Eric Filiol

IRIS international series
directed by Nicolas Puech

Computer viruses:
from theory
to applications

‘na-,::r

@ Springer ¥ BiNRIA

Computer viruses:
from theory to applications

Springer
Paris

Berlin
Heidelberg
New York
Hong Kong
Londres
Milan
Tokyo

Eric Filiol

Computer viruses:
from theory to applications

@ Springer

This eBook does not include ancillary media that was packaged with the
printed version of the book.

Eric Filiol

Chef du laboratoire de virologie et cryptologie
Ecole Supérieure et d'Application des Transmissions
B.P. 18

35998 Rennes Armées

et INRIA-Projet Codes

ISBN 10: 2-287-23939-1 Springer Berlin Heidelberg New York
ISBN 13: 978-2-287-23939-7 Springer Berlin Heidelberg New York

© Springer-Verlag France 2005
Printed in France
Springer-Verlag France is a member of the group Springer Science + Business Media

First edition in French © Springer-Verlag France 2004
ISBN : 2-287-20297-8

Apart from any fair dealing for the purposes of the research or private study, or criticism or review, as permitted under
the Copyright, Designs and Patents Act 1998, this publication may only be reproduced, stored or transmitted, in any
form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduc-
tion in accordance with the terms of licenses issued by the copyright. Enquiry concerning reproduction outside those
terms should be sent to the publishers.

The use of registered names, trademarks, etc, in this publication does not imply, even in the absence of a specific sta-
tement, that such names are exempt from the relevant laws and regulations and therefore free for general use..

SPIN: 11361145

Cover design : Jean-Francois MONTMARCHE

To my wife Laurence,
to my son Pierre,

to my parents,

to Fred Cohen,

to Mark Allen Ludwig

Preface

“Viruses don’t harm, ignorance does. Is ignorance a defense?”
herml1t

“...] I am convinced that computer viruses are not evil and that
programmers have a right to create them, to possess them and to
experiment with them ... truth seekers and wise men have been per-
secuted by powerful idiots in every age ... !

Mark A. Ludwig

FEveryone has the right to freedom of opinion and expression; this
right includes freedom to hold opinions without interference and to
seek, receive and impart information and ideas through any media
and regardless of frontiers.

Article 19 of Universal Declaration of Human Rights

The purpose of this book is to propose a teaching approach to under-
stand what computer viruses! really are and how they work. To do this,
three aspects are covered ranging from theoretical fundamentals, to prac-
tical applications and technical features; fully detailed, commented source

! We will systematically use the plural form “viruses” instead of the litteral one “virii”.
The latter is now an obsolete, though gramatically recommended, form.

VIII Preface

codes of viruses as well as inherent applications are proposed. So far, the
applications-oriented aspects have hardly ever been addressed through the
scarce existing literature devoted to computer viruses.

The obvious question that may come to the reader’s mind is: why did the
author write on a topic which is likely to offend some people? The motivation
is definitely not provocation; the original reason for writing this book comes
from the following facts. For roughly a decade, it turns out that antiviral
defense finds it more and more difficult to organize and quickly respond
to viral attacks which took place during the last four years (remember the
programs caused by the release of worms, such as Sapphire, Blaster or Sobig,
for example). There is a growing feeling among users — and not to say among
the general public — that worldwide attacks give antivirus developers too
short a notice. Current viruses are capable of spreading substantially faster
than antivirus companies can respond.

As a consequence, we can no longer afford to rely solely on antivirus
programs to protect against viruses and the knowledge in the virus field is
wholly in the hands of the antiviral community which is totally reluctant
to share it. Moreover, the problems associated with antiviral defense are
complex by nature, and technical books dedicated to viruses are scarce,
which does not make the job easy for people interested in this ever changing
field.

For all of these reasons, I think there is a clear need for a technical book
giving the reader knowledge of this subject. I hope that this book will go
some way to satisfying that need.

This book is mainly written for computer professionals (systems adminis-
trators, computer scientists, computer security experts) or people interested
in the virus field who wish to acquire a clear and independent knowledge
about viruses as well as incidently of the risks and possibilities they repre-
sent. The only audience the book is not for, is computer criminals, unfairly
referred as “computer geniuses” in the media who unscrupulously encourage
and glamorize them somehow. Computer criminals have no other ambition
than to cause as much damage as possible, which mostly is highly prejudi-
cial to everyone’s interests. In this situation, it is constructive to give some
essential keys that open the door to the virus world and to show how wrong
and dangerous it is to consider computer criminals as “geniuses”.

With a few exceptions, the vast majority of computer vandals and com-
puter copycats simply copy existing programs written by others and clearly
are not very well versed in computer virology. Their ignorance and silliness
just casts a shadow over a fascinating and worthwhile field. As said the fa-

Preface IX

mous French writer, F. Rabelais in 1572, “science without conscience is the
soul’s perdition”.

The problem lies in the fact that users (including administrators) are
doomed, on the one part, to rely on antivirus software developed by profes-
sionals and, on the other part, to be subjected to viral programs written by
computer criminals. Computers were originally created to free all mankind.
The reality is quite different. There is no conceivable reason why some self-
proclaimed experts driven for commercial interests should restrict computer
knowledge. The latter should not be the exclusive domain of the antiviral
programs developers.

In this respect, one of the objectives of the book is to introduce the reader
to the basic techniques used in viral programs. Computer virology is indeed
simply a branch of artificial intelligence, itself a part of both mathematics
and computer science. Viruses are only simple programs, which incidentally
include specific features.

However uncomfortable that may be for certain people, it is easy to pre-
dict that viruses will play an important role in the future. The point of this
book is to provide enough knowledge on viruses so that the user becomes
self-sufficient especially when it comes to antiviral protection and can find
a suitable solution whenever his antiviral software fail to eradicate a virus.
Whether one likes it or not, computer virology teaching is gradually becom-
ing organized. At Calgary University, Canada, computer science students
have been offered a course in virus writing since 2003, which as might be
expected, has set off a wave of criticism within the antivirus community (the
reader will refer to [138,139,147-149] for details).

For all of the above-mentioned reasons, there is no option but to work
on raw material: source codes of viral programs. Knowledge can only gained
through code analysis. Here lies the difference between talking about viruses
and exploring them. Studying viruses surely will not make you a computer
vandal for all that, on the contrary. Every year, thousands of people are
studying chemistry. As far as I know, they rarely indulge in making chem-
ical weapons once they have received their Ph. D degree. Should we ban
chemistry courses to avoid potential but unlikely risks even though they do
exist and must be properly assessed? Would it not be a nonsense to give up
the benefits chemistry brings to mankind? The same point can be made for
computer virology.

There is another reason for speaking in favour of a technical analysis of
viruses. Unexpectedly, most of the antivirus publishers, are partly responsi-
ble for viruses. Because some of them chose a commercial policy enhanced

Preface

by a fallacious marketing, because some of them are reluctant to disseminate
all relevant technical information, users are inclined to think that antivirus
software is a perfect protection, and that the only thing to do is to buy any-
one of them to get rid of a virus. Unfortunately, the reality is quite different
since most antiviral products have proved to be unreliable. In practice, it is
not a good thing to rely solely on commercial anti-virus programs for pro-
tection. It is essential that users get involved in viral defense so that they
may assess their needs as far as protection is concerned, and thus choose
appropriate solutions. This presupposes however, some adequate knowledge
as basic background.

The last reason for providing a clear presention of the viral source code,
is that it will enable to both explain and prove what is possible or not in
this field. Too many decision-makers tend to base their antiviral protection
policies on hazy and ill-defined concepts (not to say, fancy concepts). Only a
detailed analysis of the source codes will provide a clear view of the problems
thus easing the decision maker’s task.

In order that the book may be accessible to nonspecialists, prerequisite
knowledge for a good understanding of the described concepts are kept to
a minimum. The reader is assumed to have a good background in basic
mathematics, in programming, as well as basic fundamentals in operating
systems such as Linux and Unix. Our main purpose is to lay a heavy em-
phasis on what could be called “viral algorithmics” and to show that viral
techniques can be simply explained independently from either any language
or operating system.

For simplicity’s sake, the C programming language and pseudo code have
been used whenever it was pertinent and possible, mainly because most
computer professionnals are familiar with this language. In the same way,
I have chosen simple examples, and have geared the introduction toward
nonspecialists.

Some readers may regret that many aspects of computer virology have not
been deeply covered, like mutation engines, polymorphism, and advanced
stealth techniques. Others may object that no part of the book is devoted
to viruses or worms written in assembly language or in more “exotic” yet
important languages like Java, script languages like VBS or Javascript, Perl,
Postscript... Recall once again that, the book’s purpose is a general and ped-
agogical introduction based on simple and illustrative examples accessible,
to the vast majority of people. It is essential to understand algorithmics
fundamentals shared by both viruses and worms, before focusing on specific
features inherent to such or such language, technique, or operating system.

Preface XI

Complex and sophisticated aspects related to computer virology will be ex-
plored in a subsequent book.

Other readers also may regret that antiviral methods are not fully covered
in the book, and consequently may think that antiviral aspects are pushed
into the background. Actually, there is a reason behind this. When consid-
ering security issues in general, detection, defense and prevention measures
can be taken because we anticipate what kind of attacks might be launched.
As far as viruses are concerned, it is the other way round any defense and
protection measure will be illusory and ineffective as long as viral mecha-
nisms are not analysed and known.

The book consists of three relatively independent parts and can be read
in almost any order. However, the reader is strongly advised to read Chap-
ter 2 first. It describes a taxonomy, basic tools and techniques in computer
virology so that the reader may become familiar with the terminology inher-
ent to viral programs. This basic knowledge will be helpful to understand
the remaining portions of the book.

The first part of the book deals with theoretical aspects of viruses. Chap-
ter 2 sums up major works which laid the foundations of computer virology
namely, Von Neuman’'works on self-reproducing automata, Kleene’s works
on recursive functions as well as Turing’s works. These mathematical bases
are essential to understand the rest of the book. Chapter 3 focuses on Fred
Cohen’s and Leonard Adleman’s formalisations. These works enable one to
provide an overview of both viral programs and antiviral protection. Skip-
ping this chapter would prevent the reader from understanding some impor-
tant aspects and issues related to computer virology.

Chapter 4 provides an exhaustive classification of computer infections
while presenting the main techniques and tools as well. It includes essential
definitions which will prove to be extremely helpful as background for the
subsequent chapters. Although the reader is urged to read this chapter first
and foremost, it has been included at this place in the book to follow the
logical pace of the book, and the chronology of historical events in the field.
This first part is suitable for a six hours theoretical course on this topic.
The material is intended for use by readers who are not familiar with math-
ematics: the concepts have been simplified whenever possible, as much as
required while avoiding any loss of mathematical rigor.

The second part is more technical and explores the source codes of some
of the most typical viruses belonging to the main families. Here again, it
is intended for nonspecialists and no prerequisites are needed except skills
in programming. Only very simple but real life viruses which may be still a

XII Preface

threat at present time, are studied. Fascinating but sophisticated techniques
like polymorphism or stealth will not be deeply explored in this first volume
since they require good skills in assembly language. Nevertheless, the ma-
teriel in this part will help the readers become familiar with source codes so
that they may be able to analyse most other existing viruses on their own.
Doing so, the reader can find out what he can and cannot expect from any
antivirus program.

The third part may be the most important one. It is dedicated to the
application-oriented aspects of the viruses. Viral programs are extremely
powerful tools and may be applied to many areas. Among the rare technical
books dedicated to viruses, none of them really treat this aspect. The idea
that a virus may be “useful” or “benevolent” has sparked a minor revolution
among the antiviral programs developers who maintain a fierce opposition
to it. Anyway, this narrow-minded attitude is illusive and sterile, while mo-
tivated by a variety of interests, very likely.

It must be stressed that viruses have been applied successfully to a wide
range of areas for a long time, even if it has not been made public. When
properly controlled, viruses are bound to provide benefits (in this respect,
antiviral programs could have a new role to play in order to make them
evolve in an adequate way). The point of this part is to make people aware
of this perspective.

The dependence relation of the parts of the book is as follows:

This book is partly derived from courses in computer virology (whose
lengths range from 15 to 35 hours including practicals) which have been given
at various French universities and engineering colleges (both at a graduate
level): Ecole Supérieure d’Electricité since 2002, Ecole Nationale Supérieure
des Techniques Avancées since 2001, Saint-Cyr military academy since 1999,
university of Limoges since 2001, university of Caen since 2003... I hope this
book will be a helpful, comfortable and resourceful tool for any instructor
wishing to build and teach such a module. I think, there are many ways in
which the book can be used in teaching a course.

Preface XIII

Each chapter ends with some exercises. Most of them offer the opportu-
nity to work with concepts and material that have just been introduced in
the chapter, in order to become familiar with them. Understanding will be
greatly enhanced by doing the exercises. In some cases, projects are also pro-
posed (from two to eight weeks). I hope that this book will help instructors
to find creative ways of involving students in this exciting field.

Be warned, although this book is designed for an English-speaking public,
some of the bibliography references given at the end of this book refer to their
original version when of outstanding quality while no English translation
exists. I am also acutely aware that typographical mistakes, and errors may
still be found in this text. The reader is encouraged to contact me with his
corrections, comments, suggestions so that the book may be improved in
subsequent printings. Errors will be corrected on my webpage (www-rocq.
inria.fr/codes/Eric.Filiol/index.html) on which hints or solution to
exercises, along with other information are available.

This book is dedicated to one of the founding fathers in the field, Dr.
Frederick B. Cohen. Without his pioneering work, computer virology would
still be only in its infancy. His work on formalisation and his results un-
fortunately have not aroused the interest it deserved. His contribution is
nevertheless of outstanding importance and the reader is urged to refer to
his works on many occasions through this book.

This book is also dedicated to Mark Allen Ludwig who has blazed the trail
in this area, publishing some technical books on viruses including a number
of detailed source codes. His educational, thoughtful, insightful approach is
remarkable. Considering the author’s considerable achievements in this field
as well as his scientific rigor (so far he has authored four books on computer
viruses and evolution), he can be considered as a guide for anyone fond of
computer viruses and artificial intelligence.

At last, I would also like to dedicate this book to some intelligent, curious
and talented virus programmers, mostly anonymous, who also contributed
to develop this area and from whom we learned much of what we know
today; these people are driven by technical challenges rather than destructive
desires. The code of some of their viruses is remarkable and has greatly
stimulated my interest in this field. They convinced me, for example, that in
the computer virology area, as in many other scientific disciplines, humility
is the main required quality. Finally, I hope that some of my passion for
viruses has worked its way into these pages.

This book would not have been written without the support and help
of many people. It is impossible however, to list all people who contributed

XIV Preface

along the way. I am acutely aware that someone else’s name should probably
also be mentionned and I apologise to them. I would like to thank the staff at
Springer Verlag publishing in Paris who have been courteous, competent and
helpful especially Mrs. Huilleret and Mr. Puech for their continued support
and enthusiasm for this project.

I am also grateful to the 2nd Lieutenants Azatazou, De Gouvion de Saint-
Cyr, Hélo, Plan, Smithsombon, Tanakwang, Ratier and Turcat, who were
involved in the development of some variants of viruses during their M.Sc.
internship in the laboratory of virology and cryptology at the French Army
Signals Academy. I would also like to express my gratitude for the support
of Major General Bagaria, Colonel Albert (from French Marines Corps!),
Lieutenant-Colonel Gardin and Lieutenant-Colonel Rossa, who realized that
computer virology is bound to play an outstanding part in the future and
that it is essential to provide technical knowledge to Defense specialists.

I am also indebted to Christophe Bidan, Nicolas Brulez, Jean-Luc Casey,
Thiébaut Devergranne, Major Alain Foucal, Brigitte Jilg, Pierre Loidreau,
Marc Maiffret, Thierry Martineau, Captain Mayoura, Arnaud Metzler,
Bruno Petazzoni, Fredéric Raynal, Marc Rybowicz, Eugéne H. Spafford,
Denis Tatania and Alain Valet, who enabled me to share my passion and to
all my students whose interest and enthusiastic responses encouraged me to
write the book. The interplay between research and teaching was a delightful
experience.

I would like to thank my wife Laurence who helped me to translate the
first edition into English and the native speakers who made the proofreading
of the manuscript and worked hard to correct the errors and clumsiness of
this version: especially Mr and Mrs Camus-Smith whose work has been
invaluable.

Finally, I would like to express my gratitude for the support of my family,
especially my wife without which this work would not have been possible.
She designed the CDROM provided with this handbook as well.

Let us now explore the fascinating world of computer viruses.

Guer, August 2003, Eric Filiol
Eric. Filiol@inria.fr

Contents

Foreword VII

Part I - Genesis and Theory of Computer Viruses

1 Introduction 3
2 The Formalization Foundations 7
2.1 Introduction............ ...t 7

2.2 Turing Machines 8
2.2.1 Turing Machines and Recursive Functions 9

2.2.2 Universal Turing Machine 13

2.2.3 The Halting Problem and Decidability 15

2.2.4 Recursive Functions and Viruses.................... 17

2.3 Self-reproducing Automata 19
2.3.1 The Mathematical Model of Von Neumann Automata . 20

2.3.2 Von Neumann’s Self-reproducing Automaton 28

2.3.3 The Langton’s Self-reproducing Loop 31
EXercises . ..o 34
Study Projectst 36
Study of the Herman’s Theorem 36

Codd Automata Implementation 37

3 F. Cohen and L. Adleman’s Formalization 39
3.1 Introduction......... 39

3.2 Fred Cohen’s Formalization. 41
3.2.1 Basic Concepts and Notations 42

3.2.2 Formal Definition of Viruses 44

XVI

Contents

3.2.3 Study and Basic Properties of Viral Sets.............
3.2.4 Computability Aspects of Viruses and Viral Detection .
3.2.5 Prevention and Protection Models
3.2.6 Experiments with Computer Viruses and Results
3.3 Leonard Adleman’s Formalization
3.3.1 Notation and Basic Definitions
3.3.2 Types of Viruses and Malware.
3.3.3 The Complexity of Viral Detection..................
3.3.4 Studying the Isolation Model.......................
3.4 Conclusiono i
EXercises
Study Projects
Implementation of the Theorem 8 Machine
Implementation of Machine Described in Theorem 11

Taxonomy, Techniques and Tools.........................
4.1 Introductionttt
4.2 General Aspects of Computer Infection Programs
4.2.1 Definitions and Basic Concepts
4.2.2 Action Chart of Viruses or Worms
4.2.3 Viruses or Worms Life Cycle
4.2.4 Analogy Between Biological and Computer Viruses ...
4.2.5 Numerical Data and Indices........................
4.2.6 Designing Malware.
4.3 Non Self-reproducing Malware (Epeian)
4.3.1 Logic Bombs
4.3.2 Trojan Horse and Lure Programs
4.4 How Do Viruses Operate?,
4.4.1 Overwriting Viruses.ouviiiennnenenan..
4.4.2 Adding Viral Code: Appenders and Prependers.
4.4.3 Code Interlacing Infection or Hole Cavity Infection ...
4.4.4 Companion VIrusesoeuuuernunenenan..
4.4.5 Source Code VIrusescouviiienunnunnnan..
4.4.6 Anti-Antiviral Techniques
4.5 Virus and Worms Classification
4.5.1 Viruses Nomenclature
4.5.2 Worms Nomenclature
4.6 Tools in Computer Virology i,
EXerciSes . .o v

51
95
61
65
66
70
72
75
77
78
80
80
80

Contents XVII

5 Fighting Against Viruses.............. 151
5.1 Imtroduction i 151
5.2 Protecting Against Viral Infections 153

5.2.1 Antiviral Techniques 155
5.2.2 Assessing of the Cost of Viral Attacks 163
5.2.3 Computer “Hygiene Rules” 164
5.2.4 What To Do in Case of a Malware Attack 167
5.2.5 Conclusion. 170
5.3 Legal Aspects Inherent to Computer Virology.............. 172
5.3.1 The Current Situation.............. 172
5.3.2 Evolution of The Legal Framework : The Law Dealing
With e-Economy 175

Second part - Computer Viruses by Programming

6 Introduction 181

7 Computer Viruses in Interpreted Programming Language 185

7.1 Introduction 185
7.2 Design of a Shell Bash Virus under Linux 186
7.2.1 Fighting Overinfection 188
7.2.2 Anti-antiviral Fighting: Polymorphism 190
7.2.3 Increasing the Vbash Infective Power 194
7.2.4 Including a Payload 196

7.3 Some Real-world Examples 197
7.3.1 The UNIX_.OWR Virus 197
7.3.2 The UNIX_HEAD Virusc.oouviuninvennon.. 198
7.3.3 The UNIX_.COCO Viruscovviiiiiennnnnn .. 199
7.3.4 The UNIX_BASH VITUS .+ .\ tvtet it ieee e 199

T4 Conclusionoiii 203
EXercises . ..o 203
Study Projectso 204
A PERL Encrypted Virus. ..., 204
Disinfection Scripts....... ... 205

8 Companion Virusesiiiiiiiiiiiininan.. 207
8.1 Introduction 207
8.2 The vcomp_ex companion virusc.ooouo... 210

8.2.1 Analysis of the vcomp_ex Virus..................... 211

XVIII Contents

8.2.2 Weaknesses and Flaws of the vcomp_ex virus 219

8.3 Optimized and Stealth Versions of the Vcomp_ex Virus 221
8.3.1 The Vcomp_ex_vl Variant 221
8.3.2 The Vcomp_exv2 Variant 230
8.3.3 Conclusion..........coiuiiii i, 238

8.4 The Vcomp_ex_v3 Companion Virus....................... 238
8.5 A Hybrid Companion Virus: the Unix.satyr Virus Case 241
8.5.1 General Description of the Unix.satyr Virus 241
8.5.2 Detailed Analysis of the Unix.satyr Source Code 242

8.6 Conclusion i 249
EXercises 249
Study Projects 253
Bypassing Integrity Checking 253
Bypassing of the RPM Signature Checking 254
Password Wiretapping i 255

9 WOTIIS . . .ot 257
9.1 Introduction 257
9.2 The Internet Worm 259
9.2.1 The Action of the Internet Worm 260
9.2.2 How the Internet Worm Operated 262
9.2.3 Dealing With the Crisis 265

9.3 IIS-Worm Code Analysiscoiiiiiininian.. 266
9.3.1 Buffer Overflows........... 267
9.3.2 IIS Vulnerability and Buffer Overflow 274
9.3.3 Detailed Analysis of the Source Code 274
9.3.4 Conclusion........ ..o, 286

9.4 Xanax Worm Code Source Analysis....................... 286
9.4.1 Main Spreading Mechanisms: Infecting E-mails 287
9.4.2 Executable Files Infection 294
9.4.3 Spreading via the IRC Channels 296
9.4.4 Final Action of the Worm 299
9.4.5 The Various Procedures of the Worm 302
9.4.6 Conclusion....... i 307

9.5 Analysis of the UNIX.LoveLetter Worm 307
9.5.1 Variables and Procedures 308
9.5.2 How the Worm Operates 315

9.6 Conclusion i 316
EXerciseso 317

Study Projectso 319

Contents XIX

Apache Worm Code Analysis ..., 319
Ramen Worm Code Analysis 319

Third Part - Computer Viruses and Applications

10 Introduction 323
11 Computer Viruses and Applications...................... 327
11.1 Introduction oot 327
11.2 The State of the Art....... 330
11.2.1 The Xerox Worm 333
11.22The KOH Virus 335

11.2.3 Military Applications 338

11.3 Fighting against Crime, 340
11.4 Environmental Cryptographic Key Generation 342
11.5 Conclusionov vt 347
Exercises 348

12 BIOS Viruses e e 349
12.1 Introductionot 349
12.2 B1OS Structure and Working 351
12.2.1 Disassembly and Analysis of the BIOS Code 352

12.2.2 Detailed Analysis of the BIOS Code 353

12.3 vB10S Virus Description 357
12.3.1 Viral Boot Sector Concept 358

12.4 Installation of VBIOSot 362
12.5 Future Prospects and Conclusion 364

13 Applied Cryptanalysis of Cipher Systems 367
13.1 Introductiono 367
13.2 General Description of Both the Virus and the Attack 369
13.2.1 The Virus Vj: the First Infection Level 370

13.2.2 The Virus V5: the Second Infection Level 370

13.2.3 The Virus V5: the Applied Cryptanalysis Step 372

13.3 Detailed Analysis of the YMUN20 Virus 373
13.3.1 The Attack Contextot 373

13.3.2 The YMUN20-V7 Virus........ 375

13.3.3 The YMUN20-Vo Virus. 377

13.4 Conclusionvv vt 380

XX Contents

Study Project.o 380
Implementing the YMUN20 Virus.......... oot 380
Conclusion
14 Conclusion 385
Warning about the CDROM............. 389
References. 391

List of Figures

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

4.12

Sketch of a Turing Machine 10
Von Neumann’s Neighborhood 24
Von Neumann’s Self-reproducing Automata Diagram 30
Ludwig’s Self-reproducing Automaton..................... 35
Formal Definition of a Viral Set 45
Graphical Illustration of the Virus Formal Definition........ 46
Flow Model With a Threshold of 1 58
11, and X, Classes and Their Respective Hierarchy......... 76
Taxonomy of Malware 82
Distribution of Malware (January 2002) 94
Action Mechanisms of a Trojan Horse..................... 101
Overwriting Mode of Infection 103
Adding Viral Code: The Appender Case................... 105
Structure of a PE Executable File 107
Infection by Code Interlacing (PE file) 110
Companion Virus Infection Mode......................... 111
Source Code Infection........... ..o .. 114
Number of Macro-Virus Alerts (Source: French Civil Service) 127

Number of Servers Infected by The CodeRed Worm as a

Time Function (source [111]). 142
Number of Hosts Infected by the CodRed Worm per Minute
(source [111]) oo 143

XXII

List of Figures

4.13

4.14

4.15

7.1

8.1

9.1
9.2
9.3
9.4

13.1
13.2
13.3
134
13.5
13.6

Distribution of the servers infected by the Sapphire/Slammer
Worm (H + 30 minutes). The diameter of each blue circle
is relative to the logarithm of the number of locally infected

servers (source: [112]). i 144
Evolution of the W32/Bugbear-A worm attack (Oct. 2002 -
Source J.-L. Casey)t 146
Evolution dof the W32/Netsky-P and W32/Netsky-P Worms
Attacks (July - August 2004) 147
Vbashp infection. 192
Vcomp_ex Virus Infection Principle................, 211
Organization of the Examplel Program Stack 271
IIS Worm Overflow Code Structure 274
IIS_-Worm Code Organization oo, 275
Xanax Worm Paylaod i 290
Functional Flowchart of YMUN-V; Virus 371
Functional Flowchart of YMUN-V, Virus (Infection Step).. ... 371
Functional Flowchart of YMUN-V, Virus (Payload) 373
Infection With YMUN20-V; Virus 376
YMUN20-V] Virus Action 377
Functional Flowchart of the YMUN20-V5 Virus 378

List of Tables

1.1

2.1
2.2
2.3
24
2.5
2.6

4.1
4.2
4.3
4.4

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9

8.1
8.2

An Simple Example of Viral Code 4
Turing Machine Computing the Sum of Two Integers 11
Transition Function Table for Langton’s Self-reproducing Loop 33
Initial State of Langton’s Self-reproducing Loop 34
Byl’s Automata Initial States 35
Byl1 Transition Function Table 36
Byle2 Transition Function Table.......................... 36
Analogy Between Biological Viruses and Computer Viruses .. 92
Ports and Protocols Used by the Most Famous Trojan Horses 102
Formats That May Contain Documents Viruses 126
Distribution of Main Macro-viruses Types 128
Source code of the vbash virus............................ 187
Vbashp virus : restoring function 192
Vbashp Overinfection Management (MVB first part) 193
Vbashp Virus: Infection (MVB end)............. 194
The UNIX_OWR Virus Source Code 198
The UNIX_HEAD VITusottt 198
The UNIX_COCO ViruS.ottt 200
The UNIX_BASH (beginning), 201
The UNIX_BASH (End) 202
File Type and File Permission Flags in Octal 213
Possible Values for the flag Argument of the ftw Function .. 239

11.1 Bling Agent for Data Search 346

List of Tables

XXIV
12.1 MBR Layout and Structure............... 360
12.2 Partition Entry Structure and Layout (Part of MBR) 361
362

12.3 OS Boot Sector Structure and Layout.....................

Genesis and Theory of
Computer Viruses

1

Introduction

How can we describe what a computer virus really is? What relationship
exists between the formal definition of the mathematician':

VMYV (M, V)eV & [V Cl*et [MeM]et
Vo eV [VHy [VtVj eN
[1. Py(t) =7 et
2. $M(t) = $M(0) et
3. (Opr(t,5), ..., Op(t, 5+ v — 1)) =)
= [T e V[, ",/ eNet t' >t
[L[5+ [']) < 4] ou [(4 + |v]) < 4']]
2. (Op (7)), ., Op (5 4+ [V — 1)) =0 et
3. [3t" tel que [t <t < t'] et
Par(t”) € v g 4 0] — 1]

N

and that of the programmer, given in Table 1.17 Which one is the most
convenient to describe what computer viruses really are?

The idea of what a virus is has a different meaning in the non-specialist’s
mind, so much so that most of the time viruses are confused with the more
general idea of malware (or malicious programs). The term of “virus” for
computers appeared only in 1988. However, the artificial beings that are
denoted by the term of virus did in fact exist many years before and their
theoretical fundaments were established long before their real existence.

! This definition has been given by Fred Cohen [34]. We will explain it in Chapter 3.

Introduction

for i in *.sh; do

if test ”./$1” 1= 7$0”; then
tail -n 5 $0 | cat >> $i ;
fi
done

Table 1.1. An Simple Example of Viral Code

A science, a knowledge field, only comes to maturity once formalized.
It then allows us to better understand its deep aspects and grasp all the
implications. As far as computer virology is concerned, the formalization
began seventy years ago with Alan Turing’s works. The works and results
of von Neumann, Fred Cohen, Leonard Adleman including those of others
which followed, were a pioneering work. They are a solid basic framework
for computer virology. These theoretical results are very important both
when considering the attacker’s side — viruses and other malware — and
the opposite side: defense and antiviral fight. However, this formalization
remains far from being achieved.

The formal work of mathematicians during the 1930s largely contributed
to the development of viruses. A number of virus writers have discovered a
huge field of applications with this formalization. This fact may be less well-
known. Early viruses only put von Neumann’s theory of self-reproducing
automata into application. In the same way, viral polymorphism did not
appear “ex nihilo”. It was directly inspired by the work of von Neumann and
Cohen. Many other examples could be given. They prove that the computer
viruses that we have to combat today, are, in fact, nothing but the practical
applications predicted by long existing theory.

This theoretical formalization helped us model and understand the op-
posite face of computer virology, that is to say the antiviral fight. The choice
of scanning as the main antiviral technique, since beginning of computer vi-
rology, came less from pragmatism than from theoretical considerations and
results. These results have also proven the inherent limits of this technique.
The same could be said when using with other, more sophisticated antiviral
techniques such as integrity checking.

These theoretical results lead us to strongly put into perpespective or
even invalidate the extreme — sometimes irrealistic and wrong — marketing

claims of some antiviral softwares publishers. The latter often try to sell us
the philosopher’s stone and the squaring of the circle in the same package.

The importance of the theoretical formalization of computer virology
cannot be denied or even lessened, despite the fact that it remains still
unachieved for main aspects. That is the reason why it is presented in the
first part of the handbook. In order not to frighten the non-mathematical
reader and for the sake’s of clarity, some of the mathematical proofs have
been omitted. The reader will refer to the articles or books in which they
were originally published. The author considers that it is the best way to pay
tribute to the researchers who successfully pioneered the fascinating world
of computer viruses.

2

The Formalization
Foundations: from Turing to
von Neumann (1936 — 1967)

The art of teaching is made of humility and not pretentiousness:
the goal of any lecture is not to make the teacher more intelligent
— through a fatuous and uselessly complicated discourse — but to en-
able the students to overcome the slightest difficulties and to become
more mature-minded.

Emile Gabauriaud-Pages

The art of teaching to others (1919)

2.1 Introduction

The formalization of viral mechanisms makes heavy use of the concept of
Turing machines. This is logical since computer viruses are nothing but
computer programs with particular functionalities. Formalization of today
computer programs began with Alan Turing’s works! in 1936 [153].
A Turing machine — this definition will be detailed later in this chapter
— is the abstract representation of what a computer is and of the programs
that may be executed with it. The reader who wishes to learn more deeply on
exact relationships between real, everyday life computer and their theoretical
model will refer to [26, p. 68]. This theoretical model enables one to solve
many essential problems and among them:
! In fact, a number of important results were obtained during the thirties. Turing’s formal-

ization was independently yet equivalently redefined by several other mathematicians
and in particularl by Church [32], Kleene [95], Markov [108] and Post [119].

The Formalization Foundations

e let a function f be given. Is this function really computable ? In other
words, does an algorithm exist which can realize, or equivalently compute,
the function f 7

As far as computer viruses are concerned, the function f is the self-
reproduction function itself. Can a program reproduce? Works of Alan Tur-
ing and that of his exegetes did not consider the problem of program self-
reproduction.

Only a few years later, the concept of self-reproduction was considered
by John von Neumann and Arthur Burks [26, 156] starting from the Tur-
ing’s works and results. Their approach was essentially based on cellular
automata. In their main result they proved that this property can be prac-
tically realized. However, the example they built to prove this result was so
complex that researchers since tried to find a less complex example, easier
to study and to implement, in order to analyze the self-reproduction feature.
The main question that arose at that time was to determine how simple an
automaton could be still being able to reproduce.

Next, many authors, particularly Codd [33] in 1968, Herman [89] in 1973,
Langton [100] in 1984 and Byl [27] in 1989 managed to build other self-
reproducing automata which proved to be far less complex. Self-reproduction
then became a practical, operational concept. With it, computer viruses were
potentially born but it was only a “first birth”. It was only after still many
years that real computer viruses — and the term virus itself — appeared.

2.2 Turing Machines

We are now going to describe precisely what Turing machines are and explore
the different problems related to Turing machines, while focusing at the same
time on the object of this chapter, that is to say self-reproducing automata.
The reader who wishes to have a deeper exposure to Turing machines will
refer to [90,101,153]. He will find an interesting and detailed implementation
of a Turing machine with the Sed interpreted programming language? in [16,
p. 271].

2 The reader will refer as well to the Brainfuck programming language homepage http:
//www .muppetlabs.com/ breadbox/bf/. The goal of this language, created by Urban
Miiller, was to create a Turing-complete language for which he could write the smallest
compiler ever (the compiler is 240 bytes). This language contains only eight instructions.

2.2 Turing Machines

2.2.1 Turing Machines and Recursive Functions

A Turing machine M, a rather primitive system at first sight, is composed
of three parts:

e a memory or storage unit which is generally denoted tape. The tape has
an infinite length and is divided into cells. Each of the cells contains one
symbol at a time, chosen from a given finite set of symbols (the alphabet).
A cell is refered as blank when it contains no symbol at all. We will con-
sider this particular case as the blank symbol, for sake of generalization.
There are always a finite number of non blank cells. Initially, the tape
contains the input data. At the end of the computation, it contains the
output data while during the computation the tape contains temporary
data.

e a read/write head which moves left or right on the tape, one cell at a
time. The head can read the symbol contained by the current cell or may
write a symbol into it. Before any symbol is writtent in a cell, the symbol
present in the latter is first erased. The current cell is the cell in front of
which the head is pointing.

e a control function F' which drives the read/write head. A memory area
which contains the complete state of the machine M and all instructions
specific to problems currently processed constitutes the control function.
Any move/action of the read/write head is directly determined by both
the contents of the memory area and of the current cell. To be more
precise, the control function is divided in two other functions®: a state
function whose role is to update the internal state of F' and a function
dedicated to output symbols. The basic operations (or steps) that the
read /write head may perform at a rate of one operation per unit time,
are:

— moving to the next cell to the right on the tape.

— moving to the next cell to the left on the tape.

— mnot moving. The computation is completed, the machines M halts.
— writing a symbol into the current cell.

The work of machine M can thus be summarized by saying that it repeats
a certain number of times the three following basics step:

1. Reading step.- The current cell content x is read and feed to the control
function.

3 In fact, the control function is a cellular automaton but this concept will be introduced
and defined only in 1954 and thoroughly formalized in 1955 and 1956.

10 The Formalization Foundations

Tape

Fonction F

Fig. 2.1. Sketch of a Turing Machine

2. Computing step.- The internal state of the F' function is updated as
a function of both its current state and the input value x.

3. Operation step.- An operation is performed depending on both the
internal state and the input value =x.

Despite its apparently primitive aspect, with this very simple model we can
express any algorithm and simulate any programming language. Let us now
describe what a Turing machine really is, from a theoretical point of vue?.

Definition 1 A Turing machine is a function M such that for some natural
number n, it is defined by

M:{0,1,...,n} x {0,1} — {0,1} x {R, L} x {0,1,...,n}

The finite set {0,1,...,n} denotes the indices of the machine possible states
(or instructions) e;, while the finite set {0,1} describes the two possible
symbols s; that a cell may contain and {R, L}, the set of possible read/write
head movements (to the right or to the left).

Without loss of generality, this definition only considers a very limited set
of symbols. However, generalization to larger sets is always possible. In fact,
the use of those two symbols is sufficient in itself. Indeed, the input/output
tape data format consists of strings of 1’s separated by 0’s. As an example,
the integer x is represented by a string of x 4+ 1 symbols 1. To be more
precise, the sequence 201 will encoded by 0111010110.

What is the connection between this formal representation and the prac-
tical operation of a Turing machine? Let us consider the following example:

4 A number of different ways to formalize Turing machines exist. We considered the most
simple one so as to not frighten the non-specialist reader. However, the interested reader
will refer to [153] for other formal characterization.

2.2 Turing Machines 11

Table 2.1. Turing Machine Computing the Sum of Two Integers

ei, s;) M(es, s;) Comments

(ei

(e0,1) (1,R,0) pass over z

(e0,0) (1,R,1) fill gap

(e1,1) (1,R,1) pass over y

(e1,0) (0,L,2) endofy

(e2,1) (0,L,3) erase a 1 symbol

(es,1) (0,L,4) erase one more 1 symbol

(es, 1) (1,L,4) back up

(e4,0) (0,R,5) halt (end of the computation)

M(4,1) = (0, R,3). This is intended to mean that whenever the machine
comes to instruction (state) e4 while scanning a (current) cell in which 1 is
written, it is to erase the 1 (leaving a 0 in the cell), move the head just to
the right of the current cell and proceed next to instruction es. If the value
M(4,1) is undefined, then whenever the machine comes to instruction ey
while scanning a cell containing a 1, it halts. This the only way to stop a
calculation.

Example 1 Let us consider the computation of the sum x+y of two numbers
x and y. The values of machine instructions are listed in Table 2.1. Input
data are encoded by

0111...1110111...111

T Y

and the machine starts with the initial state eq on the leftmost cell containing
a 0. At the end of the computation, the tape contains a string (run) of x+y+1
1’s

This toy example clearly shows how the Turing model is simple and powerful
at the same time. As soon as we determine a table which describes the
graph of the machine, like in the previous example, then we can compute
the relevant operation; in other words we are able to find a feasible solution
for the problem we want to solve.

A very essential question is then: is it possible to describe any arbitrary
function f by such a machine? In other words, do problems exist that cannot
be described by any Turing machine? To answer to this question we are
going to use the concept of recursive functions. Without loss of generality
and formalism, we will limit ourself to functions from natural numbers to
natural numbers:

f:NF SN,

12 The Formalization Foundations

which are denoted k-place partial functions (since the definition domain may
be only a proper subset of N¥; a function is total if its domain is all of N¥).
The input (z1,x2,...,zx) of such a function will be encoded in a Turing
machine by the following string:

C=011...11011...110...11...110.
—_—— = —_——
x1+1 xo+1 TEp+1

Definition 2 A k-place partial function f is said to be recursive if there
exists a Turing machine M such that whenever we start M at the initial
instruction eg and scanning the leftmost symbol of C, then:

1. 4f f(z1,22,...,2k) is defined, then M eventually halts and the tape
contains the string corresponding to the wvalue f(xq,x9,...,x) (the
read/write head is scanning the leftmost symbol of this string with the
tape blank to the right of this string).

2. If f(x1,22,...,2k) is undefined, then M never halts.

Thus, a recursive function is a function which is effectively computable.

The theory of Turing machine and the theory of recursive functions are in
fact identical. They are part of the theory of effectively computable func-
tions. The reader will refer to [11,129] for an exhaustive presentation of this
theory.

The concept of recursive function was initiated by Kurt Godel [85]. The
term “recursive”® was motivated by Godel’s concern for a function f to
define f(n+1) from f(n). The recursive primitive functions enable to easily
enumerate all the recursive functions.

Theorem 1 (Recursive functions cardinality)
There are exactly Ry (a countable infinity of) partial recursive functions,
and there are exactly Ny recursive functions.

Proof. All constant functions are recursive (since they are primitive recursive
functions as proven by Church’s Thesis). Hence there at least Xo°® recursive
functions. The Godel numbering (see the footnote at the bottom of the

5 Recursiveness is the process by which an object can be defined by another object of
the same essential nature (here the “effectively computable” functions). The class of
objects as a whole can be then built in an axiomatic way, that is to say from both a
finite number of initial objects and a reduced set of rules. In particular, the class of
primitive functions (constant functions, successor function, identity functions...) is the
construction basis for all other recursives functions (refer to [129, pp 5-10] for more
details).

6 R, denotes the cardinal of N, the set of the natural numbers.

2.2 Turing Machines 13

Section 2.2.2) shows that there are at most N partial recursive functions
hence the results. |

Theorem 2 (Existence of non recursive functions)
There exists functions which are not recursive.

Proof. By Cantor’s theorem”, there are 2% functions (the reader will prove
this result as an exercise, by considering the set of functions from N to the
set {0,1}). The theorem follows when considering the Theorem 1. O

The reader will read [123] to discover some examples of non-recursive func-
tions.

Let us add that Definition 2 (as well as the forthcoming results) may
generalized in a interesting way to k-ary relations over N, with the following
definition.

Definition 3 A relation R is said to be “decidable” if there exists an effec-
tive procedure that, given any object x, enables to verify if R(x) is true or
not. If R is decidable if and only if its characteristic function is recursive,
that is to say effectively computable.

2.2.2 Universal Turing Machine

The model of Turing machines as previously exposed, is not sufficient to
describe the behaviour of a real computer. A computer is able to solve a
large number of problems while a given Turing machine can only solve with
(describe) one problem. In fact, the effective modeling of a true computer
requires a more general concept: Univeral Turing Machines (UTM)

Definition 4 A universal Turing machine U is a Turing machine which,
when processing an input, it interprets this input as a description of another
given Turing machine, denoted M, concatenated with the description of an
input data x for that machine. The function of U is to simulate the behaviour
of M processing input x. We can write U(M;x) = M(x).

In order to better understand this definition, let us explain how a universal
Turing machine U really operates. Since a machine M can be described as
a finite object, it may be represented (encoded) as an integer® (a natural
number) under some fixed encoding convention. This will enable us to study

" This theorem asserts that the cardinality of any set is smaller than the cardinality of
the collection of all its subsets.

8 This is very useful “trick,” which has been generalized by Godel for the study of first
order logic. This encoding is known as the Gddel numbering. In the present context, this

14 The Formalization Foundations

the way U operates more easily: a machine which is simulating another
machine is equivalent to a simple machine processing an input data.

Let us consider a simple example of such an encoding. Let (zg, z1,...,Zy,)
be the data written on the tape of a Turing machine. We can represent them
as the following integer (Go6del number):

< XY, L1, ...,y >=2F0TIgTHL .py, +1

by using — among other solutions — the prime numbers p; (using prime
numbers ensures a unique (univocal) decoding by the machine since the fac-
torization of any integer into a product of prime numbers is itself unique).
Turing machines must be able to perform such an encoding as well as the
corresponding decoding process, to operate. More generally, at each time in-
stant ¢, the entire configuration of any machine M itself (the tape’s contents,
the instruction number, the cell being scanned) can be described by a finite
amount of information, and thus can be encoded into a (Gédel) number, de-
noted the instantaneous description. The finite set of all the instantaneous
descriptions for a machine M — called the computation record or history —
can itself be encoded into a natural number (the reader can find a detailed
description of this encoding process in [117, §3.1]).

How can we translate the problem of effective computation into the con-
text of universal Turing machines? In particular, is the chosen encoding pro-
cess itself a recursive function (otherwise considering such encoding would
be meaningless)? Knowing the answer is essential in order to be sure that the
processing of U over M with input data x is meaningful. For that purpose,
let us consider the following two results.

e There exists a ternary relation R(e,< xg,1,...,2r >,y) which holds
if and only if e is a natural number which encodes a Turing machine
M, and y is a computation record for M starting with the input data
(xo,1,...,2k) on its tape.

e There exists a recursive function U such that whenever

R(e, < xo,x1,..., &k >,Y) holds,

then U(y) is the output value of the computation (provided that this
value is defined, that is to say that the machine halts).

encoding allows us to apply notions of recursion theory to expressions or algorithms. To
be more precise, since algorithms and Turing machine are closely related, we will not
bother distinguishing between a Turing machine and its Gdel number. As all languages
and all programs contain a finite set of symbols, the existence and the construction of
any Godel number is not a problem.

2.2 Turing Machines 15

It is then intuitive enough, in first approach, that relation R is decidable
(refer to Definition 3) and that U is recursive. Let us be more precise. Let
us consider

SDe(.TO, L1y ,l'k) = U[y*]

be the k-place partial function (for any k), where y* denotes the smallest y
(when it exists) such that

R(e, < xg,x1,...,x >,y) is true.

Then we can consider the following fundamental theorem from Kleene [95].

Theorem 3 1. The (k+1)-place partial function whose value at (e, xg, 1,
ooy Tg) 08 @e(xo, 21, ..., X)) 1S TECUTSIVE.

2. For each e, the k-place partial function . is recursive.

3. Every k-place recursive partial function equals . for some e.

The number e is called the index of the the function ¢.. Equivalently, a
k-place partial function is recursive — in other words is effectively computa-
ble — if and only if it has an index. The notion of index corresponds to the
notion of program. In the rest of this part of the book, the notation ¢, will
be preferred to the . notation for sake of clarity and the idea of function
(simple or universal) will used instead of that of Turing machine. Note that
we have just seen that these two concepts are equivalent.

To summarize, a universal function has a program pg and ¢,,(z) com-
putes ¢p(z), where x =< p,z > is the data constitued by a program p
and an input data z. Notice that this approach is very powerful, since it no
longer allows us to distinguish between data consisting of a program and
data consisting of input data. This will prove very useful later on when we
consider viruses from a formal point of view.

2.2.3 The Halting Problem and Decidability

The previous formalization, as interesting it may seem, does not solve the
problem of whether a prohram halts, that is to say the effective calculability
problem. Let us suppose the a machine M receives the data x as input and
starts to compute. After millions of steps, the problem is to determine if the
machine will finally halt (and produce a result) or not. One may ask oneself
if with thousands of additional steps, the machine will finally halt and give
the awaited result.

There is a very interesting issue to consider. Does a real program (Turing
machine) exists such that, given a Turing machine M and input data z, it

16 The Formalization Foundations

will decide whether or not this computation ever terminates? Reflecting
upon the fact having such a procedure is equivalent to considering another
fundamental problem: the decidability or the non-decidability of a function,
In other words, we have to consider functions for which there is no program
able to calculate them — that is to say these functions are not recursive.

Let us note ¢p(z) if the result of the calculation is undefined and
op(x) N\ if it is defined. Moreover, let us note

H = {p; zlop(z) .},

the set of all programs whose computation halts when processing an arbi-
trary input data x. We now can give the following fundamental theorem.

Proposition 1 The set H is recursively enumerable.

The expression “recursively enumerable” means that to determine if p € H,
we start the calculation: if it halts, the membership to the set is de facto
proved, in the contrary no answer can be ever given?. A set which may be
defined in such a way — that is to say by means of a program — is said to be
recursively enumerable. We now can formulate this property as follows.

Definition 5 A set & is recursive if and only if its characteristic function'®

s a total recursive function, that is to say if the program that calculates it
always halts.

A problem whose set of solutions is recursive is called decidable.

It is important to notice that recursive enumerability does not imply the
recursive property itself (the reverse is however true). This means that we
still do not know if there exists a procedure or an algorithm, which is capable
of determining if a computation is effective or not.

Theorem 4 H is not recursive. No program exists that always halts and
gives the result “true” if pp(x) \, or “false” if pp(x) /.

Proof. Let us prove this fundamental theorem by contradiction. Suppose,
for the sake of contradiction, that such a program P, exists. It can be used
to define, for every program p, a new partial function (or equivalently a new
program) I as follows (we will use in fact its functional representation 1)):

9 The reader will notice that we are here considering an ideal context in which we dis-
carded any time or memory space limitation. However, this does not pose a fundamental
problem.

10 The characteristic function of a set is the function defined by f(z) = 1 if z € £ and
f(z) = 0 otherwise.

2.2 Turing Machines 17

_ [ifep(<pr>) N\
v(p,z) = {\ otherwise.

But, by construction, 9 (.) represents the program I7. How does this program
operate when processing a encoded version of itself, that is to say what is
the value ¢ (11, IT)? By definition of ¢ we have

_ [/i ep(<ILIT >) N
WU IT) = {\ otherwise.
If o(I1,II) *\, then, by definition, we also have (II,II) " while if
Y(II,IT) ", then once again by definition, (11, IT) \,. This is a contra-
diction, and hence there can be no such program P.]

This fundamental theorem will be used later on by Fred Cohen (refer to
Chapter 3) to prove fundamental results on viral detection efficiency.

2.2.4 Recursive Functions and Viruses

The previous results gives us a very powerful model of a computer program.
Computer viruses are just instances of computer programs, implementing
special functionalities and features (self-reproduction and possibly the abil-
ity to evolve), they can thus be described by means of the above results.

The Recursion theorem, due to Kleene [96], and published in 1938, im-
plicitly constitutes the very first formalisation — yet unaware — of self-
reproducing programs, many years before von Neumann’s works on self-
reproduction (he conducted his earliest works in 1948). The concept of virus
will appear much later. With the recursion theorem!!, the effectivity (exis-
tence) of viral programs is proved.

Theorem 5 (Recursion Theorem) For any total recursive function f : N —
N, there exists an integer e such that @.(.) = Py (.)-

This theorem, in a more general form, applies to partial recursive functions
as well. To prove this, we just have to use the fact that a total function can
be obtained from a partial function (due to the parameter theorem [11, page
544]). The reader will also find an exhaustive presentation of the differents
variants of the recursion theorem in [129, pp 180-182]. Since this theorem
is very important in the context of viral programs, we give its proof, drawn
from Roger’s book [129, p. 180].

' This theorem is still known as the fixed point theorem of recursive function theory.

18 The Formalization Foundations

Proof. Let any integer u be given. Define a recursive function v by:

o) = Pouw (@) i pulu) N\
o) = { S

For sake of clarity, the calculation of 1)(x) uses a set of instructions associated
(encoded under) the (Godel) number u. When wu processes itself (that is
to say when u processes the input data u; we then consider the formal
description of ¢, (u)), if the result, denoted w, is defined, then we use the
set of instructions associated to w with x as input, thus outputing ¢ (x), if
the latter is defined.

It is obvious that the instructions for ¥ uniformly depend on the number
u. Take g a recursive function which yields, from u, the Gédel number for
these instructions for ¢. Thus

_ Pou(u) (x) if @u(u) \«;
Polw) = if o (u) /.

Now let any recursive function f be given. Then fg (the product here means
the composition (combination) of functions) is a recursive function. Let v be
a Godel number for fg. Since ¢, = fg is a total function, then ¢, (v) =\.
Hence, putting v for u in the definition of g, we have

Pg(v) = Ppu(v) = Pfg(v)-

Hence the result, since e = n = g(v) (with the previous index notation; n is
a fixed-point value). [|

Essentially, the theorem asserts that for a given action (programs performing
the same operations), the associated (source) codes themselves are different.
If the function f is the Identity function (f(x) = x, which is a total recursive
function, and whose Turing machine is the empty machine), we have source
codes which are identical, and hence the implicit notion of self-reproduction,
that is to say the concept of simple viruses. For any function f, different
from the Identity function, the recursion theorem describes in a very simple
and elegant way the mechanism of polymorphism, about fifty years before
Cohen’s and Adleman’s works as well as the first practical implementation
of a real computer virus. We will see, in the next chapter how L. Adleman
classified the different types of malware by using various classes of recursive
functions.

A very funny and stimulating application, which can be seen to be simi-
lar to viral mechanisms, is the writing of programs which output their own

2.3 Self-reproducing Automata 19

source code. This application is better known as “Quine'?”. Here is an ex-

ample, due to Joe Miller, in the C programming language (the \ symbol
does not belong to the original code. We have added it here for sake of pag-
ination; the \ just indicates that the whole code must be written on a single
line):

p="p=%chshc;main () {printf (p, 34, p, 34);}"; \
main() {printf(p, 34, p, 34);}

2.3 Self-reproducing Automata

The theory of cellular automata'® was introduced and developed by John
von Neumann in 1948. His motivation was to find a reductionist model for
biological evolution and more particularly self-reproduction [155].

More precisely, his ambition was to determine a reduced set of primitive
local and logical interactions necessary for the evolution of the complex forms
of organization essential for life. Following, the cellular automata theory can
be defined, from a general point of view, as the study of the problem to
determine how complex systems can be generated by a reduced set of simple
rules and objects. Cellular automata are the best mathematical model for
complex systems and processes that consist of a large number of identical
and simple components', which most of the time interact locally in a non-
linearly way.

The cellular automata theory, from work by von Neumann and, later
on, Burks [26, 156], quickly went past the mere theoretical fields of both
mathematics and computer science and proved itself to be very successful
in modeling extremely complex systems in physics, chemistry, biology, bio-
chemistry, ecology, economy, military science...

Many different types of cellular automata exist, each of them being tai-
lored to fit the requirements of some specific problems and systems. However,
all of them possess the following five characterictics:

12 The interested reader may consult a very interesting website devoted to Quines,
www.nyx.net/~gthompso/quine.htm, which contains many examples of Quines in many
programming languages.

13 The term cellular comes from von Neumann’s publications, in which he considered two-
dimensional space, divided up into square cells, each of them containing a single finite
automaton.

14 The reader will notice the analogy between cells of a cellular automaton and those of
living organisms.

20 The Formalization Foundations

e A discrete lattice of cells (the word lattice can also be used in its math-
ematical sense). The system substrate consists of a one-, two- or three
dimensional lattice of identical cells. The number of cells is finite or at
least countable.

Homogeneity: all cells are equivalent.

Each cell takes on one of a finite number of discrete states.

Each cell interacts only with cells that are in its local neighborhood (the
neighborhood structure depends on the type of cellular automaton).

e At each time instant ¢, each cell updates its current state according to a
transition rule taking into account the state of cells in its neighborhood.

John von Neumann was the first researcher who tried — and succeeded — in
building a bidimensional cellular automata, which was able to self-reproduce.
In other words, he succeeded in designing what was at the time he lived only
a theoretical concept, that is to say a universal Turing machine (or universal
computer) [83].

2.3.1 The Mathematical Model of Von Neumann Automata
Definitions

A finite automaton may be defined, in a first approach, as a process able
to process initial conditions or data to produce a final result in a finite,
countably many or infinite, number of steps. More precisely, the following
definition is generally the most widely used.

Definition 6 (Finite automaton)

Formally, o finite automaton is a quintuple (qo,Q,F, X, f). Here Q is a
finite set of states where qy € Q denotes the initial state and F C Q the
set of output (or accepted) states. X 1is the finite input alphabet while f :
Q x X — Q is the transition. If X* denotes the set of all words (strings
of any length) defined over alphabet X, then the domain of the function
[extends to Q x X* by writing down f(q,m|la) = f(f(q,m),a) for any
meX*, a€e X and g€ Q. A word m of X* is accepted by the automaton
if and only if f(qo,m) € F.

For the sake of simplicity and without conceptual restriction, we will define
a finite automaton by a triplet (V,vg, f) where V' is the finite set of possible
states for each cell, vy a particular state and f the transition function. This
notation was used by Thatcher [151] and focuses only on the transition
process itself rather than on the succession of transitions between initial and

2.3 Self-reproducing Automata 21

final states. With our notation, for any n, Q = V" is called the automaton’s
memory.

Bearing the von Neumann’s works and achievements in mind, we will
limit ourself to the two-dimensional cellular automata formalisation. The
reader will refer to [93] for a more general treatment of general cellular
automata (particularly one- or two-dimensional ones). We will rely here on
the formalism proposed by J. Thatcher [151].

Let N denote the set of natural numbers.

Definition 7 (Cellular automaton)
A cellular automaton (also called cellular space) is defined over N x N by

1. A neighborhood function ¢ : N x N — 2NN defined by
g(a) ={a+d,a+d,...,a+0,} VaeNxN

where + denotes the termwise addition over N x N and the values §; €
NxN (i =1,2,...,n) are fized and depend upon the type of automaton.
2. A finite automaton (V,vo, f) where V is the set of cellular states, v
a distinguished element of V' called the quiescent state and f the local
transition function from V™ into V' which is subject to the restriction

f(U07UO7"‘7UO) = Vo

A cellular automata can conveniently be seen as a plane assemblage of a
countable number of interconnected cells whose cartesian coordinates are
contained in the set N x N, with respect to some arbitrarily chosen origin
and set of axes. Each cell contains an identical finite automaton (V, v, f)
and the state v'(a) of cell a at time instant ¢ is the state of its associated
automaton at that time. Each cell « itself is assumed to be included in the
neighborhood of «, hence §; = 0.
The neighborhood state function h! : N x N — V" is defined by

ht(a) = (v'(),v' (a4 82),..., v (a4 6,)),

and relates the neighborhood state of a cell « at time instant ¢ to the cellular
state of that cell at time instant ¢ + 1 by

f(h'(a)) = v (a).

Definition 8 (Configuration of a cellular automata)
A configuration (or global feasible state of the cellular model) is a function
c:NxN—V such that

22 The Formalization Foundations

supp(c) = {a € N x Nie(a) # vo)

s finite.
A configuration ¢’ is a subconfiguration of c if

clsupp(c’) = ¢|supp(c’)

where | denotes the functional domain restriction'®

By construction, at every time instant ¢, all cells except a finite number are in
the quiesent state vy (since we have chosen to restrict ourselves to a cellular
model in which all cells except a finite number are initially in state vg). The
function ¢ is said to have finite support relatively to vg. We notice that it
is possible to consider the function ¢ as being equivalent to its functional
graph, thus making the use of the term “configuration” appropriate.

Definition 9 (Global transition function)
Let C be the set of all configurations for a given cellular space. Then, the
global transition function F': C — C is defined by

F(c)(o) = f(h(e)) VYaeNxN

Given any initial configuration c¢g, the function F' allows us to determine a
sequence of configurations (also called a propagation), that is to say a suc-
cession of configurations which completely describes the cellular automata
evolution (or calculation history):

COyClyeresChyenn with ¢;11 = F(c) V.
This sequence can also be described by
co, F(co), F*(co), ..., F*(co), . ..

This second notation better describes the automaton’s internal evolution
process.

All automaton configurations do not behave in the same way. We will
summarize this fact by using the following definition. In what follows, we
call an “area” (or zone) any subset U of N x N. An aera thus describes a
local restriction of the cellular space itself.

Definition 10 (Configuration properties)

15 More precisely, c|A = {(a, c(a)|a € A} for an arbitrary subset A.

2.3 Self-reproducing Automata 23

e Two configurations ¢ and ¢’ are disjoint if supp(c) N supp(c’) =
configuration ¢ and an area U are disjoint if and only if supp(c) NU
e Letc and ¢ be disjoint configurations. Their union is defined by

0. A
= 0.

c(a) if a € supp(c)
(cUd)(a) =1 d(a) if a € supp(c)
vg otherwise

e A configuration c is called passive, if F(c) = ¢ and completely passive if
every subconfiguration ¢’ of ¢ is passive'®

o A configuration c is said to be stable, if there exists a time instant t such
that F(c) is passive.

e A configuration cs is a translation of configuration c, if there exists an
element 6 € N X N such that cs(a) = c(a — §) where — denotes the
termwise substraction over N x N.

e Let ¢ and ¢ be two disjoint configurations. We say that configuration c
passes information to configuration ¢’ if there exists a time instant t such

that
F'leud)|Q # FY()|Q

where
Q = supp(F*()).

Self-reproduction according von Neumann

We now have at our disposal the necessary tools to formally characterize
the self-reproduction according to von Neumann’s model. We can now draw
a parallel between his cellular automata (also denoted cellular model) and
that of Turing machines. The proofs of the results will not be given here
since they would need to provide a detailed and tedious description of von
Neumann'’s cellular automaton. The reader will find them in [151], which is
the base of what follows. Let us first make clear that the cellular model which
was considered by von Neumann is defined by the following neighborhood!”
function g (see Figure 2.2):

g(a) ={a,a+(0,1),a+ (0,-1),a + (1,0)a + (—1,0) }

16 Passivity does not imply complete passivity, by definition of a configuration. The reverse
is however true.

17 There exist many other neighborhood functions that are used in various cellular models:
Moore’s neighborhood [113] which is used for the Conway’s game of Life [82], hexagonal
neighborhood...

24 The Formalization Foundations

Fig. 2.2. Von Neumann’s Neighborhood

Studying the concept of self-reproduction and more generally of construction
requires the ability to determine if a given configuration is obtained or not,
after a certain number of steps. It is obvious that the notion of construction
only involves the apparition of configurations in areas containing only cells
in a quiescent states at the time instant ¢ = 0.

Definition 11 A configuration c constructs a configuration ¢’ if there exists
an area U disjoint from configuration ¢ and a time instant t, such that

d = Fi(c)|U.
We now can define self-reproduction in the von Neumann sense.

Definition 12 (Self-reproduction)
A configuration c is said self-reproducing if there exists a translation § such
that ¢ constructs cg.

Consider the consider the following trivial example drawn from [151].
Example 2 Let be cellular model defined by V = {0,1}, vo = 0 for any v; :

1 z'fv5:1

V1,02,V3,0V3,U4,V5) = .
f(v1,v2,v3,v3,v4,5) {vlzfvg):O

In this model, every configuration is self-reproducing.

On the other hand, self-reproduction is not trivial in von Neumann’s model.
In fact von Neumann’s result is extremely impressive when considering his
cellular model in detail (see further in Section 2.3.2). The following first
result can be given. The reader will find its proof in [151, pp 185-186].

Proposition 2 There exist self-reproducing configurations in von Neumann’s
cellular model.

2.3 Self-reproducing Automata 25

As far as the construction of configurations is concerned, we can give the
following proposition.

Proposition 3 In von Neumann’s model, there exist configurations which
cannot be constructed.

(see proof in [151, pp 143-145].)

As an example, some particular configurations which exist only at time
instant ¢t = 0 (called Garden of Eden configurations) cannot be constructed
(in other words they have no ancestor configuration) in von Neumanns’s
model.

Proposition 4 Any completely passive configuration can be constructed in
the von Neumann’s model.

(see proof in [151, pp 166-168].)

The aim of von Neumann’s model (see Section 2.3.2) — that is to say
contruction of other automata — begins to become clear with the previous
three propositions. But in fact, more general results remain to be given when
considering true universal cellular automata, that is to say which are able
to contruct any given automaton. With this goal in mind, it is necessary to
establish an analogy with the theoretical results known at that time — in
other words, Turing machines!®.

In order to create a correspondance between Turing machines and cellular
automata, the latter must be able to simulate a Turing machine’s main com-
ponents, that is to say the tape unit and the control unit, while preserving
the distinction between them. The only way to achieve this is to use config-
urations however in doing this we have to preserve the “passive” nature of
the tape unit and the “active” nature of the read/write head function.

Let us recall that in the Turing model, the tape unit has to not only
simulate a potentially infinite amount of memory but also represents the
information which is processed by the control function. Since the cellular
automaton configurations have to simulate both components (tape and con-
trol units), the main problem is the way they will be represented inside the
automaton (in particular, if we consider the fact that the automaton itself
may be of infinite size). Thus, we can use the following definition.

Definition 13 A configuration b represents a tape unit for a configuration
c if b is completely passive and is disjoint from c. The configuration cUb is
denoted c(b).

18 We present the analogy developped by Thatcher, which is more accessible than other
ones, for any non-mathematician reader. Those who are interested in a more detailed
and formal approach will refer to [33, pp 10-15].

26 The Formalization Foundations

It obviously becomes necessary to consider completely passive configurations
which are different from trivial configurations for which b(a)) = vy, for any
.

Now, we can give the fundamental notion which enables us to characterize
von Neumann’s model.

Definition 14 (Universal constructor)
A configuration c is a universal constructor for a class C’ of configurations
if for any ¢ € C', there exists a tape b such that c(b) constructs c'.

Let us notice that there does not exist a universal constructor for the model
which was presented in Example 2, unless by introducing trivial completely
passive configurations.

Proposition 5 There exists a universal constructor for the class of com-
pletely passive configurations, in a fixed area of the plane in the von Neu-
mann’s automaton (model).

The proof, which must consider von Neumann’s automaton in detail, will
be found in [151, pp 166-168|.

To complete the analogy between self-reproducing automata and Turing
machines, let us now consider the problem of calculability (computability)
of von Neumann’s automaton. We have to define what a universal computer
is, in the cellular context.

Since the von Neumann’s model is two-dimensional, we naturally consider
Turing machines which can handle two-dimensional tapes (this is implicity
suggested in Definition 13). Let T be a set of such tapes'®, each of them
having only a finite number of non-blank symbols — blanks symbols have
quiescent state as an equivalent — and V'’ = V|T, the subset of states which
occur in T

Definition 15 A partial function ¢ from T into T is said Turing-computa-
ble, if there exists a Turing machine with symbol alphabet V' which computes

o.

This definition is a generalisation, to two-dimensional tapes, of what was pre-
sented in Section 2.2. In the cellular space, the function is then computable
(according to the correspondance alluded to above and Definition 13), if
there exists a configuration ¢, a cell a € supp(c) and a non-quiescent state
(which we call the halting state) v # v, such that, for any configuration
d eT, ¢(c) is defined if there exists a time instant ¢ such that

19 This set may be considered as an area U in the cellular space.

2.3 Self-reproducing Automata 27

F'(cUd)[supp(B) = ¢(c')

where

supp(B) = | J supp(¢')
deB

and F'(cU¢')|supp(B) does not pass information to F*(cUc)|supp(B), and
FlcUd)(a)=vand F¥'(cUd)(a) £v V' <t.

In such a case, we say that ¢ computes the partial function ¢.

Definition 16 A cellular space is computation-universal if there exists an
infinite set T of tapes which is in effective one-to-one correspondance with
the set of natural numbers (such a set of tapes is a Turing domain) and if
for any Turing-computable partial function ¢ from T into T, there exists a
configuration c disjoint from T such that ¢ computes ¢.

Thus, a cellular space is computation-universal if every Turing-computable
partial function is computable in this space.

Now let us consider a cellular space with a Turing domain T'. Let us next
suppose that there is a configuration ¢ disjoint from 7', such that, for any
Turing-computable partial function ¢ from T into T, there exists a tape
b € T and a translation ¢ such that bs is disjoint from 7" and from c. Let us
suppose furthermore that cU bs computes ¢. Then such a configuration c is
called a universal computer with domain T

We now can give two very important propositions concerning von Neu-
mann’s cellular model.

Proposition 6 Von Neumann’s cellular automaton has universal computabil-
1ty.
(see proof in [151, pp 185-186]).

Proposition 7 There exists a universal computer within von Neumann’s
cellular automaton.

(see proof in [151, pp 185-186]).

All the previous results demonstrate the correctness of von Neumann’s
model, as a continuation of Turing’s results. Von Neumann’s own results in
this field — to be the first person to build a universal computer (his famous
cellular self-reproducing automaton) — validated Turing’s model through
“experiment”.

As an example, let us notice that no general (i.e universal) effective
method exists to determine in a given cellular space, if a configuration c

28 The Formalization Foundations

is stable (in the sense of Definition 10). This comes from the fact that the
halting problem as defined in the Turing theory is equivalent to the stability
problem in the cellular model.

2.3.2 Von Neumann’s Self-reproducing Automaton

After definition and theoretical analysis of his model, let us see how von
Neumann really built it. Von Neumann asked himself the question about the
feasibility of really designing and building a self-reproducing “machine”, able
to build, without any concomitant loss of complexity, other machines, and
in particularl itself. Let us quote von Neumann himself to better understand
his main motivations [156]:

We will investigate automata under two important and connected,
aspects: those of logics and of construction. We can organize our
considerations under the headings of five main questions:

1. Logical universality.- When is a class of automata logically
universal, i.e. able to perform all those logical operations that are
all perfomable with finite (but arbitrarily extensive) means? Also,
with what additional — variable, but in the essential respects stan-
dards®® — attachments is a single automaton logically universal?

2. Constructibility.- Can an automaton be constructed, i.e. as-
sembled and built from appropriately defined “raw materials”,
by another automaton? Or, starting from the other end and ezx-
tending the question, what class of automata can be constructed
by one, suitably given, automaton? The variable, but essentially
standard attachments to the latter, in the sense of the second
question of (1), may be here permitted.

3. Construction-universality.- Making the second question of
(2) more specific, can any one, suitably given, automaton be
contruction-universal, i.e. be able to construct in the sense of
question (2) (with suitably but essentially standard, attachments)
every other automaton?

4. Self-reproduction.- Narrowing question (3), can any automa-
ton construct othe automata that are exactly like it? Can it be
made, in addition, to perform further tasks, e.g. also construct
certain other prescribed automata?

20 These means are in fact essentially an indefinitely extending input tape of a Turing
machine, as defined in [153]; see also [156, page 491f].

2.3 Self-reproducing Automata 29

5. Evolution.- Combining questions (3) and (4), can the construc-
tion of automata by automata progress from simpler types to in-
creasingly complicated types? Also, assuming some suitable defi-
nition of “efficiency”, can this evolution go from less efficient to
more efficient automata?

Von Neumann thought that an algorithm allowing description of all the
complex working mechanisms (both biological and biochemical) of any given
(living) “biological machine” should exist. If such an algorithm exists, then
there should also be a universal Turing machine that can perform it. In other
words, there should exist a universal Turing machine able to self-reproduce.
Conversely, if such a self-reproducing universal Turing machine exists at
all, then the processes by which living organisms reproduce themselves (in
fact, the mechanisms of Life itself) can be achieved by machines. Von Neu-
mann’s works was to prove this fundamental assertion. A few years later,
Thatcher [151] demonstrated that von Neumann’s automaton was a univer-
sal constructor. This implies that it is not only able to carry out all the
logical operations (according to Proposition 7, it includes a universal com-
puter), but also it is able to identify and manipulate various components.

Indeed, the concept of universal constructor itself implies not only the
ability to build a machine whose symbolic description is given through its
input tape (like a blueprint), but also the ability to attach a copy of that
same description to the machine once it is constructed. Self-reproduction is
just the special case where the machine input tape actually contains precisely
the symbolic data for the universal constructor itself.

However von Neumann identified a practical problem that the theoretical
model only very implicitly suggests. Let us consider a cellular model M with
an input tape with a symbolic description (the blueprint) B of M on it.
The machine will then build a copy of M but contrary to what one could
hope, it is not, in and of itself, self-reproduction. The set M U B only
built M and not M U Bx4. We could solve this problem by simply adding
to By a description of Bas. But by doing this, we are inevitably chained to
a neverending vicious circle (M U Bayug,, builds in fact M U B and not
MU BmuB,y)-

Von Neumann solved this problem by means of the cooperative action
of several automata breaking this vicious circle (for more details, the reader
will refer to the complete description in [156] and in [93, pp 571-572]).

The whole von Neumann automaton is very complex and require tens of
pages to be described in detail. Von Neumann died before completing the
proof for the results presented in the previous section. The proof was later

The Formalization Foundations

30

D1

C1

TC

'SR
D2 2
F———
~—
D3
3
C3

Fig. 2.3. Von Neumann'’s Self-reproducing Automata Diagram

2.3 Self-reproducing Automata 31

completed and published by A. Burks in 1966 [156]. The complete diagram
of von Neumann’s self-reproducing automaton is given in Figure 2.3.

Its main components, which are connected by means of a channel through
which data circulate in an encoded form, are the following:

e a pulser (P) whose function is to encode commands and to generate at
the output y a sequence of excitations for other “organs” whenever it
receives a given input excitation x.

e a control unit (1) along with its input decoding unit (D1) and its output
encoding unit (C1).

a construction unit (2) and its input decoding unit (D2).
a tape unit (3) along with its decoding unit (C3; for input data) and its
encoding unit (D3; for the output data).

e a construction area (4) connected to the constructing unit (2) through
the use of a “constructing arm” in which the construction itself is done
by means of a construction head (TC).

e atape unit (5) with unlimited memory capacity (and its read/write head
(TL)) feeding unit (3).

To summarize, von Neumann’s self-reproducing automaton has the following
features:

e cach cell has 20 possible different states (divided into five classes accord-
ing to their inherent properties with respect to the transition function).
e the neighborhood of any given cell is defined by its own current state
plus those of four surrounding cells, according to the following formula:

g(a) ={a,a+(0,1),a+ (0,—1),a + (1,0)a + (—1,0) }.

e the representation of the transition function by means of a truth table
(described in [156, chap. 2]) would require about 220 entries (let us note
that there exist 2929 = 1(30000000 possible transition functions; this sole
figure clearly shows why the von Neumann’s work constitutes an extraor-
dinary technical and scientific, achievement).

e the cellular space itself contains 272 245 cells.

2.3.3 The Langton’s Self-reproducing Loop

The von Neumann self-reproducing automaton is so hugely complex that
many later researchers tried to find and demonstrate less complex self-
reproducing automata. Complexity reduction was a challenging issue. In
1968, Codd [33] managed to slightly reduce the complexity by reducing the

32 The Formalization Foundations

number of required states to just eight states per cell. However, his own
model?! was rather close to von Neumann’s model and also involved ten of
thousands of cells. It seemed at that time that designing a really a much
simpler model was quite impossible.

In fact, von Neumann results went far beyond the initial problem that
he was considering — modelling the mechanisms of Life itself. Indeed, not
any living system is a universal constructor in itself, whatever the definition
we may consider. A fly will only sire other flies from the same variety and
nothing else. Some variations (mutations) may occur during the offspring
process but they generally make the process abort. Let us quote Christopher
G. Langton himself [100, page 137] about the von Neumann’s model:

[...] it has generally been required that any self-reproducing config-
uration must be capable of universal construction. This criterion,
indeed, eliminates the trivial cases, but it has also the unfortunate
consequence that it eliminates all naturally occuring self-reproducing
systems as well, since none of these have been shown to be capable
of universal construction [...] Thus, the criteria for what constitutes
true self-reproduction need to be relaxed a bit, but not so far as to
include the passive kind of reproduction mentioned above. It seems
clear that we should take the “self” of “self-reproduction” seriously,
and require of a configuration that the construction of the copy should
be actively directed by the configuration itself.

In fact, C. G. Langton’s works proved to be a turning point in this
research field. He adopted a “looser” definition of the concept of self-
reproduction, gave up the universal contruction property and considered
only the direct action parent configurations themselves rather than the ac-
tion of the transition rules only. This enabled him to significantly reduce
the complexity of his own self-reproducing automaton, better known as
Langton’s loop. Tts detailed description can be found in [100]. This self-
reproducing automaton uses 5 states and 94 cells and just requires a two-
dimensional grid of 10 cells. Self-reproduction occurs after 151 transition
steps. The transition function is given in Table 2.2 while the neighbour-
hoods are defined by:

H
CHDBG-N« [GCD | =N (2.1)
B

2L A proof for this model, more simple than Codd’s one, was published by Arbib [7] in
1966.

2.3 Self-reproducing Automata

33

In addition, Langton demonstrated that the loop’s reproduction does not

CHDBG-N CHDBG-N CHDBG-N CHDBG-N CHDBG-N CHDBG-N CHDBG-N

00000-0
00011-2
00027-2
00202-0
01232-1
01432-1
01762-1
10012-1
10124-4
10227-7
10272-7
11127-7
11232-1
12243-4
20001-2
20022-2
20042-3
20122-2
20212-2
20245-2
20322-6
20572-5
21122-2
21522-2
22277-2
30062-2
40212-0
50022-5
50222-0
60001-1
70112-0
70252-5

00001-2
00012-2
00032-0
00203-0
01242-1
01442-1
01772-1
10021-1
10127-7
10232-7
10542-7
11152-2
11242-4
12254-7
20002-2
20023-2
20051-7
20142-2
20215-2
20252-0
20342-2
20622-2
21126-1
21622-2
30001-3
30102-1
40222-1
50023-2
50224-4
60002-1
70122-0
70272-0

00002-0
00013-2
00052-5
00205-0
01252-5
01472-1
02527-1
10024-4
10202-6
10242-4
11112-1
11212-1
11262-1
12324-4
20004-2
20024-2
20052-2
20172-2
20221-2
20255-2
20422-2
20672-2
21222-2
21722-2
30002-2
30122-0
40232-6
50027-2
50272-2
60212-0
70125-0

00003-0
00021-2
00062-2
00212-5
01262-1
01625-1
10001-1
10027-7
10212-1
10262-6
11122-1
11222-1
11272-7
12327-7
20007-1
20025-0
20057-5
20202-2
20222-2
20262-2
20512-2
20712-2
21224-2
22227-2
30004-1
30251-1
40252-0
50052-0
51212-2
61212-5
70212-0

00005-0
00022-0
00072-2
00222-0
01272-1
01722-1
10006-1
10051-1
10221-1
10264-4
11124-4
11224-4
11322-1
12425-5
20012-2
20026-2
20072-2
20203-2
20227-2
20272-2
20521-2
20722-2
21226-2
22244-2
30007-6
40112-0
40322-1
50202-2
51222-0
61213-1
70222-1

00006-3
00023-0
00102-2
00232-2
01275-1
01725-5
10007-7
10101-1
10224-4
10267-7
11125-1
11225-1
12224-4
12426-7
20015-2
20027-2
20102-2
20205-2
20232-1
20312-2
20522-2
20742-2
21227-2
22246-2
30012-3
40122-0
50002-2
50212-2
51242-2
61222-5
70225-1

00007-1
00026-2
00112-0
00522-2
01422-1
01752-1
10011-1
10111-1
10226-3
10271-0
11126-1
11227-7
12227-7
12527-5
20021-2
20032-6
20112-2
20207-3
20242-2
20321-6
20552-1
20772-2
21422-2
22276-2
30042-1
40125-0
50021-5
50215-2
51272-2
70007-7
70232-1

Table 2.2. Transition Function Table for Langton’s Self-reproducing Loop

depend on any demonstrated capacity for universal construction. He also ar-
gued that although universality is a sufficient condition for self-reproduction,
it is not a necessary condition.

Later on, Byl [27] in 1989, went back to Langton’s definition for self-
reproduction and managed to reduce further the complexity of real self-
reproducing automata. He designed a number of much simpler such au-
tomata. Table 2.5 gives the transition function for an automaton consisting

34 The Formalization Foundations

of 20 cells of 6 different possible states (the self-reproduction occurs after 46
steps and the initial state reappers after 50 steps rotated by 90 degrees) and
Table 2.6 gives the transition function for a 12-cell/6-state self-reproducing
automaton (self-reproduction after 25 computation steps). These tables as
well as the initial states are presented in the exercises at the end of this
chapter.

In 1993 Mark Ludwig [106, page 107] exhibited a 6-state self-reproducing
automaton which is simpler still. It is described in Figure 2.4 (see exercises).
Many other researchers have worked since on self-reproduction by programs
but as far as computer virology is concerned no significant evolution is worth
noticing. The interested reader will however refer to [137] for more informa-
tion.

Exercises

1. Implement Langton’s self-reproducing loop. The initial state (t = 0) is
given in Table 2.3. Study the offsprings evolution of this automata as
well as their degeneracy (death of offsprings). By transposing this mech-
anisms to the viral world and with the help of the concepts presented in
Chapter 4, what conclusion can you draw ?

22222222
2170140142
2022222202

272 212
212 212
202 212
272 212

21222222122222
207107107111112
2222222222222

Table 2.3. Initial State of Langton’s Self-reproducing Loop

2. Build the transition function of Ludwig’s automaton (see Figure 2.4).
Study first how this automaton evolves, and if a degeneration process
occurs.

3. Implement Byl’s two automata (Byl! and Byl2 presented in the present
chapter). Table 2.4 gives the initial states (¢ = 0). The transition func-
tions are respectively given in Tables 2.5 and 2.6. Neighborhoods are

2.3 Self-reproducing Automata 35

2 2 2
212 212 212
3 5

4

t=0 t=1 t=2
2 2 25
21 213 21 4

2 3 2

636 622 2
6 262 211
t=3 t=4 t=5

Fig. 2.4. Ludwig’s Self-reproducing Automaton

Byl1 Byl2
222 22
21412 2312
23 32 2342
21312 25

225

Table 2.4. Byl’s Automata Initial States

defined according the notation given in Formula 2.1. The C**** rule is
the default: it applies to any other combination starting with the value
of C' which is not listed in the table.

36 The Formalization Foundations

CHDBG-N CHDBG-N CHDBG-N CHDBG-N CHDBG-N CHDBG-N

00003-1 10000-0 20000-0 30001-0 40003-5 50001-0
00012-2 10001-0 20015-5 30003-0 40022-5 50022-5
00013-1 10004-0 20022-0 30011-0 40035-2 50032-5
00015-4 10033-0 20035-5 30235-3 40043-4 50122-5
00025-4 10043-1 20202-0 30245-5 40212-4 50222-0
00031-5 10325-5 20215-5 31235-5 40232-4 50244-5
00032-3 10421-4 20235-5 Jrrk_] 40242-4 50322-5

00042-2 10423-4 20252-5 40252-0 50412-4
00121-1 10424-4 QIHHKE_D 40325-5 50422-0
00204-2 11142-4 41452-5 BHAA*_D
00324-3 11423-4 4HAHE_]

00422-2 12234-4
00532-3 12334-4

Q¥F**_2 12443-4
1****_3

Table 2.5. Byl! Transition Function Table

CHDBG-N CHDBG-N CHDBG-N CHDBG-N CHDBG-N CHDBG-N

00003-1 10000-0 20000-0 30001-0 40003-5 50022-5
00012-2 10001-0 20015-5 30003-0 40043-4 50032-5
00013-1 10003-3 20022-0 30011-0 40212-4 50212-4
00015-2 10004-0 20202-0 30012-1 40232-4 50222-0
00025-5 10033-0 20215-5 30121-1 40242-4 50322-0
00031-5 10043-1 20235-3 30123-1 40252-0 GAHAAE 2
00032-3 10321-3 20252-5 31122-1 40325-5
00042-2 11253-1 QHHHE_D 31123-1 QHAHK_Z
0FHH%Q 12453-3 31215-1
1HHHEY 31223-1
31233-1
31235-5
31432-1
31452-5
3....-3

Table 2.6. Byle2 Transition Function Table

Study Projects

Study of Herman’s Theorem

About two to four weeks should be required for an undergraduate or grad-
uate student to carry out this project.
G. T. Herman proved the following theorem [89]:

2.3 Self-reproducing Automata 37

Theorem 6 There exists a cellular space Z with a Turing domain T and a
configuration u such that

1. supp(u) has only one element,
2. u is self-reproducing,
3. u 18 a universal computer-constructor.

The student will first study Herman’s paper and the proof of this theorem,
next he will build and implement such a cellular space Z using a program-
ming language of his choice.

Codd Automata Implementation

About three to five months should be required for an undergraduate student
to carry out this project.

Codd proposed in 1968 an automata which proved to be less complex
than von Neumann’s. But it was still impossible to represent it in detail (at
least without a computer) at that time. Today’s computers can describe and
manipulate such an automata completely. The student will first perform a
complete and detailed study of Codd’s model [33] and then implement it on
a computer.

3

F. Cohen and L. Adleman’s
Formalization (1984 — 1989)

3.1 Introduction

The theoretical results that we presented in the previous chapter implicitly
contained all the information necessary for an implementation of a virus. It
is only at the end of the seventies that the first known viruses appeared!. The
concept of offensive programs was already known and mentioned in the open
literature (and particularly Trojan horses carried or by viruses [4,103,152]).
The first security models and the first protection models started to be defined

! We must stress the fact that in this field, as in many other fields, that may potentially
be exploited for military or governmental uses, there is generally a discrepancy between
the official History of that field and its actual history. Let us recall, as an example, that
John von Neumann himself took part in a number of military projects and in particular
was actively involved in the Manhattan project (whose goal was to build the first US
nuclear bomb). Alan Turing was deeply involved in the secret Ultra project — which was
dedicated to the cryptanalysis of the German encryption machine known as Enigma. It
would very suprising that the US military, whose forward looking concern and pragma-
tism are well known (the best example is undoubtly the Arpanet/Internet project), or
militaries from some other countries, did not try to develop offensive computer warfare
capabilities.

It would be surprising if the armies of technological countries did not think about
viral technology’s potential for offensive computer warfare and did not try to develop
such capabilities. Fred Cohen, himself, indirectly alluded to such a possibility in its
seminal thesis [34, page 1, §9] making it more than certain. Another reference [105,
page 149] mentions the research activities of the M.I.T. artificial intelligence laboratory
for government projects. It is clear that the first security models to protect against
computer viruses and malware of any kind were supported and studied by the U.S.
armed forces and the Pentagon, at a time where no such threat was either known,
formalized or even identified (see the bibliography in [34]).

40 F. Cohen and L. Adleman’s Formalization

and analyzed (see for example [12] for the most famous and efficient one).
The world-famous “Core Wars” game? dates from the sixties.

Very few real-life viruses or worms are known to have existed before
Fred Cohen’s and Leonard Adleman’s works. The Xerox segmented “worm”
experiment [140] which became a true worm due to a programming error,
appeared in 1981. During this same year, a virus for Apple II computers,
turned up, as part of a speculative study about the evolution and natural
selection of programs issued from software piracy (for more details, refer to
[88, pp 27-28]). In 1983, the Elk Cloner virus was released for the AppleDOS
3.3 platform but despite some annoyance caused by virus, it seems not to
have been created with malevolent intentions (see [88, page 28]). Finally,
during the same year when Fred Cohen defended his Ph. D thesis, the Brain
Pakistani virus appeared (for a detailed description of this boot virus, the
reader will refer to antivirus websites, and particularly [8,79,143]).

Except in a very few cases, most of the known cases during these early
years were the result of experiments which turned out badly rather than
the expression of a deliberate evil disposition. Thus Fred Cohen’s works
were published at the moment of the very first appearance of the real-life
computer viruses. But at that time, no scientific or theoretical reflexion on
those particular programs existed. The term “virus” itself was not used to
describe what was still only known under the name of self-reproducing pro-
grams. The term “computer viruses” was used for the first time by Fred
Cohen (at Leonard Adleman’s instigation). That is why Fred Cohen’s the-
sis, published in 1986, can be considered as an essential milestone whose
implications are still misunderstood®. Fred Cohen was the first author who
gave a precise definition of what computer viruses are. This definition is now
widely accepted and used?

2 In this “game”, programs were designed to fight against other programs. The goal for
each program is to survive in an offensive context. It is worth noticing that the early
developments of this game — which later on became a research project at the Bell Labs —
was initiated in U.S. armed forces missile development and test bases!

The fact that Fred Cohen proved that viral detection was an undecidable general prob-
lem has probably contributed to this miscalculation!

Some virus expert often claims that this definition, hence Fred Cohen’s, does not re-
ally describe all possible viruses. They generally consider companion viruses (see Sec-
tion 4.4.4 and Chapter 8 for details on those viruses) as the best counter-example. This
is a wrong assertion coming from a lack of knowledge in the formalisation exposed in
Section 2.2.2. The Go6del number that describe a given program and which is input
to a universal Turing machine can include not only the program’s code and data but
also the system environment of this program — equivalent to the char * environ[]
primitive in the C language; see Chapter 8 for details. Thus, companion viruses like
any other viruses, is completely described by Fred Cohen’s model.

w

3.2 Fred Cohen’s Formalization 41

Definition 17 A wvirus can be described by a sequence of symbols which
is able, when interpreted in a suitable environment (a machine), to mod-
ify other sequences of symbols in that environment by including a, possibly
evolved, copy of itself.

From a practical point of view, all the main aspects of modern computer
virology were foreseen in Fred Cohen’s thesis: formal definition, formal char-
acterization of the viral detection problem, protection models, propagation
experiments, polymorphism,.... The concept of document virus — such viruses
have only appeared in 1995 — is also suggested in this seminal work. Even
if this thesis only focused on viruses and did not consider the more general
issue of computer infection programs (like Trojan horses or logical bombs,
for example; see [64]), Fred Cohen’s works are fundamental ones and are
amazingly universal and timeless.

Leonard Adleman, in 1988, complemented his Ph.D student’s work, by
considering the more general approach. His seminal article published in
1989 [1] (a copy of this article is provided on the cDrROM with kind per-
mision of Springer Verlag) presents a unified view of all the aspects of what
is known under the technical term of malware and that we will denote com-
puter infection program. His work starts with the essential notion of recursive
function, that we presented in the previous chapter. Leonard Adleman stud-
ied and analyzed in detail some protection models which are looser and more
realistic, from a practical point of view, than those defined by Fred Cohen.
Moreover, he identified several open problems (most of them have not yet
been addressed yet).

The aim of this chapter is to present the work of Fred Cohen and Leonard
Adleman. Once again, it is very regrettable and surprising that their results
have not received wider attention. Their work deserves to be known to any
person who wishes to have a deep knowledge of computer virology. Virus
writers and antivirus programmers have directly used and put into practice
most of their results. But how many of them really pay tribute to these two
researchers?

3.2 Fred Cohen’s Formalization

The presentation in this chapter of Fred Cohen’s results is based on his
seminal Ph.D thesis, which he defended in 1986 at University of Southern
California [34]. We will not give the complete proofs of his different results,
except in a few cases, which are of particular interest. The goal of this chapter

42 F. Cohen and L. Adleman’s Formalization

is to present Fred Cohen’s formalization work and to focus on the most
important theorems and propositions that he proved. In not giving proof, we
want to incite the reader to refer to Fred Cohen’s thesis and original papers,
which are definitively a milestone and a reference in computer virology.
Somehow, it is probably the best way to pay tribute to a fundamental work
which is still insufficienty known, while viruses are maybe too much, and in
a bad way, the focus of public attention.

3.2.1 Basic Concepts and Notations

Fred Cohen’s formalization work uses Turing machines but with a slightly
different approach and notation from that orginally proposed in Chapter 2.
In particular, he pays special attention to describing more intimately and
deeply computing mechanisms involved in Turing machines, by privilegeing
the time aspect of those mechanisms.

Definition 18 A Turing machine is defined by giving

e a set of n+ 1 states Syr = {so,$1,.-.,5n} withn € N,
e a set of m+1 symbols Iny = {ig,i1,...,0m} with j €N,
e asetd={-1,0,41} of the possible tape motions,

e an output function Opr : Sy X Ing — Iy,

e q state transition function Ny; : Sy X Iyy — Sy,

e a motion function Dys : Sy X Iny — d.

The machine M is thus denoted by the 5-tuple (Sar, Ing,Onr, Nar, Dar). The
set of Turing machines will be denoted M.

The reader will verify that this new formalization for a Turing machine is
equivalent to that presented in Chapter 2. Three temporal functions are now
considered. It is worth noticing that the notion of time here coincides with
that of step index (elementary action for M):

e the “state(time)” function $57 : N — Sps which maps a move to the state
of the machine after that move;

e the “tape-contents(time, cell number)” Oy : N X N — I, which maps
a move and a cell number (cell index) on the infinite tape, to the tape
symbol on that cell after that move;

e the “cell(time)” Pp; : N — N which maps a move to the number of the
cell in front of the tape head after that move.

Using these three temporal functions we can precisely define the notion of
“Turing machine history” Hj; by means of the 3-tuple ($57, 0y, Par). The

3.2 Fred Cohen’s Formalization 43

history at time instant ¢, in other words the situation of M at that time
instant ,is denoted

HM(t) = <$M,DM,PM)(t) = ($M