cmps instruction. One instance of Yataglass infers the content of the scanned-for
region from either esi or edi, which points to a concrete instruction sequence.
Then it assigns the sequence to the code region and assigns zero to ecx. The
other instance decrements ecx and skips the repe cmpsb instruction.

5.3 Implementation

We implemented a prototype of Yataglass. We used libdasm [24] to decode x86
instructions. Yataglass decodes all the x86 instructions including FPU and SSE
instructions. However, the FPU, SSE, and privileged instructions are not emu-
lated. It did not cause any problems in our experiment, but attackers can exploit
such instructions to evade our emulator.

To analyze shellcodes for Windows, we implemented a stub layer for Yataglass.
Yataglass creates a dummy process environment block (PEB) in the bootstrap
phase and loads kernel32.dll, user32.dll, and ws2 32.dll. In addition, we
implemented some stub functions for Win32 APIs. For example, the stub func-
tions of LoadLibrary() and GetProcAddress() are prepared to emulate shell-
codes that use them to obtain addresses of Win32 APIs from DLLs.

We applied two optimizations to Yataglass. First, we implemented basic-block-
based instruction decoder [25]. Yataglass decoded the instructions of a basic
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block before it started to execute the block. It retains decoded instructions in a
cache entry. If it detects that a basic block that was decoded before is about to
be re-decoded, it obtains the decoded intermediate code from the cache entry.
A cache entry is invalidated if Yataglass detects an instruction that rewrites an
instruction inside the cached basic block. Second, we implemented signature-
based function detection, which was also used in Spector [17]. Most Windows
shellcodes share an instruction sequence for searching the addresses of Win32
APIs. We listed up some possible instruction patterns. If Yataglass detects that
a shellcode is searching for an API address, it obtains the address of the API
by directly analyzing the DLL and immediately returns. Note that even if a
shellcode implements the same function whose instruction pattern is not on the
list, Yataglass correctly executes it although the speed is slow.

6 Experiments

This section explains how Yataglass can successfully analyze real shellcode into
which memory-scanning attacks have been incorporated. For comparison, we also
implemented another network-level code emulator which capability corresponds
to Spector [17] since the authors of Spector do not release their implementation.
In this section, we call our Spector implementation Spector-X. Before showing
the effectiveness, we show that memory-scanning attack can be incorporated
into realworld shellcode, and actually compromises the real Internet servers such
as named [26], wu-ftpd [27], rsync [28], wu-imap [29], Apache Web Server [2],
samba [30], and cyrus-pop3d [31].

6.1 Incorporating Memory-Scanning Attacks

To demonstrate memory-scanning attacks can be incorporated into realworld
shellcode, we collected seven pieces of real shellcode from SecurityFocus [32] and
Milw0rm [33]. Table 2 summarizes the shellcode used in the experiments. The
table shows a C source file name of the shellcode, target applications and versions
of the shellcode, the site where we obtained the shellcode, the CVE number of
exploited vulnerability by the shellcode, the main objective of the shellcode, and
what encoder is used for the shellcode, respectively.

Our memory-scanning code is written to incorporate memory-scanning at-
tacks into these pieces of realworld shellcode. Most pieces of shellcode corrupts

Table 2. Realworld shellcode used in experiments

Source Target application Obtained from CVE No. Objective Encoding
tsig.c bind <= 8.2.2 SecurityFocus 2001-0010 Spawns shell None
7350wurm.c wu-ftpd <= 2.6.1 milw0rm 2001-0550 Spawns shell None
rsync-expl.c rsync <= 2.5.1 SecurityFocus 2002-0048 Embeds backdoor None
7350owex.c wu-imap 2000.287 milw0rm 2002-0379 Spawns shell ToUpper-Evasion
OpenFuck.c Apache with SecurityFocus 2002-0656 Spawns shell None

OpenSSL <=0.9.6d
sambal.c Samba 2.2.8 SecurityFocus 2003-0201 Embeds backdoor None
cyruspop3d.c cyrus-pop3d 2.3.2 milw0rm 2006-2502 Embeds backdoor None
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the contents of esp register when hijacking the control of a victim process. Thus,
we use ebp register by default to get a scanning address. However, some pieces of
shellcode corrupt ebp register but preserves the contents of esp register. To deal
with this kind of shellcode, we also prepare another version of memory-scanning
code, which uses esp register to get a scanning address. Since the author of
shellcode knows which register (esp or ebp) is corrupted during the process of
hijacking, he can select the correct version of our memory-scanning code. In our
experiment, cyruspop3d.c corrupts ebp register instead of esp register.

Our memory-scanning code is carefully written not to include NULL bytes
because some pieces of shellcode stop their execution if our code contains NULL
bytes. This is because the injected code is often manipulated as if it were a C
string. We also applied the well-known technique to evade the effect of ToUpper()
function. When we exploit some vulnerabilities, the injected code (including our
memory-scanning code) is passed to ToUpper(). Since the contents of the code
is converted through ToUpper(), our scanning code is violated if not written
carefully to nullify the effect of ToUpper(). To nullify the effect of ToUpper(),
all lower case characters inside the shellcode must be carefully avoided or dy-
namically generated.

We conducted those attacks to targets into which memory-scanning attack
is incorporated. Shellcode generated by tsig.c, 7350wurm.c, and 7350owex.c
successfully spawned a shell using the attacking connection. Shellcode generated
by rsync-expl.c, sambal.c and cyruspop3d.c make the victim serve a root
shell in a specified port as a backdoor. Shellcode generated by OpenFuck.c did
not succeed at the first time. After detailed analysis on the shellcode and the
target vulnerability, we found that the reason to fail is that the server overwrites
a certain location of the shellcode, and thus the shellcode was not correctly
executed. We finally succeeded to compromise the server by making the shellcode
fragmented to avoid the location. The shellcode spawned a shell.

6.2 Effectiveness of Yataglass

To demonstrate the effectiveness of Yataglass, we demonstrate that Yataglass
successfully analyze the seven pieces of shellcode introduced in Section 6.1.
Table 3 shows the emulation results. Yataglass successfully analyzed all pieces
of shellcode, regardless of incorporation with memory-scanning attack. On the
other hand, Spector-X failed to analyze shellcode incorporated with memory-
scanning attack. Spector-X stopped its execution when it accessed to the victim’s
memory. Note that both successfully analyzed the original shellcode.

Figure 6 shows an emulation result of shellcode generated by rsync-expl.c
with Yataglass. A line of result includes an instruction number (in hexadesimal),
an executed instruction address (in hexadecimal), and a mnemonic of executed
instruction. For comprehension, we added short notes to the result. According
to the result, Yataglass correctly handled a memory-scanning attack (shown
from instruction number 004d to 0067). The shellcode first scanned a return
address to eax from the stack. Yataglass related the obtained value with a symbol
CODE PTR . The obtained value was compared with 0x8049001 and 0x8101010 to
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Table 3. Summary of emulation results of real shellcodes and their modified versions

Source Yataglass Spector-X Source Yataglass Spector-X
tsig.c (original)

√ √
OpenFuck.c (original)

√ √
tsig.c (modified)

√ − OpenFuck.c (modified)
√ −

7350wurm.c (original)
√ √

sambal.c (original)
√ √

7350wurm.c (modified)
√ − sambal.c (modified)

√ −
rsync-expl.c (original)

√ √
cyruspop3d.c (original)

√ √
rsync-expl.c (modified)

√ − cyruspop3d.c (modified)
√ −

7350owex.c (original)
√ √

7350owex.c (modified)
√ −

Emulation start from 00000000

No. Addr. Inst. Mnemonic Note

--------------------------------------------------------------

0040 0076 31db xor ebx,ebx

0041 0078 53 push ebx

0042 0079 686e2f7368 push dword 0x68732f6e

0043 007e 682f2f6269 push dword 0x69622f2f

0044 0083 89e3 mov ebx,esp

0045 0085 8d542408 lea edx,[esp+0x8]

0046 0089 31c9 xor ecx,ecx

0047 008b 51 push ecx

0048 008c 53 push ebx # (SUB STACK 0x50)

0049 008d 8d0c24 lea ecx,[esp]

004a 0090 31c0 xor eax,eax

004b 0092 b00b mov al,0xb # Syscall No. of execve

004c 0094 60 pusha # Save registers

004d 0095 89ee mov esi,ebp # ebp = STACK

004e 0097 81c6fcffffff add esi,0xfffffffc # esi = STACK - 4

004f 009d 8b06 mov eax,[esi] # eax = CODE_PTR

0050 009f 3d01900408 cmp eax,0x8049001 # Avoids null byte

# compared CODE_PTR and 0x8049001

# symbol: (CODE_PTR AT 0xbffe10fc)

0051 00a4 7cf1 jl 0x97

# conditional jump: (CMP (CODE_PTR AT 0xbffe10fc) 0x8049001)

#### (forked and child process terminates) ####

# symbol: (CODE_PTR AT 0xbffe10f8)

0052 00a6 3d10101008 cmp eax,0x8101010 # Avoids null byte

compared CODE_PTR and 8101010

symbol: (CODE_PTR AT 0xbffe10fc)

0053 00ab 7fea jg 0x97

conditional jump: (CMP (CODE_PTR AT 0xbffe10fc) 0x8101010)

#### (forked and child process terminates) ####

0054 00ad d9ee fldz

0055 00af d97424d0 fstenv [esp-0x30]

0056 00b3 8b7424dc mov esi,[esp-0x24]

0057 00b7 89c7 mov edi,eax

0058 00b9 b05d mov al,0x5d

0059 00bb b9ffffffff mov ecx,0xffffffff

005a 00c0 fd std

005b 00c1 47 inc edi

005c 00c2 803f5d cmp byte [edi],0x5d

compared CODE_1 and 5d

005d 00c5 75fa jnz 0xc1

conditional jump symbol: (CMP CODE_1 0x5d)

assign_value: CODE_1 = 0x5d

005e 00c7 47 inc edi

005f 00c8 803fc3 cmp byte [edi],0xc3

compared CODE_2 and c3

0060 00cb 75f4 jnz 0xc1

conditional jump symbol: (CMP CODE_2 0xc3)

assign_value: CODE_2 = 0xc3

0061 00cd 83c628 add esi,0x28

0062 00d0 4f dec edi

0063 00d1 56 push esi

0064 00d2 55 push ebp

0065 00d3 ffe7 jmp edi # jmp to victim’s code

0066 ---- 5d pop ebp # CODE_1

0067 ---- c3 ret # CODE_2

0068 00d5 61 popa

0069 00d6 cd80 int 0x80

Linux system call 11 (execve) detected!!

path=//bin/sh |CONCRETE|

argv[0]=//bin/sh |CONCRETE|

Fig. 6. The emulation result of shellcode generated by rsync-expl.c, incorporated with
memory-scanning attack, with Yataglass. Logs of first 64 (0x40) instructions and out-
puts from forked instances are omitted due to the limited page space.

confirm the value was an address of code region. Yataglass passed the check by
setting constraints. Then, the shellcode got the address of itself and calculated
an address which would be used as a return address from the victim’s memory
(address 00d5 of the shellcode). The shellcode scanned the victim’s memory for
pop ebp and ret. Yataglass assigned 0x5D and 0xC3 to CODE 1 and CODE 2 ,
respectively. After the scanning loops were completed, the shellcode jumped to
the victim’s memory (CODE 1 ) (at instruction number 0065). Then, the shellcode
executed pop ebp, ret and the control returned to the shellcode address 00d5.
The control was returned to 0068. Finally, the shellcode executed execve()
system call with arguments to spawn /bin/sh.

Figure 7 shows the emulation result of the same shellcode with Spector-X.
According to the result, it failed the execution when it tried to touch the victim’s
memory at instruction number 004f. It could not analyze the shellcode, which
finally calls execve() and spawns /bin/sh.
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Emulation start from 00000000

No. Addr. Inst. Mnemonic Note

----------------------------------------------------------

0040 0076 31db xor ebx,ebx

0041 0078 53 push ebx

0042 0079 686e2f7368 push dword 0x68732f6e

0043 007e 682f2f6269 push dword 0x69622f2f

0044 0083 89e3 mov ebx,esp

0045 0085 8d542408 lea edx,[esp+0x8]

0046 0089 31c9 xor ecx,ecx

0047 008b 51 push ecx

0048 008c 53 push ebx

0049 008d 8d0c24 lea ecx,[esp]

004a 0090 31c0 xor eax,eax

004b 0092 b00b mov al,0xb

004c 0094 60 pusha

004d 0095 89ee mov esi,ebp # ebp = unknown

004e 0097 81c6fcffffff add esi,0xfffffffc # esi = unknown

004f 009d 8b06 mov eax,[esi] # unknown address

MEMORY FAIL -- unknown address is used

Fig. 7. Emulation result of shellcode generated by rsync-expl.c, incorporated with
memory-scanning attack, with Spector-X. First 64 (0x40) instructions are omitted.

7 Discussion

Yataglass successfully analyze shellcode that exploits memory-scanning attack
to evade network-level code emulators. In this section, we discuss some possible
evasions of Yataglass.

Since the current prototype of Yataglass assumes that memory-scanning code
gets an address of a code region from return addresses on stack, an attacker can use
this fact to evade the current prototype of Yataglass. First, the scanning code can
get a code-region address from a special file /proc/XXX/maps (where XXX is the
process ID), which maintains the entire memory map of the process XXX. Yata-
glass can be easily extended to provide a dummy /proc/XXX/maps since it can
detect the function calls to open a file. Second, the scanning code can get a code-
region address from function tables such as GOT (Global Offset Table) or PLT
(Procedure Linkage Table). These tables are used for resolving the addresses of
dynamically linked libraries. To prevent this kind of evasion, it is sufficient for
Yataglass to prepare a dummy GOT or PLT. Finally, an attacker can write the
target code in data or stack regions and then use mprotect() to make the regions
executable. Yataglass can easily prevent this evasion because Yataglass can know
the address of and the values stored in the mprotect’ed regions.

The current prototype of Yataglass must be slightly extended to deal with
some kinds of scanning loops. First, an attacker can use a scanning loop that
identifies multiple instructions. In other words, the scanning loop finds out an
address that store one of the identified instructions. For example, a scanning loop
searches for one of the eight pop instructions in x86, whose opcode ranges from
from 0x58 to 0x5F, depending on the target registers (0x58 for pop eax, 0x59
for pop ecx, and so on). In this case, the memory-scanning code 1) saves all the
registers, 2) pushes a garbage value to the stack, 3) scans the victim’s memory
to find one of the eight pop instructions, 4) executes the found pop instruction
(by doing this, the garbage value is popped out), and 5) restores all the pushed
registers. After this code is executed, the shellcode can continue its execution
normally because no registers are changed and the stack is not changed. To deal
with this style of scanning loops, Yataglass must be extended to fork itself when
a symbol whose value is in some range is used as an instruction. This extension
would not lead to an explosion of forked Yataglass because attackers can not
write a code that accepts more than 10 different instructions.

Third, Yataglass cannot analyze a shellcode which indirectly scans for code
fragment. An attacker may scan for a known fragment of instructions from the
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target’s code for that system function or a function that invokes that system
function. In this case, Yataglass can not analyze the shellcode because it can not
extract the final system functions from the scanning code. Linn et al. [18] already
introduced an attack which scans for a 17-byte sequence that comprises the first
basic block of the execve system call. To handle this kind of memory-scanning
attack, we must extend Yataglass to enable to find the scanned-for sequence
from possible scanning patterns.

Fourth, Yataglass may be evaded by two-step attacks. In the first step, the
attack code returns an address of useful instructions in the victim process. This
address is then used in the second step without any need for scanning. Current
Yataglass can not analyze the second shellcode. To solve this problem, Yataglass
must be extended to retain the state after the analysis of the first shellcode.

Finally, the current prototype of Yataglass can not deal with shellcode that
changes the value of specific variables used in the victim’s program. This limita-
tion comes from that Yataglass assumes that we can not know the exact memory
layout of victim processes. As already discussed in Section 3.1, shellcode that
relies on memory layout is fragile. In particular, since the address space random-
ization [34] is very popular (for example, current Linux and Windows have this
capability), this kind of shellcode is more fragile than before and becoming less
attractive to attackers. Even if a network-level code emulator misses this kind
of shellcode, the attacked process can defend against the shellcode by itself.

8 Related Work

Since we already described the related network-level code emulators in
Section 2.1, this section summarizes other work related to ours.

8.1 Static Analysis-Based Systems

SigFree [19] disassembles payload and counts the number of executable instruc-
tions. If this count exceeds the threshold, SigFree regards the payload as shell-
code. Andersson et al. [35] scan payload for instructions that puts a value into
eax register and executes int 80. These detectors are vulnerable to encryption
because the code is not interpreted during the detection process.

Kruegel et al.’s worm detection method [12] effectively detects a worm out-
break. It extracts possible control flows inside payloads and finds a match be-
tween extracted control flows in multiple streams. In contrast, Yataglass extracts
detailed behavior of shellcode used by worms. Yataglass is useful to analyze a
worm instance. Both help administrators to defend against damages from worms.

8.2 Host-Based Systems

Host-based intrusion detection systems (HIDSs) can extract malicious behaviors
by shellcode. For example, Linn et al. [18] proposed an HIDS that detects ma-
licious system calls issued by shellcode. This HIDS forces all system calls to be
invoked at the addresses known in advance. As a result, this HIDS can collect
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all malicious system calls invoked by shellcode because those system calls are
issued from unknown addresses. ReVirt [36] is a host-based intrusion analysis
system that uses virtual machine. It saves all VM states as a checkpoint and logs
all non-deterministic events on a virtual machine (e.g., hardware interruption).
The collected information allows us to replay intrusions after the server is com-
promised. Both the HIDSs analyze the compromised server. On the other hand,
Yataglass analyzes shellcode. Thus Yataglass allows us to analyze shellcode even
if it does not actually compromise victim servers. This feature of Yataglass is
useful in many situations. For example, Yataglass can analyze shellcode that is
sent to honeypots but does not actually break-in decoy servers.

Andersson et al.’s detector [37] executes shellcode in a sandboxed process and
the sandbox then outputs a list of system functions issued by the shellcode.
Since the process is protected by a sandbox, an attacker can evade the detector
by inspecting the result of system functions. Yataglass is an emulator that can
detect conditional jumps that use results of system functions, and thus it can
apply the defense against this evasion [20,21,22]. In contrast, their detector runs
shellcode on the CPU and thus it is not easy to detect such conditional jumps.

9 Conclusion

Remote code-injection attacks are still one of the most serious problems in net-
work system security. To detect and analyze shellcode used in remote code-
injection attacks, network-level code emulation is a promising approach. It is
not disrupted by encryption and obfuscation because it runs instructions of
shellcode in its emulated environment. Our goal is to improve the efficiency
of network-level code emulators by addressing possible evasion techniques.

In this paper, we have shown that memory-scanning attack can evade cur-
rent network-level code emulators and proposed Yataglass, a symbolic execution
based emulator to address memory-scanning attack. Memory-scanning attack
disrupts code emulation by accessing memory outside the control of code em-
ulators (i.e., victim’s memory). Since a network-level code emulator examines
network packets, it cannot inherently access memory regions of a victim pro-
cess. If shellcode accesses the victim’s memory, the emulator cannot continue
its emulation. Yataglass addressed memory-scanning attack by analyzing eva-
sion code used in memory-scanning attack. The evasion code typically contains
a scanning loop that searches for a code fragment useful for evasion. Yataglass
uses symbolic execution to extract the conditions on which a scanning loop exits.
Then, Yataglass prepares a code region that satisfies the extracted conditions.
By doing this, Yataglass deceives the shellcode into finding the code fragment
and then, the shellcode execute the prepared code. Thus it successfully prevents
the shellcodes from evading network-level code emulators.

To show the effectiveness of Yataglass, we prepared seven realworld shell-
codes that incorporate memory-scanning attacks and compared Yataglass with
Spector [17] of our implementation. Because Spector lacks the capability of han-
dling memory-scanning attack, it was disrupted with all these shellcodes, while
Yataglass successfully analyzed their behavior.
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Our future work is to address more sophisticated memory-scanning attack. For
example, an attacker may scan for code fragments indirectly by using heuristics
(e.g, scanning victim’s memory for the first basic block of execve() to find the
code of execve()). Yataglass is currently limited to scanning loops that directly
scans code fragments. We plan to address this kind of attack to improve efficiency
of network-level code emulators.
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Abstract. Drive-by download attacks are among the most common methods for
spreading malware today. These attacks typically exploit memory corruption vul-
nerabilities in web browsers and browser plug-ins to execute shellcode, and in
consequence, gain control of a victim’s computer. Compromised machines are
then used to carry out various malicious activities, such as joining botnets, send-
ing spam emails, or participating in distributed denial of service attacks.

To counter drive-by downloads, we propose a technique that relies on x86 in-
struction emulation to identify JavaScript string buffers that contain shellcode.
Our detection is integrated into the browser, and performed before control is
transfered to the shellcode, thus, effectively thwarting the attack. The solution
maintains fair performance by avoiding unnecessary invocations of the emulator,
while ensuring that every buffer with potential shellcode is checked. We have
implemented a prototype of our system, and evaluated it over thousands of mali-
cious and legitimate web sites. Our results demonstrate that the system performs
accurate detection with no false positives.

Keywords: Drive-by download, malicious script, emulation, shellcode.

1 Introduction

A drive-by download is any download of software that happens without the knowledge
and consent of a user. Unfortunately, drive-by downloads present a major threat to the
Internet and its users [28]. In a typical attack, the mere visit of a web site that contains
the malicious content can lead to the infection of a user’s computer with malware. The
malicious code that is installed as part of the attack then has typically full control over
the victim’s machine. Often, keystrokes are recorded, passwords are stolen, and sensi-
tive information is leaked out. Also, infected computers may join a botnet [5], a large
collection of compromised hosts controlled by the attacker. The computational power
of compromised hosts are valuable for attackers as these hosts can be misused for spam
campaigns [17] or denial of service attacks [20].

The typical steps of a drive-by download attack are shown in Figure 1. It can be
seen how the attacker first prepares a web site with malicious content. When this site is
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Fig. 1. The typical steps of a drive-by download attack

later visited by a victim, hostile script code is downloaded and executed by the victim’s
browser. This script exploits a vulnerability in the browser or an installed browser-
plugin. Once successful, the payload (shellcode) of the exploit downloads malware that
provides full control to the attacker.

Most current drive-by downloads target browser plug-ins that are developed and dis-
tributed by third parties [28,29]. The reason is that these plug-ins are less tested than
the core browser, and thus, more likely to contain security vulnerabilities. Also, plug-
ins are typically distributed as binary executables (at least in the case of Microsoft’s
Internet Explorer). As many plug-ins are written in non-safe languages such as C, they
are susceptible to a wide range of vulnerabilities that are common for applications writ-
ten in such languages. These vulnerabilities include buffer overflows, memory corrup-
tion issues, and pointer overwrites. Finally, plug-ins are often executed in the context
of the browser, and as a result, can get full access to the browser and the underlying
operating system.
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As mentioned previously, as part of a drive-by download, attackers use client-side
scripting code to load the shellcode (payload) into memory and execute the exploit
against a vulnerable component. More precisely, JavaScript [11] is typically used to
assign the binary representation of shellcode to a variable that is stored in the address
space of the browser. To make their exploits more reliable, attackers resort to a tech-
nique called heap spraying [7,32]. Heap spraying creates multiple instances of the shell-
code, combined with a NOP sledge [34]1. By leveraging the knowledge of how a script
engine manages its heap memory, an attacker can, to a certain extent, influence where
variables are stored in memory. As a result, the area of heap memory that needs to be
sprayed for an attack to succeed is reduced. Once the heap memory has been “pre-
pared,” the actual exploit is launched. To this end, the hostile script typically invokes a
vulnerable method (of a plug-in) with malicious arguments.

When the attacker has prepared a malicious script that can launch a drive-by down-
load, it can be placed on a web site. Then, the attacker has to ensure that potential
victims visit this site. One way is to create a new site and manipulate search engines so
that they list this site high in their rankings. The higher a page is ranked, the higher the
chance is that an unsuspecting Internet user will visit it. Another approach is to embed
malicious content in advertisements that are placed on legitimate web pages. Here, the
site embedding the advertisement becomes an unknowing accomplice for distributing
the attack. Moreover, an attacker can also take advantage of vulnerabilities found in
popular web applications. By exploiting these applications, they are able to place their
content directly on the vulnerable web site. Automated SQL injection attacks [6,16],
for example, modify the database back-ends of web applications in order to include
iframe tags that load the malicious pages.

Drive-by attacks belong to the most common methods for spreading malware to-
day [29]. Thus, it is important to find solutions that mitigate the problem and protect
users. In this paper, we present a proof-of-concept implementation of a system that de-
tects shellcode-based drive-by download attacks. Our basic idea is to check the variables
(strings) that are allocated by the browser (the script engine) when executing client-side
scripts. When such a variable contains shellcode, we assume that the script is hostile,
attempting to setup the environment for an exploit. Thus, the script is terminated, before
any vulnerable function is invoked. We implemented our system in the Mozilla Firefox
browser. However, our conceptual solution is general and works for arbitrary browsers.
The main contributions of this paper are as follows:

– We propose a technique that uses emulation to automatically identify shell-code-
based drive-by download attacks in a browser.

– We describe a proof-of-concept implementation of our approach that is integrated
into the Mozilla Firefox browser.

– We present experimental results that show the feasibility of our approach. We have
evaluated our prototype on more than one thousand malicious and several thou-
sand benign sites. Our experimental results demonstrate that the system is able to
accurately detect drive-by downloads with no false positives.

1 A NOP sledge consists of a sequence of NOP instructions that increase the chance of success-
fully hitting the shellcode when hijacking the control flow of the vulnerable application.
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2 Anatomy of a Drive-by Attack

In this section, we first provide a short overview of JavaScript to enable the reader to
understand script-based drive-by downloads. Then, we present and discuss a real-world
attack to illustrate the problem that we aim to defend against.

2.1 JavaScript Basics

JavaScript is an implementation of the ECMA-262 standard that defines an object-
oriented scripting language [11]. The JavaScript specification defines a set of core com-
ponents, such as data types (e.g., String, Integer, Object), special objects (e.g.,
Date, Math), and operators. The most prominent use of JavaScript is for supporting
dynamic content on the client-side (in web browsers). However, JavaScript is also often
embedded in other software, such as Adobe’s Acrobat PDF reader. Systems that use
JavaScript typically provide environments that allow a script to interact and communi-
cate with other components. The document object model (DOM), for example, is part
of the environment provided by the web browser. It allows scripts to manipulate the
web pages that are displayed and to react to user actions and inputs.

The JavaScript interpreter of the Mozilla foundation is called SpiderMonkey [11].
Microsoft’s implementation of ECMA-262 is called JScript [22]. This implementation
adds facilities to the environment that allow a script to instantiate and communicate with
ActiveX components [21]. These components are the preferred way of providing plug-
ins for the Internet Explorer. On request, the libraries implementing the components are
loaded into the address space of the Internet Explorer process, and the necessary objects
are instantiated. ActiveX plug-ins, thus, have the same privileges that the browser has,
often including full access to the file system and the network.

Among the data types, strings deserves special attention. ECMA-262 defines
strings as sequences of 16-bit integers, commonly interpreted as UTF-16 characters.
Popular JavaScript engines, such as SpiderMonkey, implement strings as immutable.
That is, once a string variable is initialized, the value does not change for the rest of
its lifetime. String operations, such as substituting characters (i.e., replace method
of the string object), do not modify the original value. Instead, a new additional string
variable is instantiated with the modified content. We will see that this fact has impor-
tant ramifications for the implementation of our defense technique.

2.2 An Example of a Real-World Drive-by Download

In this section, we describe a typical drive-by download attack. We actually encountered
this specific attack during our experiments. On September 2, 2008, our high-interaction
client honeypot visited the URL http://www.thewebleaders.com. This page
contained an iframe that loaded the script presented in Listing 1.1.

The most noticeable property of the script is that it uses obfuscated variable and
function names to make it difficult for a human analyst to understand the script’s pur-
pose. Manual analysis reveals that the function defined in Line 1 serves as a decryption
routine. The two values that make up the key for decryption are the location currently
visited by the browser (location.href, Line 2), and the source code of the decryp-
tion function itself (arguments.callee, Lines 3,4). Using the current location as

http://www.thewebleaders.com
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1 function XfNLVA421(IaP1EoKdg) {
2 var I833Nad64 = location.href;
3 var hOtmWAGmO = arguments.callee;
4 hOtmWAGmO = hOtmWAGmO.toString()
5 ...
6 try {
7 eval(jiiIUpFi3);
8 } catch(e)
9 ...
10 }
11 XfNLVA421(’a7A7a7A7ac9bB5b261...’);

Listing 1.1. Excerpt of an obfuscated, real-world malicious script

part of the key to the decryption function allows the attacker to prevent the analysis of
the script when it is loaded from a different location. That is, when the script is cap-
tured, and during a later analysis served locally, the decryption will fail. The last step
of the function uses the decrypted content in an eval2 statement (Line 7). Nesting the
eval in a try-catch block suppresses the errors that would be seen by the analyst if the
eval would fail. This failure would happen, for example, in case the key is wrong.

1 function IxQUTJ9S() {
2 if (!Iw6mS7sE) {
3 var YlsElYlW = 0x0c0c0c0c;
4 var hpgfpT9z = unescape("%u00e8%u0000%u5d00%uc583% ...");

...
5 for (var CCEzrp0s=0;CCEzrp0s<Wh_74Nkm;CCEzrp0s++) {
6 je9rIXgu[CCEzrp0s] = QdV7IGyr + hpgfpT9z;
7 }

...
9 }

...
11 var Kp1uYOjP = new ActiveXObject(’Sb.SuperBuddy’);
12 if (Kp1uYOjP) {
13 IxQUTJ9S();
14 oH9mUjOd(9);
15 Kp1uYOjP.LinkSBIcons(0x0c0c0c0c);

Listing 1.2. Excerpt of a real-world, decrypted malicious script

After decryption, the string passed to eval contains the code excerpt presented
in Listing 1.2. Line 4 loads x86 shellcode into variable hpgfpT9z. Subsequently, the
heap is sprayed by filling the memory with a large number of strings that contain a NOP

2 ECMA-262 specifies that an implementation must provide an eval function. This function
takes an argument of type string and interprets its argument as an ECMAScript program. That
is, the eval function executes the argument it receives as a script.
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sledge and a copy of the shellcode (Lines 5-7). In Line 11, the SuperBuddy ActiveX
component is instantiated. If a valid object can be created, then the vulnerable method
LinkSBIcons is invoked (Line 15). The LinkSBIcons vulnerability is known as
CVE-2006-5820 [4]; the argument of LinkSBIcons is used as a function pointer,
thus diverting control flow to the sprayed heap.

3 Automatically Detecting Drive-by Attacks

As described in the previous section, drive-by downloads that target memory corrup-
tion vulnerabilities have to prepare the environment before they can successfully launch
their exploits. To this end, they use client-side script code to allocate (often large num-
bers of) strings that are filled with x86 (shell)code. The key idea of our detection ap-
proach targets precisely this behavior. More specifically, to detect drive-by downloads
that exploit memory corruption vulnerabilities, we monitor all strings that are allocated
by the JavaScript interpreter. These strings are checked for the presence of shellcode.
Of course, all checks occur before a vulnerability can be abused to redirect control flow
to the shellcode. When our system detects that a script creates a string that contains
shellcode, the execution of the script is stopped.

The prototype implementation of our detection technique was implemented and in-
tegrated into the Mozilla Firefox browser and SpiderMonkey, its JavaScript engine. We
chose Firefox as our prototype platform as this is an open source browser. Obviously,
we would have liked to have integrated our solution into the Internet Explorer. Un-
fortunately, we did not have access to the source code. Nevertheless, we note that our
solution is conceptually generic, and is not dependent on a specific browser. We have
chosen to target JavaScript because it is by far the most common language for writing
scripts on the web. Of course, an attacker could make use of a different language than
JavaScript to deliver an exploit (and some indeed use Visual Basic Script). However, it
would be straightforward to include our technique also into other script engines.

In the following sections, we describe our technique in more detail. In particular,
we discuss how we keep track of the strings that are allocated, and how we detect the
shellcode that an attacker may attempt to inject. Then, we discuss two optimizations
that are applied to make the proposed approach fast enough to be used in practice.

3.1 Tracking Object (String) Allocations

For a drive-by attack to succeed, it is important that the bytes constituting the shellcode
are stored at successive addresses in memory. Otherwise, these bytes would not be
interpreted as valid x86 instructions. Of course, one could consider to split a sequence
of instructions over multiple segments and connect these segments with jumps, but at
least the bytes of each segment need to be consecutive to be valid. In JavaScript, the
only way to guarantee that bytes are stored in a consecutive manner is by using a string
variable. Here, consecutive characters of the string are allocated in adjacent memory
locations.

To detect the shellcode that a malicious script might construct on the heap, we have
to keep track of all string variables that the program allocates. To this end, we modified
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the SpiderMonkey JavaScript interpreter that is embedded in Firefox. More precisely,
we added code to all points in the interpreter where string variables are created. These
points were found at three locations: one for the allocation of global string variables,
one for local string variables, and one for strings that are properties (members) of ob-
jects. The code that we added simply keeps track of the start address of a new string
variable and its length. Here, it is important to recall that strings in JavaScript are im-
mutable. As a result, whenever a character in a string is modified, or when two strings
are concatenated, the resulting string is created in a new memory area. Thus, string
manipulation is automatically handled by the code introduced for creating a new string
variable.

In addition to the start address and the length of new string variables, we also keep
track of the two sub-strings that are used in a string concatenation operation. That is,
whenever a new string is created as a result of a concatenation operation, we keep
pointers to the sub-strings. This is needed for an optimization that is discussed later.

An attacker might consider to use integer arrays to store the shellcode in succes-
sive memory addresses. However, JavaScript supports arrays of integers that follow this
(packed) memory layout only for 31-bit values, where the remaining bit is always set to
indicate that the value is an integer. The fact that one bit is set in each four-byte integer
makes it more difficult for the attacker to craft his shellcode. Also, support for packed
integer arrays can be easily disabled. For integer values that are larger than 31-bit, and
for all other data types, JavaScript handles arrays differently. More precisely, such ar-
rays only store identifiers (pointers) that reference objects that are allocated elsewhere.
Since these objects contain additional management information and are allocated from a
pool of memory, it is very difficult for an attacker to reliably predict where these objects
will end up. As a result, our system focuses on the content of string variables. Of course,
when attackers develop techniques to store shellcode in objects that are allocated in the
object pool, we could easily add checks for these objects as well.

3.2 Checking Strings for Shellcode

Given information about the addresses and lengths of the strings in memory, the next
question that needs to be answered is how shellcode can be automatically detected
within these strings. More precisely, we have to discuss how shellcode can be recog-
nized, and the points in time when this analysis is launched.

For the detection of shellcode, we are leveraging libemu [19]. libemu is a small
library written in C that offers basic x86 emulation and shellcode detection. It is efficient
in detecting shellcode and being used in projects such as Nepenthes and Honeytrap. To
recognize shellcode in a string (character buffer), libemu checks, starting from each
character, whether there is a sequence of valid instructions of sufficient length. When
such an instruction sequence is found, libemu reports shellcode. Since most bytes can
be disassembled to valid x86 instructions, libemu also uses a number of heuristics to
discriminate random instructions from actual shellcode. We currently use a value of 32
bytes as the threshold for the minimal length of a shellcode sequence. We found that
this value works well in our experiments, and it is also significantly shorter than all
Windows shellcode encountered in the wild [26].
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Note that an attacker might try to evade detection by distributing shellcode frag-
ments over multiple strings. In this case, to be successful, each fragment must end in a
jump instruction to the next fragment. Moreover, since the total length of each fragment
must not exceed 32 bytes, there is almost no space for a NOP sledge. As a result, the
attacker must guess the jump offset quite precisely. While modern heap manipulation
techniques allow for a certain control over the heap layout, we believe that such an
attack is very difficult to launch in practice. Moreover, randomizing the allocation of
individual objects in the heap would be easy to do and render this hypothetical evasion
vector infeasible. Note that randomizing object allocations does not help against current
drive-by attacks that store the complete shellcode in one string. The reason is that the
location of a particular string might not be know precisely, but the attacker can allocate
thousands of such self-contained, malicious strings (sometimes worth tens or hundreds
of megabyte). Then, hitting a single string is sufficient to successfully run the shellcode.

The goal of our detection approach is to ensure that the attacker cannot execute
shellcode before we analyze all (string) objects that he has created. The straightforward
approach to do this is to invoke the emulator whenever a new string object is created.
Of course, every string object is only checked once. Nevertheless, this naive approach
incurs a significant performance penalty.

3.3 Performance Optimizations

To reduce the performance penalty that is incurred when checking every string that
is allocated, two approaches are possible. First, one can reduce the total number of
invocations of the emulation engine. Second, one can reduce the amount of data that
the emulator needs to inspect. Our prototype supports techniques to leverage speedups
from both of these approaches.

Since vulnerabilities exploited by drive-by download attacks are almost always found
in the browser or its plug-in components, we consider the JavaScript interpreter as safe.
As a result, while executing JavaScript core functionality, a script is allowed to create
string objects without checks, even ones that contain shellcode. To transfer control flow
to such a string buffer with shellcode, the malicious script must exploit a vulnerability in
an “external” component, leaving the JavaScript core part. Thus, to detect any shellcode
before it can be executed, it is not required to perform emulation immediately after
creating a new string object. Instead, it is possible to only record information on all
created string objects, and postpone emulation to the time at which control flow leaves
the interpreter, entering an external component or the browser.

The delayed checking allows us to collect information about the involved string ob-
jects and leverage this knowledge to decrease the overall amount of data that has to
be checked. First, we use information about string concatenation, a frequent operation.
Consider that we observe the fact that a given string a consists of the concatenation
of strings x and y. This allows us to skip the analysis (emulation) of x and y when
a was already scanned and found to be clean. A second venue for optimization is the
JavaScript garbage collector. By invoking garbage collection on every transition from
the interpreter to the environment, we are able to discard all objects from the emula-
tion that are freed by the garbage collector. We have modified the garbage collector
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routines to remove the freed contents from the list of objects to emulate (after zeroing
their content).

Note that although the detection is delayed, it is still complete in the sense that no
machine instructions residing in the memory space of a JavaScript object can potentially
be executed before being checked by our shellcode detector.

4 Evaluation

This section discusses how we evaluated our prototype as well as the experimental
results. The evaluation was carried out in three parts. First, we evaluated our system for
false positives by accessing a large number of popular benign web pages. Second, we
used our system on pages that launch drive-by downloads and evaluated the detection
effectiveness. Third, we examined the performance overhead of our system.

4.1 False Positive Evaluation

In the context of our system, a false positive is a page that is detected as malicious with-
out actually loading shellcode to memory. To evaluate the likelihood of false positives,
we extended our prototype system to visit a list of k = 4, 502 known, benign pages.
These pages were taken from the Alexa ranking of global top-sites, and simply con-
sisted of the top k pages. We consider this to be a realistic test set that reflects a wide
range of web applications and categories of content.

For the batch evaluation of URLs, we implemented a Firefox extension that visits
all URLs provided in a file. After a timeout, the extension automatically visits the next
URL in the list. More precisely, the extension moves to the next URL two seconds after
the page finished loading, or ten seconds after page loading started. The hard limit of
ten seconds was necessary to handle scripts that continuously issued page reloads.

Our prototype did not produce any false positives for this dataset. This might look
suspicious at a first glance: The x86 instruction set is known to be densely packed, thus,
almost any sequence of bytes makes up valid instructions. However, one has to consider
the fact that JavaScript uses 16-bit Unicode characters to store text. That is, even if a
given sequence of ASCII characters results in a valid x86 instruction most of the time,
the JavaScript representation of the same characters most likely does not, since every
other byte would contain the value 0x0. Of course, an attacker can encode the shellcode
appropriately. However, benign pages typically do not contain strings that map to valid
instruction sequences.

4.2 Detection Effectiveness

In a next step, we evaluated the capabilities of our technique to identify drive-by attacks
that rely on shellcode to perform their malicious actions. To this end, we evaluated our
system on the traces of 1,187 web browsing sessions that are known to contain drive-
by attacks. These traces were collected by visiting URLs that are advertised in spam
emails. We retrieved a list of such URLs from the Spamcop [33] web service, as well
as from mails collected in the spam trap of a medium-size security company.
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To filter those URLs that actually host drive-by attacks, we used the Capture Hon-
eypot Client (HPC) [2]. Capture visits the URLs with a browser on a virtual machine
(VM). After a site is loaded, the state of the VM is inspected, and all modifications
to the file system and registry as well as new processes are logged. In addition to the
logged information, the system records a trace of all network communication that was
taking place. Capture simply visits a URL in a browser and performs no additional ac-
tions. Thus, by filtering URLs that caused a new process to be launched, we were able
to identify those sites that perform drive-by attacks. The system running in the VM
was a Windows XP Professional (Service Pack 2) installation. No additional security
patches were applied, and automatic updates were turned off. Additionally, the Flash
and QuickTime plug-ins were installed.

Once a URL was identified to host a drive-by attack, we used Chaosreader [14] to
extract application level data from the network traces. Chaosreader is able to recognize
a variety of application data from network traces. Among others, Chaosreader identifies
HTML documents, binary images, or gzip compressed data, saving each response to an
HTTP request in a distinct file. Files that were found to be compressed were decom-
pressed before continuing.

Extracting a single file for every response to an HTTP request made further post-
processing necessary. For example, if an HTML page references a JavaScript URI via
an src attribute of a script tag, this results in another request in which the browser
fetches the JavaScript. The response contains only JavaScript code without surrounding
HTML tags. Visiting such a file in a web browser results in its contents being interpreted
as text, and thus, no interpretation of the code takes place. We used a simple heuristics
to add the necessary HTML and script tags to such files. More precisely, whenever
a file does not already contain valid HTML, and it does contain any of the most used
JavaScript reserved words (e.g., function, var), it is wrapped in appropriate tags.

Once the HTML and JavaScript files were restored, they were uploaded on a local
web server. In total, 11,910 URLs (files) were associated with the 1,187 traces (since
a trace can contain multiple resources that are accessed by the browser, for example,
due to redirection or embedded content). Our prototype system was instructed to visit
each of these URLs. The modifications required to process encrypted attack scripts are
detailed in Section 5. One might ask why we did not simply use our system to visit
malicious pages that are live on the Internet, but, instead, replicate malicious sites and
their scripts locally. The reason is that malicious sites on the Internet are frequently
taken down. Additionally, many malicious sites only perform attacks on the first visit of
a client. Thus, changing the prototype and revisiting the same location could not detect
attacks hosted on such pages. In our setup, we have created a corpus that allows us to
replicate our experiments and better debug and understand cases in which the detection
fails initially.

When running our prototype detection system on the resources associated with 1,187
traces, we detected 956 instances of shellcode. This yields an initial detection effective-
ness of 81%. We then examined the remaining 231 traces to understand why our system
did not detect shellcode while the Capture honeypot client indicated an attack.

Manual analysis revealed four main causes that result in our prototype failing to de-
tect a threat. One group (with 62 traces) contains drive-by downloads that do not make
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use of memory exploits. In particular, a popular attack against the Sina Downloader
ActiveX component exploits insecure component behavior. More precisely, this com-
ponent contains functions that allow a script to download a file and to start a program.
This makes it trivial for an attacker to download malware and start it, without ever cor-
rupting memory. However, note that this attack targets an old vulnerability (from 2006)
that is very specific to a particular component. Thus, it is not a general class of vulner-
abilities that our approach misses, but a specific problem in a component that basically
offers all the functionality required by the attacker.

The second group of attacks (with four traces) that were missed by our system are
due to exploits that use Visual Basic (VB) script code to prepare the environment and
launch the exploit. As mentioned previously, our current prototype only instruments the
JavaScript engine. However, similar techniques could easily be added to the VB script
engine.

The third group of missed attacks (with 127 traces) are due to the way our experi-
ments are carried out. Recall that we do not visit live pages on the Internet, but invoke
individual resources (files) that we extracted from network traces. In some cases, the
malicious code is distributed over several scripts that are in different files. In these
cases, the browser does not see and analyze the complete, malicious script at once. This
typically leads to JavaScript errors, and failure to inject shellcode into the heap. This,
however, does not reflect a deficiency in our approach. If these sites were visited with a
browser protected by our proposed technique, all scripts would be fetched and executed
by the web browser in the same context, thus, allowing to detect the threat.

Finally, a forth group (with 38 traces) was not recognized as malicious because it
contains traces that were false positives of the Capture honeypot client. More specif-
ically, they were .cab archive files. Whenever a .cab file is downloaded, Windows
automatically starts the Windows Management Instrumentation to handle this resource.
While this activity results in a new process being launched, it is not because of a mali-
cious drive-by download but due to legitimate activity. However, Capture considers the
start of a new process as an indication of a successful attack.

Given the discussion of the four cases above, we argue that only the traces associated
with attacks against the Sina Downloader ActiveX and similar components should be
considered false negatives for our system. As a result, we can compute a detection
rate of 956

956+62 = 93.9%. Also, we observe that we detected all drive-by attacks that
exploited a memory corruption vulnerability, which is by far the most common type of
exploit found in the wild.

After evaluating the detection capabilities of our system, we also performed further
analysis of the ActiveX components created by the malicious scripts. Our results show
that most malicious sites perform their attacks through only a handful of vulnerable
components. Figure 2 depicts a breakdown of the distribution of the involved compo-
nents. It is interesting to observe that the two most prominent components (SuperBuddy
and QuickTime viewer) account for almost 50% of the targets of the attacks. Note that
the figure lists the 1,688 ActiveX components that were created during our evaluation.
Nonetheless, not every created component lead to a successfull exploit.
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Fig. 2. ActiveX components involved in drive-by downloads

4.3 Performance

Our approach uses x86 instruction emulation to detect shellcode within JavaScript
strings. This happens online; that is, the analysis must be performed at the time the
browser loads a page. Since emulation is a resource intensive task, careless invocations
of the emulator may lead to a significant performance overhead. We have pursued sev-
eral strategies to minimize the overhead, as explained in Section 3.3. In this section, we
describe the results of our performance evaluation.

Our experiment measures the wall-clock time required to load a set of web pages.
We have chosen the 150 most popular web sites (according to Alexa). The same set of
pages was processed three times. First, we ran an off-the-shelf Mozilla Firefox browser
without performing any additional tasks. Second, we used our modified version of the
browser that provides protection against drive-by download attacks, without any per-
formance optimizations. Third, we used the browser with protection and performance
optimizations.

All measurements have been carried out on a machine with an Intel Core 2 Duo
processor running at 2.66 GHz and 4 GB of main memory. Internet connectivity was
established using an ADSL line with a bandwidth of 1 MBit/s.

The results of our performance evaluation are presented in Table 1. On average, an
unmodified Firefox browser took 3.51 seconds to load one web page from our test-
ing set. This time includes the download of the content over the Internet, parsing and

Table 1. Page load times (sec) with and without drive-by download protection

Total time[s] Time/page[s] Overhead/page Factor
Off-the-shelf browser 527 3.51

Protected browser
w/o optimizations 1,237 8.25 4.74 2.35
w/ optimizations 876 5.84 2.33 1.66
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rendering of the page, and execution of all JavaScript code. In comparison, a modified
version of the browser, which provides protection against drive-by download attacks,
takes additional time. The overhead can be attributed to the effort spent on tracing the
allocated string objects, and more importantly, emulation of their content when exe-
cuting functionality from the JavaScript environment. A basic implementation of our
system, without application of performance optimization measures, took 8.25 seconds
per page. This is a significant performance penalty. Our final implementation, including
all optimizations took, 5.84 seconds per page. That is, the overhead of the naive version
could be reduced in half.

Browsing the Web is an interactive occupation, and it is desirable for the user to expe-
rience as little latency as possible when loading a new page. Obviously, the decrease in
performance introduced by our approach seems significant. However, note that the time
users typically spend on consuming the downloaded content (e.g., reading an article) by
far outweighs the time that is spent on waiting for new content to be loaded. Thus, we
believe that the benefit of a secure browsing experience, without the risk of falling prey
to a drive-by download attack, well compensates the inflicted performance penalty.

5 Implementation Details

As mentioned previously, our system has been implemented by extending Mozilla Fire-
fox and SpiderMonkey. However, all drive-by download attacks in our dataset target the
Internet Explorer (IE). The astute reader might wonder how our system can actually de-
tect such attacks, since they are not supposed to work with Firefox. In the following, we
provide some (what we believe) interesting details on how we implemented our system
to detect IE attacks with a modified Firefox browser. Of course, when our technique
would be integrated with Internet Explorer, such extensions would not be necessary.
Also, the system as introduced can readily detect drive-by downloads that target Fire-
fox. Moreover, we discuss some additional issues that needed to be addressed because
of our experimental setup.

Simulating ActiveX components. Attacks that aim to exploit a vulnerability in a spe-
cific plug-in often perform a check for the availability of this plug-in. That is, such
attacks only reveal their malicious behavior when the vulnerable component is present.
In the case of ActiveX plug-ins, this is done by trying to instantiate the vulnerable
component. If the plug-in object is instantiated successfully, it usually means that the
component is present.

Unfortunately, Mozilla Firefox does not support ActiveX plug-ins. However, as most
drive-by attacks rely on ActiveX to be present, we had to modify the browser appro-
priately. More precisely, we extended Firefox such that it creates dummy objects for
instantiation requests to ActiveX components. Thus, whenever a malicious script at-
tempts to instantiate an ActiveX component, the call succeeds and the corresponding
dummy object is created.

These objects accept all method invocations, and also log method calls together with
their respective arguments. Note that although it is not the main focus of our work, this
information can be used to identify the vulnerability that is used to divert the control
flow.
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Browser fingerprinting. Browser fingerprinting is a technique applied by attackers to
serve only exploits that match the specific browser of the sites’ visitors. To this end, in-
stead of bluntly trying a series of attacks, a script is executed to determine the browser,
its version, and installed plug-ins. Based on the knowledge gathered by this script, it
fetches only those exploit scripts that match this setup (e.g., if no QuickTime plug-in is
detected, no QuickTime related exploits are tried). Even when no fingerprinting is per-
formed as described above, the malicious script most likely verifies that it is executed
in a browser that it intends to exploit. Therefore, the script queries the properties of the
navigator object and only continues if the information matches its authors’ inten-
tions. Since our prototype is implemented in Mozilla Firefox, this would have prevented
all scripts that perform such techniques from executing. However, the recorded traces
hold proof of a successful drive-by attack. Thus, we modified our prototype to pretend
to be the same browser and version3 that was used when the traces were recorded.

To assure that the script is executing in Microsoft’s Internet Explorer, attackers rely
on inaccuracies of the JScript parser. More precisely, the JScript parser is more tolerant
with regards to semicolons than SpiderMonkey.

1 try {
2 ...
3 } catch (e) {};
4 finally {
5 ...
6 }

Listing 1.3. Illustration of different parsing behavior

Listing 1.3, for example, illustrates this with a try-catch-finally construct. While the
JScript parser gladly accepts this syntax (notice the semicolon after the catch block
in Line 3), the SpiderMonkey engine terminates the script with an error (i.e., “finally
without try”) at Line 4. These different parsing behaviors introduce further means for
an attacker to make sure the script is interpreted by the Internet Explorer. As we could
observe such attacks in the wild, we had to modify the parser of our prototype to reflect
the behavior of the JScript parser.

Dynamic encryption keys. Most malicious scripts are encrypted in some way. The at-
tackers’ motivation to disguise malicious scripts is obviously the intention to encumber
the analysis of such scripts. Encryption is a straightforward approach to do so.

An encrypted script contains a decryption routine and a cipher text. During ex-
ecution, the cipher text is decrypted by the routine, and the result is executed via
JavaScript’s eval function. Two possibilities exist where the decryption routine de-
rives the correct key from. (1) the key might be part of the script itself (e.g., stored in a
variable), or (2) the key is dependent on the environment of the script. While in the first
case, decryption is automatically handled by the interpreter, the second case requires

3 Corresponding to the user-agent string: Mozilla/4.0 (compatible; MSIE 6.0;
Windows NT 5.1; SV1).
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that the environment presents the right information for the queried value. In our eval-
uation dataset, many decryption keys were partly derived from the current URL of the
browser. Since the scripts were hosted at a local web server, the URLs were different,
thus leading to wrong decryption keys. For wrong key values, the decryption routines
produce only garbage and, as a result, no malicious behavior can be observed. Since,
on the other hand, the values were correct when the network traces were recorded, we
modified our prototype to report the URL that was visited during the recording of the
trace as the current location. This allowed the scripts to decrypt the cipher text correctly,
and we were able to analyze and detect their malicious behavior.

Batch processing time-outs. Some malicious scripts use the setTimeout function
of JavaScript to delay their actions. During our batch processing of URLs, we use a
time-out of ten seconds before moving to the next page. As a result, the usage of such
timers could prevent detection. To mitigate this problem, we had to assure that these
timeouts expire before the batch processing extension moves to the next URL. To this
end, we modified Firefox to replace all delays of setTimeout calls with a delay
of 50ms.

Interestingly, during our evaluation, we encountered a malicious script that imple-
mented a custom version of a setTimeout-equivalent function. More precisely, the script
looped and measured the expired time between the initial run of the loop and the current
time. Once the desired delay was reached, execution continued. This sample did not use
the setTimeout function and thus, the extension switched to the next URL before the
malicious content was executed. Notice, however, that not detecting the malicious script
in this sample is an artifact of the batch processing and does not indicate a weakness in
our proposed approach. In fact, after removing the sleep function, the system did detect
the malicious script, the shellcode it used, and the involved ActiveX components.

6 Related Work

Many researchers have proposed methods to analyze, detect, and mitigate the threat
posed by malicious software. For malware analysis, two different approaches exist.
While dynamic analysis actually executes the malware, static analysis is performed
without running the software in question. Dynamic approaches execute the malware
in a controlled environment, and observe the interaction of the malicious component
with the environment. Hooking API function calls results in detailed information of the
behavior of a program.

CWSandbox [36] uses hooking to log the invocations of Windows API function.
Similarly, Anubis [1] performs its analysis via virtual machine introspection [13] on an
application that is executed in an emulated machine. A mixture of static and dynamic
techniques is applied by Kirda et al. [18] to detect malicious browser plug-ins. Egele
et al. performed information flow analysis on browser plug-ins [9] to identify spyware
components that leak sensitive information. Information flow analysis is also the key
idea of Panorama [37], where Yin et al. implemented a system to discover rootkits.
While powerful, existing analysis techniques are typically too heavyweight to be used
for detection on a client machine. In contrast to that, our proposed technique detects
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drive-by download attacks by monitoring potentially malicious scripts directly in the
browser.

Previous studies have shown that drive-by download attacks pose a real threat to the
Internet and its users. The mechanisms used by attackers to mount their attacks are in-
vestigated by Provos et al. in [29]. The life cycle of an infected machine is analyzed
by Polychronakis in [27]. In [28], Provos et al. present a measurement study that re-
ports that the results for 1.3% of all Google search queries contain at least one link
pointing to a page that performs a drive-by attack. Also, Frei et al. [12] analyzed the
vulnerability landscape of web browsers in the Internet. Apparently, only 60% of the
users that navigate the Internet everyday use the latest, most secure version of their web
browser. Based on a Secunia report [31], the authors argue that many browser plug-ins
commonly in use have known vulnerabilities. The fact that many users only reluctantly
update their web browsers and plug-ins makes it feasible for attackers to distribute at-
tacks that target old vulnerabilities. As many of the vulnerabilities leading to control
flow hijacking are present in ActiveX components, Dormann and Plakosh [8] propose
fuzzy testing as a means of detecting such flaws before distributing a component.

Detecting shellcode in network traffic has a long standing history. Network intru-
sion detection systems, such as Snort [30] or Bro [23], rely on signatures to identify
malicious network streams. While signature detection works well for known static
threats, advanced polymorphic shellcode and engines that can automatically produce
such shellcode can sometimes evade these detection techniques. Based on abstract pay-
load execution, Toth and Kruegel have proposed a mechanism to detect buffer overflow
attacks [34]. More precisely, their prototype implementation identifies long valid se-
quences of instructions in HTTP requests, thus detecting the NOP sledge that commonly
accompanies shellcode. Continuing this work, Polychronakis et al. [24,26] proposed to
apply lightweight emulation on network data to identify polymorphic shellcode. This
approach relies on the so-called GetPC heuristic. That is, a shellcode is only identified
if a sequence of instructions is emulated that reads the current program counter value.
The class of non-self-contained shellcode, however, contains code that reaches its goal
without showing such behavior. In [25], the authors extend their detection techniques
to also identify this class of attacks. While network-traffic-based techniques are useful,
they typically cannot be used to detect drive-by downloads. The reason is that, although
JavaScript contents of a web page are transmitted over the network, this code is of-
ten obfuscated. Furthermore, the shellcode contained in the JavaScript scripts are not
transmitted in binary form. Instead, the ASCII representation of the individual bytes is
transmitted. This sequence does not yield a valid instruction sequence in general.

Analyzing malicious JavaScript has recently gained more attention by the scientific
community. Hallaraker and Vigna [15] present an approach to audit the execution of
JavaScript code. These audit logs can be compared to high-level policies to detect po-
tential attacks. Similarly, Feinstein and Peck introduced Caffeine Monkey [10], a tool
that supports the collection and analysis of malicious JavaScript. To this end, they ex-
tended the Mozilla SpiderMonkey JavaScript engine by adding run-time logging facil-
ities. Chenette et al. [3] aim at automatically reversing the obfuscation of malicious
JavaScripts. Their approach relies on hooking techniques to monitor calls to relevant
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JavaScript functions, such as eval or document.write. These systems focus on auditing
JavaScript activity, while our approach aims at detecting malicious drive-by downloads.

Vogt et al. propose a system that prevents cross-site scripting attacks performed by
malicious JavaScript code [35]. To protect a user from JavaScript that tries to steal sen-
sitive information, the propagation of such information through the JavaScript engine is
tracked. Requests to a domain containing information originating from another domain
raise an alert, and allow the user to stop further execution of the script.

7 Conclusion

Drive-by downloads belong to the most threatening vectors of attack that are currently
used by cyber-criminals to illegitimately gain control of victims’ computers. In this
paper, we present a novel approach that helps protect a user against drive-by attacks
that rely on shellcode.

Our system is integrated into the web browser where it monitors JavaScript code that
is downloaded and executed. More precisely, our system traces all string objects that
are created during run-time, and it uses x86 instruction emulation to determine whether
a string buffer contains executable shellcode. The detection of the shellcode takes place
before a vulnerability can be exploited (and control flow redirected). Hence, an attack
can be mitigated before the security of the browser is compromised.

Our approach includes optimizations to assure a reasonable performance overhead
while delivering excellent detection results for drive-by attacks that exploit binary vul-
nerabilities in browser plug-in software. We have built a prototype implementation with
which we have verified the capability of our approach to successfully detect real-world
drive-by download attacks. Our evaluation shows that our approach is feasible in practice.
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Abstract. This paper introduces a new software polymorphism tech-
nique that randomizes program data structure layout. This technique
will generate different data structure layouts for a program and thus di-
versify the binary code compiled from the same program source code.
This technique can mitigate attacks (e.g., kernel rootkit attacks) that
require knowledge about data structure definitions. It is also able to dis-
rupt the generation of data structure-based program signatures. We have
implemented our data structure layout randomization technique in the
open source compiler collection gcc-4.2.4 and applied it to a number
of programs. Our evaluation results show that our technique is able to
achieve software binary diversity. We also apply the technique to one op-
erating system data structure in order to foil a number of kernel rootkit
attacks. Meanwhile, programs produced by the technique were analyzed
by a state-of-the-art data structure inference system and it was demon-
strated that reliance on data structure signatures alone may lead to false
negatives in malware detection.

1 Introduction

A widely adopted methodology for implementing software is data abstraction,
which involves the abstraction of data structures and enables programmers to
isolate a data definition from its representation and operations. Software is im-
plemented to access and process data structures. Software implementation, if
not obfuscated, will expose certain data structure definitions as well as their lay-
outs. This observation has been exploited recently in network protocol reverse
engineering [11, 40, 29, 20, 30, 16].

Knowledge about data structure layout is often used by attackers. For exam-
ple, a buffer overflow attack relies on the attacker knowing that the program
buffer is adjacent to a function pointer or return address [22]. Kernel rootkits,
especially those that manipulate kernel objects directly, require that the attacker
know the layout of specific kernel objects in order to manipulate them. In net-
work application penetration testing, if the attacker knows the structure of the
protocol message, he can reduce the fuzz space and speed up the test [39, 21].
These attacks can be foiled if we can prevent attackers from obtaining an accu-
rate data structure layout of the victim program.
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c© Springer-Verlag Berlin Heidelberg 2009



108 Z. Lin, R.D. Riley, and D. Xu

Data struct layouts are also used as attack signatures in some defense tech-
niques. For example, in protocol analysis, the data structure associated with
a protocol payload can be used to construct the exploit signature for runtime
network intrusion detection. In malware analysis, it has been reported recently
that data structure layout can be used to generate malware signatures [19].

Forrest et al. [23] has suggested that monoculture is one of the main reasons
why computers are vulnerable to large-scale, reproductive attacks. As such, ran-
domization can be introduced to increase the diversity of software. This strategy
has been widely instantiated in existing work such as address space randomiza-
tion (ASR) [38, 41, 8, 10], instruction set randomization (ISR) [6, 28], data ran-
domization [12,17], and operating system interfaces randomization [13,27]. Given
the success of existing randomization strategies, we propose another instantia-
tion of software randomization: Data structure layout randomization (DSLR).

In this paper, we demonstrate that software can be diversified by DSLR. We
propose an approach to instrument a compiler (as the compiler knows about a
program’s semantics) so that it will generate a different data structure layout
each time the same source program is compiled. We instrument the compiler
to scan the data structure definitions (e.g., struct and class) marked by the
programmer as randomizable and then reorder their member fields and insert
garbage fields. We note that DSLR is different from the software obfuscation
techniques [15]. Those techniques are used in software protection and aim at
making it harder to reverse engineer the data structure definitions in a single
binary. On the other hand, DSLR makes it difficult to derive data structure
signatures from multiple copies of the same software.

The benefit of DSLR to malware defense is two-fold: First, DSLR can mitigate
attacks that rely on knowing the data structure layout of victim programs. Sec-
ond, the feasibility (and simplicity) of DSLR suggests that malware signatures
based on data structure layout may not always be effective when used alone for
malware detection.

We have implemented our DSLR technique in an open source compiler collec-
tion, gcc-4.2.4, and applied it to a number of programs. The detailed design
and implementation are presented in Section 3 and Section 4, respectively. Our
evaluation results in Section 5 show that DSLR can achieve software binary di-
versity. DSLR can be used generate diverse kernel data structure definitions to
mitigate a number of kernel rootkit attacks. Meanwhile, we demonstrate that
DSLR introduces noise to a state-of-the-art data structure inference system when
generating a program’s data structure signature. Finally, DSLR imposes very low
performance overhead on gcc and on the original, un-randomized program.

2 Technical Challenges

In this section, we examine two technical challenges in realizing DSLR: Which
data structures to randomize and how to randomize them.
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2.1 Randomizability of Data Structures

Data structure layout, at the binary level, is reflected by the offsets of the encap-
sulated object fields. The encapsulated objects include struct, class, and stack
variables declared in functions (as they are related to a particular stack frame
and addressed by EBP). The first two types have been exploited to derive mal-
ware signatures [19]. We believe that a function’s local variable layout can also
be leveraged to compose signatures and thus we will also discuss randomizing
them.

However, randomizing just any data structure will not work in general as
manifested in the following examples: (1) If a data structure is used in network
communication, the communicating parties may not understand each other if
the data structure is randomized. (2) If a data structure definition is public
(e.g., defined in shared library stdio.h), it cannot be randomized. (3) There is
a special case in GNU C that allows zero-length arrays to be the last element
of a structure (a zero-length array is actually the header of a variable-length
object). If a zero-length array is declared as the last element in a struct, that
element cannot be randomized, otherwise it cannot pass gcc syntax checking.
(4) A programmer may directly use the data offset to access some fields. (This is
particularly true in programs which mix assembly and C code.) (5) To initialize
the value of a structure, the programmer uses the order declared to initialize
the structure. These fields cannot be randomized, as the program may crash. In
light of these cases, we declare a data structure as randomizable if and only if it
is not exposed to any other external programs and does not violate the original
gcc syntax and programmer intention.

Data structure randomizability is closely related to program semantics. It
would be ideal if the compiler could automatically spot all the randomizable data
structures. In practice, however, only the programmer can designate randomiz-
able data structures with confidence. Even if we could define some heuristics to
automatically spot those randomizable data structures, we could not claim both
completeness and safety. In this paper, we simply require that programmers use
new keywords to specify randomizable data structures.

2.2 Data Structure Randomization Methods

The second challenge is how to randomize a data structure. The simplest ran-
domization method would be to reorder its layout. Our primary goal is to create
binary diversity for the same software – the more variation, the better. There-
fore, we will design a randomization method which reorders the member fields
of each data structure to be randomized. Suppose a program has n such data
structures and each has m fields, then the number of possible combinations after
randomization would be (m!)n.

However, field reordering alone is still not sufficient. For example, suppose a
data structure has only two members which are both of int type. No matter
how we reorder these two fields, the layout of this data structure is still “int and
int”. As a result, to randomize a data structure containing multiple members
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of the same type, we have to use a different randomization method. To this end,
we insert garbage fields into these data structures.

3 DSLR Design in GCC

In this section we present the detailed design of DSLR in a specific compiler
system. As C/C++ is commonly used in system and user level programming,
we have implemented our DSLR technique in the popular, open-source compiler
gcc [1].

By instrumenting gcc to reorganize the fields in encapsulated data structures,
DSLR will fill the memory image with a random layout each time the program
source is compiled. Hence, we need to decide where to instrument gcc.

For a program source, gcc first builds an initial Abstract Syntax Tree (AST).
It then converts the language-specific AST into a uniform, generic AST. The
generic AST will be transformed into another representation called GIMPLE
(a representation form which has at most three operands). After GIMPLE, the
source code is converted into the static single assignment (SSA) representation
[5] to facilitate more than 20 different optimizations on SSA trees. After the
SSA optimization pass, the tree is converted back to GIMPLE which is then
used to generate a register-transfer language (RTL) tree. RTL is a hardware-
based representation that corresponds to an abstract target architecture with
an infinite number of registers. There are also a number of optimization passes
such as register allocation, code scheduling, and peepholes performed at the RTL
level.

Given these internal steps in gcc, the possible instrumentation points for
DSLR are AST, GIMPLE, SSA, and RTL. We instrumented at the AST level
for the following reasons: (1) the AST retains a lot of original information from
the program source code, such as the type and scope information for data struc-
tures and functions; (2) The AST representation is easier to understand and
the structure of the tree is concise and relatively convenient for us to modify;
(3) When generating the AST, gcc has not yet determined the layout of the
data structures, and as such we can reorder the data structure members and
reconstruct the AST without needing to compute specific memory addresses.

The data structures to be randomized can be divided into three categories:
struct, class and the function stack variables. We reorder the inner AST rep-
resentations of these data structures, which will eventually lead to the reorga-
nization of the memory layout. Note that these data structures have their own
scopes. When the AST for these data structures is generated, all the member
variables in each data structure are chained together and represented by a link
list. To perform randomization, we can just capture the head node of the list,
reorder the nodes of the list based on a random seed, and insert some “garbage”
nodes into the list if necessary.

Figure 1 shows a simple example. A data structure test has three fields: int
a, char b, and int* c. When compiled with the original gcc, the order of the
fields is in the originally declared order (Figure 1(b).) When compiled with our
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struct test

 {

   int a;

     char b;

     int *c;

 };

test

a c

b

Original

test

b

G

c

a

Randomized

(a) (b) (c)

G

Fig. 1. Example of data structure randomization: (a) the original definition, (b) the
original AST, and (c) the randomized AST. The “G” nodes represent the garbage fields
added to the data structure. The dotted arrows represent the order of the fields.

DSLR-enabled gcc, the order of the fields is randomized. We also add 2 garbage
fields. Figure 1(c) shows the randomized AST representation of struct test.

As discussed in Section 2, to enhance data structure layout diversity we adopt
the following strategy: (1) different data structures at the same project build-
ing time will be reordered differently (with different randomization seeds); and
(2) the same data structure at different project building times will be reordered
differently. We use project building time instead of compile time because when
building a project, gcc usually compiles each file individually (as specified in the
Makefile), and we need to ensure that the same data structure has a uniform
layout across one entire build. Suppose a program has two data structures, S1
and S2, which have 4 and 5 fields respectively. When we build the program us-
ing our modified gcc, S1 and S2 will be randomized differently. In addition, the
same data structure (e.g., S1) will have different layouts in memory at different
project building times. Hence, the number of possible layouts for this program
would be 4! ∗ 5!. We believe such a strategy will greatly improve the binary di-
versity of the program, as the chances of generating identical instances would be
1/(

∏j
i=1 |Si|!), where j is the total number of data structures to be randomized

and |Si| represents the total number of fields (members) in data structure Si.

4 DSLR Implementation in GCC

Our DSLR prototype is implemented in gcc-4.2.4 with over one thousand lines
of C code. We modified gcc’s AST representation to perform the randomization.
Our prototype consists of four key components: (1) keyword recognizer, which
recognizes the new keywords we introduce to specify data structure randomiz-
ability and garbage padding; (2) re-orderer, which reorders the field variables
in a data structure definition according to a random seed; (3) padder, which
inserts the garbage fields into a data structure; and (4) randomization driver,
which controls the randomization process. In the remainder of this section, we
present the details of these components.
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...

<function-definition>       ::= {<declaration-specifier>}*<declarator>{<declaration>}*<compound-statement>

<declaration-specifier>        ::= <storage-specifier>

   | <obfuscate-specifier>

     | <type-specifier>

     | <type-qualifier>

<obfuscate-specifier>          ::= __obfuscate__(( <obfuscate-list> )) 

<obfuscate-list>                   ::= <obfuscate-property>

  | <obfuscate-list>, <obfuscate-property>

<obfuscate-property>         ::= | __reorder__ | __garbage__
<struct-or-union-specifier> ::= <struct-or-union> <identifier> "{" {<struct-declaration>}+ "}" <obfuscate-specifier>

              | <struct-or-union> "{" {<struct-declaration> <obfuscate-specifier>}+ "}"

  | <struct-or-union> <identifier> <obfuscate-specifier>

<class-specifier>         ::= <class> <identifier> "{" {<class-declaration>}+ "}" <obfuscate-specifier>

| <class> "{" {<class-declaration> <obfuscate-specifier>}+ "}"

     | <class> <identifier> <obfuscate-specifier>

...

Fig. 2. A partial BNF definition of our extend grammar for C/C++

4.1 Keyword Recognizer

We introduce several new keywords to instruct gcc regarding which data struc-
tures to randomize and how.

The first keyword is obfuscate . It is implemented similar to the way
attribute is already implemented in [3]. Similar to attribute , we offer

options for obfuscate to tell gcc which randomization method(s) it should
apply. For that we define two other keywords: reorder and garbage . The
first one informs gcc that the data structure layout should be reordered and the
latter one tells gcc to insert some garbage fields into the data structure.

There are three types ofdata structures that canbe randomizedandmarkedwith
the obfuscate keyword: (1) structs in C, (2) classes in C++, and (3) stack
variables declared in a function. Figure 3 shows usage examples of these keywords.

1 class Test

2 {

3    int a;

4    char b;

5    int *c;

6    ...

7 } __obfuscate__ (( __reorder__ ));

(a)

 1 #include <stdio.h>

 2 struct Test

 3 {

 4    int a;

 5    char b;

 6    int *c;

 7 } __obfuscate__ (( __reorder__ , __garbage__ ));

 8 __obfuscate__ (( __reorder__ )) int main(void)

 9 {

10    int loc1 = 1;

11    char loc2 = ’n’;

12    char loc3[4];

13    printf(" The address in struct:

14            %x , %x , %x\n", &t.a, &t.b, &t.c);

15    printf(" The address in local:

16            %x, %x, %x\n",&loc1,&loc2,&loc3);

17    return 0;

18 }

(b)

Fig. 3. Sample code (a) showing how to randomize a class in C++ and (b) showing
how to randomize a struct and stack variables in the main function
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Since we implemented DSLR at the AST level, there are two modifications
when implementing the new keywords. The first is in lexical analysis, which
makes the compiler recognize the new token. The second is to build our own
parser for the keyword.

4.2 Reorderer

When generating the AST for a program, gcc will chain the members of a
particular data structure to a list. If it encounters the keyword reorder , it
will invoke the re-orderer when gcc finishes constructing the entire chain, and
then it can reorder the members according to the random seed generated by the
randomization driver.

We implement the re-orderer at different points for each category of data struc-
tures. To randomize the layout for a struct, we insert the re-orderer into func-
tion c parser struct or union specifier, which handles structs and unions,
just after this function has constructed every item in a struct or union. Note
that it is not necessary to randomize the members in a union as it only con-
tains one instance of the declared members at runtime. To randomize a class,
we insert our re-orderer into function unreverse member declarations. For
local variables, we insert it into the function c parser compound statement
nostart.

4.3 Padder

We implement the padder to insert garbage fields between fields of a data struc-
ture. The padder will be combined with the re-orderer to perform the random-
ization, and it will be inserted in the same places as the re-orderer. When gcc
recognizes the keyword garbage , the padder will insert garbage fields of var-
ious sizes. Such garbage creates noise in the memory image and makes it more
difficult to identify the true data structure. The size of garbage items is deter-
mined by the randomization driver.

4.4 Randomization Driver

The randomization driver supports the re-orderer and padder and is directly
related to the effectiveness of DSLR. When encountering a randomizable data
structure during project building, it will first check whether this data structure
already has a 32-bit random value stored in a project build file. If so, it will
use that random value; otherwise it will generate a random value via the glibc
function random and store it in the project build file for future use. The project
build file is a project-wide file that records the random value and the number of
fields of each data structure to be randomized. It is critical to ensuring layout
consistency across a single project build. In particular, when building projects
such as the Linux kernel and its drivers, it should use the same project build file,
otherwise the kernel may use different data structure layouts and cause crashes.
Similarly, it checks whether the total number of elements of that data structure
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has been counted. If not, it will count the number of fields in that data structure
and store it in the project build file.

After knowing the random value and the total number of fields for a data
structure to be randomized, it takes two basic methods to perform the re-ordering
and padding.

Reordering Method. Suppose our randomization driver gets a random value
R and the total number of fields for a particular data structure m. It will follow
the reordering method shown in Algorithm 1.

Algorithm 1. Reordering Method
1: Input: random value R, total number of fields m, and the original order of field variables:

pos[1..m]
2: Output: the reordered fields in pos’[1..m]
3: Initialization: j ← m;
4: Reorder(j, pos[1..j]){
5: i ← R%j + 1;
6: pos’[j]← pos[i]; /*move the i-th element in pos to the rightmost available position in pos’*/

7: if(j==1) return; /*no element left in pos, and hence return*/
8: if(i!=j) pos[i] ← pos[j];
9: Reorder(j-1, pos[1..j-1]);
10: }

In the algorithm, pos[i] represents the position of the ith member/field vari-
able in the original data structure. Based on the original ordering of the member
variables, the method recalculates the positions of the member variables accord-
ing to the random value R. We verify that Algorithm 1 is able to generate all
m! layouts for a data structure containing m members.

Padding Method. When we insert garbage fields between the member vari-
ables of a data structure, the padding method determines the size of the garbage
fields. We limit the size to 1, 2, 4, or 8 bytes. To do that we partition the random
value R into four parts: x1, x2, x3, and x4, and each part has 8 bits. We then
reduce these 8 bits to 2 bits by calculating xi mod 4 (i ∈ {1, 2, 3, 4}). These
four random values fall into the range of 0 to 3, which correspond to 8-byte,
4-byte, 2-byte, and 1-byte sizes, respectively. Suppose there exists a data struc-
ture which contains five member variables and the four random values (after
the mod operation) are 1, 3, 2, and 0. Then we insert 4 garbage fields between
the members using padding size of 4, 1, 2, and 8 bytes, respectively. Note that
if the data structure requires both reordering and padding, the two methods
will be applied in that order. We note that padding will not interfere with any
subsequent optimization steps performed by gcc.

5 Evaluation

In this section, we present our evaluation results. We first assess the effectiveness
of our DSLR technique in Section 5.1, and then measure the performance impact
of DSLR on both gcc and the generated binaries in Section 5.2.
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5.1 Effectiveness

Estimating Data Structure Randomizability. We applied our DSLR-
enabled gcc to a number of goodware and malware programs. We use open-
source goodware such as openssh, and malware programs collected from offensive
computing [2] and VX Heavens [4]. We first manually estimate the randomiz-
ability of data structures in these programs by inspecting their source code. As
discussed in Section 2, it is difficult to accurately determine all the randomiz-
able data structures in a program and we delegate that task to programmers. In
our experiments, we used the following heuristics for randomizability estimation:
For each data structure, we manually check if it is used/involved in one of the
following scenarios: (1) network communication, (2) disk I/O, (3) shared library,
(4) assembly code, (5) pointer arithmetic, and (6) struct data initialization. If
so, the data structure is deemed un-randomizable.

Table 1 summarizes the results. We define ki (i ∈ {0, 1, 2}) as the total number
of structs, classes, or functions in a program. We also define ji (i ∈ {0, 1, 2})
as the total number of data structures we consider randomizable. Hence, j0/k0,
j1/k1, and j2/k2 represent the randomizability ratios for struct, class, and
function (shown in the 3rd, 4th, and 5th columns in Table 1), respectively. We
note that some of the function stack layouts could not be randomized. The reason
is that they contain goto statements (thus the label order is fixed).

Table 1. Result of randomizability estimate and layout diversity

Randomizability of Data Structure Possible Layout
Benchmark LOC(K)
program struct class funcs ω

42 Virus 0.88 1/1 - 24/24 4E5
Slapper 2.44 26/30 - 69/70 5E47

pingrootkit 4.81 26/27 - 57/57 5E15
Mood-nt 5.31 36/37 - 121/122 8E119
tnet-1.55 11.56 14/17 - 179/179 7E82
Suckit 24.71 110/111 - 143/144 9E159

agobot3-pre4 245.44 23/31 50/50 340/346 2E1106

patch-2.5.4 11.53 5/7 - 123/123 4E3
bc-1.06 14.29 20/21 - 166/166 6E56

tidy4aug00 15.95 9/18 - 341/341 2E52
ctags-5.7 27.22 51/79 - 488/488 3E668

openssh-4.3 76.05 63/80 - 820/838 4E1271

Layout Diversity. bc struct is a data structure in the bc-1.06 binary. As
shown in Figure 4, this data structure compiled by the DSLR-enabled compiler
(with random number 669) has its layout changed significantly: not only has the
field order been changed, it also contains 6 additional garbage fields.

We then estimate the layout diversity of these programs. It is rather cumber-
some to experiment with all possible layouts. Instead, we numerically compute
the number of binary variants that our compiler will be able to generate for each
program, based on the result of the data structure randomizability estimation
(ji (i ∈ {0, 1, 2}) of each program). The numerical results are shown as ω in the
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sign n_sign
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typedef  enum{PLUS,MINUS} sign;
typedef struct bc_struct * bc_num;

(a) (b)

Fig. 4. Data structure layout comparison: (a) original layout, and (b) randomized
layout

last column of Table 1, which is the total number of binary instances of each
program. Note ω =

∏j0+j1
i=1 |Si|!, where j0 + j1 is the total number of structs

and classes to be randomized and |Si| is the total number of fields (members)
in data structure Si.

Binary Code Diversity. A direct consequence of randomizing data structure
layout is that the binary code generated will also be diversified. The reason is that
the field variables in structs, classes, and even local variables, are accessed by
data offsets which will be changed due to the randomization. Therefore, it would
be interesting to evaluate the difference between the DSLR-generated code and
the original un-randomized code.

To evaluate code diversity, we first compiled each benchmark program with
an unmodified copy of gcc to get the original binary, whose size is represented
by I0 shown in the 2nd column of Table 2. We then used the DSLR-enabled gcc
to compile the same program and generate three instances. Their code sizes are
represented by I1, I2, and I3, respectively. Next, we compared the original binary
with the newly generated binaries using a tool called bsdiff [33]. The differ-
ence is represented by δi. bsdiff is a patch tool which generates the difference
between two binaries. Different from other binary diff-ing tools, bsdiff adopts
an “approximate matching” algorithm, which counts the byte-wise difference in
two directions (both forward and backward) rather than in one direction (often
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Table 2. Evaluation of binary code diversity

Code Diversity
Benchmark
program I0(K) I1(K) δ1(%) I2(K) δ2(%) I3(K) δ3(%) AV Gδ

42 Virus 27.37 27.39 7.0 27.39 6.5 27.40 8.0 7.2%
Slapper 36.03 33.83 12.0 33.85 13.2 33.82 14.3 13.2%

pingrootkit 84.08 84.29 5.0 84.28 3.9 84.28 5.1 4.7%
Mood-nt 74.52 75.25 9.6 75.32 9.5 75.35 9.8 9.6%
tnet-1.55 174.17 175.15 7.6 175.03 7.7 174.96 6.9 7.4%
Suckit 99.61 102.20 6.3 102.17 6.8 102.17 6.4 6.5%

agobot3-pre4 904.42 909.97 8.3 912.72 8.5 909.55 7.2 8.0%

patch-2.5.4 216.56 217.51 6.1 217.48 6.2 217.51 6.2 6.2%
bc-1.06 150.39 151.64 8.8 151.55 8.2 151.57 8.2 8.4%

tidy4aug00 119.54 119.54 6.7 119.54 6.8 119.54 7.5 7.0%
ctags-5.7 527.11 531.69 16.2 531.69 16.4 531.64 16.7 16.4%

openssh-4.3 997.64 1003.39 8.5 1003.53 8.2 1003.52 8.1 8.3%

forward). As such the results generated by bsdiff are more accurate. Note that
the results of bsdiff are highly compact [33], and thus the differences reported
by bsdiff are relatively small. According to bsdiff, DSLR can achieve a dif-
ference between 3-17%. The last column of Table 2 AV Gδ shows the average
percentage over the three instances.

Defending Against Kernel Rootkits. A kernel rootkit is a piece of mali-
cious software that compromises a running operating system kernel. Usually an
attacker will use them to hide his presence on a running system. An important
feature of modern kernel rootkits is their ability to hide the existence of running
processes from an administrator. It is important, for example, that malicious
processes not appear in ps listings. To evaluate our DSLR-enabled compiler as a
defense solution, we used it to randomize the task struct data structure in the
Linux kernel (version 2.6.8) to protect against these process hiding attacks by
a number of kernel rootkits. Six rootkits were tested to determine if they were
able to hide a process under the randomized kernel. A summary of the results is
shown in Table 3. Detailed results for each rootkit are as follows:

adore-ng. The adore-ng rootkit is a loadable kernel module (LKM) rootkit.
This means that it is loaded into the kernel like a driver. After being loaded,
adore-ng modifies function pointers contained in various kernel data struc-
tures. It avoids the system call table, as hooking the system call table would
make it easily detectable. Adore-ng also has a user-level component, ava.
When ava authenticates with the rootkit, a flag is added to the flags ele-
ment of the task struct for the ava process. Under the newly randomized
kernel the flags element cannot be accurately located, and so ava cannot
be properly authenticated. This renders the rootkit useless.
enyelkm. While still being an LKM, enyelkm differs from adore-ng in that it
does not have a user-level control component. Instead, options are chosen at
compile time. By default, enyelkm hides any running process whose name con-
tains the string OCULTAR. It finds these processes by traversing the process
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list and scanning the process names. Under the randomized kernel the linked
list within task structs is randomly located, making enyelkm’s attempts to
traverse the list fail. This causes process hiding to be unsuccessful.
override. Much like enyelkm, override is configured at compile time. Over-
ride makes extensive use of current, which is a macro that resolves to be
the address of the task struct for the currently running process. When
running on the new kernel, the randomized elements of this data structure
cause override to crash the kernel.
fuuld. Fuuld is a data-only rootkit written by one of this paper’s authors
during previous research. It uses a technique known as direct kernel object
manipulation (DKOM) to modify kernel objects directly without the need to
execute code in the kernel. It operates by using /dev/kmem to search for and
remove processes from the process list. When the task struct structure is
randomized, it is unable to properly traverse the process list.
intoxnia-ng2. The intoxnia rootkit is another LKM rootkit. Unlike adore-
ng, however, intoxnia compromises the kernel by only hooking the system
call table. Interestingly, this simplistic attack method is not troubled by the
randomization of task struct. This is because intoxnia hides a process by
filtering the data returned by the system call getdents to ensure that di-
rectory listings from the /proc file system do not reflect hidden processes.
Neither the process list, nor any elements in it, are involved. The data struc-
tures that intoxnia does modify are arguments to system calls, which cannot
be randomized because they are part of the user-level library as well.
mood-nt. The mood-nt rootkit installs itself directly into the running ker-
nel using the /dev/kmem interface. It then proceeds to hook the system call
table and hide processes using a technique similar to that of intoxnia. As
such, this rootkit was also uninhibited by the randomization of task struct.

Many kernel rootkits operate by inserting malicious code into the kernel and
modifying existing function pointers to cause the kernel to execute it. Five of
the above rootkits (adore-ng, enyelkm, override, intoxnia, and mood-nt) employ
this attack strategy. Existing work [24,37,35] is able to effectively prevent these
attacks. However, a different type of rootkit attacks – data-only attacks – exist.
In this case, a rootkit program will directly modify kernel data structures using
a memory interface device such as /dev/kmem. The fuuld rootkit above employs
this strategy. As evidenced by its effectiveness against the fuuld rootkit, DSLR
appears to be a promising approach to defending against data-only attacks.

Table 3. Effectiveness of DSLR against kernel rootkits

Rootkit Attack Vector Prevented?
adore-ng 0.56 LKM �
enyelkm 1.2 LKM �

override LKM �
fuuld DKOM – /dev/kmem �

intoxnia ng2 LKM ×
mood-nt /dev/mem ×
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Given that the rootkit author must know the layout of kernel data structures
in order to modify them, randomizing that layout will significantly raise the bar
for such attacks.

Evaluation against Laika. We also performed effectiveness evaluation of
DSLR against Laika [19], a data structure inference system. The released ver-
sion of Laika only supports taking snapshots of Windows binaries, whereas we
implement DSLR in gcc, which cannot compile Windows programs. To assess
the effectiveness of DSLR, we had to manually randomize the data structures
in a Windows-based program by following our randomization methods. We then
used the Windows compiler to generate the binary code. We used three Windows-
based programs: agobot, 7-zip, and notepad. For some reason, Laika could not
process the binary image of notepad. Hence we only present the results with
7-zip and agobot.

For each application, we generated three binary instances and used Laika to
detect their data structure layout similarity. In particular, Laika uses a mixture
ratio [19] to quantify similarity: the closer the value is to 0.5, the higher the
similarity. When detecting similarity, Laika has the option of filtering out point-
ers. Table 4 summarizes the results. The code difference among the instances
of each program is around 5%. For 7-zip, when pointers are filtered out, Laika
reported mixture ratios around 0.502. With pointers, it reported mixture ratios
around 0.511. It looks like the binaries of 7-zip do not appear significantly differ-
ent to Laika. We believe that the reason is the following: 7-zip only has 25 data
structures randomized. But it has more than 80 un-randomizable data structures
which are in the library. These data structures dominated. Hence the mixture
ratios are close to 0.5. Agobot, on the other hand, contains 49 data structures
and 50 classes in its own code, so the mixture ratios went higher: 0.57 without
pointers and 0.63 with pointers. The mixture ratios indicate that, by randomiz-
ing the data structure layout, we introduced noise to Laika. Also, even though
Laika indicated high similarity among 7-zip instances, it is still debatable how
to account for the library code when detecting data structure similarity, as two
different applications (with a small number of user-level data structures) may
use lots of similar library data structures (such as those in the runtime support)
in their implementations.

Table 4. Evaluation of DSLR against Laika

Benchmark Un-randomized Randomized Code Mixture Ratio
Program LOC Binary Binary Difference w/o Pointer w/ Pointer

502K 4.26% 0.50184625 0.50942826
7zip-4.64 41.01K 498K 503K 5.08% 0.50244766 0.51070610

504K 5.88% 0.50325966 0.51487480

1.18M 6.18% 0.57368920 0.70016150
agobot3-0.2.1-priv4 497.09K 1.17M 1.19M 6.10% 0.57586336 0.60932887

1.19M 6.34% 0.56068546 0.58418036
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5.2 Performance Overhead

Finally, we evaluate the performance overhead incurred by DSLR. Since we mod-
ified gcc, we would like to know how much overhead DSLR imposes on gcc. In
our experiments, we built each program 3 times. g1, g2, and g3 represent the nor-
malized gcc performance overhead. The 2nd, 3rd, and 4th columns of Table 5 show
these results. On average DSLR imposed around 2% performance overhead, which
is mainly caused by random value lookup, field count, and field reordering.

Since DSLR will change the program’s data structure layout and subsequently
change the binary code produced, we would also like to know the program’s
performance overhead due to DSLR. We measured the corresponding runtime
overhead of the compiled binaries. The 6th, 7th and 8th columns of Table 5 show
these results. DSLR imposed less than 4% overhead. The normalized overhead
is obtained by running each binary 10 times. Note that for those virus and
daemon malware programs, we did not measure their performance overhead (i.e.
the N/As in Table 5) as they ran in the background and were thus difficult to
measure. We notice that some randomized binaries reported a slightly better
performance than their un-randomized counterparts. The reason may lie in the
data locality improvement caused by DSLR.

Table 5. Normalized performance overhead

Overhead imposed to gcc Overhead imposed to application
Benchmark
program g1 g2 g3 AV Gg o1 o2 o3 AV Go

42 Virus 3.6% 3.2% 2.7% 3.2% N/A N/A N/A N/A
Slapper 2.5% 2.8% 2.1% 2.5% N/A N/A N/A N/A

pingrootkit 3.0% 2.8% 2.7% 2.8% N/A N/A N/A N/A
Mood-nt 2.2% 2.1% 1.8% 2.0% N/A N/A N/A N/A
tnet-1.55 0.8% 1.2% 1.1% 1.0% N/A N/A N/A N/A
Suckit 1.2% 1.5% 2.3% 1.7% N/A N/A N/A N/A

agobot3-pre4 2.9% 3.3% 3.0% 3.1% N/A N/A N/A N/A

patch-2.5.4 1.6% 1.0% 1.2% 1.3% -0.9% 1.2% -2.0% -0.6%
bc-1.06 3.0% 0.9% 2.4% 2.1% 1.1% 1.0% -0.8% 0.4%

tidy4aug00 1.7% 1.5% 1.8% 1.7% 1.6% -1.3% 1.1% 0.5%
ctags-5.7 2.9% 1.8% 1.1% 1.9% -1.8% -0.7% -0.7% -1.1%

openssh-4.3 1.7% 2.4% 1.8% 2.0% 2.7% 1.8% -0.9% 1.2%

6 Limitations and Future Work

The first limitation of DSLR is that right now we do not support other languages
such as Java, as we instrument gcc at the language-specific AST level. Our next
step will involve either adding support to these languages, or studying the details
of other gcc internal representations such as GIMPLE and RTL so that DSLR
support can be made more generic.

The second limitation is that the randomizability of a data structure cannot
be determined accurately and automatically. Instead, we rely on programmers’
knowledge and judgment. As discussed in Section 2, the fundamental challenge in
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automatically determining the randomizability of a data structure is safety and
completeness. To automate the identification, we could approximate the result
by performing some sort of data flow analysis to identify certain un-randomizable
data structures. For example, if we do not aim at achieving completeness, we
could adopt several heuristics to achieve automation, such as using the execution
context to determine if a data structure is used in network I/O and excluding it
from DSLR if so.

The third limitation is that we do not support other randomization techniques
such as struct/class splitting. Right now we only increase the field number by
adding garbage fields, and we do not decrease the field numbers, which can be
achieved by struct/class splitting techniques used in the obfuscation community
[15]. Our future work includes adopting those obfuscation techniques to make it
generate more polymorphic data structure layouts.

The fourth limitation is in software distribution. When compiled by the DSLR-
enabled gcc, a program can have a large number of binary variants. It will cause
some inconvenience in software distribution. One possible solution is: upon the
request for a copy of the software, a binary instance would be generated and
shipped on-demand. Another way would be to maintain a binary repository for
large-scale on-line distribution.

7 Related Work

7.1 Security through Diversity

Address Space Randomization (ASR). ASR is a technique which dynami-
cally and randomly relocates a program’s stack, heap, shared libraries, and even
program objects. This is either implemented by an OS kernel patch [38], or mod-
ifying the dynamic loader [39], or binary code transformations [8], or even source
code transformations [10]. The goal is to obscure the location of code and data
objects that are resident in memory and foil the attacker’s assumptions about
the memory layout of the vulnerable program. This makes the determination
of critical address values difficult if not impossible. Most ASR approaches can-
not achieve data structure layout randomization, as the relative addresses of
member variables do not get changed. Also, they need system support such as a
loader kernel support, but we cannot assume that the remote system always has
ASR. Even though the source code transformation approach [10] can to some
extent generate polymorphic layout for static data in different runs, it still in-
volves loader support, and does not randomize the variable member layout for
dynamic data.

Instruction Set Randomization (ISR). ISR is an approach to preventing
code injection attacks by randomizing the underlying system instructions [6,28].
In this approach, instructions become data, and they are encrypted with a set
of random keys and stored in memory. During program execution, a software
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translation is involved for decrypting the instructions before being fetched. ISR
does not randomize any data structure layout.

Data Randomization. Similar to ISR, program data can also be encrypted
and decrypted. PointGuard [17] is such a technique which encrypts all pointers
while they reside in memory and decrypts them only before they are loaded into
CPU registers. It is implemented as an extension to the gcc compiler, which
injects the necessary encryption and decryption wrappers at compilation time.
Recently, Cadar et al. [12] and Bhatkar et al. [9] independently presented a new
data randomization technique which provides probabilistic protection against
memory exploits by XORing data with random masks. This is also implemented
either as a C compiler extension or a source code transformation.

Operating System Interfaces Randomization. Chew and Song proposed
using operating system interface randomization to mitigate buffer overflows [13].
They randomized the system call mapping, global library entry points, and stack
placement to increase the heterogeneity. Similarly, by combining ASR and ISR,
RandSys [27] randomizes the system service interface when loading a program,
and at run-time de-randomizes the instrumented interface for correct execution.

Multi-variant System. N-variant systems [18] are an architectural framework
which employs a set of automatically diversified variants to execute the same
task. Any divergence among the outputs will raise an alarm and can hence
detect the attack. DieHard [7] is a simplified multi-variant framework which
uses heap object randomization to make the variants generate different outputs
in case of an error or attack. DieFast [32] further leverages this idea to derive a
runtime patch and automatically fix program bugs. Reverse stack execution [36],
i.e, reverse the stack growth direction, can prevent stack smashing and format
string attacks when executed in parallel with normal stack execution in a multi-
variant environment.

Compared with the above randomization approaches, DSLR exploits another
randomization dimension with different goals, application contexts, and imple-
mentation techniques.

7.2 Data Structure Layout Manipulations and Obfuscations in
Compilers

Propolice [22] is a gcc extension for protecting applications from stack-smashing
attacks. The protection is implemented by a variable reordering feature to avoid
the stack corruption of pointers.

There are several other data structure reorder optimizations in the compiler to
improve runtime performanceby improving data locality and reuse.Pioneering the
approach is the one proposedby Hagog et al. [26] which is a cache awaredata layout
reorganization optimization in gcc. They perform structure splitting and field re-
ordering to transform struct and class definitions. Recently, struct-reorganization
optimizations have undergone the conversion from GIMPLE to Tree-SSA [25]. To
handle multi-threaded applications (because of the false sharing),Raman et al. [34]
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proposed structure layout transformations that optimize both for improved spatial
locality and reduced false sharing.

Similar to code optimizations to improve program performance, there exist
code obfuscation techniques which aim to reduce the understand-ability of a pro-
gram by reverse engineering. As data structures are important components and
key clues to understand code, one of the most important obfuscations is data
structure obfuscation. Common obfuscation techniques [15] include obfuscating
arrays (such as splitting, regrouping [42], flattening, folding [14], and reorder-
ing arrays), obfuscating classes (such as splitting a class, inserting a new class,
reordering class members), and obfuscating variables (such as substituting code
for static data, merging and splitting variables [14]). These techniques are partic-
ularly useful to thwart the intermediate code analysis of Java and .NET, which
tend to be easily analyzable [31].

Compared with these two approaches, DSLR has different goals. The reorder-
ing optimization techniques mentioned above aim to improve the performance,
and their reordered layout is fixed/deterministic for all the compiled binaries.
For data structure obfuscation techniques, the data structure layout they gener-
ate is again fixed. When taking snapshots of the memory to infer the signature,
these techniques do not increase the diversity of data structure layout. However,
we do not aim to obfuscate the data structure for a single binary. Instead, we
aim to generate polymorphic layouts among multiple binary copies.

8 Conclusion

We have presented a new software randomization technique – DSLR – that
randomizes the data structure layout of a program with the goal of generating
diverse binaries that are semantically equivalent. DSLR can be used to miti-
gate malware attacks that rely on knowledge about the victim programs’ data
structure definitions. In addition, the simple implementation of DSLR poses a
new challenge to data structure-based program signature generation systems.
We have implemented a prototype of DSLR in gcc and applied it to a number of
programs. Our evaluation results demonstrate that DSLR is able to achieve bi-
nary code diversity. Furthermore, DSLR is able to foil a number of kernel rootkit
attacks by randomizing the layout of a key kernel data structure. Meanwhile,
DSLR is able to reduce the similarity between binaries generated from the same
source program.
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Abstract. Many systems have been introduced to detect software in-
trusions by comparing the outputs and behavior of diverse replicas when
they are processing the same, potentially malicious, input. When these
replicas are constructed using off-the-shelf software products, it is as-
sumed that they are diverse and not compromised simultaneously under
the same attack. In this paper, we analyze vulnerabilities published in
2007 to evaluate the extent to which this assumption is valid. We focus
on vulnerabilities in application software, and show that the majority
of these software products – including those providing the same service
(and therefore multiple software substitutes can be used in a replicated
system to detect intrusions) and those that run on multiple operating
systems (and therefore the same software can be used in a replicated
system with different operating systems to detect intrusions) – either
do not have the same vulnerability or cannot be compromised with the
same exploit. We also find evidence that indicates the use of diversity in
increasing attack tolerance for other software. These results show that
systems utilizing off-the-shelf software products to introduce diversity
are effective in detecting intrusions.

1 Introduction

Software diversity has many advantages over mono-culture in improving sys-
tem security [12,21]. Linger [16] proposed methods that systematically generate
stochastic diversification in program source to increase system resistance and
survivability. Obfuscation techniques (e.g., instruction-set randomization [2,15]
and address space randomization [3]) were proposed to safeguard systems against
code-injection attacks and other memory error exploits. N-variant systems [4] ex-
ecute a set of automatically diversified variants on the same inputs, and monitor
their behavior to detect divergence that signals anticipated types of exploits,
against which the variants are diversified.

Instead of artificially introducing diversity, some recent work focused on uti-
lizing existing diverse software for network protection [17] and intrusion de-
tection [8]. Some of these systems (e.g., the HACQIT system [14,18] and its
successor [22]) employed output voting to monitor outputs from diverse replicas,
while others (e.g., Behavioral Distance [8,9,10]) monitor the low-level behavior
of the diverse replicas.

U. Flegel and D. Bruschi (Eds.): DIMVA 2009, LNCS 5587, pp. 127–146, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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An interesting and important assumption made by many of these systems
utilizing off-the-shelf diverse software is that the diverse software is vulnerable
only to different exploits. With this assumption, replicas constructed using di-
verse off-the-shelf software will not be compromised by the same attack. This
is a reasonable assumption because most of the off-the-shelf diverse software
is developed independently by different groups of developers, and so the same
mistake/vulnerability is unlikely to be introduced. However, to the best of our
knowledge, there has not been a systematic analysis to evaluate the extent to
which this assumption is correct. Such analysis also guides users in choosing be-
tween artificially introducing diversity (e.g., instruction-set randomization, ad-
dress space randomization, and N-variant systems) and utilizing off-the-shelf
software products to introduce diversity.

In this paper, we present a systematic analysis on the effectiveness of utilizing
off-the-shelf diverse software for improving system security. In particular, we
evaluate the extent to which different off-the-shelf software suffers from the same
vulnerability and exploit. This is achieved by carefully analyzing over 6,000
vulnerabilities published in the year of 2007.

To get a better idea of what is to be analyzed and how this analysis benefits
systems that utilize off-the-shelf diverse software, consider an example in which
a system uses behavioral distance [8,9,10] for intrusion detection (see Fig 1).
In this example, a web service is provided by two diverse web servers running
on two diverse operating systems. The same input, which may potentially be
an attack input, is processed by both servers. Similar architectures, e.g., diverse
servers on the same operating system, have also been introduced [14,18,22].

IIS Server

on Windows

Apache Server

on Linux

User inputs
(potentially malicious)

Fig. 1. An example (Behavioral Distance) of utilizing off-the-shelf diverse software

This system detects an intrusion when deviations are found in the two replicas
when they are processing the same input. Such deviations may be detected in
server outputs [14,18,22] or in the low-level behavior, e.g., system calls [8,9,10].
A very important observation is that such deviations occur only if the two repli-
cas behave differently when processing the same malicious input. The system
assumes that either the two replicas do not have the same vulnerability, or they
cannot be exploited simultaneously with a single attack.

In order to evaluate the extent to which this assumption is valid, several
questions need to be answered:
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– Among the large number of vulnerable software products, how many of them
have potential substitutes that provide similar functionality? For those that
are software substitutes of one another, do they have the same vulnerability?
If they do have the same vulnerability, can they be exploited with the same
attack?

– Among the large number of vulnerable software products, how many of them
can run on multiple operating systems? For those that run on multiple operat-
ing systems, do vulnerabilities of the software on one operating system prop-
agate to the same software on a different operating system? If so, can they be
exploited by the same attack when running on different operating systems?

To the best of our knowledge, there is no closely related work which could an-
swer these questions. We systematically analyzed more than 6, 000 vulnerabili-
ties published in the year of 2007. In summary, our results show that more than
98.5% of the vulnerable application software products have software substitutes
(and therefore can be used in a replicated system to detect intrusion), and the
majority of them either do not have the same vulnerability, or cannot be compro-
mised with the same exploit code. In addition, among the application software
products, nearly half are officially supported to run on multiple operating sys-
tems. Although the different operating system distributions of the same product
are likely (more than 80%) to suffer from the same vulnerability, the attack code is
different in most cases. We also found evidence that indicates the use of diversity
in increasing attack tolerance in other categories of vulnerable software.

It is not the objective of this paper to build systems utilizing software diversity
or to evaluate how difficult it is to manage such systems. Instead, we measure the
extent to which software diversity could be utilized to increase system security
in using off-the-shelf software products.

In the rest of this paper, we first present the data source we utilized and some
preliminary analysis (see Section 2). We then focus our analysis on the applica-
tion software vulnerabilities in which we analyzed whether diverse software prod-
ucts providing the same services could suffer from the same vulnerability (see
Section 3), and whether the same software product running on different operat-
ing systems will suffer from the same vulnerability and exploit (see Section 4). In
Section 5, we present analysis on other vulnerable software products. Finally, we
conclude in Section 6.

2 Source of Information and Preliminary Analysis

The main source of information we used for our analysis was the NVD/CVE
(National Vulnerability Database/Common Vulnerabilities and Exposures) vul-
nerability database. We analyzed all the vulnerabilities recorded in CVE in the
year of 2007, which consist of 6,427 vulnerability entries1. To obtain detailed
information on the vulnerabilities and the corresponding software products, we
1 The CVE 2007 database published on April 25, 2008 was used (http://nvd.nist.
gov/download/nvdcve-2007.xml).

http://nvd.nist.gov/download/nvdcve-2007.xml
http://nvd.nist.gov/download/nvdcve-2007.xml
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also consulted other sources including SecurityFocus, FrSIRT, CERT, Milw0rm,
Secunia, OSVDB, IBM X-Force, as well as vulnerability advisories, security an-
nouncements, and bug lists from software vendors. After removing 87 entries
that were rejected by CVE, the total number of vulnerabilities that we focused
on was 6,340.

Note that the limited information introduced errors in our analysis. First,
not all vulnerabilities are published. We only analyzed vulnerabilities found and
published in 2007. Second, we may not have found all information on some
published vulnerabilities. This is due to the limited resources we have, although
we did our best in searching various public resources; it might also be the fact
that some information about the vulnerabilities is not publicly available.

Our first step in the analysis was to find whether the vulnerable software
has any substitutes (software products that offer similar functionality). We also
categorized the vulnerabilities into five different types for further analysis.

2.1 Software without Substitutes

To implement a replicated system with diverse replicas (e.g., the one shown in
Fig 1), we need to find (at least) two software products that provide the same
service (software substitutes) and/or software products that run on multiple op-
erating systems. If the software product does not have any substitutes and runs
only on a single operating system, then diversity using off-the-shelf software
cannot work and one has to introduce diversity via other artificial means (e.g.,
address space randomization). Therefore, we first analyze all the vulnerable soft-
ware products in the CVE database to see if they have any substitutes.

We find that most software products do have substitutes and those that do
not have mostly fall into one of the following three categories:

– Hardware specific software: This includes hardware drivers and firmware
only provided by corresponding hardware vendors.

– OS specific software: This includes utilities that are specific to an op-
erating system, e.g., Mac Installer, Windows Login window. They are only
provided by the OS vendor.

– Domain specific and customized software: This includes that used in
medical, biological, nuclear and other specific domains. The customized soft-
ware refers to that developed for a specific company, e.g., management soft-
ware that is used in a specific company, ActiveX controls developed and used
for online transactions on a specific web site.

Table 1 shows some examples of software products that do not have substi-
tutes. An interesting observation is that we did not find many vulnerable soft-
ware products from the CVE database that are domain specific or customized.
This does not necessarily mean that these software products do not have vul-
nerabilities. Domain specific and customized software products are used in a
more controlled environment and it is less likely that they are reported in public
vulnerability resources.
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Table 1. Examples of software products without substitutes

Vendor Product CVE entry

ATI Display driver CVE-2007-4315
NVIDIA Video driver CVE-2007-3532

Intel 2200BG Wireless driver CVE-2007-0686
HP Help and Support Center CVE-2007-3180
HP Quick Launch Button CVE-2007-6331

Alibaba Alipay ActiveX control CVE-2007-0827
Microgaming Download Helper ActiveX CVE-2007-2177

2.2 Vulnerable Software Categorization

Some vulnerabilities exist in application software that runs as user-space pro-
grams on an operating system. Others may exist in scripts that run on top of
another software program. The analysis we performed varies according to the
type of vulnerable software products. Therefore, we first put the vulnerable soft-
ware into different categories.

– Application software: Application software is the most interesting because
it is relatively easy to find the software substitutes. It is usually compiled into
binary format and run as a process of its own in the user space. Word pro-
cessors, web browsers, web servers and computer games are some examples
of application software. It also includes plug-ins, extensions, and add-on’s to
application software, except those for a web server (see the next category).

– Web script modules:2 These are light-weighted software modules which
only run on web servers. We put them into a separate category instead of a
sub-category of application software because of the large number of vulner-
abilities in them. Examples include Content Management Systems (CMS),
forums, bulletin boards, and other script modules.

– Operating systems: This category includes the operating system kernel
and utilities that are closely related to the operating system, e.g., Apple
Installer and the login window of Microsoft Windows.

– Languages and libraries: These include programming languages and li-
braries for general programming use, e.g., PNGlib (for decoding the PNG
image) and SMTPlib (for implementing the SMTP protocol).

– Others: For example, firmware (including Routers, IP phones, hardware
firewalls, etc.), software that runs on mobile phone, video game consoles
(e.g., XBox) and so on.

Fig 2 shows the number of vulnerabilities in each software category and the
corresponding percentage.

2 They may be called web applications (e.g., in SANS [5]). We call this category web
script modules, instead, to avoid the misunderstanding that it also contains web
servers and browsers.
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Fig. 2. Vulnerabilities in different software categories

2.3 Vulnerabilities in Application Software

As shown in Fig 2, 41.4% of the vulnerabilities found in 2007 are in application
software. We focus our analysis on this category because it contains most of the
commonly used and critical software, and it is usually what an intrusion detection
system tries to protect. Not only that, it is also easy to find substitutes for an
application software product, which makes it a natural candidate for introducing
diversity. This is also the category for which information is best available and
therefore the results of our analysis are most accurate.

The first analysis we did was to find the number of vulnerable application
software products that do not have substitutes. As discussed in Section 2.1,
this is important because one of the two ways of utilizing off-the-shelf software
products to introduce diversity is to use software substitutes (the other is to run
the same software on multiple operating systems). If many vulnerable application
software products do not have any substitutes, then we will have to rely on the
other way of introducing diversity.

We found 1,825 distinct application software products in all the 2,627 applica-
tion software vulnerabilities3, out of which only 25 (1.4%) do not have software
substitutes. Some of the examples were shown in Table 1. This result coincides
with our expectation in view of the highly competitive software industry market.

We have found that most software products in this category have software
substitutes. The next question is whether these software products and their corre-
sponding substitutes have the same vulnerability or not. In order to do this anal-
ysis, we further classify the application software vulnerabilities (Box 1 in Fig 3)
into two sub-categories: vulnerabilities that exist in multiple software products
(Box 2) and vulnerabilities that exist in a single software product (Box 3).

3 A total number of 4,120 different names of software products were found in the
descriptions of these vulnerabilities. Many of them were duplicates with different
naming conventions or different product versions. After eliminating these duplicates,
we found 1,825 distinct software products.
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Fig. 3. Analysis on application software vulnerabilities

The results of the classification are obtained by examining the vulnerable
product information and the description of each vulnerability in the CVE data-
base. Fig 3 shows that majority of the vulnerabilities (2037 out of 2627) exist
in only a single software product, which is an evidence in favor of introducing
diversity since the replicas constructed in a replicated system are unlikely to
suffer from the same vulnerability. We look into each of the two categories for
further analysis.

Among the vulnerabilities that exist in multiple software products (Box 2 in
Fig 3), we want to find out whether software products suffering from the same
vulnerability are substitutes of one another (i.e. whether they provide the same
service). This analysis is important because only software products providing
the same service can be used in an intrusion detection system using software
diversity (such as the behavioral distance system shown in Fig 1). If software
programs and their substitutes suffer from the same vulnerability (Box 4), then
such intrusion detection systems will not be effective in detecting intrusions. We
present our detailed analysis for this in Section 3. If multiple software products
– which suffer from the same vulnerability – are not providing the same service
(Box 5), then they are not used simultaneously for constructing the intrusion
detection system and therefore will not affect the effectiveness of diversity using
off-the-shelf software products.

Among those vulnerabilities that exist in a single product (Box 3 in Fig 3), we
want to find out how many of these software products can execute on multiple
operating systems. For those that run on multiple operating systems (Box 7),
it is also important to find out whether their vulnerabilities can be exploited in
the same way when they are running on multiple operating systems. We present
our analysis of these problems in Section 4. If a software product can only run
on a single operating system (Box 6), then it cannot be used in a replicated
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system in which replicas are constructed using the different distributions of a
single software product on multiple operating systems.

3 Vulnerabilities in Software Substitutes

As shown in Fig 3, there are 590 entries of vulnerabilities in multiple software
products. Each of these vulnerabilities exists in more than one software prod-
uct, which may or may not provide the same service. In this section, we first
briefly show our method for finding vulnerabilities in software substitutes and
our findings using this method (Section 3.1), and then discuss the attack code
for exploiting the same vulnerability in these software substitutes (Section 3.2).

3.1 Finding Vulnerabilities in Software Substitutes

An interesting observation is that the same vulnerability may be represented
in multiple entries in the CVE database. For example, entries CVE-2007-2761
and CVE-2007-2888 correspond to the same vulnerability (see Table 2). For this
reason, we cannot simply rely on different CVE entries to distinguish different
vulnerabilities.

Different CVE entries that refer to the same vulnerability usually have sim-
ilar descriptions. We use Vector Space Model [19], one of the classical models
in information retrieval, to compare the descriptions for all CVE entries. The
similarity between two vulnerability descriptions is calculated using

sim(d1, d2) =
−→
d1 · −→d2

|−→d1| × |−→d2|
=

∑t
i=1 wi,1 × wi,2

√∑t
i=1 w2

i,1 ×
√∑t

i=1 w2
i,2

where −→
d1 and −→

d2 are the descriptions of two vulnerability entries, wi,j is the
weighting for the ith term in description dj which is assigned with the frequency
of the term. The threshold for the similarity score is set to 0.65 by manual
tuning to obtain a good trade-off between the number of false positives and false
negatives.

After the automatic comparison process using Vector Space Model and ad-
ditional manual verification and correction, 410 distinct vulnerabilities are ob-
tained from the 590 vulnerability entries that exist in multiple software products.
We then performed a detailed analysis for each vulnerability and found that 29
of them (which involve 69 CVE entries) fall into the category in which the same
vulnerability exists in multiple software products providing the same services
(software substitutes). Some examples are shown in Table 2.

The result shows that although many vulnerabilities (410) exist in multiple
software products, only a small portion of them (29) exist in multiple software
products that provide the same service. Note that although the Vector Space
Model helped a lot in finding similar descriptions in different vulnerability en-
tries, some manual analysis was needed to obtain the results shown above.
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Table 2. Two examples of the same vulnerability in software substitutes

CVE Entry Description

CVE-2007-2761 Stack-based buffer overflow in MagicISO 5.4 build 239 and earlier
allows remote attackers to execute arbitrary code via a long filename
in a .cue file.

CVE-2007-2888 Stack-based buffer overflow in UltraISO 8.6.2.2011 and earlier allows
user-assisted remote attackers to execute arbitrary code via a long
FILE string (filename) in a .cue file.

CVE-2007-0548 KarjaSoft Sami HTTP Server 2.0.1 allows remote attackers to cause
a denial of service (daemon hang) via a large number of requests
for nonexistent objects.

CVE-2007-3340 BugHunter HTTP SERVER (httpsv.exe) 1.6.2 allows remote at-
tackers to cause a denial of service (application crash) via a large
number of requests for nonexistent pages.

CVE-2007-3398 LiteWEB 2.7 allows remote attackers to cause a denial of service
(hang) via a large number of requests for nonexistent pages.

3.2 Exploit Code

In this step of the analysis, we further examine the 29 vulnerabilities that exist in
software products providing the same services. If it happens that these software
products are used to construct replicas in a replicated system (e.g., a behavioral
distance system in Fig 1), then both replicas suffer from the same vulnerability.
We want to find out whether the exploit codes on them are the same. If they
are the same, then both replicas will be compromised by a single attack, and the
intrusion detection system will fail to detect the intrusion.

We manage to find all the exploit codes (on multiple products) for 20 out of the
29 vulnerabilities. Exploit codes for the rest do not seem to be readily available
to the public. By comparing the exploit codes for each of the 20 vulnerabilities
for all the corresponding software substitutes, we found that the exploit code is
the same across multiple software products for 14 of the 20 vulnerabilities.

It is not surprising that the same vulnerability will be exploited in the same
way, even on different software products. A couple of notes are worth mentioning
though. First, some of these vulnerabilities are about denial of service (DoS)
attacks, which are usually not the type of intrusions a replicated system utilizing
software diversity tries to detect [8,9]. For example, the same exploit code for
sending a large number of requests for non-existent pages will cause a denial of
service in the three software products in the second group in Table 2. Therefore,
this result is not necessarily a strong evidence against the effectiveness of using
off-the-shelf software to introduce diversity. Second, we have not studied the
effect of using multiple operating systems at this point. In some cases, the exploit
codes may be dependent on the operating system, especially in code injection
attacks (see the next section).
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3.3 Summary

To summarize, our analysis of the application software products shows that 22.5%
(590 out of 2627) of the vulnerability entries are vulnerabilities in multiple soft-
ware products, among which 7.1% (29 out of 410) are vulnerabilities in multiple
software products that provide the same service. For those vulnerabilities in multi-
ple software products providing the same service, there are roughly 70% (14 out of
20) chances that the same exploit code can be used to compromise these software
products. Although strictly speaking these three numbers cannot be multiplied
together directly4, they are very good indications that diverse off-the-shelf appli-
cation software products can be utilized effectively in replicated systems to detect
intrusion and increase system resilience against software attacks.

4 Software Products Running on Multiple Operating
Systems

Having analyzed the branch of vulnerabilities that exist in multiple software
products in Fig 3 in Section 3, we now focus on the branch of vulnerabilities that
exist in a single software product. As shown in Fig 3, this category consists of
the majority of vulnerabilities in application software. Therefore, understanding
how software products in this category can be utilized to introduce diversity is
important. Here we focus on diversity via running software on multiple operating
systems, since the vulnerability exists only on a single product and diversity via
running software substitutes will definitely work. Running the same software on
multiple operating systems is also a cheaper way of introducing diversity due to
its lower cost in managing the replicated system.

In this section, we first briefly show the different operating systems we con-
sidered (Section 4.1), and then examine whether the software products in this
category run on multiple operating systems (Section 4.2). Finally, similar to our
analysis in Section 3.2, we analyzed the corresponding exploit code in Section 4.3.

4.1 Different Operating Systems

Fig 4 shows the different operating systems that we consider in our analysis. We
classify operating systems into four families: Microsoft Windows, Unix/Unix-
like, Mac and others (see Fig 4). This is mainly due to their different kernels and
binary executable formats (Portable Executable for Windows systems, ELF for
Unix and Unix-like systems, and Mach-O for Mac). Note that it is an important
requirement that these operating systems are diverse so that the same exploit
is unlikely to compromise the same program running on different operating sys-
tems. Although Mac OS X shares part of the kernel code with BSD operating
systems, we show in Section 5.2 that they rarely share common vulnerabilities.
4 Due to the lack of knowledge about the number of vulnerabilities each software has,

the commonality of each software product in terms of the number of requests per unit
time, the consequence of a compromise, and etc.
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Fig. 4. Different operating systems

4.2 Software Products Running on Multiple Operating Systems

Next, we want to find out whether software products in this category (in which
vulnerabilities exist only in one software product) can run on multiple operating
systems. Since a lot of manual work is required in this analysis, we randomly
picked 300 out of the 2, 037 vulnerability entries for analysis. Results are shown
in Fig 5.

Fig. 5. Vulnerable software on multiple operating systems

Fig 5 shows that more than 54% (163 out of 300) of the software products we
analyzed officially supports only one operating system. However, note that it is
still possible to construct diverse replicas using software substitutes that provide
the same service for them.

Among the rest of the 45.7% software products that are supported to run
on multiple operating systems, 15.3% (21 out of 137) do not share the same
vulnerability among different operating system versions (e.g., the first entry in
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Fig 6, in which the vulnerability exists only on the Windows version of Mozilla
Firefox, but not on the Unix and Mac versions). From our analysis, this is mainly
due to the fact that many of these vulnerabilities are design errors, which easily
propagate across versions that run on multiple operating systems. One typical
example is the vulnerability entry CVE-2007-5264, in which the client’s infor-
mation is sent unencrypted to the game server (second entry in Fig 6).

CVE Entry Description

CVE-2007-3285 Mozilla Firefox before 2.0.0.5, when run on Windows, allows re-
mote attackers to bypass file type checks and possibly execute
programs via a (1) file:/// or (2) resource:URI with a dan-
gerous extension, followed by a NULL byte (%00) and a safer
extension. (Vulnerability in only one of the OS versions of the
software product)

CVE-2007-5264 Battlefront Dropteam 1.3.3 and earlier sends the client’s online
account name and password unencrypted to the game server.
A remote attacker with administrative privileges could exploit
this vulnerability to obtain user account, product key and other
sensitive information. (Vulnerability in multiple OS versions of
the software product)

Fig. 6. Vulnerabilities in software products that run on multiple OSes

4.3 Exploit Code

Similar to Section 3.2, in this subsection we look into the 116 vulnerabilities
(each of which exists on multiple OS versions of the single software product), to
see whether the same exploit code can be used to compromise the corresponding
software program that executes on multiple operating systems.

We first consider a naive attacker, who is not aware that a replicated system
where the vulnerable software is being executed on multiple operating systems.
We assume that the attacker is trying to exploit a known vulnerability to execute
some attack code, e.g., to overflow a buffer and overwrite a return address in
order to execute a shellcode. There are at least two reasons why such an exploit
is unlikely to succeed.

First, the source of the same software product on different OSes may be
different. This could cause many differences in, e.g., memory layout which is
critical for a successful buffer overflow. For example, calculating time intervals
on Windows usually requires two variables (SYSTEMTIME and FILETIME) and a
conversion between the two, whereas it usually takes only one variable (timeval)
on Linux.

Second, even when the source is exactly the same for different OS distributions
of the same product, the attack code to be executed may be different due to the
different APIs and system calls across different operating systems. It is highly
unlikely that the same machine code can be used on different operating systems,

file:///
resource: URI
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e.g., to open a shell. The system interface could be different even across OSes
in the same family, e.g., different versions of Microsoft Windows. Table 3 shows
some of the typical system calls and their corresponding system call numbers on
different versions of the Windows operating system.

Table 3. System calls on Windows

System Call NT 2000 XP 2003 Server Vista

NtClose() 0x000f 0x0018 0x0019 0x001b 0x002f

NtOpenFile() 0x004f 0x0064 0x0074 0x007a 0x00b8

NtReadVirtualMemory() 0x0089 0x00a4 0x00ba 0x00c2 0x0102

NtTerminateProcess() 0x00bb 0x00e0 0x0101 0x010a 0x014f

Next, we consider a more sophisticated attack in which the attacker is aware
that a replicated system running the vulnerable software on multiple operating
systems is in use. If the attacker wants to evade the intrusion detection system,
he/she will most likely have to design and implement an exploit code that first
figures out which operating system is running and subsequently execute the
corresponding exploit code (see Algorithm 1).

Algorithm 1. Exploiting the same software running on multiple OSes
os ret ← os test();
if is win(os ret) then

win attack code();
else if is unix(os ret) then

unix attack code();
else if is mac(os ret) then

mac attack code();
end if

Note that Algorithm 1 is very different from one in which the attacker knows
the operating system (and its version) to be exploited before sending the at-
tack code. Many attack tools first interact with the vulnerable server to find
out which operating system is running by using operating system fingerprint-
ing techniques [7,23]. After that, the attack packets specifically designed for the
corresponding operating system are sent to the vulnerable server. This type of
attacks will not work here because 1) the replicated system (e.g., Fig 1) usu-
ally removes any non-determinism in the system, which makes operating system
fingerprinting impossible or inaccurate; 2) the same operating-system-specific
attack will be duplicated and sent to all replicas, and the attack only compro-
mises the vulnerable replica (the difference of the behaviors of the compromised
and uncompromised replicas makes such operating-system-specific attacks easily
detectable).
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There are at least two difficulties in implementing Algorithm 1. One is to
implement os_test() which not only executes on all different operating systems
but returns different outputs when executing on different operating systems. The
other is that such an exploit code, which is at least several times that of the
exploit code for any specific operating system, is usually too long to fit in the
limited buffer available in the vulnerable program. We have not found a real
attack that employs the technique shown in Algorithm 1.

Another observation is that only three cross-OS viruses have been reported in
Kaspersky Lab’s viruslist according to the statement issued by Kaspersky Lab5.
According to Kaspersky Lab, all the three viruses are proof-of-concept malicious
programs written purely with the intention of demonstrating that such viruses
are possible. None of these viruses actually had any practical applications so far.

4.4 Summary

In this section, we analyze the vulnerabilities that exist in a single application
software product. Our analysis shows that:

– 45.7% (137 out of 300) of the vulnerable software products involved in this
category are officially supported on multiple operating systems;

– Among those that are officially supported on multiple operating systems,
84.7% have the vulnerability propagated across multiple OS versions;

– At least two factors (different memory layout and different machine instruc-
tions) make it difficult to construct an exploit that can compromise software
running on multiple operating systems simultaneously. No such practical
attacks have been reported.

These findings show that roughly 50% of the software products are candi-
dates for a replicated system running the same software on multiple operating
systems. Even if the same vulnerability exists on multiple replicas, compromis-
ing them simultaneously remains difficult. However, due to the fact that most of
these vulnerabilities are shared among the different OS versions of the same soft-
ware, utilizing diverse operating systems is not as effective as utilizing software
substitutes.

5 Vulnerabilities in Other Software Products

In this section, we present our analysis on the other three categories, namely
web script modules, operating systems, language and libraries.

5.1 Web Script Modules

Software in this category consists of light-weighted products that run on web
servers to provide web-based applications. Examples include forums, bulletin

5 http://www.kaspersky.com/news?id=184875287

http://www.kaspersky.com/news?id=184875287
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boards, shopping carts and other script modules. We analyzed the CVE vul-
nerability database and found close to 3, 000 entries that fall into this category.
Some common and well-known types are shown in Table 4.

Table 4. Vulnerabilities in web script modules

Vulnerability Types Number of entries Percentage

Cross-site scripting 714 24.7%
SQL injection 669 23.1%
PHP remote file inclusion 634 21.9%
Directory/Path traversal 267 9.2%
Cross-site request forgery 50 1.7%
Others 559 19.3%

Total 2893 100%

An interesting finding is that most of the vulnerable software in this category is
operating system independent. For example, most PHP modules are deployed on
Apache web servers, which can run on all common operating systems. This means
that we could use diverse operating systems to introduce software diversity.
However, it is different from the application software we analyzed in Section 4,
since many of the web script modules operate on top of a web server, and seldom
interact with the operating system. If the vulnerable software does not interact
with the operating system, then constructing replicas using diverse operating
systems is not an effective way of introducing diversity because the exploit code
is likely to be the same on different replicas. Therefore, we shift our focus of
analysis to using software substitutes for introducing diversity.

Cross-site scripting (XSS) vulnerabilities. Cross-site scripting (XSS) is
one of the most common web script module vulnerabilities in the CVE database.
Attackers exploit this vulnerability by injecting malicious scripts into the output
of an application (usually a web page) which is sent to the client’s web browser.
This script is then executed on the client’s web browser and used to transfer
sensitive data to a third party (i.e., the attacker) [24]. Unlike other types of web
vulnerabilities, XSS vulnerabilities exist and are exploited on the server side but
take effects on the client side. Thus, the protection and prevention mechanisms
are carried out both on the server side [25] and the client side [24].

In most cases, the server-side scripts are vulnerable no matter what operating
systems or web servers on which the scripts run (see an example in Fig 7, the
attack payload is usually some malicious HTML/JavaScript, which is first posted
to the server and then downloaded and run at the client side), thus introducing
diversity on the server side is not effective. However, introducing diversity on the
client side by utilizing diverse browsers is possible. Fig 8 shows two examples of
XSS attack payload in the exploit code as shown in Fig 7.
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Description Cross-site scripting vulnerability in picture.php in Advanced Guest-
book 2.4.2 allows remote attackers to inject arbitrary web script or
HTML via the picture parameter.

Exploit code http://www.site.com/picture.php?picture=[attack payload]

Fig. 7. CVE entry CVE-2007-0605 and the corresponding exploit code

[Payload 1] Works for Internet Explorer 6.0 but not Opera 9.0 or Firefox 2.0

<IMG SRC=javascript:location.replace(’http://

evil.com/steal/index.asp?cookies=’+encodeURI(document.cookie))>

[Payload 2] Works for Opera 9.0 but not Internet Explorer 6.0 or Firefox 2.0

<IMG SRC=javascript:document.createElement(’IMG’).setAttribute(’src’,

’http://evil.com/steal/index.asp?cookies=’+encodeURI(document.cookie))>

Fig. 8. XSS attacks that have different impact on browsers

Both XSS attack payloads shown in Fig 8 utilize the HTML tag <IMG> and
are used for stealing cookies from client machines that access the vulnerable web
site. The exploit codes do not have the same effect on the contemporary browsers
because of the implementation difference. The evidences that XSS attack codes
have different effects on different browsers can also be found from other re-
sources. For example, 68 out of the 110 XSS attack vectors on the XSS Cheat
Sheet (http://ha.ckers.org/xss.html) have different impacts on diverse web
browsers. Note that the application scenario here is slightly different from the
example shown in Fig 1: utilizing diverse browsers to construct the replicated
system is a client-side solution instead of the server-side example shown in Fig 1.
Our results show that by comparing the different impacts on different browsers
when given the same input, many XSS attacks could be detected. Analyzing the
detection rate of such a system is out of the scope of this paper.

SQL injection. SQL injection arises when a user input is not correctly or
sufficiently filtered. SQL injection attacks are usually launched through spe-
cially crafted user inputs on web applications that use strings to construct SQL
queries [1]. Although simple SQL statements are constructed exactly the same for
different databases, they are different in constructing sophisticated SQL Injec-
tion exploits. Consider Blind SQL Injection in CVE-2007-1166, CVE-2007-3051,
and many other vulnerable products. The exploit code utilizes the following SQL
statements (simplified version).

IF ((SELECT user) = ′Alice′) SELECT 1 ELSE SELECT 1/0

After receiving this request, the SQL Server will throw a divide-by-zero error
if the current user is not Alice, while the MySQL server will report a parsing

picture.php
http://ha.ckers.org/xss.html
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error.6 There has also been research on utilizing diverse off-the-shelf databases
to obtain fault tolerance [11].

Directory traversal. Directory traversal (or path traversal) vulnerabilities
appear when web applications do not sufficiently validate or sanitize the user-
supplied file names. It may allow attackers to gain access to directories and files
that reside outside of the directory of web documents.

A notable difference in traversing directories on diverse operating systems is
that Unix and Unix-like systems use “../”, while Windows systems use “..\”.
Not only that, the root directory on Windows uses the “<drive letter>:\”
format, which limits directory traversal to a single partition (e.g., C:\). There
are other differences, e.g., the file organization also varies a lot on different
operating systems.

Remote File Inclusion (RFI). RFI vulnerabilities allow an attacker to in-
clude his own malicious PHP code on a vulnerable web application. RFI attacks
are possible because of several PHP configuration flags that are not carefully
set. This vulnerability could be avoided easily by disabling two global flags in
PHP [6]. Thus, RFI vulnerabilities are not the focus of our study in this paper.

Cross-site Request Forgery (CSRF). By launching a successful CSRF at-
tack to a user, an adversary is able to initiate arbitrary HTTP requests from that
user to the vulnerable web application [13]. CSRF attacks are usually executed
by causing the victim’s web browsers to create hidden HTTP requests to restricted
resources. Therefore, similar to XSS vulnerabilities, using diverse browsers is a
possible way of detecting CSRF vulnerabilities.

5.2 Operating Systems, Languages and Libraries

For operating system vulnerabilities, we try to find out if diverse operating sys-
tems have the same vulnerability. We find that Mac OS X has some common
vulnerabilities with BSD (e.g., CVE-2007-0229), mainly because the implemen-
tation of Mac OS X kernel shares part of the code of BSD kernel [20]. However,
these common vulnerabilities only constitute 2% (2 out of 98) of all the vulner-
abilities on Mac OS, which indicates that utilizing Unix/Unix-like OS and Mac
OS to construct replicas is effective.

Another observation we have is that different Linux operating systems have
many common vulnerabilities, since they share the same kernel (e.g. CVE-2007-
3104, CVE-2007-6206 and others). These vulnerabilities contribute 64% (71 out
of 111) of all the Linux OS vulnerabilities, which shows that different Linux OS
are not diverse enough. Finally, by examining all the 438 OS vulnerabilities, no
evidence has been found that the same OS vulnerability exists in both Windows
and Unix/Unix-like or in both Windows and Mac operating systems.
6 Example statement here was tested on SQL Server 2005 and MySQL 5.0. More

resources on different syntax for constructing SQL Injection attacks to different
databases can be found on SQL Injection Cheat Sheet at http://ferruh.mavituna.
com/sql-injection-cheatsheet-oku/

http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/
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Many programming languages and libraries (e.g., Java, PHP, Perl, and etc.)
support multiple operating systems. However, our analysis in the CVE vulner-
ability database shows that many of the vulnerabilities in these products are
platform dependent. For example, CVE-2007-5862 (a Java vulnerability that ex-
ists only in Mac OS X) and CVE-2007-1411 (a PHP buffer overflow vulnerability
that allows local, and possibly remote, attackers to execute arbitrary code via
several vulnerable PHP functions that exists only in Windows7).

5.3 Summary

Although in general, software diversity is not very effective in web applications,
it is successful in detecting exploits of some web script module vulnerabilities by,
for example, utilizing diverse browsers to defend against XSS and CSRF attacks
and utilizing diverse databases to detect SQL Injection attacks.

Most OS vulnerabilities only exist in one OS family, which indicates that di-
versity is useful when utilizing diverse operating systems of different OS families.
Although most language and library vulnerabilities are platform independent,
there are cases in which they exist in only one particular OS version.

6 Conclusion

In this paper, we analyzed the vulnerabilities published in 2007 to evaluate the
effectiveness of two ways of introducing software diversity utilizing off-the-shelf
software: one is by utilizing different software products that provide the same
service, and the other is by utilizing the same software product on different
operating systems.

The results show that more than 98.5% of the vulnerable application soft-
ware products have substitutes and the chance that these software substitutes
be compromised by the same attack is very low. Nearly half of the application
software products are officially supported to run on multiple operating systems.
Although the different OS distributions of the same product have more than 80%
of a chance to suffer from the same vulnerability, their attack code is quite differ-
ent. For the web script modules and other types of software, although software
diversity is less effective than that in the application software, some evidence
has been found that there are possible ways to benefit from software diversity
in these categories.

The limitation of our work mainly includes two parts. The first is that a large
amount of manual work has been spent in order to get the accurate statistical

7 This result is obtained by analyzing NVD/CVE, SecurityFocus and the PHP
Buglists. SecurityFocus gives misleading information which indicates that this vul-
nerability exists on Unix/Unix-like systems (see http://www.securityfocus.com/

bid/22893/info). However, the PHP Bug Info (Bug #40746) shows that it is a prob-
lem with the function dbopen() in the Microsoft ntdblib library, and does not exist
when compiled with FreeTDS version of the dblib library that is used by Unix/Unix-
like systems.

http://www.securityfocus.com/bid/22893/info
http://www.securityfocus.com/bid/22893/info
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results, which is too costly and time consuming. Other information retrieval and
artificial intelligence techniques could be applied in our future work to speed up
the analysis process. The other limitation is that we have not yet obtained the
statistics for some categories due to the large information search space and the
lack of closely related resources, which is a challenging task that remains to be
done in the future.
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Abstract. Signature-based intrusion detection systems are known to
generate many noncritical alarms (alarms not related to a successful at-
tack). Adding contextual information to IDSes is a promising avenue to
identify noncritical alarms. Several approaches using contextual informa-
tion have been suggested. However, it is not clear what are the benefits
of using a specific approach. This paper establishes the effectiveness of
using target configuration (i.e. operating system and applications) as
contextual information for identifying noncritical alarms. Moreover, it
demonstrates that current tools for OS discovery are not adequate for
IDS context gathering.

1 Introduction

It has been pointed out in [6, 8] that one of the main drawbacks of signature-
based intrusion detection systems (IDSes) is the large amount of noncritical
alarms they produce.

Definition 1 (Noncritical Alarm). An alarm is noncritical when it is not
related to a successful attack. That is, a noncritical alarm is either a false positive
(an alarm related to a normal packet) or a non-relevant positive (an alarm related
to a failed attack attempt). See shaded area of Figure 1.

Noncritical alarms pose two problems. First, a security officer might spend all
of his time discarding noncritical alarms instead of investigating real threats.
Second, in order to automatically prevent attacks based on an IDS alarms, one
must be confident that this will not disrupt the normal activities of the network;
that is, legitimate traffic should not be dropped due to false positives.

In order to reduce the number of noncritical alarms, researchers have proposed
to consider the context of an attack to establish whether it has any chance to
succeed. However, little has been done to assess the effectiveness of a given piece
of information as context for identifying noncritical alarms.

In this paper, we evaluate, using a large scale experiment, the effectiveness
of target configuration information for identifying noncritical alarms. The ele-
ments of target configuration we consider are the target operating system (OS)

U. Flegel and D. Bruschi (Eds.): DIMVA 2009, LNCS 5587, pp. 147–156, 2009.
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Fig. 1. Alarm Types

version and the version of the applications (App) offering the services available
on the target’s open ports. Moreover, we demonstrate that current tools for OS
discovery are not adequate for IDS context gathering.

The paper is structured as follows. Section 2 discusses IDS context and more
specifically target configuration information. Section 3 describes the experimen-
tal setup used in this paper. Section 4 presents the experiment results and
establishes the effectiveness of target configuration information for identifying
noncritical alarms. Section 5 measures the accuracy of current tools for operating
system and application discovery for the task of IDS context gathering. Finally,
a discussion and some pointers for future work will serve as a conclusion.

2 Contextual Information

There are four main types of IDS contextual information: networking features,
target configuration, vulnerability assessment, and attack side effects.

Network-related context contains basic networking information (e.g. network
topology, communication protocol specifications, etc). This type of contextual
information is (partially) implemented directly in most IDSes. For instance, it
helps to prevent squealing [11].

Target configuration considers the operating system and applications of the
target to establish, using vulnerability databases such as Security Focus [12],
whether an attack has succeeded. The work presented in [3] uses OS information
as context directly in Snort rules. However, it only considers the target operating
system (not the applications). [3] relies on a Snort plugin to detect the operating
systems and a modified rule set to raise an alarm only when the target has
a vulnerable OS. A problem with this approach is that when the information
about the target configuration is unavailable, the IDS rule does not match and no
alarm is triggered. As mentioned in [7] this implies that the upgraded IDS could
miss some successful attacks. In this paper, we adopt a more general approach,
separating the context gathering process from the IDS engine.

Vulnerability assessment typically relies on an active scanner to determine
whether the target is immune to the security flaw exploited by the current at-
tack, see [5]. While vulnerability assessment is possibly very accurate, it usually
requires the repeated use of a scanner which creates traffic on the network. This
traffic can interact in an inconvenient way with network monitoring tools and a
vulnerability scan might unintentionally compromise the scanned computer.
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Considering the attack side effects means inspecting the target behavior for
evidences that the attack was successful. [16] (using Bro) and [19] (using Snort)
propose to specify the target reaction directly in the IDS rules. For a given
attack, an alarm should be raised only when a predefined target reaction is
observed. As mentioned in [7], this implies that the upgraded IDS could miss
some successful attacks, mainly when the reaction cannot be observed because
the attempt crashed the system. [5] proposes a different use of the attack side
effect: remotely accessing the target after an attempt in order to gather evidences
of the attack success (log files, host-based IDSes, etc). In both cases, the attack
must actually occur for the information to be available. Thus, this technique
cannot help preventing attacks.

3 Experiment Setup

The main goal of this paper is to evaluate the effectiveness of target configura-
tion information for identifying noncritical alarms. We present our experiment
environment in two parts: the dataset we used (Section 3.1) and the algorithms
we tested to classify the alarms (Section 3.2).

3.1 Dataset

To have a fully automated evaluation process, we rely on three sources of
information:

– A well-documented attack dataset containing, at least, the outcome of each
attack and the configuration of the targets.

– IDS alarms from Snort (with references to Security Focus).
– The vulnerability description on Security Focus.

Figure 2 illustrates how this information is used in the evaluation process; it
works as follows:

1) First, based on an alarm from Snort we know the host targeted by the attack.
Then, from the dataset information, we can obtain the complete configura-
tion of that target1.

2) Second, based on Snort’s reference to Security Focus we can obtain the list
of products that are vulnerable to the underlying attack.

3) Based on the two pieces of information above, an algorithm can decide
whether the alarm is critical or not (see Section 3.2).

4) Finally, using the outcome of the attack (from the dataset documentation),
it is possible to validate the choice made by the algorithm.

For our experiment, we used the freely available dataset presented in [7]2.
Every traffic trace contained in this dataset is the result of launching one of 92
1 In Section 5 we rely on external tools to obtain the target configuration.
2 We are currently unaware of another freely available dataset satisfying the docu-

mentation requirements mentioned above.
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Vulnerability Exploitation Program (VEP) against a target. Each VEP corre-
sponds to one of 47 Bugtraq ID (BID) referring to the vulnerability database of
Security Focus. These VEP are launched against each of 95 targets with differ-
ent operating systems and/or applications, resulting in a total of 5,761 attack
attempts (4,575 failures and 1,186 successes). Each trace contains exactly one
attack attempt.

The main limitations of our experiment are:

– The absence of normal (background) traffic in the dataset. Snort does not
produce false positives. Thus, we can only measure the capacity to identify
non-relevant positives.

– The unbalanced distribution of failed vs successful attempts (an attempt
has 80% chances to fail). Although we did not use this information in our
decision algorithms, it has to be considered when interpreting the results.

– The unrealistic network diversity. The dataset is not representative of an
usual corporate network, since it contains several different types of OSes.
However, for evaluation purpose, we believe this is good; it forces OSD tools
to provide accurate information.

– The use of a single dataset. The results obtained are not necessarily statis-
tically significant and they are, a priori, only valid with for our dataset.

3.2 Alarm Classification Algorithms

Our goal is to identify, among all the alarms, those that are noncritical. The idea
is that alarms should not be deleted, but classified. This allows a security officer
to select which classes of alarms he wants to see in real-time and still give him
the opportunity to check the lower priority alarms for further forensics.
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We implemented four algorithms; each classifying an alarm as noncritical (NC)
or attempt (A). This section briefly presents those algorithms: ContextOS (resp.
ContextApp) relies only on the OS (resp. App) information of the target, Contex-
tOSApp relies on both the OS and App information, and ContextOSDeduction
uses the OS information with a static database to deduce which popular appli-
cation cannot run on a specific OS (e.g., Microsoft IIS FTP Server 5.0 cannot
run on port 21/tcp of a Linux Red Hat 7.0 machine3). More details about these
algorithms can be found in [2].

ContextOS(alarm a)
(1) if the target OS is listed as non-vulnerable for this exploit, return NC.
(2) if the target OS is not listed as vulnerable

(2.1) if all the products listed as vulnerable are OSes, return NC.
(3) return A.

ContextApp(alarm a)
(1) if the target App is listed as non-vulnerable for this exploit, return NC.
(2) if the target App is not listed as vulnerable

(2.1) if all the products listed as vulnerable are Apps, return NC.
(3) return A.

ContextOSApp(alarm a)
(1) if the target OS is listed as non-vulnerable for this exploit, return NC.
(2) if the target App is listed as non-vulnerable for this exploit, return NC.
(3) if the target OS is not listed as vulnerable

(3.1) if the target App is not listed as vulnerable, return NC.
(4) return A.

ContextOSDeduction(alarm a)
(1) if ContextOS(a) = NC, return NC
(2) if the target OS is not listed as vulnerable

(2.1) if none of the applications listed a vulnerable can run on the target,
return NC.

(3) return A.

4 Results Analysis

The goal of the classification algorithms presented in Section 3.2 is to identify
the noncritical alarms among all available alarms. This can be viewed as an
information retrieval task [14]. For this reason, we use the classical measures of
information retrieval to assess the accuracy of the algorithms. We mainly use
precision and recall:

Precision =
# of noncritical alarms classified as NC

# of alarms classified as NC
3 Application level virtualization, like Wine [17], might disable such static deductions.
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Recall =
# of noncritical alarms classified as NC

# of noncritical alarms

The perfect algorithm would have a recall of 100% (it is able to classify every
noncritical alarm as NC) and a precision of 100% (it does not classify any critical
alarm as NC). When interpreting the results, it is important to consider that a
decrease of precision (i.e., critical alarms begin classified as NC) is more harmful
than a decrease of recall (i.e., non-critical alarms being classified as A).

4.1 Precision

There are 5 vulnerabilities for which at least one classification algorithm has a
precision less than 100%, making a mistake by classifying some true positives
as NC (precision summary is shown in Table 1). At first this is surprising since
the algorithms of Section 3.2 should not make such mistakes. However, after
further investigation, it turned out that all those mistakes can be explained by
the fact that some vulnerable products are not listed as such on Security Focus.
For instance, we have an exploit for BID 9633 which successfully compromised
a Windows 2000 sp4 target; however, Security Focus does no list this product
as vulnerable for BID 9633.

4.2 Recall

Table 1 presents the recall summary for each algorithm on the whole dataset.
ContextApp (identifying 23% of noncritical alarms) performs better than Con-
textOS (15%). ContextOSDeduction (41%) performs much better than Contex-
tApp. ContextOSApp (73%) has the best results.

Table 1. Precision/Recall Summary

Algorithm Precision Recall

ContextOS 98.2% 15.3%
ContextApp 100% 22.9%
ContextOSDeduction 99.3% 40.7%
ContextOSApp 99.6% 73.1%

We conclude that target configuration is a valuable piece of information for
IDS context as it can identify nearly 75% of noncritical alarms on our dataset.
Even if the target configuration is vulnerable, the attack might fail for other rea-
sons, e.g., the string used for buffer overflow is inadequate, the attack requires
special target conditions (an application running with admin rights). This ac-
counts for the 25% of unsuccessful attack attempts that do not get tagged as
NC when using the complete target configuration information.
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5 Using Existing Tools for Context Gathering

Section 4 established the effectiveness of target configuration as contextual in-
formation for identifying non-relevant alarms in the ideal case; that is, when we
have access to the configuration of each target. However, such an assumption
is unrealistic as networks are growing larger and more dynamic (users typically
have a lot of freedom with their workstation: installing new applications and
even changing or updating their OS). This section relaxes the above assumption
and uses existing tools to gather contextual information. Section 5.1 presents
how existing tools for operating system discovery (OSD) perform; while Section
5.2 discusses the performance of application discovery (AppD) tools.

5.1 Operating System Discovery Tools

We tested several passive OSD tools (Siphon 0.666beta [15], the passive mode
of SinFP 2.00-8 [13], and the 4 modes of p0f 2.0.8 [10], as well as three active
tools (Xprobe 2.0.3 [18], Nmap 4.20 [9], and ettercap NG-0.7.3 [4]). We used the
ContextOSDeduction algorithm, but now considering a set of possible OSes (as
provided by the OSD tools) instead of the actual OS. For the passive tools,
the set of possible OSes is the set of OSes guessed by the tool when using the
corresponding attack trace as input. For the active tools, we ran the tool once
for each target and used the results for every attack against that target.

5.1.1 Precision
Most tools allowed to achieve a reasonable precision, see Table 2. Some errors are
still explained by the fact that some vulnerable products are not listed as such on
Security Focus. However, another source of errors here is that the tool can provide
the wrong OS. This could result in a critical alarm being misclassified as NC. For
instance, assume an attack succeeded against a Windows target but the OSD tool
wrongly identifies the target as a Linux machine which is not vulnerable to the
ongoing attack. The alarm ends up being erroneously classified as NC.

Table 2. Precision/Recall Summary for OSD Tools (ContextOSDeduction algorithm)

OSD Tools Precision Recall

p0f (StrayAck) 93.6% 0.6%
SinFP 100% 1.6%
p0f (Syn) 100% 2.2%
Siphon 96.5% 2.4%
p0f(RstAck) 100% 3.4%
Nmap* 98.3% 5.1%
ettercap* 98.7% 8.5%
p0f (SynAck) 96.4% 8.7%
Xprobe* 99.0% 12.7%

*Active tool
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5.1.2 Recall
Table 2 also gives the recall summary for each OSD tool. It is clear that OSD tools
are not adequate to gather IDS context, identifying at most 12.7% of noncritical
alarms. This is only 1/3 of the potential of OS information as ContextOSDeduc-
tion scored 40.7% when knowing the exact OS, see Table 1.

5.2 Application Discovery Tools

We tested one active tool (Nmap 4.20 [9]) and one passive tool (the passive
module of ettercap NG-0.7.3 [4]) for application discovery. Here, we used the
ContextApp algorithm considering the set of possible applications for the target
as given by the tools.

5.2.1 Precision
The ContextApp algorithm did not make any classification mistakes when know-
ing the exact target configuration, see Table 1. Thus, any mistake reported by
the AppD tools is the result of a wrong application guess. Surprisingly, both
tools have a precision close to 100%. However, application information can only
identify noncritical alarms on 12 BIDs. Moreover, out of those 12 BIDs only 7
have successful attacks. Thus, only for those 7 can a precision decrease occur.
We believe that on a larger dataset, application discovery tools would have a sig-
nificantly lower precision. Our intuition is supported by the fact that for 3 BIDs
Nmap is “better” (classifies more non-relevant positives as NC) than when we
know the exact application. This means that Nmap guessed wrong, but it turned
out that the guessed application is not vulnerable (while the actual one is vul-
nerable). Luckily for Nmap, the attack failed for some other reasons (e.g., the
attack requires the application to run as root and this was not the case) where
it guessed wrong. One would normally expect to see a decrease in precision for
those BIDs, but none of them has a single successful attack.

5.2.2 Recall
Both tools performed well, as shown by the recall of Table 3. The fact that Nmap
(27.1%) has a better recall than when we know the exact target application
(22.9%) is explained by the observation that some failed attack attempts were
luckily classified as NC due to a wrong guess from Nmap, see discussion in
Section 5.2.1 above.

Table 3. Precision/Recall Summary for AppD Tools (ContextApp algorithm)

AppD Tools Precision Recall

ettercap 99.8% 18.9%
Nmap* 99.8% 27.1%

*Active tool
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6 Discussion

The experiment could be conducted on another dataset provided that it is prop-
erly documented. Unfortunately, we are not aware of other adequate datasets.

One limitation of using target configuration information to identify noncriti-
cal alarms lies in the possibility that an intruder could manipulate the context
gathering system to enhance his chances of evading detection. If the intruder
can fool the context gathering system into thinking that a specific Windows
machine is running Linux (e.g., by injecting carefully crafted packets into the
network), then successful attacks against that machine might be classified as
NC. However, this requires substantial work from the intruder. Designing con-
text gathering systems specifically tailored for intrusion detection could help
prevent this kind of evasion.

Existing attempts towards evaluating contextual approaches for intrusion de-
tection include: [3], [5], and [19]. The former presents results in terms of alarm
reduction percentages. Thus, it is not clear whether the suppressed alarms were
all noncritical (precision) nor whether the remaining alarms were all critical (re-
call). [5, 19] rely entirely on manual experiments. Consequently, they were not
performed on a large scale and are hard to reproduce.

7 Conclusion and Future Work

Results of Section 4.2 indicate that target configuration information is relevant
for IDS context. We also conclude that operating system and application are
complementary pieces of information since we get better results when combin-
ing them (73% instead of 41% and 23%). However, the results of Section 5.1
demonstrate that existing operating discovery tools are not adequate for IDS
context gathering; achieving only 1/3 of their potential.

We are currently working to measure the effectiveness of the other contextual
approaches (see Section 2), e.g., using Nessus to obtain vulnerability assessments.

When comparing different contextual approaches, their accuracy is indeed an
important criterion, but not the only one. There is also the cost of gathering
the information (e.g., number of packet sent). Further work in this direction is
needed to establish a list of criteria on which to compare different approaches.

We are also working on a new approach to operating system discovery designed
especially for IDS context gathering, see [1]. We expect that it will fill most of
the gap between the effectiveness of current OSD tools and the potential of OS
information to identify noncritical alarms.
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Abstract. We demonstrate that the browser implementation used at
a host can be passively identified with significant precision and recall,
using only coarse summaries of web traffic to and from that host. Our
techniques utilize connection records containing only the source and des-
tination addresses and ports, packet and byte counts, and the start and
end times of each connection. We additionally provide two applications
of browser identification. First, we show how to extend a network in-
trusion detection system to detect a broader range of malware. Second,
we demonstrate the consequences of web browser identification to the
deanonymization of web sites in flow records that have been anonymized.

Keywords: Application fingerprinting, traffic deanonymization, mal-
ware detection, machine learning.

1 Introduction

On many large networks, the most fine-grained representation of network traffic
that is feasible to collect is a coarse summary of each network flow or connection,
e.g., flow formats as produced by CISCO NetFlow. Such formats typically in-
clude only source and destination addresses and ports, flow start and end times,
and packet and byte counts. Limiting the data collected to this information can
dramatically reduce the reporting bandwidth and storage requirements by or-
ders of magnitude in comparison to full packet capture, and is widely supported
today in commodity routers. Additionally, due to privacy concerns, network ad-
ministrators are generally reluctant to share packet traces containing payload
information, and so flow data presents a good compromise between privacy and
utility. For these reasons, flow logging for traffic volume estimation is now com-
mon practice, and applications of flow logs for network intrusion detection are
increasingly being studied1.

In this paper we examine a novel use of flow logs, namely to infer the appli-
cation software running on hosts whose traffic is represented in a flow log. We
demonstrate this by focusing on a particular software application, namely web
browsers, and show that the browser implementation on a host (e.g., Internet

1 For example, the annual FloCon workshop is devoted to this topic (http://www.
cert.org/flocon/).

U. Flegel and D. Bruschi (Eds.): DIMVA 2009, LNCS 5587, pp. 157–175, 2009.
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Explorer (IE), Firefox, Opera, or Safari) can be determined given its web traffic
in flow records, without access to payload information. More importantly, our
techniques do not rely upon observing web retrievals that are unique to a single
browser platform, e.g., Firefox checking for updates at the Firefox update server.
We eschew such telltale events both because they tend to be relatively rare (e.g.,
Opera checks for updates only once per week) and so might not be represented
in a flow log under consideration, but also because in the case of anonymized
network data, such events may not be evident.

Rather, our techniques infer the browser implementation by applying machine-
learning techniques to the behavioral features of the traffic in which it is involved
when interacting with regular sites, as observed even in coarse flow records. It is
arguably surprising that browser implementations could be discerned in this way,
since a browser’s network behavior is primarily determined by the content and
structure of the pages it accesses. Moreover, classification could be complicated
by various factors that are inherent in traffic, including variations in the users’
browsing behavior or browser configuration, differences in the web page content
being retrieved (both across different websites and in the same website over
time), the client hardware configuration, and the different geographic locations
from which the content is retrieved.

One of the contributions of this work is to evaluate the impact of the above
factors on the classification accuracy of the browser type. We do so on the
basis of web traffic induced by the four most popular browsers, as measured in
retrievals of the main pages of the top 150 websites on the Internet2 over the
course of two months, and on the basis of web retrievals recorded at the border
of the Carnegie Mellon University network. Our results show that even when the
training and testing datasets are from different time frames, to different websites,
and collected at different geographic locations, we were still able to achieve 75%
classification precision and 60% recall (see Section 4).

Our focus of web browsers for this study is partly due to their relative im-
portance among applications today, but is also due to the implications of their
identification. A second contribution of our work is the demonstration of these
implications, in two contexts. First, because of their widespread use, attacks that
exploit vulnerabilities in specific browser implementations have also emerged. In
this context, inferring the type of browser from traffic traces is beneficial for
network intrusion detection systems that identify hosts infected by platform-
dependent malware by observing suspicious traffic from hosts with similar soft-
ware configurations. We describe an application of this in the Tāmd system [1],
which previously classified hosts as similar on the basis of only their operating
systems. Our techniques enable Tāmd to incorporate browser similarity into this
evaluation.

Second, we demonstrate the consequences of web browser identification to the
deanonymization of web sites in flow records that have been anonymized. We
show that the identification of the web browser in flow records enables the appli-
cation of per-browser website classifiers to yield a more precise deanonymization

2 According to Alexa, http://www.alexa.com/

http://www.alexa.com/
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of the websites represented in the traffic than has previously been achievable
from flow records. Specifically, we show that we can deanonymize websites vis-
ited by a host using a per-browser classifier with up to a 17% improvement in
precision over the case in which we use a similarly trained generic classifier.

To summarize, our contributions include (i) techniques to identify the web
browser represented in flow records of web page accesses; (ii) quantification of
the impact of various factors on browser classification accuracy; (iii) the applica-
tion of this technique to improve network intrusion detection systems; and (iv)
the application of this technique to more accurately deanonymize the websites
represented in anonymized network traffic.

2 Related Work

Many fingerprinting tools are active in nature, probing services with carefully
crafted queries (e.g., those produced by Nmap and Nessus) to detect
implementation-specific characteristics [2,3]. More relevant to our work are pas-
sive fingerprinting techniques that infer the implementations of network appli-
cations or operating systems based solely on observing the traffic they send.
Passive fingerprinting tools and techniques are numerous, though most focus
on identifying TCP/IP implementations and utilize specific information [4,5,6]
that is unavailable in coarse flow records. While passive techniques have more
recently been proposed to identify the application (e.g., peer-to-peer file trans-
fers versus web retrievals) or the class of application (e.g., interactive sessions
versus bulk-data transfers) reflected in packet traces [7,8,9,10,11], few propos-
als (e.g., [12,13,14,15]) have done so from coarse flow records. Moreover, to the
best of our knowledge, none of these proposed techniques attempt to identify
particular implementations of an application (e.g., the browser) from passive
observations of flow records alone.

We explore in this paper the implications of browser identification for the
problem of deanonymizing web sites in anonymized flow records. Several works
have examined the susceptibility of anonymized traffic traces to deanonymiza-
tion, e.g., [16,17,18]. Similar to our work, these approaches re-identify hosts or
websites on the basis of their behaviors as exhibited in the anonymized traffic
traces. However, none of these earlier works have taken into consideration the
fact that on-the-wire behaviors are influenced by the particular implementation
of their protocol peers. As we show later, first classifying the browser involved
in a web retrieval can improve the fidelity with which one can deanonymize
websites present in anonymized network flows.

We also demonstrate how reliable identification of the browser can be used
to detect platform-dependent malware by identifying suspicious traffic coming
from hosts with similar software configurations [1]. Like Tāmd, other network
intrusion-detection systems employ fingerprints of host software platforms when
detecting intrusions, though most generate these fingerprints actively (e.g., [19]).
As far as we are aware, none do so passively on the basis of coarse flow in-
formation, however, and so our techniques might enhance a range of network
intrusion-detection systems when flow information is all that is available.
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3 Data Sets

The empirical analysis in this paper takes advantage of several sources of data
recorded in the Argus (Audit Record Generation and Utilization System [20])
flow format. Argus is a real time flow monitor based on the RTFM flow model
[21,22]. Argus inspects each packet and groups together those with the same at-
tribute values into one bi-directional record. In particular, TCP flows are iden-
tified by the 5-tuple (source IP address, destination IP address, source port,
destination port, protocol)3, and packets in both directions are summarized into
a single Argus flow record. The browser fingerprinting techniques we propose in
this paper require only that each flow record include the source and destination
IP addresses and ports, the protocol, and the total bytes and packets sent in
each direction. In our data collection, however, we extend this basic flow record
format with additional information — notably, the first 64 bytes of payload on
the connection, and time-to-live (TTL) values in IP packet headers — for the
sole purpose of determining ground truth of certain attributes to use in our eval-
uation. To be clear, this additional information is not used by our classifiers, and
is only taken into consideration when determining the accuracy of our techniques
and for extracting testing instances from live network data.

We use the following data sources in our evaluations:

The CMU dataset. This dataset consists of anonymized traffic from the edge
routers of the wired CMU campus network, which includes one /16 subnet.
We do not consider hosts (that is, IP addresses) from the wireless network,
since those hosts typically have short-lived DHCP-assigned IP addresses, such
that hosts using different browsers may be associated with the same address,
leading to inconsistencies in the data. The rate of the traffic in the CMU dataset
is about 5000 flow records per second, and was collected over six weeks from
October to December 2007. We are interested in reducing this dataset only
to web retrievals for the purposes of this paper, but one of the challenges in
processing live network data is in accurately identifying the boundaries that
separate website retrievals (c.f., [18,23]). In this work, we leverage the first 64
bytes of each flow to identify the start boundary of a website retrieval from a
host internal to the CMU network. More specifically, we define a web retrieval
to begin with a port-80 connection comprised of an HTTP request of the form
“GET / ”, as such a connection would be highly unlikely to be part of another
retrieval. The web retrieval is then comprised of this flow and all subsequent
flows originating from the same host in the next 10 seconds. Our choice of 10
seconds is based on empirical evaluations. The use of the flow payload for parsing
web retrievals can be replaced, for example, by checking for a certain amount
of idle time before a burst of web traffic [16], though we do not explore this
alternative here. Incomplete retrievals, or those with less than three flows, do
not carry enough information about the browser implementation in order for the
3 Since Argus records are bi-directional, the source and destination IP addresses are

swappable in the logic that matches packets to flows. However, the source IP address
in the record is set to the IP address of the host that initiated the connection.
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classifier to make a well-grounded decision, and so we only consider retrievals
with more than three flows in our analysis.

As mentioned earlier, we examine the 64 bytes of available payload in each
flow to infer the browser involved in the retrieval. Specifically, for the purposes
of ground-truth, a host is identified to be using the Opera browser if the user-
agent string in its HTTP request starts with the string “Opera”. Firefox hosts
are identified by the special “safe-browsing” requests issued by the browser to
check the validity of the website being contacted (https://wiki.mozilla.org/
Phishing_Protection). Due to the 64-byte restriction in the available payload
length, we were not able to reliably identify hosts using IE and Safari in the
CMU data set.

The PlanetLab-Native dataset. In order to perform our evaluations in which
the CMU dataset serves as the testing data, we would like a training dataset
from hosts that are diverse in terms of geography and hardware platform. Planet-
Lab [24] offers a platform that is generally available and that enables the retrieval
of web pages from a wide range of hosts with different hardware configurations
and geographic locations. To collect this dataset, we deployed a program to four-
teen hosts across five PlanetLab networks; this program sequentially retrieved
the front page (i.e., generating “GET / ” HTTP requests) of the top 150 most
popular websites in the U.S. (according to Alexa) repeatedly over the course of
one month. Each web retrieval was comprised of the flows observed in the thirty
seconds since the start of the retrieval. Machines on PlanetLab are required to
run a Linux operating system, so we performed retrievals from Linux-compatible
browsers, namely Firefox and Opera4. Recall that these two browsers are also the
only ones reliably identifiable in the CMU dataset, and so the PlanetLab-Native
dataset can serve well as training data for testing with the CMU dataset.

The PlanetLab-QEMU dataset. In an effort to develop a dataset that in-
cludes traffic for all of the major browsers (IE, Firefox, Opera and Safari), we
utilized a processor emulator, QEMU [25], to run an emulated Windows operat-
ing system on PlanetLab hosts. As in the PlanetLab-Native dataset, we ran an
automated program to sequentially retrieve the front page of the top 150 most
popular websites repeatedly over the course of one month. Each web retrieval
was comprised of the flows observed in the thirty seconds since the start of the
retrieval. We deployed this emulated version of Windows on seven hosts across
three PlanetLab networks5.

Arguably, the PlanetLab datasets may not accurately represent website re-
trievals generated by actual user activities, where frequent visits to a particular
website may result in much of the content being cached. To compensate for this
effect, we set the browser cache sizes to be sufficiently large (400MB) so that
objects would not be evicted from cache.

4 To generate our PlanetLab-Native dataset, we used Firefox 2.0.0.16 and Opera 9.51.
5 To generate our PlanetLab-QEMU dataset, we used IE 7.0, Firefox 2.0.0.13, Opera

9.51 and Safari 3.1.

https://wiki.mozilla.org/Phishing_Protection
https://wiki.mozilla.org/Phishing_Protection


162 T.-F. Yen et al.

Feature Selection

To capture browser-specific characteristics in network traffic, we extracted nine
main features from each website retrieval, listed in Table 1. The mean, standard
deviation, maximum, minimum, median, first and third quartile, inter-quartile
range, and the cumulative sum, are also calculated for each flow statistic. Our
feature selection strategy is based on examining the information gain associated
with each of the statistics for the aforementioned nine main features. More specif-
ically, using the PlanetLab-Native dataset, we select the top statistics whose
cumulative information gain accounts for at least 90% of the overall information
gain. These selected statistics are combined into a feature vector Fr for website
retrieval r. Among the most important features are those associated with the
byte and packet counts in each direction, the cumulative flow duration, and the
retrieval duration. While we have not fully explored the root cause for all of
these differences, they are related to the different orders in which the browsers
retrieve objects on a given page, different numbers of objects retrieved in one
connection, and the numbers of connections that can be active simultaneously.
Of course, while these features play an important role in distinguishing different
browser implementations in our tests, we acknowledge that they may not be
optimal for distinguishing browsers not included in the training data, or future
browser versions that behave fundamentally differently from the ones covered
in this study. That said, the methodology outlined in this paper can be easily
applied to incorporate new browser types into the classifier.

Table 1. Main features extracted for each retrieval

Flow Byte count (in each direction)
Statistics Packet count (in each direction)

Flow duration
Number of flows active simultaneously to this one
Start time minus most closely preceding flow start time

Retrieval Total number of flows
Statistics Cumulative byte count from destination

Cumulative flow duration
Retrieval duration

4 Browser Identification from Flow Records

As discussed in Section 1, our first goal is to develop techniques for inferring the
browser implementation that is participating in recorded flows that represent
web retrievals from that browser. At first, it might seem that distinguishing the
browser should be difficult, since a browser primarily serves to interpret and
render the HTML and other types of content it receives. As such, its behavior
should be primarily dictated by the content it is accessing.
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Fig. 1. Number of packets sent from the
browser, accumulated over all flows that
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An example of why this intuition might not be true is shown in Figure 1,
which shows just one feature (see Table 1) for the four most popular browsers
(IE, Firefox, Opera, and Safari) when each retrieved http://www.cnn.com/ at
nearly the same time and from a host in the University of North Carolina campus
network. The feature pictured is the number of packets sent from the browser,
accumulated over all flows that comprise the retrieval. It is evident that in these
retrievals, Firefox initiates more flows than the other browsers, Opera sends
more packets in earlier flows, and Safari sends fewer packets overall. Figure 2
shows the start time of each flow minus the most closely preceding flow start
time, accumulated over all flows in the retrieval. This feature clearly shows that
certain browsers (e.g., Firefox) try to improve response time by multiplexing the
retrieval of content across substantially more flows than other browsers.

However, using these differences to reliably determine the browser from flow
records is not as straightforward as it may seem, and in particular is not as easy
to automate as Figures 1–2 might suggest. Aside from the content and structure
of the websites, users’ browsing behavior, browser configuration, geographic lo-
cation, and the client hardware configuration can also affect browser network
behavior. As such, in the remainder of this section we test with what precision
and recall an automatic classifier can distinguish among browsers in different
scenarios.

More specifically, the classifier type that we utilize is Support Vector Ma-
chines (SVM)6, which have been widely applied to many supervised learning
problems [27,28]. Given two sets of labeled data, the SVM finds a hyperplane
that separates the data and maximizes the distance to each data set. When
multiple classes are involved, the SVM generates a group of pair-wise binary

6 We utilize the SVM implementation included in the Weka machine learning pack-
age [26].

http://www.cnn.com/
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classifiers. Each binary classifier gives a vote to a class, and the final classifi-
cation is the class with the highest vote. Loosely speaking, since an instance is
classified depending on which side of the separating hyperplane it lies on, and
not necessarily on how far from the hyperplane it is, there can be cases where
an instance is misclassified if it is located “close” to the separating hyperplane.

To aid in our classification, we modify the aforementioned application of SVMs
to incorporate a notion of “confidence”. The confidence threshold is the minimum
distance of the hyperplane from the testing instance, where only instances with
distance to the hyperplane greater than the confidence threshold are classified.
This allows the classifier to avoid making decisions in ambiguous situations that
would likely result in incorrect classifications.

The general structure of each test described below is that we first train a
browser classifier on one dataset and then classify each retrieval in another
dataset to obtain a guess of the browser used in that retrieval. Each website
retrieval is classified only if its distance to the separating hyperplanes is greater
than the confidence threshold. The classifier then determines the type of browser
used by host h to be the browser classified most often in h’s retrievals. To avoid
errors due to a host having a small number of retrievals, we only consider hosts
with more than thirty classified retrievals in our analysis. Our choice of thirty
retrievals was determined empirically, and provides a good balance between pre-
cision and the number of hosts classified from the dataset.

We denote the classification for host h to be browserguess(h), and the actual
browser used by host h to be browser(h). Note that browser(h) = ⊥ if the ac-
tual browser for h could not be determined, which occurred in the CMU dataset
in some cases; see Section 3. Also, browserguess(h) = ⊥ can result if the clas-
sifier makes no classification for h, since no overwhelming choice arises for h’s
retrievals. The precision and recall across all hosts in the test dataset is defined
as follows:

Precision = Pr[browser(h) = b | browserguess(h) = b �= ⊥]

=
|{h : browserguess(h) = browser(h)}|

|{h : browserguess(h) �= ⊥}|
Recall = Pr[browserguess(h) = b | browser(h) = b �= ⊥]

=
|{h : browserguess(h) = browser(h)}|

|{h : browser(h) �= ⊥}|
Keep in mind that a classifier that makes random guesses, i.e., classifying each
host as a particular browser with 1

n probability, where n is the number of
browsers, and a network where the browsers are distributed evenly among the
hosts, the precision can only be expected to be 1

n2 .

4.1 Tests on PlanetLab-QEMU Dataset

In an ideal web browsing scenario, only one website retrieval is taking place at
any time, such that boundaries between consecutive retrievals are clearly delin-
eated, and each webpage is allowed to fully download before the next one. While
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this idealistic scenario will be compounded by many other issues in practice, we
argue that tests in a controlled environment are valuable in that they enable us
to better understand what factors influence classification the most.

We evaluate the results of browser identification under this setting using the
PlanetLab-QEMU dataset. To simulate multiple hosts, each running a specific
browser implementation, data from each host is separated by the browser that
generated the traffic. This traffic pertaining to a specific browser from one host
serves as testing data, while the classifier is trained on traffic from all other
hosts, for each experiment. Since in some applications it will not be possible to
obtain retrievals from every website that may be present in the testing data, we
set the training data to be traffic from the top 100 websites, and use traffic from
the remaining 50 websites (from top 100 to 150) for testing.

The precision and recall are shown in Figure 3, for confidence thresholds set
to one of {0.35, 0.65, 0.95, 1.15, 1.30, 1.50}. The rise in precision is likely due to
incorrect classifications being filtered out as a result of the increase in confidence
threshold, to the point that most of a host’s classified retrievals are then correct.
On the other hand, recall decreases with the confidence since more hosts are
unclassified (i.e., {h : browserguess(h) = ⊥}). In all cases the correct browser
can be identified with at least 71% precision and recall, and the precision grows
to 100% with recall at 43% as the confidence threshold is increased. These results
show that browser implementations exhibit different traffic behaviors that can
be accurately identified even in coarse flow records.
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Fig. 4. Precision and recall for browser
classification on the CMU dataset
(Train: PlanetLab-Native, Test: CMU)

4.2 Tests on CMU Dataset

Unlike the controlled setting of the PlanetLab experiments, the CMU dataset
provides a setting for evaluating our techniques on traffic recorded in the real
world. That said, we remind the reader that for purposes of ground truth, we
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could only reliably identify hosts using Firefox and Opera in the CMU dataset,
and consequently, our analysis here is restricted to these cases. Out of those
hosts, the vast majority of them used Firefox, and to not bias our results to that
of a single-browser evaluation, we randomly select Firefox hosts in the CMU
dataset but ensure that we have an equal number of Firefox and Opera hosts.
The PlanetLab-Native dataset is used in this case for training a browser classifier.

Figure 4 shows the precision and recall for the CMU dataset, for confidence
thresholds set to one of {0.35, 0.65, 0.95, 1.15, 1.30, 1.50}. The precision gen-
erally increases slightly with the confidence threshold, as instances that were
incorrectly classified are now filtered out (because they were too close to the
separating hyperplane), while recall decreases as a higher threshold leads to
more unclassified instances (i.e., {h : browserguess(h) = ⊥}). As the confidence
threshold increases, some hosts whose majority of retrievals were correctly clas-
sified now have those correct classifications filtered out, so that these hosts are
left with more misclassified retrievals that cause the browser to be identified
incorrectly; this results in a decrease in precision at the end of the curve. The
peak in precision is 74.56%, when the confidence threshold is 1.30. We note that
in this test (where the number of Firefox and Opera hosts are balanced) our
precision is substantially greater than that of random guessing (i.e., 25%).

5 Applications to Network Intrusion Detection

Tāmd (Traffic Aggregation for Malware Detection) [1] is an intrusion detection
system that passively observes traffic passing through an enterprise network
border to identify internal hosts infected by stealthy malware, such as botnets
and spyware. Tāmd exploits the observation that, however subtle, stealthy mal-
ware still needs to communicate to exfiltrate data to the attacker, to receive
commands, or to carry out the commands. Moreover, since malware rarely in-
filtrates only a single host in a large enterprise, these communications should
emerge from multiple hosts within coarse temporal proximity to one another
(e.g., within an hour of one another). Based on these observations, Tāmd func-
tions by finding new communication “aggregates” involving multiple internal
hosts, i.e., communication flows that share common characteristics.

One of the characteristics on which Tāmd aggregates traffic is the platform
of the internal hosts involved in sending or receiving that traffic, which is useful
for identifying platform-dependent malware infections. That is, suspicious traf-
fic common to a collection of hosts becomes even more suspicious if the hosts
share a common software platform. Previously, forming platform aggregates in
Tāmd was based solely on the hosts’ operating systems. As such, malware that is
application-dependent, such as malware that exploits Firefox only7, might span
multiple aggregates formed by O/S fingerprinting alone (if the exploit works on

7 Examples of such application-dependent malware are the Infostealer.Snifula tro-
jan that exploits Mozilla Firefox, the MSIL.Yakizake worm that exploits Mozilla
Thunderbird, the Imspam trojan that sends spam through MSN or AOL Messenger,
among others.
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Malware Homogeneity threshold
traces [1] 70% 80% 90%

Bagle 0.25 (±4.95) 0.09 (±3.05) 0.09 (±3.05)
IRCbot 0.05 (±2.18) 0.01 (±0.99) 0.01 (±0.99)
Mybot 0.03 (±1.39) 0.00 (±0.00) 0.00 (±0.00)
SDbot 0.06 (±1.94) 0.00 (±0.00) 0.00 (±0.00)
Spybot 0.02 (±1.40) 0.00 (±0.00) 0.00 (±0.00)

HTTP bot 0.03 (±1.39) 0.00 (±0.00) 0.00 (±0.00)
Large

IRC bot 0.19 (±3.05) 0.06 (±2.19) 0.06 (±2.19)
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Fig. 5. Average number of aggregates per hour (± standard deviation) due to browser
similarity, in addition to the identified malware cluster and to O/S aggregates. For
descriptions of the malware, please refer to [1].

multiple operating systems) or might represent a small subset of an O/S ag-
gregate (e.g., all Windows machines). In either case, the mismatch between the
software fingerprinted (the O/S) and the software exploited (the browser) can
cause platform aggregation to fail to detect an exploit.

Here we consider the impact of reliable browser fingerprinting on Tāmd.
Specifically, we modified its platform aggregation function so that a platform
aggregate is identified when the largest fraction of hosts sharing the same O/S
or the same web browser is above a given threshold. In doing so, we are able to
detect both platform-dependent and browser-dependent malware, while incur-
ring only slight overhead.

To quantify this overhead, we followed the same experiments that were per-
formed in that earlier work [1], which involved seven types of O/S-specific (but not
browser-specific) malware. Briefly, the experiment consisted of overlaying record-
ings of malware traffic onto the CMU dataset, which was done by assigning mal-
ware traffic to originate from randomly selected internal hosts. More specifically,
we assigned malware traffic to random internal hosts running the O/S that the
malware exploits, as determined by the time-to-live (TTL) field in packets.

This combined data, consisting of the CMU dataset overlaid with malware
traffic, is then given to Tāmd — configured to identify common host platforms
based on their O/S or browsers, but otherwise configured identically as in [1] —
in hourly batches, where the goal is to identify the single aggregate consisting of
the malware traffic. The same experiment is repeated for each hour over three
weeks in November and December 2007, for each of the seven different malware.

Figure 5 shows the number of browser aggregates, in addition to the mal-
ware aggregate and other O/S aggregates, that is identified by this new version
of Tāmd that incorporates our browser classifier from Section 4, for different
thresholds on the homogeneity of the platform aggregate, for each malware ex-
periment. When the threshold is set to 90% (as it was for the original O/S-based
platform aggregation in [1]), meaning that at least 90% of the hosts in the aggre-
gate are required to share a common browser (which cannot be ⊥), the number
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of additional aggregates reported due to browser similarity on average per hour is
0.0229. This shows that incorporating browser fingerprinting into Tāmd induces
a limited amount of additional cost, while giving Tāmd the ability to detect a
wider range of malware, i.e., browser-dependent malware.

Other intrusion detection systems that operate on flow records (e.g.,
[29,30,31,32]) and approaches for profiling network traffic (e.g., [7,33,34]), can
also potentially benefit from passive application fingerprinting. We plan to in-
vestigate this in future research.

6 Applications to Traffic Deanonymization

Website deanonymization techniques attempt to infer the actual web sites
contacted in anonymized traffic traces, without examining the contents of the
communication. In order to retain the utility of these datasets for networking re-
search, IP addresses are typically anonymized in a consistent fashion, i.e., so that
the same real IP address is mapped consistently to the same pseudonym in the
anonymized dataset. This enables the behaviors of the anonymous web servers to
be examined, however, which can sometimes lead to their deanonymization. As a
trivial example, the larger number of bytes typically transmitted from the main
page of cnn.com would enable it to be differentiated from google.com. Moreover,
since a page retrieval can involve connections to multiple physical servers (e.g.,
image servers or content distribution networks), Coull et al. [18] also found that
the sequential order of the servers contacted to retrieve objects on a webpage
can enable websites to be differentiated. While previous works placed emphasis
on observing traffic behaviors of the websites, to our knowledge, no study has
accounted for this behavior as influenced by the particular implementation of
their protocol peers, i.e., the browser. In what follows, we show that classifying
the browser first can yield a more precise deanonymization of websites.

6.1 Feature Selection

As described in Section 3, we extract nine main flow features from each web
page retrieval. While previously these features were calculated over all flows in a
retrieval, in the case of website classification, we calculate these features for all
flows per physical server, for each of the first five servers contacted. The features
are then arranged according to the order that the server was contacted, i.e., for
retrieval r, the feature vector is {Fr1, ..., Fr5}, where Frj refers to the features
derived from the flows to physical server j, for website retrieval r. Breaking down
the retrieval features by physical server provides a finer-grained representation
of the retrieval and an order to the physical servers, both of which have been
utilized in previous website deanonymization efforts (e.g., [18]). Furthermore, to
eliminate redundancies and reduce dimensionality, we selected a subset of those
features that are most consistent across datasets, specifically by computing the
correlation of each feature from one day of retrievals to http://www.cnn.com/ in
the PlanetLab-Native dataset to one day of such retrievals in the CMU dataset.

cnn.com
google.com
http://www.cnn.com/
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This yielded nine features: the byte and packet counts to/from the first server
contacted, and the number of flows to each of the first five servers contacted.

We focus on deanonymizing those websites that are “stable”, as judged by
their standard deviation for the total number of flows, bytes, and packets, and
also those websites that are complex enough, as judged by the total number of
flows. It has been previously established [18] that websites with a high variability
in their contents (e.g., espn.com) or those that are too simple (e.g., google.com,
orkut.com) will typically not be identified accurately. Specifically, we determine
a website as “stable” if the average number of flows from the first five servers
contacted is greater than one, and the byte and packet counts to/from the first
server has a small standard deviation, i.e., within twice the average value. In this
way, we narrow down the list of websites that we will attempt to deanonymize
in traffic traces to the front pages of 52 of the top 100 websites according to
alexa.com.

6.2 Website Classifier

We build our website classifiers using Bayesian belief networks, which have been
shown to yield good results [18]. Given a test instance, the classifier outputs a
probability for each class, which is the likelihood of the instance belonging to
that class, according to the model built from training data. The class with the
highest probability is taken as the classification of the test instance. This may not
always yield optimal classification, for example, in cases where the probabilities
for several classes are close to each other, or when all of the probabilities are
small.

To establish some notion of “confidence” on the classification, one way is to let
the classifier make a decision only from classes with probabilities greater than a
cutoff value, and only when there exist probabilities above the cutoff. Although
this has limited impact when multiple classes have similar probabilities, it allows
the classifier to provide answers based on more confident results, avoiding cases
where uncertainty (small probabilities) are likely to cause incorrect classifica-
tions. The higher the cutoff parameter, the higher the probability of the test
instance belonging to its class must be.

For the PlanetLab-QEMU dataset, we group the data by the browser that
generated the traffic, as well as a combined group with traffic from all four
browsers. This allows us to build four per-browser website classifiers (IE, Firefox,
Opera, Safari), and one generic website classifier. The former are trained on
traffic from a single browser type, while the latter is trained on combined browser
traffic. In the following, we quantify the benefits of first classifying the browser
in website deanonymization by applying these two types of classifier models
separately and comparing their results. When testing with the CMU dataset,
the browser type for each host is determined by our browser classifier developed
in Section 4, using a confidence threshold set at 1.30. The per-browser website
classifier is then applied to a website retrieval based on the browser determined
for the host that performed the retrieval.

espn.com
google.com
orkut.com
alexa.com
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For each testing instance, i.e., each website retrieval, the classifier returns the
class with the highest probability above the cutoff. If no probability larger than
the cutoff exists, the instance is unclassified. Let the classification for retrieval
r be websiteguess(r), and its actual website be website(r), where website(r) = ⊥
if the ground-truth website for retrieval r cannot be determined in the dataset
(which only happens in the case of the CMU dataset). Then, the precision and
recall are

Precision = Pr[website(r) = s | websiteguess(r) = s �= ⊥]

=
|{r : websiteguess(r) = website(r)}|

|{r : websiteguess(r) �= ⊥}|
Recall = Pr[websiteguess(r) = s | website(r) = s �= ⊥]

=
|{r : websiteguess(r) = website(r)}|

|{r : website(r) �= ⊥}|
In the following tests, we only report results for cutoff values where the classifier
is able to make at least thirty classifications. This is to avoid cases where not
enough classifications can be made for the results to be representative.

6.3 Tests on PlanetLab-QEMU Dataset

Similar to the experiments described in Section 4.1, we first evaluate the results
of website deanonymization under an ideal setting using the PlanetLab-QEMU
dataset. In each experiment, the testing data consists of retrievals from one
host, while the training data is from all other hosts. We apply each per-browser
website classifier to retrievals determined to have been performed with that
browser by our classifier in Section 4, to generate the per-browser results. We
generate results for the generic website classifier by applying that classifier to all
retrievals. Our tests are “closed-world”, in the sense that only retrievals of the
52 selected websites (see Section 6.1) are tested.

Figure 6 and 7 show the precision and recall from the per-browser and generic
website classifiers. Cutoff values range from 0.01 to 0.99, in steps of 0.01. The
precision increases with the cutoff, but the recall decreases since some instances
are not classified at higher cutoff values. The drops in precision are due to cases
where correct classifications that do not have a high probability are filtered out
by the cutoff value. The generic classifier was not able to classify more than
thirty retrievals after the cutoff reaches 0.78, so we do not plot its results for
cutoff values greater than 0.78. To present an alternate view depicting our overall
accuracy, let Precision(c) and Recall(c) be the precision and recall, respectively,
when the cutoff is set to be c. We then define the precision “integral”, over the
range [cmin, cmax], to be

cmax∑

c=cmin

Precision(c)

and we define the recall “integral” similarly. cmin and cmax are defined as the
endpoints of the range where both the per-browser and generic classifiers were
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Fig. 7. Website classification recall on
the PlanetLab-QEMU dataset

able to make enough classifications. The integral is a measure of how the classi-
fier performs across different cutoff values, in that larger integrals show higher
precision (or recall) overall. The integral of precision and recall over [0.01, 0.78],
in steps of 0.01, are shown in Table 2, with the generic case serving as baseline.
The maximum difference in precision for per-browser and generic classifiers is
15.61%. While website deanonymization remains a challenging problem in prac-
tice, we note that the improvement in recall between per-browser and generic
classifiers remains significant, across all cutoff values, where the average differ-
ence is 14.01% and the maximum difference is 16.11%.

Table 2. Comparing the precision and recall integrals on website classification on the
PlanetLab-QEMU dataset

Classifier Precision Recall

Generic 26.16 5.34
Per-browser +6.01 +10.93

6.4 Tests on CMU Dataset

To evaluate the impact of first classifying the browser on website deanonymiza-
tion in a more realistic setting, we turn to the CMU dataset, with the PlanetLab-
Native dataset serving as training data. Since the IP addresses are anonymized
in the CMU data, we have no direct knowledge of the websites contacted. So,
to build ground truth for the classification, we examined information available
in the first 64 bytes of each flow payload. Specifically, the “Host” field in HTTP
requests are extracted to identify the domain name of the websites. Of the 52
websites targeted for identification, we found only 23 in the CMU dataset in this
way, and so used only these retrievals for testing (while the training data still
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Table 3. The integral of precision and recall on website classification in the CMU
dataset (Train: PlanetLab-Native, Test: CMU)

Classifier Precision Recall

Generic 20.53 11.30
Per-browser +2.73 +1.07
Per-browser +7.93 +4.38

(perfect)

consists of traffic to the 52 websites). Only retrievals from hosts whose ground-
truth browser type could be determined were used (see Section 4).

For each retrieval to one of the chosen 52 websites (see Section 6.1) in the
CMU dataset from a Firefox or Opera browser, we classify it using both the ap-
propriate per-browser classifier (i.e., for the browser identified using the classifier
of Section 4) and the generic website classifier, built using the PlanetLab-Native
dataset. The results are shown in Figures 8 and 9, for the two cases when (i)
our browser classifier from Section 4 is applied first, and (ii) when we assume
perfect browser classification, i.e., the per-browser website classifier applied to a
website retrieval is based on the actual browser that performed that retrieval, as
opposed to the browser determined by our classifier. When our browser classifier
is applied, the difference in precision between the per-browser and generic clas-
sifiers can reach close to 17% at high cutoff values. Table 3 shows the integral
of precision and recall over cutoff values from 0.01 to 0.99, in steps of 0.01. The
results in Figures 8 and 9 are calculated across all 52 websites.

However, for an attacker who is only interested in deanonymizing certain web-
sites, such as those listed in Table 4, a classifier that is able to classify those web-
sites well would be more useful than a general website classifier. For example, the
per-browser classifier has a 84.62% precision for dailymotion.com, a 27.57% im-
provement to the generic classifier. These results point out that in live network

dailymotion.com
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Table 4. The precision and recall for the per-browser classifier on some of the websites
in the CMU dataset, when our browser classifier from Section 4 is applied first (Train:
PlanetLab-Native, Test: CMU)

Website Precision (%) Recall (%)
Per-browser Generic Per-browser Generic

adobe.com 17.59 0.00 9.55 0.00
aol.com 9.15 8.03 5.67 4.73

dailymotion.com 84.62 57.05 50.00 44.95
myspace.com 19.32 18.57 12.40 11.65
nytimes.com 21.15 16.26 12.26 9.13

wordpress.com 13.98 0.00 7.15 0.00
yahoo.com 45.52 29.60 29.81 19.78

traffic, classifying the browser first can bring a non-trivial advantage to website
deanonymization.

7 Conclusion

In this paper we have explored the passive identification of browser implemen-
tations from coarse flow records. We have shown that browser implementations
can be identified with substantial precision and recall, even using flow records
from real traffic recorded at a different time and on a different network from the
traffic used to train the classifier.

We have also demonstrated two applications of browser fingerprinting. In the
first, we demonstrated how browser identification can be used to improve a
network intrusion-detection system called Tāmd, by permitting the intrusion-
detection system to identify aggregates of hosts on the network that share the
same browser. Suspicious traffic is even more suspect when coming from such an
aggregate, since this may indicate that these hosts have succumbed to a browser-
specific exploit. Our browser fingerprinting techniques would enable Tāmd to
detect more types of malware, i.e., those that are browser-dependent, while in-
curring slight overhead.

The second application of browser fingerprinting that we explored is deanon-
ymization of network traffic. Our techniques assume that the traffic is anonymized
using consistent pseudonyms, which is a common practice today; this enables traf-
fic trace deanonymization by examining the trace for the retrieval characteristics
of websites of interest. We demonstrated that improvements in deanonymizing re-
trieved websites can be achieved by first classifying the browser in use.
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2 Télécom Bretagne, 2 rue de la Chataigneraie, 35512 Cesson Sévigné Cedex, France
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Abstract. The use of dynamic access control policies for threat response
adapts local response decisions to high level system constraints. However,
security policies are often carefully tightened during system design-time,
and the large number of service dependencies in a system architecture
makes their dynamic adaptation difficult. The enforcement of a single
response rule requires performing multiple configuration changes on
multiple services. This paper formally describes a Service Dependency
Framework (SDF) in order to assist the response process in selecting
the policy enforcement points (PEPs) capable of applying a dynamic
response rule. It automatically derives elementary access rules from the
generic access control, either allowed or denied by the dynamic response
policy, so they can be locally managed by local PEPs. SDF introduces
a requires/provides model of service dependencies. It models the service
architecture in a modular way, and thus provides both extensibility and
reusability of model components. SDF is defined using the Architecture
Analysis and Design Language, which provides formal concepts for mod-
eling system architectures. This paper presents a systematic treatment of
the dependency model which aims to apply policy rules while minimizing
configuration changes and reducing resource consumption.

1 Introduction

Intrusion Detection Systems (IDSes) have been recently superseded by Intrusion
Prevention Systems (IPS), which add the capability to passivate the threat in
addition to detecting and reporting. IPSes are widely used as local control points
which take only limited actions (e.g. closing a connection, killing a process, etc.).
The major weakness of those IPSes is their static behavior, which relies on pre-
defined mappings between intrusive behaviors and suitable response actions. The
taxonomy in [1] thus confirms the need for more complex and dynamic response
mechanisms. Cuppens et al. propose in [2] a reaction workflow which links the
local response decisions to the higher level of security policy. They state that
local response decisions should be assisted by global decisions managed at the
policy level. In [3], Debar et al. provide a comprehensive approach for man-
aging intrusion response at the policy level using contextual security policies.
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Intrusion response is specified using contextual access control rules which are
triggered when their associated threat contexts are activated. The policy-based
response architecture in [3] separates the response instantiation process which
triggers response rules from the response decision process. While the instantia-
tion process is sufficiently detailed in [3], contributions for the decision process
remain sparse. This paper completes the architecture in [3] by defining a service
modeling framework which enables the decision process to automatically select
local enforcement points able to apply a dynamic response rule.

The decision process maps policy instances into concrete actions applicable
on local Policy Enforcement Points (PEPs). [4] proposes a derivation process
which translates high level policies into local firewall actions, but it only man-
ages network policies. The use of application services provides more granularity
for the specification and application of response policies. A service may be con-
figured with accurate access control rules to the data it manages. It thus enables
accurate response applications not always possible at the network layer. More-
over, service dependencies may provide several alternatives for the application
of response policies. The access to a dependent service may be modified through
the reconfiguration of the access to its antecedent service. Unfortunately, the
use of service dependencies for automated response is still, at the best of our
knowledge, restrained to static mappings. The lack of a formal representation
of those services and their dependencies is a major reason. This paper combines
policy-based response with topological information about services and their de-
pendencies. Services endowed with access control capabilities (ACLs, Application
Firewalls, configuration files, etc.) are considered as PEPs. The Service Depen-
dency Framework (SDF), a formal framework for modeling services and their
dependencies, is defined in this paper. It assists the decision process in deriving
local accesses to antecedent services from the generic access to the dependent
service which is either allowed or denied by the response policy. The decision
process analyzes those accesses with respect to PEPs capabilities. It selects the
optimal set of PEPs capable of applying the security rule.

The paper is structured as follows. Section 2 summarizes the state of the
art, including the presentation of the policy-based response process, the need
for a SDF and description of related work. Section 3 presents the service de-
pendency model. Section 4 defines the framework for building the dependency
model. Section 5 provides a systematic treatment of the SDF by the decision
process. Section 6 concretely implements the SDF on a mail delivery testbed.

2 State of the Art

2.1 Policy-Based Intrusion Response

Access control policies include permission and/or prohibition rules which apply
to subjects when they intend to perform actions on objects. Some rules specify
requirements which apply during normal operation, they form the operational
policy. Others apply in case of security threats, they form the threat policy.
The switching between operational and threat policies is driven by contextual
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constraints. We specify contextual policies using the Organization Based Access
Control (OrBAC) Model [5]. This paragraph recalls the OrBAC concepts we
need in this paper (see [6] for details).

The OrBAC Model uses the abstract triplet (Role, Activity, View) instead of
the concrete triplet (subject, action, object) when defining access control policies.
The concept of Role was first introduced by the RBAC model [7]. A Role is a set
of subjects which have the same permissions. OrBAC adds Activities and Views
as abstractions of actions and objects respectively. An Activity (e.g. access data)
is an operation implemented by some actions (e.g. get and retr commands for
http and pop3 protocols respectively). These can be grouped within the same
activity for which we may define a single rule. A View is a set of objects that
possess the same security-related properties so they can be accessed in the same
way. Abstracting objects into Views avoids the need for writing one rule for each
of them. OrBAC introduces contexts [5] which add conditions under which a
certain rule can be applied. OrBAC uses four predicates:

- empower (subj, Role): subject subj is empowered in the role Role.
- consider (act, Activity): action act is implemented in the activity Activity.
- Use (obj, View): object obj is used in the view View.
- hold (ctxt, subj, act, obj): context ctxt is active for the triplet (subj, act, obj).
A security rule is expressed as Sr (Decision, R, A, V, Context)1. When context

is active, R’s request to perform the activity A on the View V is submitted to the
decision Decision. An example of an OrBAC security rule is: Sr (Prohibition, User,

login, internal Host, not working Hours). User is a role for any system user; login
is the activity of connecting to a host; internal Host is any host connected to
the internal network and the context not working Hours is true outside working
hours. Sr states that such an operation is prohibited outside working hours.

Reaction Policies in the OrBAC model are associated with threat con-
texts. A threat context is assigned to an intrusion class. It is activated when
the associated intrusion is detected (e.g. DoS, Buffer overflow). As in [3], threat
contexts are only activated for the concrete triplets described in alerts. For in-
stance, a brute force attack from a certain address addr against an account Acc
using the login service activates the Brute Force context as follows:

Hold (addr, login, Acc, Brute Force) ← alert (Source, Target, Classification),

Classification (Brute Force), service (Target, login), Account (Target, Acc)

The context activation may trigger policy rules associated with this context.
These rules specify new security requirements appropriate for countering the
detected threat. Threat contexts activation uses mappings from IDMEF alert
attributes [8] onto concrete policy components. While the mappings are delib-
erately simplified in our example, they may introduce different granularities in
order to consider different attack classes (e.g. a DDoS attack is managed differ-
ently than a targeted buffer overflow attack)[3].

1 OrBAC associates organizations with security rules. To simplify, these are not made
visible in this paper since we consider only a single organization.
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2.2 Policy Decision Models

The decision process contains two steps [4]. The first is architecture-dependent.
It segments a response into elementary actions. The second step is component-
dependent. It translates elementary actions into concrete configurations. [9] pro-
poses a formal approach for the specification and deployment of network security
policies. Unfortunately, it does not consider the overlying service architecture.
The modeling of services and their dependencies provides means for a fine grained
response application, which it is not always applicable on the network layer. Let’s
check for instance the following concrete response policy:
Prohibition (IP, HTTP/Get, retail Appli), Permission (IP, HTTP/Get, mail Appli)

where both applications are hosted on the same server. Applying this policy
at the network layer is tedious since firewalls are less likely to have visibility
over application data. While application layer firewalls are more appropriate,
they are not always available on the server. A model-based analysis of service
architectures may provide more suited alternatives for the application of such
response policies. For instance, when the web server is accessible through traffic
redirection from a remote proxy, a SDF links between the web service and the
proxy service so that the decision process automatically selects the proxy for
applying this policy.

A formal dependency framework which establishes the link between the ac-
cess to an antecedent service and the access to its dependent service does not
seem to exist. This paper provides a requires/provides model framework for ser-
vice dependencies. This framework assists the Policy Decision Process (PDP) in
tracing all the elementary accesses in order to access a certain data. As such,
and when this access is prohibited, the PDP alters some elementary accesses in
order to deny the prohibited access. Moreover, when the access is allowed, the
PDP satisfies at least one single access path to the data. The decision process
in this paper is different from the approach described in [10] in that it aims at
finding the best suitable set of PEPs capable of applying a response, after and
only after this response is selected. We first briefly describe existing dependency
models and their usages before presenting our dependency model and its use.

2.3 Service Dependency Models and Applications

Existing dependency models. An XML based dependency model is pre-
sented in [11]. This model provides a backend for building a dependency database,
without providing a formal specification of service dependencies. [12] defines a
dependency algebra for modeling dependency strengths. It separates the Depen-
dency relation from the Use relation. It states that critical components should
only use and not depend on non-critical components. In [13], a UML-based de-
pendency model describes service dependencies in ad hoc systems. It focuses
on the dependencies relevant to ad hoc collaborative environments. Moreover, a
service dependency classification for system management analysis is provided in
[14]. It separates between functional (implementation-independent) and struc-
tural dependencies (implementation-dependent).
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Service Dependency Usages. A cost-sensitive approach for balancing be-
tween intrusion and response costs is provided in [15]. A system map holding
dependency information is used as a basis for deciding on response strategy. [16]
proposes a function which evaluates intrusion response impacts using depen-
dency trees. It allows a cost-sensitive selection of intrusion responses. Another
cost-sensitive analysis of intrusion responses is presented in [17]. It uses depen-
dency graphs instead of dependency trees. Service dependencies are also used
for fault analysis [18], dependability analysis [19] and many other applications.

The existing dependency models such as graph [15,17,16] or class-based [13]
models classify service dependencies using static attributes. These are often infor-
mally defined, and adapted to only specific system implementations. The adop-
tion of those models still confronted to their expressiveness and the dependency
characteristics they deal with. The decision process needs more than to know
about the existence of a certain dependency and its strength. In order to derive
elementary accesses to antecedent services, and to do it automatically, the deci-
sion process must be able to discern the access to the antecedent service through
the access to its dependent services. In other terms, it must be aware of what
data is required from the antecedent service, how, when and why is it accessed.

On the other hand, the SDF must enable the regrouping of elementary ser-
vices into dependency blocks with well-defined interfaces. Those blocks can be
implemented in other dependency blocks, and thus providing reusability of the
dependency model. The SDF must also allow the abstraction of certain depen-
dencies, and thus representing only the dependencies relevant for the application
purposes. We have choosen to define the SDF using the Architecture Analysis
and Design Language (AADL)[20]. AADL fulfills those requirements through
the modeling of service architectures. In the following section, we summarize the
main AADL concepts we use in this paper and present our SDF.

3 The Service Dependency Model

3.1 Using AADL to Model the SDF

AADL has been released and standardized by the Society of Automotive Engi-
neers. AADL provides formal modeling concepts for the description and analysis
of application system architectures in terms of distinct components and their
interactions. We privileged AADL over common modeling languages like UML
because AADL provides more powerful features for modeling system runtime be-
haviors. AADL provides standardized textual and graphical notations for model-
ing systems and their functional interfaces. It has been designed to be extensible
so that analyses that the core language does not support can be supplied. The
extensibility in AADL is provided through the Annex extension construct.

SDF models user runtime behaviors when accessing the data provided by
dependent services. It contrasts with most functional dependency models since
it focuses on the data flows associated with the access to a dependent service
rather than modeling its functional dependencies. This is a main concept in our
approach since policy-driven responses require PEPs to deny some of these data
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flows. We thus model services as abstractions, and these are decoupled from the
concrete components which realize them. Our decision can be best motivated by
the fact that concrete components only introduce functional dependencies which
are not relevant in our approach. For instance, a web service is defined through
its dependencies, independently whether it is implemented by apache2 server or
windows web server. We use for this purpose AADL system abstractions (see
section 3.2). AADL models dependencies using inter-component connections.
AADL connnections reproduce the service topology. They allow modeling multi-
ple service paths through the use of multiple connection paths to the same data.
We also use AADL operational modes in order to represent the dependency se-
quencing during the workflow of the dependent service. We use the AADL Error
Model Annex [21] which has also been standardized to add features for modeling
the system behavior in the presence of faults. We use faults as model constructs
in order to represent the behavior of a dependent service when it can not access
to the antecedent service due to a response application. In the remaining of this
section, we describe the main elements of our AADL dependency model.

3.2 Service and Service Dependency Definition

We define a service as the implementation of an interface which provides data
access to its users (e.g. Web service, IP service). A service often requires access
to subsidiary data during its normal behavior. It is thus identified through the
specification of its required and provided data accesses. We model an elementary
service in AADL as a black box with specific requires/provides interfaces. Each
interface enables a specific data access, either required or provided by the service
(see Figure 1). We may add constraints between data required and provided by
a service (e.g. the required account is the owner of the provided data). These are
expressed as predicates assigned, when necessary, to the corresponding interfaces.

Service A depends on service B when A requires data access which is provided
by B. A is the dependent service, and B is the antecedent service. The failure of
B, due to an attack or a response, prevents it from providing the data required
by A. The proper behavior of A is thus conditioned by the proper behavior of
B. Required data accesses enable dependency compliance check: A may never
depend on a B if the data access provided by B is not required by A. However,
a required data access does not necessarily imply the need for a dependency,

1 −− Implementation of elementary se rv i ce −−
2 system Service Name
3 features
4 RF1 : requires data access data Se t r1 ;
5 . . .
6 RFn: requires data access data Se t rn ;
7 PF1 : provides data access data Set p1 ;
8 . . .
9 PFm: provides data access data Set pm ;

10 end Service Name ;

R e q u i r e s  d a t a  a c c e s s

P r o v i d e s  d a t a  a c c e s s

. . .

 S e r v i c e _ n a m e

. . .

P F 1 P F 2 P F m

R F 1 R F 2 R F n

Fig. 1. Elementary Service definition
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1 system implementation Dependency Model .A
2 subcomponents
3 A: system dependent ;
4 B: system antecedent ;
5 connections
6 const AB : data access B.PF1 −> A.RF1 ;
7 end Dependency Model .A;

R e q u i r e s  d a t a  
a c c e s s d a t a _ S e t _ r 1

P r o v i d e s  d a t a  
a c c e s s d a t a _ S e t _ r 1

.. .

  B
P F 1

.. .

      A

. . .

R F 1

.. .

Fig. 2. Explicit Service Dependency Representation

because this access can be managed by the service itself. For instance, a mail
delivery service requires access to user accounts. These can be managed locally
by the service (passwords file), or remotely accessed through a directory service.
Only the latter case implies a dependency for the directory service.

We model the dependency of service A to service B by connecting the provides
interface of B to its complementary requires interface of A. The AADL model
checks the compliance of this dependency by verifying that the access required
by A corresponds to the access provided by B (see Figure 2).

3.3 Service Dependency Specification

The SDF specifies dependencies by modeling: the data exchanged in each depen-
dency, the paths followed by these data, the sequencing of dependencies during
the operation of the dependent service and the impact due to the unfulfillment
of each dependency. We thus define the following dependency characteristics.

- Dependency type defines the path of the network flow, and describes the
data assets exchanged between the dependent and the antecedent service.

- Dependency mode makes precise the occurrence of a dependency within the
lifecycle and workflow of the dependent service.

- Dependency Impact evaluates the influence of the insatisfaction or degrada-
tion of the relation between antecedent and dependent services.

While these characteristics may be completed at a later time, we believe that
they are the most relevant for our purpose of using the dependency model for
assisting the decision process as described in section 2. In the remainder of this
section, we discuss each attribute, and we show how it is modeled in AADL.

Service Dependency Types describe elementary paths followed by the data
provided by the antecedent service. They only describe access paths for the direct
dependencies of a service. Complete data paths, due to indirect dependencies
(dependencies of the direct antecedents of a service), are automatically inferred
from elementary access paths for each service as explained later in section 4.

A dependency type may be either service-side, user-side or proxy dependency.
- Service-side dependency: the dependent service initiates the interaction with
the antecedent service. The user connects to the dependent service as if no
dependency exists (see Figure 3-a).

- User-side dependency: the user obtain credentials from the antecedent ser-
vice and present them to the dependent service. The connection is transparent
for the dependent service (see Figure 3-b).
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a- Service-side

U A

B

1  -  3

2

b- User-side

A

B

1

U 2

3

c- Proxy

A

1

U

2

3

B

White interfaces represent the data flow provided by the dependent service for its users.
Gray interfaces represent data flow provided by the antecedent service.
A is the dependent service, B is the antecedent service, and U is the user of the dependent service.

Fig. 3. Service Dependency Types

- Proxy dependency: the access path to the dependent service is intercepted by
the antecedent service. No access path explicitly exists between the dependent
service and its user during the dependency (see Figure 3-c).

Service Dependency Modes describe the sequencing of dependencies within
the lifecycle and workflow of the dependent service. We use AADL operational
modes for modeling dependency sequencing. AADL modes are constructs which
represent operational states of a component. Each mode illustrates an opera-
tional phase for the dependent service which is characterized by the need for
a certain dependency. As such, the dependent service does not notice the fail-
ure and/or inaccessibility of the antecedent service unless the former reaches
an operational mode where it requires the access to the data provided by the
antecedent service. The transition into a dependency mode means that the de-
pendent service has reached an operational phase where it requires access to the
data provided by the antecedent service. The transition out of this mode means
that the dependency is no longer required.

A service has four operational modes. These modes describe the lifecycle of
this service. Every dependency mode exists necessarily in at least one of these
operational modes. We shall first describe service lifecycle in AADL, and later
we describe dependency sequencing during this lifecycle.

Service lifecycle holds four operational modes: Start, Idle, Request and Stop
modes (see the associated AADL model in Figure 4). They are defined as follows:

- start Mode characterizes the launching period of a service. The process
realizing the service is loading configurations and assets. The transition out of
this mode occurs when the process is ready to receive user requests. Dependencies
in start mode are one-time dependencies only required during service start-up.

- Idle Mode characterizes the period during which a service is waiting for
incoming user requests. The transition out of this mode is initiated by a user
request, or by a decision to stop the service. The dependencies in this phase are
mainly functional dependencies not relevant for the purpose of this paper, but
which can be further investigated as for impact evaluations (see section 7).

- Request Mode starts when the service receives a user request. It characterizes
the in-line dependencies required in order to process this request. The transition
from this mode occurs after the user connection is closed.
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- Stop mode All the actions a service may take before stopping are considered
as part of the stop mode.

The sojourn time in each operational mode varies according to service con-
figurations. Transitions between operational modes may also vary for certain
services. For instance, a service may start on a per-request basis. It therefore
directly switches to the stop mode at the end of the request mode.

Dependency sequencing. Dependencies in each operational mode are invoked in
a certain sequence related to the service behavior. These are defined as AADL
operational sub-modes assigned to the components of each operational mode
(lines 2-6 in Figure 4). We thus state dependencies within the lifecycle of the
dependent service, and we determine the dependency sequencing within the same
lifecycle phase. We obtain a Dependency Finite State Machine (DFSM) with sub-
states. Dependencies appear in three possible sequences described as follows.

- Stateless sequencing : the satisfaction of the parent dependency is an obliga-
tion prior to the access to the child dependency. However, the former does not
need to remain satisfied once the latter is accessed (Figure 5-a).

- Statefull sequencing: the parent dependency must remain satisfied as long
as the child dependency is not satisfied yet (Figure 5-b).

- Alternative sequencing: characterizes redundant dependencies. The transi-
tion from the parent dependency leads to one child dependency (Figure 5-c).

Stateless and statefull sequencings express conjuctive dependencies. Alterna-
tive sequencing expresses disjunctive dependencies where only one alternative
dependency is required. Each dependency mode is associated with a specific re-
quire interface (see Figure 1) which is connected to a specific antecedent service.

S t a r t

I d l e

R e q u e s t

S t o p

t rans i t

t rans i t

t rans i t

d o w n

1 system implementation Dependent . i n s t ance
2 subcomponents
3 CStart : system op State in modes ( Star t ) ;
4 CIdle : system op State in modes ( I d l e ) ;
5 CRequest : system op State in modes ( Request ) ;
6 CStop : system op State in modes ( Stop ) ;
7 modes
8 Star t : i n i t i a l mode ;
9 I d l e : mode ; Request : mode ; Stop : mode ;

10 Star t −[CStart . t r a n s i t ]−> I d l e ;
11 I d l e −[CIdle . t r a n s i t ]−> Request ;
12 Request −[CRequest . t r a n s i t ]−> I d l e ;
13 I d l e −[CIdle . down]−> Stop ;
14 end Dependent . i n s t ance ;

Fig. 4. Dependent Service Modes

a- Stateless sequencing

i + 2
D e p

i + 1
D e pi

D e p

b- Statefull sequencing

i
D e p

i + 1
D e p i + 2

D e p

c- Alternative sequencing

i + 2
D e p

i + 1
D e p i

D e p

Fig. 5. Service Dependency Sequencing
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Service Dependency Impacts express the consequence of any degradation of
the antecedent service, which alters the access to data required by the dependent
service. The failure of a dependency alters the transitions between operational
modes. This alteration is motivated by the fact that the failure of a dependency
denies reaching its subsequent dependencies in case of no alternative dependency.

Dependency failure does not only alter the normal transition out of the failed
dependency. It may also restrain the service to switch to another operational
mode. For instance, a web server may switch to unsecure connections when the
SSL service does not respond. We use the AADL error model annex to repre-
sent the impact of a dependency failure. Each service is attributed at least two
AADL error states, which are normal and failure states. The impact of a depen-
dency is expressed by constraining the transition out of a dependency to occur
depending on the error state of the antecedent service. This is done by defining
Guard Transition properties which use error propagations. Error propagations
are AADL constructs which notify the component at the remote end of a connec-
tion about the error state of the other component. We use Error Free and Failed
propagations which notify respectively an error free and a failed dependency
states. Each dependency state may dispose of two transitions. The first is the
normal transition, constrained by the satisfaction of the dependency. The second
transition is optional. It is constrained by the unsatisfaction of the dependency.

The following example of a Mail Delivery Service (MDS) illustrates these speci-
fications. MDS authenticates its users using LDAP service. Authenticated users are
granted access to their remote mailboxes mounted using the NFS service. The
accounts of connected users are locked in order to prevent simultaneous sessions.
MDS unlocks an LDAP account after its corresponding user closes his/her opened
session. The normal behavior of MDS is modeled in lines 1-6 of Figure 6.

The impact of the second LDAP dependency is stated as follows. Firstly, au-
thenticated users cannot disconnect if the MDS cannot access to the LDAP service.
The Guard Transition in lines 11-12 states that the transition to the Idle phase
(line 6) only occurs if the dependency is in the Error Free state. Secondly, au-
thenticated users remain blocked in the NFS dependency state as long as the
second LDAP dependency is not restored (lines 7-10 of Figure 6).

1 modes
2 LDAP1: i n i t i a l mode ;
3 NFS: mode ; LDAP2: mode ; I d l e : mode ;
4 T1 : LDAP1 −[C1 . t r a n s i t ]−>NFS;
5 T2 : NFS −[C2 . t r a n s i t ]−> LDAP2;
6 T3 : LDAP2 −[C3 . t r a n s i t ]−> I d l e ;
7 T4 : LDAP2 −[C3 . F a i l u r e t r a n s i t ]−> NFS;
8 annex Error Model {∗∗
9 Guard Transit ion =>

10 (RAccount [ Fa i l ed ] ) applies to T4 ;
11 Guard Transit ion =>
12 (RAccount [ Error Free ] ) applies to T3 ;
13 ∗∗} ;

I M A P

L D A P

N F S
L D A P 1

N F S

L D A P 2

I d l e
F a i l e d

E r r _ F r e e N o r m a l

F a i l u r e

E r r _ F r e e

F a i l e d

Fig. 6. Service dependency Impact
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4 Dependency Model Framework

Section 3 has defined the service dependency characteristics managed using our
approach. This section describes the steps for building a dependency model
using our framework summarized in Figure 7. We use the Open Source AADL
Tool Environment (OSATE)2 which is a set of Eclipse plug-ins. OSATE maintains
AADL models as XML-based files, which allows the reusability of the model.
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4

1 2
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Fig. 7. Dependency Model Framework

The modeling framework is split into four steps. The user is intended to do
the first two steps. The last two steps are automatically generated.

Step 1 consists of modeling the explicit dependencies of a service. Each service
has a dedicated dependency model defined in an AADL package. Only explicit
dependencies are represented. Antecedent services are considered as independent
services, and therefore indirect dependencies are not represented.

Step 2 consists of modeling the dependency impacts. Failure impacts are
specified as in section 3.3. Only the impacts of explicit dependencies are modeled.
Indirect dependency impacts are infered from those of explicit dependencies.

The iteration over the first two steps consists of replacing antecedent ser-
vices by the implementation of their composite dependency models. Antecedent
services, previously used as abstract independent components, are replaced by
instantiations of their dependency packages (see the case study for examples).

In Step 3, OSATE translates the AADL model into a multi-file XML model.
Each package (i.e. elementary dependency model) is saved as an XML file ex-
pressed using the AADL XML Interchange format. This step is preceded by an
automated model validation. OSATE checks the connections between model com-
ponents. It flags inappropriate dependencies where a dependent service is made
dependent of an antecedent service which does not provide its required data.

Step 4 is the implementation of a query interface which manages the ac-
cess to the dependency model. This interface is queried for the dependencies of
a specific service. We use the Java-based Document Object Model to explore
2 http://la.sei.cmu.edu/aadlinfosite/OpenSourceAADLToolEnvironment.html

http://la.sei.cmu.edu/aadlinfosite/OpenSourceAADLToolEnvironment.html
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the AADL/XML model. The query interface builds a Dependency Finite State
Machine (DFSM) with substates in order to represent service dependencies.

The DFSM schema is illustrated in Figure 7. It summarizes all the dependency
characteristics modeled in the first two steps. The attributes of a dependency
state are (1) the antecedent service, (2) the required data (section 3.2), (3) the
requester (dependency type), (4) the dependency impact, (5) the parent depen-
dency and (6) the next dependency (dependency modes). Cyclic dependencies
are discarded, and thus a dependency state cannot be a parent for another de-
pendency state which points to the same service.

5 Service Dependencies: Application to Security

5.1 Using Services as Policy Enforcement Points

Deriving Concrete DFSM from Abstract DFSM. Policy-based responses
are expressed as (s, a, o) triplets. The SDF is queried for the DFSM of the service
which implements the action a. It thus provides a DFSM which holds abstract
components while the PDP receives concrete rules (see section 2.1). We thus need
to derive a concrete DFSM using the abstract DFSM provided by the query
interface. We associate abstract services with the concrete components which
realize them using the predicate realize(component, Service). It states that the
service Service is realized by the component component. The derivation process
replaces the abstract service with its concrete implementation. It also derives
concrete data instances from abstract data interfaces through the application of
their associated constraints to the object o in the security rule (see section 3.2).
A service may be realized by several component instances. The single abstract
dependency is thus instantiated into several disjunctive concrete dependencies.

The derivation process follows the dependency sequencing in the abstract
DFSM. It substitutes abstract components with concrete implementations. The

input : Sr(s, a, o), DFSM
output: DFSM

curState = DFSM.start;
repeat

if curState == DFSM.start then
Only in the first iteration
curState.Requester = Sr.s;
curState.AntService = Sr.a;
curState.RequiredData = Sr.o;

else
if curState.Requester == User then curState.Requester = Sr.s;
else curState.Requester = subject.realize(subject, curState.Requester);
curState.RequiredData = curState.RequiredData.chkConstraint(Sr.o);
auxSr.s = curState.Requester; auxSr.a = curState.AntService;
aurSr.o = curState.RequiredData;
MakeTransClosure(auxSr, curState.getChilds());
getChilds() Returns the sub state machine for the current state

curState = curState.getNext();
until curState = DFSM.end ;

Algorithm 1. Transitive Closure
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initial concrete components are provided by the concrete response rule. Subse-
quent concrete accesses are derived from the abstract DFSM and the concrete
response rule. We use for this purpose the MakeTransClosure function of al-
gorithm 1. It iteratively substitutes the abstract DFSM with a concrete DFSM
using the concrete security rule delivered by the policy instantiation process.

Modeling Policy Enforcement Points. The derivation of concrete elemen-
tary accesses is followed by a decision process. It aims to reconfigure elementary
accesses so that the initial response access rule could be applied. In case of per-
mission, the decision process satisfies at least a minimal set of dependencies.
In case of a prohibition, it checks that no dependency path enables the prohib-
ited data access. Access permissions are modified through the reconfiguration of
PEPs which are modules associated with services. We therefore consider each
service as a PEP having limited access control capabilities. This capability, when
it exists, is limited to a specific class of subjects. It thus restrains the PEP capa-
bility to apply elementary access rules. For instance, firewall visibility is limited
to network level information, it is not able to monitor user-level credentials.

A PEP is able to apply a security rule when (1) the subject in this rule belongs
to the capability set of the PEP, (2) the service pointed by the action is managed
by the PEP and (3) the object is a data provided by the service (this constraint
is satisfied by the derivation process of algorithm 1)). The capability of a PEP
depends on its concrete implementation (see examples in the case study). It is
defined as a constraint which must be satisfied by the subject in the security
rule. Services which do not have access control capabilities are assigned null
capability sets. The PDP may select a certain PEP if the subject within the
elementary concrete rule derived for this PEP belongs to its capability class.
The PDP selects the optimal response set according to two criteria.

- A prohibition is applied the closer possible to the start state of the DFSM, in
order to reduce resource consumption. This is motivated by the fact that when
the access is denied at the beginning of the DFSM, subsequent dependency
accesses are denied, which contributes in reducing resource consumption.

- The PDP minimizes the configuration changes required for the application
of a security rule by minimizing the services which need to be reconfigured.

Section 5.2 describes how we fulfill those requirements using our approach.

5.2 Selecting Policy Enforcement Points

S is the set of services obtained from the AADL model. We model the DFSM for
the service sDep as DFSMsDep = {Sa, Ta} where si ∈ Sa ⊂ S is an antecedent
for sDep and aij ∈ Ta ⊂ S×S is a transition. A path pij is a sequence of adjacent
transitions which lead from the dependency state si to the dependency state sj .
If this path does not exist then pij = φ. For an input security rule, the PDP
crosses DFSMsDep . It searches the minimal set of dependencies which applies
the security rule and reduces superfluous resource transactions. Algorithm 2
illustrates the behavior of the PDP. In case of a permission, the PDP searches for
the dependency path which requires the least modifications (i.e. reconfigurations)
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input : Sr(Type, s, a, o)
output: List < si, Sri > Resp with si ∈ S

FSMa = makeTransClosure(getDFSM(a), Sr);
dStart = FSMa.start; dEnd = FSMa.end;
if Type = Prohibition then

foreach pij in FSMa with (i=dStart) & (j=dEnd) do
if chkRespHistory(pij) (returns False if the path has beed already intercepted)
then

curState = dStart;
repeat

curState = curState.getNext(pij); returns the next state on the path pij

if chkCapability(curState) then
Resp.add(curState.AntService, curState.Sr);
curState.addHistory(curState.Sr); add Sr to the resp. history
auxPath = FSMa.getPath(curState.getFailureTrans(), dEnd);
if (auxPath �= φ)∧(curState.getFailureTrans().parent �= Idle) then
pij ← auxPath;

until curState = dEnd ;

else
In case of permission, the PDP allows the path requiring minimum modifications
minPath = null; minLength = Infinity;
foreach pij in FSMa with (i=dStart) & (j=dEnd) do

curLength = 0;
repeat

curState = curState.getNext(pij);
if !chkRespHistory(curState) then curLength ++;

until curState = dEnd ;
if curLength < minLength then {minLength = curLength; minPath = pij ;}

allow(minPath); Liberates the path in parameter

Algorithm 2. Evaluation of the resulting impact transfer matrices

in order to allow the access. The selected path is liberated in order to apply the
input permission. In case of a prohibition, the PDP denies all dependency paths.
When altering a dependency state, the PDP switches to the failure transition of
this state and checks that it does not belong to a permissible path.

6 Case Study: E-Mail Service

6.1 Testbed Description

This section implements our dependency model for the example of an email
service. The email testbed manages mailboxes using the NFS service. Local mail
access is granted by both IMAP and POP services. Remote mail access is granted
by a webmail service. The webmail application connects directly to the POP
server, and indirectly to the IMAP server through an IMAP proxy which caches
IMAP connections. Users are authenticated using the LDAP service.

The available PEPs are ModSecurity3 which monitors the access to the web-
mail application, the super daemon XInetd which monitors access to the IMAP
Proxy. The LDAP server monitors the access to user accounts and the NFS service

3 http://www.modsecurity.org/

http://www.modsecurity.org/
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Fig. 8. TestBed AADL model

monitors the access to the shared files using the /etc/exports file. The visi-
bility of XInetd and NFS is limited to internal IP addresses. ModSecurity only
manages external IP addresses. Finally LDAP manages its internal accounts.

6.2 Description of the Testbed AADL Model

Figure 8 illustrates the graphical AADL reprentation of the testbed dependency
model. The main parts of the AADL textual representation are described in
appendix A. We interpret in this paragraph the AADL code in appendix A.

The serviceDB package (lines 1-13) contains the modeled services. POP service
requires access to user accounts (line 4). It provides access to mailboxes (line 6)
which are remotely accessed by the POP service (line 5). The webmail service is
granted by a webmail application which must be accessible for webmail users (line
10). The webmail service recuperates mailboxes (line 9) and provides them to its
users (line 11). The POP package (lines 14-35) provides mailbox access (lines 15-
17). The LDAP and NFS (line 20-21) services are extracted from the serviceDB
package. LDAP and NFS dependencies are service-side dependencies; they are both
connected to the POP service (lines 23-24). They are in the request mode (lines
27-28) since they are accessed by the POP service while processing user requests.
LDAP dependency is stateless because the access to user accounts is not required
after authentication (line 29). Its failure alters the transition to the NFS depen-
dency (lines 29&32). The failure of the NFS dependency initiates a transition to
the Idle mode (lines 30&33). The modeling of POP and IMAP dependencies (The
IMAP package is omitted for space limitations) gives two packages which provide
mailbox access. We use these packages in order to model the webmail service (lines
40-41). The latter is granted by a webmail application. We model the access for
webmail users to the webmail application through the connection in line 46. The
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Fig. 9. Webmail Dependency FSM

webmail application provides access to mailboxes recuperated from the mail deliv-
ery services (lines 44-45). Lines 53-56 model the multiple access paths to the mail
boxes using both POP and IMAP services. The access to the web service must be
maintained as long as the connection to the mail delivery services is still required.
The web dependency is thus a statefull dependency. POP and IMAP dependencies
are modeled as substates of the web dependency (line 49).

The query interface generates a webmail DFSM (see Figure 9) which summa-
rizes all dependency states and transitions (both normal and failure transitions).

6.3 The Use of Service Dependencies for Response Application

We demonstrate in this section the use of the SDF. We adopt the same mappings
provided in [3], and we show that for the same abstract rule, the selected PEPs
vary according to the mapping outcome. We prefer to use the simple response
policy shown in listing 1.1 in order to show the use of our dependency model.
This response policy requires that the attacker must be forbidden from accessing
to the threatened data through the victim service.

Listing 1.1. Testbed Response Policy

1 −− The ab s t rac t response ru l e −−
2 Sr ( prohibition , a t t Source , v i c t im Serv , target Data , attack Threat )
3 −− The Or−Bac Hold f a c t which transforms a l e r t s into contex ts −−
4 Hold ( Subject , Action , Object , Th Context ) :−
5 alert ( Source , Target , d e s c r i p t i o n ) &
6 map Subject ( Source , Sub jec t ) &
7 map Action ( Target . Se rv i ce , Action ) &
8 map Object ( Target , Object ) &
9 map Context ( d e s c r i p t i on , Th Context ) .

The mapping functions in listing 1.1 are XSLTs which extract data from ID-
MEF alerts [8]. We implemented a prototype for algorithm 2. We simulated sev-
eral attack instances and we observed the subsequent behavior of the PDP. In the
remaining, we give four attack examples and the associated responses fired by the
Policy Instantiation Engine and managed by the PDP using our prototype. Fig-
ure 10 summarizes the alerts received, the PDP behavior and the selected PEPs.
It also shows the configurations automatically generated for each selected PEP
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Fig. 10. Attack and Response Samples managed by the Testbed

according to its appropriate elementary access rule derived by the PDP. The at-
tributes in italic are simple mappings from the associated access rules. These are
generated by component-specific agents interfacing with each PEP.

Reconnaissance attack is generated by an external user who tries to find valid
user IDs. The attacker does not have a valid account. The alert source thus
lacks information about a known user. The response module is alerted about an
IP address performing a reconnaissance attack against the webmail application.
As in Figure 10-a, the PDP selects the first dependency state since the source
specified in the elementary rule belongs to the PEP capability set.

Brute Force attack is account centric. The attacker has already acquired a
valid account ID. He now tries to break the associated password. The alert noti-
fies a brute force attack from a spoofed address against Charlie’s mailbox. The
dependency selected in the former example can not be used since no IP address
is selected. The PDP chooses to deny the access for both POP and IMAP servers
to Charlie’s account. The dashed arrows (Figure 10-b) are failure transitions
followed by the PDP after it has altered their source dependency nodes.

Arbitrary Code Execution allows an intruder to execute arbitrary code on the
target machine on the behalf of the exploited service. The threatened services
are IMAP and POP respectively. The alerts respectively notify an IMAP and a POP
threat. The selected DFSMs are those of POP and IMAP services. In case of IMAP
service (Figure 10-c), the first dependency is selected since the source IP address
belongs to the capability set of Xinetd. The LDAP dependency for the POP service
can not be used since no LDAP account was instantiated by the transitive closure
(Figure 10-d). The NFS service is found to be able to apply its elementary access
control rule. It consists of unmounting mailboxes in the /etc/exports file. It is
true that the decision process did not provide a solution which protects the POP
server. However, a close look to the PEPs capabilities shows that such a solution
at least protects the mailbox alteration following a successful attack.
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7 Discussion and Conclusion

In this paper, we have presented a modeling framework for the services and their
dependencies. The novelty of this framework resides in its ability to formally de-
fine dependency attributes, rather than assigning static dependency parameters
as in most of the existing class-based models. The formal definition of depen-
dency parameters provides a strong platform for the use of those dependencies
for security management. This paper demonstrates that service dependencies
can be used for more than only a-posteriori evaluation of intrusion response
impacts, after these have been selected (although being an important challenge
for the security research community). It describes an a-priori use of service de-
pendencies, notably for the selection of suitable means to apply an intrusion
response, if any. The efficiency of a response application is measured through its
ability to satisfy the security requirements while pushing the response closer to
the attacker and minimizing the configuration changes.

Limitations of this work include the separated treatment of responses and
dependencies search. Firstly, the separated treatment of each response will be
extended in order to consider the overall response policy. The optimal application
of each response apart does not necessarily provide an optimal application of the
response policy, as certain rules may overlap. However, since new response rules
may be generated continuously, other problems must be considered such as the
stability of the system. Secondly, the upward search for dependencies can be
extended with a downward search (i.e. searching for dependents of a service) of
dependencies in order to evaluate the impact of selected responses. Future work
will focus on adding a third criterion for the selection of a candidate response,
being its impact on other services. This will be seen as collateral damages since
an antecedent service may have several dependent services other than the service
explicitly designated in the intrusion response.
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Appendix A

This section summarizes the AADL textual representation for the email testbed.

1 package serviceDB −− Service database −−
2 pub l i c −− Only two sample s e r v i c e s are presented −−
3 system POP −− Implementation of the Pop serv i c e −−
4 features mb Owner : requires data access dataDB : : Account ;
5 R mb : requires data access dataDB : : mBox ;
6 P mb : provides data access dataDB : : mBox ;
7 end POP;
8 system WEBMAIL −− Implementation of the webmail s e rv i c e −−
9 features R mb : requires data access dataDB : : mBox ;

10 R api : requires data access dataDB : : mailAPI ;
11 P mb : provides data access dataDB : : mBox ;
12 end WEBMAIL;
13 end serviceDB ;
14 package Pop −− The implementation of the Pop dependency model −−
15 pub l i c System POP
16 features P mb : provides data access dataDB : : mbox ;
17 end POP;
18 pr i va t e system implementation POP. in s tance
19 subcomponents PopUser : system user ;
20 Ldap : system serviceDB : : Ldap ;
21 NFS: system serviceDB : : NFS;
22 Pop : system dependent . i n s t ance ;
23 connections data access Ldap . P a−> Pop . mb Owner ;
24 data access NFS.P mb−> Pop .R mb ;
25 data access Pop .P mb−> PopUser .R mb ;
26 end POP. in s tance ;
27 system implementation op State . Request
28 modes LDAP: i n i t i a l mode ; NFS: mode ; I d l e : mode ;
29 T1 : LDAP−[C1 . t r a n s i t ]−> NFS;
30 T2 : NFS−[C2 . F a i l t r a n s i t ]−> I d l e ;
31 annex Error Model {∗∗
32 Guard Transit ion => (mb Owner [ Error Free ] ) applies to T1 ;
33 Guard Transit ion => (R mb [ Fa i l ed ] ) applies to T2 ; ∗∗} ;
34 end op State . Request ;
35 end Pop ;
36 package webmail
37 pub l i c −− same as the Pop pub l i c in t e r f a ce −−
38 pr i va t e system implementation webmail . i n s t ance
39 subcomponents webmailUser : system user ;
40 Imap : system Imap : : IMAP;
41 Pop : system Pop : :POP;
42 web : system serviceDB : :Web;
43 webmail : system dependent . i n s t ance ;
44 connections data access Imap .P mb −> webmail . R mb1 ;
45 data access Pop .P mb −> webmail . R mb2 ;
46 data access web . P api −> webmailUser . R api ;
47 data access webmail . P mb −> webmailUser . R mb1 ;
48 end webmail . i n s t ance ;
49 system implementation op State . web
50 subcomponents C1 : system op State in modes ( I d l e ) ;
51 C2 : system op State in modes (Pop) ;
52 C3 : system op State in modes ( Imap) ;
53 modes I d l e : i n i t i a l mode ; Pop : mode ; Imap : mode ;
54 T1 : Id l e −[C1 . t r a n s i t ]−>Pop ;T2 : Id l e −[C1 . t r a n s i t ]−>Imap ;
55 T3 : Pop−[C2 . F a i l t r a n s i t ]−>Imap ;T4 : Imap−[C3 . F a i l t r a n s i t ]−>Pop ;
56 T5 : Pop−[C2 . t r a n s i t ]−> I d l e ;T6 : Imap−[C3 . t r a n s i t ]−> I d l e ;
57 annex Error Model {∗∗
58 Guard Transit ion => (R mb2 [ Fa i l ed ] ) applies to T3 ;
59 Guard Transit ion => (R mb1 [ Fa i l ed ] ) applies to T4 ;
60 Guard Transit ion => (R mb2 [ Error Free ] ) applies to T5 ;
61 Guard Transit ion => (R mb1 [ Error Free ] ) applies to T6 ; ∗∗} ;
62 end op State . web ;
63 end webmail ;
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Abstract. Modern multi-tier application systems are generally based on
high performance database systems in order to process and store business
information. Containing valuable business information, these systems are
highly interesting to attackers and special care needs to be taken to pre-
vent any malicious access to this database layer. In this work we propose
a novel approach for modelling SQL statements to apply machine learn-
ing techniques, such as clustering or outlier detection, in order to detect
malicious behaviour at the database transaction level. The approach in-
corporates the parse tree structure of SQL queries as characteristic e.g.
for correlating SQL queries with applications and distinguishing benign
and malicious queries. We demonstrate the usefulness of our approach
on real-world data.

1 Introduction

The majority of today’s web-based applications does rely on high performance
data storage for business processing. A lot of attacks on web-applications are
aimed at injecting commands into database systems or try to otherwise trigger
transactions to gain unprivileged access to records stored in these systems. See
[1] for a list of popular attacks on web applications.

Traditional network-based firewall systems offer no protection against these
attacks, as the malicious (fractions of) SQL or tampered requests are located at
the application layer and thus are not visible to most of these systems.

The usual way of protecting modern application systems is by introducing
detection models on the network layer or by the use of web application firewall
systems. These systems often employ a misuse detection approach and try to
detect attacks by matching network traffic or HTTP request against a list of
known attack patterns. A very popular system based on pattern matching is for
instance the Snort IDS [2]. Another project aiming at the detection of tampered
HTTP requests is the ModSecurity module, which provides a rule-engine for
employing pattern based rules within a Web-Server [3].
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Instead of using pattern based approaches, there exists a variety of papers on
employing anomaly-based methods for detecting web-based intrusions [4,5,6].
These either try to analyze log-files or protocol-level information to detect
anomalies based on heuristics or data-mining techniques. We earlier proposed a
rule based learning approach using the ModSecurity module in [7].

These approaches are rooted at the network or application protocol layer. In
this work we focus on the detection at the database layer, i.e. the detection of
anomalous SQL statements, that are either malicious in the sense that they in-
clude parts of injected code or differ from the set of queries usually issued within
an application. The main contribution of our work is the use of a grammar based
analysis, namely tree-kernel based learning, which became popular within the field
of natural language processing (NLP). Our approach incorporates the parse tree
structure of SQL queries as characteristic e.g. for correlating SQL queries with
applications and distinguishing benign and malicious queries. By determining a
context sensitive similarity measure we can locate the nearest legal query for an
malicious statements which tremendously helps in root cause analysis.

The remainder of this paper is organized as follows: Section 2 states the prob-
lem in detail and gives an overview of related work regarding intrusion detection
in databases. In Section 3 we give a short introduction to kernel-based learning
algorithms in general and their application on structured data in detail. Fol-
lowing this overview we define our tree-kernel based method and describe its
application to learning SQL for intrusion detection in databases in Section 4.
Finally we present our results on real-world data in Section 5 and summarize
our experiments.

2 Problem and Related Work

Executing malicious statements on a database may result in severe problems,
which can range from exposure of sensitive information to loosing records or
broken integrity. Once an attacker manages to inject code into a database this
will likely not only affect specific records, but may lead to a compromise of the
complete application environment. This in turn can cause severe outages with
respect to data records and a company’s public reputation.

Although the risk may seem low on a first glance, given the database layer
is separated from the public interface (web/presentation layer) and not directly
accessible from the outside, anomalous queries caused by e.g. SQL injection
attacks are a widespread problem. The Web Hacking Incident Database provides
a listing of recent web hacks, a lot of them relying on SQL injections [8].

There have been approaches to apply data-mining and machine learning meth-
ods to detect intrusions in databases. Lee et al [9] suggest learning fingerprints
of access patterns of genuine database transactions (e.g. read/write sequences)
and using them to identify potential intrusions. Typically there are many pos-
sible SQL queries, but most of them only differ in constants that represent the
user’s input. SQL queries are summarized in fingerprints (regular expressions)
by replacing the constants with variables or wild-cards. Such fingerprints cap-
ture some structure of the SQL queries. Following the approach of [9], queries
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Fig. 1. SQL parse tree of an SQL injection

not matching any of the existing fingerprints are reported as malicious. A draw-
back of this approach is its inability to correlate and identify fingerprints with
applications.

In [10] the authors also try to detect SQL injections by a kind of fingerprints.
They use parse trees of queries as fingerprints for the queries structure. The main
idea here is to compare the parse tree of an SQL statement before and after user-
variables have been inserted. Injected SQL fragments will typically significantly
change the trees structure. An example of such structural changes in the parse
tree of a query is shown in figure 1. In this figure, the rounded nodes of the tree
indicate the additional parts that have been added due to the injection SQL
fragment ’ OR 1 > 0 --. As this work only uses a one-to-one comparison on
parse-trees it is missing any generalization capabilities and thus not applicable
for machine learning methods, such as clustering and outlier detection.

A similar grammar-based approach has been used in [11], which studied the
use of syntax-aware analysis of the FTP protocol using tree-kernel methods on
protocol parse-trees. A slightly different approach was taken in [12] where the
parse tokens are used along with their values to detect anomalies in HTTP-
traffic. The latter approach does not use the full parse tree but its leaves. Our
work is similar to [11,12] in the sense that it employs machine learning methods
on syntax trees derived from a protocol parser.

Also approaches on investigating data dependencies have been proposed in
[13] and [14]. Data dependencies refer to access correlations among sensitive
data items. Data dependencies are generated in form of classification rules like
before an update of item1 a read of item2 is likely. Transactions not compliant
to these rules are flagged as malicious. Srivastava et al [14] further distinguish
different levels of sensitivity of data items which need to be specified by hand.
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Both approaches ignore the structure of SQL queries and are unable to correlate
SQL queries with applications. A more recent work has been presented in[15],
focusing on the sequential nature of SQL queries. These studies also make use of
a smart modelling technique to easily apply data mining methods on their SQL
representations.

3 A Grammar-Based Modelling

Since most learning approaches work on vectorized data, a key issue when using
machine learning for intrusion detection is the representation of monitored data
to apply any learning algorithm. A popular technique in IDS is the exhaustive
creation of n-grams, yielding histogram vectors for observed input data. These
do not maintain any syntactical information of SQL. A little more syntax is
regarded by creating term-vectors of a query. A term-vector can be obtained by
splitting the query in a “proper way”, i.e. by splitting on whitespace characters
(optionally maintaining quoted strings).

As in this work we are dealing with the detection of malicious database queries,
we choose a grammar based approach to represent SQL queries. We propose two
alternative modelling approaches for making SQL queries suitable for machine
learning.

3.1 Parsing SQL

The basic idea of [10] is to detect SQL injection attacks by means of changes
in a queries syntax tree. An example of such a tree has been shown before (see
figure 1). In order to obtain such a parse tree, a parser for the SQL dialect is
required. Usually complex parsers are automatically generated based on a given
grammar description using tools such as yacc, antlr or javacc. Unfortunately, the
availability of proper grammar descriptions for SQL is pretty sparse and most
existing parser implementations are tightly wired into the corresponding DBMS,
making it laborious to extract a standalone parser.

We therefore decided to modify an existing open-source DBMS, in our case the
Apache Derby database, which provides a standalone deployment. The Derby
parser is itself generated off a grammar file using javacc, but does not explicitly
output a syntax tree suitable for our decomposition. Using the tree-interface of
the parser, we derived a tree-inspection tool which traverses the tree object of a
query and writes out the corresponding node information.

3.2 Vectorization of SQL Queries

To incorporate more syntax, we determine the parse tree of a query. As we are
interested in the detection of abnormal queries within our database application,
we are looking for a similarity measure for the space of structured objects, i.e.
the space of valid SQL parse trees. Thus, we are faced with the problem of having
to create a distance function for matching trees.
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Definition: Let q be an SQL query and τq the parse tree of q, identifying with τq

the root node of the tree. Each node n within that tree is labeled with an identifier
type(n), reflecting the node type.

For a node n within τq we denote by succ(n) the ordered set of successors of
n and by succi(n) the ith child of n.

This definition is basically just a formalization of a query’s syntax tree. It
allows us to enlist the production or grammar rules, which generate a given SQL
query q. This list of production rules will be defined as follows:

Definition: For a node n within the parse tree τq of a query q, the list of pro-
duction rules P (n) is given by

P (n) =
⊎

c∈succ(n)

{type(n) → type(c)} �
⊎

c∈succ(n)

P (c).

Given P (n), denote by |P (n)|r the number of times the rule r occurs in P (n).
Please note that we use the � notation here for list concatenation, thus, the

resulting list may contain the same rule more than once. Now, denoting with Q
the set of all valid trees for a given SQL dialect, these simple definitions allow us
to define a mapping ϕ : Q → R

n, by following the bag of words approach known
from text classification tasks like spam detection as proposed in [16].

Definition: Let R be the sorted set of all possible production rules, defined by
some SQL grammar and ri the ith rule of R. For an SQL query q with the
associated parse tree τq the rule vector v ∈ R

|R| is given by vi = |P (τq)|ri .
The function ϕ maps an SQL query q to the vector space R

|R| by ϕ(q) = v.

Since an SQL query usually consists of only a small fraction of the complete
SQL grammar, these rule vectors are typically very sparse. Based on this map-
ping we can now define a distance measure on SQL queries using any distance
function Δ in the vector space R

|R| by defining the corresponding distance func-
tion ΔSQL using

ΔSQL(q1, q2) := Δ(ϕ(q1), ϕ(q2)), (1)

where q1, q2 are any two SQL statements of a common dialect. This allows for
the application of a wide range of distance based learning algorithms such as
clustering or outlier detection.

4 Using Tree-Kernels for SQL Grammars

The simple vectorization of SQL queries defined above includes a weak context
based reasoning to be used within the distance measure in R

|R|. It can be seen as
an an explicit feature extraction approach, as it explicitly creates feature vectors
from SQL statements. Unfortunately, the rule counting does only incorporate
direct antecessor relationships, limiting the contextual scope.
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4.1 Introduction to Tree-Kernels

To overcome these limitations the natural language processing community makes
use of context based tree-kernels, which provide a so-called kernel-function over
trees. In the machine learning community kernel-based methods have received a
lot of attention not ultimately owing to the well-known support vector machine
method, which has also been used for intrusion detection [17,12]. These methods
make use of a kernel-function to measure the similarity between instances of
some input space X , i.e. a kernel k is symmetric and positive (semi-) definite
function

k : X × X → R

which implicitly computes an inner product in a reproducing kernel Hilbert
space. There exists kernel functions for complex structures like trees or graphs,
which are often defined as convolution kernels [18]. For these kernels one defines
a kernel over atomic structures and defines the convolution kernel for complex
objects by combining the kernel function of its sub structures.

In [19] Collins and Duffy propose a simple kernel over trees for use in natural
language processing. The basic idea is to capture structural information over
trees in the kernel function by incorporating all sub-trees occuring within the
trees of interest. Let T be the space of all trees in question and denote with T
the ordered set of all possible sub-trees in T . For a tree τ ∈ T denote by hi(τ)
the number of occurrences of the i-th sub-tree of T in τ and with N(τ) the set
of all nodes in τ . For two trees τ1, τ2 the tree-kernel in [19] is defined by

KC(τ1, τ2) = hi(τ1)hi(τ2) =
∑

n1∈N(τ1),n2∈N(τ2)

Δ(n1, n2).

The function Δ is defined as follows

Δ(n1, n2) =

⎧
⎨

⎩

0 if P (n1) �= P (n2)
λ if height(n1) = height(n2) = 1

Δ∗(n1, n2) otherwise,

where Δ∗(n1, n2) is recursively defined as

Δ∗(n1, n2) = λ

| succ(n1)|∏

k=1

[1 + Δ(succk(n1), succk(n2))]

Roughly speaking, this kernel measures the similarity of two trees by the set of
common sub trees. As it does not consider the context of a sub tree, Zhou et al
[20] designed a context-sensitive convolution tree-kernel, by taking into account
a sub trees’ context by means of its ancestors.

Starting with a tree τ , a root node path of length l in τ is a path from the root
node τ or any of its successors to a node in τ , which has a length of l. Following
the notation of [20], the set of all root node paths for a tree τj with a maximal
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length of m is denoted by Nm[j]. Given a maximum length m for the root node
paths considered, the context-sensitive tree-kernel is given be

KCSC(τ1, τ2) =
m∑

i=1

∑

ni
1[1]∈Ni

1[1],n
i
2[2]∈Ni

1[2]

ΔCSC(ni
1[1], ni

2[2]),

where ni
1[j] = (n1, n2, . . . , ni)[j] denotes a root node path of length i in tree τj .

This kernel will therefore incorporate the similarity of common sub-trees.

4.2 Using Tree-Kernels for SQL Parse-Trees

As mentioned in the beginning, the use of tree-kernels in intrusion detection has
been proven to provide a syntax-oriented analysis in protocols such as FTP or
HTTP [11,12]. To exploit the benefit of syntax-level awareness in SQL query-
analysis, we derive the distance measure induced by a tree-kernel function to
directly measure the similarity of SQL queries by means of their parse-trees.

For a kernel k and examples x1, x2, such a distance can be obtained by

d(x1, x2) =
√

k(x1, x2) − 2k(x1, x2) + k(x1, x2). (2)

Using a tree-kernel we can therefore use this kernel to directly compute the
distance of two SQL parse-trees using (2).

5 Experimental Analysis and Results

For an evaluation of the different modelling approaches we collected data of the
popular Typo3 content management system. This application heavily depends
on the use of SQL for various tasks beyond page content storage, such as session-
persistence, user-management and even page-caching.

We created a set of distinct queries and added synthetic attacks, which closely
reflect modifications that would follow from SQL injections, by inserting typi-
cal injection vectors such as OR ’a’ = ’a’ or the like into legal statements.
The intention was to observe whether, using different models, the SVM is to
distinguish between legal and malicious statements even though the latter were
only marginally different. We created two sets with different ratios of normal to
malicious queries, one with 200:15, the other with 1000:15 queries.

5.1 Importance of Context

A central question in our work is the importance of contextual information when
analyzing SQL queries. We therefore analyzed approaches such as n-grams, term-
vector and the SQL vectorization described in section 3.2. In this experiment we
did not mean to train a detector, but wanted to explore the expressiveness of the
different models and determined the detection rate (TPR) and the false-positive
rate (FPR) of the different modelling approaches. As learning algorithm we used
an SVM approach within a 10-fold cross-validation.
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Table 1. Separation capabilities of the different models based on a 10-fold cross-
validation

Model Ratio 200:15 Ratio 1000:15
TPR FPR time TPR FPR time

3-gram 0.6667 0.000 71 s 0.6667 0.002 643 s
4-gram 0.3333 0.000 149 s 0.7333 0.002 1055 s
Term vectors 0.6667 0.005 2 s 0.7333 0.002 283 s
SQL vectors 0.8667 0.000 16 s 0.8667 0.001 67 s

As you can see from table 1, the use of context information results in per-
formance gains especially with respect to the detection rate (TPR) and the
fraction of false positives (FPR). This supports our thesis on the importance of
the context when analyzing SQL queries. It is worth noting, that the variance
in TPR/FPR within the 10-fold cross validation proved to be much smaller for
the context-sensitive methods. Additionally, the training time using term- or
sql-vectorization decreased due to the smaller number of (irrelevant) attributes.
The times in table 1 refer to the complete parameter-optimization and 10-fold
cross-validation process.

5.2 Query Analysis Using Tree-Kernels

Using the tree-kernel similarity we are interested in analyzing an application’s
structure by means of different sets of similar statements used. Therefore we used
the kernel similarity within an interval self-organizing map (ISOM) to create a
visualization of an application’s statements. In figure 2 you see the ISOM of
200 regular queries taken from Typo-3 (dots), supplemented by 15 modified
“malicious” modifications (squares).

As can be seen in figure 2 the kernel does consolidate similar queries into
clusters, an inspection of the clustered regions revealed very reasonable groups,
such as “all page-content queries”, “all session update queries” and so on. The
heaps of dots turned out to be of a very similar structure, only differing in
terminal symbols. Further adding edges to the ISOM showed, that the modified
queries are consolidated very late, showing that they are highly dissimilar.

Fig. 2. ISOM of 215 Typo-3 queries (200 legal, 15 anomalous), created by the CSC
tree-kernel (λ = 0.6, m = 10)
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Fig. 3. Intra-Cluster ISOM of a cluster consisting of 46 legal queries and one single
anomalous modification, which resulted from adding SQL injection elements

5.3 Intra-cluster ISOMs

As the ISOM experiments proved to be useful to get a feeling for the similarity
measure, we employed a KMedoids clustering algorithm based on the tree-kernel
distance and inspected the clusters by creating ISOMs of each cluster separately.
Figure 3 shows the ISOM of a cluster containing “attacks” which are similar to
the majority of the queries, but differ by injected SQL fragments.

Within this cluster the anomalous queries is the one most dissimilar from
all other, resulting in isolation. The queries in the left-hand group are related
to selecting language-specific content from the database, whereas the group on
the right contains queries selecting page-content related to a user-id UID. The
anomalous query contains an additional OR UID > 0, neutralizing the UID check.

This yields a two-way analysis which uses a clustering approach to first group
the different kinds of statements and then uses an intra-cluster outlier detection
for the detection of malicious queries.

6 Conclusions and Future Work

We presented two approaches for a context sensitive modelling/fingerprinting of
SQL queries by use of generic models. Using tree-kernels for analyzing SQL state-
ments brings together the results of natural language processing with a highly
structured query language. The results confirm the benefit of incorporation of
syntax information of previous works [11,12] in the domain of SQL queries.

The consideration of the SQL structures shows performance gains in both
performance and speed, the later due to the fewer but far more meaningful
features. Compared to previous approaches the tree-kernels allow for a similarity
measure on SQL statements providing flexible generalization capabilities.

However, a drawback in the use of tree-kernels is their computational over-
head. Given a set of 1015 queries, the computation of the kernel matrix took
about 210 seconds. Use of hierarchical models, such as hierarchical clustering,
may lower the impact of this performance decrease for future detection models.

Here, our first Clustering and ISOM experiments in 5 show the usefulness
of tree-kernels as a similarity measure in order to visualize SQL queries in ap-
plications. However, the tree-kernel approach still offers a lot of optimization
possibilities and needs further investigation. In future works we therefore plan
on using inter-cluster outlier detection to create hierarchical anomaly detection
models based on tree-kernels over SQL parse-trees.
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Abstract. We propose a syscall-based anomaly detection system that
incorporates both deterministic and stochastic models. We analyze in
detail two alternative approaches for anomaly detection over system call
sequences and arguments, and propose a number of modifications that
significantly improve their performance. We begin by comparing them
and analyzing their respective performance in terms of detection accu-
racy. Then, we outline their major shortcomings, and propose various
changes in the models that can address them: we show how targeted
modifications of their anomaly models, as opposed to the redesign of the
global system, can noticeably improve the overall detection accuracy.
Finally, the impact of these modifications are discussed by comparing
the performance of the two original implementations with two modified
versions complemented with our models.

Keywords: Anomaly Detection, System Call Models, Deterministic
Models, Stochastic Models, Self Organizing Map.

1 Introduction

Since the seminal work of Forrest et al. [1], system call-based anomaly detection
enjoyed immense popularity. The core of any anomaly detection system consists
of a composition of effective models to accurately capture the observed system
behavior.

While usually the approach is to re-design the whole system, we propose a
much more effective way of improving over previous results. We selectively iden-
tify well-performing models, and compose them in novel ways to create improved
detectors. To demonstrate our point, two alternative and quite complementary
techniques [2,3] are chosen, in order to have a rich set of models to analyze
and improve. In particular, we focus on incremental models improvements, and
on cross-pollination among different approaches. We show how this process of
analysis and improvement leads to globally improved detection accuracy with
minimal efforts, as opposed to the re-design of the global system structure. We
concentrate on the use of unsupervised learning algorithms, because this type
of learning uses rather complex models and representations, creating an ideal
testing ground for model improvement. Also, while most models are only based
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on the program control flow, we deem it important to analyze also the content
of the calls, as many attacks today are not exclusively based on control flow
deviations.

The first prototype we analyze is based on a Finite State Automaton (FSA)
augmented with dataflow information. We show that its promising capabilities
(e.g., precise modeling of the control flow and solid relationship) are paid dearly
in terms of low robustness. Indeed, several false detections are triggered by slight
differences between the actual parameters and the learned, crisp models. On the
opposite hand, we examine a model based on Markov chain modeling augmented
by statistical anomaly models. It is able to capture frequency information and
to infer relationships between different arguments of same system call, but has
a number of shortcomings in terms of false positives and negatives.

We propose a set of modifications that can address some of the shortcomings
of these prototypes. The impact of these modifications is analyzed by comparing
performance and detection accuracy of the two original prototypes versus two
modified, hybrid versions complemented with the new models. Without taking
into account arguments values, hybrid systems based on both syscall sequences
and control/data flows are not more accurate than pure control flow based ones
[4]. On the other hand, we empirically show how the accuracy of a data flow IDS
increases if call arguments are included in the models.

The remainder of this paper is organized as follows. In Section 2 we describe
the two different prototypes implemented in previous works, along with the
improvements we describe in Section 3. In Section 4 we evaluate the Detection
Rate (DR), the False Positive Rate (FPR), and speed of the original and modified
systems. In Section 5 we review the most relevant, recent host-based anomaly
detection proposed in the literature.

2 Two Existing Approaches to System Call Anomaly
Detection

In this section we describe the results of the analysis we conducted on the chosen
anomaly detection systems.

2.1 FSA-Based Implementation

The first prototype we analyzed is a deterministic IDS which builds an FSA
model of each monitored program [2], on top of which it creates a network of
relations (or properties) among the system call arguments encountered during
training. In the following, we call it “FSA-DF” as a shorthand. Such a network
of properties is the main difference w.r.t. other FSA based IDSes. Instead of a
pure control flow check, which focuses on the behavior of the software in terms
of sequences of system calls, it also performs a so called data flow check on the
internal variables of the program along their existing cycles.

This knowledge is exploited in terms of unary and binary relationships. For
instance, if an open system call always uses the same filename at the same point,
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1 int foo(char∗ dir , char∗ f i l e ) {
2 source dir = dir ; ta rget f i l e = f i l e ;
3 out = open( target f i l e , WR);
4 push( source dir ) ;
5 while ((dir name = pop()) != NULL) {
6 d = opendir(dir name ) ;
7 foreach ( dir entry ∈ d) {
8 i f ( isd i rectory ( dir entry ))
9 push( dir entry ) ;

10 else {
11 in = open(dir entry , RD);
12 read( in , buf ) ;
13 write (out , buf ) ;
14 close ( in ) ;
15 }
16 }
17 }
18 close (out ) ;
19 return 0;
20 }
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return(0)

Fig. 1. A data flow example with both unary and binary relations

a unary property can be derived. Similarly, relationships among two arguments
are supported, by inference over the observed sequences of system calls, creating
constraints for the detection phase. Unary relationships include equal (the value
of a given argument is always constant), elementOf (an argument can take a lim-
ited set of values), subsetOf (a generalization of elementOf, indicating that an
argument can take multiple values, all of which drawn from a set), range (spec-
ifies boundaries for numeric arguments), isWithinDir (a file argument is always
contained within a specified directory), hasExtension (file extensions). Binary re-
lationships include: equal (equality between system call operands), isWithinDir
(file located in a specified directory; contains is the opposite), hasSameDirAs,
hasSameBaseAs, hasSameExtensionAs (two arguments have a common directory,
base directory or extension, respectively).

The behavior of each application is logged by storing Process IDentifier (PID),
Program Counter (PC), along with the system calls invoked, their arguments and
returned value. The use of the PC to identify the states in the FSA stands out
as an important difference from other approaches. The PC of each system call
is determined through stack unwinding (i.e., going back through the activation
records of the process stack until a valid PC is found). FSA-DF obviously handles
process cloning and forking.

The learning algorithm is rather simple: each time a new value is found, it is
checked against all the known values of the same type. Relations are inferred for
each execution of the monitored program and then pruned on a “set intersection”
basis. For instance, if relations R1 and R2 are learned from an execution trace
T1 but R1 only is satisfied in trace T2, the resulting model will not contain R2.
Such a process is obviously prone to false positives if the training phase is not
exhaustive, because invalid relations would be kept instead of being discarded.
Figure 1 shows an example (due to [2]) of the final result of this process. During
detection, missing transitions or violations of properties are flagged as alerts. The
detection engine keeps track of the execution over the learned FSA, comparing
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Fig. 2. The high-level architecture of our S2A2DE prototype

transitions and relations with what happens, and raising an alert if an edge is
missing or a constraint is violated.

The FSA approach is promising and has interesting features especially in
terms of detection capabilities. On the other hand, it only takes into account
relationships between different types of arguments. Also, the set of properties
is limited to pre-defined ones and totally deterministic. This leads to a possibly
incomplete detection model potentially prone to false alerts. In Section 3 we
detail how our approach improves the original FSA-DF implementation.

2.2 Markov Chains-Based Implementation

The second prototype we analyze is called S2A2DE (Syscall Sequence and Argu-
ment Anomaly Detection Engine) [3,5]. It exploits Markov chains to describe the
behavior of a process. More specifically, S2A2DE analyzes processes as sequences
of system calls S = [s1, s2, s3, . . .]. Each call si is characterized by a type (e.g.
read, write, exec, etc.), a list of arguments (e.g., the resource path passed to
open), a return value, and a timestamp. Neither the return value nor the absolute
timestamp are taken into account.

S2A2DE can be decomposed in the basic blocks shown in Figure 2. During
training, each application is profiled using a two-phase procedure applied to each
type of system call separately. Firstly, a single-linkage, bottom-up, agglomera-
tive, hierarchical clustering algorithm [6] is used to find sub-clusters of invoca-
tions with similar arguments. Anomaly models are created upon these clusters,
and not on the specific system call, in order to better capture normality and de-
viations on a more compact input space. This is important because some system
calls, most notably open, are used in very different ways. By exploiting effective
distance models between arguments of the same type, the agglomerate system
call is divided into sub-groups that are specific to a single function. For instance,
invocations of open in httpd differs from those in, say, login. Afterwards, the
system builds anomaly models of the parameters inside each cluster. It is impor-
tant to note that the models used for computing distance (for clustering) and
those used to build the “representation” of the cluster for anomaly detection are
not necessarily the same. More details on how the distance are defined, and on
the anomaly models used by S2A2DE, can be found in [3].

The second phase of training takes into account the execution context of each
call to build a behavioral profile of programs flow. Markov chains are constructed
on top of the various clusters output from the first phase: one cluster corresponds
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to one state of the chain. For instance, with three clusters for the open syscall,
and two of the execve syscall, then the chain is constituted by five states: open1,
open2, open3, execve1, execve2. Each transition reflects the probability of pass-
ing from one of these groups to another through the program. This approach
was investigated in former literature [7,8,1,9,10], but never in conjunction with
the handling of parameters and with a clustering approach.

During training, each execution of the program in the training set is consid-
ered as a sequence of observations. Using the output of the clustering process,
each syscall is classified into the correct cluster, by computing the probability
value for each model and choosing the cluster whose models give out the maxi-
mum composite probability along all known models: max(

∏
i∈M Pi). The other

probabilities are then straightforward to compute. S2A2DE is resistant to the
presence of a limited number of outliers (e.g. abruptly terminated executions or
attacks) in the training set, because the resulting transition probabilities will
drop near zero. For the same reason, it is also resistant to the presence of any
cluster of anomalous invocations created by the clustering phase. Therefore, the
presence of a minority of attacks in the training set will not adversely affect the
learning phase, which in turn does not require an attack-free training set, and
thus it can be performed on the deployment machine.

At detection time, the cluster models are once again used to classify each
syscall into the correct cluster. The probability value for each model is com-
puted and the stored cluster whose models give out the maximum composite
probability Pc = max(

∏
i∈M Pi) is chosen as the correct “system call class”.

Anomaly thresholds are built upon two probabilities, the punctual probability
Pp and the sequence probability Ps. The former is Pp = Pc ·Pm, where Pc is the
probability of the system call to belong to the best-matching cluster and Pm is
the latest transition probability in the chain. Ps is the probability of the whole
execution sequence to fit the whole chain. To avoid Ps to quickly reach zero for

long sequences of system calls, the probability is scaled as Ps(l) = 2l

√
∏l

i=1 Pp(i)i,
where l is the sequence length).

For both the probabilities, threshold values are equal to the lowest probability
over all the training dataset, for each single application, scaled through a user-
defined sensitivity which allows to trade off between detection rate and false
positive rate. A process is flagged as malicious if either Ps or Pp = Pc · Pm are
lower than the corresponding thresholds.

3 Enhanced Detection Models

The improvements we made focus on path and execution arguments. String length
is now modeled using a Gaussian interval as detailed in Section 3.1. The new
edge frequency model described in Section 3.2 have been added to detect Denial
of Service (DoS) attacks. Also, in Section 3.3 we describe how we exploited Self
Organizing Maps (SOMs) to model the similarity among path arguments. The
resulting system, Hybrid IDS. incorporates the models of FSA-DF and S2A2DE
along with the aforementioned enhancements.
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3.1 Arguments Length Using Gaussian Intervals

The model for system call execution arguments implemented in S2A2DE takes
into account the minimum and maximum length of the parameters found during
training, and checks whether each string parameter falls into this range (model
probability 1) or not (model probability 0). This technique allows to detect
common attempts of buffer overflow through the command line, for instance,
as well as various other command line exploits. However, such criteria do not
model “how different” two arguments are to each others; a smoother function
is more desirable. Furthermore, the frequency of each argument in the training
set is not taken into account at all. Last but not least, the model is not resilient
to the presence of attacks in the training set; just one occurrence of a malicious
string would increase the length of the maximum interval allowing argument of
almost every length.

The improved version of the interval model uses a Gaussian distribution for
modeling the argument length Xargs = |args|, estimated from the data in terms
of sample mean and sample variance. The anomaly threshold is a percentile Targs

centered on the mean. Arguments which length is outside the stochastic interval
are flagged as anomalous. This model is resilient to the presence of outliers
in the dataset. The Gaussian distribution has been chosen since is the natural
stochastic extension of a range interval for the length. An example is shown in
Figure 3.

Model Validation. During detection the model self-assesses its precision by
calculating the kurtosis measure [11], defined as γX = E4(X)

Var(X)2 . Thin tailed dis-
tributions with a low peak around the mean exhibit γX < 0 while positive values
are typical of fat tailed distributions with an acute peak. We used γ̂X = μX,4

σ4
X

−3
to estimate γX . Thus, if γXargs < 0 means that the sample is spread on a big in-
terval, while positive the values indicates a less “fuzzy” set of values. It is indeed
straightforward that highly negative values indicates not significant estimations
as the interval would include almost all lengths. In this case, the model falls back
to a simple interval.
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Fig. 3. Estimated Gaussian intervals for string length. Training data of sudo (left)
and ftp (right) was used. N (29.8, 184.844), thresholds [12.37, 47.22] (left) and
N (19.25, 1.6875), thresholds [16.25, 22.25] (right).
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3.2 DoS Detection Using Edge Traversal Frequency

DoS attacks which force the process to get stuck in a legal section of the normal
control flow could be detected by S2A2DE as violations of the Markov model,
but not by FSA-DF. On the other hand, the statistical models implemented in
S2A2DE are more robust but have higher False Negative Rates (FNR) than the
deterministic detection implemented in FSA-DF. However, as already stated in
Section 2.2, the cumulative probability of the traversed edges works well only
with execution traces of similar and fixed length, otherwise even the rescaled
score decreases to zero, generating false positives on long traces.

To solve these issues a stochastic model of the edge frequency traversal is
used. For each trace of the training set, our algorithm counts the number of edge
traversals (i.e., Markov model edge or FSA edge). The number is then normalized
w.r.t. all the edges obtaining frequencies. Each edge is then associated to the
sample Xedge = x1, x2, . . . . We show that the random samples Xedge is well
estimated using a Beta distribution. Figure 4 shows sample plots of this model
estimated using the mt-daapd training set; quantiles associated to the thresholds
are computed and shown as well. As we did for the Gaussian model (Section 3.1),
the detection thresholds are defined at configuration time as a percentile Tedge

centered on the mean (Figure 4). We chose the Beta for its high flexibility; a
Gaussian is unsuitable to model skewed phenomena.
Model Validation. Our implementation is optimized to avoid overfitting and
meaningless estimations. A model is valid only if the training set includes a sig-
nificant (|mini{xi} − maxi{xi}| ≥ δxmin = 0.04) amount (Nmin

edge = 6) of paths.
Otherwise it construct a simpler frequency range model. The model exhibits the
side effect of discarding the extreme values found in training and leads to erro-
neous decisions. More precisely, if the sample is Xedge = 1, 1, . . . , 0.9, 1, the right
boundary will never be exactly 1, and therefore legal values will be discarded. To
solve this issue, the quantiles close to 1 are approximated to 1 according to a con-
figuration parameter X̄cut. For instance, if X̄cut = 3 the quantile FX(·) = 0.999̄
is approximated to 1.

Fig. 4. Two different estimations of the edge frequency distribution. Namely,
Beta(178.445, 157.866) with thresholds [0.477199, 0.583649] (left) and
Beta(10.3529,181.647) with thresholds [0.0266882, 0.0899057] (right).



Selecting and Improving System Call Models for Anomaly Detection 213

3.3 Path Similarity Using Self Organizing Maps

Path argument models are already implemented in S2A2DE and FSA-DF. Sev-
eral, general-purpose string comparison techniques have been proposed so far,
especially in the field of database systems and data cleansing [12]. We propose
a solution based on Symbol-SOMs [13] to define an accurate distance metric
between paths. Symbol SOM implements a smooth similarity measure otherwise
unachievable using common, crisp distance functions among strings (e.g., edit
distance).

The technique exploits Self Organizing Maps (SOMs), which are unsupervised
neural algorithms. A SOM produces a compressed, multidimensional represen-
tation (usually a bi-dimensional map) of the input space by preserving the main
topological properties. It is initialized randomly, and then adapted via a compet-
itive and cooperative learning process. At each cycle, a new input is compared
to the known models, and the Best Matching Unit (BMU) node is selected.
The BMU and its neighborhood models are then updated to make them better
resemble future inputs.

We use the technique described in [14] to map strings onto SOMs. Formally,
let St = [st(1) · · · st(L)] denote the t-th string over the alphabet A of size |A|.
Each symbol st(i), i = 1 . . . L, is then encoded into a vector st(i) of size |A|
initialized with zeroes except at the w-th position which corresponds to the
index of the encoded symbol (e.g., st(i) = ‘b′ would be st(i) = [0 1 0 0 · · · 0]T ,
w = 2). Thus, each string St is represented with sequence of L vectors like st(i),
i.e. a L × |A|-matrix: S

t
.

Let S
t
and M

k
denote two vector-encoded strings, where M

k
is the model as-

sociated with SOM node k. The distance between the two strings is D′(St, Mk) =
D(S

t
, M

k
). D(·, ·) is also defined in the case of LSt = |St| �= |Mk| = LMk

re-
lying on dynamic time warping techniques to find the best alignment between
the two sequences before computing the distance. Without going into details,
the algorithm [13] aligns the two sequences st(i) ∈ S

t
, mk(j) ∈ M

k
using a

mapping [st(i), mk(j)] �→ [st(i(p)), mk(j(p))] defined through the warping func-
tion F : [i, j] �→ [i(p), j(p)]: F = [[i(1), j(1)], . . . , [i(p), j(p)], . . . , [i(P ), j(P )]].
The distance function D is defined over the warping alignment of size P ,
D(S

t
, M

k
) =

∑P
p=1 d(i, j), which is P = LSt = LMk

if the two strings have
equal lengths. d(i, j) = d(i(p), j(p))||st(i(p)) − mk(j(p))||.

The distance is defined upon gi,j = g(i, j), the variable which stores the
cumulative distance in each trellis point (i, j) = (i(p), i(p)). The trellis is first
initialized to 0 in (0, 0), to +∞ for both (0, ·) and (·, 0), otherwise:

g(i, j) = min

⎧
⎨

⎩

g(i, j − 1) + d(i, j)
g(i − 1, j − 1) + d(i, j)
g(i − 1, j) + d(i, j)

Note that i ∈ [1, LSt] and j ∈ [1, LMk
] thus the total distance is D(S

t
, M

k
) =

g(LSt , LMk
). A simple example of distance computation is show in Figure 5 (A is

the English alphabet plus extra characters). The overall distance is D′(St, Mk) =
8.485. We used a symmetric Gaussian neighborhood function h whose center is
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D(S
t
, M

k
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Fig. 5. Distance computation example between /bin/sh an /var/log

located at the BMU c(t). More precisely, h(k, c(t), t) = α(t)e−
d(c(t),k)
2σ2(t) , where

α(t) controls the learning rate and σ(t) is the actual width of the neighborhood
function. The SOM algorithm uses two training cycles. During (1) adaptation
the map is more flexible, while during (2) tuning the learning rate α(·) and the
width of the neighborhood σ(·) are decreased. On each phase such parameters
are denoted as α1, α2, σ1, σ2.

Symbol SOMs are “plugged” into FSA-DF by associating each transition with
the set of BMUs learned during training. At detection, an alert occurs whenever
a path argument falls into neighborhood of a non-existing BMU. Similarly, in the
case of S2A2DE, the neighborhood function is used to decide whether the string
is anomalous or not, according to a proper threshold which is the minimum value
of the neighborhood function encountered during training, for each node.

4 Experimental Evaluation

In this section we describe our efforts to cope with the lack of reliable testing
datasets for intrusion detections. The testing methodology is here detailed along
with the experiments we designed. Both detection accuracy and performance
overhead are subjects of our tests.

4.1 Testing Methodology and Data Generation

Comparing and benchmarking IDSes is a well known problem [15]. Since the
commonly used DARPA evaluation datasets exhibit well known shortcomings,
we decided to generate a new dataset. We chose a number of recent exploits
from CVE, including different types of vulnerabilities (code injections, file writes,
denial of service attacks) as well as attacks that easily evade existing IDSes by
slightly modifying the data flows and not the control flows. Clean training data
was obtained by collecting benign system calls sequences during the normal
execution of the target applications. We used attacks against sing, mt-daapd,
proftpd, sudo, and BitchX. We refer to the vulnerabilities by their Common
Vulnerabilities Exposures (CVE) ID.



Selecting and Improving System Call Models for Anomaly Detection 215

Table 1. Parameters used to train the IDSes. Values includes the number of traces
used, the amount of paths encountered and the number of paths per cycle.

sing mt-daapd proftpd sudo BitchX mcweject bsdtar

SOM size 15 × 15 15 × 15 15 × 15 15 × 15 10 × 10 15 × 15 15 × 15
Traces 18 18 18 18 14 10 240

Syscalls 5808 194879 64640 52034 103148 84 12983
Paths 2700 2700 23632 1316 14921 48 3477

Paths/cycle% 2 2 1 8 1 50 2

Specifically, sing is affected by CVE-2007-6211, a vulnerability which allows
to write arbitrary text on arbitrary files by exploiting a combination of parame-
ters. This attack is meaningful because it does not alter the control flow, but just
the data flow, with an open which writes on unusual files. Training datasets con-
tain traces of regular usage of the program invoked with large sets of command
line options.

mt-daapd is affected by a format string vulnerability (CVE-2007-5825) in ws -
addarg(). It allows remote execution of arbitrary code by including the format
specifiers in the username or password portion of the base64-encoded data on
the Authorization: Basic HTTP header sent to /xml-rpc. The mod ctrls
module of proftpd let local attackers to fully control the integer regarglen
(CVE-2006-6563) and exploit a stack overflow to gain root privileges.

sudo does not properly sanitize data supplied through SHELLOPTS and PS4
environment variables, which are passed on to the invoked program (CVE-2005-
2959). This leads to the execution of arbitrary commands as privileged user, and
it can be exploited by users who have been granted limited superuser privileges.
The training set includes a number of execution of programs commonly run
through sudo (e.g., passwd, adduser, editing of /etc/ files) by various users
with different, limited superuser privileges, along with benign traces similar to
the attacks, invoked using several permutations of option flags.

BitchX is affected by CVE-2007-3360, which allows a remote attacker to exe-
cute arbitrary commands by overfilling a hash table and injecting an EXEC hook
function which receives and executes shell commands. Moreover, failed exploit
attempts can cause DoS. The training set includes several IRC client sessions
and a legal IRC session to a server having the same address of the malicious one.

In order to evaluate and highlight the impact of each specific model, we per-
formed targeted tests rather than reporting general DRs and FPRs only. Also, we
ensured that all possible alerts types are inspected (i.e., true/false positive/neg-
ative). In particular, for each IDS, we included one legal trace in which file
operations are performed on files never seen during training but with a similar
name (e.g., training on /tmp/log, testing on /tmp/log2); secondly, we inserted
a trace which mimics an attack.
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4.2 Comparison of Detection Accuracy

The detection accuracy of Hybrid IDS (H), FSA-DF (F) and S2A2DE (S) is
here analyzed and compared. Both training parameters and detection results
are summarized in Table 1. The parameters used to train the SOM are fixed
except for σ1(t): α1(t) = 0.5÷0.01, σ2(t) = 3 and α2(t) = 0.1÷0.01. Percentiles
for both Xargs and Xedge are detailed. The “paths/cycle%” (paths per cycle) row
indicates the amount of paths arguments used for training the SOM. The settings
for clustering stage of S2A2DE are constant: minimum number of clusters (3, or
2 in the case of the open); maximum merging distance (6, or 10 in the case of
the open); the “null” and the “don’t care” probability values are fixed at 0.1 and
10, respectively, while 10 is the maximum number of leaf clusters. In order to
give a better understanding of how each prototype works, we analyzed by hand
the detection results on each target application.

sing: Hybrid IDS is not tricked by the false positive mimic trace inserted. The
Symbol SOM model recognizes the similarity of /tmp/log3 with the other
paths inserted in the training. Instead, both FSA-DF and S2A2DE raise
false alarms; the former has never seen the path during training while the
latter recognizes the string in the tree path model but an alarm is raised
because of threshold violation. S2A2DE recognizes the attack containing the
longer subsequent invocations of mmap2; FSA-DF also raises a violation in
the file name because it has never been trained against /etc/passwd nor
/etc/shadow; and Hybrid IDS is triggered because the paths are placed in
a different SOM region w.r.t. the training.

mt-daapd: The legit traces violate the binary and unary relations causing several
false alarms on FSA-DF. On the other hand, the smoother path similarity
model allows Hybrid IDS and S2A2DE to pass the test with no false positives.
The changes in the control flow caused by the attacks are recognized by all
the IDSes. In particular, the DoS attack (special-crafted request sent fifty
times) triggers an anomaly in the edge frequency model.

proftpd: The legit trace is correctly handled by all the IDSes as well as the
anomalous root shell that causes unexpected calls (setuid, setgid and
execve) to be invoked. Howerver, FSA-DF flags more than 1000 benign
system calls as anomalous because of temporary files path not present in the
training.

sudo: Legit traces are correctly recognized by all the engines and attacks are
detected without errors. S2A2DE fires an alert because of a missing edge
in the Markov model (i.e., the unexpected execution of chown root:root
script and chmod +s script). Also, the absence of the script string in the
training triggers a unary relation violation in FSA-DF and a SOM violation
in Hybrid IDS. The traces which mimic the attack are erroneously flagged
as anomalous, because the system call sequences are strictly similar to the
attack.



Selecting and Improving System Call Models for Anomaly Detection 217

BitchX: The exploit is easily detected by all the IDSes as a control flow vi-
olation through extra execve system calls are invoked to execute injected
commands. Furthermore, the Hybrid IDS anomaly engine is triggered by
three edge frequency violations due to paths passed to the FSA when the
attack is performed which are different w.r.t. the expected ones.

4.3 Specific Comparison of SOM-S2A2DE and S2A2DE

We also specifically tested how the introduction of a Symbol SOM improves over
the original probabilistic tree used for modeling the path arguments in S2A2DE.
As summarized in right side of Table 2, the FPR decreases in the second test.
However, the first test exhibits a lower FNR as detailed in the following.

The mcweject utility is affected by a stack overflow CVE-2007-1719 caused by
improper bounds checking. Root privileges can be gained if mcweject is setuid.
The exploit is as easy as eject -t illegal payload, but we performed it through
userland exec [16] to make it more silent avoiding the execve that obviously trig-
gers an alert in the S2A2DE for a missing edge in the Markov chain. Instead, we
are interested in comparing the string models only. SOM-S2A2DE detects it with
no issues because of the use of different “types” of paths in the opens.

An erroneous computation of a buffer length is exploited to execute code via
a specially crafted PAX archives passed to bsdtar (CVE-2007-3641). A heap
overflow allows to overwrite a structure pointer containing itself another pointer
to a function called right after the overflow. The custom exploit [16] basically
redirects that pointer to the injected shellcode. Both the original string model
and the Symbol SOM models detect the attack when the unexpected special
file /dev/tty is opened. However, the original model raises many false positives
when significantly different paths are encountered. This situation is instead han-
dled with no false positives by the smooth Symbol SOM model.

4.4 Performance Evaluation and Complexity Discussion

We performed both empirical measurements and theoretical analysis of the per-
formance of the various proposed prototypes. Detection speed results are sum-
marized in Table 3. The datasets for detection accuracy were reused: we selected

Table 2. Comparison of the FPR of S2A2DE vs. FSA-DF vs. Hybrid IDS and S2A2DE
vs. SOM-S2A2DE. Values include the number of traces used. Accurate description of
the impact of each individual model is in Section 4.2 (first five columns) and 4.3 (last
two columns).

sing mt-daapd profdtpd sudo BitchX mcweject bsdtar

Traces 22 18 21 22 15 12 2
Syscalls 1528 9832 18114 3157 107784 75 102

S2A2DE 10.0% 0% 0% 10.0% 0.0%
0.0% 8.7% S2A2DE

FSA-DS 5.0% 16.7% 28% 15.0% 0.0%
0.0% 0.0% SOM-S2A2DE

Hybrid IDS 0.0% 0% 0% 10.0% 0.0%
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Table 3. Detection performance measured in µsec/syscall. The average speed is mea-
sured in syscall/sec (last column).

sing sudo BitchX mcweject bsdtar Avg. speed

System calls 3470 15308 12319 97 705

S2A2DE 115.3 52.26 154.2 1030 141.8 8463
FSA-DF 374.6 97.98 97.41 - - 7713

Hybrid IDS 7492 378.8 2167 - - 1067
SOM-S2A2DE - - - 90721 26950 25

the five test applications on which the IDSes performed worst. Hybrid IDS is
slow because the BMU algorithm for the symbol SOM is invoked for each sys-
tem call with a path argument (opens are quite frequent), slowing down the
detection phase. Also, we recall that the current prototype relies on a system
call interceptor based on ptrace which introduces high runtime overheads, as
shown in [2]. To obtain better performance, an in-kernel interceptor could be
used. The theoretical performance of each engine can be estimated by analyzing
the bottleneck algorithm.

Complexity of FSA-DF. During training, the bottleneck is the binary relation
learning algorithm. T train

F = O(S · M + N), where M is the total number of
system calls, S = |Q| is the number of states of the automaton, and N is the
sum of the length of all the string arguments in the training set. At detection
T det

FSA−DF = O(M + N).
Assuming that each system call has O(1) arguments, the training algorithm

is invoked O(M) times. The time complexity of each i-th iteration is Yi + |Xi|,
where Yi is the time required to compute all the unary and binary relations
and |Xi| indicates the time required to process the i − th system call X . Thus,
the overall complexity is bounded by

∑M
i=1 Y + |Xi| = M · Y +

∑M
i=1 |Xi|. The

second factor
∑M

i=1 |Xi| can be simplified to N because strings are represented
as a tree; it can be shown [2] that the total time required to keep the longest
common prefix information is bounded by the total length of all input strings.
Furthermore, Y is bounded by the number of unique arguments, which in turn is
bounded by S; thus, T train

F = O(S ·M +N). This also prove the time complexity
of the detection algorithm which, at each state and for each input, requires unary
and binary checks to be performed; thus, its cost is bounded by M + N . �

Complexity of Hybrid IDS. In the training phase, the bottleneck is the
Symbol SOM creation time: T train

H = O(C ·D · (L2 +L)), where C is the number
of learning cycles, D is the number of nodes, and L is the maximum length of
an input string. At detection time T det

H = O(M · D · L2).
T train

H depends on both the number of training cycles, the BMU algorithm
and node updating. The input is randomized at each training session and
a constant amount of paths is used, thus the input size is O(1). The BMU
algorithm depends on both the SOM size and the distance computation,
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bounded by Linput · Lnode = L2, where Linput and Lnode are the lengths
of the input string and the node string, respectively. More precisely, the
distance between strings is performed by comparing all the vectors representing,
respectively, each character of the input string and each character of the node
string. The char-by-char comparison is performed in O(1) because the size of
each character vector is fixed. Thus, the distance computation is bounded by
L2 � Linput ·Lnode. The node updating algorithm depends on both the number
of nodes D, the length of the node string Lnode and the training cycles C,
hence each cycle requires O(D · (L2 + L)), where L is the length of the longest
string. The creation of the FSA is similar to the FSA-DF training, except
for the computation of the relations between strings which time is no longer
O(N) but it is bounded by M · D · L2 (i.e., the time required to find the Best
Matching Unit for one string). Thus, according to Proof 1, this phase requires
O(S ·M +M ·D ·L2) < O(C ·D · (L2 +L)). The detection time T det

H is bounded
by the BMU algorithm, that is O(M · D · L2). �

The clustering phase of S2A2DE is O(N2) while with SOM-S2A2DE it
grows to O(N2L2).

In the worst case, the clustering algorithm used in [3] is known to be O(N2),
where N is the number of system calls: the distance function is O(1) and the
distance matrix is searched for the two closest clusters. In the case of SOM-
S2A2DE, the distance function is instead O(L2) as it requires one run of the
BMU algorithm. �

5 Related Work

Due to space limitations we focus on the subset of literature which uses unsu-
pervised learning algorithms for anomaly detection over system calls. We refer
the reader to [17] for a more comprehensive and taxonomic review.

The first mention of intrusion detection through the analysis of the sequence
of syscalls from system processes is in [18], where “normal sequences” of system
calls (similar to N -grams) are considered (ignoring the parameters of each invo-
cation). Variants of [18] have been proposed in [19,7,1]; this type of techniques
can also be used a reactive, IPS-like fashion [20]. The core assumption is that
intrusions generate sequences of system calls that are unusual during normal
application usage. Each sequence of system calls is tokenized in substrings using
a sliding window of N elements. All the substrings seen in training are stored;
during detection, any N -gram never seen before raises an alarm. The precision
of this method depends on the value chosen for N . A low value of N tends to
generate false negatives (the worst-case scenario, N = 1, only checks if a system
call was already seen during training).

FSA have also been used to express the language of the system calls of a
program, using either deterministic [21] or non-deterministic [22] automata. The
issue when using FSA is how to define the states of the machine: at the highest
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level of detail, each state is linked to a specific instruction of the program, while
transitions are usually identified with system calls. An FSA improves over the
N -gram model with better efficiency and, in addition, it does not suffer from the
choice of arbitrary parameter N .

A static analysis approach to extract a call graph was proposed in [23]. Giffin
et al. [24] developed a different version of this approach, based on the anal-
ysis of the binaries, integrating the execution environment as a model con-
straint. However, static analysis approaches such as these follow all possible
execution paths, therefore they are conservative and may include additional, ex-
traneous control flows; they may also leave more way for mimicry attacks. On
the other hand, automatically generating a compact FSA representation from
system call traces is not an easy task. A similar method [25] uses pushdown
automata to enrich the model with a “stack” structure, which is used to choose
each next transition to take, and can be manipulated as part of the transi-
tion. In Section 2.1 we described more in depth an IDS based on this approach
[2] which uses the program counter to define states and syscalls as transitions,
but complements them with dataflow information. However, all these meth-
ods suffer from an inherent brittleness: if the training is insufficient, a number
of false positives could be generated because the models are extremely nar-
row. The use of Hidden Markov Models (HMMs) has also been proposed to
model sequences of system calls [9]. In [26] HMMs are compared with the mod-
els used in [19,20] and shown to perform considerably better, even if with an
added computational overhead; unfortunately, the datasets used for the com-
parative evaluation are no longer available for comparison. Using Markov chains
instead of hidden models decreases this overhead, as observed in [27]. In [28]
HMMs are observed to perform considerably better than FSA and similar mod-
els. The main difference of these models stochastic part: the transitions are
not deterministic but linked to a probability and this could allow a reduc-
tion of the FPR. In Section 2.2 we analyzed S2A2DE [3], a HIDS based on
this approach, but which complements it with anomaly models built on syscall
arguments.

The two systems analyzed in Section 2 also take into account the parame-
ters of the system calls. Even if this is an inherently complex task, it has been
already proven to yield a lot of potential. For instance, mimicry attacks [29]
can evade the detection of syscall sequence anomalies, but it is much harder
to devise ways to cheat both the analysis of sequence and arguments. Besides
the ones we discuss in the following, two other recent research works focused on
this problem. Another example is [30] in which a number of models are intro-
duced to deal with the most common arguments, even if without caring for the
sequence of system calls. In [31] the LERAD algorithm (Learning Rules for Ano-
maly Detection) is used to mine rules expressing “normal” values of arguments,
normal sequences of system calls, or both. However, no relationship among the
values of different arguments is learned; sequences and argument values are han-
dled separately; the evaluation is quite poor however, and uses non-standard
metrics.
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6 Conclusions

We have presented two alternative, state-of-the-art approaches for anomaly de-
tection over system call sequences and arguments: a deterministic IDS which
builds an FSA model complemented by a network of dataflow relationships
among the system call arguments (which we nicknamed FSA-DF), and a proto-
type named S2A2DE which builds a Markov chain of the system calls, comple-
menting it with several models for detecting anomalies in the parameters and
clustering system calls according to their content. We showed how the model
for system call execution arguments implemented in S2A2DE can be improved
by using better statistical models. We also proposed a new model for counting
the frequency of traversal of edges on the FSA prototype, to make it able to de-
tect denial-of-service attacks. Both systems needed an improved model for string
(path) similarity. We adapted the Symbol SOM algorithm to make it suitable
for computing a “distance” between two paths. We believe that this is the core
contribution of the work.

We tested and compared the original prototypes with an hybrid solution where
the Symbol SOM and the edge traversal models are applied to the FSA, and a
version of S2A2DE enhanced with the Symbol SOM and the correction to the
execution arguments model. Both the new prototypes have the same detection
rates of the original ones, but significantly lower false positive rates. This is
paid in terms of a non-negligible limit to detection speed, at least in our proof
of concept implementation.

Future extensions of this work will re-engineer the prototypes to use an in-
kernel system call interceptor, and generically improve their performance. We
are studying how to speed up the Symbol SOM node search algorithm, in order
to bring the throughput to a rate suitable for online use.
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