COMPUTER VIRUSES
AND ANTI-VIRUS
WARFARE

COMPUTER VIRUSES
AND ANTI-VIRUS WARFARE
Second Revised Edition

COMPUTER VIRUSES
AND ANTI-VIRUS WARFARE
Second Revised Edition

JAN HRUSKA
Technical Director, SOPHOS Limited,
Abingdon, Oxfordshire

ELLIS HORWOOD
NEW YORK LONDON TORONTO SYDNEY TOKYO SINGAPORE

First published in 1992 by

ELLIS HORWOOD LIMITED

Market Cross House, Cooper Street,
Chichester, West Sussex, PO19 1EB, England

A division of

Simon & Schuster International Group
AP C ications Company

© Ellis Horwood Limited, 1992

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission, in writing, of the publisher

Printed and bound in Great Britain
by Hartnolls, Bodmin

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-13-036377-4 Pbk

Library of Congress Cataloging-in-Publication Data

Available from the publisher

TABLE OF CONTENTS

PREFACE AND ACKNOWLEDGEMENTS 13
CHAPTER 1 AN OVERVIEW OF THREATS TO COMPUTER

SYSTEMSccccecsecsunsacsressessassassoscsssssssssssnssssensaasoncs 17

1.1 TROJAN HORSESocccccocnvrrsnserssseeessssessesscssssiesssssssessssoeesssoeeessovees 18

1.1.1 TROJAN EXAMPLE 1: BATCH FILEScccccrconveurrrssmrrsismerrssicerse 18

11,2 TROTAN EXAMPLE 2] ANSESYS usscsssscssssssssssmisooiiasssssssisiasss 19

1.1.3 TROJAN EXAMPLE 3: THE AIDS DISK THROUGH THE POST20

1.2 LOGIC BOMBScoosoeeerssrennessssssssssssesssssssssssssesisessssssssssssssssseesssesees 23

e R ———— 24

0 L. T T——— 25

1.4.1 WORM EXAMPLE 1: CHRISTMAS TREE ON IBM VM........cc....... 26

1.4.2 WORM EXAMPLE 2: INTERNET WORM ON UNIXcc..ccccovvrrrn 26

1.4.3 WORM EXAMPLE 3: SPAN WORM ON VAX/VMSccccccoocorvrrier 26

CHAPTER 2 HOW CAN A VIRUS PENETRATE A

COMPUTER?..... oese 2D

2.1 HOW DOES AN INFECTION HAPPENYcccoovocmmssvmmressisssisisserssisesse 30

2 O BXECUTABLE PATH..covoocescnsnecsssoniosie i i S R i 008 32

2.3 VIRUS CARRIER MEDIAcccccormmmurresmnmrisssessssissesssssessissssssssssssssossss 35

o Qs o s U —— 35

%30 REMOVABLE BARDDISKS s csisssswsusissasssistisssssisinsssiossisasesssiisias 36

2.3.3 MAGNETIC TAPE CARTRIDGESccccccoveieirnninnrassennesnssnisnssnsnences 36

6 TABLE OF CONTENTS

2.3.4 OTHER STORAGE MEDIAoovocooeeesisroseeesessssssseesssssosssesssesmmssen 36
3.5 NETWORKS ,s.cs651s50ssasossssssusyasnisssvsssissitissssssssssusvivessssassasisassssssassiasnis 36
DR NIODIERIS st A S RS 36

2.4 VIRUS INFILTRATION ROUTES AND METHODScoovrrvveeecrsrrrnee 36
2.4.1 PIRATED SOFTWAREoooooeoreeoeeresessesssvssesessssesssssssssssseeseesessssnsnne 36
2 4L LETRE BOARDE (BBS) ssssussummimmonmsismmmiobsi 37
DA S SRR NARE s T R SO 37
2.4.4 PUBLIC DOMAIN SOFTWAREooooororvroeeeessssreeseesessssmeseessesensnns 38
2.4.5 SHARED PCS (PC AT HOME)ovoocoeoeseeresseeemsssssensesssssssseesessssssnes 39
2.4.6 FLOPPY DISKS SUPPLIED BY COMPUTER MAGAZINES 39
28,7 SERVICE ENGINEBR S oissv:vivs s seesss s el e s e 39
2.4.8 SHRINK-WRAPPED SOFTWAREovvvomorreossereeorerssensessesssanne 40
CHAPTER 3 VIRUS STRUCTUREcccocvnrvrennennensccccccsses e |
B INVIRETS TIPES . cconsssmmmarsssssssismsissessssssvssesssavssesnsicissesisssismmasasisesssss aessssiniins 42
311 BOOTSTRAP SECTORVIRUSES wccivsvisvisiivssssimsinsi it 42
31 PAR ASTTICVIBUISES st Saiioss ittt bssstopammaonesnisssipasssessssspisnsns 44
3.1.3 MULTI-PARTITE VIRUSES........urroveoeerosmeessreomssssssesssssssssesesssesssines 46
3.1.4 COMPANION VIRUSEScocoirnerrvommeresssereessssmsssssesesssssssssssssssssssssses 46
T 0 R ——————————— 47
3.2 VIRUS BEHAVIOUR AFTER GAINING CONTROLcooserrrrvevrrsssnnnne 49
3.2.1 MEMORY-RESIDENT VIRUSEScoommrrrrmeommmesreressssessssenssesssonns 49
3.2.2 NON-MEMORY-RESIDENT VIRUSESooooocorrmrerrrrsrmsenressssssinns 49
T as 1015 S S ————————— 49
3.3 VIRUS HIDING MECHANISMScooooeoeeiroeeeesssseessseessmssssssssssssssssssseess 49
3.3.1 ENCRYPTIONooooemrorosvsevesesesssessssmsmsssseesssssssssssessssssssssssssssssssssens 49
3.3.2 INTERRUPT INTERCEPTION: STEALTH VIRUSESccoomrvrvrvirens 51
L LG 100 o O ———————— 52
3.3.4 VIRUSES WHICH INFECT THE FIRST CLUSTER OF THE DATA
AR, ccopoerssscssmmpmmresirssassassissrspeissmmsasesses bissisess srmmasioeserhis 54
3.3.5 SPARSE INFECTION: THE UNSCANNABLE VIRUSccoomurvrvvvnens 54
3.3.6 HIGH LEVEL LANGUAGE VIRUSESovvvoooreeeeeoreceesessesrereennes 55
S VIRUS SIDBERFBE TS scccsnesismismstios s i s s s s 55
CHAPTER 4 VIRUS FACTS AND FICTION ss0 T
4.1 THE NUMBERS GAMEoovooooeoreeeeeeeeoeeeeseesssseesssessssssssesesesessessseesnsens 57
4.1 HOW ARE VIRUS ATTACKS DISCOVEREDovccciooreeerreereresessrsneeenns 59
42 VIRIISES ANBYTHE C ALENDAR e i s 59
4.3 CAN VIRUSES CAUSE HARDWARE DAMAGEoovvvorrveerrrerererreeonen, 60
4.4 MODEM VIRUS, CMOS VIRUS AND OTHER NONSENSE 61
CHAPTERS5 WHO WRITES VIRUSES? T, 63
SANIRUS WRITERS! PROPIEE vt s s st 63

510 HACKERS i i ciinonssasssnsnmonssmmtsspssssmerssmprimmuspesivesionssis Seosshuahesoess 64

TABLE OF CONTENTS 7

SABTRERES....occomesimesserssmmssemmpamsnsaussmmssssmsso 64
5.1.3 UNIVERSITY STUDENTSooooereoroereosoeeseseseseeessessesesesssseseseneeesen 65
s taa s O 65
5 1.5 COMPUTER CIRIBS coecmnnesnmmmms it 65
5.1.6 TERRORIST ORGANISATIONSoooeoeeeeeeeeeemenssssssessessssesessaenrses 66

5.2 DISSECTION OF A CAPTURED VIRUScoooooremeeseseseeeeseseeeesesessesssnn 66
5.2.1 VIRUS DISASSEMBLYoooooomroreesesesseeesesseesesmmsensssssssseessssssssessmmmns 66
373 FORBNE IC BVIDENCE s s s s amsess 69
5.3 T WHICHASSEMBLER?oveooooneeeesresssssssesesessmemmmenssssssssssssssssssisisssasnss 69
5.3.2 ILLEGAL INSTRUCTIONScooremeeerereerssereseesemmssesssessessssssssessennnnns 69
5.3.3 PROGRAMMING STYLEooooorrereseeeeseseseseesmmsessssssesesessssessessasnses 69

5 3 4T ANGUAGE AND SPEEEING .o.ooooonsoummosssinsamssissssisisam 70
5.3.5 PLACE AND TIME OF FIRST DETECTIONcovoreresereereeeeererenee 70
§316 ANCESTORS ,.svesmsssssoesssosssrorssmmammsssssmssnsssesss iSRG s MR §ds3%o 7
§.4 VIRUS MUTATIONSooooooooooomeeeeeseeeeeeseeesssesessssessssssssseessessssssssssssssssssee 71
5.4.1 CHANGING VIRUS SIDE-EFFECTS.......cocvusssssssssssessssmsmmsssssssssssssssssss 71

54 9 VIS TMPROVEMERIPSY st s s sisanss 72
5.4.3 MUTATIONS TO FOOL PATTERN-CHECKING PROGRAMS............ 7
SAANEW VIRUSES ..oovooovooereesse 74
5.5 VIRUS EXCHANGE BULLETIN BOARDSococreessrrnrnsessssssssssssssssnnnnns 74

CHAPTER 6 ANTI-VIRUS PROCEDURES - FIVE

COUNTERMEASURES w75
CTTROTARATION.. .. . i e eI 76
6.1.1 REGULAR AND SOUND BACKUPScosussisssasisisesssssssssssisesssssssn 76
6.1.2 WRITE-PROTECTED SYSTEM FLOPPY DISKorirrrrvrrcerrverrorinnns 76
6.1.3 CONTINGENCY PLAN........oooooommreeeesesesssssesesesmsmssssssesesesssssssssssssonens 77
DR g (s T —————— 77
6.2.1 CREATING USER AWARENESScovommmemmmssmmssssssssssssesssssissssssens 97
6.2.2 HYGIENE RULESooooooocoeeoeooessssessessesssssssssssssssssssssssssssssssssssssssens 78
6.2.3 ACCESS CONTROLooooooooooooooeeeees s eeeesesesesassssessesssesssssesenene 79
O . N —— 79
6.2:5 QUARANTINEPC.......ccossserssssssosmesmomsonssrapsnssinisSisesesiimisminsisisnss 80
6.3 DETECTION ... eeeeseeeeeseeeeeeeeeeeseeseeesseessssseeseesssssssssssssssesseseemsemesenre 80
6.3.1 ‘STRANGE’ OCCURRENCESvvrrrmmmnnnscsissssssmsmmnesnsessssssssssssssssssssns 80

6 3 2 ANTI-VIRUS SOPTWARE .oismmsunmmusssemmnoessssismaion 80
6.3.3 CONFIRMING THAT THE VIRUS IS NOT A MUTATION 80

6.4 CONTAINMENToooooeeeeeoooroeeesssessseeesessssssssssssmsnsssessssssssssssssssssssssssssseses 81
6.4.1 NETWORK ACCESS ...oovvooooeoveooeeesssseeeesesessessssssssssssssssseseeesseosssnsssons 82

6 1 DISK TNTERCHANGIE oo s cmopsssibmmmmseansirsietsssainmasn 82
6.4.3 WRITE-PROTECT TABSocovsusnasnseesicinsisiiissisinsiniiiiniamsisssssisssissnivesd 82
6.5 RECOVERYooooooreeeeseseeeeseeesessessesesesssessssssssssssssssesssssssesssssssssssesssessesssssssses 83
6.5.1 CLEANING HARD DISKScoooorrmmrsseeeesseesesesessemssssssssssssesssomssssennns 83

6.5.2 CLEANING FLOPPY DISKS ;iiiciiisossssssisiiostsssssisivsivsissiosssasivisssvoss 84

8 TABLE OF CONTENTS

6.5 S REINFECTION o vt s i e S R e s P s 84
6.5.4 RECOVERY FROM VIRUS SIDE-EFFECTS.......coceovevimininieirciecnennns 84
653 OTHER POINTS ; cisssismviissmssimsnsssmnavaiavsssmisnntaisisidiid 85
CHAPTER 7 ANTI-VIRUS SOFTWAREccccoeeeeneennnnanens 87
7.1 ANTIEVIRUS SOFTWARE TYPES i s i S hoainiiieins i 88
7.1.1 SCANNING SOFTWARE (VIRUS-SPECIFIC)ccccovvemevirvriiinienns 88
7.1.2 CHECKSUMMING SOFTWARE (VIRUS NON-SPECIFIC) 88
7.1.3 MONITORING SOFTWARE (VIRUS-SPECIFIC)ccccococcvinvirinivannens 89
7.1.4 MONITORING SOFTWARE (VIRUS NON-SPECIFIC)cevmneee. 90
7.1.5 ‘INOCULATION’ SOFTWARE (VIRUS-SPECIFIC).......c.cceceververerucnnan 91
7.1.6 INTEGRITY SHELLS (VIRUS NON-SPECIFIC)......c.ccscs0eenssissssssuisass 91
7.1.7 DISINFECTION SOFTWARE (VIRUS-SPECIFIC)......ccccccoevviuiiunannnne 91
7.1.8 VIRUS REMOVAL SOFTWARE (VIRUS NON-SPECIFIC) 92
7.2 TESTING ANTI-VIRUS PRODUCTS ...ttt inenesnnecsinssennneens 92
7.3 FALSE POSITIVES AND FALSE NEGATIVES ...ccoosesesesssesesinsnessosssncéassosss 93
7.3:1 VIRUS-SCANNING SOFEWARE .o ouvassssnsmmsvn s avbsndsnin 93
7:3.2 CHECKSUMMING SOFTWARE :..cccuomims s ionisainmis i iinsis 94
7.3.3 VIRUS NON-SPECIFIC MONITORING SOFTWAREcccccocvveninns 94
7.3.4 VIRUS-SPECIFIC MONITORING SOFTWAREc.cccvveivumninrnnninen 95
7.4 SUMMARY OF ANTI-VIRUS SOFTWARE ..o asistasnienesvosvviois 95
CHAPTER 8 VIRUSES AND NETWORKScccvvveeessnneerssnsssssres 97
8.1 PATHOLOGY OF A VIRUS INFECTION ON NETWARE..........ccovvvniinnne 97
8:1.1 VIRUS ENTRY_INTO THE NETWORK-ccoccsusssisssovssisosmmsismmissin 98
8.1.2 PRACTICAL TRIAL - JERUSALEM ON NETWARE 2.12 98
8.2 NETWARE 3.11 SECURITY MECHANISMSocoiiissnnniimisig 98
8.3 NETWARE 3.11 PRACTICAL EXPERIMENTScccceoiiiiiniininiinieeienes 99
8:3: 1. PARASITIC VIRUSES: .covsessisssmsmsssassmssnsssssesssiosdesissmsssntivsiinisnbsiiss 99
8$.3:1.1 Default NetWare 3:11 SECUNLY ...c.isnssssusmiansitiiis 100
8:3.1:2 RightsiSét to'Read=onlyoammeniinaiminnrisnmsenig 100
8:3.1:3 File Attributes Setto Read-only il smsnussmessssssssasssasnss 100
8.3:1.4 Filc Attributes Sct 10 BXECUtc-0DIY . ..oconrsnssssnssossessmisssassonsrsssnssian 100
8.3.1.5 Running Under SupervisorMode ... sssmnnaumnssisia i 101

8.3:2 BOOT SECTOR VIRUSES .c.ovnsssmssivsvimiosausnimnsiad g 101
8.3 3 MULTI-PARTTITE VIRUSES ::5: 650505500 dharsannnsosssssssasssssosystngsnsasisass 101
8.4 NETWARE 3.11-SPECIFIC VIRUSESccoooriiiiieriieniieiienie e sisenrie i 101
8:4:1 FIRST NOVELL “VIRUS . ..cosmnmmnnsmisammmiinyinta sl 101
8.4.2. JON DAVID’S FALSE AFARM .cosssmviasiesssn s i pvssiantriseiaiv 102
8.4.3 NETWARE VIRUS FROM THE NETHERLANDScccoecevevennn. 102
8143 1'VATUS SERCAIIRus0s0 00 msssszssssvsssissmssinssssnkessosassyssss iosssssistis e ives s 102
8:4.3.2 Practical Trals on NetWare 286.......uusmussassmvsisaviaissinis 103
8:4.3.3 Practical Trials ORNEtWare 3. 11 ...ounsnsmammnanisiii. 103

8.5 IMPLICATIONS OF STEALTH VIRUSES ON NETWARE 3.11 103

TABLE OF CONTENTS 9

8.6 PRACTICAL ANTI-VIRUS MEASURES FOR NETWARE 3.11 NETWORK

ADMINISTRATORS ..ottt e eeaaeeesaaeeaan e nneeenne 103
8:6: 1 DISKLESS WORKSTATIONScovuicossccosinsssnsasssosssnsosssasssssusssssnssiasars 103
8.6.2 REMOTE BOOTSTRAP ROMS c.ccinsinuvnmmsmssvnnsnsiasmiins 104
8.6.3 ENBANCED-ACCESS CONTROL: vsvci. cosvinisisssiain somnsvessis i saesvs 104
8.6.4 ANTI-VIRUS SOFTWAREccoooiiimriiiriiineeereieeeecereersesssessrenseens 104
8.6.5 TWO IDS FOR NETWORK SUPERVISORScccccovvieiecrierrreenreennns 105
8.6.6 SECURE ACCESSING OF NETWARE 3.11ccoooeevivivreerrenreerene 105
8.6.7 TIGHTENING NETWARE 311 SECURTITY <:is.uswsnvsssinsisvisasoioess 105
B.6:BCONCLUSIONScoeconsnensssssansossasnsasesnmsmnpsios s b SaNos Sleaisrss 106
8:6:8.1. NetWare 3. 1.1 AdMINISTAON . csvsvorsuisssssssissssssassssnssssssssaninsssssnsasns 106
8.6.8.2 NetWare 3.11 Virus INfectionscccceevvveeveeeeneeerineesnveeensneens 106
0.8 FOher POINES oo s o D RS iR s e s 106
APPENDIXA BIBLIOGRAPHY AND OTHER SOURCES OF
TNFORMATION iiisisssscissoscissrossaaossoasspsassessnsssssonss 107
A1 BOOKS ON VIRUSES AND DATA SECURITYcicisivissisossssssessossesssonss 107
A.2 PERIODICALS ON VIRUSES AND DATA SECURITYccccceceviiiinnnnnn 108
A.3 ELECTRONIC BULLETIN BOARDS CARRYING VIRUS-RELATED
DISCUISSIONS o svoes s trsvsessim s s oo mid o iR A s g s s semB S an et 109
A.4 VIRUS INFORMATION AVAILABLE ONDISKccccociiivrinieciininnnne, 109
ASVIRUS TRAINING VIDEOS \....ocxsesssnneodsio s i i uanssis 109
A6 OTBERVSEFULEBOOKS iipiccvmssmimssisssssssmmampsinssissssns S Tmss 110
APPENDIXB ‘SEARCH’: VIRUS-SPECIFIC DETECTION
PROGRAM . iovesenonsosssssssssnssssasivisss ey Gisressee 111
B 1" DESCRIPTION OF“SEARGH? :cuissnsvevmssssusssssimssosssanpssgiresasessssenssnss 112
B2 COMPILING SEARCH :cconiss.viventenssvesissitomismvinsiosiavssssissonnsssisiossss 112
B3“SEARCH? CODE IN ‘Ocoueonsnasnensess o s s i wasnsms 113
B4 SEARCH CODE IN'ASSEMBLY LANGUAGEco0ue0nsnesesessssscddiiisvisinss 122
APPENDIXC F‘FINGER’: VIRUS NON-SPECIFIC DETECTION
PROGRAM........... sssssersrssssits Sreivetavens T T o e 125
C: 1 DESCRIPTION OF FINGER: o covsnvasvsis v iovsssbisang ssosasmesssssspssssarassesss 125
C.2:COMPILING ‘FINGER? ::cuiviiivisnmmmvssisisitosssssoss e s vasisiss ssasssvessss 126
C.3 FINGERICODE INTSCY .. coccxssinermssns s b U Fos s e R nwssiasin s 127
APPENDIXD ANTI-VIRUS SOFTWARE
MANUFACTURERS . sessevesvivary 135
NOTES ON TELEPHONE AND FAX NUMBERScocoviviiiiiiieneeenecinninn 135

APPENDIXE GLOSSARY OF TERMScccccceevuesaecnncascsessacens 139

10 TABLE OF CONTENTS

APPENDIXF VIRUS HUNTER’S CHECKLISTcccoevveecrnrnens 153
APPENDIXG KNOWN IBM-PCVIRUSES 155
G.1'VIRUS NAMES AND ALTASES :ciiiioniiaicosiiisisisisnionsssiaassiossssssssonsses 155
G2 VIRUS HEX PATTERNS........c.coorcssssssnsssssmersasssesssasssessasasssssasssonssensisssssssnss 156
Q.3 IBM-PC VIRUSES ..cccosisisssssessusissssissssssssvoassssasvorisssiaissssomsostossassoszinonssts 157
G ATROTANHORSES ...t sdoss o s s s o s oy wovennioness 220

INDEX

To Bozena Bozicek-Ferrari

PREFACE AND
ACKNOWLEDGEMENTS

Good God! What a genius | had when | wrote that book!

Jonathan Swift, Of The Tale of A Tub

PREFACE TO THE FIRST EDITION

This book is about computer viruses which occur on IBM-PC/XT/AT/PS2 and compatible
machines running PC-DOS. It does not attempt to deal in any depth with viruses on other
machines or operating systems, like the Apple Macintosh or Xenix, although most of the
defences and investigative techniques are similar.

The subject of computer viruses is treated from scratch, but basic familiarity with the
structure of the 8086 family of microprocessors and their assembly language is assumed.
The book provides a framework for discussing a wide variety of virus-related issues:

+ How can a virus penetrate a computer ?
+ What does a virus consist of ?

+ How complicated is it to write a virus ?
+ Who writes viruses ?

- How does one protect against viruses ?

- How effective is anti-virus software ?

14 PREFACE

Apart from procedural advice on how to fight the virus problem, the book also contains
the source code of two anti-virus programs: a pattern checker (SEARCH) and a
fingerprinting program (FINGER). Both are written in ‘C’ (with a few lines of assembly
language) and can be used as practical anti-virus tools. For those readers who prefer to
buy software, rather than write it, there is also a list of manufacturers of anti-virus
software.

A glossary of computer security-related terms is included.

Names such as IBM, Microsoft and PC-DOS, are trademarks, and any name should be
assumed to be a trademark unless stated otherwise. Throughout the book, references are
made to DOS. Unless stated otherwise, this means Microsoft’s MS-DOS (PC-DOS)
running on the IBM-PC and compatible personal computers.

The book was created using the Runoff text processing package, typeset by Aldus
Pagemaker on a Compaq 386/20 and printed on a Hewlett-Packard LaserJet-1ID.

I am grateful to several people for their help. In alphabetical order Sophie Cannin, for
her continuing support and stoic patience; Petra Duffield, who proof-read the text;
David Ferbrache, who supplied reference material from Virus-L bulletin board; Joe
Hirst, whose painstaking disassemblies of PC viruses have revealed so much; Keith
Jackson, who made several suggestions; Richard Jacobs, who wrote the majority of the
software featured in the book; Peter Lammer, who wrote parts of the text; Karen
Richardson, who wrote the section ‘Creating User Awareness’; Alan Wear, who gave
advice on the psychiatric aspects of virus writing; Edward Wilding, who made several
suggestions; and all the others who have attended my talks and seminars over the past two
years, asked questions and taught me so much.

14 -
Oxford, Christmas 1989

PREFACE TO THE SECOND EDITION

The unexpectedly favourable reception enjoyed by the first edition of this book took me
by surprise. As the field of computer viruses is evolving at an extremely rapid pace, the
second edition will be out of date almost as soon as it is published. However, certain basic
principles of anti-virus warfare remain valid regardless of the technical developments of
virus code, and it is those that I hope will be of most value to the reader. Nevertheless, in
order to try and keep the book as technically up to date as is humanely possible, I have
gone through the whole manuscript and made a large number of refinements, corrections
and additions.

A whole new chapter on viruses on networks has been added, in order to reflect the rapid
increase in the use of networks, the increased sophistication of new viruses which are
network-aware and the increase in the corresponding need for security measures.

PREFACE 15

All appendices have been updated: this includes the rapidly varying list of anti-virus
software manufacturers as well as the expanding bibliography. Some terminology has
also been updated to reflect de-facto usage amongst the virus experts and PC users.

The book is now maintained in Aldus Pagemaker 4 format on a Compaq 386/33L and
printed on a Hewlett-Packard LaserJet-IIISi.

I wish to thank the many readers who have sent me comments and helpful criticisms. In
addition, this book would not have been possible without the continuing anti-virus
research efforts at Sophos and the Virus Bulletin. In particular, I am grateful to Richard
Jacobs and James Beckett for the technical intelligence, Petra Duffield for keeping
various lists up to date and Fridrik Skulason and Jim Bates for their technical analyses.
Special mention is due of Joe Hirst, who has been a source of unfailing encouragement
as well as introducing me to the mysteries of EBCDIC, and Keith Jackson for his input
to the glossary of terms as well as his helpful comments. Peter Lammer and Julie
Hollins proofread the manuscript and made a number of suggestions. My gratitude also
goes to Sophie and Zulu Cannin who could not care less about computer viruses, as well
as to all the virus researchers with whom I have exchanged ideas and virus collections
over the last few years.

o : &
Oxford, July 1992

1

AN OVERVIEW OF THREATS TO
COMPUTER SYSTEMS

‘You threaten us, fellow? Do your worst,
Blow your pipe there till you burst!’

Robert Browning, ‘The Pied Piper of Hamelin’

When the possibility of computer viruses was first mentioned in the scientific papers
published in 1984, nobody took it seriously. It did not take long before the first wide-
scale computer virus infection swept the United States in 1986. This virus infection (by
the Brain virus) caused a media sensation, but not an outrage. People were genuinely
fascinated by the novel concept of a computer virus but few saw its full dangerous
potential. To some people it was not even clear whether computer viruses occurred
accidentally or whether they were deliberately written.

One or two reputable computer experts went as far as stating publicly that the existence
of a computer virus was completely impossible, and even if it was possible, it would not
last very long.

Little did they know! To date thousands of businesses have suffered from virus
contamination. Unlike older viruses (1986/87 vintage) which would place asilly message
or a bouncing ball on the screen, many new viruses are highly destructive, programmed
to corrupt and destroy data. As viral infections become more and more widespread, the
damage to data is increasing at an alarming pace.

18 CHAPTER 1

The virus danger is here to stay. In most of the world it has reached epidemic proportions
and the number of viruses seems to continue doubling approximately every 9 months,
reaching about 1500 in June 1992.

Computer viruses are only one of the many possible forms of attack on computer
systems; other common forms are Trojan horses and logic bombs, but since they often
occur together, their analysis is important in the context of this book. For example, a virus
will almost certainly be introduced into a computer system without the explicit consent
of the system owner. It will be hidden in the boot sector of a floppy disk or attached to a
legitimate program. The infected disk and the infected program are Trojan horses used to
introduce virus code surreptitiously into a computer system. Likewise, most viruses
incorporate side-effects which trigger only when certain conditions are fulfilled. The
mechanism which does the triggerring is a logic bomb.

1.1 TROJAN HORSES

A Trojan horse is a program which performs services beyond those stated in its
specifications. These effects can be (and often are) malicious. An example of a Trojan
horse is the program ARC513 found on some bulletin boards which pretends to be an
improved version of the legitimate data compression utility ARC. In reality, it deletes the
file specified for compression.

A list containing the names of known Trojan horses was started some time ago and was
called ‘The Dirty Dozen’. Unfortunately, as it is easy to rename a program, or to write a
new Trojan, the list grew rapidly and now contains hundreds of names. It is available on
some bulletin boards, but no such list can ever be complete.

Apart from the fact that Trojan horses can be stand-alone programs, the term is also used
to describe any item which surreptitiously introduces malicious code into a computer
system. This can be a floppy disk with virus code hidden in a bootstrap sector or a
program with a virus attached to it.

1.1.1 TROJAN EXAMPLE 1: BATCH FILES

The following short batch file, called ‘SEX.BAT’ is an example of a very simple Trojan
horse. DO NOT try this out, as it deletes all files in the hard disk root directory. It is
however worth understanding how it works:

DEL <SEX.BAT C:*.*
i §

This sequence redirects the input to the DEL command from the console to the file
SEX.BAT which also contains the answer ‘Y’ to DOS’s question ‘Are you sure?’.

If somebody notices this interesting file ‘SEX.BAT’ on a floppy disk, and simply types
‘SEX’ to see what the command does, all the files in the root directory of his drive C
(usually the hard disk) will be deleted.

AN OVERVIEW OF THREATS TO COMPUTER SYSTEMS 19

This is an example of a very simple Trojan horse; much greater damage can be caused by
skilled, malicious programmers.

1.1.2 TROJAN EXAMPLE 2:ANSLSYS

The traditional Trojan horse is a program which needs to be executed intentionally in
order to cause damage. However, it is possible to activate a Trojan horse unwittingly
simply by using the DOS command ‘TYPE’ to display the contents of a text file which
contains embedded escape sequences. These escape sequences are intercepted by the
ANSI.SYS driver, which is loaded by a command in the CONFIG.SYS file on many
PCs, and used by some legitimate software. The Trojan horse writer will often redefine
one or more keys on the keyboard. Redefining ‘A’ as ‘S’ and ‘Q’ as ‘W’ may cause some
confusion, but redefining ‘d’ as ‘DEL *.DAT’ could have more serious consequences.

This is very easily done. If the following sequence
ESC(100;"DEL *.DAT";13p

(where ESC is the Escape character, hexadecimal 1B) is incorporated in the file
README which an unsuspecting user is invited to TYPE, every time that he presses ‘d’,
the keystroke will be expanded by ANSL.SYS to ‘DEL *.DAT’ followed by a carriage
return. Much more devious schemes can be devised, for example substituting ‘d’ with
‘FORMAT C:’ and ‘n’ as ‘y’ followed by ‘Enter’. If the user types ‘d’ at the command
line, this will be expanded into ‘FORMAT C:’. The FORMAT program will prompt the
user with

Warning! All data on drive C: will be lost.
Proceed (Y/N)?

When the poor user sees that, the instinctive reaction will be to type ‘n’ as quickly as
possible; ANSI.SYS will substitute this with ‘y’ and the data on the hard disk stands a
good chance of being lost (nevertheless, utilities exist which allow ‘unformatting’ of
hard disks which have been formatted accidentally).

Bulletin board operators normally scan all messages for escape sequences, in order to
prevent unsuspecting readers of messages from picking up this type of Trojan, while
VAX/VMS MAIL converts escape characters to printable characters in order to prevent
this type of attack.

The easiest way to combat this type of Trojan attack on PCs is to eliminate the statement
DEVICE=ANSI,SYS

from the CONFIG.SYS file. Many applications today do not use ANSL.SYS escape
sequences to output to the screen but call the BIOS routines directly. There are also
ANSI.SYS drivers available which do not allow the redefinition of keyboard codes.

20 CHAPTER 1

1.1.3 TROJAN EXAMPLE 3: THE AIDS DISK THROUGH THE POST

On 11th December 1989 some twenty thousand envelopes were posted in London,
containing a 5 1/4" floppy disk marked “AIDS Information Version 2.00” (Fig. 1.1) and
an instruction leaflet (Fig. 1.2). The recipient was encouraged to insert the disk and
install the package. On the reverse of the leaflet (Fig. 1.3), in very small print, was the
‘License Agreement’ which requested the user to send US$189 or US$378 for using the
software (two types of ‘license’). The Agreement threatened unspecified action if that fee
was not paid (‘Most serious consequences of your failure to abide by the terms of this
license agreement: your conscience may haunt you for the rest of your life; you will owe
compensation ...).

Once an unsuspecting user installed the package, the program printed an ‘invoice’ giving
the address in Panama to which payment should be sent: “PC Cyborg Corporation, P.O.
Box 87-17-44, Panama 7, Panama”. The AIDS package poses as a legitimate program
giving information on AIDS and assessing the user’s risk group after asking him/her to
fill in a questionnaire.

However, the installation procedure makes modifications to the AUTOEXEC.BAT file,
with the effect that every time AUTOEXEC.BAT is executed, a counter in a hidden file is
incremented. When this has happened a random number of times (around 90) the damage
sequence is activated. The user is instructed to wait, while most of the names of the files

AI DS Infarmation m

1. Stut your computer Version 2.0
2. lnser whis diskete into drive A

3. Al the C> promgt, type A:INSTALL
4. Press ENTER

Fig. 1.1 - The AIDS information disk

AN OVERVIEW OF THREATS TO COMPUTER SYSTEMS 21

AIDS Information - Introductory Diskette

Please find enclosed a computer diskette containing health information on the discase

AIDS. The information is provided in the form of an interactive computer program. It is

casy to use. Here is how it works:

« The program provides you with information about AIDS and asks you questions

+ You reply by choosing the most appropriate answer shown on the screen

. WMMmmnwmmmtﬂdwb

- The program provides recommendations 0 you, based on the life history information
that you have provided, sbout practical steps that you can take to reduce your risk of
getting AIDS

- The program gives you the opportunity to make comments and ask questions that you
may have about AIDS

- This program is designed specially 1o help: members of the public who are concemed
about AIDS and medical professionals.

Instructions
This software is designed for use with IBMe PC/XTw microcomputers and with all other
truly compatible microcomputers. Your computer must have a hard disk drive C, MS-
DOSe version 2.0 or higher, and a minimum of 256K RAM. First read and assent to the
limited warranty and to the license agreement on the reverse. [If you use this diskette, you
will have to pay the mandatory software Jeasing fee(s).] Then do the following:
Step 1: Start your computer (with diskette drive A empty).
Step 2: Once the computer is running, insert the Introductory Diskette into drive A.
Step 3: At the C> prompt of your root directory type: A:INSTALL and then press ENTER.
Installation proceeds sutomatically from that point. It takes only a few minutes.
Step 4: When the installation is completed, you will be given easy-to-follow messages by
the computer. Respond accordingly.
Step 5: When you want to use the program, type the word AIDS at the C> prompt in the
root directory and press ENTER.

Fig. 1.2 - The AIDS information disk instruction leaflet (reproducing the original
poor print quality)

on the hard disk are encrypted (scrambled) and marked ‘Hidden’. The only non-hidden
file contains the following message:

1f you are reading this message, then your software lease
from PC Cyborg Corporation has expired. Renew the software
lease before using this computer again. Warning: do not
attempt to use this computer until you have renewed your
software lease. Use the information below for renewal.

Dear Customer:

It is time to pay for your software lease from PC Cyborg Corporation.
Complete the INVOICE and attach payment for the lease option of your choice.
If you don’t use the printed INVOICE, then be sure to refer to the important
reference numbers below in all correspondence. In return you will receive:

- a renewal software package with easy-to-follow, complete instructions;

- an automatic, self-installing diskette that anyone can apply in minutes.

22 CHAPTER 1

Limkad Warraaty

If the disketts iming the s daSective, -‘Oﬁ-_vﬂ#-:n-mﬂh,-ﬂ
reomdy. These programs d docurneatation ew provided ‘e i'* withowt wasresty cpross
mpliod s ity h"d:”-‘lhﬁhuhh

5 o
.hu—h*—dd ricin, e i h---ln%“h
Mhphq““qhdpﬁ.hd-ﬁg**l—d*r

Hh_&udb-ﬂndﬂmuhqﬁhUyqﬁn

Licsass Agrecment

Iﬂﬁu—.—-ﬂ;l;—b--—-ﬁh—-t-‘-—nﬂ—.b—-ﬁ-ﬁ-.
soul (if ety

r S foll enn Y, e Sy
——y) &
th-—h-‘bd,,, you
::hu.wu-m--ﬂyhh-w“-hw'%
Carp Thess provided for o ot sid You muy
ci» ol ring typos of leass (a) 2 o 365 ."n-ﬁ-cm-h-l-.uhd,-uuu-
-w,-“.hh“mw_-q dbit copying

hhh—dﬁ-mtq--p-&lb,-hdtmhpbh'h--"d “Tease b" metioned
shove am USS189 end USS378,

42, TR ™

hum-»ﬁhr—* by any other mess), h-hﬁ—(ﬁﬁ—,-ﬁ#

z.nmwwhﬂh.c—dhﬂ mhﬁ-dnhﬂdﬁl—
f‘—

-Kmmdh— inath d)-n-dﬁp-—.‘lh-m

-*ﬂ“yﬂ*n—#-**Yu-hﬁ“iﬁ_d-
of your fi may Y

it you wil P danagos 1o PC Cybarg Corp your A sop

neczmlly. -‘. { e ¥ Pop pey foc them. You ay . d from shacing

you fally 2 e 2 e of e - PR

M“hxh" ration. PC Cyborg Cx dosn not sathoriss you to distaribute or e thess
mhhwmulﬁ-hq“hﬁﬂ*.“]b-ﬂh—dﬁb
agresment or if you are not prepesed 10 pay all amousts dus to PC Cyborg Corparation, then do not wes these progruss. Ne modi-
fication 10 this agresmant shall be binding unless specifically agresd upon i writing by PC Cybarg Corporstion.

Prograns © copyright PC Cyborg Corporation, 1989
c-.h-b—uomu-—cm-mlm
BMe b-w“dw“ummbl Hdu
Busiosss Machines Carportation. Wi > peines

Fig. 1.3 - The AIDS information disk ‘license’ agreement (reproducing the original
poor print quality)

Important reference numbers: A302980-1887436-

The price of 365 user applications is US$189. The price of a lease for the
lifetime of your hard disk is US$378. You must enclose a bankers draft,
cashier’s check or international money order payable to PC CYBORG CORPORATION
for the full amount of 5189 or $378 with your order. Include your name,
company, address, city, state, country, zip or postal code. Mail your order
to PC Cyborg Corporation, P.O. Box 87-17-44, Panama 7, Panama.

The author and perpetrator of this scam was eventually established to be Dr. Joseph
Lewis Popp, 41, from Willowick, Cleveland, US. After a lengthy legal battle he was
extradited to the UK on 22nd February 1991, but at his trial at Southwark Crown Court in
London his case was suspended after psychiatrical testimony that he was unfit to stand
trial. He was legally classified as a ‘public disgrace’ and returned to the US.

This is a typical example of attempted extortion through the use of a Trojan horse. The
user is first invited to install the package (which cannot be easily deinstalled) and then
blackmailed into paying money in return for safe passage.

AN OVERVIEW OF THREATS TO COMPUTER SYSTEMS 23

1.2 LOGIC BOMBS

A logic bomb is a programming IF statement which causes the execution of some
program code when a certain condition is fulfilled (Fig. 1.4). The condition can be time,
the presence or absence of data such as a name etc. A hypothetical example of a logic
bomb would be a maliciously modified copy of a spreadsheet which zeroed a particular
cell every Tuesday between 10 and 11 a.m., but otherwise did not reveal its presence. The
results would be very confusing and difficult to trace.

Logic bombs are frequently found in the more sophisticated cases of computer crime. A
recent case involved a systems programmer who was maintaining a payroll package. He
decided to ‘ensure’ his continuing employment by introducing a short sequence of
instructions which checked whether his name was in the payroll file. If it was, nothing
would happen. But if it was not (as a result of him being fired), files would be deleted and
other damage would occur. He was fired, and the logic bomb triggered the destruction.
Only after having been promised reinstatement by the employer did he agree to point out
the logic bomb in the code. He was not prosecuted.

Another example of a logic bomb happened at IBM. At 7:30 a.m. on 11th April 1980 all
IBM 4341s ceased to operate. The problem was eventually traced to a logic bomb
triggered on that date, which was placed in software by a disgruntled employee.

Logic bombs are often found in viruses, where the payload (which produces the side-
effects) is triggered when a certain condition is met. For example, the Cascade virus
produces its side-effects only between 1st October 1988 and 31st December 1988. The
Michelangelo virus trashes disks on 6th March of any year. The Iralian virus puts the
bouncing ball on the screen only ifa disk access is made during a 1-second interval every
30 minutes. The delay due to the logic bomb allows the virus to spread unnoticed, and
show its side-effects after it has reproduced extensively.

Condition
fulfilled?

Payload

Fig. 1.4 - Logic bomb program flow

24

CHAPTER 1

Warhead

Propulsion
mechanism

Fig. 1.5 - Missile delivering a warhead

1.3 VIRUSES

A computer virus is best defined as computer code which has four characteristics:

1:

Self-replication: Viruses make copies of themselves, spreading across floppy disks,
computer systems and networks. This similarity with their biological counterparts
has given viruses their name. Self-replication is a unique virus characteristic which
distinguishes viruses from other computer programs.

Executable path: For a virus to do anything, it must be executed. Viruses are
designed in such a way that this can occur without any user intervention whatsoever:
for example, the user accidentally bootstraps the PC while an infected floppy disk is
in drive A or he executes an infected program. This characteristic is very important to
bear in mind in a number of circumstances:

+ When dealing with a virus attack
+ When formulating anti-virus strategy
+ When studying virus behaviour

Side-effects: Viruses do not normally consist only of self-replicating code; they also
contain code which produces side-effects or a ‘payload’ which is released when a
predetermined set of conditions is fulfilled. It is easy to program the payload side-
effects to be malicious. Some viruses do not contain any side-effects.

Disguise: The successful spread of a virus depends on how long it can replicate
unnoticed before its presence is made known by the activation of side-effects.
Replicating longevity is achieved through two methods of disguise - encryption

AN OVERVIEW OF THREATS TO COMPUTER SYSTEMS 25

(scrambling) and interrupt interception. These are described in Section 3.3: Virus
Hiding Mechanisms.

This tactic is probably the most fascinating virus characteristic since it is remarkably
similar to the way that biological viruses (and bacteria) operate. If a human gets
infected with a virus, there will be a time delay called incubation during which he
will not exhibit any symptoms of the disease, but will nevertheless be infectious to
other humans. Since there are no recognisable outside indicators of his impending
disease, other human beings will not have any reason to avoid contact, thereby
facilitating the transmission of the virus and its long term spread. It is remarkable
that computer viruses and biological viruses, despite having so distinctly different
structure, employ very similar techniques in order to ensure survival.

The analogy between virus characteristics and those of a missile have been pointed out by
Fred Cohen. A missile (Fig. 1.5) contains a warhead (conventional, chemical, nuclear
etc.) and the means of delivering that warhead over a distance. The warhead is the
equivalent of a virus payload, while the propulsion mechanism is the equivalent of the
virus self-replicating code.

The above characteristics are discussed in greater detail in later chapters. For examples of
viruses see Chapter 4: Common IBM PC viruses.

1.4 WORMS

Worms are similar to viruses, but replicate in their entirety, creating exact copies of
themselves, without needing a ‘carrier’ program. Worms are normally found on computer
networks and multi-user computers, and use inter-computer or inter-user communications
as the transmission medium.

*
-
. hx
LY
R TR
ERAARARA RN
Ak A AR R AR AR AR A
EE AR A
Y VERY
ARAAANN R A A AR
ARRRRRNANNR AR IR AR AR HAPPY

EEARAAAARAS

EREE R Ak Rk A AR CHRISTMAS
B T TS
AKXKRAKARARRN R AR R AR R R IR R AND
B
D BEST WISHES
B T
ERRARRARA R AR R AR A AR AR R RRRR AR FOR THE NEXT
PR
EEE TR YEAR

ke AR

Fig. 1.6 - Christmas tree worm output

26 CHAPTER 1

1.4.1 WORM EXAMPLE 1: CHRISTMAS TREE ON IBM VM

Probably the best known mainframe worm was the Christmas Tree worm which spread
widely on BITNET, the European Academic Research Network (EARN) and IBM’s
internal network. It was launched on 9th December 1987 and, amongst other effects,
paralysed the IBM worldwide network on 11th December 1987.

The Christmas Tree worm is written in REXX and can spread on VM/CMS installations.
The program is a combination of a Trojan horse and a chain letter. When run, it draws a
Christmas tree on screen (Fig. 1.6), sends itself to all the user’s correspondents in the user
files NAMES and NETLOG and then deletes itself.

The source code of this worm was published in R. Burger’s book Computer Viruses: A
High Tech disease as well as being available from a number of sources. The worm has
since then reappeared several times in both its original form and modified versions.

1.4.2 WORM EXAMPLE 2: INTERNET WORM ON UNIX

A number of widely publicised worm attacks have occurred on Unix systems. The most
widely reported attack was the Internet worm which struck the US DARPA Internet
computer network on 2nd November 1988. The worm was released by Robert T. Morris,
a Cornell University student, on a public access machine at MIT (prep.ai.mit.edu). The
wormreplicated by exploiting a number of bugs in the Unix operating system running on
VAX and Sun Microsystems hardware, including a bug in sendmail (an electronic mail
program) and in fingerd (a program for getting details of who is logged in). Stanford
University, Massachusetts Institute of Technology, the University of Maryland and
Berkeley University were infected within 5 hours of the worm being released. The NASA
Research Institute at Ames and the Lawrence Livermore National Laboratory were also
infected, as well as some 6000 other computer systems. The UK was unaffected.

The worm consisted of some 4000 lines of ‘C’ code and once it was analysed, the
specialists distributed bug fixes to sendmail and fingerd, which prevented further
spreading. From the decompilation, it appears that the worm was not malicious. It did,
however, cause the overloading of infected systems.

1.4.3WORM EXAMPLE 3: SPAN WORM ON VAX/VMS

On 16th October 1989 VAX/VMS computers on the SPAN network were attacked by a
worm. The worm propagated via DECnet protocols and if it discovered that it was
running with system privileges, it changed the system announcement message to that
shown in Fig. 1.7.

The worm also changed the DECNET account password to a random string and mailed
the information on the password to the user GEMPAK on SPAN node 6.59. If the worm
had system privileges, it disabled mail to the SYSTEM account and modified the system
login command procedure to appear to delete all files (it didn’t actually do it). The worm
then proceeded to access other systems by picking node numbers at random and used the

AN OVERVIEW OF THREATS TO COMPUTER SYSTEMS 27

WORMS AGAINST NUCLEAR KT L'LERS

N ey /
N NN /\ [l A/ £ NN I [I &5 /
XN T N P H £ oli X X [2. 75 S | | £ % /
NN N N N /N 1 NI 3 T £
XN 7N / /7 N N U N] (e N/

\ /

\ /

\ Your System Has Been Officially WANKed /

\ /

You talk of times of peace for all, and then prepare for war.

Fig. 1.7 - WANK worm logon message

PHONE command to get a list of active users on the remote system. After accessing the
RIGHTSLIST file, it attempted to access the remote system using the list of users found,
to which it added a list of 81 standard users coded into the worm. It penetrated accounts
where passwords were the same as the name of the account or were null.

The worm then looked for an account which had access to SYSUAF.DAT. If such an
account was found, the worm copied itself to that account and started executing. Within
a very short time, the Computer Emergency Response Team (CERT) in the USA
(telephone 412-268-7090) issued a warning and a corrective response.

This was the second well-known virus attack on DECNET: the first (HL.COM) was
released on 22nd December 1988 from a European HEPNET node, probably originating
at the Institute of Physics at the University of Neuchatel in Switzerland.

2

HOW CAN A VIRUS PENETRATE A
COMPUTER?

He has the gift of quiet.

John Le Carré

There is nothing magic about the way a virus penetrates a computer. The methods of
entry are well understood and taking them into account when using a PC is the first step
towards combating the virus threat.

By far the most important point to realise is that the only way that a virus can infect a
computer is as a result of the virus code being executed. Viruses are designed in such a
way that the act of executing them is surreptitious and occurs without the knowledge (or
consent) of the user. In practice this may mean accidentally bootstrapping a PC from an
infected floppy disk (thereby executing the contents of the boot sector) or executing a
program which has a virus attached to it.

Any medium which can be used for storing or transmitting data is potentially a virus
carrier. Itis entirely dependent on the media characteristics as to what type of virus it will
be able to carry. This is analysed in detail in Section 2.3: Virus Carrier Media, while virus
types are discussed in Section 3.1: Virus Types. Certain user actions have been shown to
carry a high risk of infection: this is discussed in Section 2.4: Virus Infiltration Routes
and Methods.

30 CHAPTER 2

2.1 HOW DOES AN INFECTION HAPPEN?

It is very important to distinguish between a virus being active in RAM (Random Access
Memory) and an infected medium.

The virus becomes active in RAM when virus code is executed. This active state is
cleared by switching offthe PC. On the other hand most media infected with a virus will
carry the virus even after power failure. This is illustrated in the first four blocks of
Fig. 2.1.

For example, if a PC becomes infected with the Italian virus by bootstrapping from an
infected floppy disk, the virus will a) become active in RAM and b) infect the hard disk.
If the power is switched off, the virus will disappear from RAM, but not from the hard
disk. When the power is switched on and the PC bootstrapped (started) from the hard
disk, the virus will become active in RAM.

Blocks 5 and 6 of Fig. 2.1 demonstrate how the infection spreads onto further floppy
disks, while blocks 7 and 8 show that correct bootstrapping can ensure that the virus is
not active in memory while anti-virus actions (such as scanning for viruses) are
performed.

1. In an uninfected PC both the RAM and

the hard disk are free from infection. An

infected floppy disk is introduced into the
Hard disk floppy disk drive.

PC @ shows infected items

@
Eabl 2. When an infected program from the

floppy disk is run, the hard disk becomes

.Hard disk infected and the virus becomes active in
RAM.

3. If power is now switched off, the hard
disk remains infected while the contents of
RAM (including the virus) are lost.

HOW CAN A VIRUS PENETRATE A COMPUTER? 31

Hard disk

Q

ﬂﬂk

o

Hard disk

C

il

=

‘Hard disk

:

" Hard disk

gl

a

.Hard disk

@

4. When the PC is switched back on and
bootstrapped from the (infected) hard disk,
the virus becomes active in RAM once
again.

5. If an unprotected, clean floppy disk is
then used ...

6. ... it immediately becomes infected. Any
unprotected floppy disk which is used in
this PC while the virus is active becomes
infected.

7. If power is now switched off, the hard
disk once again remains infected, while the
contents of the RAM (including the virus)
are lost.

8. The virus can be kept inactive by
switching the PC back on with a clean
write-protected system disk in the floppy
disk drive. Despite the fact that the hard
disk remains infected, the virus is not active
in RAM. Anti-virus actions can commence.

Fig. 2.1 - Infecting a PC and disks

32 CHAPTER 2

2.2 EXECUTABLE PATH

In order to penetrate a computer, a virus must be given a chance to execute. Since
executable objects on a PC are known, all possible virus attack points can be listed. By
making sure that only legitimate, virus-free code is executed, one can protect the system
from infection.

In addition to the obvious executable files such as COM and EXE programs, any file
which contains executable code should be treated as a potential virus carrier. This
includes files with interpreted BASIC commands, spreadsheet macros etc.

On a PC, the attack points are most easily listed by analysing the steps which are
performed when the PC is bootstrapped, either by switching it on, or by performing a so-
called ‘warm boot’ (pressing the Ctrl, Alt and Del keys simultaneously).

The normal PC bootstrapping sequence is shown in Fig. 2.2 and consists of the following
steps:

1. When the computer is switched on, or a warm boot is performed (Ctrl-Alt-Del), a PC
first executes the program held in its ROM (Read Only Memory). The ROM
program usually tests whether the first floppy drive (A:) contains a disk. If it does,
the PC loads into memory a short program stored in the first sector on the disk (the
Bootstrap Sector), and starts executing it. If the disk is not a ‘system’ disk, this
program displays the message ‘Non-system disk’, or similar, and waits for the user
to insert a ‘system’ disk. If the first floppy drive does not contain a disk, the PC will
bootstrap from the first hard disk by loading the first physical sector (sector 1,
head 0, track 0) into memory and executing it. This is the master boot sector, which
in turn loads and executes the first sector of the ‘active partition’. This is the DOS
boot sector which is similar in function to the bootstrap sector on a floppy disk. The
bootstrap process then proceeds in a similar way to bootstrapping from a floppy disk.

On IBM-AT computers, the system will also access the CMOS memory prior to
performing this step. Various system parameters in CMOS memory can be set up
(usually using the SETUP utility supplied with the PC).

2. The program in the DOS boot sector reads the operating system (DOS) from disk
into memory and transfers control to it. DOS is contained in the first two files found
in the root directory, which are usually called I0.SYS and MSDOS.SYS, although
different names such as IBMBIO.SYS and IBMDOS.SYS are also used.

3. The file CONFIG.SYS is then consulted. This is a text file which describes the
desired configuration of the system (file buffer allocation, device drivers etc.).
Device drivers like ANSI.SYS are loaded into memory at this stage.

4. DOS then loads COMMAND.COM and executes it. COMMAND.COM is a COM
file which processes commands such as DIR, TYPE etc. Note that COMMAND.COM
is a default command line processor supplied by Microsoft, but DOS allows other
command line processors such as 4DOS.COM to be used.

HOW CAN A VIRUS PENETRATE A COMPUTER?

5. A special batch file (AUTOEXEC.BAT) is then executed, thus completing the
bootstrapping procedure. If no AUTOEXEC.BAT file is found, the system prompts

the user for date and time.

6. The user is then presented with the system prompt and the system awaits user
commands. Any command is either an internal DOS command, the name of a COM
file, the name of an EXE file, or the name of a BAT file. The system will search for
these files in the current subdirectory as well as all subdirectories specified in the
PATH command and execute the first one it finds. The order of precedence is shown
in Fig. 2.3. Programs can also load executable overlay files (OVL) as and when

needed. Overlay files usually have extensions such as OVL, OV1, OV2 etc.

ROM contents

CMOS memory Master boot sector

DOS boot sector

10.SYS
MSDOS.SYS
CONFIG.SYS

COMMAND.COM

AUTOEXEC.BAT

Macros

Application A Overlays
Spawned programs

Macros
Overlays
Spawned programs

Application B

Macros
Overlays
Spawned programs

Application C

Fig. 2.2 - Bootstrapping sequence

34 CHAPTER 2

Precedence of command execution:

1. Internal commands (DIR, TYPE)
2. COM file

3. EXE file

4. BAT file

For example, if a directory contains files DIR.COM and DIR.EXE and the user
enters DIR, COMMAND.COM will execute the internal DIR command. If the
directory contains files ABC.COM, ABC.EXE and ABC.BAT and the user enters
ABC, COMMAND.COM will execute ABC.COM in preference to ABC.EXE and

ABC.BAT.

7.

Fig. 2.3 - The order of precedence of commands entered at the command line

Applications often use macros which are, in effect, executable code. This can take
the form of interpreted BASIC commands, spreadsheet macros, word-processing
macros and so on.

In order for an item to be susceptible to infection, it must be both executable and
modifiable. The following items satisfy these two conditions:

1:

Master boot sector - viruses such as New Zealand and Joshi attack the master boot
sector.

DOS boot sector - viruses such as the Italian and Mistake attack the DOS boot
sector.

DOS files I0.SYS and MSDOS.SYS - possible attack points, although to date no
viruses infect either file. CONFIG.SYS is a text file, and cannot contain a virus, but
it could easily load and execute any virus written as a device driver.

Device drivers, SYS files such as ANSL.SYS, RAMDRIVE.SYS - possible attack
points, although to date no known viruses infect them.

COMMAND.COM - at least one virus (Lehigh) targets this file specifically.

AUTOEXEC.BAT - a possible attack point, though normally affected by Trojan
horses rather than viruses.

Applications - EXE and COM files - many viruses attack these files. Overlay files
(normally OVL, OVR, OV1 etc) can also become infected.

HOW CAN A VIRUS PENETRATE A COMPUTER? 35

8. Files with macros - no viruses, other than experimental ones, have been shown to
attack these files.

In practice, the two requirements for an item to be susceptible to infection (i.e. that it is
executable and modifiable) are supplemented by another de facto condition: the item
must also be exchanged often enough between PCs. This reduces the above list of items
at risk to master boot sectors, DOS boot sectors and COM and EXE executable files.
Viruses which infect master or DOS boot sectors are known as boot sector viruses,
viruses which infect COM and EXE files are known as parasitic viruses, while viruses
which infect both master or DOS boot sectors as well as COM and EXE files are known
as multi-partite viruses. The other two types of viruses (companion viruses and link
viruses) use different techniques which is discussed in greater detail in Section 3.1: Virus
Types.

To keep the system free from viruses the user must make sure that the code contained
within the items at risk remains virus-free and uncorrupted. Unfortunately, this is harder
than it seems.

2.3 VIRUS CARRIER MEDIA

Any medium which can be used for the transmission or storage of executable code is a
potential carrier of parasitic and multi-partite viruses, while any medium which can be
used to bootstrap the PC is a potential carrier of boot sector and multi-partite viruses.

The PC becomes infected with a parasitic or a multi-partite virus when the user executes
an infected program. The PC becomes infected with a boot sector or a multi-partite virus
when the user bootstraps the PC from an infected medium.

2.3.1 FLOPPY DISKS

Floppy disks are the most common medium for information exchange. They are used for
distributing programs or exchanging information between PCs. They can act as carriers
of parasitic viruses which hide in any executable on the disk, of bootstrap sector viruses,
which hide in the bootstrap sector of the disk or of multi-partite viruses which can hide
both in the bootstrap sector and any executable.

Executing an infected program or bootstrapping from an infected disk need not be a
conscious action on the part of the user. For example, a PC will become infected
automatically if it is bootstrapped from a disk infected with a boot sector virus. Note that
the floppy disk need not be a system disk! This can happen quite easily if a floppy is left
overnight in a PC which is then switched on in the morning. The PC can also become
infected if a short power failure occurs while the machine is unattended with floppy disk
in the drive. When the user returns to the PC he will probably not notice that the PC has
been bootstrapped in his absence.

36 CHAPTER 2

2.3.2 REMOVABLE HARD DISKS

Removable hard disks are becoming more popular in secure systems where the mass
storage device has to be locked away physically when the PC is not attended. However, as
they can be moved from one PC to another, they can act as carriers of both parasitic
viruses, boot sector viruses and multi-partite viruses.

2.3.3 MAGNETICTAPE CARTRIDGES

Magnetic tape cartridges are normally used for storing PC backups. The PC cannot be
booted from them, and as such they can only carry parasitic or multi-partite viruses.

2.3.4 OTHER STORAGE MEDIA

There are several other storage media used with PCs (Bernoulli drives, optical disks, 1/2"
magnetic tapes etc.). As a rule, if the medium can be used to bootstrap the PC, it
should be considered capable of carrying bootstrap sector viruses, multi-partite
viruses, as well as parasitic viruses. If the medium cannot be used to bootstrap the
PC, it can only carry parasitic and multi-partite viruses.

2.3.5 NETWORKS

PC networks provide a means for rapid exchange of information. They are also an
excellent propagation medium for viruses and as such present a major security risk. They
are treated in detail in Chapter 8: Viruses and Networks.

2.3.6 MODEMS

Modems offer the PC a means of communicating with other PCs, normally via an
intermediate storage facility such as bulletin board or electronic mail servers. If these
offer the facility to upload and download executable images, they can act as carriers of
parasitic and multi-partite viruses. Bootstrap sector viruses cannot be transmitted
unwittingly via modems.

2.4 VIRUS INFILTRATION ROUTES AND METHODS

Some user actions have been shown to carry a high risk of leading to infection. The
following list of routes and methods of virus infiltration has been assembled by analysing
real-life cases in which organisations and individuals became infected. The results of the
Dataquest survey of 602 North American companies with 300 or more PCs in Fig. 2.4
shows the sources of infections in large organisations; the proportions are probably not
true for all PC users.

2.4.1 PIRATED SOFTWARE

It is easy to copy software and in most countries it is illegal to do so. But unless it is done
on a large scale, the risk of prosecution at the moment is much smaller than the risk of

HOW CAN A VIRUS PENETRATE A COMPUTER? 37

PC at home 43% |
Bulletin board 7% |
Sales demonstration 6%
Service engineer 6%
Shrink wrapped 3%

Other download |] 2%
Inter-company disk 1%
Purposefully planted | |1%

Disk from client 1[1%
Disk from school 1|1%
Came with PC - 1|1%

Disk from consultant || 1%
Disk from LAN manager |[1%
Unknown / unwilling 29% |

Fig. 2.4 - Sources of infection; from Dataquest survey, October 1991

contracting a virus infection. Games are probably the most commonly pirated software
and they tend to move between PC users at a far greater speed than ‘serious’ pirated
software. For this reason, they are also most prone to picking up a parasitic virus on the
way.

2.4.2 BULLETIN BOARDS (BBS)

Bulletin boards normally provide a means of downloading and uploading software which
is classified either as ‘public domain’ (free for all) or ‘shareware’ (copy freely, but pay if
you use it). Most reputable boards are run under the close supervision of the SYSOP, the
SYStem OPerator, who is at great pains to ensure the integrity of the software available
from the bulletin board as well as the absence of Trojan horses (see Section 1.1.2: Trojan
Example 2: ANSL.SYS).

Unfortunately, it is almost impossible to analyse all traffic on a bulletin board manually
and many SYSOPs resort to automatic virus scanning of any uploaded executables. This
is certainly better than nothing, but becomes ineffective if the software is distributed
‘packed’ using some non-standard dynamic packing utility (see also Section 7.1.2:
Scanning software).

Bulletin boards are very useful for exchanging information and opinions. Their use
should be confined to that and they should not be used for downloading software
which was uploaded by other users.

There have been a significant number of cases of virus-infected software being uploaded
onto public bulletin boards, including a bulletin board used to distribute market-leading
anti-virus software.

2.4.3 SHAREWARE

Shareware is an attractive concept developed in the USA. The software carries the
traditional copyright, but all users are encouraged to copy it and pass it on to others. If

38 CHAPTER 2

Software
author’s
PC Infected!

[
=

_LD[' EJLI.]L|'JL Your PC

: EIL@

Fig. 2.5 - Unsafe software distribution. An infected user’s PC will propagate the
infection to all downstream recipients of the software.

anybody ends up using it, he is under moral obligation to send a small sum (usually
US$20 to US$50) to the author. The attraction lies in the fact that one ends up trying the
software before paying for it. Market forces help to ensure the distribution and survival of
good software and the eventual demise of rubbish. Unfortunately, shareware distribution
is not without problems. Although most authors send ‘the latest version’ once payment
has been received, users often end up trying (and using) the original version obtained
from a friend of a friend of a friend. By the time one receives ‘the latest version’, the
computer may be infected many times over with any viruses the original software picked
up on the way (Fig. 2.5).

Some companies distribute shareware through catalogues, guaranteeing ‘the latest version’
when shareware is purchased. Obviously, this is better than the ‘friend of a friend of a
friend’ method, and the company has a vested interest in distributing uncontaminated
software. Many shareware packages now include a checksum program and a list of
correct checksums for all files supplied with the package. As long as the checksum
program is not infected and the checksumming algorithm is cryptographically strong,
this provides an assurance of file integrity (see Section 7.1.2: Checksumming Software).

Shareware is nevertheless a cheap way of obtaining software, some of which is of
excellent quality.

2.4.4 PUBLIC DOMAIN SOFTWARE

Unlike shareware, public domain software is completely free for anybody to use.
Unfortunately, it suffers from the same distribution risks as shareware, with the added
disadvantage that there is often nobody to supply ‘the latest version’.

There are anumber of notable exceptions to the above, such as the Kermit communications
package, which is fully supported by Columbia University in New York, USA. Anybody
can obtain the latest version in return for a fee to cover administration costs.

HOW CAN A VIRUS PENETRATE A COMPUTER? 39

2.4.5 SHARED PCS (PC AT HOME)

A surprisingly large number of infections in business PCs occur through the use of home
computers for company work. The companies concerned usually have sound anti-virus
security measures in place, but still suffer virus attacks by overlooking this loophole.

In one case known to the author an executive’s 14-year old son used his father’s home PC
to play games obtained from the school playground (unbeknown to his father). The
executive, having brought home a report to finish, unwittingly took an infected disk back
to work the next morning and in turn, infected his office PCs with the New Zealand virus.
His son was out of favour for some time, but the company learned a valuable lesson.

2.4.6 FLOPPY DISKS SUPPLIED BY COMPUTER MAGAZINES

Some computer magazines supply floppy disks containing free software. On a number of
occasions such disks have been found to carry virus code, for example:

- PCToday Vol 4 No 4, Database Publications, August 1990, Disk Killer (only the boot
sector contained the virus code while the rest of the virus was overwritten and
ineffective), 40,000 copies

- PC-WORLD Benelux, 9th November 1990, IDG Communications, Cascade, 16,000
copies

+ Archimedes World, February 1992, Argus Specialist Publications, Module (Archimedes
virus), 15,000 copies

» PC Fun, January 1992, MC Publications, New Zealand, 20,000 copies

The major problem with such events is the number of infected disks involved and the
resulting wide spread of the virus. Any software and disks obtained from magazines
should be used with utmost care and any ‘Virus Checked’ labels found on such disks
treated with scepticism.

2.4.7 SERVICE ENGINEERS

Service engineers are often a great source of the latest games, diagnostics and similar
software. Seeing five or ten customers a day, they are an effective propagation medium
for any copyable software.

In one case in 1988 a service engineer on a visit to a government organisation in England
demonstrated an entertaining program called ‘MUSHROOM’. Everyone wanted to run
MUSHROOM. Unfortunately, that copy of MUSHROOM.COM had been infected with
the Cascade virus, which in turn spread to many PCs in the organisation and triggerred
on 1st October of that year. The engineer eventually examined the original source of the
program and discovered that it was not infected. The infection was picked up along the
way, probably on one of the customers’ computers.

40 CHAPTER 2

Much can be done to prevent viruses from infiltrating organisations through this route.
All diagnostic disks used by service engineers should be write-protected, or, alternatively,
the customer should have a set of his own write-protected disks. Service engineers should
resist the temptation to distribute software, which is not only dangerous, but also often
illegal.

At least one large computer company has expressly prohibited its service engineers from
carrying any floppy disks. All disks used on the customers’ PCs, including diagnostics,
must either already be in the possession of the user or come shrink-wrapped from the
factory. More and more computer maintenance companies are equipping their engineers
with virus-scanning software, which allows themto determine quickly whethera problem
is due to a virus or something else.

2.4.8 SHRINK-WRAPPED SOFTWARE

Shrink-wrapped software normally refers to commercial software packages which come
in a shrink-wrapped sealed container - usually for legislative purposes rather than anti-
virus measures. Many manufacturers state that by breaking the seal, the user implicitly
agrees to abide by the licencing terms and conditions. There is also a good chance that the
software has not been tampered with from the time it left the manufacturing plant.

There have however been several cases of viruses distributed on shrink-wrapped disks,
for example:

+ Zinc Software’s Interface Library, 20th November 1991, Form
- Focus 2theM**VGA card software, December 1991, Michelangelo, 1,000 copies
+ Novell’s NetWare Encyclopedia, 11th December 1991, Nolnt, 3,800 copies

+ Intel’s Version 3.01 of LANSpool 286 and 386, 6th March 1992, Michelangelo, 830
copies

Apart from disks being infected at source, there have been a number of cases where
dealers opened shrink-wrapped software, loaded it onto their (already infected) machines
for demonstration purposes and resealed the package before offering it for sale. The virus
was thus found on seemingly shrink-wrapped disks and the real reason for infection did
not emerge until after an investigation by the software manufacturer. Many such
incidents could be prevented if all manufacturers delivered software on permanently
write-protected floppy disks.

Although there is always a chance that shrink-wrapped software will contain a virus, the
probability, in practice, is still small. The reasons for this are twofold: Companies
marketing shrink-wrapped software have a large investment in their products and a lot to
lose from bad publicity should the products prove to be virus carriers. They also provide
stringent QA procedures, which aim to ensure the integrity of the software leaving the
factory. The result is a traceable step-by-step software development process in a controlled
environment, which is a basis for efficient anti-virus measures.

3

VIRUS STRUCTURE

Now, what | want is Facts...Facts alone are wanted in life.

Charles Dickens, ‘Hard Times'’

A virus is a purposefully written computer program which consists of two parts:
Self-replicating code and the ‘payload’, which produces side-effects (Fig. 3.1). In a
typical PC virus, the replicating code may be between 400 and 2000 bytes long, while the
size of the payload will depend on the side-effects. Typically this is a few hundred bytes.

Before infecting an executable, most viruses try to determine whether they have already
infected it, by testing for some infection signature. If the signature (sometimes also
referred to as “virus marker”) is there, the executable is already infected and it will not
be reinfected. The signature can have various forms. Some viruses use a sequence of
characters such as ‘sSURIV’ (VIRUs spelt backwards) in a fixed position, some test the
file size for divisibility by a number, others test whether the number of seconds in the file
datestamp is set to 62. At least one virus (Jerusalem) does not test correctly for its own
signature, which results in reinfections and thus unlimited growth of executable images.

Self-replicating code Payload

Fig. 3.1 Virus structure

42 CHAPTER 3

The side-effects of a virus are limited only by the imagination of the virus author and can
range from annoyance to serious vandalism.

3.1 VIRUS TYPES

Viruses can be divided into five categories: Bootstrap sector viruses, Parasitic viruses,
Multi-partite viruses, Companion viruses and Link viruses. The distinction between
these categories is somewhat blurred; for example, companion and link viruses could be
assumed to be special cases of parasitic viruses.

3.1.1 BOOTSTRAP SECTOR VIRUSES

Bootstrap sector viruses modify the contents of either the master bootstrap sector or the
DOS bootstrap sector, depending on the virus and type of disk, usually replacing the
legitimate contents with their own version. The original version of the modified sector is
normally stored somewhere else on the disk, so that on bootstrapping, the virus version
will be executed first. This normally loads the remainder of the virus code into memory,
followed by the execution of the original version of the bootstrap sector (Fig. 3.2). From
then on, the virus generally remains memory-resident until the computer is switched off.

Bootstrap sector viruses are spread through physical exchange of any media which can
be used for bootstrapping (in most cases by physical exchange of floppy disks). As a
consequence, they spread comparatively slowly. Nevertheless, one often finds Trojan
horse programs whose only function is to infect the boot sector of the PC and start the
infection. Known as ‘droppers’ they allow the spread of boot sector viruses via bulletin
boards, thereby vastly increasing the spreading potential and the speed with which the
virus can spread over large distances.

A PC becomes infected with a boot sector virus only if the user (accidentally) bootstraps
from an infected disk. It is completely safe to insert an infected disk into the drive and
copy data from it (using the COPY command). The PC will not become infected unless
it is booted while an infected disk is in drive A. However, the DISKCOPY command
should not be used as this is an image copier which will copy the virus code as well.

Examples of bootstrap sector viruses include Brain (floppy disk bootstrap sector only),
Italian (DOS bootstrap sector) and New Zealand (master bootstrap sector).

The mechanism of a bootstrap sector virus normally uses three distinct components:

1. the bootstrap sector - replaced with an infected version; this is where the virus
gains access.

2. one previously unused sector - for storing the original bootstrap sector.
3. anumber of previously unused sectors - where the bulk of the virus code is stored.

There are a number of bootstrap sector viruses which do not store the original bootstrap
sector anywhere else (e.g. SVC 6.0).

VIRUS STRUCTURE 43

The mechanism for acquiring unused sectors varies from virus to virus. Some viruses
such as Form and Disk Killer look for unused clusters in the disk’s File Allocation Table
(FAT) and when found, label them as ‘bad’. This prevents the operating system from
allocating these clusters to files and possibly overwriting the virus code. Other viruses
such as New Zealand use part of the hard disk which is not normally used by the
operating system (Sector 2, Head 0, Track 0 onwards). New Zealand stores the original
boot sector into Sector 7, Head 0, Track 0 on hard disks. On floppy disks, the virus adopts
adifferent strategy and stores the original boot sector into Sector 3, Head 1, Track 0, both
of which can cause serious loss of data on some disks.

Other examples of requisitioning space include using track 40 on 360K floppy disks
(Den Zuk) and decreasing the size of the first partition on the hard disk (Zequila).

| ___— Boot sector

Fig. 3.2a Uninfected disk

Jump

Rest of virus code
plus the original
boot sector

| / Infected boot sector

Fig. 3.2b Infected disk

44 CHAPTER 3

It is important to realise that all boot sector viruses modify the bootstrap sector in some
way, and it is the only item one needs to examine for signs of infection. The place where
the rest of the virus code is stored is not of much practical interest, except, perhaps, when
trying to find the original bootstrap sector in order to copy it back and ‘disinfect’ the disk.

3.1.2 PARASITIC VIRUSES

Parasitic viruses modify the contents of COM and/or EXE files. They append themselves
to the file, leaving the bulk of the program intact (Fig. 3.3). The execution flow is hence
diverted in such a way that virus code executes first. Once the virus code has executed,
the execution flow passes to the original program which, in most cases, executes
normally. The extra execution time due to the virus is usually not perceptible to the user.
Some viruses append themselves to the end of the original file, some prepend themselves
in front of the file, some do both and some insert themselves in the middle of the file.

Parasitic viruses spread through any medium which can be used for storage or
transmission of executable code such as floppy disks, tapes, networks etc. The infection
will generally spread if an infected program is executed.

It is of crucial importance to the virus that its code is executed before the infected
program. The virus runs at the same privilege level as the original program and once
running, can do anything: replicate, install itself into memory, release the side effects etc.

Krograny Uninfected program
<7 [
@ Program . Vu'us e Program infected at
Lo : the end
)
Program Program infected at

the beginning

Fig. 3.3 Program infection with a parasitic virus

VIRUS STRUCTURE 45

C:\VIRUS>dir

Volume in drive C has no label
Directory of C:\VIRUS

<DIR> 8-01-88 12:01a
.. <DIR> 8-01-88 12:01a
ALTER COM 2725 12-26-83 12:51a
WHEREIS COM 640) 9-03-86 3:48p
4 File(s) 19636224 tes free
(e Infect the PC by
C:\VIRUS>alter executing an infected
application
You must specify a path. Output from alter
C:>VIRUS>whereis Infect another
COM file
C:>VIRUS>dir
Volume in drive C has no label Note size increase

by 1701 bytes and
no change of date /
time

Directory of C:\VIRUS

<DIR>

.. <DIR> 12:01a
ALTER COM 12:51a
WHEREIS COM 3:48p

4 File(s) 19634176 bytes free

Fig. 3.4 Infecting an application with Cascade

Most parasitic viruses, like Cascade, spread when another (uninfected) program is
loaded and executed. Such avirus, being memory-resident, first inspects the program for
infection already in place. If it is not infected, the virus will infect it. If it is already
infected, further infection is not necessary (although some parasitic viruses like Jerusalem
do reinfect ad infinitum). Infection by the Cascade virus is shown in Fig. 3.4.

Parasitic viruses which are not memory-resident do not install themselves in memory,
but spread by finding the first uninfected program on disk and infecting it. One such
example is the Vienna virus.

46 CHAPTER 3

3.1.3 MULTI-PARTITE VIRUSES

A comparatively recent development has been the emergence of viruses which exhibit
the characteristics of both bootstrap sector and parasitic viruses. Viruses such as Flip
infect COM and EXE files (like parasitic viruses) as well as the master boot sector (like
boot sector viruses). By exploiting ‘the best of both worlds’ their chances of replication
are much higher than if they were to use only one method (Fig. 3.5). It is not surprising
that comparatively few multi-partite viruses in existence today account for a
disproportionately large number of infections.

Multi-partite viruses are spread through physical exchange of any media which can be
used for bootstrapping (in most cases physical exchange of floppy disks) as well as
through any medium which can be used for storage or transmission of executable
code such as disks, tapes and networks. The virus will become active if the PC is
bootstrapped from an infected disk or if an infected program is executed.

Most multi-partite viruses such as Flip are fully multi-partite, which means that a PC
infected by bootstrapping from an infected disk will infect other disks as well as
executables, while a PC infected by executing an infected file will infect other executables
as well as disks. Some multi-partite viruses are only partially multi-partite; for example,
Spanish Telecom in EXE and COM files will infect other EXE and COM files as well as
the boot sectors, while the same virus in a boot sector will only infect other boot sectors.

The speed of propagation of multi-partite viruses is similar to that of parasitic viruses as
they can be uploaded easily onto bulletin boards and thus spread over great distances
very quickly.

3.1.4 COMPANION VIRUSES

Companion viruses exploit the MS-DOS property that if two programs with the same
name exist in a directory, the operating system will execute a COM file in preference to
an EXE file.

Jump to the rest of

virus code

I

/P

Rest of virus

Infected boot sector Infected executables

Fig. 3.5 - Disk infected with a multi-partite virus

VIRUS STRUCTURE 47

File carrying
Volume in drive C has no label companion virus
Directory of C:\COMPANIO code

<DIR> 7-0 4:45p
<DIR> -07-92 4:45p
0464 20-02-86 5:43p
4936 20-02-86 5:43p
4 File(s) 51335168 bytes free

EXE

Fig. 3.6 - Companion virus infection

A companion virus creates a COM file with the same name as the EXE file it ‘infects’,
storing its own virus code in the COM file. When a user types in the program name, the
operating system executes the COM file, which executes the virus code and, in turn,
loads and executes the EXE file. The virus makes no change at all to the contents of the
‘infected’ EXE file.

The directory listing in Fig. 3.6 shows an unsophisticated companion virus which has
infected WS.EXE by creating WS.COM. More sophisticated companion viruses label
the companion COM file with the DOS ‘hidden’ attribute, which means that they will not
be shown in directory listings. This, however, is also a nail in the coffin of such viruses,
since the DOS COPY command does not copy hidden files and the virus is thus denying
itself the prime means of propagation: copying of executable files by users.

Companion viruses are spread through any medium which can be used for storage or
transmission of executable code (but see above comment on hidden files). The virus
will become active if one of its COM programs is executed.

It is unlikely that companion viruses will form a major threat in the future.

3.1.5 LINK VIRUSES

Link viruses work by linking the first cluster pointer of the directory entry of every
executable file to a single cluster containing the virus code. The original number of the
first cluster is saved in the unused part of the directory entry (Fig. 3.7).

Link viruses are spread through any medium which can be used for storage or
transmission of executable code. A PC will become infected if an infected program is
executed.

As of August 1992, the only link virus in the wild was DIR II, which first appeared in mid
1991 and has since become remarkably widespread.

48

Directory entries

WS .COM
FPRT.EXE

CHAPTER 3

Disk data
area
clusters

RUNOFF . EXE—

Pointers to
first cluster of
each file

Fig. 3.7a - Directory entries in an uninfected system

Directory entries Disk data
area

WS .COM |"| clusters

FPRT.EXE 1

RUNOFF . EXE :

Pointers to first cluster of each
file now all point to virus
code. Original pointers are
stored in the unused parts of
directory entries and are
available to the virus.

~ Virus code

- ==

Fig. 3.7b - Directory entries in a system infected with a link virus

VIRUS STRUCTURE 49

3.2 VIRUS BEHAVIOUR AFTER GAINING CONTROL

3.2.1 MEMORY-RESIDENT VIRUSES

Memory-resident viruses install themselves into memory as Terminate and Stay Resident
(TSR) processes when they gain control. They will normally intercept one or more
interrupts and infect other objects when certain conditions are fulfilled (e.g. when the
user attempts to execute an application (Cascade) or when the user accesses a drive
(Brain)). Switching the PC off will clear the virus from memory; warm bootstrapping
with Ctrl-Alt-Del may not, as some viruses such as Yale intercept the Ctrl-Alt-Del
interrupt and survive the warm boot.

3.2.2 NON-MEMORY-RESIDENT VIRUSES

Non-memory-resident viruses are active only when an infected application is executed.
They execute their code completely at that stage and do not remain in memory. Other
executables are generally infected only when an infected program is executed (e.g.
Vienna or Datacrime).

Although this approach may seem less infectious than one used by memory-resident
viruses, the infectiousness of these viruses is in practice just as high, if not higher, than
that of the memory-resident viruses. They are also more difficult to spot, since they do
not change the interrupt table or the amount of available memory, and their infectious
behaviour can be more unpredictable.

| 3.2.3HYBRIDS

Some viruses use a combination of these two methods. The Typo virus, for example,
infects executables on invocation of an infected program, but also leaves a small TSR
element in memory after infection. The TSR section contains the payload, while the
non-resident portion of the virus contains the replication code. In other hybrid viruses
these functions might be allocated differently.

3.3 VIRUS HIDING MECHANISMS

Viruses often place obstacles in the path of anyone trying to find or eradicate them. Two
mechanisms are commonly used: encryption and interrupt interception.

3.3.1 ENCRYPTION

Encryption or scrambling of the virus code is used by some viruses in order to make them
appear different in each infected application. This is designed to make the extraction of a
fixed search pattern more difficult, since the majority of the virus code changes on every
infection (Fig. 3.8). Before the virus code can be executed, it must be decrypted in order
to become a meaningful sequence of instructions. The decryption routine must be in

50 CHAPTER 3

Carrier program Virus
Program 1
Program 2 DE | FAFAIBIBI783E
Program 3 | BAAGO2FIFIBAD

Fig. 3.8 Three programs infected with an identical encrypted virus

plaintext (unencrypted) form and it usually contains about ten or twenty bytes which are
identical and common to every infected executable (Shown as ‘DE’ in Fig. 3.8). An
encrypted virus will look identical only when it uses the same encryption key to encrypt
its code.

Although encryption algorithms in current viruses are simple and the keys are straight-
forward (Cascade s decryption routine is shown in Fig. 3.9), the possibilities for introducing
complications are practically endless. For example, a virus can use two stages of
encryption, where the key for encrypting the second stage is stored in an encrypted form
in the first stage. Such ‘refinements’ make disassembly of the virus more difficult and
even viruses encrypted using simple techniques can be tricky to disassemble.

One of the techniques increasingly commonly used by virus writers is to make the virus
vary the decryption routine between infections. These viruses are known as polymorphic.
Since there is no code which remains the same between infections, it is impossible to
extract a fixed hexadecimal pattern. This somewhat complicates the search and an
algorithmic approach has to be used; the virus scanner is told about a number of virus

lea si, [bx+start_of_virus]
mov sp,virus_length
again: xor [si] ;=i » Elrst stor
Xor [sil.,sp ; second Xor
inc si
dec sp
jnz again ; loop until finished

Fig. 3.9 - Cascade decryption routine

VIRUS STRUCTURE 51

characteristics such as infective length, bytes which do not change between infections
and so on, which are used to recognise virus-infected code.

The trend of writing polymorphic viruses seems to have been started by one Mark
Washburn in the US with his ‘experimental’ virus 7260. This was followed by a number
of creations in the V2Pn series (V2P2, V2P6 etc.), all of which were written as a direct
challenge to anti-virus software manufacturers. It is interesting that Mark Washburn
views himself as a ‘good guy’ who is helping anti-virus research.

A recent development in polymorphic viruses is the development of the Mutation Engine
by a virus-writer (or possibly a group) calling him/itself Dark Avenger. This ‘toolkit’
allows a quick transformation of any normal virus into a polymorphic one, saving
programming effort. Dark Avenger and his associates posted the object code of the
Mutation Engine on a number of bulletin boards with detailed instruction on how it
should be used. They even valiantly offer technical support to budding virus writers via
a virus-exchange bulletin board in Sofia, Bulgaria. The document accompaning the
toolkit states that it is copyright ©1991 CrazySoft, Inc and is written by Mad Maniac.

3.3.2INTERRUPT INTERCEPTION: STEALTH VIRUSES

Interrupt interception can be used very successfully to hide the presence of a virus
actively once it has gained control of the PC.

DOS applications use software interrupts to communicate with the operating systemin a
portable way. The jump addresses are stored in the interrupt table located at the beginning
of memory (Fig. 3.10). This is set up by the operating system to point to the correct
addresses depending of the version of DOS. When an application issues an interrupt, a
jump occurs to a predetermined address. If a virus changes one or more of these
addresses, any jumps to the operating system can be routed via the virus, which can then
decide what to do with a particular request (Fig. 3.11). The fact that such modification of

t t FF I
e RAM address 003FCH
Each interrupt contains:
Code Segment (CS) base
Interrupt 02H e (e Litn
s Instruction Pointer (IP)
Interrupt 01H e
’ I RAM address 00004H offset (16 bits)
Interrupt 00H
RAM address 00000H

Fig. 3.10 Interrupt table

52 CHAPTER 3

the interrupt table is possible has led to the emergence of ‘stealth’ viruses, which are
characterised by a highly effective ability to hide themselves.

For example, if the Brain virus is active in memory and an application requests the
operating system to read from disk the contents of the boot sector (the hiding place of
Brain), the virus will return the contents of what the legitimate boot sector would contain,
instead of the actual contents. Brain achieves this by modifying (‘hooking itselfinto’) the
interrupt table.

Several other viruses use this stealth technique. For example, 4K intercepts some 18
functions of the DOS interrupt 21H, including Find First Matching File (11H), Find Next
Matching File (12H), Open File (3DH) and Close File (3EH). Amongst other things, the
virus will subtract 4096 from any infected file length displayed by the DIR command. It
goes much further: it will ‘disinfect’ any infected file if an application tries to read from
it, only to reinfect it on closing the file. A virus scanner or a checksummer will therefore
not discover 4K in infected files if the virus is active in memory.

Joshi is another stealth virus which hides the contents of an infected boot sector by
intercepting ROM BIOS disk services interrupt 13H and returning the contents of the
original boot sector if a disk read is attempted. The virus also intercepts the keyboard
interrupt 9H, traps Ctrl-Alt-Del (warm boot) and survives it. Correct anti-virus
bootstrapping, which includes switching the power off and booting from a clean, write-
protected floppy, has never been more important than today.

3.3.3 BINARY VIRUSES

Binary viruses are a special case of encrypted viruses. A virus carries the replicating
code in full, but only half of the payload. Only when the ‘other half” virus is encountered

DOS
Application Application
Interrupt vector Interrupt vector

Fig. 3.11 Interrupt routing before and after the virus gains control

VIRUS STRUCTURE

Replicating code of virus 1

Payload part 1

Replicating code

Combined payload

Replicating code of virus 2

Payload part 2

Fig. 3.12 Binary virus - two parts combining to get a meaningful payload

53

(which carries the other half of the payload), the combination of the two payloads
produces meaningful code which can be executed (Fig. 3.12). The combining could be
done by performing an exclusive-or (XOR) operation on the two halves. In a binary
virus, the payload cannot be analysed unless the researcher has access to both halves of

the virus.

Although the concept of binary viruses has been discussed by researchers, it has not been
seen in any viruses to date. The only case in which this concept may have been
incorporated is the dBASE virus. As part of the payload, the original virus contains the

following sequence:

CLI
MOV
LABEL: MOV
MOV
MOV
XOR

PUSH

INT
INT
POP
INC
CMP
JL

AX,3
CX,100H
DX, 0
DS, DX
BX, BX
AX

3H

3H

AX

AX

AL, 1AH
LABEL

Set count

Page 0 RAM
Segment 0

; Offset 0

Save the count
7
?

Restore count

; Next
; Reached 26 ?
; Go again

Continue

54 CHAPTER 3

This sequence does not do much unless either of the following happens:

1. An ‘otherhalf’ virus changes the two INT 3H instructions (which assemble as 1 byte
each =2 bytes) into one INT 26H instruction (which assembles as 2 bytes)

2. An ‘other half’ virus changes the interrupt table so that interrupt 3H points to
interrupt 26H

If either of the above happens, the payload becomes destructive. On triggering, the
(modified) virus will overwrite the first 256 sectors of each drive from D to Z, using the
Absolute Disk Write interrupt 26H.

The virus patterns for dBASE shown in Appendix G reflect the above possibility. The
standard dBASE pattern is the one found in the seen and disassembled virus, while the
dBASE destroy pattern is the pattern in the so far unseen (destructive) virus. Although
this is one explanation for the dBASE mystery, other possibilities are that the seen version
is the pre-release, non-destructive version, which could easily be modified into a
destructive one, or alternatively that someone has ‘disarmed’ a copy of the destructive
virus.

3.3.4 VIRUSES WHICH INFECT THE FIRST CLUSTER OF THE DATA AREA

This hiding technique has been discussed on a number of bulletin boards in Bulgaria. As
of June 1992 no such viruses have appeared, but this technique could be used by virus
writers in the future. It is based on copying the first cluster of the data area (which is the
first cluster of the first file in the root directory) into an unused cluster, modifying the
first root directory file entry to point to that cluster, and then copying the virus code into
the first cluster of the data area. The hiding mechanism of such a virus is based on the fact
that in older versions of DOS the system files are assumed by the bootstrap code to be
stored in this location, and are loaded without reference to the normal directory/FAT
mechanism, whereas most scanners will examine that file as a file, relying on DOS to
open it and read it. Since DOS relies on information in the root directory, a scanner is not
going to see the data loaded during bootstrapping.

This technique does not work under DOS 5 as the bootstrapping is performed differently.

3.3.5 SPARSE INFECTION: THE UNSCANNABLE VIRUS

There has been much speculation as to whether it is possible to write a virus which would
not be detectable by scanners (see Chapter 7: Anti-virus software). A completely
polymorphic virus which infects sparsely, seems to fit the bill.

Such a virus would assume that a common characteristic, such as the number of minutes
in the file’s time stamp being greater than 30, signifies that the file is infected. It would
therefore only infect 50% of all files, leaving the other 50% untouched (the ones with
minute stamp greater than 30). After infection it would set the time stamp value of the
infected files to a value greater than 30. A scanner would not be able to discover its

VIRUS STRUCTURE 55

presence in infected files, other than labelling vast numbers of files as potentially
infected (the ones with the minute stamp less than or equal to 30). And then somebody
will write a virus which infects only if the number of minutes in the time stamp is greater
than 30 ...

3.3.6 HIGH LEVEL LANGUAGE VIRUSES

Most viruses are written in assembly language. The main advantage for the virus author
is that he can ‘reach into the machine’ to a much greater extent than is possible when
using a high-level language. Furthermore, the code is smaller and more efficient, both of
which contribute to increased difficulty in discovering the virus. However, high level
languages do offer a number of advantages which favour virus spread.

Burger’s Computer Viruses - a High Tech Disease contains a number of viruses written in
Compiled Basic and Pascal. Recently a number of viruses have been discovered in the
wild which were originally written in Turbo-Pascal and C. For example: Jocker, an
overwriting virus from Poland, probably written in Pascal, Kamikaze, an overwriting
virus from Bulgaria written in Turbo-Pascal; Sentinel, written in Turbo-Pascal; 7Pworm,
a ‘companion’ virus written in C.

All of these viruses are large (between 4000 and 12000 bytes) and comparatively slow
when executed. Their binary image depends not only on the compiler used to create them,
but also on the state of various optimisation levels used during compilation. Supposing
that there are some 20 C compilers for DOS in existence, and each offers 6 possible
optimisations and/or memory models, a single piece of virus source code in a high level
language could quite easily be transformed into 1280 different binary images. If only ten
such viruses are written using polymorphic techniques (self-modifying and encrypting),
virus scanners would soon start creaking under the strain.

Furthermore, the extraction of a reliable pattern is difficult in compiled viruses, since
similar segments of code appear in other legitimate programs compiled with the same
compiler. Excessive false positives invariably result if the pattern is not chosen extremely
carefully.

3.4 VIRUS SIDE-EFFECTS

Virus side-effects (or the virus ‘payload’) are normally the first indication to the user that
his PC is infected. Not surprisingly, they are also the part which is most interesting to the
majority of users.

They are normally the easiest part of the virus to program. They are also the easiest part
to change (see Section 5.4: Virus Mutations). There have been several examples of
mutated viruses having had their side-effects completely changed from the original (e.g.
Cascade-format and Cascade).

Virus side-effects range from annoyance (such as the bouncing ball in /talian) and data
modification (like the Dark Avenger virus) to data destruction (Michelangelo). The

56 CHAPTER 3

side-effects are completely open to the imagination of the programmer. With the current
practice to rely on backups against virus-caused damage to data, the most serious threat
are viruses which cause gradual and random data corruption. By the time that a user
realises that corruption has been taking place, all his backups could already be corrupted.

When the first viruses appeared, their side-effects were on the whole confined to
annoyance, which prompted several people to treat all viruses as innocuous, and as
dangerous as a pet cat. Unfortunately, recent viruses are more like hungry tigers; fine
behind bars in a zoo, but rather less so in the wild.

4

VIRUS FACTS AND FICTION

But are they all horrid, are you sure they are all horrid?

Jane Austen, ‘Northanger Abbey’

4.1 THE NUMBERS GAME

In August 1992 there were between 1500 and 2000 viruses known to the research
community, of which only about 50 were causing real problems in the wild. Just like
biological viruses, some computer viruses are more common than others. Their spread
will depend on factors such as their type, the length of time in the wild, method of
replication, amount of stealth employed etc.

Figs. 4.1 to 4.3 show the worldwide attack statistics reported to Sophos over three
6-month periods. Two virus characteristics seem to determine the spread of any particular
virus: its capability to infect the boot sector and the age of the virus. For example, in the
first 6 months of 1992, over 80% of virus infections were due to viruses which infect boot
sectors (pure boot sector viruses and multi-partite viruses), while Cascade (a comparatively
old parasitic virus) accounted for almost 7% of the infections. The older the virus, the
more chance it has to spread. The wide spread of boot sector viruses is probably due to
the fact that floppy disks are exchanged on a large scale, with PC users being unaware
that non-system disks can carry a virus.

The increase in stealth, multi-partite viruses Tequila and Spanish Telecom from the
second half of 1991 to the first half of 1992 should also be noted.

58

CHAPTER 4

It is also interesting that in the first half of 1992 only 36 viruses were responsible for all
the attacks reported to Sophos, despite the fact that there were some 1700 viruses known
to the research community (see also Appendix G: Known IBM-PC viruses). Almost all of
the reported cases involved a few PCs, but a number of large-scale attacks (100+ PCs)
were also reported. These usually involved file servers and were in a majority of cases
attributable to poor use of network security features (see Chapter 8: Viruses and

Networks).

19 other viruses
Joshi

Yankee

4K

Jerusalem
Vacsina

Dark Avenger
Cascade

New Zealand

282%

4.2%
5.1%
5.1%
5.1%

6.0% |
8.6%
8.6%

29.1%

]

Fig. 4.1 - Virus reports from 1st January 1991 to 30th June 1991 (117 reports)

19 other viruses
Jerusalem
Michelangelo
Spanish Telecom
Joshi

Cascade

Tequila

Form

New Zealand

26.6%

3.9%|
4.4%
4.4%
5.5%
5.5%
8.8% |

16.6% |

24.3%

]

Fig. 4.2 - Virus reports from 1st July 1991 to 31st December 1991 (181 reports)

28 other viruses
Joshi

1575
Michelangelo
Spanish Telecom
Cascade

Tequila

New Zealand
Form

. L % =
2.4%
2.6%
10.0%
20.9% |
21.8%]

Fig. 4.3 - Virus reports from 1st January 1992 to 30th June 1992 (340 reports)

VIRUS FACTS AND FICTION 59

4.1 HOW ARE VIRUS ATTACKS DISCOVERED

In the overwhelming majority of reported cases, users discover a virus when they first
use anti-virus software.

Nevertheless, in a surprisingly large number of cases users discover a virus by observing
something unusual. In one case the user was running a very large application which could
just fit into the available memory. The alarm bells were triggered when that application
failed to load (due to an infection by 4K). In another instance, the user suspected a virus
when a poem was displayed on his screen and subsequent attempts to access the hard disk
proved futile. Maltese Amoeba was the culprit.

Security experts often find themselves in a situation when they have to distinguish
between hardware malfunction and a real virus attack. As this more often than not
happens over the telephone, the diagnosis is not easy. Depending on the user’s ‘virus-
literacy’, common PC problems may regularly be attributed to viruses. Indeed, some of
the side-effects exhibited by viruses such as Nomenklatura closely resemble hardware
failure and are very difficult to distinguish.

Most virus help-desk personnel develop a ‘nose’ as to what problems are likely to be due
to hardware or software and to distinguish them from virus symptoms. One of the best
indicators of a virus attack is the repetition of the same symptoms across several PCs of
several makes and configurations, e.g. when every PC which is switched on fails (this
actually happened on 6th March 1992 when about 100 PCs were switched on before a
mass infection by Michelangelo was suspected).

Not all mass-reproduced symptoms are necessarily due to a virus. In one particular case
a disk drive connector suffered from an intermittent fault, which caused intermittent data
corruption. As a result, some programs on that PC became corrupted and stopped
working. When copied to other PCs, exactly the same symptoms were observed, and a
virus infections was suspected. It took a while to establish positively that no virus was
involved.

4.2 VIRUSES AND THE CALENDAR

It is frequently the case that PC users become ‘virus-aware’ when a well-known date
approaches, e.g. 6th March (Michelangelo) or any Friday which is also the 13th day of
the month (Jerusalem). As more and more viruses appear, the ‘virus calendar’ gets fuller
and fuller. Frequent ‘advice’ which is available in those circumstances is to advance the
system clock by one day. One of the most ironic cases when such advice proved fatal,
involved a PC user who advanced his clock on Thursday, 12th December 1991 in order to
avoid Friday, 13th. He then forgot to set the clock back and switched on his PC on 5th
March 1992, intending to set the date forward in order to avoid Michelangelo. This
triggered the virus and he lost his hard disk.

Fig. 4.4 shows some of the viruses which trigger on particular dates and their side effects
and further emphasizes the point that calendar watching is inadvisable. Combatting
viruses is a day-in day-out job.

60

Virus name

5120

4K

Cascade
Cascade Format
Casino
Christmas Japan
ChristmasTree
Datacrime
Dec24th
Durban

Faust

Form

Frogs Alley
Hybrid
Jerusalem
Joshi

July 13th
Kennedy
Maltese Amoeba
Michelangelo
Monxla
PcVrsDs
Pretoria

South African
Suriv

Taiwan
Tenbyte
Thursday 12
Traceback
Violator

XAl

CHAPTER 4

Activation date

after 1 Jun 92
22 Sept
1 Oct-31 Dec 88
1 Oct-31 Dec not 93
15 Jan, Apr, Aug
25 Dec
19 Dec
13 Oct
24 Dec
Sat 14
13th day of month
18th day of month
5th day of month
Fri 13 after °91
Fri13
5 Jan
13 Jul
6Jun, 18Nov, 22Nov
1 Nov, 15 Mar
Mar 6
13th day of month
Mon 23rd not *90
Junl6
Fri 13
Apr 1
8th day of month
1 Sep
Thu 12
28 Dec
15 Aug
1 Apr

Side effect

terminates infected programs
hangs PC

displays falling characters
formats disk

destroys FAT if game lost
displays message

displays message

formats disk/displays message
displays message
overwrites first 100 sectors
displays message, hangs PC
produces key clicks
overwrites FAT and root directory
formats disk

deletes programs when run
displays message

unknown

displays message
overwrites 120 sectors
formats disk

damages programs

formats disk

damages root directory
deletes programs when run
displays message
overwrites FAT

corrupts data written to disk
displays message

displays falling characters
unknown

overwrites boot sector

Fig. 4.4 - Activation dates of some viruses

4.3 CAN VIRUSES CAUSE HARDWARE DAMAGE

This is a perennial question asked by PC users. The answer is yes, but it depends on the
type and configuration of the hardware. For example, some graphics boards are prone to
damage if programmed incorrectly, while setting the right byte in the bootstrap sector to
the value 0 makes the hard disk drive unusable and moderately difficult for a layman to
repair. On the other hand, the hardware design of standard PCs is such that it is
impossible to damage individual components through software (unlike one of the early

home PCs which could burn an on-board chip through bad programming).

VIRUS FACTS AND FICTION 61

One of the recent childish attempts to cause damage was found in a virus which stops
memory refresh, which causes the loss of data in RAM, but no lasting damage.

4.4 MODEM VIRUS, CMOS VIRUS AND OTHER NONSENSE

From time to time (usually near 1st April of any year) news appear about one or other
improbable form of virus structure and behaviour. Examples abound:

* Modem virus hoax which began in 1988 with a message from one ‘Mike RoChenle’
on abulletin board which warned about a ‘virus which distributes itself on the modem
sub-carrier present in all modems operating at 2400 baud or more’.

+ Mains virus hoax 1988, probably a parody of the modem virus, started by ‘Robert
Morris III’ (Robert Morris was the author of the Internet worm, See Section 1.4.2:
Internet Worm on Unix). This virus was supposed to ride on the ‘powerline 60Hz
subcarrier and attack virtually any computer system’.

+ CMOS virus, the sighting of which is claimed from time to time by ‘experts’ who
ought to know better. CMOS contains information on the configuration of a PC
(usually about 40 bytes), but no executable code. As such, it can be affected by a
virus, but not infected. Some confusion may arise from the fact that some portable
PCs have the whole of RAM implemented in non-volatile CMOS technology which
can, of course, become infected in the same way as the standard volatile RAM.

« Viruses invading washing machine controllers, nuclear missile controllers etc. There
have been several reports of such ‘viruses’. By definition, a closed environment such
as the one present in almost all microcontrollers where there is no exchange of
executable code, is not at risk from virus infections.

« A printer virus which is supposed to reside in the printer memory and jump back into
the PC at the first opportune moment. A few reports referred to viruses residing in
inkjet printer heads.

« Other barely believable cases, for example a report by ABC News in January 1992
that NSA laboratories at Fort George Meade in Maryland managed to implant a
‘virus’ into Iraqi mainframe computer which subsequently wreaked havoc on the Irai
air defence network (Virus Bulletin, February 1992).

5

WHO WRITES VIRUSES?

Only the insane take themselves quite seriously.

Sir Thomas Beecham

5.1 VIRUS WRITERS’ PROFILE

It is not easy to establish the origins of a virus, and it is rare to find any firm clues in the
virus code. One notable exception is the Brain virus which has a name, address and
telephone number embedded in the bootstrap sector (Fig. 5.1). Brain was written by the
owners of the computer shop ‘Brain Computer Services’ in Lahore, Pakistan. Similarly,
the Tequila virus contains the address of the authors (two teenage Swiss brothers).

It is very common for virus writers to hide their true identity under a pseudonym (Dark
Avenger, Betaboys, Rock Steady, Bad Guy etc). Nevertheless, there are individuals who
have publicly stated their involvement in virus writing, for example Mark Washburn,
Patrick Toulme and Mark Ludwig, who quite openly participate in anti-virus conferences
discuss virus-related subjects on commercial bulletin boards etc. Almost invariably they
plead the right of free speech and seem convinced that their virus-writing efforts
contribute to general anti-virus research.

The few such cases of known virus writers do not provide sufficient statistical evidence
from which to draw a firm profile of a virus writer. It is nevertheless possible to identify
a number of groups as potential (high likelihood) originators of viruses. It is also
interesting to analyse their motivation from the psychiatric point of view.

64 CHAPTER 5

000000 fa e9 4a 01 34 12 00 05 08 00 01 00 00 00 00 20 sodala we wssieee
000010 20 20 20 20 20 20 57 65 6c 63 6f 6d 65 20 74 6f We lcome to
000020 20 74 68 65 20 44 75 6e 67 65 6f 6e 20 20 20 20 the Dun geon
000030 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
000040 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
000050 20 28 63 29 20 31 39 38 36 20 42 61 73 69 74 20
000060 26 20 41 6d 6a 61 64 20 28 70 76 74 29 20 4c 74
000070 64 2e 20 20 20 20 20 20 20 20 20 20 20 20 20 20
000080 20 42 52 41 49 de 20 43 4f 44 50 55 54 45 52 20

000090 53 45 52 56 49 43 45 53 2e 2e 37 33 30 20 4e 49 ..730 N1
0000a0 Sa 41 4d 20 42 4c 4f 43 4b 20 41 4c 4c 41 44 41 K ALLAMA
0000b0 20 49 51 42 41 4c 20 54 4f 57 de 20 20 20 20 20 OWN

0000c0 20 20 20 20 20 20 20 20 20 20 20 4c 41 48 4f 52 i LAHOR
000040 45 2d 50 41 4b 49 53 54 41 4e 2e 2e 50 48 4f 4e 5T AN. . PHON

0000e0 45 20 3a 34 33 30 37 39 31 2c 34 34 33 32 34 38
0000f0 2c 32 38 30 35 33 30 2e 20 20 20 20 20 20 20 20
000100 20 20 42 65 77 61 72 65 20 6f 66 20 74 68 69 73
000110 20 56 49 52 55 53 2e 2e 2e 2e 2e 43 6f 6e 74 61 VIRUS.. ...Conta
000120 63 74 20 75 73 20 66 6f 72 20 76 61 63 63 69 6e ct us fo r vaccin
000130 61 74 69 6f 6e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e ationy cawigsvnaeies

000140 2e 2e 2e 2e 20 24 23 40 25 24 40 21 21 20 8c c8 cee s GHQ SB5ELY
000150 B8e d8 Be dO0 bc 00 f0 fb a0 06 7c a2 09 7c 8b Oe Facailias
000160 07 7c 89 0Oe Oa 7c eB 57 00 b9 05 00 bb 00 7e e8 il e s W mymsianm i ~.

000170 2a 00 e8 4b 00 81 c¢3 00 02 e2 f4 al 13 04 2d 07 L =5
000180 00 a3 13 04 bl 06 d3 e0 8e cO be 00 7c bf 00 00 |55

000190 b9 04 10 fc £f3 a4 06 b8 00°02.50-¢b 5153 b9 04 oiwases 2 PLRSss
0001a0 00 51 Ba 36 09 7c b2 00 8b Oe Oa 7c b8 01 02 cd HQ B vl
0001b0 13 73 09 b4 00 cd 13 59 e2 e7 cd 18 59 5b 59 c3 - Yo
0001c0 a0 0a 7c fe c0 a2 0a 7¢ 3c O0a 75 la c6 06 Oa 7c sabissss| el
000140 01 a0 09 7c fe cO a2 09 7¢ 3c 02 75 09 cé6 06 09 oiniailimsmere SlG W aie o
0001e0 7¢ 00 fe 06 Ob 7c c3 00 00 00 00 32 e3 23 4d 59 Vi wincaihmn scasuvar® s BT
0001f0 f4 al 82 bc ¢3 12 00 7e 12 cd 21 a2 3¢ Sf 0c 05 s Bl

Fig. 5.1 - Brain virus bootstrap sector

5.1.1 HACKERS

Hackers are people analogous to drug addicts. They need their ‘fix’ and cannot leave the
machine alone. Like addicts they seek novelty and new experiences. Writing a virus gives
them this, but unlike addicts who get immediate relief after a fix, they are not usually
present when the virus triggers and releases the payload.

5.1.2 FREAKS

This is an irresponsible subgroup of hackers, in the same way that while some drug
addicts remain reasonably responsible (and use sterile needles), others (psychopaths)
become irresponsible (and share needles). Freaks have serious social adjustment problems
and often bear general, unspecified grudges against society. They have no sense of
responsibility or remorse about what they do, and are prepared to exploit others in order
to achieve their aims. o

There are several reasons why freaks write viruses: Some do it for ‘fun’, others for
money. Some of them may be mentally distressed, sick of their life or family and want to
‘hit out’. The mentality of the freak virus writer is not unlike that of a person who leaves

WHO WRITES VIRUSES? 65

a poisoned jar of baby-food on a supermarket shelf. He delivers his potion, leaves and is
untraced, and in his absence the victim falls.

Freaks may sometimes include a message in the virus e.g. “Your PC is now Stoned!’ and
‘LEGALISE MARIJUANA'’ in the New Zealand virus, and ‘Bloody! Jun. 4, 1989’ in
Beijing, which is probably a reference to the Tianamen Square massacre. There may be
some overlap between freaks and politically motivated terrorists.

5.1.3 UNIVERSITY STUDENTS

Most universities offer free, often uncontrolled, computer facilities to students. Illegal
software copying is widespread, and it is no coincidence that most campuses have had
problems with large-scale virus outbreaks. These are not necessarily caused by locally
developed viruses. The technical ability necessary to write a virus is however within the
reach of a first-year computer science student, who may see such a project as an
intellectual challenge.

Students are not only a potential source of PC viruses, but also a potential source of
malicious code for minicomputers and mainframes. Whereas average members of the
public can buy a cheap PC comparatively easily, they cannot (yet) buy an IBM System
370 ora DEC VAX. Most students have access to minis and mainframes, and experience
so far has shown that a large proportion of malicious code written for those computers
(mainly worms) has its origins in academia.

5.1.4 EMPLOYEES

Companies normally perceive disgruntled employees as a major security risk. Although
a computer-literate employee could write a virus from scratch, it is more likely that he
would either implant an existing virus into his organisation’s PCs or modify a virus,
perhaps to target his organisation in a specific way.

Readiness to cause damage by programming has already been shown by numerous cases
of logic bombs placed by disgruntled employees into computer systems.

The motive for an employee writing and/or implanting a virus is often vindictiveness.
There is, however, not a great deal of difference between revenge and extortion. The
disgruntled employee may harbour a genuine grievance. The extortionist’s desire for
revenge is deeper (possibly subconscious) and he himself may not understand it.
Vindictiveness may accompany a strong sense of morality or moral duty making a
disgruntled employee, in some peoples’ eyes (above all his own), a freedom fighter (cf.
‘Terrorist Organisations’).

5.1.5 COMPUTER CLUBS

Some computer clubs have been very active in providing their members with information
on how to write viruses. For example the Chaos Computer Club (CCC) in Hamburg,
West Germany, has produced a ‘Virus Construction Set’ for the Atari ST, which allows

66 CHAPTER 5

the construction of customised viruses and the selection of virus effects from a menu. A
much less sophisticated tool has appeared for IBM PCs (VCS) and was probably written
by the members of the same organisation.

Other clubs have a history of creating viruses. The Swiss Crackers Association (SCA),
for example, released a virus for the Amiga which displays

Something wonderful has happened. Your Amiga is alive...

Members of clubs usually have shared values and ideals. It is quite possible that real
troublemakers will not join computer clubs; clubs are for the insecure, who gain a sense
of security through sharing.

5.1.6 TERRORIST ORGANISATIONS

Evidence that terrorist organisations are involved in virus-writing is scarce. Nevertheless,
organisations such as the Italian Red Brigades specifically include destruction of
computer systems as an objective in their manifestos. This could be done by means other
than the traditional use of explosives.

It has been asserted that the Jerusalem virus was written by sympathisers of the PLO, but
several authoritative researchers dispute this. The only evidence linking the virus with
the PLO is the trigger date (Friday 13th), which coincided with the last day of the
existence of the Palestinian state. Jerusalem-IRA is a mutation which contains a long list
of encrypted names, together with texts such as ‘.. died for Ireland’ and ‘.. is still a
political hostage’.

Terrorists are fanatics, for whom nothing else matters. They may have been indoctrinated
from an early age and are loyal to a group which holds them (in return) in very high
regard. They are, in their own eyes, modern-day martyrs.

5.2 DISSECTION OF A CAPTURED VIRUS

Once a virus has been discovered, a user’s first instinct is often to eradicate all occurrences
of it. However, one should always endeavour to ‘capture’ a virus sample for analysis, as
this can be helpful to other sites infected with the same virus.

Even if the virus is not completely analysed immediately, a hexadecimal pattern can
often be extracted in a comparatively short time, which helps to detect occurrences of the
same virus elsewhere. Full analysis of a virus will invariably involve its full disassembly,
1.e. reverse engineering its binary code into commented and understood source code.

5.2.1VIRUS DISASSEMBLY

Sometimes virus disassembly can be simplified by commercially available disassemblers
such as SOURCER (V Communications), but in many cases the very best tool is
DEBUG, a powerful utility supplied as a part of DOS. DEBUG is comparatively simple

WHO WRITES VIRUSES? 67

to use and has a number of functions which make it suitable for the job. It can read disk
sectors and files, disassemble areas of memory and single-step through a program.

Disassembling a virus is an iterative process which includes discovering first which parts
of the virus are data areas (and thus not to be disassembled) and which are instructions.
Once that has been done, the output of DEBUG can be redirected to a file which will
contain the disassembled virus. Take as an example a hypothetical simple virus in the file
VIR.COM, which has been analysed with DEBUG and which has a JMP 110H instruction
as the first 3 bytes, followed by 13 bytes of data, followed by code from 110H to 432H.
It is useful to build up the sequence of DEBUG commands in a file, to avoid re-typing
them continuously. The file INSTR could contain the following DEBUG instructions:

U 100 102 ; Disassemble locations 100 to 102
D 103 10F ; Dump locations 103 10F
U 110 432 ; Disassemble locations 110 to 432
0 ; Quit

DEBUG would then be invoked with the command
DEBUG VIR.COM <INSTR >VIR.ASM

which instructs it to read input from the file INSTR and output to file VIR.ASM which
will contain the disassembly of VIR.COM.

U 100 102 will disassemble the first 3 bytes, D 103 10F will ‘dump’ 13 bytes of data in
hexadecimal, while U 110 432 will disassemble instructions between addresses 110 and
432 Hex.

Disassembly of boot sector viruses can be slightly more complicated, as they normally
occupy more sectors than just the boot sector. The boot sector has to be analysed first in
order to discover which other sectors the virus uses. The principle of redirecting DEBUG
input and output can be used in the same way as for parasitic viruses.

For example, to load the boot sector of drive A (drive 0) into memory, use the DEBUG
instruction
L CS:100 0 0 1

This will load the contents of the boot sector into memory starting at location 100 relative
to the code segment (CS).

If a virus uses disk areas not accessible by DEBUG (for example the master boot sector
in New Zealand), the best approach is to write a small assembly language program (using
DEBUG) to issue the appropriate BIOS interrupt(s) and read in the disk area in question.
This can be written out to a file (using DEBUG again), or analysed directly. The program
shown in Fig. 5.2 entered into DEBUG with the A (Assemble) command starting at
location 100 will read the hard disk master boot sector into memory by using the BIOS
interrupt 13H, service 02. This service requires that ES:BX points to the memory
location where the contents of the sector will be stored (in this example ES is set to the
same value as DS) and BX is set to 800H in the current data segment.

68 CHAPTER 5

MOV AX,DS

MOV ES, AX ; Set ES

MOV AX,0201 ; Service 02H, 1 sector

MOV CX,0001 ; Track 0, sector 1

MOV DX,0080 ; Head 0, drive 80

MOV BX, 0800 ; Set in combination with ES
INT 13 ; BIOS

JMP 10E ; Halt here

Fig. 5.2 - Assembly program which reads the master boot sector of the first hard disk

Typing G 10E will execute the program, placing the breakpoint at location 10E (JMP
10E). Location DS:0800 can now be either Dumped or Unassembled (D 0800 or U
0800).

An alternative method of reading in boot sector viruses for disassembly is to use a disk
editing tool such as the Norton Ultilities or PC Tools and copy the contents of the required
object into a DOS file. The contents of the file can then be loaded into DEBUG for
analysis.

Encrypted viruses present a slightly greater challenge to the researcher, as they have to be
decrypted before being disassembled. This is sometimes quite tricky, since the virus
writer may have used anti-DEBUG measures. Taking Cascade as an example, the
decryption routine makes use of the Stack Pointer (SP). If the DEBUG breakpoint
facility is used, the stack pointer must be valid and have at least 6 bytes available.
Likewise, the target address will be modified by DEBUG to cause an INT 3H (one byte
CC Hex instruction will be inserted there). Cascade uses SP, making it more difficult to
use the breakpoint facility. Placing a breakpoint in the first encrypted instruction does
not work, since the decryption routine in Cascade will decrypt the INT 3H instruction,
producing a garbage byte. Analysing an encrypted virus is guaranteed to make one
familiar with DEBUG.

Once the disassembled virus has been written out to a file (like VIR.ASM in the above
example) the real fun begins. Analysis of the assembly code will reveal how the virus
works, what it does and how it propagates. One should normally have available good PC
documentation, which includes lists of interrupts (the New Peter Norton Programmers
Guide to the IBM PC & PS/2 or The MS-DOS Encyclopedia are suitable). One then works
one’s way painstakingly through the disassembly, documenting instructions, interrupts
and memory locations. The picture will soon start to emerge. The replicating part of the
virus will be isolated as well as its payload. Any payload trigger conditions should be
analysed very carefully, as these are easy to misinterpret (Does it trigger on 12th or 13th
day of the month? Is it 12 decimal or 12 hexadecimal i.e. the 18th day?).

WHO WRITES VIRUSES? 69

Once the disassembly has been finished (or even before doing it) one can usually extract
a hexadecimal pattern which can be used to search for the virus. 16 bytes are normally
sufficient, provided that the pattern is chosen carefully so that it represents a fairly
unique set of instructions, unlikely to be found in other executables. Treat the disassembly
as a confidential document and do not distribute it carelessly.

5.3 FORENSIC EVIDENCE

Every virus contains forensic evidence which can be used to trace its origin. Is it a
derivative of another virus? Does it contain any interesting messages? Does it use a new
replicating technique? Which software tools were used to write it?

5.3.1WHICHASSEMBLER?

There are different ways of assembling 8086 family instructions, which produce identical
results when executed. For example

XCHG BX,AX

could be assembled as 93 Hex, 87D8 Hex or 87C3 Hex. The result of the execution would
be the same.

For example, when the Yale virus was analysed, it was discovered that it had been
assembled with the A86 assembler and not Microsoft’s MASM.

5.3.2ILLEGAL INSTRUCTIONS

Some viruses contain instructions which are either not documented or not allowed by the
target processor. Such instructions may execute correctly on the 8086 family processors,
but will be trapped as illegal by the 80286 or 80386 processors.

There are several examples of this. The Italian virus uses the instruction
MOV CS,AX

(8EC8 Hex), which is executed properly by the 8086 processor, but trapped as an illegal
instruction on 80286 and 80386 processors. Similarly, Yale uses the instruction

POP CS

(OF Hex), which executes correctly on an 8086, but is trapped as illegal on 80286 and
80386 processors.

5.3.3 PROGRAMMING STYLE

Faced with the same programming task, ten programmers will program it in ten different
ways. This is especially true in assembly language, in which most PC viruses are written.
PUSHing registers in a particular order onto the stack, using SHORT in JMP forward
instructions, and other such constructs can all form a distinctive ‘handwriting’ of a

70 CHAPTER 5

programmer. Although this is difficult to quantify, looking at several programs written by
the same person will give the researcher a feeling of deja vu.

Some time ago there was a debate on one of the bulletin boards as to whether the dBASE
and Typo viruses were written by the same person. The programming style is certainly
very similar; for example both viruses use an identical but unusual method to transfer
control to the original program:

MOV AX,100H
JMP AX

There are also notable differences, such as the code used to modify interrupt 21H. The
dBASE virus is ‘well behaved’ and uses DOS INT 21H functions 35H and 25H, whereas
Typo writes directly to memory.

Making judgements about programming style requires experience in the programming
language concerned.

5.3.4 LANGUAGE AND SPELLING

Viruses often have messages incorporated in the code and one can get strong clues to the
country of origin of a virus by looking at the language (English, French, Icelandic),
spelling (American-British), dates (Month-Day-Year or Day-Month-Year), ways of
expressing oneself and so on.

For example, Datacrime virus contains the statement
RELEASED 1 MARCH 1989

This was almost certainly not written by an American (who would have put ‘MARCH 1,
1989’) and quite probably not by a Briton either (who would have most likely written it as
‘1ST MARCH 1989”). An English-speaking European is a likely culprit. As another
example, the Fu Manchu virus insults four politicians (Thatcher, Reagan, Botha and
Waldheim). Calling someone ‘a c***’ is typically British and not used often in the USA.
Another clue is offered by the positioning of the relevant strings within the virus. The
Thatcher insult comes first, before Reagan, Botha or Waldheim. Would an American do
that? Probably not.

5.3.5 PLACE AND TIME OF FIRST DETECTION

Place and time of first detection of a virus can offer powerful clues as to its origins. This
was how the Jtalian virus was tracked to the Polytechnic of Turin and Jerusalem to the
Hebrew University in Jerusalem.

The speed of virus spread is usually much slower than most people expect. This means
that the logging of occurrences is important, even with a significant margin of error in
reporting the time of discovery. The place of discovery is more difficult to get wrong and
can also be used in plotting the progress of a virus.

WHO WRITES VIRUSES? 71

Electronic communications are making the plotting of the virus spread more difficult,
since a user can contract a virus from a program downloaded from bulletin boards one
mile away or 10,000 miles away equally easily. This is more common in the case of
parasitic viruses than boot sector viruses, but the emergence of ‘droppers’ and multi-partite
viruses (see Section 3.1: Virus Types) has made the spread of boot sector infections much
faster.

5.3.6 ANCESTORS

Sometimes it is possible to determine the predecessors of a virus, since the authors have
copied the majority of the code to produce anew virus (as was the case with Fu Manchu,
which is a derivative of Jerusalem, or Jerusalem itself, which is a final version of a
succession of viruses starting with Suriv 1.01 and continuing with Suriv 2.01 and Suriv
3.00). The author(s) of the series even preserved ‘backward compatibility’, so that
Jerusalem does not infect files already infected with Suriv 1.01, Suriv 2.01 or Suriv 3.00.
The author of Fu Manchu (almost certainly a different person) did not have to (or want
to) support previous virus releases and this backward compatibility is absent from the Fu
Manchu.

5.4 VIRUS MUTATIONS

Virus mutations occur when a captured virus is modified in some way. This is done by
intentional assembly programming and is quite distinct from mutations of biological
viruses, which occur by chance. Virus mutations are a major problem for anybody
involved in anti-virus research since a complete virus analysis has to be performed on
every mutation, multiplying the efforts many-fold.

Mutating existing viruses seems to have become a favourite pastime for the would-be
virus writers not blessed with sufficient intellect to write a virus from scratch. They
realise that their activities put anti-virus software producers to immense research and
sample-gathering effort, and they seem to revel in this. Comments found on various
bulletin boards testify to that (see Fig. 5.3).

5.4.1 CHANGING VIRUS SIDE-EFFECTS

A typical virus has some 500 to 1000 instructions, most of which form the self-
replicating mechanism. Virus side-effects normally occupy only a small part of a virus,
and are quite easy to change. It is relatively easy even for a mediocre programmer to
modify an existing virus. The New Zealand virus has some 50 mutations, most of which
involve simple changes to the original ‘Your PC is now Stoned!’ message.

It is worth noting that the complete destruction of data on the hard disk can be
programmed in only 5 assembler instructions and that modifying a known virus to do
this can be done in a few minutes using DEBUG.

72 CHAPTER 5

5.4.2 VIRUS ‘IMPROVEMENTS’

There are several examples of improvements and corrections made to viruses. The
Cascade virus in its original form has an infective length of 1701 bytes. It also exists in
a version which has an infective length of 1704 bytes, which is a consequence of
removing some superfluous branch instructions and introducing segment overrides.
Whether that was done by the person who wrote the original is not known. The New
Zealand virus exists in two main versions, where the second is a reorganised and tidied-
up version of the first.

5.4.3 MUTATIONS TO FOOL PATTERN-CHECKING PROGRAMS

Virus scanning software usually relies on searching for a pattern known to exist within a
virus. If a maliciously inclined person wanted to release a version of the virus which
would not be recognised by the pattern checker, he could either change the order of
instructions which are not order-dependent or implement the same effect using different
instructions.

For example

MOV AX,7FO00H
Mov BX,0

within a virus could be switched around to read

MOV BX, 0
MOV AX,7F00H

Any pattern checker relying on the pattern produced by the first sequence of instructions
(B800 7FBB 0000) would not recognise the mutated sequence (BB00 00B8 007F).

P R e e e e T e e o B B kit B EL L L S B B o L L L B

Parasite Virus Version 1.0
October 1991
Written by --*> Rock Steady <*--
[NukE] Head Programmer
Copy-ya-right (c) 1991 (NukE] InterNat'nl Software Development

% 5
Sicilain Mob Ia I made! Ho baby
;-'_'_*-t-l_t-'_*_*_!_'_*_‘_*-*_’_i-'-!-*_"_i_l-t-t-i_t-*_*_*_i_'_l_ﬁ-'_’_'.
VIRUS: Well this Virus InFects Only *.COM and the COMMAND.COM. One thing
about this Virus is that On MONDAYS it wipes out the BOOT,FAT,DIR
sectors from you C: Drive! What I like to call *Bloody Mondays*
So it Wipes Drive C: and then Displays a Message!
Other than Mcndays the virus copies itself to as Many files it
can find thru the PATH from DOS and searching for Sub-Directories
With-in those Dos PATHs... Or if it can't find a PATH well then it
Starts at the ROOT dir and works thru the drive... 70% of the time
the virus will just spread and copy itself. 20% of the time the
virus will Make "Machine Gun Noices" in the PC speaker then
displaying my message and then continues to infect files...
FINALLY the last 10% of the time the virus will Re-Boot the system!

i
;
7
i

WHO WRITES VIRUSES?

3 Aarrggghh. .So the "Average® Lamo user will know FAST something is
7 fucking his system... and the BEST part is that SCAN can't find this
7 virus!!! So the user better "TRY" to get rid of it before Monday!!!

7 hehe. ..Anyways 1 put a "NICE" message in he virus CODES!!! READ IT!!!
) Take Pctools or Norton Utilities and VIEW the Virus and read my
2 handy message at the end of the virus!!!
;-t-'_i-*-'_i-!-i_i_*_t-*-i-*-*_t-i-'-t_t-ﬁ_t-t_*_t_t_!_t_'_l_i_'_i_i_*_t_i_*_
i Rock Steady's Notes
; Contact me if you can...Thru any of the [NukE] Site All over the WorlD!
Basically in MonTreal (World Head Base) , other Montreal SiTes, Texas,
; California, Britsh Columbia!
; Tell me your views on the virus... and help spread my Latest Viruses!!!
:_t_!_l_t_t_l_k_l_l_!-l_t-t-t_*-t-t-!_t_!_!_t-!_*-*-i_i_i_'-?-!_t_*-!_*_!_!_*.

BTW: I'm not responsible for the Damage my virus “May" create! Because I
DON'T SPREAD THEM!!! ALL YOU LAMERS DO!!! I just create them!
 dataded - PeAcE -

Rock Steady

;-'_x_t-l_t_*_t_*_t_t_Q_!_t_t_t-t_t_t-t_k_t_*_t-*_t-t_*-t_i_t_!_t_*-t-*_*-*_t-

B TS TS TEC NS DL TR UL TER TEE JES SNE UL JRU R JEE JUL UG JUC S JEC JEL N JUE Y JRC JEG N BN DT P N SR JES TN P

*- - ParaSite Virus IIB - =
- - Programmed by: Rock Steady - *e-
= - Completed December 8th - =k
B BN BN NS NN LU0 DU NN BEL SRS NES QN PN QNS AR PR JNE BER JEL S UL JNR QU QNG DU QU N SER NS JEE AR JEG N NN QR RS
e Length 909 Bytes Undetectable from SCANV85- i
-% * -
*- FEATURES: It's SMALL!!! It lost about 300 Bytes from the orignal =
-* ParaSite. All Text were removed, but I did leave a header on the *-
*- Virus. Anyhow it works about the same as the first! Meaning it =X
-* will infect all COMs 70% and 20% play machine gun noices and then *-
- 10% will reboot the system! And on MONDAYS BOOM! You get your FAT -
-* Get formated on your hard Dirve C:! ooops! =

“BETTER

-

- COMMAND.COM! Anytime it is activated it will infect a COM and -
- THEN CHECK TO SEE that COMMAND.COM is infected! if not it will *-
- be infected! So even after being cleaned out, if the user forgets
-* JUST ONE FILE it will infect COMMAND.COM and boom the whole *-
o procedure starts AGAIN! even if files are HIDDEN or READ ONLY -*
-* they will be infected!!! And dates are not changed! And NO *e
— MEMORY is taken up! the file will just increase by a mere 907 ~
- Bytes... Anyhow enjoy! -
L J FEG DUG U NS NG DN NN JES JER JUN IS DI JEE JEU AR JEU NS NS NN FEL NS JEE SRR QR BN NS QUL JNR NN BN NGE DL SN A e
- Comming Soon in a PC near you... *
* - B
- AMILIA Virus (A .COM & .EXE & COMMAND.COM infector, Will) -
=¥ (be a TSR Virus! Deticated to no other but) £=
*— (my Girl... She will hurt you so don't fuck) -
=X (with her... Yeah it will format the FAT or) *-
- (and create LOTS of bad shit...) -
~- (Expected Release Date Decemeber 24th, 1991) *-
Falalatalalalclalalalalatlalalalafeclalafelacf e facfeclfalafalfa e oo R R R R ¥ ®
=% Hope you enjoy all my Viriis New & Old... L
*- Contact me in any NuKE Site BBS for any comments -
~® Or just to chat... *-
[5= =]
=% Rock Steady ¥
e -PeAcE- =%
alfalafalalalaltalfafalalatatalafalatatalatalatatafclaltalafalaclatalfefaf ool

Fig. 5.3 - Sample text pulled down from a hackers’ bulletin board

74 CHAPTER 5

A significantly large number of individuals seem to be engaged in doing exactly that.
Reverse-engineering a virus scanning program reveals the patterns for which the scanner
is looking. Once that is known, it is easy to modify the virus so that the scanner does not
detect it and release it into the wild.

5.4.4 NEW VIRUSES

Sometimes the mutations of an existing virus will be so extensive that the new virus bears
little resemblance to the original. Hex patterns extracted from the original are unlikely to
be present in the new virus. Fu Manchu is, for example, such an extensive mutation of
Jerusalem, that it is classed as a new virus. Vienna, which is probably the most
extensively mutated virus of all, has several ‘sons’ which are known under different
names.

5.5 VIRUS EXCHANGE BULLETIN BOARDS

Many hackers, freaks and other individuals engaged in computer-related misdeeds (such
as virus writing), share and exchange information via bulletin boards. This has been a
contributory factor for many PC users to regard all bulletin boards with great suspicion,
which in most cases is not justified.

Virus writing and virus spread is certainly greatly helped by the wide availability of
certain bulletin boards operated by individuals or small groups, which often carry
discussions on virus techniques and provide virus samples. Furthermore, specialised
‘virus exchange’ bulletin boards exist which either support a particular virus product
(e.g. Dark Avenger s bulletin board in Sofia supporting the Mutation Engine, or the Hell
Pit board in California supporting the Virus Creation Laboratory) or which operate on
the principle that one must upload a new virus in order to be allowed to download the
whole collection.

Although the police in several countries have tried to close down virus exchange bulletin
boards, this has so far been unsuccessful for a variety of reasons, which range from
ineffective or non-existent legislation to the difficulty in obtaining intelligence on the
exact bulletin board activity.

6

ANTI-VIRUS PROCEDURES - FIVE
COUNTERMEASURES

Put your trust in God, my boys, and keep your powder dry.

Valentine Blacker (1778-1823)

The fight against viruses involves the application of five countermeasures: Preparation,
Prevention, Detection, Containment and Recovery. This S-step approach can be
applied to most security problems; for example, when trying to protect against fire, one
should:

+ Prepare forthe possibility by purchasing and maintaining fire extinguishers, training
the staff etc.

- Prevent the fire from breaking out by minimising the use of naked flames, using non-
flammable materials etc.

- Detect the fire as early as possible by installing fire detectors, fire alarms etc.

+ Contain any outbreak by making sure that fire doors are closed, using fire extinguishers
etc.

+ Recover from the effects of the fire by restoring the functioning of the affected part of
the organisation

76 CHAPTER 6

6.1 PREPARATION

The following subsections outline what should be done before a virus attack occurs.

6.1.1 REGULAR AND SOUND BACKUPS

It is important that backups of storage media are available. This is not only important in
case of an attack by a destructive virus, but also in the case of any other failure of a
storage device. In case of data loss, the system can be restored as efficiently as possible.
As part of the backup procedure, the master disks for all software (including the
operating system) should be write-protected and stored in a place such as a fireproof
safe. This will enable a speedy restoration of any infected executables.

The backups should be sound, which means that there is little point in doing them unless
the integrity of data is known to be intact at the time of doing the backup. They
should also be tested at regular intervals by performing complete restorations of the
system to ensure that the data can actually be restored.

It should be borne in mind that some viruses such as Dark Avenger and Nomenklatura
gradually corrupt data stored on disks. If an infection is not noticed for an extended
period of time and backup media are reused, a situation can occur in which all copies of
one or more files become corrupt and not restorable. The common strategy of reusing 3
sets of media cyclically is not an ideal backup strategy. Media should be regularly
archived, i.e. stored in a safe place and not reused. The frequency of archiving will
depend on the type of data held on the PC; obviously, higher frequency requires more
media storage.

6.1.2 WRITE-PROTECTED SYSTEM FLOPPY DISK

A write-protected system floppy disk should be prepared in advance and contain all
system files plus AUTOEXEC.BAT, CONFIG.SYS and any other system files or device
drivers such as ANSI.SYS. Note that CONFIG.SYS normally refers to other files which
are loaded into memory before the system is started, using statements such as
‘DEVICE=filename’. All these files should be copied onto the floppy disk, and
CONFIG.SYS on the floppy should be modified, if necessary, to ensure that it refers to
the files on the floppy disk, rather than the original copies on the hard disk.

If a computer becomes infected, this disk can be used to bootstrap the computer cleanly.
This will ensure that the computer can be examined through a ‘clean’ operating system,
not giving the virus the chance to gain control and employ hiding techniques such as
interrupt interception (see Section 3.3: Virus Hiding Mechanisms).

This system disk must be write-protected; this is a hardware protection against the
modification of any information on the disk (see Section 6.4.3: Write-protect Tabs). No
virus, or for that matter, any software, can write to a write-protected floppy disk on
IBM-PCs and compatibles.

ANTI-VIRUS PROCEDURES - FIVE COUNTERMEASURES 77

6.1.3 CONTINGENCY PLAN

This plan, which will be put into action in case of a virus attack, is usually part of the
overall organisational security contingency plan and should include information on the
following topics:

+ People within the organisation responsible for dealing with the attack and their
deputies

- Consultant(s) outside the organisation who can be called in to help deal with the
attack

+ Exact procedures for isolating infected disks, PCs and networks

+ Public Relations procedures to prevent unauthorised leaks about the attack spreading
outside the organisation

6.2 PREVENTION

The need to communicate introduces a potential virus entry path into any secure
environment. Application software has to be purchased or updated, new operating
systems installed, disks interchanged. The higher the volume of inbound traffic, the more
opportunity a virus has of entering the environment.

The suppliers of executable code are potentially the most prolific distributors of a virus.
Most users assume that software received from reputable companies is virus-free and any
anti-virus barriers will promptly be raised when such an executable arrives on the
doorstep. Fortunately, most software companies do realise their potential as sources of
virus infection and take appropriate countermeasures.

Practical techniques to prevent virus entry into an organisation include: creating user
awareness, implementing hygiene rules, using access control, providing a ‘dirty’ PC
and providing a quarantine PC.

6.2.1 CREATING USER AWARENESS

Creating user awareness is one of the most important factors within an effective virus
prevention policy. Users must be made aware that execution of unauthorised software
(such as demonstration disks and games) can lead to virus penetration and consequent
losses to the organisation.

The problems are similar to those faced by the Government in persuading drug addicts
not to share needles. While most computer users do behave sensibly and obey the rules,
there will always be some who go on playing illegally-copied games and other software
on company computers and exposing the whole organisation to risk. As the AIDS disk
scare showed, a number of people are happy to install anything on their PC, showing a
blind trust in the creators of any software (see Section 1.1.3: The AIDS Disk Through the
Post).

78 CHAPTER 6

Strengthening awareness is a matter of commonsense: measures include the use of
leaflets, posters, virus demonstrations, presentations, showing educational virus videos
and so on.

6.2.2 HYGIENE RULES

The observance of hygiene rules is by far the most effective way of preventing a virus
attack.

Every executable item which is to run on a computer should be treated with suspicion. A
set of rules should be designed to counteract the virus infiltration routes and methods
outlined in Section 2.4 and could include the following:

+ Do not use pirated software. The practice is not only illegal in most countries but also
carries a high risk of virus infection.

- Do not use software ‘pulled down’ from bulletin boards. A plethora of bulletin boards
offer free software for downloading, but in most cases little checking is done on these
programs and their origins. Their potential for carrying a virus is high.

+ Do not use shareware. A copy of the shareware program you get may be the 10th or the
50th copy and the risk of the program picking up a virus before it has reached you is
significant.

+ Do not use public domain software. Problems due to its distribution and the subsequent
risk from viruses are similar to shareware.

+ Be careful when bringing in disks from home to your place of work. Does anybody
else use your home PC when you are not there? This is currently a major cause of
virus infections in a commercial environment.

* Do not use programs supplied by computer magazines. They are not only potential
virus carriers, but due to their often poor quality, can also cause unexplained crashes,
conflicts and other problems.

+ Beware of diagnostic software used by service engineers. Ask them if they use anti-
virus software. Scan their disks for known viruses before allowing them to be used.

+ Use only programs from reputable manufacturers. A reputable manufacturer will
implement anti-virus security procedures in order to ensure that its software is
shipped virus-free. Software should be supplied on permanently write-protected
disks, which greatly decreases the chances of a disk becoming infected after it has left
the manufacturer’s premises. Shrink-wrapping the software or placing the software in
a sealed envelope should ensure that the purchaser is the first person to use that copy
of the original disk. There have, nevertheless, been cases of dealers tampering with
shrink-wrapped software.

ANTI-VIRUS PROCEDURES - FIVE COUNTERMEASURES 79

6.2.3 ACCESS CONTROL

Access control products can be deployed very effectively to prevent unauthorised use of
computer resources, thereby decreasing the likelihood of virus infection. There is a wide
variety of access control products available, ranging from the very secure to the
completely useless. Complex products are not necessarily the most secure: used judiciously,
good virus protection can be obtained even from the simplest products.

Note that it is not possible to guarantee the prevention of master boot sector viruses by
using an access control product implemented purely in software, since the virus gains
control before the access control package.

6.2.4 DIRTY PC

A dirty PC is a physically isolated machine, not connected to networks, which can be
used for trying out new software, playing games and essentially doing anything which
would be dangerous to do on a machine used for day-to-day work.

Employees should be encouraged to use a dirty PC to try out any ‘non-work’ software
coming from outside, including demonstration disks and games. No company work
should ever be done on that machine, and no disks used on the dirty PC should be used in
any other computer. Anti-virus software should be run as often as possible to check this
machine.

This concept is a powerful tool against viruses, although it can be difficult to ‘sell’ to
management if budgets and resources are strained. Furthermore, in some instances the
provision of a dirty PC may be seen as a direct invitation and encouragement to PC users
to bring doubtful disks into the organisation. The decision whether or not to use a dirty
PC will depend on a number of factors.

r - e Unauthorised
I D ’ ; E disk entry not
| D — | allowed

| == ="

|

| () |

: == :

| Ol) |

| Workstations can share disks inside the perimeter |
e i

Authorised disk entry allowed e

after virus check o Ml

Fig. 6.1 - Quarantine PC used for checking all incoming disks

80 CHAPTER 6

6.2.5 QUARANTINE PC

A quarantine PC is a stand-alone machine, not connected to networks and under careful
configuration control. It is used only for running virus-scanning software (see Section
7.1.3) to check all floppy disks coming into the organisation. It is similar in function to
the barrier guard in military barracks. Only disks which have been cleared are allowed
through (Fig. 6.1).

Once the disks have been cleared, they can circulate freely within the organisation.

Use of quarantine PCs is the backbone of the anti-virus strategy in many large organisations
today. Its success depends largely on whether the organisation can enforce the checking
of all incoming disks. Disk authorisation products exist which do not allow the use of
floppy disks on company PCs until they have been checked and electronically labelled.

6.3 DETECTION

Should a virus nevertheless bypass the preventative measures and penetrate the
organisation, there should exist a reliable way of detecting its presence before its side-
effects are triggered.

6.3.1 ‘STRANGE’ OCCURRENCES

Sometimes users will notice ‘strange’ things happening, such as the executable file sizes
changing (Fig. 3.4) or the amount of available memory decreasing (Fig. 6.2). Programs
may take longer to load than usual or a disk light might flash when it should not. All these
occurrences could point to a virus attack, but they should not be relied upon for detecting
virus presence. They depend too much on the subjective powers of observation of an
individual to be usable in a reliable way.

In one recent case of virus infection, the first symptom which was noticed was that a
large application would not load any more. After investigating the problem, the 4K virus
was discovered (4K decreases the size of the available memory by 6K).

6.3.2 ANTI-VIRUS SOFTWARE
This is discussed in detail in Chapter 7.

6.3.3 CONFIRMING THAT THE VIRUS IS NOT A MUTATION

If a virus has been detected, it must be verified whether it is a ‘standard’ version or a
mutation. Most anti-virus software will only check a part of the virus and cannot be
relied upon for spot-on identification.

The final confirmation is best left to one of the companies or individuals specialising in
virus research. In most cases the process is straight-forward: two identical executables or
disks are infected with a captured virus and with a previously analysed sample. A simple

ANTI-VIRUS PROCEDURES - FIVE COUNTERMEASURES 81

comparison will reveal any differences. The process is somewhat more complicated
when analysing an encrypting virus, in which case a full disassembly is normally
required.

6.4 CONTAINMENT

Once a virus is detected, infected PCs and disks have to be identified and isolated. A
contingency plan prepared in advance will be extremely valuable at the moment of virus
discovery. A point-by-point checklist makes it more difficult to forget an important item
in the general panic which sometimes follows a virus attack.

C:\VIRUS>chkdsk

21309440 bytes total disk space
45056 bytes in 2 hidden files
8192 bytes in 4 directories
1644544 bytes in 97 user files
19611648 bytes available on disk

655360 bytes total memory
(605072 bytes ‘

Infect the PC with
Cascade by
executing an
infected application

c:\VIRUS>alter <l
You must specify a path.
C:\VIRUS>chkdsk

21309440 bytes total disk space
45056 bytes in 2 hidden files Note the decrease
8192 bytes in 4 directories in free memory

1644544 bytes in 97 user files size

19611648 bytes available on dis

655360 bytes

Fig. 6.2 Free memory decreases when the PC is infected with Cascade

82 CHAPTER 6

6.4.1 NETWORKACCESS

Depending on where on the network the virus has been discovered, the type of the
network and the type of the virus, one may take the decision to disconnect the PCs
physically from the network (see Chapter 8: Viruses and Networks).

6.4.2 DISK INTERCHANGE

Any unauthorised disk interchange between PCs should be temporarily suspended.
Masking tape placed over floppy disk drive slots is a good physical indicator that disk
drives should not be used.

6.4.3 WRITE-PROTECT TABS

All floppy disks which are not purposefully intended to be infected should be
write-protected. On 5'/," disks (Fig. 6.3) the application of the write-protect tab prevents
writing to the disk. On 3'/," disks (Fig. 6.4) the appearance of a window on the sliding
shutter signifies that the disk is write-protected.

Write-protection on disks is a hardware function and no amount of software
manipulation can persuade the hardware to change its mind and write to a write-
protected disk. The signal from the write-protect sensor (which can be mechanical or
optical) is linked to the floppy disk controller chip and used as an input to a logical gate
which blocks the WRITE signal. For example, on the TEAC FD-55 1.2M drive, the signal
from the File Protect Sensor (FPT) is processed by the WRITE/ERASE logic in the
control circuit LSI forming the WG signal as follows:

WG=DSEL & IWG & FPT

where DSEL is the Drive Select signal and IWG is the Write Gate input. WG is further
processed by the Read/Write LSI which supplies the current to the Read/Write and Erase
coils.

Fig, 6.3a Write-unprotected 5'/," disk Fig. 6.3b Write-protected 5'/," disk

ANTI-VIRUS PROCEDURES - FIVE COUNTERMEASURES 83

High-density notch
——Shutter closed

High-density notch

Shutter open

Fig. 6.4a Write-unprotected 3'/," disk Fig. 6.4b Write-protected 3'/," disk

A word of caution: A number of (conflicting) reports have been published regarding the
effectiveness or otherwise of silver (or black) write-protect tabs on 5'/," disks. On some
older drives, which used a mirror under the floppy disk notch to reflect the light back to
the photo-sensitive element next to the light source, placing a silver (or a shiny black)
write-protect tab was the same as bringing the mirror closer to the light source, which
made the drive believe that the disk was not write-protected. Unfortunately, some reports
have wrongly indicated that matt tabs were the culprits, resulting in spectacular confusion.

If in doubt, try copying a file onto a disk write-protected using a tab of your favourite
colour. Matt black tabs are generally reliable.

6.5 RECOVERY
Recovery from a virus attack involves two main stages:
1. Elimination of the virus from the infected hard and floppy disks, and

2. Recovery from any virus side-effects

6.5.1 CLEANING HARD DISKS

To eliminate the virus from an infected hard disk, the PC should be switched offand then
bootstrapped from a write-protected system floppy disk (see Section 6.1: Preparation).
Infected objects (bootstrap sectors, executables) should be identified and replaced with
clean copies.

Replacing infected executables is easy: delete the old copy using the DOS command
‘DEL and ‘COPY’ the originals from the manufacturers’ delivery disks. Using ‘DEL
first 1s not really necessary, but it helps to avoid mistakes.

84 CHAPTER 6

Replacing infected bootstrap sectors can be done with disk-editing tools such as Norton
Utilities, PC Tools or Sophos Utilities, but if you are not absolutely certain what you are
doing, the ‘brute force’ approach is preferable. All files on the hard disk should be
backed up first and the disk reformatted. For hard disks infected with DOS boot sector
viruses such as the Italian, a DOS ‘FORMAT" is sufficient, while for master boot sector
viruses such as New Zealand and Joshi, a low-level format should be performed. Data
files should then be restored from the backups and the executables restored from the
manufacturers’ original disks.

One must not forget that multi-partite viruses infect executables and the bootstrap
sector, all of which need replacing with clean copies.

Disinfection software (as oposed to Virus removal software, see Chapter 7: Anti-virus
Software) is unreliable and should normally be avoided.

In the process of eliminating the virus, do not forget to preserve a copy, on a clearly
marked disk, for detailed analysis.

6.5.2 CLEANING FLOPPY DISKS

To clear infected floppy disks, switch the PC off and bootstrap it from a write-protected
system floppy disk. Back up any valuable data (not executables) from the infected floppy
disk using the COPY command (not DISKCOPY). The disk can then be reformatted, e.g.

FORMAT A:

6.5.3 REINFECTION

Reinfection often occurs after the ‘cleanup’ has been completed, sometimes minutes
after completion: all that is needed is one overlooked floppy disk. Although thoroughness
will reduce the likelihood of reinfection, one should anticipate this possibility.

6.5.4 RECOVERY FROM VIRUS SIDE-EFFECTS

Recovery from virus side-effects depends on the virus. In the case of innocuous viruses
such as Cascade, recovery from side-effects is not necessary, while in the case of a virus
such as Michelangelo, recovery will involve the restoration of a complete hard disk from
the most recent backups.

The most important thing when recovering from virus side-effects is the existence of
sound backups. Original executables should be kept on write-protected disks, so that
any infected programs can easily be replaced by the original clean versions.

Sometimes it is possible to recover data from disks damaged by a virus. This is a rather
specialist task performed by commercial data recovery agencies and can be very
expensive.

ANTI-VIRUS PROCEDURES - FIVE COUNTERMEASURES 85

6.5.3 OTHER POINTS
There are a few other things worth bearing in mind during recovery from a virus attack:
+ Discover and close the loopholes which allowed the virus to enter the organisation.

- Inform any possible recipients of the infected disks outside the organisation that they
may be affected by the virus.

+ Consider the implications to the organisation of the bad publicity.

+ In the UK, inform the Computer Crime Unit of New Scotland Yard in London about
the attack (Tel 071 230 1177, Fax 071 831 8845).

7

ANTI-VIRUS SOFTWARE

| have too dearly bought, with price of mangled mind, thy worthless ware.

Sir Philip Sidney, ‘Desire’

The exponential growth of the virus threat has been closely followed by a similar
exponential growth of anti-virus software. PC users are faced with a bewildering choice
when trying to pick the package which will be most effective against something they
have never seen, and do not particularly wish to see. How do they test it? What should
they use and why? How much can they rely on evaluations in general-purpose computer
journals?

Virus non-specific Virus-specific
Checksumming software Scanning software
Monitoring software Monitoring software
Integrity shells ‘Inoculation’ software
Virus removal software Disinfection software

Fig. 7.1 - Anti-virus software types

88 CHAPTER 7

7.1 ANTI-VIRUS SOFTWARE TYPES

The many anti-virus software packages on the market can be divided into two categories:
Virus non-specific and Virus-specific. Each category can, in turn, be divided into four
sub-categories, as shown in Fig. 7.1.

7.1.1 SCANNING SOFTWARE (VIRUS-SPECIFIC)

Description: A virus-scanning program searches for known viruses. When a new
virus appears in the wild, it is analysed, and its characteristics recorded;
this is normally a 16- to 24-byte pattern extracted from the virus. The
scanning program will examine all executables on a disk, including the
operating system and the bootstrap sector(s), and compare their contents
with its library of known virus characteristics.

The program SEARCH in Appendix B is an example of a virus-specific
scanning program, though the listing does not include the necessary
patterns, which are in Appendix G: Known IBM-PC Viruses.

Virus scanners are currently the most widely used type of anti-virus
software.

Advantages: The main advantage of scanners is that they can be used for virus-
checking of potentially infected media. Scanning software is especially
useful for checking incoming floppy disks for the presence of known
viruses.

Scanners identify a virus by name, rather than just informing the user
that something is amiss.

Disadvantages: Scanning software can only discover viruses that it ‘knows’ about. It
has to be updated continually, as new viruses appear, which is the main
problem with this type of software.

7.1.2 CHECKSUMMING SOFTWARE (VIRUS NON-SPECIFIC)

Description: Checksumming software relies on the detection of change to any
executable on the system through the calculation of initial ‘clean’
checksums, followed by periodic recalculations in order to verify that
the checksums have not changed. If a virus attacks an executable, it will
have to change one or more bits, which will result in a completely
different checksum (provided a strong checksumming algorithm is
used).

Checksumming is often referred to as ‘fingerprinting’. The program
FINGER in Appendix C is an example of virus non-specific software
which produces cryptographic checksums.

Advantages:

Disadvantages:

ANTI-VIRUS SOFTWARE 89

The method of performing the checksumming process (the
checksumming algorithm) is very important. Three general approaches
are possible: simple checksums, cyclic redundancy checks (CRCs)
and cryptographic checksums. The results of the checksumming
algorithm must not be easily reproducible (lest a virus should do this on
infection, preventing its detection), which eliminates the first two.
Cryptographic checksums are the only method which this sort of
software should use.

The checksumming approach is the only known method which will
detect all viruses, present and future, with absolute certainty. This
makes it inherently desirable as along-term anti-virus strategy in any
organisation.

This type of software is reactive rather than proactive, in that a virus
attack will be detected after it happens. However regular use of such
software will almost always find a virus before its side effects trigger.

Checksumming software relies on the fact that the executables should
be ‘clean’ (i.e. virus-free) before the initial checksumming is applied.
This can be ensured by using virus-specific scanning software to check
the system for the presence of any known viruses. The only case in
which the checksumming will fail completely to pick up a virus infection
on an infected system is if all infectable executables are infected when
the checksums are calculated. If the system is partially infected when
checksums are calculated, irregularities will still be discovered when
the virus infects the next executable.

7.1.3 MONITORING SOFTWARE (VIRUS-SPECIFIC)

Description:

Advantages:

Monitoring software (also called ‘on-line’ anti-virus software) installs
itself as a memory-resident TSR (terminate-stay-resident) program.
From then on, it intercepts various interrupts such as Load and Execute,
File open etc. (Fig. 7.2). Whenever an application requests access to a
file, the file is first examined for virus presence. The application is
allowed to use the file only after it has been certified virus-free.

In common with other TSR programs, virus-specific monitoring software
should occupy as little conventional memory as possible. A virus
description typically takes about 30 bytes, which means that a virus
database containing 2000 viruses occupies 60K of memory. This is, of
course, unacceptably large to store in conventional memory, so virus-
specific monitoring software employs various tricks such as using
extended or expanded memory.

Virus detection (if it happens) occurs in real time.

90 CHAPTER 7
DOS 5
Application Application
Interrupt vector Interrupt vector

Fig. 7.2 -

Disadvantages:

Interrupt redirection by memory-resident anti-virus software

System slow-down can be considerable. As a process which is dependent
on interrupt interception, this type of program can be subverted. Occupies
(often scarce) conventional memory. Compatibility problems with
networks, utilities and other resident drivers and programs.

7.1.4 MONITORING SOFTWARE (VIRUS NON-SPECIFIC)

Description:

Advantages:

Disadvantages:

Virus non-specific monitoring software is installed as a TSR program.
It intercepts and monitors various interrupts, trying to detect ‘virus
activity’. ‘Virus activity’ is a set of actions that are commonly found in
viruses such as writing to a boot sector, opening executable files for
writing etc.

Virus detection (if it happens) occurs in real time.

There is no fixed ‘set of rules’ regarding what a virus should or should
not do. As a result, false alarms can result from legitimate program
activity which is misinterpreted by the anti-virus software (this in turn
usually leads to users ignoring all warnings!). Conversely, any virus
which does not comply with the monitoring program’s concept of virus
activity will be ignored. The monitoring activity also degrades system
performance and can be incompatible with network software, certain
application programs and so on.

The greatest drawback of memory-resident products, however, is that
intelligent viruses such as 4K and The number of the Beast can bypass
or disable them. The mechanism used by anti-virus software for

ANTI-VIRUS SOFTWARE 91

intercepting disk reads and writes, i.e. to change the DOS interrupt
table, is exactly that used by most viruses, and can be easily disabled.
There are viruses which were designed to bypass specific monitoring
software (eg. 8 Tunes which bypasses Flushot).

7.1.5 ‘INOCULATION’ SOFTWARE (VIRUS-SPECIFIC)

Description:

Advantages:
Disadvantages:

‘Inoculation’ software attempts to label disks or executables in such a
way that a particular virus will not infect them.

None

‘Inoculation’ software introduces a virus signature into objects it wants
to protect, leading the virus to believe that the object is already infected.
Apart from the fact that such ‘protection’ can only be done against one,
or at most a few viruses, it is not a long term solution and can introduce
a false sense of security as well as false virus alarms when scanning
software is run. Some viruses such as Jerusalem cannot be ‘inoculated’
against.

This sort of software should not be used.

7.1.6 INTEGRITY SHELLS (VIRUS NON-SPECIFIC)

Description:

Advantages:

Disadvantages:

The idea behind integrity shells is that a layer is added above the DOS
command level, so that the shell ‘filters-through’ any request to execute
aprogram. Before executing the program, the anti-virus part of the shell
will perform on-line checksumming of the executable and compare it
with the precomputed value. If the values do not agree, execution of the
program will not be permitted.

An appealing concept which is more useful under operating systems
such as Unix, VMS or OS/2, where inter-process separation is well
defined through memory ownership and privileged instruction support
in hardware and where the execution of a ‘dangerous’ instruction (in
operating system terms), will cause the offending process to be
suspended.

Integrity shells are impossible to implement in a secure way under DOS
which does not distinguish between privileged and non-privileged
instructions and any program can do anything, including bypassing the
shell and rendering its protection useless.

7.1.7 DISINFECTION SOFTWARE (VIRUS-SPECIFIC)

Description:

Disinfection software attempts to remove viruses from infected disks
and infected programs in such a way as to restore the infected item to its
previous state.

92 CHAPTER 7

Advantages: This is an intuitive approach which can be used in clearing large-scale
virus infections or the restoration of executables where masters are not
available.

Disadvantages: Disinfection is not something to be recommended, as it is not a straight-
forward operation in the majority of cases. Mistakes are possible, if not
probable, since the differentiation between an already known virus and
amutation is extremely difficult. Eliminating just one byte too much in
a program can have catastrophic consequences. It is much easier to
replace the infected programs with manufacturers’ originals.

7.1.8 VIRUS REMOVAL SOFTWARE (VIRUS NON-SPECIFIC)

Description: The simplest forms of virus removal software are the DOS DEL, SYS

and FORMAT commands, as well as the low-level formatting procedure
for hard disks. The DEL command deletes infected programs and the
FORMAT command re-initialises infected floppy disks and DOS
partitions of hard disks. The SYS command replaces DOS boot sectors
and the operating system files. The low-level format completely re-
initialises hard disks.
Virus scanning software often provides automatic file deletion and boot
sector immobilisation. This enables a reliable, quick and automatic
removal of infected files and immobilisation of infected disks. Once
infected items have been removed, they can be replaced with
manufacturers’ originals.

Advantages: This is a fundamentally sound technique which should always be used
in preference to disinfection.

Disadvantages: Can be time-consuming, especially when a lot of executable files are
infected.

7.2 TESTING ANTI-VIRUS PRODUCTS

It is strongly recommended that only tested anti-virus products are used. The testing
should be done for usability as well as security.

The user should test products for their usability, whereas the security aspect of testing is
arather specialist task which cannot be done by the average user. Most users have never
encountered, nor have any desire to introduce highly infectious and harmful viruses into
their system. They do not wish to risk their valuable data just in order to ascertain the
effectiveness of anti-virus software. The testing of anti-virus software against viruses
should be done in a controlled environment, by experts.

When comparing the effectiveness of virus-specific anti-virus software, users should
always compare the tests on more than one virus collection. It is quite common that one
product gets the best marks in one test, only to come last in a different test. This is almost

ANTI-VIRUS SOFTWARE 93

always due to the use of different virus collections, although it can also be due to out-of-
date products being compared with up-to-date ones, or to the reviewer’s incompetence.

PC journals often carry comparative tests of PC software and hardware. When testing
anti-virus software, each product is usually tested against an exhaustive virus collection
supplied by an anti-virus software manufacturer. Needless to say, the objectivity of
such reviews is often poor, for two reasons: Firstly, it would be surprising if that
manufacturer’s product did not score 100% against a collection of viruses with which the
manufacturer is clearly familiar. Secondly, the collection will almost always contain
thousands of viruses, most of which are of academic interest only. Testing against a large
selection of viruses should not necessarily be the main aim of comparative reviews, since
testing against a well chosen sample of viruses found in the wild can reveal much more
(see Section 4.1: The Numbers Game).

The testing for usability should be done by the purchaser on his own typical hardware and
software configuration.

7.3 FALSE POSITIVES AND FALSE NEGATIVES

There are two possible pitfalls when using virus-detection software: either the software
detects a virus when there is no virus, or the software does not detect a virus when there
is one. These are known respectively as false positive and false negative events.

Both false positives and false negatives can occur in all types of virus-detection software
under certain conditions.

7.3.1 VIRUS-SCANNING SOFTWARE

There is a very small but finite chance that patterns or virus identification algorithms
used by a virus scanner will match the contents of some uninfected and innocuous
executable. Data in executable images is not completely random, and certain sequences
of instructions used in a virus can occur in a perfectly legitimate program. Patterns from
viruses are normally chosen so as to be unlikely to occur in a legitimate program, but this
is often difficult, especially if viruses are written in a high-level language.

False negatives are a much more serious problem and can result from a particular virus
characteristic not being included in the scanner used, or a characteristic of a virus being
included incorrectly. It is of paramount importance to update virus-scanning software
regularly, as well as to ensure that the software producer has appropriate access to the
latest virus code and a good virus-analysis capability.

Executables infected before compression and delivered in compressed form can also
cause false negatives. Compression changes the appearance of any virus that may be
attached to them in such a way that virus scanners cannot recognise the virus code. If
static compression is used (PKZIP, ARC etc.) the executables should be decompressed
before scanning. Dynamically compressed files (PKLITE, LZEXE etc) are difficult to
scan unless the scanner can decompress files while scanning; this is becoming more

94 CHAPTER 7

difficult with the increasing number of compression products and algorithms. Alternatively,
a dynamically compressed file can be run on a dirty PC and examined for infectious
behaviour, such as changing of other executables or boot sectors. If a dynamically
compressed file does carry a virus, any sacrificial executables on the dirty PC which
become infected will be scannable in a normal way.

Note that dynamically compressed files can be infected before compression or after
compression. If they are infected before compression, a scanner is not likely to pick up
the infection. If they are infected after compression, the infection should be detected.

False negatives can also happen if an anti-virus scanner is used incorrectly. For example,
if the PC is bootstrapped from a disk already infected with the 4K virus, the scanner will
not detect it.

7.3.2 CHECKSUMMING SOFTWARE

False positives are a frequent occurence when using checksumming software. The reason
for the alarm in most cases is not a virus attack, but a legitimate change in the machine
configuration which has not been followed by a recalculation of checksums. This can be
partly avoided by fingerprinting only those particular areas of the PC which rarely
change but are executed often (operating system, utilities, editors, compilers etc). If a
virus infects the PC, it will sooner or later also infect one of the commonly used utilities,
which will be picked up by the checksumming software. Some executables introduce
legitimate changes in their own contents, e.g. WIN.COM in Windows 3.1.

False negatives are much rarer when using checksumming software than virus scanning
software, and are almost always due to incorrect use of the software. If fingerprints are
checked while the system is already infected with a stealth virus such as Joshi or 4K, the
infection will not be detected.

Using a simple checksumming algorithm is an open invitation to virus writers to produce
a virus which could engineer the changes in such a way that infected executables would
appear clean. Cryptographic fingerprints combat this particular threat by making the task
of engineering the changes intrinsically infeasible to accomplish in a realistic time span.

7.3.3 VIRUS NON-SPECIFIC MONITORING SOFTWARE

Virus non-specific monitoring software resides in memory and reports suspicious
activities such as another process attempting to install itself in memory, writing to a boot
sector and so on.

False positives often occur when using this type of software, as some of the ‘suspicious’
activities trapped originate from legitimate software. Furthermore, when an unsophisticated
user is presented with a flashing message such as

Warning! Attempted write to drive 80 cylinder 0 head 0 sector 1
Proceed (Y/N) ?

ANTI-VIRUS SOFTWARE 95

he probably wishes to type in “I don’tknow” instead of giving a decisive yes/no answer.
After seeing similar messages ten or twenty times a day, he is quite likely to ignore them
and after a few days of annoyance, deinstall the virus-monitoring software.

False negatives are a much more serious shortcoming of this type of software. There is no
virus equivalent of the 10 commandments, and viruses do exploit weaknesses or bugs in
the operating system and the anti-virus software. Several tricks have been used in
practice. For example, the Icelandic-2 virus uses an undocumented feature of DOS to
obtain the original value of the INT 21H vector and bypass any monitoring program.
Another trick used by at least two viruses to infect files which have been protected
against being written to by a memory-resident module, is to open the file in Read-Only
mode and then modify the internal flag within DOS which changes access rights to Read-
Write.

7.3.4 VIRUS-SPECIFIC MONITORING SOFTWARE

Virus-specific monitoring software suffers from false negative problems which are
mainly due to the difficulties in keeping it up-to-date. False negatives can also be caused
by the relatively easy subversion of the software by new viruses specifically targeted
against particular products.

7.4 SUMMARY OF ANTI-VIRUS SOFTWARE

In summary, the recommended long-term approach is to use virus non-specific
checksumming software, based on cryptographic checksums. This will allow convenient
everyday checking of system integrity, secure against any present or future viruses. In
addition, there are situations in which virus-specific scanning software can be useful,
provided its limitations are clearly understood.

Monitoring software is not recommended as it cannot be made effective against all
viruses and can lull the user into a false sense of security. The same applies to
virus-disinfection and ‘inoculation’ software for similar reasons.

The advantages of the non-memory-resident approach over memory-resident products
are considerable. Above all, the operation can be made fully secure through both
bootstrapping the computer and running the anti-virus software from a write-protected
floppy disk. Furthermore there is no performance degradation or incompatibility with
other software in normal operation, and anti-virus checks can be scheduled or integrated
into other procedures as required.

Possibly the greatest difficulty in using anti-virus software in a larger organisation is the
enforcement of the agreed procedures. Deciding that all incoming floppy disks will be
checked for viruses does not necessarily mean that all incoming disks will be checked.
The enforcement can be helped by using a disk-authorisation product which will prevent
unauthorised disks to be used. This functionality is provided by some access control
products, and a number of dedicated packages are also available from anti-virus companies
(see Appendix D: Anti-virus Software Manufacturers and Distributors).

8

VIRUSES AND NETWORKS

Something is rotten in the state of Denmark.

William Shakespeare, ‘Hamlet’

The interchange of executables on non-networked PCs is almost exclusively done by
floppy disks and is, as a consequence, relatively slow and physically controllable. PC
networks allow high speed sharing of data and executables. This interchange is also much
more difficult to control in practice, with hundreds of simultaneous users.

The danger from a large scale virus attack in a non-networked organisation is comparatively
limited, if reliable virus-detection software is used. An attack is likely to be limited to a
few PCs before it is spotted and disk interchange is stopped. The possibility of a large
scale virus attack in a networked organisation is much greater and the chances of
successful containment much smaller, if proper network security features are not used.

This chapter concentrates on Novell NetWare and is based on a theoretical and practical
study of virus behaviour under NetWare 3.11 and NetWare 286. Although the practical
anti-virus measures described are specific to NetWare 3.11, much of it also applies to
other network operating systems such as LAN Manager. It is assumed that the network
will be using a dedicated file server.

8.1 PATHOLOGY OF A VIRUS]NFECTION ON NETWARE

Due to the excellent emulation of physical DOS disks under NetWare, a large proportion
of DOS viruses in existence today are able to attack NerWare drives.

98 CHAPTER 8

The main difference between NetWare and local workstation drives is that NetWare does
not allow individual sector addressing either through the normal DOS interrupts 25H and
26H or the BIOS interrupt 13H. This excludes the possibility of pure bootstrap sector
viruses infecting the network, but does not, of course, exclude parasitic, multi-partite and
companion viruses, all of which can spread freely on a badly protected network.

8.1.1 VIRUS ENTRY INTO THE NETWORK

The point of entry of a virus into a network is invariably the user workstation. In a typical
scenario, the user infects his workstation by executing an infected application (parasitic
or multi-partite) or bootstrapping from an infected disk (multi-partite viruses). The virus
becomes memory resident and will typically try to infect any application which is run, or
any drive which is accessed.

NETX and IPX, which are normally kept on the workstation, may already be memory-
resident at this stage.

On accessing the network the user will execute LOGIN.EXE stored on the file server,
which will open access to the allotted file areas on the file server. If LOGIN.EXE itself
or any other executables are unprotected (see Section 8.6: Practical Anti-virus Measures
for NetWare 3.11 Administrators), they will become infected. Any user executing an
infected application will have his workstation infected, which in turn will spread the
infection further.

On a typical active network, an infection can spread onto most workstations within
minutes. An infected LOGIN.EXE, or any program executed by the system login script,
can cause user workstations to become infected whenever a user logs into the network.

8.1.2 PRACTICAL TRIAL - JERUSALEM ON NETWARE 2.12

The above scenario has been demonstrated in practice by infecting a workstation with the
Jerusalem virus and then executing LOGIN on the fileserver running NetWare 2.12. In
this experiment LOGIN.EXE was purposefully left protected only by the Read-Only
(R/O) attribute. Jerusalem (like most parasitic viruses) sets the R/O attribute to Read/Write
(R/W), infects the file and then resets the attribute to R/O. After LOGIN.EXE has been
infected, any workstation logging into the network will become infected (Fig 8.1). Any
EXE or COM file residing on the file server will likewise become infected whenever
executed by the supervisor.

8.2 NETWARE 3.11 SECURITY MECHANISMS

NetWare 3.11 provides four different aspects of network security: the login procedure,
trustee rights, directory rights and file attributes.

1. The login procedure requires all users to identify themselves by a username and a
password.

VIRUSES AND NETWORKS 99

Infected workstation ...

... infects LOGIN.EXE on the file server

after which every workstation becomes infected as soon as a user logs in

Fig. 8.1 - Large scale network infection through LOGIN.EXE

2. Trustee rights are granted to each user by the ‘network supervisor’ and allow each
user various actions such as reading from files, writing to files, creating files etc.

3. Directory rights (read, write, open, close, delete, search) are set separately and can
be used to limit the access to certain directories such as those containing executables.

4. File Attributes (read-only, read-write, share) can be set separately.

Even if a user’s PC becomes infected, the infection cannot spread to the file server if the
security features are properly implemented.

This security breaks down if the network supervisor’s PC becomes infected. Care should
be taken when setting network security features, as the appropriate features may not be
enabled by default.

8.3 NETWARE 3.11 PRACTICAL EXPERIMENTS

An experimental network consisting of a dedicated file server (on a Compaq 486/25,310
MByte hard disk, 4MByte RAM) and a workstation (Amstrad PC-ECD, 20 MByte hard
disk, 640KByte RAM) was set up with default security parameters.

8.3.1 PARASITIC VIRUSES

It was decided to investigate NetWare 3.11°s resistance to attack with different levels of
protection.

100 CHAPTER 8

A workstation not logged in was infected with Jerusalem (memory-resident, parasitic
virus). IPX was executed (and infected) and NET3 was executed (and infected). From
then on, no COM or EXE file became infected when run; this applied to files held on
floppy, hard or network drives. The interaction between the virus and NET3 appeared to
prevent the virus from infecting other executables.

If the sequence was reversed, i.e. if a clean workstation was loaded with IPX and NET3
and then infected, the following error message was produced:

Network Error on Server SERVER:Error receiving from network
Abort, Retry?

The same experiment was repeated with Cascade and Vacsina, and in both cases the
viruses lost the ability to infect immediately after infecting NET3.COM. Unlike Jerusalem,
Cascade and Vacsina did not crash the workstation if loaded after IPX and NET3.

The same trial was then done with 4K virus. The virus did infect IPX and NET3, did not
crash the workstation and proceeded to be infectious in a normal way on floppy and hard
disks, but not on the file server.

The same experiment was then performed with the Eddie 2 virus. A clean workstation
was logged into the network and an infected application executed from drive A. This
virus successfully infected programs held on all drives, including the file server.

The infectiousness of Eddie 2 was next tested with various NetWare 3.11 file attribute
settings. Eddie 2 is a virus with limited stealth capability. It intercepts DIR’s Find-First
and Find-Next calls and displays the original file lengths. In order to establish whether or
not a file is infected, a secure bootstrap has to be performed.

8.3.1.1 Default NetWare 3.11 Security

By default the users have full access rights to their home directory (created at the time of
user creation) and no write-rights to any subdirectories containing executables. The virus
could infect files in the user’s own directory, irrespective of the setting of file read-only
attributes, but could not infect any other files on the server.

8.3.1.2 Rights Set to Read-only

Eddie 2 failed to infect files to which the user did not have ‘effective rights’ to write,
irrespective of whether this right was denied at a directory or file level, or from the
‘Inherited Rights’ mask.

8.3.1.3 File Attributes Set to Read-only

Eddie 2 succeeded in infecting files which had their file attributes set to read-only. This
is the same R/O attribute used by DOS, set by Eddie 2 (and most other parasitic viruses)
to R/W before infection and reset back to R/O after infection.

8.3.1.4 File Attributes Set to Execute-only

NetWare 3.11 allows file attributes to be set to execute-only and such files cannot be read
even by the supervisor.

VIRUSES AND NETWORKS 101

An Eddie 2-infected workstation was used to execute an execute-only file as well as afile
marked read-only. Only the read-only file was infected.

8.3.1.5 Running Under Supervisor Mode

The supervisor has all rights to all directories and files. A clean workstation was used to
log onto the network as the supervisor, and was then infected with Eddie 2.

The virus was able to infect all files on the file server, except those marked as ‘execute

only’.

8.3.2 BOOT SECTOR VIRUSES

Although boot sector viruses have no means of infecting a network drive (since it does
not allow individual sector addressing), the experiment was nevertheless performed.

A workstation was infected with the New Zealand virus, which infects the master boot
sector on hard disks and the boot sector on floppy disks. The network was accessed
(LOGIN followed by running of various applications, followed by LOGOUT).

The workstation was cleared from the infection and the network connection was re-
established. The workstation hard disk and its memory, were examined for infection, and
as expected, none was found.

8.3.3 MULTI-PARTITE VIRUSES

A clean workstation was used to log into the file server. The workstation was infected
with the multi-partite virus Flip. Files on the local fixed disk could be infected as usual,
but when files on the file server were executed, DOS returned the message

EXEC Error

In general a multi-partite virus will infect files on a network drive in the same way as a
parasitic virus, but in addition the virus will infect the boot sectors of disks attached to
any workstation which them becomes infected.

8.4 NETWARE 3.11-SPECIFIC VIRUSES

There are three cases to date of viruses reported to have been written specifically to
circumvent NetWare security.

8.4.1 FIRST NOVELL ‘VIRUS’

In February 1990 there appeared an (unconfirmed) report of a ‘Novell’ virus which
supposedly destroyed the Novell-specific file allocation table. The virus was said to be
capable of penetrating a file server from a workstation even if the latter was not logged on
to the network. It was suggested that this might be possible by altering the NET$DOS.SYS
program, using the C libraries released by Novell.

102 CHAPTER 8

Novell Inc has not encountered this virus, nor has it received any reports of it. There do
not seem to have been any further reports about this ‘virus’ apart from the Editorial in
Virus Bulletin on February 1990.

8.4.2 JON DAVID’S FALSE ALARM

In July 1990 New York consultant Dr. Jon David released a report about a virus which he
claimed to have observed propagating on a Novell LAN. Dr. David said that the virus, a
Jerusalem mutation, bypassed NetWare file server write-protection and deleted
write-protected files on the server.

After a heated exchange in the press and the Virus-L bulletin board between Dr. David
and Novell (at one point Novell was threatening to sue Dr. David), Novell confirmed that
the virus was Jerusalem, that it did propagate on unprotected networks, but was denying
the allegation that it bypassed NetWare security in any way.

Dr. David refused to disassemble the virus himself or release his sample to anybody else
for analysis, saying he preferred to observe the virus effects rather than analysing the
virus structure.

The universal conclusion seems to be that the virus was a standard copy of Jerusalem
with no specific ability to subvert NetWare security. For more information see the
Editorial, Virus Bulletin, December 1990.

8.4.3 NETWARE VIRUS FROM THE NETHERLANDS

In April 1991 a virus called GPI was received from the Netherlands which contained
instructions to subvert NetWare security. Interestingly enough, the virus was received in
source-code form. It is believed to have been developed in Leiden (the Netherlands) as a
result of an unofficial challenge by a civil servant to a student.

8.4.3.1 Virus Structure

The virus is based on the Jerusalem virus, with Net Ware-specific instructions added to a
disassembled version of Jerusalem. The virus is memory-resident but contains no stealth
characteristics. The Novell network handler is accessed via a FAR JMP instead of a FAR
CALL; analysis indicated that if the FAR JMP instruction was changed into the FAR
CALL instruction, the virus would become fully functional.

The virus is not infective unless it is run on a NetWare workstation. It intercepts four
different INT 21H services, of which the most interesting is the NetWare-specific service
E3H. This is checked to see whether the subfunction requesting the service is a user
LOGIN procedure. If it is, the LOGIN is executed under control of the virus and the
return code is examined. If the LOGIN is successful, the virus sends a copy of the
original login request block to socket number 2A9FH. This is suspected to be a broadcast
message which could send details to a listening PC.

VIRUSES AND NETWORKS 103

8.4.3.2 Practical Trials on NetWare 286

The virus was assembled after changing the FAR JMP to FAR CALL instruction. An
experimental network consisting of a dedicated file server (on a Compaq 386/s, 80
MByte hard disk) and a workstation (Amstrad PC-ECD, 20MByte hard disk) was set up
with default security parameters.

The virus replicated in the same way as Jerusalem (when NetWare was present), but no
other effects could be observed.

The background of this virus continues to be investigated and it does seem that the copy
obtained was an unfinished creation.

8.4.3.3 Practical Trials on NetWare 3.11

An experimental network consisting of a dedicated file server (on a Compaq 486/25, 310
MByte hard disk, 4MByte RAM) and a workstation (Amstrad PC-ECD, 20 MByte hard
disk, 640KByte RAM) was set up with default security parameters.

The virus was tried under NetWare 3.11 where it replicated without problems, unlike the
standard Jerusalem which refuses to replicate under the same circumstances. After
becoming memory-resident the virus infects other files, extending them by 1546 bytes.

There were no other visible side-effects.

8.5 IMPLICATIONS OF STEALTH VIRUSES ON NETWARE 3.11

The main problem of dealing with stealth viruses on any network is the difficulty in
establishing a positively ‘clean’ work environment from which the cleanup can be
attempted (see Sections 3.3: Virus Hiding Mechanisms and 8.6.6: Secure Accessing of
NetWare3.11).

8.6 PRACTICAL ANTI-VIRUS MEASURES FOR NETWARE 3.11
NETWORKADMINISTRATORS

8.6.1 DISKLESS WORKSTATIONS

Diskless workstations are PCs in their own right, sometimes equipped with hard disks,
but without any floppy disks. The reasoning is that if the user does not have the means of
introducing floppy disks into the PC, he will also not have the opportunity of introducing
avirus (or stealing data on a floppy).

This no-floppies, no-virus reasoning holds only up to a certain extent. It is quite true that
diskless workstations will prevent accidental introduction of viruses onto the network.
Malicious introduction of viruses is not prevented, as the virus code can be input through
the keyboard using the DOS COPY command or DEBUG. The technique is described in

104 CHAPTER 8 ~

Burger’s Computer Viruses - A High Tech Disease. Likewise, diskless workstations can
still have modem and email connections over which software can be downloaded from
BBSs.

Another disadvantage of diskless workstations is that the transfer of legitimate data by
users is made much more difficult.

The decision to use diskless workstations in an organisation is a major one. Associated
costs and the impact on the efficiency of the organisation should be carefully considered.

8.6.2 REMOTE BOOTSTRAP ROMS

Most network cards can be fitted with a special Read Only Memory (ROM) chip which
maps into the PC memory space and when executed on boot-up, reads the operating
system and other associated files from the file server instead of from the local disk. Note
that the PC will still try to bootstrap from floppy and hard disks first. If none are found,
the bootstrapping will be performed remotely.

There are several advantages in using remote bootstrap ROMs. Firstly, the technique
diminishes the danger from bootstrap sector virus infection. Secondly, any updates to the
operating system used are made much easier, since they can be done on the file server.

The use of remote bootstrap ROMs is recommended for bootstrapping diskless
workstations.

8.6.3 ENHANCED ACCESS CONTROL

NetWare 3.11 provides very good access control features and utilities for the administration
of users. In addition, a number of access control packages are available which front-end
NetWare 3.11, providing even more sophisticated access control features and, perhaps,
easier administration of users.

8.6.4 ANTI-VIRUS SOFTWARE

It is recommended that virus-specific software is installed on a file server for use on
workstations; the problems of updating the master copy are minimal. The virus check of
the server can be performed overnight, when the server workload is otherwise low. It is
recommended that a separate workstation, bootstrapped in a secure way, is used to
initiate the task. This workstation can also be used for backing up the network.

It is recommended that virus non-specific software be used to fingerprint and check
critical areas of the file server regularly. On NetWare 3.11 it is recommended that all
executables in the \PUBLIC, \SYSTEM and \LOGIN subdirectories are fingerprinted. In
addition, each system will have subdirectories containing applications software; these
should be fingerprinted as well. Checking of the fingerprints is best done from a
separate, securely booted workstation. This should be done before performing backups
as well as at a specific time every night.

VIRUSES AND NETWORKS 105

8.6.5 TWO IDS FOR NETWORK SUPERVISORS

One of the weak points in any multi-user computer system is that one or more users must
be given high privileges necessary for system administration. Unfortunately, these
privileges are also assigned to a virus whenever it is in control of a workstation
logged in as a network supervisor. In fact, the GP1 NetWare-specific virus seems to
exploit exactly that feature by trying to capture the network supervisor password.

One way of reducing the danger from virus penetration via this route is to reduce the time
that network supervisors are logged in as network supervisors. They should ideally have
two user IDs, one with all privileges and the other with privileges limited to read all
areas. The use of the former should be limited to system administration functions.

This is extremely important when checking the file server for viruses while logged in as
a network supervisor. If a workstation is infected with a ‘fast infecting’ virus which
infects when a file is opened (e.g. Nomeklatura, 4K or Dark Avenger), the checking will
result in every executable becoming infected. The checking of file servers should
always be done with the checking worksation logged in as a user with read (but not write)
rights to all directories.

8.6.6 SECURE ACCESSING OF NETWARE 3.11

With the advent of stealth viruses, it is most important to guarantee a clean, virus-free
environment on a workstation before running anti-virus software or investigating a
virus-infected network.

To access NetWare 3.11 securely, a normal DOS system disk should be prepared, which
in addition to a correct version of DOS system files and COMMAND.COM also
contains the following NetWare 3.11 files:

IPX.COM
NETX.EXE
LOGIN.EXE
MAP.EXE

This floppy disk should be write-protected.

To access the network, switch the workstation PC off, boot from the floppy disk and then
run IPX first, followed by NETX (NET3 with DOS version 3, NETS with DOS version
5 etc.). Run LOGIN from the floppy disk using the ‘/S NUL command line qualifier.
This will prevent the execution of both system and user scripts:

LOGIN /S NUL <USERNAME>

8.6.7 TIGHTENING NETWARE 3.11 SECURITY

NetWare 3.11 allows the setting of file attributes to execute-only. This prevents their
modification orreading by any user, including the system supervisor - the only thing that
he can do (apart from executing them) is to delete them. Setting the execute-only
attributes has mixed blessings. On the one hand it prevents the modification of executables,

106 CHAPTER 8
but on the other hand it makes them unreadable (and unverifiable) by anti-virus software,
as well as preventing some software to run.

Note that this attribute will offer protection against viruses only until somebody writes
a virus which targets this attribute. This is because it is an attribute rather than a
right, and is akin to the Read-Only flag offering protection against some early viruses.

It is recommended that this attribute is not used and that instead ‘write rights’ are
removed from directories containing executable files.

8.6.8 CONCLUSIONS

8.6.8.1 NetWare 3.11 Administration
+ Set NetWare 3.11 directory and user rights correctly.
- Do not rely on default NetWare 3.11 attribute settings.
+ Do not use NetWare 3.11 ‘execute only’ attributes unless absolutely necessary.
+ Use secure bootstrap procedure before running anti-virus software.
8.6.8.2 NetWare 3.11 Virus Infections

+ NetWare 3.11 seems to cause more memory-resident viruses to malfunction than
NetWare2.12.

+ Some memory-resident parasitic viruses interact with IPX and NETX losing the
ability to infect. Some memory-resident parasitic viruses crash the workstation if IPX
and NETX are already loaded when the virus-infected application is run.

+ Most parasitic viruses will infect NetWare 3.11 files protected with the Read-only
attribute.

+ Parasitic viruses will not infect NetWare 3.11 files when the user’s effective rights do
not include ‘write’ rights. The network supervisor has ‘write’ rights to all directories.

+ Parasitic viruses will not infect NetWare 3.11 files with the execute-only attribute set,
regardless of the user. This, however, is not a foolproof protection against future
viruses.

+ Pure bootstrap sector viruses will not infect NetWare 3.11 drives.
+ Multi-partite viruses will infect unprotected NetWare 3.11 executables.

+ Parasitic and Multi-partite viruses will infect executables regardless of protection
levels (execute-only files excepted) if the user is logged in as a supervisor.

8.6.8.3 Other Points
+ Consider using diskless workstations.

+ Use remote bootstrap ROMs in the workstations.

A

BIBLIOGRAPHY AND OTHER
SOURCES OF INFORMATION

Books and friends should be few but good.

Proverb

A.1 BOOKS ON VIRUSES AND DATA SECURITY
A Pathology of Computer Viruses, Ferbrache, D., Springer-Verlag, 1992
A Short Course on Computer Viruses, Cohen, F., ASP Press, 1991

Computer Security Reference Book, Jackson, K., Hruska, J., Parker, D,
Butterworth-Heinemann, 1992

Computer Security Solutions, Hruska, J., Jackson, K., Blackwells, 1990
Computer Viruses, Peers, E., Ennis, C., Deloitte Haskins & Sells
Computer Viruses, a High Tech Disease, Burger, R., Abacus, 1988
Computer Viruses and Data Protection, Burger, R., Abacus, 1991

Computer Viruses, What They Are, How They Work, and How to Avoid Them,
Mayo, J. L., Windcrest, 1989

Data & Computer Security, Dictionary of Standards Concepts and Terms,
Longley, D., Shain, M., Macmillan, 1987

108 APPENDIX A

Data Security Reference Guide 1991/92, Sophos Ltd., 1991

Datapro Reports on Microcomputer Security, McGraw-Hill, continuously updated
Dataquest Virus Survey, NCS4, 1991

LAN Desktop Guide to Security NetWare Edition, Ed Sawicki, SAMS, 1992

PC Viruses, Detection, Analysis and Cure, Solomon, A., Springer-Verlag, 1991

Practical Unix Security, Garfinkel, S. and Spafford, G., O Reilly & Associates Inc,
1991

The Complete Computer Virus Handbook, Frost, D., Beale, 1., Frost, C., Price
Waterhouse and Pitman, 1989

The Computer Virus Crisis, Fites, P, Johnston, P., Kratz, M., Van Nostrand
Reinhold, 1989

The Computer Virus Handbook, Levin, R., Osborne/McGraw-Hill, 1990

The Computer Virus Handbook, Highland, H. J., Elsevier Advanced
Technology, 1990

The Little Black Book of Computer Viruses, Ludwig, M., American Eagle
Publications Inc., 1992

Virus Bulletin 1991 International Conference Proceedings, Virus Bulletin, 1991

A.2 PERIODICALS ON VIRUSES AND DATA SECURITY *

Computer Fraud and Security Bulletin, Elsevier Advanced Technology, 256 Banbury
Road, Oxford, OX2 7DH, UK, Tel +44 865 512242, Fax +44 865 310981

Computer Law and Practice, Tolley Publishing Co Ltd, Tolley House, 2 Addiscombe
Road, Croydon, CR9 SAF, UK, Tel +44 81 686 9141, Fax +44 81 686 3155

The Computer Law and Security Report, Elsevier Advanced Technology, 256
Banbury Road, Oxford, OX2 7DH, UK, Tel +44 865 512242, Fax +44 865 310981

Computers & Security, Elsevier Advanced Technology, 256 Banbury Road, Oxford,
0OX2 7DH, UK, Tel +44 865 512242, Fax +44 865 310981

Datenschutz Berater, Prattweg 8, 5024 Pulheim, Germany, Tel +49 2234 82227

Information Security Monitor, Legal Studies and Services Publishing Ltd, 9-13 St.
Andrew’s Street, London, EC4A 3AE, UK, Tel +44 71 936 2016, Fax +44 71 936 2303

Virus Bulletin, Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park,
Abingdon, OX14 3YS, UK, Tel +44 235 559933, Fax +44 235 559935

" See Appendix D for notes on telephone numbers

BIBLIOGRAPHY AND OTHER SOURCES OF INFORMATION 109

Virus News International, S&S International Ltd, Berkley Court, Mill Street,
Berkhamsted, HP4 2HB, UK, Tel +44 442 877877, Fax +44 442 877882

A.3 ELECTRONIC BULLETIN BOARDS CARRYING
VIRUS-RELATED DISCUSSIONS

BIXis a bulletin board run by Byte magazine in the US. On-line subscription is possible
on+1 617 861 9767 (full duplex, 8 bits, no parity, 1 stop bit or 7 bits, even parity, 1 stop
bit). Hit the Return key, on login prompt enter bix and on Name? prompt enter bix.flatfee.
Credit cards are accepted. Packet Switch Network (PSS) address is 310690157800. A
number of virus-related conferences are going on; try law/virus and security/critters.

CIX is a London-based bulletin board which carries regular discussions on a number of
security-related topics, including viruses. To register, telephone +44 81 390 1255 (any
modem speed up to 14.4 Kbaud). Payment by credit card is accepted.

The author can be contacted via CIX (username husky). The source code of all software
in this book can be downloaded from CIX: mail Ausky with your username.

Virus-L is an archived moderated bulletin board system which carries virus-related
information. It is available from a number of sites including cert.sei.cmu.edu (maintained
by Ken Van Wyk) and pdsoft.lancs.ac.uk (maintained by Steve Jenkins and also
available by direct dialup on +44 524 63414). For a complete list of sites see 4 Pathology
of Computer Viruses by David Ferbrache.

A.4 VIRUS INFORMATION AVAILABLE ON DISK *

Virus information summary list (VSUM), monthly from Patricia Hoffman, USA,
Tel +1 408 988 3733, Fax +1 408 246 3915

PC Virus Index, Brian Clough, UK, Tel +44 273 773959, Fax +44 273 778570

Note: most virus scanning software is supplied with virus information on disk.

A.5 VIRUS TRAINING VIDEOS *
PC’s Under Attack, Mediamix, USA, Tel +1 908 277 0058, Fax +1 908 277 0119

The Computer Virus and How to Conrol It, 23 min, James C.
Shaeffer & Associates, USA, Tel +1 800 968 9527, Fax +1 313 741 9528

Viruses on Personal Computers training video, 30 min, Sophos Ltd, UK,
Tel +44 235 559933, Fax +44 235 559935

* See Appendix D for notes on telephone numbers

110 APPENDIX A

A.6 OTHER USEFUL BOOKS

80386 Programmer’s Reference Manual, Intel Corporation, 1986
1APX 86,88 User’s Manual, Intel Corporation, 1981

Microsoft Macro Assembler 5.1, Microsoft, 1987

Peter Norton Programmer’s Guide to IBM PC & PS/2, Norton, P. and Wilton, R.,
Micosoft Press, 1985

Technical Reference for IBM Personal Computer AT, /BM, No. 6280070, 1985
Technical Reference for IBM Personal Computer XT, /BM, No. 6280089, 1986
The MS-DOS Encyclopedia, Duncan, R., Microsoft Press, 1988

‘SEARCH’: VIRUS-SPECIFIC
DETECTION PROGRAM

They knew her by the pimple,
the pimple on her nose.

George Robey, ‘Song: The Simple Pimple’

This appendix contains the source code for a virus-specific detection program called
SEARCH which scans the currently logged-in drive for the hexadecimal virus patterns
read in from the file SEARCH.PAT.

Virus patterns have to be updated frequently with the latest virus patterns. Appendix G
contains a list of virus hex patterns known in June 1992, which can and should be
updated as often as possible. One of the main public sources of virus patterns is the
monthly journal Virus Bulletin, listed in Appendix A.

Most self-modifying encrypting (i.e. polymorphic) viruses cannot be detected by using
fixed search patterns. The only way to detect them is to use an algorithmic description of
their characteristics; two possible approaches are ‘hard coding’ the chosen characteristics
in a computer language such as ‘C’ or using a specialised virus-description interpreted
language. Each such virus must be analysed completely before reliable detection is
possible.

The SEARCH program is not particularly robust in its error-handling, which had to be
sacrificed for brevity. It is also not fast and it does not include any code for the detection
of polymorphic viruses; enhancing all these shortcomings should prove auseful exercise
for a competent ‘C’ programmer.

112 APPENDIX B

B.1 DESCRIPTION OF ‘SEARCH’

The SEARCH program is a virus-specific detection program which scans the currently
logged-in drive for the presence of known viruses. The virus patterns are read in from the
file SEARCH.PAT, which has to reside on the disk in the current drive.

By default, SEARCH will scan COM, EXE, SYS and OVL files recursively (i.e. from
the root directory downward, visiting every subdirectory in turn). In addition to that, it
will also scan the DOS bootstrap sector 0, as well as the master bootstrap sector on the
first hard disk (logical drive 80H). The user can specify file(s) to be scanned in the
command line. For example, if you want to scan all BIN files instead of the default files,
enter

SEARCH * _BIN

You can enter more than one file descriptor in the command line. For example
SEARCH SUSPECT.BIN ONEMORE.BIN

would search the files SUSPECT.BIN and ONEMORE .BIN for the presence of viruses.

Virus patterns are read in from the file SEARCH.PAT. Any text between a semicolon (;)
and the end of the line is ignored. Every pattern has a pattern name of up to 16 characters,
followed by up to 16 bytes in hexadecimal. Spaces and TAB characters can be used for
clarity. For example

Virus_1 3E 6B 78 78 00 90 ; This is a comment
; The above is the pattern for Virus 1
Virus_2 ab39 9823 278f fffe 890f

defines two virus patterns: Virus_1 and Virus_2, the first one consisting of 6 bytes and
the second one of 10 bytes.

Remember that SEARCH can only detect viruses about which it knows. You should make
sure that SEARCH.PAT is kept up to date with the patterns of new and mutated viruses.

B.2 COMPILING ‘SEARCH’

The majority of SEARCH’s code is written in ‘C’, but some routines make BIOS and
DOS calls and are written in assembly language. The ‘C’ code can be compiled by most
compilers, but it has been tested only using Aztec C (Manx Software Systems Inc.). The
assembly language routines assume that they will be called from Aztec C (small memory
model) and if you are using a different compiler or a different memory model, you should
first make sure that you use the correct calling procedure and preserve the right registers.

Aztec C assumes that AX, BX, CX, and DX registers will not be preserved, whereas BP,
SP, SI and DI will. Microsoft C, by way of contrast, assumes that SI, DI, BP, SS and DS
will be preserved.

‘SEARCH’ VIRUS-SPECIFIC DETECTION PROGRAM 113

Some compiler libraries contain the BIOS and DOS calling routines directly from C and
so all of SEARCH can be written in C.

Note that SEARCH’s assembly language routines are also used by the FINGER program
presented in Appendix C.

Some compilers (like Aztec) provide a ‘make’ facility similar to that of Unix. This
simplifies the preparation of any software. The makefile for the SEARCH’s modules
is:

searchas.o: searchas.asm
search.o: search.c
SEARCH=search.o searchas.o
search: search.exe

@echo search made
search.exe: $ (SEARCH)

1n $(SEARCH) -1lc

To compile SEARCH, type
make search

and the computer will do the rest.

B.3 ‘SEARCH’ CODE IN ‘C’

The C code for SEARCH should be entered into one file called SEARCH.C. The
FINGER program in Appendix C can be used to verify the correctness of the code. The
fingerprint for SEARCH.C is 7A23B202 (remember to run FINGER with the -N
option):

FINGER -N SEARCH.C
File SEARCH.C:

/'h
This utility will search a system for known viruses

x/

$include "libc.h"
#include "fentl. h"

g#define EOF (-1)

#define FALSE (0)
$define TRUE (!FALSE)

#define NORMAL_EXIT 0
$define ERROR_EXIT (-1)

#define NO_ERROR 0
#define ERROR (-2)

#define BUFSIZE 2048%2 /¥ of butEl] X/

114 APPENDIX B

#define MAX_BUFF 1024 /* used when fingerprinting absolute sectors */

#define MAX_LINE 128
#define MAXRECURSIVE 128

$define SEARCH_PAT "SEARCH.PAT"

#define MAX_PATTERNS 256

#§define MAX_NAME 16

$define MAX_PATTERN_LENGTH 16

struct patt{
char name [MAX_NAME]; /* name of the virus */
int bytes_in_pattern; /* how many bytes are in pattern */
unsigned char pattern[MAX_PATTERN_LENGTH) ;

} patterns [MAX_PATTERNS] ;

static int max_patterns=0;

static int pattern_line=0;

struct ms_dos_buff(
char reserved(21]; /* for MS-DOS use on subsequent find_nexts */
unsigned char attr; /* attribute found */
unsigned int time;
unsigned int date;
unsigned int size_l; /* low size */
unsigned int size_h; /* high size */
char pname([13]; /* packed name */
}i

struct (
int drive;
unsigned available_clusters;
unsigned clusters_per_drive;
unsigned bytes_per_sector;
unsigned sectors_per_cluster;
} disk_space;

struct dir_list {
char *dir_path_and_name;
struct dir_list *next;

} root;

#define OVERLAP (MAX_PATTERN_LENGTH-1)
static unsigned char buff [BUFSIZE+OVERLAP];

static int patterns_discovered=0;
static int err=0;
static long int total_bytes_searched=01;

void nonrecursive_search_files():
void recursive_search_files();
void invert_pattern():

void do_path():

void complete_gsearch_buff():
void complete_search_file();
void add_dir_to_list():

void search_dos_boot_sector();
void search_master_boot_sector();

unsigned int getdosversion();
unsigned int absread();
unsigned int lowdiskread():
void stradd();

char *malloc():

‘SEARCH’ VIRUS-SPECIFIC DETECTION PROGRAM 115

main(argc,argv)
int argc;

char *argv(];

{

register int i;

if (read_patterns () ==ERROR) exit (ERROR_EXIT);
if (max_patterns) printf ("Searching for %d patterns.\n",max_patterns);
else(
printf ("You must specify patterns in SEARCH.PAT file\n");
exit (ERROR_EXIT) ;
)

if (arge>1) for(i=1;i<argc;i++)(
if(*argv([il=='-"') switch(*(argv[i]+1))}(
default:
printf (*SEARCH will search the current drive for known viruses.\n");
printf ("Virus patterns have to be specified in SEARCH.PAT.\n\n");
printf (*You can name specific groups of files to be searched in the command
line, \nfor example:\n\n");
printf ("\tSEARCH *.EXE\n");
exit (ERROR_EXIT) ;
) else(
nonrecursive_search_files(argvi(i]);
continue;
}
} else({
recursive_search_files ("*.COM")
recursive_search_files (“*.EXE")
recursive_search_files ("*.SYS")
recursive_search_files ("*.0VL")
search_dos_boot_sector () ;
search_master_boot_sector();

H
i
H
i

}
if (err) printf (*%d error(s) encountered during searching.\n",err);
printf ("%$1d bytes searched.\n", total_bytes_searched);

if (patterns_discovered) printf("%d virus pattern(s)
discovered.\n",patterns_discovered) ;
else printf ("No virus patterns discovered.\n"):;

exit (NORMAL_EXIT) ;

void nonrecursive_search_files(pattern)
char pattern(];
(

register int i,3;

struct ms_dos_buff buf;

char s [MAXRECURSIVE] ;

strcpy (s,pattern) ;

for(j=strlen(s)-1;3>=0;j--)
if(s{j)l=='\\") break;

i=getfirst (pattern, Oxffe7,&buf); /* no Dir / Vol */
for(;i==0;i=getnext()) (

strepy(s+j+1,buf.pname) ;
complete_search_file(s);

116 APPENDIX B

void recursive_search_files(pattern)

char pattern(];

(
char init_path[MAXRECURSIVE],descriptor (MAXRECURSIVE] ;
char local_path[MAXRECURSIVE] ;

strcpy (init_path, **);
strcpy (descriptor,pattern) ;
root.next=NULL;

do_path(init_path,descriptor);
while(find_dir(local_path)) do_path(local_path,descriptor);

void do_path(path,descriptor)

char path[],descriptor(];

{
register int i;
char drive_and_path [MAXRECURSIVE], local_path [MAXRECURSIVE] ;
struct ms_dos_buff buf;

strcpy (drive_and_path,path);
if (drive_and_path(strlen(drive_and_path)-1]=='\\"'}) stradd(drive_and_path, "*.*");
else stradd(drive_and_path,"*.*");

i=getfirst (drive_and_path, Oxffff, &buf);

for(;i==0;i=getnext ()){ /* collect directories */
if (buf.attr&0x10)(/* Dir */
if (!stremp (buf.pname,*.*) || !strcmp(buf.pname,”..")) continue;
strcpy(local_path,path):
if (local_path{strlen(local_path)-1]!='\\"') stradd(local_path, "\\");
stradd(local_path,buf.pname) ;
add_dir_to_list(local_path);
} /* ignore anything which is not a dir */
1

drive_and_path(strlen(drive_and_path)-3]1='\0'; /* get rid of *.* */
if (descriptor[0)=='\\"') stradd(drive_and_path,descriptor+1);
else stradd(drive_and_path,descriptor);

i=getfirst (drive_and_path, Oxffe7,&buf); /* ignore Dir/vol */

for(;i==0;i=getnext()) (
strepy(local_path,path);
if(local_pathlstrlen(local_path)-1]1!='\\"') stradd{local_path, "*);
stradd(local_path,buf.pname);
complete_search_file(local_path);

void add_dir_to_list(s)
char s(];

{
struct dir_list *nextp;

for (nextp = &root;nextp->next; nextp=nextp->next) ;
if (nextp->next=(struct dir_list *) malloc (sizeof (root))){
nextp=nextp->next;
if (nextp->dir_path_and_name=malloc ((unsigned) (strlen(s)+1))) (
strcpy (nextp->dir_path_and_name,s) ;
nextp->next=NULL;
return;
} else(
printf ("Too many directories to store in memory\n");
exit (ERROR_EXIT) ;

‘SEARCH’ VIRUS-SPECIFIC DETECTION PROGRAM 117

)

} else(
printf ("Too many directories\n");
exit (ERROR_EXIT) ;

void search_dos_boot_sector ()

{
disk_space.drive=currentdisk()+1; /* get current disk drive */
bytesfree (&disk_space); /* will get drive parameters */

printf ("Checking DOS boot sector of drive %c:\n*",dick_epace.drive+'A'-1):

if (absread (disk_space.drive-1,buff,1,0))(
printf (“Could not read DOS boot sector\n");
err++;
return;
}
complete_search_buff (0,buff,0,disk_space.bytes_per_sector-1);

void search_master_boot_sector()
(
register int i;
unsigned int drive, head,cylinder, sector;

drive=0x80; /* first hard disk */

head=0;

cylinder=0;

sector=1; /* location of the master boot sector */

printf (“Checking master boot sector of disk drive number $02x\n",drive):;

for(i=0; i<MAX_BUFF;i++) buff[i]1=0x00;

if (lowdiskread((head<<8) | (drive&0xff) ,buff, (cylinder<<8) | ((cylinder>>2)&0xc0) | (sector&0x3f))) (
printf (“Could not read master boot sector\n");
err++;
return;
)

complete_search_buff (1,buff,0,MAX_BUFF-1);

void complete_search_buff (what,buff, from_byte,to_byte)
int what;
unsigned char buff(];
int from_byte,to_byte;
{
register unsigned int j;
register int i,k;

total_bytes_searched+=to_byte-from_byte;

for (j=from_byte;j<=to_byte;j++) {
for (i=0;i<max_patterns;i++) (
if ((patterns(i).pattern) [(0]!=buff(j)) continue; /* not in */
if (patterns([i].bytes_in_pattern>j-from_byte+l) continue; /* out of boundary */

for (k=1;k<patterns(i].bytes_in_pattern;k++)
if ((patterns(i].pattern) (k] !=buff(j-k]) break;
if (k<patterns(i).bytes_in_pattern) continue; /* not in */

118 APPENDIX B

switch(what) (
case 0:
printf(*Virus '$s' found in DOS boot sector starting at the address
$04x\n",patterns(i]) .name, j~k+1);
break;
case 1:
printf (*Virus ‘%s' found in master boot sector starting at the address
%$04x\n",patterns(i).name, j-k+1);
break;
}
patterns_discovered++;

void complete_search_file(file)
char file(];

register int k,i;

static int j, fd,bytes_read,bytes_in_pattern;
static int tot_bytes;

static unsigned char *pattern;

static long int byte_number;

printf ("Checking $s\n*,file);

if ((fd=open(file, O_RDONLY)) ==EOF) {
printf (*Could not open file %s\n",file);
err++;
return;

}

for (byte_number=01;;) {
switch(bytes_read=read (fd,buf f+OVERLAP, BUFSIZE)) (

case O: L= BOF¥
break;
case -1:
printf ("Could not read file $s\n*,file);
err++;
return;
default:
tot_bytes=bytes_read+OVERLAP;
for (k=OVERLAP; k<tot_bytes; k++) {
for(i=0;i<max_patterns;i++) (

pattern=patterns(i].pattern;

if (pattern([0]!=buff(k]) continue;
if (pattern(1] !=buff (k-1]) continue;

bytes_in_pattern=patterns([i].bytes_in_pattern;

for(j=2;j<bytes_in_pattern;j++)
if (pattern(j]!=buff(k-j)) break; /* not there */
if (j<bytes_in_pattern) continue; /* not there */

if (byte_number==01 && k-OVERLAP+1<bytes_in_pattern) continue;

printf (“Virus '$s' found in file %s starting at the address
$061x\n",patterns (i) .name,file,byte_number+k-OVERLAP-bytes_in_pattern+1);
patterns_discovered++;
)
}
byte_number+=bytes_read;
total_bytes_searched+=bytes_read;
for (i=0; i<OVERLAP;i++) buff [i]=buff [i+BUFSIZE]; /* copy down */

‘SEARCH’ VIRUS-SPECIFIC DETECTION PROGRAM 119

continue;
}
break;
}
close(fd);

int find_dir(s) /* returns the directory name in & */
char s(];
(

struct dir_list *nextp, *nextpp;

if (root.next == NULL) return FALSE;

for (nextp = &root;nextp->next;nextp=nextp->next);
strepy (s, nextp->dir_path_and_name) ;

/* free space now */
free(nextp->dir_path_and_name);
for (nextpp = &root; (nextpp->next) ! =nextp; nextpp=nextpp->next) ;
free((char *) (nextpp->next));

nextpp->next = NULL;
return TRUE;

int read_patterns()
(

FILE *infp;

char s [MAX_LINE];

if ((infp=fopen (SEARCH_PAT, "r"))==NULL) return NO_ERROR;

for (;max_patterns<MAX_PATTERNS;) {
switch(fmaxgets (infp,s,MAX_LINE)) (
case EOF:
fclose(infp) ;
return NO_ERROR;
case ERROR:
printf (*Pattern string too long:\n%$s\n",s);
return ERROR;
)
pattern_line++; /* read from the file */
if (contains_no_pattern(s)) continue;
if (convert_to_pattern(&patterns[max_patterns++],s)==ERROR) return ERROR;
}

printf (“Too many patterns in file %$s\n", SEARCH_PAT) ;
return ERROR;

int convert_to_pattern(pattp,s)

struct patt *pattp;

char s[];

{ /* this will convert the pattern in char s[] into the struct *pattp */

register int i;
static int noname=0;

1£(s[0]=='\0") (
printf("Illegal zero pattern in line %d\n",pattern_line);

120 APPENDIX B

return ERROR;
}

1f(s[0)==' ' || s[0]=='\t"') (/* pattern has no name */
sprintf (pattp->name, "Noname %d",noname++) ;
i=0;

) else(/* get name of the pattern */
for(i=0;i<MAX_NAME && sli) && s[i)'=" ' && sti}!='\t';i++)
pattp->name{i]l=(s(i)=="_'2" ':s(i]};
if (i==MAX_NAME) (
printf ("Name too long in '$s'\n",s});
return ERROR;
}
pattp->name(i]='\0"';
}

if (convert_string_to_pattern(pattp,s+i)==ERROR) return ERROR;
return NO_ERROR;

int convert_string_to_pattern(pattp,s)
sStruct patt *pattp;
char s[};
{
register int i,3j,c,sum;

pattp->bytes_in_pattern=0;

for (i=j=sum=0; ;) {

for(;s[i] && (s[l)==' ' || s[i)=='\t*);i++); /* £fnb */
1€ (s Lil=2="N0" | | &[i1==14; " }(
if (3==1)1(

pattp->pattern[pattp->bytes_in_pattern++]=sum;
}
if (pattp->bytes_in_pattern<2) (
printf("Illegal pattern in input line %d, '%s';\nmust have at least 2
bytes.\n",pattern_line,s);
return ERROR;
]
invert_pattern(pattp->bytes_in_pattern,pattp->pattern);
return NO_ERROR;
}
if ((c=ishexdigit(s[i]))<0) {
printf ("Spurious character %c in '#s‘\n",s(i],s);
return ERROR;
}
if (pattp->bytes_in_pattern>MAX_PATTERN_LENGTH) (
printf ("Pattern longer than %d bytes in '%s'\n",MAX_PATTERN_LENGTH,s);
return ERROR;
}

switch{j++){

case 0: /% Eirst digit */
sum=c;
break:;

case 1:
sum=16*sum+c;
pattp->pattern({pattp->bytes_in_pattern++}=sum;
4=0;
break;

)

iv4;

‘SEARCH’ VIRUS-SPECIFIC DETECTION PROGRAM

void invert_pattern(n,s)
int n;
unsigned char s|[]);
(
register int i,j,temp;

for(i=0,j=n~1;i<n/2;i++,j--)(
temp=s(i];
slil=s(]);
s(jl=temp;

int ishexdigit (¢)

int ¢

(;
switch(e) {

case '0': return 0;
case 'l': return 1;
case '2': return 2;
case '3': return 3;
case '4': return 4;
case '5': return 5;
case '6': return 6;
case '7': return 7;
case '8': return 8;
case '9': return 9;
case 'a': case 'A': return 10;
case 'b': case 'B': return 11;
case 'c': case 'C': return 12;
case 'd': case 'D': return 13;
case 'e': case 'E': return 14;
case ‘f': case 'F': return 15;

default: return (-1);
}

int fmaxgets(infp,s,max)
FILE *infp;
char si{];
int max;
{
register int c,i;

for (i=0;c=agetc (infp);) switch(c) {

case '\n':

s(il='\0";

return i;
case EOF:

s[i]="\0";

return i==0?EOF:1i;
default:

s[i++l=c;

if (i<max) break;
s[max-1)='\0";
return ERROR;

contains_no_pattern(s)
char s[];
{

register int i;

if(s(0)=='; ') return TRUE;

121

122 APPENDIX B

for(i=0;s(i];i++) switch(s([i}])(
case
case '\t':
continue;
default:
return FALSE;
}
return TRUE;

void stradd(sl,s2)

char *sl1,*s2;

{
for(;*sl;) sl++;
for(;*s2;) *sl++ = *S2++;
*gin\O"';

B.4 SEARCH CODE IN ASSEMBLY LANGUAGE

The assembly language code for SEARCH should be entered into one file called
SEARCHAS.ASM. The FINGER program in Appendix C can be used to verify the
correctness of the code. The fingerprint for SEARCHAS.ASM is CE60DFSF (remember
to run FINGER with the -N option):

FINGER -N SEARCHAS.ASM
File SEARCHAS.ASM:

codeseqg segment word public

dataseg segment byte public

assume cs:codeseg,ds:dataseg, es:dataseg, ss:dataseg
dataseg ends

;jfunctions for small model aztec c

public getfirst_
getfirst_: mov bx,sp
mov dx, 6 [bx] ; dma block address

;i set dma address

mov ah, 1AH
int 21H
; get first file
mov dx, 2 (bx]) ; pathname pointer
mov cx,4[bx] ; search attributes
mov ah, 4EH
int 21H
je getfer
mov ax,0
getfer: ret
public getnext _
getnext_: mov ah, 4FH ; Function 4FH

int 21H

getner:

bytesfree_:

absread_:

; read now

rdfer:

lowdiskread_:

; read now

rdler:

currentdisk_:

codeseg ends

‘SEARCH’ VIRUS-SPECIFIC DETECTION PROGRAM

jc getner
mov ax,0
ret

public bytesfree_

mov bx,sp
push bp

mov bp, 2 [bx]
mov dx, [bp]
mov dh,0

mov ah, 36H
int 21H

mov 2[bp) ,bx
mov 4[bp],dx
mov 6 [bp} ,cx
mov 8 (bpl,ax
pop bp

ret

public absread_

mov bx, sp
push bp

mov bp,bx
mov ax,2[bp]
mov bx, 4 [bp]
mov cx, 6(bp)
mov dx, 8(bp]
int 25H

pop bx

je rdfer
mov ax, 0
pop bp

ret

public lowdiskread_

mov bx,sp
push bp

mov bp,bx
mov dx, 2[bp]
mov bx, 4[bp]
mov cx, 6[bp]
mov ax,0201H
int 13H

jec rdler
mov ax,0
pop bp

ret

public currentdisk_

mov ah, 19H
int 21H
and ax, OFFH
ret

end

~

i

pars address

drive

Function 36H
available clusters
clusters per drive

bytes per sector
sectors per cluster

a copy

drive

dma block address
number of sectors
first sector number

pop flags

a copy

head + drive

dma block address
cylinder + sector
service 2, 1 sector only

result in al

123

C

‘FINGER’: VIRUS NON-SPECIFIC
DETECTION PROGRAM

Very well, | can wait.

Arnold Schoenberg (when told that his violin concerto required a soloist with six
fingers)

This appendix contains the source code for a program called FINGER which produces
cryptographic fingerprints for a file or group of files.

By fingerprinting the original executable and then subsequently verifying that the
fingerprint has not changed, one can detect a virus attack on the executable.

Although FINGER is quite usable as shown here, an average ‘C’ programmer can easily
modify it to store the fingerprints into a file and check them automatically. The program
could be improved further by giving it a facility to fingerprint the DOS and master boot
sectors in order to discover boot sector viruses. Likewise, the speed of the DES (Data
Encryption Standard) code is not very high and offers plenty of scope for optimisation.

Another function of FINGER is to verify the correctness of the contents of source codes.

C.1 DESCRIPTION OF FINGER

FINGER is a program which produces cryptographic fingerprints for one file or a group
of files. The fingerprint is produced using DES (Data Encryption Standard) in the mode
described in ANSI standard X9.9.

126 APPENDIX C

FINGER can be used to produce fingerprints of binary files (such as COM and EXE
files) or text files. When fingerprinting binary files, it is important to fingerprint every
single byte, but when fingerprinting text files, certain (non-printable) characters can be
skipped, without the meaning of the text changed in any way. For example, when entering
the source code in C, one can type the TAB character or 8 blanks, without generally
changing the meaning of the code. The only exceptions are quoted strings, where it is
important to enter the blanks verbatim. When FINGER is fingerprinting files in the text
mode, the -N command line argument can be specified to make it ignore any non-
printable or ‘white space’ characters.

FINGER fingerprints files in binary mode by default. For example
FINGER *.EXE
will produce fingerprints for all EXE files in the current directory, for example

Fingerprint of SEARCH.EXE is f£44b8704
Fingerprint of FINGER.EXE is dfbe5335

To produce fingerprints of the files used to make FINGER, type
FINGER -N FINGER.C DES.C
and you should get the following output:

Fingerprint of FINGER.C ig f£08f38fe
Fingerprint of DES.C is leecc40f

If you do not get that, the files with incorrect fingerprints have not been entered
correctly. Note that both fingerprints will be wrong if the tables in DES.C have been
entered incorrectly, even if FINGER.C is correct.

C.2 COMPILING ‘FINGER’

The majority of FINGER’s code is written in ‘C’, but two routines call DOS and are
written in assembly language. The ‘C’ code can be compiled by most compilers, but it
has been tested only using Aztec C. The assembly language routines, which are the same
as for SEARCH, assume that they will be called from Aztec C using the small memory
model. If you are using a different compiler or a different memory model, make sure that
you use the correct calling procedure and preserve any registers required by the compiler.
Some compiler libraries contain DOS calling routines directly from C, in which case all
of FINGER can be written in C.

Some compilers (like Aztec) provide a ‘make’ facility similar to that of Unix. This
simplifies the preparation of any software. The makefile for FINGER is listed below:

des.o: des.c
searchas.o: searchas.asm
finger.o: finger.c

‘FINGER’ VIRUS NON-SPECIFIC DETECTION PROGRAM 127

FINGER=finger.o des.o searchas.o
finger: finger.exe

@echo finger made

finger.exe: $ (FINGER)

In $(FINGER) -lc

To compile FINGER, type
make finger

and the computer will do the rest.

C.3 FINGER CODEIN ‘/C’

The C code for FINGER is divided into two files called FINGER.C and DES.C. The file
FINGER.C contains routines for file scanning, while the file DES.C contains an
implementation of the Data Encryption Standard (DES), as defined in ANSI standard
X3.92-1981. This is used for producing cryptographic checksums as defined in ANSI
standard X9.9. Note that X3.92 does not define the way of numbering of bits in an 8-byte
block passed to DES for encryption. This implementation uses the convention that the
least significant bit in the first byte is bit 1 referred to by DES, most significant bit in the
first byte is bit 8 referred to by DES, least significant bit in the second byte is bit 9
referred to by DES etc.

FINGER also uses some code in assembly language, which is the same as the code used

for SEARCH and is contained in the file SEARCH.ASM. You only need to enter that file
once.

File FINGER.C:

/l'
This program can be used to fingerprint any file
*/

$¢include "libc.h*

struct ms_dos_buff (
char reserved(21]; /* for MS-DOS use on subsequent find_nexts */
unsigned char attr; /* attribute found */
unsigned int time;
unsigned int date;
unsigned int size_l; /* low size */
unsigned int size_h; /* high size */
char pname([13]; /* packed name */
};

$define SEARCH_MASK 0x07 /* DOS will return only files, not directories */
#¢define EOF (-1)

#¢define PARTEOF (-2)

$define NOTEOF (0)

#define FALSE (0)
#define TRUE (!FALSE)

128 APPENDIX C

void fingerprint(),des_init(),des_encrypt(),explain_command_line_arguments();
static int only_printable=FALSE;

main(argc,argv)
int argc;
char *argvl(}];
{
register int i,3;
static char key(8]={
0x01, 0x23,0x45, 0x67, 0x89, 0xab, Oxcd, Oxef
}; /* this should be a uniquely chosen key when calculating your fingerprints */
struct ms_dos_buff fcb;

des_init (key) :

if(arge>1) for(i=1;i<argcii++){
if(*argv([i)=="-’) switch(*(argv([i]+1)}{
case 'N’:
case ‘n’:
only_printable=TRUE;
continue;
default:
explain_command_line_arguments () ;
break;
}
)
if (argc>1) for(i=1;i<argc;i++) (
if(*argv([i]!="-")(
switch(j=getfirst (argv[i], SEARCH_MASK,&fcb)) {
case 2:
case 18:
printf("No file found corresponding to $s\n",argviil);
continue;
)

for(;j==0;j=getnext ()) fingerprint (fcb.pname) ;
continue;

vold explain_command_line_arguments ()

¢
printf ("Command syntax:\n\nFINGER [-n] <filel> <file2> ... <filen>\n\n");
printf ("-n causes only printable characters to be fingerprinted.\n");

exit (-1):

void fingerprint(file)

char filel[);

{
register int i;
unsigned char buf([8),out(8];
FILE *infp;

if((infp=fopen(file,"r"))==NULL) {
printf("Cannot open %s\n",file);
return;

)

printf ("Fingerprint of $s is *,file);

for(i=0;1<8;i++) out[1]=0x00; /* initialise forward buffer */

for(;;) switch(get_bufferfull (infp,buf)){

‘FINGER’ VIRUS NON-SPECIFIC DETECTION PROGRAM

case EOF:
fclose({infp);
printf ("$02x%02x%02x%02x\n" ,out {0} ,out[1],0ut [2],0ut(3]);
return;

case PARTEOF:
for(i=0;1i<8;i++) buf[i]l=out (i}*buf[i];
des_encrypt (buf) ;
for(i=0;i<8;i++) out[il=bufli}];
fclose(infp);
printf ("$02x%02x%02x%02x\n" ,out (0] ,out(1],out(2],0ut[3]);
return;

case NOTEOF:
for(i=0;i<8;i++) buf(i)=out(i]*buf(i];
des_encrypt (buf);
for(i=0;1i<8;i++) out[i)=buf(i];

int get_bufferfull (infp,buf)
FILE *infp;
unsigned char buf(];
(
register int i,c;

for(i=0;i<8;i++) switch(c=sp_getc(infp)) (
case EOF:
if (i==0) return EOF; /* file length%8 == 0 */
for(;i<8;i++) buf(i}=0x00;
return PARTEOF; /* file length%8 != 0 */
default:
buf(i)=c;
break;
)
return NOTEOF;

int sp_getc (infp)
FILE *infp;
(

register int c;

if(only_printable) {
for (;should_skip(c=getc (infp));:);
return c;

)} else return getc(infp);

int should_skip(c)
int ¢;
(
return ! (c==EOF || c>' *};
)

129

130 APPENDIX C

File DES.C:

/*
This is the implementation of the Data Encryption Standard
o

static int keyout (17] (48];

void des_init (),des_encrypt (),des_decrypt () ;
static void 1shift(),cypher();

void des_init (key) /* Calculation of Keys */
unsigned char *key:
{
unsigned char c[28],d[28];
static int pcl[56]=(
57.,49,41,33,25,17, 9, 1,58,50,42,34,26,18,
10, 2,59,51,43,35,27,19.11, 3,60,52,44,36;
63,55,47,39,31,23,15, 7,62,54,46,38,30,22,
14, 6,61,53,45,37,29,21,13, 5,28,20,12, 4
)i
static int pc2([48]=(
14,17,11,24, 1, 5, 3,28,15, 6,21,10,
23,19,12, 4,26, 8,16, 7,27,20,13, 2,
41,52,31,37,47,55,30,40,51,45,33,48,
44,49,39,56,34,53,46,42,50,36,29,32
}i
static int nls[17])=(
0,1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1
i
static int cd([56],keyb([64];
static int cnt,n=0;
register int i,j;

for(i=0;1i<8;i++) /* Read in Key */
for (3=0;3<8;3++) keyb[n++]=(key[i]>>]&0x01);

for(i=0;i<56;i++) /* Permuted Choice 1 */
cd[i)l=keyb(pcl([i]-1]);
for(i=0:;1<28;i+4)(
clil=cdlil;
dli)=cd[i+28];
)
for(cnt=1;cnt<=16;cnt++) {
for(i=0;i<nls[cnt);i++)(/* Left Shifts */
1shift(c);
1shift(d);
}
for(i=0;1<28;i+4) (
cd(il=c(i];
cd[i+28])=d[i];
}
for(i=0;1i<48;1i+4+) /* Permuted Choice 2 */
keyout [cnt] [i]=cd(pc2(i]~-1];

static void 1shift (shft) /* Left Shift Function */
unsigned char shft[];
{

register int temp,i;

temp=shft [0];
for(i=0;i<27;i++) shft[i)=shft[i+1];
shft [27]=temp;

‘FINGER’ VIRUS NON-SPECIFIC DETECTION PROGRAM

static void cypher(r,cnt, fout)
int *r,*fout;
int cnt;
{
static int expand(48],b(8](6],sout(8],pin(48];
register int i,j;
static int n,row,col,scnt;
static int p(32]1=(
16, 7,20,21,29,12,28,17, 1,15,23,26, 5,18,3
2, 8,24,14,32,27,.3, 9,19,13,30;, 6;22;11,
}i
static int e[48]=(
32,1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,
8, 9,10,11,12,13,12,13,14,15,16:17.,
16,17,18,19,20,21,20,21,22,23,24,25;
24,25,26,27,28,29,28,29,30,31,32, 1
)i
static int s(8] [64]=(
{
14, 4,13;°1,.2,15;11, 8, 3,10, 6,12, S5, 9,
0,15, 7, 4,14, 2,13, 1,10, 6,12,11, 9, S,
4, 1,14, 8,13, 6, 2,11,15,12, 9, 7, 3,10,
15,125 8725 45 95 13 Ty 5;115:3;14,10; 05

15, 1, 8,14, 6,11, 3, 4, 9, 7, 2,13,12, O,
3,13, 4, 7,15, 2, 8,14,12, 0, 1,10, 6, 9,1
0,14, 7,11,10, 4,13, 1, 5, 8,12, 6, 9, 3,

13, 8,10, 1, 3,15, 4, 2,11, 6, 7.12, 0, 5,1

10, 0, 9,14, 6, 3,15, 5, 1,13,12, 7,11, 4,
13, 7, 0, 9. 3, 4, 6,10, 2, 8, 5,14,12,11,1
13, 6, 4, 9, 8,15, 3, 0,11, 1, 2,12, 5,10,1
1,10,13, 0, 6, 9, 8, 7, 4,15,14, 3,11, 5,

7,13,14, 3, 0, 6, 9,10, 1, 2, B, 5,11,12,
13, 8,11, 5, 6,15, 0, 3, &, 7, 2,12, 1,10,1
10, 6, 9, 0,12,11, 7,13,15, 1, 3,14, 5, 2,
3,15, 0, 6,10, 1,13, 8,9, ¢, 5,11,12, 7,

2,12, 4. 1, 7;10,11, 6, B, 5, 3,15,13; 0,1
14,11, 2,12, 4, 7,13, 1, S5, 0,15,10, 3, 9,

4, 2, 1,11,10,13, 7, 8,15, 9,12, 5, 6, 3,

11, 8,12, 7, 1,14, 2,13, 6,15, O, 9,10, 4,

Y

12, 1,10,15, 9, 2, 6, 8, 0,13, 3, 4,14, 7,
10,15, 4, 2, 7,12, 9, 5, 6, 1,13,14, 0,11,
9,14,15, S5, 2, 8,12, 3, 7. 0, 4,10, 1,13,1
4, 3, 2,12, 9, 5,15,10,11,14, 1, 7, 6, O,

4,11, 2,14,15, 0, 8,13, 3,12, 9, 7, 5,10,
13, o,11, 7, 4, 9, 1,10,14, 3, 5,12, 2,15,
1, 4,11,13,12, 3, 7,14,10,15, 6, 8, 0, 5,
6,11,13, 8, 1, 4,10, 7, 9, 5, 0,15,14, 2,

13, 2, 8, 4, 6,15,11, 1,10, 9, 3,14, 5, 0,1
1,15,13, 8,10, 3, 7, 4,12, 5, 6,11, 0,14,
7,11, 4, 1, 9,12,14, 2, 0, 6,10,13,15, 3,
2, 1,14, 7, 4,10, 8,13,15,12, 9, 0, 3, S,

1,10,
4,25

5,10,
1, 5,
2,15,
4, 9

2, 8,
5I 1l
4, 7.
2,12

4,15,
4, 9,
8, 4,
2,14

4,9,
8, 6,
0,14,
i3

5,11,
3, 8,
1, 6,
8,13

6, 1,
8, 6,
9, 2,
3,12

2, 7,
9, 2,
5, 8,
6,11

131

132 APPENDIX C

for(i=0;i<48;i++) expand(i]=r(e[i]-1]; /* Expansion Function */
for (i=n=0;i<8;i++){ /* XOR Function */

for(j=0;j<6;j++,n++) b[i] [jl=expand([n])“*keyout [cnt] [n];
}

/* Selection Functions */

for (scnt=n=0;scnt<8;scnt++) (
row=(b(scnt] [0])<<1)+b[scnt] (5] ;
col=(b[scnt) [1]<<3) + (b[scnt] [2]<<2)+(b[scnt] [3]1<<1)+blscnt](4];
sout [scnt]=s(scnt] [(row<<4)+col];
for{i=3;i»=0;i--){
pin[n]=sout [scnt]>>i;
sout [scnt]=sout [scnt] - (pin[n++]<<i);
}
}
for(i=0;1i<32;i++) fout(i)=pin(p[i]-1]; /* Permutation Function */
)

static int p[64]=(
58,50,42,34,26,18,10, 2,60,52,44,36,28,20,12, 4,
62,54,46,38,30,22,14, 6,64,56,48,40,32,24,16, 8,
57,49,41:33,25,17; 9,1,59,51;43;35;27,19,11;:3;
61,53,45,37,29,21,13, 5,63,55,47,39,31,23,15, 7
Yi
static int invp[64)=(
40, 8,48,16,56,24,64,32,39, 7,47,15,55,23,63,31,
38, 6,46,14,54,22,62,30,37, 5,45,13,53,21,61,29,
36, 4,44,12,52,20,60,28,35, 3,43,11,51,19,59,27,
34, 2,42,10,50,18,58,26,33, 1,41, 9,49,17,57,25
2

void des_encrypt (input)
unsigned char *input;
{
static unsigned char out[64);
static int inputb(64],1r(64),1(32],r[32];
static int fn([32);
static int cnt,n;
register int i,3;

for(i=n=0;i<8;i++)
for(j=0;j<B8;j++) inputbin++]=(input [i]>>j&0x01);

for(i=0;i<64;i++){ /* Initial Permutation */
1r(i)=inputb(pli)-1);
if (i<32) 1[1i)=1x({i];
else r(i1-32)=1r(i];
}
for(cnt=1;cnt<=16;cnt++){ /* Main Encryption Loop */
cypher(r,cnt,fn); /* Execute Cypher Function */
for(i=0;1i<32;1i+4+)(
j=riil;
r(i]=1{i)~fn(i];
1i)=3;
}
}
for(i=0;i<32;i++){
1r[i)=r(il;
1r(i+321=1(1]);
}
for(i=0;i<64;1i++) out(i)=1r[invp[i]-1]; /* Inverse Initial Permutation */

for(i=1;i<=8;1i++)
for(j=1;j<=8;j++) input[i-1]=(input[i-1)<<1) lout[i*8-j];

‘FINGER’ VIRUS NON-SPECIFIC DETECTION PROGRAM 133

void des_decrypt (input)
/* this function is not used by FINGER, but is reproduced for completeness */
unsigned char *input;
%
static unsigned char out[64];
static int inputb([64],1r([64),1(32],r([32];
static int fn(32];
static int cnt,rtemp,n:
register int i,j;

for(i=n=0;i<8;i++)
for(j=0;3<8;j++) inputb(n++]}=(input[i]}>>j&0x01);

for(i=0;1<64;i++) (/* Initial Permutation */
lr[il=inputb[p[i]-1);
if (i<32) 1[i)=1rlil:
else r[i-32]=1r(i]);
}
for(cnt=16;cnt>0;cnt--) { /* Main Encryption Loop */
cypher(r,cnt,fn); /* Execute Cypher Function */
for(i=0;i<32;1i++) (
rtemp=r{i);
if(1(i)==1 && fn{il==1) r[i])=0;
else r(i)=(1(i) | I1fn[i]);
l{i]l=rtemp;
)
}
for (i=0;1<32;i++)(
lr(il=r(i);
1r{i+32]1=1(i};
}
for(i=0;1i<64;i++) out(i)=1r[invp[i]l-1]; /* Inverse Initial Permutation */

for(i=1;i<=8;1i++)
for(j=1;3<=8;3j++) input[i-1]=(input(i-1]<<1) lout{i*8-j];

D

ANTI-VIRUS SOFTWARE
MANUFACTURERS

The great Unwashed

Henry Peter Brougham (1778-1868)

NOTES ON TELEPHONE AND FAX NUMBERS

All numbers are shown with the country code preceded by a plus sign (+), followed by the
number. If dialling a number from the same country, omit the country code and prefix the
area code with 0 (in most countries). For example, to dial the UK number +44 235 550933
from the UK, dial 0235 559933.

When dialling internationally, prefix each number with the international code. For
example, to dial the Swiss number+41 1 234 5678 fromthe UK, dial 010 41 1 234 5678.
To dial the above number from France, dial 19 41 1 234 5678.

136 APPENDIX D

ASP (Advanced Software Protection), PO Box 81270, Pittsburgh, PA 15217, USA.
Tel +1 412 422 4134, Fax +1 412 422 4135

Bangkok Security Associates, PO Box 5-121, Bangkok 10500, Thailand.
Tel +66 2 251 2574, Fax +66 2 253 6868

Brightwork Development International, 766 Shrewsbury Avenue, Bldg 2, Tinton
Falls, New Jersey 07724, USA. Tel +1 908 530 0440, Fax +1 908 530 0622

BRM Technologies Ltd., 67 Dereh Hahoresh, Ranot, Jerusalem, Israel.
Tel +972 2 861092, Fax +972 2 867503

Carmel Software Engineering, Hamachshev Ltd Hahistradrut Av 20, Haifa, Israel
POB 25055.Tel +972 4 416976, Fax +972 4 416979

Central Point Software, 15220 NW Greenbrier Parkway, Suite 200, Beaverton,
Oregon 97006, USA. Tel +1 503 690 8090, Fax +1 503 690 8083

Certus, 6896 W Snowville Road, Brecksville, Ohio 44141, USA.
Tel +1 216 546 1500, Fax +1 216 546 1450

Clurwin Pty. Ltd., 73 Kensington Road, South Yarra, Victoria 3141, Australia.
Tel +61 3 827 8002, Fax +61 3 826 2514

Commerypt Inc., 10000 Virginia Manor Road, Suite 300, Beltsville, MA 20705,
USA.Tel +1 301 470 2500, Fax +1 301 470 2507

ComNetco, 2475 Lamington Road, Bedminster, NJ 07921, USA.
Tel +1 201 543 4060, Fax +1 201 781 7935

Cybec Pty. Ltd., PO Box 82, Hampton, Victoria 3188, Australia. Tel +61 3 521 0655,
Fax +61 3 521 0727

Cybersoft, 210 West 12th Avenue, Conshohocken, PA 19428-1464, USA.
Tel +1 215 825 4748, Fax +1 215 825 6785

(DDI) Digital Despatch Inc., 55 Lakeland Shores, Lakeland, MN 55043, USA.
Tel +1 612 436 1000, Fax +1 612 436 2085

EliaShim Microcomputers Ltd., PO Box 8691, Haifa 31086, Israel.
Tel +972 4 516111, Fax +972 4 528613

Enigma Logic Inc., 2151 Salvio Street, Ste. 301, Concord, CA 94520, USA.
Tel +1 510 827 5707, Fax +1 510 827 2593

ESaSS BV, PO Box 1380, 6501 BJ Nijmegen, The Netherlands. Tel +31 80 787881
Fax +31 80 789186

Fifth Generation Systems Inc., 11200 Industriplex Blvd., Baton Rouge,
LA 708094112, USA. Tel +1 504 291 7221, Fax +1 504 291 3268

Frisk Software International, PO Box 7180, 127 Reykjavik, Iceland.
Tel 4354 1 694749, Fax +354 1 128801

ANTI-VIRUS SOFTWARE MANUFACTURERS AND DISTRIBUTORS 137

Hilgraeve Inc., Genesis Centre, 111 Conant Avenue, Suite A, Monroe, Michgan
48161, USA.Tel +1 313 243 0576, Fax +1 313 243 0645

IBM, TJ Watson Research Centre, PO Box 218, Route 134, Yorktown Heights,
NY 10598, USA.Tel +1 914 945 3000, Fax +1 914 945 2141

Intel Corp., 5200 N E Elam Young Parkway, Hillsborough, OR 97124, USA.
Tel +1 503 629 7354, Fax +1 503 629 7227

IP Technologies, 3710 South Susan, Suite 100, Santa Ana, CA 92704, USA.
Tel +1 714 549 4284, Fax +1 714 549 5079

Iris Software & Computers, 6 Hamavo Street, Givataim 53303, Isracl.
Tel +972 3 571 5319, Fax +972 3 318731

Jerry Fitzgerald and Associates, 506 Barkentine Lane Redwood City,
CA 94065-1128, USA.Tel +1 415 591 5676, Fax +1 415 593 9316

Leprechaun Software Pty. Ltd., PO Box 184, Holland Park, Queensland 4121,
Australia. Tel +61 7 343 8866, Fax +61 7 343 8733

McAfee Associates, 4423 Cheeney St., Santa Clara, CA 95054, USA.
Tel +1 408 988 3832, Fax +1 408 988 9727

Microcom, Software Division, PO Box 51489, Durham, NC 27717, USA.
Tel +1 919 490 1277, Fax +1 919 419 8312

Orion Microsystems, PO Box 128, Pierrefords, Quebec HOH 4K8, Canada.
Tel +1 514 626 9234

Panda Systems, 801 Wilson Road, Wilmington, DE 19803, USA.
Tel +1 302 764 4722, Fax +1 302 764 6186

PC Enhancements Ltd., The Acorn Suite, Greenleaf House, Darkes Lane, Potters
Bar, Hertfordshire EN6 1AE, UK. Tel +44 707 59016, Fax +44 707 55523

PC Guardian, 118 Alto Street, San Rafael, CA 94901, USA. Tel +1 415 459 0190,
Fax +1 415 459 1162

PC Security Ltd., The Old Courthouse, Trinity Road, Marlow, SL7 3AN, UK.
Tel +44 628 890390, Fax +44 628 890116

Ports of Trade, 6 Alcis Street, Newlands, Cape Town 7700, South Africa.
Tel +27 21 686 8215, Fax +27 21 685 1807

Prime Factors Inc., 1832 Orchard Street, Eugene, OR 97403, USA.
Tel +1 503 345 4334, Fax +1 503 345 6818

Quaid Software Ltd., 45 Charles Street East, 3rd Floor, Toronto, Ontario M4Y 1S2,
Canada. Tel +1 416 961 8243, Fax +1 519 942 3532

138 APPENDIX D

Remarkable Products, 245 Pegasus Avenue, Northvale, NJ 07647, USA.
Tel +1 201 784 0900, Fax +1 201 767 7463

RG Software Systems, 6900 E. Camelback, Suite 630, Scottsdale, AZ 85251, USA.
Tel +1 602 423 8000, Fax +1 602 423 8389

RSA Data Security Inc., 10 Twin Dolphin Drive, Redwood City, CA 94065, USA.
Tel +1 415 595 8782, Fax +1 415 595 1873

Safetynet Inc., 14 Tower Drive, East Hanover, NJ 07936-3220, USA.
Tel +1 908 851 0188, Fax +1 908 276 6575

SA Software, 28 Denbigh Road, London, W13 8NH, UK. Tel +44 81 998 2351,
Fax +44 81 998 7507

S&S International Ltd., Berkley Court, Mill Street, Berkhampstead, Hertfordshire
HP4 2HB, UK. Tel +44 442 877877, Fax +44 442 877882

Software Concepts Design, PO Box 908, Margaretville, NY 12455, USA.
Tel +1 607 326 4423, Fax +1 607 326 4424

Software Services, Niederwiesstrasse 8, CH-5417 Untersiggenthal, Switzerland.
Tel +41 56 281116, Fax +41 56 281116

Sophco Inc., PO Box 7430, Boulder, CO 80306, USA.Tel +1 303 530 7759,
Fax +1 303 530 7745

Sophos Ltd., 21 The Quadrant, Abingdon Science Park, Abingdon, Oxfordshire,
0X14 3YS, UK. Tel +44 235 559933, Fax +44 235 559935

Symantec Corporation, 10201 Torre Avenue, Cupertino, CA 95014-2132, USA.
Tel +1 408 253 9600, Fax +1 310 829 0247

Total Control, Unit 3, Station Yard, Hungerford, RG17 0DY, UK. Tel +44 488 685299,
Fax +44 488 683288

Trend Micro Devices Inc., 2421 W. 205th Street, Suite D-100, Torrance, CA 90501,
USA.Tel +1 310 782 8190, Fax +1 310 328 5892

V Communications Inc., 4320 Stevens Creek Blvd, Suite 275, San Jose, CA 95129,
USA. Tel +1 408 296 4224, Fax +1 408 296 4441

Visionsoft, Unit M11, Enterprise 5, Five Lane Ends, Idle, Bradford, West Yorkshire
BD10 8BW, UK. Tel +44 274 610503, Fax +44 274 616010

Worldwide Software Inc., 20 Exchange Place, 27th Floor, New York, NY 10005,
USA. Tel +1 212 422 4100, Fax +1 212 422 1953

E

GLOSSARY OF TERMS

Access Control:

Active Attack:

Algorithm:
ANSI:

ASCII:

Asymmetric Encryption:

Audit Log:
Audit Trail:

He said true things, but called them by wrong names.

Rupert Browning, ‘Bishop Blougram’'s Apology’

The process of ensuring that systems are only accessed
by those authorised to do so, and only in a manner for
which they have been authorised.

An attack on a system which either injects false
information into the system, or corrupts information
already present on the system. See also passive attack.
An algorithm is a set of rules which specifies a method
of carrying out a task (eg. an encryption algorithm).
American National Standards Institute is the
organisation which issues standards in the US.
American Standard Code for Information Interchange is
the standard system for representing letters and symbols.
Each letter or symbol is assigned a unique number
between 0 and 127.

Encryption which permits the key used for encryption to
be different for the key used for decryption. RSA is the
most widely used asymmetric encryption algorithm.

The same as audit trail.

Audit trails provide a date and time stamped record of
the usage of a system. They record what a computer was

140

Authentication:

Authorisation:
Availability:
BackDoor:
Background Operation:
BacKup:

Bad Sectors:

BAT:

BBS:

Bell-LaPadula Model:

Biba Model:

Binary:

APPENDIX E

used for, allowing a security manager to monitor the
actions of every user, and can help in establishing an
alleged fraud or security violation.

The process of assuring that data has come from its
claimed source, or of corroborating the claimed identity
of a communicating party.

Determining whether a subject is trusted for a given
purpose.

The prevention of unauthorised withholding of
information or resources.

An undocumented means of bypassing the normal access
control procedures of a computer system.

The name applied to a program running in a multitasking
environment over which the user has no direct control.

A copy of computer data that is used to recreate data that
has been lost, mislaid, corrupted or erased.

During formatting of MS-DOS disks, all sectors are
checked for usability. Unusable sectors are labelled as
bad and are not used by DOS. The remaining areas can
then still be used. Viruses sometimes label good sectors
as bad to store their code outside the reach of the users
and the operating system.

The extension given to ‘batch’ file names in MS-DOS. A
batch file contains a series of MS-DOS commands,
which can be executed by using the name of the file as a
command. AUTOEXEC.BAT is a special batch file
which is executed whenever a PC is switched on, and
can be used to configure the PC to a user’s requirements.
Bulletin Board System; a computer with one or more
modems attached which can be used remotely via the
PSTN. Most bulletin boards act as repositories for
downloadable software, and have electronic mail
systems.

An access security model couched in terms of subjects
and objects. Information shall not flow to a lesser or
non-comparable classification.

An integrity model in which there can be no
contamination by a less trusted or non-comparable
subject or object.

A number system with base 2. The binary digits (bits)
are 0 and 1. Binary arithmetic is used by today’s
computers since the two digits can be represented with
two electrical or magnetic states, for example the
presence and absence of a current.

Biometrics:

BIOS:

Bit:

Bit Copying:

Block Cipher:

Boot Protection:

Boot sector Virus:

Booting-up:

Bootstrap Sector:

Bootstrapping:
Bug:

Byte:

GLOSSARY OF TERMS 141

A technique for identifying a person by one of his
personal characteristics eg. retina pattern, fingerprint
etc.

The Basic Input/Output System of MS-DOS which
constitutes the lowest level of software which interfaces
directly with the hardware of the microcomputer. The
BIOS is usually stored in a ROM chip.

The smallest unit of information. It can only have the
value 0 or 1. The word ‘bit’ is derived from the initial
and final letters of the phrase ‘Binary Digit’.

A technique for making a copy of a disk by reading all
of the individual bits on each track of the disk, and
making a direct copy of each track onto a new disk. A bit
copying program has no knowledge of the file structure
being used on a disk.

A cipher which provides encryption and decryption by
operating on a specified size of data block, eg. 64 bits.
Method used to prevent bypassing security measures
installed on a hard disk by bootstrapping a
microcomputer from a floppy disk.

A type of computer virus which subverts the initial
stages of the bootstrapping process. A boot-sector virus
attacks either the master bootstrap sector or the DOS
bootstrap sector.

A process carried out when a computer is first switched
on or reset, where the operating system software is
loaded from disk (either hard disk or floppy disk).

Part of the operating system which is first read into
memory from disk when a PC is switched on (booted).
The program stored in the bootstrap sector is then
executed, which in turn loads the rest of the operating
system into memory from the system files on disk.
Means the same as Booting-up.

A small electronic device used for covert eavesdropping.
Different types are available to listen to voice
conversations, data being transmitted across a network,
or telephone lines. A fault in a computer program is also
called a bug. The two meanings are entirely separate.

A set of 8 bits which is the amount of information
sufficient to store one character. It is usually the smallest
individual unit that can be read from or written to
memory.

142

Cache:

CBC:
CCC:

CCTA:

CESG:
CFB:
Checksum:
Cipher:

Ciphertext:

CMOS:

.COM:

Companion virus:

Compiler:

COMPSEC, COMPUSEC:
Computer Crime:

APPENDIX E

High-speed data storage used to hold data retrieved from
a slow device. Using a cache increases the overall
performance of a system.

Cipher Block Chaining, a mode of use of a block cipher.
Chaos Computer Club, an infamous group of German
hackers based in Hamburg, Germany.

Central Computer and Telecommunications Agency, the
UK Government agency responsible for computer
purchases (amongst other duties).
Communications-Electronics Security Group, a UK
government COMPUSEC agency (CCTA is another).
Cipher Feedback, a mode of use of a block cipher.

A value calculated from item(s) of data which can be
used by a recipient of the data to verify that the received
data has not been altered. Usually 32 or 64 bits long.
Encryption algorithm.

A term used to describe text (or data) that has previously
been encrypted; see encryption.

Complementary Metal-Oxide Semiconductor is a
technology used to manufacture chips which have very
low power consumption. CMOS chips are used in
battery-backed applications such as the time-of-day
clock and for the non-volatile storage of parameters in
IBM-ATs.

The extension given to a type of executable files in MS-
DOS. They are similar to EXE files, but can only contain
up to 64K of code and data. In operating systems other
than DOS, the extension .COM can have a different
significance.

A virus which ‘infects’ EXE files by creating a COM
file with the same name and containing the virus code.
They exploit the PC-DOS property that if two programs
with the same name exist, the operating system will
execute a COM file in preference to an EXE file.

A computer program which translates programs written
in a high-level language that can be readily understood
by humans, into low level instructions that can be
executed by a computer’s CPU.

Often used abbreviations for COMPuter SECurity.

This phrase has two meanings: Any crime mediated by
a computer; or any crime that attacks a computer system
as part of the process of committing the crime. The
meaning used in any particular situation is context
dependent, and not always clear.

Confidentiality:
Conventional Memory:

Co-processor:

Copy Protection:

CPU:

CRC:

Cryptanalysis:

Cryptographic Checksum:

Data Protection:

Deciphering:
Decryption:

Decryption Key:
DES:

Device driver:

Digital Signature:

GLOSSARY OF TERMS 143

The process of ensuring that data is not disclosed to
those not authorised to see it. Also known as secrecy.
The bytes of PC memory addressable by the 8086
instruction set.

Specialised computer hardware used in conjunction with
a CPU to perform a specific task very efficiently eg.
floating point arithmetic, matrix multiplication.

A method which makes it difficult (if not impossiblc) to
make copies of a computer program. Copy protection
tries to prevent software theft.

Central Processing Unit, the heart of every PC, the
device which takes instructions from memory and
executes them. In most PCs, the CPU is a single
MiCroprocessor.

Cyclic Redundancy Check, a mathematical method for
verifying the integrity of data. It is a form of checksum,
based on the theory of maximum length polynomials.
While more secure than a simple checksum, CRCs don’t
offer true cryptographic security. See cryptographic
checksum.

The study of an encryption system, often with the
intention of detecting any weakness in the encryption
algorithm.

A checksum calculated by using a cryptographically
based algorithm. It is impossible to ‘engineer’ changes
to data in such a way as to leave a cryptographic
checksumunchanged.

A group of techniques used to preserve three desirable
aspects of data: Confidentiality, Integrity and
Availability. Also a legal term with specific meaning
(somewhat different to the above definition).

Means the same as decrypting; see decryption.
Decryption is the process of transforming ciphertext
back into plaintext. It is the reverse of encryption.

see key.

Data Encryption Standard, an algorithm for encrypting
or decrypting 64 bits of data using a 56 bit key. DES is
widely used in the financial world.

A program used to ‘handle’ a hardware device such as a
screen, disk, keyboard etc. This allows the operating
system to use the device without knowing specifically
how the device performs a particular task.

A means of protecting a message from denial of
origination by the sender, usually involving the use of

144

Diskless Node:
Diskless Workstation:

Dongle:

DOS:

DOS bootstrap sector:
Downloading:
EAROM:

ECB:
EEPROM:

Electronic Mail:

Enciphering:
Encryption:

Encryption Key:
EPROM:

EXE:

Exhaustive Key Search:

Expanded Memory:

APPENDIX E

asymmetric encryption to produce an encrypted message
or a cryptographic checkfunction.

See diskless workstation.

A PC which does not contain a floppy disk drive and is
connected to a network.

A hardware security product which must be plugged into
a computer system before a particular application
program will execute. A dongle aims to prevent illegal
copying of a computer program.

Disk Operating System. See MS-DOS and PC-DOS.
The bootstrap sector which loads the BIOS and DOS
into PC RAM and starts their execution. Common point
of attack by boot sector viruses.

A process where data is transferred electronically from a
‘host’ computer to an intelligent terminal or PC.
Electrically Alterable Read Only Memory, a particular
type of EEPROM, in which individual bytes can be
altered by electrical pulses.

Electronic Codebook, a mode of use of a block cipher.
Electrically Erasable Programmable Read Only Memory,
anon-volatile memory which can be written to and read
from many times. It is erased by an electrical pulse.
EEPROMs are used for storing data which does not
change frequently eg. setup parameters.

Messages exchanged over a computer communications
network.

Means the same as encrypting; see encryption.

A process of disguising information so that it cannot be
understood by an unauthorised person.

see Key.

Electrically Programmable Read Only Memory, a non-
volatile memory which can be programmed (written to)
once, and read from many times. Most types of EPROM
can be erased by exposure to ultra-violet light. EPROMs
are used for storing data which is unlikely to be changed.
The extension given to executable files in MS-DOS.
These are similar to .COM files, but can contain more
than 64K of code and data.

Finding out which key was actually used by an
encryption system by testing all possible keys in turn.
PC memory which conforms to the industry standard
specification EMS (Expanded Memory Specification),
and enables the CPU to access more than 640K of
memory.

Extended Memory:

FAT:

File Compression:

File Encryption:

File Integrity:

File Labelling:

File Server:

Firmware:

Floppy Disks:

Hacker:

Hard disk:

Hardware:

GLOSSARY OF TERMS 145

Memory in PCs which lies above 1 MByte in a 80286
(or above) machine.

File Allocation Table, a mnemonic term used by the MS-
DOS operating system (and others) to describe the part
of a disk which contains information describing the
physical location on the disk of the chains of clusters
forming the files stored on that disk.

The compacting of a file through the process of recoding
its bit structure into a shorter form. File compression
must be reversible.

The transformation of a file’s contents (in plain text) into
an unintelligible form by means of some form of
cryptographic system or manipulation.

Techniques used to provide ‘safe’ backup files for
recovery purposes in the event that critical files have
become contaminated through some accidental or
intentional mechanism (eg. computer virus attack).

The classifying of the sensitivity level of a file either by
external (visible outside marking) or internal (magnetic
coding of the header label) coding, or by a combination
of these two methods.

A central data repository for a computer network, which
may provide other centralised services such as shared
printer control.

Jargon for a computer program stored in a non-volatile
memory such as an EPROM or an EEPROM.
Interchangeable magnetic disks which are used to store
computer data. Usual formats are 3.5" and 5.25" disks,
and capacities of the order of 1 Mbyte.

An individual whose interests, motivated for benign or
malicious reasons, concern ‘breaking into’ computer
systems. The word hacker is also used to denote
someone who produces prodigious amounts of software.
The two meanings are completely distinct, and often
confused.

A hermetically sealed magnetic disk, generally fixed
within a computer, which is used to store data. Hard disk
capacity is of the order of 10 Mbytes to 1 Gbyte.

Any component of a computer system that has physical
form. It is a term used to draw a distinction between the
computer itself (hardware), and the programs which are
executed on the computer (software).

146

Hash Function:

Hashing:
Hexadecimal:

IC:

ID:

Integrity:

Internet:

Interrupt:

I/0 port:

1SO:

IV:

Key:

Key Management:

APPENDIX E

A function which maps a set of variable size data into
objects of a single size. Widely used for fast searching.
The process of calculating a hash function.

A system of counting using number base 16. The
numbers 10 to 15 are represented by the characters ‘A’
through ‘F’ respectively. Hexadecimal is often
abbreviated to hex. Each hex digit is equivalent to four
bits (half a byte) of information.

Integrated Circuit, an electronic device containing many
discrete electronic components such as transistors,
resistors and the wire links which interconnect them. ICs
are usually made in very large numbers and in
miniaturised form, on a common base or substrate of
silicon.

An identification code, username, identification card or
an identification token.

A security protection aimed at ensuring that data cannot
be deleted, modified, duplicated or forged without
detection.

One of the largest world-wide networks for the
transmission of electronic mail messages.

A mechanism by which a process can attract the
immediate attention of the CPU, usually in order to serve
an urgent request from an external device. Interrupt table
on 8086 microprocessors occupies the bottom 1K of
RAM.

A computer communicates with the outside world
through Input/Output (I/O) ports. Examples are the RS-
232 serial port and printer ports on a PC.

International Organisation for Standardisation, the
worldwide federation of international standards bodies.
Initialisation Variable, a value used to initialise modes of
use of certain block ciphers.

Shorthand for a thousand (1000), but in computing it is
often used to mean 1024 (2'°, approximately 1000). For
example, 64K or 64 Kbytes refers to 64*1024 (= 65536)
bytes.

When used in the context of encryption, a series of
numbers which are used by an encryption algorithm to
transform plaintext data into encrypted (ciphertext) data,
and vice versa. Confusingly, key can also refer to a
physical token which gives access to a system.

The process of securely generating, transporting, storing
and destroying encryption keys.

LAN:

Letter Bomb:
Link virus:

Logic Bomb:

M:

MAC:

Mainframe:

Master bootstrap sector:

Menu-driven:

Message Authentication:

Message Digest:
Microprocessor:

Minicomputer:

MIPS:
Mirroring:

GLOSSARY OF TERMS 147

Local Area Network, a data communications network
covering a limited area (up to several kilometres in
radius) with moderate to high data transmission speeds.
A logic bomb contained in electronic mail, which will
trigger when the mail is read.

A virus which subverts directory entries to point to the
virus code.

A program modification which causes damage when
triggered by some condition such as the date, or the
presence or absence of data eg. a name.

Shorthand for a million (1000000), but in computing it is
often used to mean 1048576 (2%°, approximately one
million). For example, 1M or 1 Mbyte refers to 1048576
bytes.

Message Authentication Code, a cryptographic
checksum for a message. Unlike a digital signature, a
MAC requires knowledge of a secret key for
verification.

Large computer systems, often occupying purpose-built
facilities, used for IT applications requiring extremely
fast processing speeds or large quantities of data. Typical
processing speeds are of the order of 100 MIPS.

The first physical sector on the hard disk (sector 1, head
0, track 0) which is loaded and executed when the PC is
bootstrapped. It contains the partition table as well as the
code to load and execute the bootstrap sector of the
‘active’ partition. Common point of attack by boot sector
viruses.

Software which presents the user with a fixed ‘menu’ of
command choices, often requiring only a single key or
mouse button depression to select the required option.
The process of calculating and then subsequently
verifying a message authentication code.

Same as hash function.

An integrated circuit which condense the essential
elements of a computer’s CPU into a single device.

A fixed, generally multi-user, computer designed for use
as a communal information processing system. Typical
processing speeds are between 10 and 100 MIPS.
Millions of instructions per second.

A technique where data is written to two (or more) disks
simultaneously, with the intention of enabling data
retrieval even when one of the disks fails.

148

Modem:

Mouse:

MS-DOS:

Multi-partite virus:

Multitasking:

Non-volatile Memory:

OFB:
Off-site Backup:
One-way Function:

Operating System:

Optical Disk:
08/2:

OSI:

OVL:

APPENDIX E

A MOdulator/DEModulator is a device which translates
digital computer data into a form suitable for
transmission over an analogue telecommunications path
such as a telephone line, radio channel or satellite link.
A data input device which, when moved by hand on the
surface of a desk, conveys the direction and amount of
movement to a computer. A mouse is commonly
equipped with one, two or three press-buttons to actuate
commands on the computer.

The Disk Operating System sold by Microsoft. It is the
most common microcomputer system in the world, and
operates on the IBM PC. See PC-DOS.

A virus which infects both boot sectors and executable
files, thus exhibiting the characteristics of both boot
sector viruses and parasitic viruses.

The ability of a computer to divide its processing time
amongst several different tasks. Although most
computers contain only one CPU, they can switch
between operations so quickly that several processes
appear to run simultaneously.

Integrated circuits which retain their content when their
normal power source is switched off. The main types are
ROM, EPROM, EEPROM and battery backed CMOS
RAM.

Output Feedback, a mode of use of a block cipher.

A backup stored at a geographically remote location.

A function that can readily be calculated, but whose
inverse is very difficult to calculate.

The computer program which performs basic
housekeeping functions such as maintaining lists of files,
running programs etc. PC operating systems include
MS-DOS and OS/2, while minicomputer and mainframe
operating systems include Unix, VMS and MVS.

A storage device using a laser to record and read data
from a rotating disk.

An operating system for 80286+ based IBM
compatibles. It allows true multitasking.

Open Systems Interconnection, a set of standards
defining the protocols for communication between open
(non-proprietary) systems.

The extension commonly given to overlay files in MS-
DOS. Overlay files are used with large programs which
cannot fit into RAM: parts of the program are loaded as

Parasitic Virus:

Partition Table:

Passive Attack:

Password:

PC:

PC-DOS:

Peripheral:

Peripheral Access Control:

Pest Program:

Plaintext:

Polymorphic virus:
Port Access Control:

Processor:

GLOSSARY OF TERMS 149

and when needed. Overlay files can have any extension
and not just .OVL.

A computer virus which attaches itself to another
computer program, and is activated when that program is
executed. A parasitic virus can append itself to either the
beginning or the end of a program, or it can overwrite
part of the program.

A 64-bit table found inside the master bootstrap sector
on hard disks which contains information about the
starting and ending of up to four partitions on the hard
disk. The partition table also contains information on the
type of the partion, eg. DOS partition, UNIX partition
etc.

An attack on a system which extracts information and
makes use of it, but never injects false information or
corrupts any information (which would be an active
attack).

Sequences of characters which allow users access to a
system. Although they are supposed to be unique,
experience has shown that most people’s choices are
highly insecure. Humans tend to choose short words
such as names, which are easy to guess.

Personal Computer, a desktop or portable single-user
computer usually comprising a CPU, memory, screen,
keyboard, and disk drive(s). PC has become synonymous
with IBM compatible computer, even though this
definition is not strictly correct.

Microcomputer operating system originally used by IBM
for its PCs. It is functionally identical to MS-DOS.
External device connected to a computer. Examples
include printers, plotters, disk drives, external modems,
and a mouse.

Technique to restrict the use of certain computer
peripherals to authorised users.

A collective term for programs with deleterious and
generally unanticipated side effects eg. Trojan horses,
logic bombs, viruses, and malicious worms.

Data before it has been enciphered. The opposite of
ciphertext.

Self-modifying encrypting virus.

Restricting the use of computer data ports to authorised
users only.

A unit of hardware that is capable of executing
instructions contained in a computer program,

150

Program:

Proprietary Encryption
Algorithm:

PS/2:

Public Domain:

Reverse-engineering:

ROM:

RS-232:

Scrambling:
Secret Key:

Security:

Security Policy:

Security Server:

APPENDIX E

A precise sequence of instructions that specifies what
action a computer should perform. ‘Software’ is often
used to describe a computer program.

An encryption algorithm designed to a proprietary (and
usually secret) specification.

A series of computers from IBM designed to replace the
PC/XT/AT range. All models, except model 30, support
the ‘microchannel architecture’. Cards designed for the
IBM PC/XT/AT are not compatible with PS/2 machines.
Two totally distinct meanings exist:the area which is
outside government security arrangements; or something
which is neither subject to copyright nor a trademark.
Random Access Memory, volatile memory which can be
written to, and read from, at high speed. It is normal to
load programs from disk into RAM, and then to execute
them. The operating system takes care of the allocation
of RAM to executing programs.

The process of deducing how something works without
having access to the design details.

Read Only Memory, a form of non-volatile memory in a
computer. Data is embedded into a ROM during
manufacture. A ROM is usually used to store the startup
software which is executed by a PC on power up (see
bootstrapping).

The most widely used standard for serial data
communication. The speed of communication is
measured in baud.

Encryption.

Encryption key that must not be disclosed. If it is
revealed, the security offered by the encryption
algorithm is compromised. Not all encryption keys have
to be kept secret, eg. public keys in asymmetric
encryption.

Protection against unwanted behaviour. The most widely
used definition of (computer) security is security =
confidentiality + integrity + availability.

A security policy is the set of rules, principles and
practices that determine how security is implemented in
an organisation. It must maintain the principles of the
organisation’s general security policy.

A special LAN station which runs software that monitors
LAN usage, and controls access independently of the
LAN operating system.

Server:
Smart Disk:

Software:

Spoofing:

Stealth virus:

Stream Cipher:

Symmetric Algorithm:

SYS:

Terminal:

Time Bomb:

Timeout:

Token:

Trapdoor:

Trojan Horse:

TSR:

UNIX:

GLOSSARY OF TERMS 151

See file server and security server.

A device in the shape of a 3.5" floppy disk which
contains a microprocessor and memory. It can be read
from and written to in a standard floppy disk drive.

See program.

Pretending to be someone or something else (eg.
entering someone else’s password).

A virus which hides its presence from the PC user and
anti-virus programs, usually by trapping interrupt
services.

A cipher which provides encryption and decryption by
operating on continuous stream of data, without
imposing limits on the length of the data.

An algorithm in which the key used for encryption is
identical to the key used for decryption. DES is the best
known symmetric encryption algorithm.

The extension given to system file names in MS-DOS.
An example is the file CONFIG.SYS which sets up
various configuration parameters for the operating
system on power-up.

A device which consists of a VDU and keyboard. It
allows a user to interact with a computer.

A logic bomb set to trigger at a particular time.

A logical access control feature which automatically
logs-off users of terminals which do not exhibit signs of
activity for a certain duration of time.

A physical object, sometimes containing sophisticated
electronics, which is required to gain access to a system.
Some tokens contain a microprocessor, and are called
intelligent tokens, or smart cards.

A hidden flaw in a system mechanism that can be
triggered to circumvent the system’s security.

A computer program whose execution would result in
undesired side effects, generally unanticipated by the
user. The Trojan horse program may otherwise give the
appearance of providing normal functionality.
Terminate and Stay Resident, a term used to describe an
MS-DOS programs which remains in memory after
being executed. A TSR can be re-activated either by a
specific sequence of keystrokes, or at some specific
time, or by some specific signal from an I/O port.
UNIX is a multi-user operating system, developed by
AT&T. Several versions of UNIX exist, which do not all
achieve compatibility with each other.

152
Uploading:

UPS:

VDU:

Virus:

Yirus signature:

WAN:

Workstation:

Worm:

Worm Attack:

XOR:

APPENDIX E

The process of transferring data from a remote computer
to a central host.

Uninterruptible Power Supply, a device which detects
mains failure and provides power from an internal
battery supply for a limited period.

Visual Display Unit, a computer peripheral which
displays text and/or graphics on a television screen.
Sometimes explicitly referred to as a computer virus, a
program which makes copies of itself in such a way as to
‘infect’ parts of the operating system and/or application
programs. See boot-sector virus and parasitic virus.

An identifier recognised by the virus as meaning ‘this
item is already infected, do not reinfect’. It can take
different forms such as the text ‘sURIV’ at the beginning
of the file, the size of the file divisible by a number or
the number of seconds in the date stamp set to 62. Some
viruses do not recognise their signatures correctly.

Wide Area Network, a set of computers that
communicate with each other over long distances.

An ill-defined term used to describe a powerful single
user, high performance, minicomputer or
microcomputer, which is used by individuals for tasks
involving intensive processing, perhaps CAD or
simulation.

A program that distributes multiple copies of itself
within a system or across a distributed system.
Interference by a program that is acting beyond normally
expected behaviour, perhaps exploiting security
vulnerabilities or causing denials of service. See worm.
An abbreviation of the logical operation known as
Exclusive-or. An exclusive-or function is defined as
having the value true when either of the input conditions
(but not both) is true.

F

VIRUS HUNTER’S CHECKLIST

It is very strange, and very melancholy, that the paucity of
human pleasures should persuade us ever to call hunting one of them.

Samuel Johnson (1709-84), ‘Johnsonian Miscellanies’

You have been asked to check all PCs on a site for a possible virus attack. You grab your
bag, which contains all the tools necessary to deal with the problem, and head for the site.
What should the bag contain?

Q Software for IBM-PC virus investigation. This will include not only virus-detection
software but also software tools for investigating a virus attack and recovering from

1t:
a

a
Q

An up-to-date copy of a good, trusted virus scanner. You should not use copies
which are more than two months old.

One or more supplementary virus scanners by other manufacturers.

A disk editing tool. Useful for disk investigations, displaying interrupts and
recovering from boot sector virus infections.

A cryptographic checksumming package for investigating an attack by a virus
unknown to your scanners.

Sacrificial ‘GOAT” programs which can be infected on purpose in order to
observe virus behaviour.

Diagnostic software for distinguishing a potential hardware problem from a
virus problem. This is usually dependent on the hardware used and may be
best obtained on site. Virus-scan and write-protect this software before using
it.

154

O

APPENDIX F

O DEBUG, for the adventurous who wish to disassemble the virus in situ.

O Manuals for all the above software as well as a DOS manual.

Software for Apple Macintosh virus investigation. You will need a completely

different set of tools and procedures to check Apple Macintosh PCs, although the

same principles apply.

Secure bootstrapping means and procedures.

With the advent of stealth viruses, it is most important to guarantee a clean,

virus-free environment on a workstation, before running anti-virus software

or investigating a virus-infected network.

Bootstrapping stand-alone PCs:

O Correct version(s) of DOS on write-protected 3'," and 5'/," disks. Compaq
DOS 3.31 orDOS 5.00 are able to boot machines with hard disks running any
current version of DOS. Ensure that DOS disks are write-protected. Switch
the PC off, insert a boot disk in drive A and then switch it back on.

Bootstrapping a PC in order to check a network:

QO A DOS system disk which also contains all executables needed to set up the
network connection, as well as log onto the network. For example, on Novell
NetWare 3.11 you will need a DOS system disk with IPX.COM, NETX.EXE,
LOGIN.EXE and MAPEXE. Perform a secure boot of the PC as described
above, then run LOGIN from the floppy disk including the ‘/SNUL command
line qualifier to prevent the execution of both system and user login scripts:

LOGIN /S NUL <USERNAME>

Pre-formatted disks (3'," both densities, 5'," both densities) for preserving any
virus samples and general use. You can encounter a variety of floppy drives onasite
and you should not use high density disks in low density drives (or vice-versa) as
the information will not be recorded reliably.

Write-protect tabs. Write-protecting a disk is a hardware barrier to any writing
operations. Write-protect any disks to which you do not wish to write to.

Floppy disk labels, ‘Virus infected’ labels, ‘Disk free from known viruses’ labels.
An up-to-date printout of known viruses and their symptoms.

Education materials. You may be required to give a short presentation on virus
prevention to PC users on the site. A video is an excellent tool for conveying the
message in a short time. Furthermore, as a virus specialist, you must stay in touch
with the latest developments in the virus field. Make sure that your subscription to
a journal such as Virus Bulletin is current.

Date of next visit. It is best to strike while the iron is hot. After you have finished the
investigation, make an appointment for your next visit. Be prepared to catch any re-
infection at an early stage.

Virus attack reporting forms.

Contact telephone and fax numbers for the technical support for your virus
scanners.

G

KNOWN IBM-PC VIRUSES

For in much wisdom is much grief: and he that increaseth
knowledge increases sorrow.

Bible: Ecclesiastes

G.1 VIRUS NAMES AND ALIASES

When a researcher investigates a virus he has not seen before, one of his first problems is
to establish whether the virus is one already known. Since that can take time, he may
decide on a name for the virus before announcing the find. The result of this is that
multiple names for the same virus are common, and when a ‘new’ virus is reported, it is
often only a known virus with a new name.

Some researchers, furthermore, feel an irresistible urge to call parasitic viruses by a
number, which is their infective length (the increase in the length of the infected
executable). This can be very confusing since one virus can have several infective lengths
(Jerusalem has an infective length of 1813 bytes for COM files and 1808 bytes for EXE
files), and completely different viruses can have identical infective lengths (both Agiplan
and Zero Bug have an infective length of 1536 bytes).

There have been a number of attempts at standardising on virus names, for example the
Lotus virus numbering standard (Virus Bulletin, October 1991), the US National Institute
of Standards and Technology (NCSA Anti-Virus Products Developers Conference
Proceedings, Washington DC, November 1991), a joint NCSA committee (Virus Bulletin,

156 APPENDIX G

February 1992). So far none have succeeded and it seems that the speed of new
developments in the virus field will be likely to defy any such attempts in the future.

If you discover a new virus at some stage in the future, please do not rush to give it a
name. First check whether the virus is already known and only if not, christen it with
something suitable, which is preferably not its infective length. Names of viruses are
related either to virus side-effects (eg. Cascade), to strings embedded in the virus (eg.
Suriv) or to the name chosen by the author and included in the virus (eg. Nomenklatura
and Datacrime). For further guidance refer to Virus Bulletin, February 1992 (see
Appendix A: Bibliography).

G.2 VIRUS HEX PATTERNS

One common way of testing executable files for viruses is to search for code or data
patterns known to occur in these particular viruses. These patterns are normally represented
as hexadecimal digits and referred to as ‘hex patterns’.

This section contains short descriptions and hexadecimal patterns of viruses seen by June
1992. This list is maintained from various sources, including Virus Bulletin’s technical
editor Fridnk Skulason and is copyright ©Virus Bulletin. Information of this kind will
invariably be out of date by the time it is published in a book. The reader is urged to treat
it only as a sample of what viruses could be around and to find up-to-date information in
one of the journals or bulletin boards listed in Appendix A.

The hexadecimal (hex) patterns in the table are normally from 10 to 16 bytes long, and
there is a small but finite chance that one of these patterns will be found in some
uninfected and innocuous executable. Data in executable images is not completely
random, and certain sequences of instructions used in a virus can occur in a perfectly
legitimate program. The pattern from a virus is normally chosen so as to be unlikely to
occur in a legitimate program, but there is a chance that this may happen. For more
information on extracting virus patterns see Section 5.2: Dissection of a Captured Virus.

If apattern-checking program, such as SEARCH in Appendix B, reports a pattern match,
it means that a virus may have been found. If the alarm turns out to be false, it is known
as a ‘false positive’, which is one of the main problems with poorly tested anti-virus
software. All patterns shown in this table have been tested for false positives against
about 100 MBytes of executables.

Each entry in the table consists of the virus group name in bold, its aliases and the virus
type (see Fig. G.1 for type codes). This is followed by a short description (if available)
and a 10 to 16 byte hex pattern. An entry in the form (VB Mar 92)’ indicates that further
information on the virus can be found in the appropriate issue of Virus Bulletin.

KNOWN IBM-PC VIRUSES 157

Type codes:

C = Infects COM files

E = Infects EXE files

D = Infects DOS boot sector (Logical sector 0 on disk)

L =Link virus

M = Infects master boot sector (Track 0, head 0, sector 1 on disk)
N = Not memory-resident after infection

R = Memory-resident after infection

P = Companion virus

Fig. G.1 - Virus type codes

G.3 IBM-PCVIRUSES

8 Tunes - CER: The virus probably originates in Germany and infects COM and EXE
files. The length of the virus code is 1971 bytes. When triggered, it will play one of eight
different tunes. The virus attempts to deactivate two anti-virus programs: Bombsquad
and Flushot+.

8 Tunes 33F6 B9DA 03F3 A550 BB23 0353 CB8E DOBC
10 past 3 - CR: A 748 byte virus which is awaiting analysis.

10 past 3 B840 008E D8A1 1300 B106 D3E0 2D00 088E
191 - CN: A very simple virus with no side effects.

191 8BD7 B902 00B4 3FCD 2181 3D07 0874 DF33
268-Plus - CN: When this virus is run it will infect all COM files in the current directory
increasing the first one by 268 bytes, the second by 269 bytes, the third by 270 bytes and
so on. The virus is encrypted and is awaiting analysis.

268-Plus 8EC1 0650 BEOO 0156 31FF B90B 01F3 A4BD
200 - CN: This small virus does nothing but replicate. When an infected program is run,
it will infect all COM files in the root directory of drive C.

200 33D2 B8B0O 42CD 218B CEB4 40CD 212E 8BOE
337 - CR: A small, simple virus which does nothing but replicate.

377 S5FBF 0001 578B CC2B CEF3 A433 F633 FF33
432 - C?: Virus awaiting disassembly.

432 50CB 8CC8 8ED8 E806 O0E8 D900 E904 0106
483 - CER: This virus does not work properly, as infected programs will never run. As
this could be fixed by a minor correction, a search pattern for the current version is
provided.

483 0256 SAB9 1800 F614 46E2 FBCD 215E 81BC

158 APPENDIX G

S35A - CN: A mutation of the Vienna virus. Second generation copies do not appear to
replicate.

535A ACBY9 0080 F2AE B904 00AC AE75 EEE2 FASE
555 - CER: A compact 555 byte virus awaiting analysis. It does not seem to do anything
apart from replicating.

555 SB58 072E FF2E 0500 813E 1200 4DS5A 7406

656 - CN: Triggers on 14th of any month except January or on any day in April.
Overwrites first 80 sectors of drive C.

656 ACB9 0070 F2AE B904 00AC AE75 EEE2 FASE
757 - CR: This virus displays a ‘Bouncing-Ball’ effect on the screen.

757 B907 OOFC F3A4 585B 9DB8 0001 5350 CB9C
765 - ER: This virus is probably an older version of the ‘905’ virus. Awaiting analysis.

765 53B4 368E 4602 8B76 0A26 8A14 B8O0EA 40CD
777 Revenge - CR: After three infected files have been run, the virus displays the text
“k** 777 - Revenge Attacker V1.01 **** and then trashes drives C and D. (VB Mar 92)

777 Revenge B8FF FF33 C9CD 2183 F906 7243 B856 0250
800 - CR: Infective length is 800 bytes. The virus code is written into a random location
in the infected file. Like Number of the Beast, it uses an undecumented DOS function to
obtain the original INT 13H address, and instead of intercepting INT 21H, it intercepts
INT 2AH, function 82H. The virus is encrypted. (VB June 90)

800 B981 0151 AD33 DOE2 FB59 3115 4747 E2FA
864 - CN: This virus adds 864 bytes in front of the files it infects. Awaiting analysis.

864 B04D B449 B742 473A 2575 153A 7D01 7510
905 - ER: A Bulgarian virus, still awaiting analysis.

905 488E CO8E D880 3E00 005A 7415 0306 0300
907 - CR: An encrypted 907 byte virus, awaiting analysis.

907 83C7 0353 2EFF BS55D 04BB DEO03 BS97F 0058
928 - CER: Virus awaiting disassembly.

928 E9AD 00B8 BBBB CD21 3D69 6974 03E8 3500

1024PrScr - CR: This virus increases the length of infected programs by 1024 bytes. The
main side-effect is to perform a Print Screen function at different times.

1024PrScr 8CCO 488E C026 A103 002D 8000 26A3 0300
1028 - CER: Virus is 1028 bytes long. Awaiting analysis.
1028 0606 O00S5E 561E OE33 FF8E DFC5 0684 002E

1067 - CR: This virus is closely related to the Ambulance virus, but is still awaiting
analysis.
1067 018A 5405 8816 0001 B42A CD21 F6C2 0175

1077 - CER: This 1077 byte virus infects COM and EXE files, but is unable to infect
EXE files larger than 64K.

1077 4E01 EACD 21C3 B44F CD21 C351 33C0 3B86

KNOWN IBM-PC VIRUSES 159

1226 - CR: This Bulgarian virus is related to Phoenix, Proud and Evil. As in the case of
its relatives, no search pattern is possible.

1260, V2P1 - CN: Virus infects COM files extending them by 1260 bytes. The first 39
bytes contain code used to decrypt the rest of the virus. A variable number of short
(irrelevant) instructions are added between the decoding instructions at random in an
attempt to prevent virus scanners from using identification strings. An infected file has
the seconds field set to 62. No search pattern is possible. (VB Mar 90)

1355 - CR?: 1355 byte virus, not yet analysed.

1355 8B04 B8ED8 BEOO 00BO 2EB4 803A 0475 1BBO
1575 - CER: The only side-effect of this virus is that a caterpillar (grasshopper?) moves
from the top left-hand part of the screen turning text yellow. This display happens if the
virus is already memory-resident and an infected program is run and the memory-
resident virus has not infected since it became resident and is at least 3 months old.
Infected files grow by 1575-1593 bytes. The date and time of last file modification are
not saved. (VB Oct 91).

1575 D087 ECBE 3C01 BF00 00B9 1000 FCF2 A4E9
1600 - CER: A 1600 byte Bulgarian virus, reported to be written by the same author as
the Nina, Terror and Anti-Pascal viruses. Many infected programs, including
COMMAND.COM will fail to execute when infected.

1600 8B35 8936 0001 8B75 0289 3602 01C7 4514
1876 - CER: This 1876 byte virus is probably of Polish origin. Not yet analysed.

1876 8ECO0 33FF 33C0 B9FF 7FFC F2AE 26F6 OSFF
1963A - CER: A Bulgarian virus, which does not increase the size of the files it infects.
Awaiting analysis.

1963A B820 12BB 0500 CD2F 534B 4B26 881D B816

2100 - CER: This is a Bulgarian virus, related to the Eddie and Eddie-2 viruses and
contains extensive segments of code in common with both. The pattern for Eddic-2 can
be found within this virus, but they can easily be differentiated on the basis of length.
(VB Aug 91)

2144 - CER: A 2144 byte Russian virus which may totally disable the hard disk when it
activates. A computer with a disabled disk cannot be rebooted from a system floppy disk
without disconnecting the hard disk.

3445 - CER: This 3445 byte encrypted virus has not been fully analysed, but infected
programs often fail to execute.

3445 D2BB 1000 F7E3 03C1 83D2 OO0OF7 F359 50B8
4870 Overwriting - EN: A strange overwriting virus which spreads in LZEXE-packed
format. It is not possible to select a search pattern from the code portion of the virus.
5120 - CEN: This virus is 5120 bytes long. When an infected program is run, it will
search recursively for EXE and COM files to infect. Infected programs will terminate
with an ‘Access denied’ message after 1st June 1992. Parts of the virus seem to have been
written in compiled BASIC.

5120 40B1 04D3 EB88C DB03 C305 1000 8ED8 8C06

160 APPENDIX G

5792 - EN: Similar to the RNA2 and Halloween viruses and written in some high-level
language (C or Pascal), this virus adds 5792 bytes in front of infected files.

5792 8DBE 0OFF 1657 8DBE 5CE8 1657 B8AO 1650
7808 - CNR: A clumsy virus with an infectious length of 7808 bytes written in a high
level language. Infection occurs both by directory search and on load and execute.
Awaiting analysis.

7808 31C0 A354 04C7 06E6 4201 OOEB 04FF 06Eé6

16850 - PN: This large (16850 byte) companion virus seems to be written in Turbo
Pascal. Because of the high chance of false positives, it is recommended that search
patterns should not be used to detect it. To get rid of the virus, simply remove all hidden
16850 byte COM files corresponding to EXE files in the same directory.

4K, 4096, Frodo, IDF, Israeli Defence Forces - CER: Infective length is 4096 bytes. The
virus may occasionally cause damage to files, as it manipulates the number of available
clusters, which results in crosslinked files. If the virus is resident in memory, it disguises
itself from detection by pattern-searching or checksumming programs. Infected systems
hang on 22nd September. (VB May 90, Nov 90)

4K E808 OBE8 DOOA E89A OAE8 F60A E8B4 O0AS3
Ada - CR: A 2600 byte virus, reported to have originated in Argentina. Not fully
analysed.

Ada 4802 0074 OF80 FC41 741B 80FC 1374 163D

Advent - CEN: An old 2764 byte mutation of Syslock, which is detected by the Syslock
pattern. This virus activates in December and plays a Christmas tune.

Agiplan - CR: Infective length is 1536. The virus attaches itself to the beginning of COM
files. Agiplan has only occurred on one site and may be extinct.

Agiplan E9CC 0390 9090 9090 9C50 31CO 2E38 26DA
AIDS - CN: Not to be confused with the AIDS Trojan, this virus overwrites COM files
and is about 12K long. When an infected program is executed, the virus displays ‘Your
computer now has AIDS’ and halts the system.

AIDS 0600 AE42 6E4C 7203 4600 0004 00AO0 1000
AIDS II - PN: A companion virus, 8064 bytes long, which displays a message when it
activates. To locate and remove the virus, search for COM files corresponding to EXE
files, but marked ‘Hidden’ and located in the same subdirectory and delete them.

ATDS 11 5589 ES81 EC02 02BF CA05 0ES7 BF3E 011E
Aircop - DR: Virus displays the blinking message ‘.Red State, Germ offensing —Aircop’
after infecting every eighth floppy disk. Originated in Taiwan. (VB Feb 91).

Aircop 32E4 CD16 CD12 33C0 CD13 OE07 BB0O 02B9
Aircop 2 - DR: Does not infect hard disks. Awaiting analysis.
Aircop 2 32E4 CD16 33C0 CD13 OEO7 BB0OO 02B9 0600

Akuku - CER: 889 byte virus, probably written by the same author as the Hybrid virus.
Akuku E800 O0S5E 8BD6 81C6 2A01 BFO00 01A5 A481

KNOWN IBM-PC VIRUSES 161

Alabama - ER: Infective length is 1560 bytes. May cause execution of wrong files and
FAT corruption.

Alabama 803D C673 0726 C605 CF4F EBFO0 26FF 0603
Alabama 2 - ER: Slightly modified version of the original virus, but detected by the
Alabama pattern.

Albania - CN: This is a group of 4 viruses, which all contain the word Albania, but they
are believed to be written in Bulgaria. The mutations are 429, 506, 575 and 606 bytes
long.

Albania 83F9 0074 0CB0 7CFE 3B74 06AA E803 000E
Albania-429 83F9 0074 0826 807D FE0OO 7405 41AA E8OF
Ambulance, RedX - CN: The major effect of this virus is to display a moving ambulance

with the sound of a siren. The virus is 796 bytes long.

Ambulance 0001 8A07 8805 8B47 0189 4501 FFE7 C3ES8
Ambulance-B - CN: A 796 byte virus, just like the original, but with a few insignificant
modifications.

Ambulance-B 0001 8A07 8805 8B47 0189 4501 FFE7 CBES
Amoeba - CER: Virus adds 1392 bytes to the length of the infected files. It does not have
any known side-effects.

Amoeba CF9C S502E A107 0140 2EA3 0701 3D00 1072

Amstrad - CN: Adds 847 bytes to the front of any COM file in the current directory. The
rest contains an advertisment for Amstrad computers. (VB June 90). Cancer is a 740 byte
long mutation, which infects the same files repeatedly. These viruses are members of the
Pixel family.

Amstrad C706 0E01 0000 2E8C 0610 012E FF2E 0EO1
Amstrad-852 - CN: Almost identical to the original 847 byte version, with only a text
string changed.

Amstrad-877 - CN: This mutation is 877 bytes long, and detected by the ‘Amstrad’
pattern.

Anthrax - MCER: An interesting, multi-partite virus from Bulgaria, which infects the
master boot sector, as well as executable files. Infected files usually grow by 1000-1200
bytes.

Anthrax OE1F 832E 1304 02CD 12B1 06D3 EO8E COBF
AntiCAD, Plastique - CER: This is a family of 7 viruses from Taiwan, based on the
Jerusalem virus, but considerably modified. This group includes a 2900 byte mutation, a
3012 byte mutation and four 4096 byte mutations. Two of these four are known as
‘Invader’ and one as ‘HM2’. The four 4096 byte mutations will also infect the boot
sector. The Plastique virus triggers when ACAD.EXE (the AUTOCAD program) is
executed. Drives A and B are checked for the presence of a disk which, if found, has head
0 of all tracks overwritten with random data. An ‘explosion’ routine (speaker noise
generated every 4.5 minutes) then commences. The first and second hard disks are
overwritten on all heads and tracks. (VB Apr 92)

AntiCAD (1) B840 4BCD 213D 7856 7512 B841 4BBF 0001
AntiCAD (2) CO8E D8A1 1304 B106 D3EO B8ED8 33F6 8B44

162 APPENDIX G

AntiCAD 2576 - CER: A mutation of the AntiCAD series from Taiwan. This 2576 byte
mutation is closely related to the 2900 byte mutation.

AntiCAD 2576 595B 5807 1F9C 2EFF 1E3B 001E 07B4 49CD
AntiCAD/Plastique 3004 - CER: Very closely related to the 3012 byte mutation of
Plastique. The virus contains the text string ‘COBOL and is detected by the AntiCAD (1)
pattern.

AntiCAD 3088 - CER: The latest member of the AntiCAD/Plastique family. It is 3088
bytes long, and is detected by the same pattern as the 2576 byte version.

Anti-Faggot - ?: Virus sample failed to replicate. Contains destructive code and the text
‘Drive Fucked Up by the Anti-Faggot Virus!’ plus a few other sentences in broken
English. Awaiting analysis.

Anti-Faggot 803E DEO3 0174 OF80 3EDE 0302 740C 803E
Antimon - CN: This 1450 byte virus has also been named Pandaflu, because it is targeted
against Flushot and some programs from Panda software.

Antimon 83C2 102B D033 C9B8 0042 CD21 BAOO 01B9
Anti-Pascal (1) - CN: Two Bulgarian viruses 529 and 605 bytes long which add their
code in front of infected programs. They are targeted against Turbo-Pascal, and delete
.PAS and .BAK files.

Anti-Pascal (1) D1EO D1EO 80E4 0380 C402 8AC4 8BD8 32FF
Anti-Pascal (2) - CN: A second group of Bulgarian viruses written by the author of Anti-
Pascal (1) viruses. There are three viruses which belong to this group and their infective
lengths are 400, 440 and 480 bytes. They are structurally different from Anti-Pascal (1)
since they add their code to the end of infected files. The side-effects are similar since
they may delete .PAS, .BAK and .BAT files.

Anti-Pascal (2) 21BE 0001 S5AS58 FFE6 50B4 OE8A DOCD 2158
Anto - CN: A small virus, only 129 bytes long, which does nothing other than replicate.

Anto B800 425A 87CF CD21 B440 5A87 CFCD 21B4
apilapil - CER: An encrypted virus with an infective length of 1731 bytes. If the date is
the first of any month on or after year 1992, it overwrites the first 11 sectors of first 4
heads and first 14 tracks with garbage. It contains the text ‘E.U.PM. 1991°.

apilapil 2EBC 0601 008C C88E D8BY9 A006 BF03 002E
Apocalypse - CER: Slight mutation of the Jerusalem virus. Detected by the Jerusalem-
USA pattern.
Apocalypse II - CER: Slight mutation of the Eddie-2000 virus. Detected by the Dark
Avenger pattern.
Arab, 834 - CR: Awaiting analysis.

Arab 3D00 4B75 368B EC8B 7600 8B7E 028C C98E

Arf - CN: A 1000 byte mutation of the Violator virus. Will display ‘Arf Arf! Got you!’
when it activates. Detected by the ‘Violator’ pattern.

KNOWN IBM-PC VIRUSES 163

Armagedon - CR: A 1079 byte virus from Greece, which interferes with the serial port.
It will produce control strings for Hayes-compatible modems, dialling number 081-141
(speaking clock in Crete). Virus name is spelt with a single ‘d’.

Armagedon 018C CBEA 0000 0000 8BC8 8EDB BEOO 01BF
AT - CR: This is a fairly old group of viruses, but they only work on ‘286 processors and
above. They have no significant effects.

AT-144 0042 33CS CDB4 B440 8D54 FFB1 0389 2CCD
AT-149 33C9 33D2 CD21 B440 8D54 FFB1 0389 2CCD
AT-132 B800 428B CACD ESB4 40B2 2DB1 0389 2CCD

Attention - CR: A Russian, 394 byte virus. The virus has some code in common with the
‘Best Wishes’ virus, which is possibly written by the same author. Infective length is 393
bytes and only files longer than 786 bytes are infected. Disk writing is done by outputting
directly to hardware via port 3F2H.

Attention BO00 8BDA B501 433A 0775 FB4B 4B81 275F
Australian 403 - CR: Destructive, overwriting 403 byte virus which has no side-effects
other than destroying the programs it infects.

Australian 403 8C06 5B01 8CC8 8ED8 B821 25BA 9401 CD21
Azusa - MR: A short boot sector virus, which may damage data on diskettes larger than
360K. When it activates, it will disable COM1: and LPT1:. (VB April 91).

Azusa B908 27BA 0001 CD13 72F1 OEO07 B801 02BB
Backtime - CR: A 528 byte virus which is awaiting analysis.
Backtime 2125 CD21 8CC8 B8ED8 8ECO 58BB 0001 53C3

Bad boy - CR: A 1001 byte virus, which may have been written by the same authoras the
‘Boys’ virus, but is structurally different. Awaiting analysis.

Bad boy 0175 0383 C302 5351 8B07 8B4F 108B D830
Bandit - EN: This 2653 byte virus is detected by the ‘Old Yankee’ pattern. Awaiting
analysis.

Bebe - CN: A Russian, 1004 byte virus.

Bebe B104 D3EB 240F 3C00 7401 4389 1EOC 00C7

Beijing, Bloody! - MR: A primitive 512-byte virus. On 129th boot and every sixth boot

thereafter, the virus displays the message ‘Bloody! Jun. 4, 1989°. The virus is believed to
be a protest against the Tianamen Square massacre. (VB Feb 91).

Beijing 80FC 0272 0D80 FC04 7308 B80FA 8073 03ES8
Best Wishes - CR: A 1024 byte Russian virus containing the message ‘This programm ...
With Best Wishes!”. Many programs, including COMMAND.COM will not work
properly if infected with this virus.

Best Wishes 4C00 268C 1E4E 0007 1FB8 0400 8BFS5 B8lEE
Best Wishes-970 - CER: This virus is detected by the search pattern for the Attention
virus, but not the pattern for the Best Wishes-1024 virus, which may indicate a common
author (or a close relationship). This mutation is generally not able to infect EXE files
properly.

164 APPENDIX G

Beware, Monday 1st - CN: This 442 byte virus activates on the first day of the month,
provided it is Monday, and then overwrites the first track of diskettes in drive A. It
contains the text ' BEWARE ME - 0.01, Copr (¢) DarkGraveSoft - Moscow 1990°.

Beware C3B4 3ECD 21C3 8DB5 8402 57B9 3100 8BFE
Big Joke - CN: A Norwegian virus awaiting full disassembly. Infectious length is 1068
bytes. Contains text: ‘At last...... ALIVE !!!!! T guess your computer is infected by the Big
Joke Virus. Release 4/4-91 Lucky you, this is the kind version. Be more careful while
duplicating in the future. The Big Joke Virus, killer version, will strike harder. The Big
Joke rules forever’.

Big Joke 8BE8 83C5 030E 588E D8B8E C08D 7643 BFO00
Black Monday - CER: This virus was first isolated in Fiji, but may have been written
elsewhere. It adds 1055 bytes to infected files. The name is derived from the message
‘Black Monday 2/3/90 KV KL MAL. Infected EXE files cannot be disinfected, as the
virus will overwrite a few bytes at the end of the file.

Black Monday 8B36 0101 81C6 0501 8B04 8B5C 02A3 0001
Black Monday-Borderline - CR: This virus is detected by the Black Monday pattern,
but it appears to be an older mutation, as it lacks the ability to infect EXE files. It is also
shorter, only 781 bytes.

Black Wizard - EN: A mutation of the ‘Old Yankee’ virus, and detected by the pattern for
that virus. This mutation is 2051 bytes long and plays a different tune than the original
virus, but is otherwise similar,

Blinker - CR: A 512 byte mutation of Backtime, and detected by the pattern for that
virus. This also applies to a 496 byte mutation which was made available as ‘Joker’.
Black Jec - CN: A family of small viruses, which are awaiting analysis. The following
mutations are known: Bljec-3 (231), Bljec4 (247), Bljec-5 (267), Bljec-6 (270), Bljec-7
(287), Bljec-8 (358) and Bljec-9 (369). Four new mutations of this virus have been found,
but they are all detected by the original pattern. The differences seem to be caused by the
fact that a different assembler has been used to assemble the source code.

Black Jec B980 00BE 7FFF BF80 OO0F3 A4B8 F3A4 A3F9
Black Jec-4B, 6B, 8B - CN: A group of viruses 252, 281 and 363 bytes long and very
similar to the mutations Bljec-4,6 and 8. They are functionally identical and detected as
Black Jec (Bljec).

Black Jec-Digital F/X - CN: This 440 byte mutation is extremely badly written. It starts
with a block of text, which will totally crash on most PCs. However, the virus may work
on some ‘386 machines. Detected with the Black Jec (Bljec) pattern.

Blood - CN: A simple virus from Natal, South Africa. The 418 byte virus does nothing of
interest, apart from replicating.

Blood 1EOE 1FB4 19CD 2150 B202 B40E CD21 B41A
BNB, Beast-N-Black - CN: This 429 byte virus might be re-classified as a Vienna
mutation. It contains the text ‘Beware the Beast-N-Black’.

BNB FC8B F283 C619 BF00 01B9 0300 F3A4 8BF2

KNOWN IBM-PC VIRUSES 165

Bob - CN: This 718 byte virus seems rather badly written. It overwrites the first 698 bytes
of files, storing the overwritten code at the end. The virus activates in January 1993, but
its exact effects have not been fully determined.

Bob 81F9 C907 7206 80FE 0175 0145 B200 BEO0O
Boojum - ER: A simple 334 byte virus which does nothing but replicate.
Boojum 1E06 06B8 2135 CD21 09SDB 7433 2E89 1E18

Boys - CN: A 500 byte virus containing the text ‘The good and the bad boys’. Awaiting
analysis.

Boys BEO1 01AD 0503 0050 8BFO BF00 01B9 0500
Brain, Ashar, Shoe - DR: Consists of a bootstrap sector and 3 clusters (6 sectors) marked
as bad in the FAT. The first of these contains the original boot sector. In its original
version it only infects 360K floppy disks and occupies 7K of RAM. It creates a label ‘(c)
Brain’ on an infected disk. There is a variation which creates a label ‘(c) ashar’.

Brain FBAO 067C A209 7C8B 0E07 7C89 OEOA 7CES8
Brainy - CR: A 1531 byte virus of Bulgarian origin, which appears to do nothing but
replicate. It is rather interesting from a technical point of view, as it may insert itself into
the middle of another program, without modifying the program’s starting instructions.
Brainy uses a simple ‘byte-swap’ encryption.

Brainy 1B90 8BEC OE1F BC34 00FC AD86 (489 44FE
Brunswick, Stoned 16 - MR: Infects first fixed drive and floppy drives A and B. On
floppy disks the original boot sector is stored in head 1 cylinder 0 sector 3 and may cause
directory corruption. On hard disks the original boot sector is stored in head 0, track 0
sector 16.

Brunswick DAFF E8E7 FF74 252E C606 2901 00B8 0103
Bulgarian 123 - CN: A simple 123 byte virus from Bulgaria, which does nothing but
replicate. It may infect the same file over and over.

Bulgarian 123 B103 8D54 F4B4 40CD 21B4 3ECD 21B4 4FCD
Burger - CN: Just like the 405 virus, this primitive 560 byte virus overwrites infected
files, which makes it easily detectable. Several mutations with slightly different lengths
are known.

Burger 1 B447 0401 508A DO08D 3646 02CD 2158 B40E
Burger 2 CD21 B43E CD21 2E8B 1E00 E081 FB90 9074
Burger 382 - CN: Simple overwriting virus from Taiwan which overwrites part of the

program.

Burger 382 B417 8D16 5502 CD21 3CFF 7514 B42C CD21
Burger 405 - CN: Infects one COM file (on a different disk) each time an infected
program is run by overwriting the first 405 bytes. If the length of the file is less than 405
bytes, it will be increased to 405. The virus only infects the current directory and does not
recognise previously infected files.

Burger 405 26A2 4902 26A2 4B02 26A2 8B02 50B4 19CD

166 APPENDIX G

Burger-Pirate - CN: This 609 byte overwriting virus is a simple modification of the
original Burger virus, with a text message added at the end, which indicates the virus is
written in Portugal.

Burger-Pirate B800 002E A371 032E A3F9 022E A2FB 02B4
Burghofer - CR: A simple 525 byte virus from Switzerland, which appears to do nothing
of interest.

Burghofer B448 CD21 5B48 B8ECO FA26 C706 0100 0000
Cadkill - CR: Awaiting analysis. Infectious length is 1163 bytes. A mutation with an
infectious length of 2367 bytes exists.

Cadkill E800 00SB 5056 B4CB CD21 3C07 7535 81C3
Cannabis - DR: A Dutch boot sector virus, which contains the text ‘Hey man, I don’t
wanna work. I’'m too stoned right now.’ The virus is very badly written and just barely
qualifies being classified as a virus.

Cannabis B810 O08E D8A1 1303 4848 A313 031F B106
Captain Trips - CER: A mutation of Jerusalem, of the same length as the original (1808/
1813 bytes), but with numerous minor modifications. Most of them appear intended to
invalidate the signature strings used by various scanners.

Captain Trips B842 0150 EAFC 0300 008C C88E DOBC 0007
CARA - CR: A 1025 byte virus. Awaiting analysis.

CARA 812E 0200 CO00 B44A BB0O BOCD 2181 EBCO
Carioca - CR: This virus adds 951 bytes to the end of infected programs, but it has not
been analysed yet.

Carioca 01FC F3A4 B800 0150 C32E 8BlE 0301 81C3

Cascade, Fall, Russian, Hailstorm - CR: This encrypted virus attaches itselfto the end of
COM files, increasing their length by 1701 or 1704 bytes. The encryption key includes
the length of the infected program, so infected files of different lengths will look
different. After infection it becomes memory-resident and infects every COM file
executed, including COMMAND.COM. The original version will produce a ‘falling
characters’ display if the system date is between 1st October and 31st December 1988.
The formatting version will format the hard disk on any day between 1st October and
31st December of any year except 1993. Both activations occur a random time after
infection with a maximum of 5§ minutes. (VB Sept 89)
Cascade (1) 01 OF8D B74D 01BC 8206 3134 3124 464C 75F8
Cascade (1) 04 OF8D B74D 01BC 8506 3134 3124 464C 75F8
Cascade (1) Y4 FA8B CDE8 0000 5B81 EB31 012E Fé687 2A01
Cascade format OF8D B74D 01BC 8506 3134 3124 464C 77F8
Cascade-1621 - CR: This Cascade mutation has the encryption routine changed.
Cascade-1621 FAE8 0000 5B81 EBO7 0183 BF01 0100 740E

Cascade-1661 - CR: A rewritten version of the Cascade virus. It has been modified in
several ways, changing the activation date to December of any year other than 1980 and
1990.

Cascade-1661 012E Fé684 9301 0174 OF8D BCB6 O01BC 5A06

KNOWN IBM-PC VIRUSES 167

Cascade 1701-F - CR: Very closely related to the 1701-A mutation, but the encryption
routine has been changed.

Cascade 1701-F 012E F687 2A01 0174 OF8D B74D 01BA 8206
Cascade-1701-S - CR: A minor modification of the Cascade virus, with the encryption
routine changed, probably to bypass some scanner. Reported to be written in Sweden.

Cascade 1701-S FA8B ECE8 0000 5B81 EB31 01F6 872A 0101
Cascade-1706 - CR: This mutation seems to be based on the 1704 byte mutation, but it
has been changed and reassembled.

Cascade-1706 3001 F687 2901 0174 OF8D B74B 01BC 8806
Cascade Y1 - CR: A mutation of Cascade.

Cascade Y1 FA89 ESE8 0000 5B81 EB31 012E F687 2A01
Cascade YAP - CR: A mutation of Cascade with a slightly modified encryption routine.
Cascade YAP OF8D B74D 01BC 8206 3124 3134 464C 75F8
Casino - CR: Virus infects COM files smaller than 62905 bytes and when triggered it
destroys the FAT and then offers to play the Jackpot game. If you win, it reconstructs the
FAT, while if you lose, the machine hangs. The virus triggers on 15th January, 15th April

and 15th August of any year. (VB Mar 91)

Casino 594B 7504 B866 06CF 80FC 1174 0880 FC12
Casper - CN: This virus was written by Mark Washburn and uses the same encryption
method as the 1260 virus. The infective length is 1200 bytes. The virus sets the seconds
field to 62. The source code for this virus has been widely circulated and it includes a
‘manipulation task’ (payload) which will format cylinder 0 of the hard disk. No search
pattern is possible.

CAZ - CER: 1204 byte virus. Not yet analysed.

CAZ 8BEC 7207 8366 OAFE EB08 9083 4EOA O01EB

CAZ-1159 - CER: Similar to the 1204 byte version, and detected with the same pattern.
CB 1530 - CER: This 1530 byte virus is detected by the ‘Dark Avenger’ pattern.
Cemetery - ER: A 1417 byte mutation of the Murphy virus. Detected by the Murphy 2
pattern.
Checksum - CR: Version 1.00 of this Russian virus is 1233 bytes long and version 1.01
is 1232 bytes long, with only minor differences. As the name implies, the virus calculates
a checksum for itself, and if changed it will not activate. The virus is designed to replace
older versions of itself.

Checksum 832E 0300 4F83 2E02 004F 0BC9 740B 508C
Chinese Fish - MR?: This boot sector virus has not been fully analysed, because at the
moment only a part of the virus code (the boot sector) is available.

Chinese Fish 7CB9 0BOO FCAC 2680 3D00 7400 268A 058A
Christmas in Japan - CN: A 600 byte virus from Taiwan, which will activate on 25th
December, and display the message ‘A merry christmas to you’.

Christmas Japan 32E4 CF8A 1446 B80F2 FE74 06B4 06CD 21EB

168 APPENDIX G

Christmas Tree, Father Christmas, Choinka - CN: This is a Polish 1881 byte version of
the Vienna virus, which only activates from 19th December to the end of the year and
displays a ‘Merry Christmas’ message. Damage to files has been reported, but not
confirmed. This virus is also detected by the Vienna (4) string.

Christmas Tree CD21 81FA 130C 7308 81FA 0101 7202 EBOE
Christmas Violator - CN: A 5302 byte mutation of the Violator virus.

Xmas Violator 11AC B900 80F2 AEB9 (0400 ACAE 75ED E2FA
Cinderella - CR: The name of this 390 byte virus is derived from the text ‘cInDeReL.la’
contained within the virus. After a certain number of keystrokes, the virus creates a
hidden file, and jumps to a location in ROM, which caused a cold-boot on a test machine.

Cinderella FAOE 1FBE 8A03 BF90 0OAD 8905 AD89 4502
Close - ER: This 656 byte virus may damage either C:\IO.SYS or C:\IBMBIO.COM,
making the hard disk unbootable.

Close FEOF 1F83 2C31 1E8B CE36 FE07 0726 836C

Cookie - CER: This 2232 byte virus may display the message ‘I want a COOKIE!’, and
wait for input from the user. It is closely related to the Syslock/Macho/Advent viruses,
and is identified by the Syslock string.
Cookie - CEN: This virus is not related to the ‘Cookie’ mutations of the ‘Japanese
Christmas’ and ‘Syslock’ families, but it is large and was compiled with one of the
Borland compilers. As the name indicates, the virus demands a cookie, but has not been
analysed, because of its size. Two mutations are known, 7360 and 7392 bytes long.

Cookie-7392 BFD6 3E1E 57BF 4820 1ES57 B8EO 1C50 BF5A

Cookie-7360 BFE2 3E1E S57BF 4820 1ES7 B8CO 1C50 BFé66
Copmpl - CER: Thisisa 1111 (COM) or 1114 (EXE) byte Polish mutation of the Akuku
virus. The name is derived from the following text, which can be found inside the virus
‘Sorry, I'm copmpletly dead’. The only effect of the virus is to play a tune.

Copmpl 80E6 OF8A D680 FAO00 7407 80FA 0B76 06B2
Copyright - CN: A 1193 byte virus from East Europe, which contains a fake Award
BIOS copyright message. Awaiting analysis.

Copyright AB4A 75F2 E2EA 33CO0 CD16 B800 06B7 0733
Cossiga - EN: This is a family of two viruses, an 883 byte version, which is clearly older
and more primitive, and a 1361 byte mutation which contains the string ‘FRIENDS OF
MAIS and CLAUDIA SAHIFFER’. Not yet analysed.

Cossiga 8BC1 B83El OFBB 1000 2BD9 53F8 8B55 1C03

Friends 5158 83E1 OFBB 1000 2BDS 53F8 8B55 1C03
Crazy Eddie - CER: A 2721 byte virus which has not been fully analysed.

Crazy Eddie 0653 B803 01CF 813C 4DS5A 7404 813C SA4D

Crazy Imp - CR: A 1445 byte virus, which is very stealthy. It was received from Minsk.
It uses several tricks to hide from debuggers but has no effects other than replication.
Crazy Imp B413 CD2F 33C0 8ED8 832E 1304 048C CB88E

KNOWN IBM-PC VIRUSES 169

Creeper - CR: There seems to be some confusion regarding the ‘Creeper’ name, as
various ‘Creeper’ viruses have been reported, and their descriptions do not match at all.
This one is 475 bytes long, and is found at the beginning of COM files.

Creeper OEOE 071F C3CD 2050 2D00 4B74 2658 3DFF
Creeper-252 - CR: Similar to the mutation reported earlier.
Creeper-252 C6FE C60E 07CD 2750 2D00 4B74 2558 3DFF

Crew, 2480 - CR: This virus only spreads if the year is set to 1988, so it is not a serious
threat. It is rather long, 2480 bytes, but has not been analysed yet. This virus first
appeared in Finland. Two versions exist.

Crew 81Cé6 0301 01Cé6 B904 008C C8BE CO8E D8BF
Criminal - CN: Contains an encrypted message in bad English which urges the user to
turn himselfin for illegal copying. Not fully analysed, but suspected of being destructive.

Criminal C604 E989 4401 C744 O03FF 20B4 42BO 008B
CSL, Microelephant - CR: A 381 byte virus from Eastern Europe, which contains the
text ‘26.07.91 Pre-released Microelephant by CSL. This virus does nothing but replicate.

CSL E800 0058 2D04 0051 521E 068B F005 9200
CSL-V4 - CR: A 517 byte mutation of the CSL (or Microelephant) virus reported in the
December edition and probably written by the same author. Not yet analysed. The CSL-
VS5 is another new mutation of the same virus, but it is only 457 bytes long.

CSL-V4 5152 1E06 8BF0 0590 008B D88C C8B8E D8BF
CSL-V5 5152 1E06 8BF0 0592 008B D88C C88E D8BF
CZ2986 - CER: This Czechoslovak virus reported by Pavel Baudis of ALWIL software

is based upon Old Yankee. It infects files on load and execute request and if the
NetWare LOGIN.EXE is executed, the virus collects the ID and password information.
It maintains a list of the 15 most recent pairs in encrypted form.

CZ2986 9074 13EB 3090 BF6F 09E8 3300 AA3C 6F90
Dada - ER: A Russian virus which contains the text ‘da,da’ - Russian for ‘yes, yes’.
Awaiting analysis.

Dada CB50 8CCO 2603 0603 0040 8ECO 58C3 33CO

Damage - CER: Two related viruses 1063 and 1110 bytes long which cause ‘Sector not
found’ errors by reformatting selected areas of disks. Detected by the ‘Diamond’ pattern.
Danish Tiny-251 - CN: This virus seems to be derived from the 163 byte mutation, but is
not particularly interesting.

Danish-251 8BFA B903 00CD 2180 3DE9 7407 B44F EBDC
Danish Tiny-Brenda: This 256 byte virus is similar to the 251 byte version, but the
effects are different - when an infected program is run, it may occasionally display the
text <(C) ’92, Stingray/VIPER Luv, Brenda’.

Danish-Brenda 8BD7 B902 0090 B43F CD21 813D 0708 74DD
Danish Tiny-Stigmata - CN: A 1000 byte version, with a considerable part of the virus’
body taken up by a greeting to various virus writers and anti-virus developers.

Danish-Stigmata 5053 5156 8B9C EB04 81C6 5C01 B98D 0390

170 APPENDIX G

Dark Avenger, Eddie - CER: The virus infects when a file is opened and closed as well
as when it is executed. This means that a virus-scanning program will cause it to infect
every program scanned. Infective length is 1800 bytes. It only infects if a program is at
least 1775 bytes long and it may overwrite data sectors with garbage. There is a mutation
which extends the file by 2000 bytes. (VB Feb 90)

Dark Avenger A4AS 8B26 0600 33DB 53FF 64F5 E800 005E
Darklord - CER: A mutation of the Terror virus, this 921 byte virus contains the string
‘Dark Lord, I summon thee! MANOWAR’. Awaiting further analysis.

Darklord 8ECO 488E D88B 1E03 008 3EB6 503C 326A3
Darth Vader - CR: A family of small viruses, probably from Bulgaria. Some of the 4
known mutations contain code which will only work on ‘286 and above. Awaiting
analysis.

Darth Vader B820 12CD 2F26 8A1D B816 12CD 2F
Datacrime - CN: The virus attaches itself to the end of a COM file, increasing its length
by 1168 or 1280 bytes. On execution of an infected program, the virus searches through
the full directory structure of drives C, D, A and B for an uninfected COM file which will
be infected. Files with 7th letter D will be ignored (including COMMAND.COM). If the
date is on or after 13th October of any year, the first 9 tracks of the hard disk will be
formatted after displaying the message: ‘DATACRIME VIRUS’, ‘RELEASED: 1 MARCH
1989°. This message is stored in an encrypted form in the virus. (VB Aug 89)

Datacrime (1) 3601 0183 EEO03 8BC6 3D00 0075 O03E9 0201

Datacrime (2) 3601 0183 EE03 8BCé6 3D00 0075 03E9 FEO00
Datacrime II - CEN: This encrypted virus attaches itself to the end of a COM or EXE
file, increasing their length by 1514 bytes. The virus searches through the full directory
structure of drives C, A and B for an uninfected COM or EXE file. It ignores any file if
the second letter is B. If the date is on or after 13th October of any year, but not a Monday,
a low level format of the first 9 tracks will be done on the hard disk after displaying the
message: ‘DATACRIME II VIRUS’ which is stored in an encrypted form. Datacrime ITB
displays the message ‘* DATACRIME *’. (VB Aug 90)

Datacrime IT 2EBA 072E C605 2232 C2D0 CA2E 8807 432E

Datacrime IIB 2BCB 2EBA 0732 C2D0 CA2E 8807 43E2 F3
Datalock - CER: The name of this 920 byte virus is included at the end of infected
programs, but its effects are not known yet.

Datalock C31E A12C 0050 8CD8 488E D881 2E03 0080
Day/10 - CN: This 674 byte virus was made available to virus researchers under the name
of ‘Numlock’, but that is just the name of the original sample. The effects of the virus
have nothing to do with the NumLock key - instead it will overwrite the first 80 sectors
on the hard disk if the date of the month is divisible by 10.

Day/10 8E06 2C00 B900 10FC 33FF B050 F2AE 7518
dBASE - CR: Transposes bytes in dBASE (DBF) files. Creates the hidden file BUGS.DAT
in theroot directory of drive C and generates errors if the absolute difference between the
month of creation of BUGS.DAT and the current month is greater than or equal to 3.

KNOWN IBM-PC VIRUSES 171

Infective length is 1864 bytes. The destroy version destroys drives D to Z when the
trigger point is reached. (VB Dec 89)

dBASE S0B8 OAFB CD21 3DFB 0A74 O02EB 8A56 E800

dBASE destroy B900 01BA 0000 8EDA 33DB 50CD 2658 403C
DBF Blank - CER: This virus waits for a dBASE (DBF) file to be opened and returns a
blank record once every 20 disk reads. Only one DBF file is affected at a time. Infective
length is 1075 bytes.

DBF Blank F3A4 C38C CO2E 0344 1A05 1000 502E FF74
December 24th - ER: A mutation of the Icelandic (3) virus. It will infect one out of every
10 EXE files run, which grow by 848-863 bytes. If an infected file is run on December
24th, it will stop any other program from running and display the message ‘Gledileg jol’
(Merry Christmas in Icelandic).

December 24th C606 7E03 FEB4 5290 CD21 2E8C 0645 0326
December 28th, Spanish April - CR?: Awaiting analysis.

December 28th B44A CD21 8BD4 B41A CD21 B42A CD21 32C0O
Dedicated, Fear - CN: Two viruses which use the Mutation engine. No search pattern is
possible.

Deicide - CN: A primitive 666 byte overwriting virus. When it activates, it will wipe out
the first 80 sectors on drive C. According to a message inside the virus, it is written by a
person named Glenn Benton.

Deicide 3C00 7502 FECO FECO 3C03 7516 B002 BBOO
Delyrium-1638, Move - CER: A virus by Cracker Jack detected by the HIV pattern.
Demolition - CR: A 1585 encrypted virus which contains destructive code, as well as
various text messages.

Demolition E800 005B 8D77 178A 04D0 E09C 81C6 0106
Demon - CN: A primitive 272 byte overwriting virus, written by the person calling
himself ‘Cracker Jack’.

Demon 02EB 02EB EFB4 2ACD 213C 0274 04B4 4CCD
Den Zuk, Search - DR: The majority of the virus is stored in a specially formatted track
40, head 0, sectors 33 to 41. When Ctrl-Alt-Del is pressed, the virus intercepts it and
displays ‘DEN ZUK’ sliding in from the sides of the screen. This does not happen if
KEYBUK or KEYB is installed. Den Zuk will remove Brain and Ohio and replace them

with copies of itself.

Den Zuk (1) FA8C C88E DB8S8E DOBC 00F0 FBE8 2600 33CO0
Den Zuk (2) FASC C88E D88E DOBC 00F0 FBB8 787C 50C3
Destructor - CER: A 1150 byte Bulgarian virus containing the string ‘DESTRUCTOR

V4.00 (c) 1990 by ATA’.
Destructor 5255 FBCB 3D00 4B74 1980 FC3D 740F 80FC

Devil’s Dance - CR: A simple virus which infects COM files, adding 951 bytes at the end
of infected files. The virus is believed to have originated in Spain or Mexico. It monitors
the keyboard and will destroy the FAT after 5000 keystrokes.

Devil’s Dance B800 0150 8CC8 8ED8 8ECO C306 B821 35CD

172 APPENDIX G

Dewdz - CN: This 601 byte virus adds itself in front of the files it infects. When it
activates it will display the text ‘Kewl Dewdz!’ in the middle of the screen.

Dewdz 434B 7409 B44F CD21 72BA 4B75 F7B4 2FCD
Diabolik - CER: A 1171 byte mutation of the Murphy virus. Detected by the Murphy 2
pattern.

Diamond, 1024 - CER: A Bulgarian virus, possibly written by the person calling himself
‘Dark Avenger’. This virus may be an earlier version of the Dark Avenger virus. No side-
effects or activation dates have been found. Diamond-B is a minor mutation.

Diamond 00B4 40CD 2172 043B C174 01F9 C39C OEES
Diamond-1173, David - CER: A modification of the Diamond-B virus, produced by
inserting NOP instructions and making other minor changes. Contains errors which will
generally cause infected COM files to crash. Detected by the ‘Diamond’ pattern.

Dir - CR: A 691 byte Bulgarian virus, which only infects files when the DIR command
is issued. No other effects have been found.

Dir CD26 OE1F 580E 1FBE 0001 56C3 O0EOE 1F07
DIR-II - LCER: A new type of ‘link’ virus from Bulgaria. It is 1024 bytes long and it
infects executable files by linking a single cluster containing virus code with the starting
cluster of each file in the directory entry. The original cluster number is saved encrypted
in the unused part of the directory entry. The virus does not have any side-effects.
(VB Nov 91)

DIR-II BCOO O06FF 06EB 0431 C98E D9C5 06C1 0005
DIR-II-1 - LCER: Two new mutations of this virus have appeared. The pattern will
detect all three mutations.

DIR-TI=1 26FF 77FE 26C5 1F8B 4015 3D70 0075 1091
Discom - CR: A 2053 byte mutation of the Jerusalem virus. Awaiting analysis.
Discom 57CD 2172 1F8B F18B FAB8 0242 BSFF FFBA

Diskjeb - CER: A disk-corrupting virus with an infective length of 1435 bytes (COM)
and 1419 bytes (EXE). Only infects COM files longer than 1000 bytes and EXE files
longer than 1024 bytes. In October, November and December disk writes will be
intercepted and corrupted. A possible mutation of the Tenbyte virus.

Diskjeb 5351 061E 9C8C C88E D8E8 5D00 803E 4903
Diskspoiler, 1308 - CN: A 1308 byte Russian virus, which uses very simple encryption.
The virus searches the FAT for free clusters and marks them as bad, slowly eating up the
entire disk.

Diskspoiler E800 00SE 8BFE B90B 0580 750E FF90 47E2
Disk Killer, Ogre - DR: The virus infects floppy and hard disks and if the computer is left
on for more than 48 hours, it will encrypt the contents of the bootable disk partition. The
infection of a disk occurs by intercepting a disk read - INT 13H function 2. When the
virus triggers, it displays the message ‘Disk Killer -- Version 1.00 by Ogre Software,
04/01/1989. Warning !! Don’t turn off the power or remove the diskette while Disk Killer

KNOWN IBM-PC VIRUSES 173

is Processing!’. A mutation (Disk Killer 2) assembled with a different assembler has been
found. (VB Jan 90)

Disk Killer 2EA1l 1304 2D08 002E A313 04B1 06D3 EO08E
Disk Killer 2 7423 2E3A 16F4 0175 EE2E 3A36 F501 75E7
DM-310 - CR: Probably an older and more primitive version of the DM-400 virus. It

does not seem to do anything but replicate.

DM-310 F7C1 FEFF 7405 B801 43CD 63C3 E800 005D
DM-330 - CR: This encrypted virus contains text stating that it is version 1.05 ofthe DM
virus, but it is considerably different from the earlier versions. Only a partial search
string (which includes wildcards) is possible.

DM-400 - CR: This 400 byte virus does not seem to do anything but replicate. It contains
the text <(C)1990 DM”.

DM-400 80FC 4B74 3380 FC56 7419 FE04 80FC 3D74
DM-400 (1.01) - CR: A slightly improved version of the DM-400 virus, with extra
encryption. It is also 400 bytes long. The virus corrupts files that fit the *.TP? pattern -
overwriting the first 8 bytes.

DM-400 1.01 56B9 2401 3024 46E2 FBSE C3E8 0100 CFSD
Do-nothing - CR: A badly-written virus from Israel that assumes a 640K system.

Do nothing 8CCA 8EDA BAOO 988E C2F3 A41E B800 O008E
Doom2 - CER: This 1252 byte virus is not always able to infect files. The machine hangs
immediately after a file is infected.

Doom2 803E 0A01 4574 O052E 033E 0301 2E30 0547
Doom II-B - CER: This mutation of Doom-2 has not been able to replicate under test
conditions - infected programs hang or overwrite the FAT and root directory on drive C.
Version B uses the same encryption method as the other known mutation.

Doom-II-B 803E 0901 4574 052E 033E 0301 2E30 0547
Dot Killer - CN: This 944 byte Polish virus will remove all dots (.) from the screen when
they are typed. The effect can be disabled by typing a caret ‘*’. Seconds field is set to 62.
Files set to Read-Only will not be infected.

Dot Killer 582E A301 0158 2EA2 0001 B800 O01FF EOBS8
Durban, Saturday 14th - CER: Adds 669 bytes to the end of infected files. On any
Saturday 14th the first 100 logical sectors of drives C, then B and then A are overwritten.

Durban B911 00A4 E2FD B4DE CD21 80FC DF74 47C6
Dutch Tiny-99 - CN: One of the smallest viruses which do not infect by overwriting
existing files. It does nothing but replicate.

Dutch Tiny-99 93B4 3FCD 2180 3C4D 741D B002 E820 0097
Dutch Tiny-124 - CR: Another small virus from the Netherlands, probably written by the
same author as the previous one. Rather badly written and crashes on certain types of
hardware.

Dutch 124 930E 1FB4 3FCD 218B F280 3C4D 741C B002

174 APPENDIX G

Dutch Tiny-126 - CR: This virus from the Netherlands is an attempt to create the
smallest resident virus, but it has no effect other than replicating. Detected by the Dutch
124 pattern.

Dyslexia, Solano - CR: Virus adds 1991 bytes in front of the infected file and 9 bytes at
the end. Occasionally transposes two adjacent characters on the screen.

Dyslexia B4CO CD21 3D34 1275 OE2E 8BOE 0301 1EO07
Eddie-2, 651 - CER: A non-destructive virus from Bulgaria. It marks infected files with
a value of 62 in the seconds field of the timestamp, which makes them immune from
infection by Vienna or Zero Bug. Infected files grow by 651 bytes, but this will not be
seen if a DIR command is used - the virus intercepts the find-first and find-next
functions, returning the correct (uninfected) length. (VB June 90)

Eddie-2 D3E8 408C D103 C18C D949 8EC1 BF02 00BA

Eddie-1801 - CER: A minor mutation of the Dark Avenger virus, one byte longer and
detected by the same pattern.
E.D.V. - DR: E.D.V. marks infected disks with ‘EV’ at the end of the boot sector and
stores the original boot sector code in the last sector of the last track on 360K disks, just
like the Yale virus. Program crashes and data loss have been reported on infected
systems.

E«D: V. 0C01 5083 EC04 B800 01CF B601 BS08 2751
Eliza - CN: This 1193/1194 byte virus works very badly. It damages EXE files, instead
of infecting them, and second-generation copies of the virus will normally not work.

Eliza FFEO SE81 C600 O1BF 0001 5951 56AC AAE2
EMF - CN: This 404 byte virus conatins the text ‘Screaming Fist’, but is quite different
from the Screamer virus. It may have been written by the same author. Not fully analysed.

EMF E810 00B4 408B D583 EA03 B993 01CD 21ES8
Enemy - CER: This virus is difficult to detect, as its length is variable, and it uses a self-
modifying encryption routine. The virus includes the text ‘I am a stranger in a strange
land’. No effects have been found.

Enigma - ER: A mutation of the ‘Old Yankee’ virus, claiming to have been written by the
same author as HIV. It is 1624 bytes long, and is detected by the Old Yankee pattern.
Enola - CER: A 1864 byte virus, probably of Russian origin, but not yet analysed.

Enola FF74 081F 8ED8 B800 0150 C38C C805 1000
Erasmus - CER: A 1682 byte version of the Murphy virus. Detected by the HIV pattern.
ETC - CN: A 700 byte virus, containing the text ‘Virus, (¢c) ETC’. Awaiting analysis.

ETC 8B16 0201 83C2 33CD 2172 CD89 D68B 043D
Europe *92 - CR: This 421 byte virus will only activate if the year is set to 1992, when it
will display the message ‘Europe/92 4EVER!’

Europe ’92 B450 CD21 8CD8 488E D8Cé6 0600 005A 891E
Europe *92-424 - CR: Three bytes longer than the original mutation, but very similar,
and detected with the same pattern.

KNOWN IBM-PC VIRUSES 175

Even Beeper - EN: This companion virus is highly unusual. It creates a COM file for
every EXE file it ‘infects’. The COM files are structurally EXE files, written in a high-
level-language, but their length is variable, and they have been compressed with LZEXE.
As aresult it is impractical to use a signature to detect infected files.

Evil - CR: This is a close relative of the Bulgarian Phoenix virus, but is shorter, 1701
bytes instead of 1704. It uses the same encryption method, which makes the extraction of
a search pattern impossible.

Evil Empire - MR: Virus infects Master Boot Sector and relocates original boot sector to
Sector 6, Head 0, Track 0. Virus displays a text message questioning the United States’
involvement in the recent Gulf War. (VB May 91)

Evil Empire 734C 80FC 0275 4731 COBE D880 3E6C 0416
Evil Empire B - MR: An encrypted mutation, probably written by the same author as
Evil Empire.

Evil Empire B 8CC8 8ED8 B8ECO BF0S5 00B9 9A01 FCB8A 0504
F-709 - CR: This 709 byte virus is reported to have originated either in Sweden or in
Finland. It has not been fully analysed, but appears to do nothing but replicate.

F-709 8BF2 33FF F3A5 068C C633 CO8E C026 Al184
Faggot - ?: Virus sample failed to replicate. A mutation of the Anti-Faggot virus
discovered by the same search pattern. Contains text ‘Hi Guy! Nice to meet you! Iam the
little FAGGOT Virus’ and some more obscenities.

Fake-VirX - CN: A 233 byte virus from Finland which activates on any Friday the 13th,
when it displays the message ‘VirX 3/90°.

Fake-VirX 408B D5B9 0600 CD21 B801 575A 59CD 21B4
Faust, Spyer - CER: Infects on calling the Load-and-Execute function, but does not
infect COMMAND.COM. On 13th day of every month the virus displays the message
‘Chaos!!! Another Masterpiece of Faust...” and the machine hangs. The virus also writes
random garbage to disk. Infective length is 1184 bytes. (VB Feb 91)

Faust B87A 0050 06B8 FDOO 5026 C706 FDOO F3A4
Feist - CER: A 670 byte Russian virus, awaiting analysis.
Feist B10C D3E2 5233 D2B9 1000 F7F1 8BCA 5A03

Fellowship - ER: This 1019 byte virus attaches itself to the end of EXE files, damaging
them by overwriting the last 10 bytes or so. Other effects are being analysed.

Fellowship BAF5 02E8 3A00 B60A ES84A OOBA 1403 EB82F
FGT - CN: 651 bytes. Not yet analysed.

Fichv 2.0 - CN: Very similar to the more common 903 byte mutation, but is only 896
bytes long.

Fichv 2.0 B801 35CD 218C 0629 0189 1E2B 01B8 0335
Fichv 2.1 - CN: A 903 byte encrypted virus, which contains the text ‘FICHV 2.1 vous a
eu’. Awaiting analysis.

Fichv B801 35CD 218C 0602 0189 1E04 01B8 0335

176 APPENDIX G

Filler - DR: A Hungarian virus with unknown effects.

Filler CD12 BB40 00F7 E32D 0010 8ECO BA0OO OOEB
Finger - CER: A 1172 byte version of the Murphy virus. Detected by the Murphy-2
pattern.

Fingers 08/15 - CER: A 1322 byte virus which is awaiting analysis.

Fingers 08/15 AE26 803D 0075 F847 4747 8BD7 1E2E 8C16
Fish 6 - CER: A partial mutation of 4K having an infective length of 3584 bytes. The
virus is encrypted and the decryption routine is so short that it is impossible to extract a

hex pattern longer than 14 bytes. The virus seems to activate in 1991, but the exact effects
are as yet unknown.

Fish 6 E800 005B 81EB A90D B958 OD2E 8037
Flash - CER: This 688 byte virus is awaiting analysis.
Flash 005E 8BDE 81C3 O0F00 B000O FADS OAB8 07EB

Flash-Gyorgy - CER: Like the Brenda and Milana viruses, this mutation of the Flash
virus seems to be written by a lovesick virus author. In this case the message is ‘1 LOVE
GYORGY’.

Flash-Gyorgy 1E06 OE1F FCE8 0000 5E8B DE83 C30E B00O
Flip, Omicron - MCER: The primary effect of this 2343 byte virus is to ‘flip’ the screen
by rotating it through 90 degrees on the second day of the month between 10:00 and
10:59. The virus is encrypted and self-modifying. An infected file has the seconds field
set to 62. No search pattern is possible for COM/EXE files. Search pattern will be found
in the master boot sector. (VB Sept 90). Original MBS is stored in the first sector after the
end of the partition as recorded in the partition table.

Flip (boot) 33DB 33FF 8EC3 2629 0613 04CD 12B1 06D3
Forger - EN: A 1000 byte virus which causes subtle corruption - occasionally modifying
a byte on the disk.

Forger 215A 520E 1FSF 0706 57B8 0000 B980 O00F2
Form - DR: A boot sector virus from Switzerland infecting hard disks and floppy disks.
On the 18th day of every month the virus produces a noise when keys are pressed. The
original boot sector is stored in the last physical sector of the hard disk. (VB Nov 91)

Form D3EQO 8ECO 33FF BY9FF 00FC F3AS5 06B8 9A00
Formiche - CR: A 6258 byte virus, which uses almost the same encryption method as
Cascade.

Formiche OF8D B74C 01BC D217 4631 3431 244C 75F8
Freew-692 - CN: When this virus activates (in 1993), it overwrites programs with a
trojan, that simply displays the message ‘Program terminated normally.” when run. The
virus is 692 bytes long.

Freew-692 81F9 C907 7206 80FE 0175 0145 B41A BAO3
Frog’s Alley - CR: A 1500 byte virus, which infects program when the DIR command is
issued, which makes it highly infectious. The virus activates on the 5th day of any month,
overwriting the FAT and root directory.

Frog’s Alley 0105 0001 26A3 1500 268C 1E13 0026 C706

KNOWN IBM-PC VIRUSES 177

Frogs B - CN: A very minor mutation of the earlier Frogs (Frog’s Alley) virus detected by
the same pattern.

Fu Manchu - CER: The virus attaches itself to the beginning of a COM file or to the end
of an EXE file. Infective length is 2086 bytes (COM) and 2080 (EXE). One in sixteen
times on infection a timer is installed, which will trigger a display ‘The world will hear
from me again’ after arandom number of half-hours (max. 7.5 hours). The machine then
reboots. The same message is also displayed on pressing Ctrl-Alt-Del, but the virus does
not survive the reboot. If the date is after 1st August 1989, the virus monitors the
keyboard buffer and adds derogatory comments to the names of politicians (Thatcher,
Reagan, Botha and Waldheim), overstrikes two four-letter words, and displays ‘virus 3/
10/88 - latest in the new fun line!’ if ‘Fu Manchu’ is typed. All messages are encrypted.
(VB July 89)

Fu Manchu FCB4 EICD 2180 FCEl 7316 80FC 0472 11B4
F-word, USSR-417 - CR: A 417 byte virus, probably of Russian origin. The only text
inside the virus is the message ‘Fuck You’.

F-word C3B4 3FCD 2129 €858 75DD FFEO B440 EBF3
Generic - DR: Awaiting functioning sample for analysis.

Generic 31C0 8ED8 A113 042D 0700 A313 04Bl1 06D3
Gergana - CN: A simple 192 byte virus, which does nothing but replicate.

Gergana FFEQ 5E81 C600 O01BF 0001 B9B6 00F3 A4BS
Gergana-222, 300,450, 512 - CN: Four new mutations of the Gergana virus, which are
longer than the original, with improved error handling, and several minor modifications.

Gergana-222 BF80 FFB9 3000 F3A4 E9C6 FDSE 81Cé6 0001
Gergana-300 BF80 FFBY9 3000 F3A4 E985 FDSE 81Cé6 0001
Gergana-450 BF80 FFBY9 3000 F3A4 E97E FDSE 81Cé 0001
Gergana-512 BAQO FAB4 3FCD 21C3 B900 02B4 40CD 21C3

GhostBalls - CN: A strain of Vienna virus. Seconds field changed to 62, as in Vienna.
Infective length is 2351 bytes and the virus attaches itself to the end of the file. When run,
it will infect other COM files and try to place a modified copy of the Italian virus into the
boot sector of drive A. This copy of the Italian runs on 286 machines but is non-infective.
Virus contains text ‘GhostBalls, Product of Iceland’.

GhostBalls AE75 EDE2 FASE 0789 BCl16 008B FE81 C71F
Gliss - CN: A German ‘demonstration’ virus - very obvious, and does nothing but
replicate.

Gliss 218B D8SF 578B 45FC 0527 O0OBF 0401 8905
Goblin - CER: A 1951 byte mutation of the Murphy virus. Detected by the HIV pattern.

Gosia 8BD6 81C2 7001 B001 B900 00B4 43CD 2172

Gotcha - CER: Two related viruses from East Europe, 879 and 881 bytes long. They
contain the text ‘GOTCHA!’ at the end, but it is not known when (or if) this text is
displayed.
Gotcha 9C3D DADA 7428 80FC 3D74 O0A3D 006C 7405
Gotcha-C - CER: A 906 byte mutation of the Gotcha virus. Awaiting analysis.
Gotcha-C 9C3D DADA 7458 5251 5350 5657 1E06 3D00

178 APPENDIX G

Gotcha-D - CER: The smallest member of the Gotcha family, 627 bytes long.
Gotcha-D 9C3D DADA 742E 5251 5350 5657 1E06 80FC

GotYou - EN: A 3052 byte virus which contains code to overwrite critical portions of the
hard disk. Not fully analysed.

Got You 6C00 4000 CS5AA FFFO 413A 0034 122A 2E2A
GP1 - CER: This is a Dutch, Novell NetWare-oriented mutation of the Jerusalem virus.
(VB June 91)

GP1 B4F7 CD21 80FC F773 1380 FC03 072E B8El6
Grapje!! - CEN: Awaiting analysis.

Grapje!! E8F3 01E8 2801 E89C 02E8 E202 730E B90A

Gremlin - CER: A 1146 byte ‘Diamond’ mutation detected by the same pattern.
Grither - CN: A 774 byte mutation of Vienna, which is detected by the Vienna (2)
pattern. When it activates, it overwrites part of the hard disk, including the beginning of
drive C.
Grune - CR: The name of this virus is derived from an encrypted text message, which
refers to the Green party of Switzerland. Infected programs grow by 1241 bytes.
Grune 3601 0026 C606 0000 4DSE 5681 Cé6D5 0483
Guppy - CR: A very simple 152 byte virus. It does nothing but replicate, but many
programs, including COMMAND.COM will fail to execute if infected.

Guppy 521E B802 3DCD 2193 E800 005E OELF B43F
Hafenstrasse - EN: An 809 byte virus, probably from Germany. Awaiting analysis..
Hafenstrasse F607 FF74 1E8A 170A D274 0743 B402 CD21

Hafenstrasse-791 - EN: Very similar to the original version, and detected with the same
pattern.

Hafenstrasse-1641 - CEN: Just like the 1689 byte mutation, this virus ‘drops’ the
Ambulance virus. It is detected with the Hafenstrasse-Kilroy pattern.
Hafenstrasse-1689 - EN: This 1689 byte updated version of the Hafenstrasse virus
differs considerably from the original. It contains a copy of the Ambulance virus, which
it will ‘drop’, infecting COM files, but the Hafenstrasse virus only infects EXE files.
Detected by the pattern for the 809 byte mutation.

Haifa - CER: This virus from Israel uses self-modifying encryption. The length is around
2350 bytes, but variable. No search pattern is possible.(VB Jan 92)

Hallochen - CER: A virus which reputedly originated in West Germany. It contains two

‘Acrivate Level 1..”. The virus will not infect ‘old’ files. If the value of the month or year
fields in the time stamp is different from the current date, the file will not be infected.
The virus will only infect files longer than 5000 bytes, increasing their length by 2011
bytes. (VB Feb 92)

Hallochen EB8C C903 D98E D3BC DB08 53BB 2E00 53CB
Halloween - CEN: Awaiting analysis.

Halloween 6F77 6565 6ES55 89E5 B8B8 009A 4402 5701

KNOWN IBM-PC VIRUSES 179

Harakiri - CEN: This 5488 byte high level language virus is not expected to become a
real threat, as it is much too obvious - it simply overwrites files when infecting.

Harakiri 5DC2 0400 052A 2E65 7865 015C 052A 2E63
Hary Anto - CR: A 981 byte virus, which has not been analysed yet. Reported ‘in the
wild’ in the UK.

Hary Anto B904 00D3 EBBB 3EO1 8907 40B9 0400 D3EO
Helloween - CER: Despite the name similarity, this virus is totally unrelated to the
Halloween virus. The name of this 1376 byte virus is derived from the string
‘HELLOWEEN’, which is stored inside it in encrypted form.

Helloween B440 EB02 B43F E815 0072 022B ClC3 33CY
Hey You-928 - CER: Unlike the 923 byte sample previously made available, this version
is able to replicate without problems. Not yet analysed.

Hey You 2181 F9C7 0772 1C80 FE02 7217 80FA 1972
Hero - CER: A primitive 506 byte virus, which will not replicate beyond the first
generation, as a programming error causes it to corrupt all programs it infects.

Hero COCF 80FC 4B74 2080 FC25 7516 3C80 7212
Hero-394 - ER: Related to the 506 byte Hero virus, but does not damage the files it
infects. Awaiting analysis.

Hero-394 B98A 0133 COBF 0002 0305 83C7 02E2 F929
HH&H - CR: A 4091 byte encrypted virus, which contains the curious string ‘HARD
HIT & HEAVY HATE the HUMANS !!’. Not yet analysed.

Hitchcock - CR: A 1247 byte virus. It activates a few minutes after an infected program
is run, and starts playing the tune from the Hitchcock TV-series.

Hitchcock 2BD0 4A45 03E8 8ECS5 4526 8916 0300 2689
HIV - CER: This virus is based on Murphy and contains a text message claiming it was
written by ‘Cracker Jack’ in Italy.

HIV 2BC3 1BD1 7204 2906 0600 8BF7 33FF OE1F
Horror - CER: An encrypted, 2319 byte virus.
Horror 8BFE 83C7 0ABY9 4E04 2E8A 849D 042E 3005

Horse, Hacker, Black horse - CER: A family of viruses probably from Bulgaria.
Currently 8 different mutations are known, which can be divided into two groups, with a
different pattern required for each group. Awaiting analysis. The first group contains
Horse-1 (1154), Horse-2 (1158), Horse-2B (1160) and Horse-7 (1152). The second
group of Horse viruses contains Horse-3 (1610), Horse-4 (1776), Horse-5 (1576) and

Horse-6 (1594).
Horse (1) 00A3 0001 8B46 02A3 0201 B800 018C CAEB
Horse (2) 570E 07B9 0800 F3A4 BO2E AAB9 0300 F3A4

Horse 8 - CER: No search pattern possible, virus awaiting analysis. Infective length is
2248 bytes.

Horse Boot - DR: Infects only floppy disks. Awaiting disassembly.
Horse Boot 8F06 727D 8F06 747D 48A3 1304 B106 D3EO

180 APPENDIX G

Horse Boot 2 - MR: This virus infects the Master boot sector and stores the original on
track 0, head 0, sector 7, while on floppy disks it is kept on the track 39, head 1, sector 9.
Horse Boot 2 FC29 COBE D8BD 007C FASE D08B ESFB 5055
Hungarian-473 - CR: Closely related to the Hungarian-482 virus, this 372 byte virus
activates on June 13th and then overwrites the Master Boot Sector of the hard disk.

Detected by the Hungarian-482 pattern.

Hungarian-482 - CR: This 482 byte virus from Hungary activates on November 7th. If
an infected program is run on that date it will display the string ‘Format ...” and proceed
to format the hard disk.

Hungarian-482 5603 F7AC OACO 740A DOE8 B40E B307 CD10
Hybrid - CN: A 1306 byte encrypted mutation of the Vienna virus which marks infected
files by setting the seconds field of the time stamp to 62. On any Friday the 13th after
1991 the virus will format the hard disk. It may also overwrite files and cause reboots.

Hybrid 81EE 7502 8BFE B9DE 01AC 34DE AA49 75F9
Hydra - CN: A group of 9 viruses, which do nothing particularly interesting.

Hydra (01) B43D B002 BA53 01BO 02CD 218B D806 1FB8

Hydra (02) B43D B002 BAS53 01CD 218B D806 1FB8 003F

Hymn - CER: A Russian, 1865 byte virus related to the ‘Eddie’ (Dark Avenger) virus,
and the ‘Murphy’ viruses.

Hymn FF64 F500 07E8 0000 5E83 EE4C FC2E 81BC
Icelandic, Saratoga - ER: The virus attaches itself at the end of an EXE file and after
becoming memory-resident, it will infect only one in ten (one in two for the Icelandic (2)
mutation) programs executed. When a program is infected, the disk is examined and if it
has more than 20 MBytes, one cluster is marked as bad in the first copy of the FAT. There
is a mutation which does not flag clusters. Version (1) will not infect the system unless
INT 13H segment is 0700H or FOO0H, thus avoiding detection by anti-virus programs
which hook into this interrupt. Version (3) does not flag clusters and bypasses all

interrupt-checking programs.
Icelandic (1) 2EC6 0687 020A 9050 5351 5256 1E8B DA43
Icelandic (2) 2EC6 0679 0202 9050 5351 5256 1E8B DA43
Icelandic (3) 2EC6 066F 020A 9050 5351 5256 1E8B DA43

IlIness - CR: This encrypted 1016 byte virus is probably of Polish origin. It contains the
text “WARNING : USE ONLY ORGINAL PROGRAMS DONAT COPY IT and now .. I
AMILL !V,

Illness BAF8 0383 EA20 33FF 3E8A 86F3 043E 2883
Incom - CN: Awaiting disassembly.
Incom 528B FA8B 4D02 8BDF 2BD9 83C3 1783 E92C

INT 13 - CR: Overwriting, stealth virus which subverts DOS and BIOS. The virus is 512
bytes long. Only selected COM files are infected during FCB find next function call.
(VB Mar 91)

INT 13 E200 50BF 4C00 5733 ED8E DDC4 1DBF 7402

KNOWN IBM-PC VIRUSES 181

Interceptor-Vienna - CN: This mutation written by Cracker Jack is quite similar to the
Monxla-B mutation. The search pattern can also be found in Monxla-B, but the viruses
can be distinguished by different lengths.

Interceptor B903 008B D683 C20D CD21 8Bh54 068B 4C04
Internal - EN: Infective length is 1381 bytes. Virus contains the strings ‘INTERNAL
ERROR 02CH’, ‘PLEASE CONTACT YOUR HARDWARE MANUFACTURER
IMMEDIATELY !’ and ‘DO NOT FORGET TO REPORT THE ERROR CODE !’.

Internal 1E06 8CC8 8ED8 B840 008E COFC EB858 0480
Intruder - EN: This 1319 byte virus seems to delete infected files occasionally, and
infected programs sometimes ‘hang’, but this seems to be due to sloppy programming.
Two minor mutations are known, A and B, but both are detected with the same pattern.

Intruder S5F32 COAA B0Ol1 OACO C35F 32C0 C3BA 0600
Iraqui Warrior - CN: A 777 byte mutation of Vienna, where numerous NOP instructions
have been added to avoid detection by current scanners.

Iraqui Warrior BFOO 0190 B903 O00F3 A490 8BF2 B430 90CD
Iron Maiden - CN: A 636 byte virus, which contains the text ‘IRON MAIDEN’ near the
end. It has not been fully analysed, but contains destructive code (INT 26H calls).

Iron Maiden 2425 CD21 SFOE 1F8B 8557 02A3 0001 8AAS
Italian, Pingpong, Turin, Bouncing Ball, Vera Cruz - DR: The virus consists of a boot
sector and one cluster marked as bad in the first copy of the FAT. The first sector in the
marked cluster contains the rest of the virus while the second contains the original boot
sector. It infects all disks which have at least two sectors per cluster and occupies 2K of
RAM. It displays a single character ‘bouncing ball’ if there is a disk access during a one-
second interval in any multiple of 30 minutes on the system clock. The original version
will hang when run on an 80286 or 80386 machine, but a new version has been reported
which runs normally. If a warm boot (Ctrl-Alt-Del) is performed after the machine
hangs, an uninfected disk will still become infected. (VB Nov 89)

Italian-Gen B106 D3E0 2DCO 078E COBE 007C 8BFE B900
Italian 32E4 CD1A F6C6 7F75 O0AF6 C2F0 7505 G2ES8
Italian 803 - CEN: Extends the length of COMMAND.COM by 805 bytes. Awaiting
analysis. Sample would not infect COM files other than COMMAND.COM. Italian 817
mutation, recognised by the same pattern and also known as XDV, overwrites the first

200 sectors on logical drives Z to A on 13th February of any year after 13:00.

Italian 803 7502 32C0 3CFF 7502 B001 5051 CD26 83C4
Itavir - EN: When the virus activates, it will write random data to all I/O ports causing
unpredictable behaviour such as screen flicker, hissing from the loudspeaker etc. Infective
length is 3880 bytes.

Itavir 83C4 025A 595B 5850 5351 52CD 2672 0D83
Itti-191, Itti-99 - CN: A primitive overwriting virus, which displays the text ‘EXEC
failure’ when it has infected a program. The virus will not attempt infection if it

182 APPENDIX G

determines that FluShot+ is active in memory. A related 99 byte virus also exists, but it
does not check for the presence of Flushot+.

Itti-99 998B CABS8 0042 CD21 B440 B963 00BA 0001
Itti-191 7415 B44E B927 00BA 8C01 CD21 7215 E81D
Jabberwocky - CER: An 812 byte virus, containing the text ‘BEWARE THE

JABBERWOCK’. Not yet analysed.
Jabberwocky 0500 108E COBE 0000 BFOO 00B9 FFFF F3A4
Jabberwocky-615 - CR: Detected by the Jabberwocky pattern.
Japanese Christmas-Cookie - CN: This 653 byte mutation of the Japanese Christmas
virus has been modified to display the messages ‘Give me a Cookie’ and ‘Cookie’.
Jap-Cookie 1B90 32E4 CF50 528A 1446 80F2 FE74 06B4
JD - CR: A group of four semi-stealth viruses, 356, 392, 448 and 460 bytes long. In
addition there are two shorter mutations, 158 and 276 bytes, with no stealth features. Not
fully analysed, but do not appear to do anything but replicate.

JD (1) 521E B813 35CD 2106 5304 11CD 2106 53BS8
JD (2) 5053 561E 068B F2B4 2FCD 21AC 3774 0383
JD-158 S5ABB 4300 8EDB 833D 3D74 08B4 25CD 21Bl

Jeff - CN: Just like the Klaeren virus, Jeff can not successfully infect files longer than
4096 bytes. The virus is 812 bytes long, (not 814 as originally reported). When it
activates it may overwrite sectors on the hard disk.

Jeff B89B FF8E CO0B9 3F00 33D2 32E4 8BD9 268A
Jerusalem, PLO, Friday the 13th, Israeli - CER: The virus attaches itselfto the beginning
of a COM file or at the end of an EXE file. When an infected file is executed, the virus
becomes memory-resident and will infect any COM or EXE program run, except
COMMAND.COM. COM files are infected only once, while EXE files are re-infected
every time that they are run. Infective length is 1813 bytes (COM) and 1808 bytes (EXE).
The virus finds the end of EXE files from the information in the file header, and if this is
less than the actual file length, the virus will overwrite part of the file. After the system
has been infected for 30 minutes, row 5 column 5 to row 16 column 16 on the screen are
scrolled up two lines, creating a ‘black window’. The system then slows down, due to a
time-wasting loop installed on each timer interrupt. If the system is infected when the
date is set to the 13th of any month which is also a Friday, every program run will be
deleted. (VB July 89)

Jerusalem mutations matching the following two search patterns:

Jerusalem 03F7 2E8B 8D11 00CD 218C C805 1000 8EDO

Jerusalem-USA FCB4 EOCD 2180 FCEO 7316 80FC 0372 11B4
Anarkia: Virus signature is changed from ‘sURIV’ to ‘ANARKIA’. Anarkia-B: Minor
mutation of Anarkia. Carfield: 1508 bytes long. Frere Jacques: There are two mutations
known as A and B which play the Frere Jacques tune on Fridays. Groen Links, GrLkDos:
An 1888 byte mutation from The Netherlands. Every 30 minutes it plays the tune ‘Stem
op Groen Link’ or ‘Vote Green Left’. Jerusalem-1600/1605: A shortened mutation
awaiting analysis. Jerusalem-Nemesis: A minor mutation of the original virus. Mendoza:

KNOWN IBM-PC VIRUSES 183

A mutation of Anarkia. Messina: A very minor mutation. A-204, Payday, Puerto,
Spanish and Jerusalem-G: Mutations.

Jerusalem-1244 - CER: One of the shortest Jerusalem mutations, only 1244 bytes long.
Jerusalem-1244 2638 05E0 F906 OEO07 1F8B D7B8 004B 83C2
Jerusalem-1361 - CER: A stripped-down version of the Jerusalem virus, with all

unnecessary code removed. Does not appear to do anything but replicate.

Jerusalem-1361 218C €805 1000 8EDO 50B8 2F00 50CB FCO06
Jerusalem-1735 - CER: A 1730/1735 byte mutation, which seems related to the 1767
mutation. Not fully analysed. Detected by the Jerusalem Mummy pattern.
Jerusalem-1767 - CER: This 1767 byte version contains the text ‘** INFECTED BY
FRIDAY 13th ***. Awaiting analysis.

Jerusalem-1767 7F33 COF2 AF8B D783 C202 B800 4B06 1FOE
Jerusalem-2187 - CER: Yet another Jerusalem mutation 2187/2189 bytes long. Detected
by the Jerusalem Mummy pattern.

Jerusalem Barcelona - CR?: Unlike most other members of the Jerusalem family, this
1792 byte virus does not seem to infect EXE files. It is of Spanish origin, and seems to be
politically motivated. Detected by the Jerusalem Mummy pattern.

Jerusalem-Clipper - CER: A 1408/1413 byte mutation of Jerusalem. It will generally
infect EXE files. No COM files were infected during testing, although the original
sample was a COM file. Awaiting analysis.

Jeru Clipper B87D 4BCD 213D 5456 7510 072E 8E16 1200
Jerusalem-CNDER - CER: A minor mutation of the 1808/1813 byte standard version,
with the self-recognition code changed from ‘sURIV’ to ‘CNDER’. Detected with the
Jerusalem-USA pattern.

Jerusalem-Einstein - ER: An 878 byte rewritten mutation of the Jerusalem virus, which
is not able to infect COM files. Awaiting analysis. (VB Jan 92)

Einstein 7FF2 AE26 3805 EOF9 8BD7 83C2 0306 1FOE
Jerusalem-IRA - CER: What primarily makes this mutation different from the standard
one, is the inclusion of a long list of encrypted names, as well as texts like ‘.. died for
Ireland’ and °.. is still a political hostage’. Detected by the Jerusalem Mummy pattern.
Jerusalem-Miky - CER: A 2350 byte mutation of the Jerusalem virus, which is reported
to have originated in Bolivia.

Miky 7F32 COF2 AE26 3805 EOF9 8BD7 83C2 038C
Jerusalem Moctezuma - CER: A 2228 byte polymorphic mutation of the Jerusalem
virus, which contains the text ‘Moctezuma’s Revenge’. Only a short search pattern is
possible.

Jeru Moctezuma 062E 8F06 0201 1E2E 8F06 0001 OEO07 OE1lF
Jerusalem-Mummy - ER?: This 1489 byte mutation seems only able to infect EXE files.
It contains an encrypted text string which claims it was written in the Kaohsiung Senior
School. It has not been fully analysed. (VB May 92)

Jer -Mummy 2638 05E0 F98B D783 C203 B800 4B06 1FOE

184 APPENDIX G

Jerusalem Nov 30 - CER: This 2000 byte mutation activates on November 30th, instead
of Friday the 13th.

Jeru Nov 30 2638 0SE0 F98B D783 C203 061F O0E07 BB30
Jerusalem Sub Zero, Skism11, Skism12 - CER: Three 1808/1813 byte non-remarkable
mutations, which are detected by the Captain Trips pattern.

Jerusalem-T13 - CER: An 1807/1812 byte version of the Jerusalem virus. It is detected
by the Suriv 3.00 pattern.

Jerusalem-Tobacco - CER: This mutation is almost identical to the AntiCad-2900
mutation, with little more than a few encrypted text strings changed. It is detected with
the AntiCad-2576 pattern.

Jerusalem-Triple - CER: A patched minor mutation of the 1808/1813 byte standard
version, with the self-recognition code changed and a few code patches. Another sample
with the name ‘Dragon’ appeared, but it seems virtually identical. Detected with the
Jerusalem-USA pattern.

Jihuu - CN: A Finnish 621 byte virus, which may display various messages, depending
on the current date and time.

Jihuu 8BCA B3EF 0489 0D89 4502 B800 4233 C933
Jo-Jo -CR: This is anon-encrypted version of Cascade with the encryption code patched
out and a few other changes made.

Jo-Jo B800 FOBE COBF 08EQ0 813D 434F 751B 817D
Jocker - CN: An overwriting virus from Poland, written in some high-level language,
probably Pascal.

Jocker 89ES5 81EC 0001 BFO00 000E S57BF 401B 1ES57
Joker-01 - CR: A huge, 29233 byte virus of Polish origin.

Joker-01 8CC2 4ABE C28C DA4A 8EDA 5A90 26A1 0300

Joshi - MR: This virus from India displays the message ‘Type ‘Happy Birthday Joshi” on
5th January of every year. Unless the user enters the text verbatim, the computer will
hang. The virus traps disk reads and any program trying to discover it while the virus is
active in memory, will not locate it. Survives warm boot. (VB Dec 90). Original MBS is
stored in Head 0, Cylinder 0, Sector 9.

Joshi 03F0 03F8 B979 012B C8FC F3A6 7510 8CCO
July 13th - ER: This encrypted virus will activate on 13th July, but its exact effects have
not yet been determined. It is 1201 bytes long.

July 13th 2EA0 1200 3490 BE12 00B9 B104 2E30 0446
Justice - CR: A 1242 byte virus which has not been fully analysed. Many computers
‘hang’ after running an infected program.

Justice 509F 83C4 089E 9C83 EC06 58CF 3CFF 7504
Kalah - CR: This 390 byte virus is quite harmless - it does not have any effects other than
possibly displaying ‘VDV 91°.

Kalah B43F CD21 8BOE 0000 2E3B 0E00 0175 OBSB

KNOWN IBM-PC VIRUSES 185

Kamikaze - EN: This overwriting virus from Bulgaria is written in Turbo Pascal, and is
fairly large, 4031 bytes. Like other similar viruses it is not a serious threat.

Kamikaze 8ADO A082 2230 E48B F888 9509 1080 3EB82
Karin, Redstar - CN: This German virus adds either 1090 or 1134 bytes to the programs

it infects. It is mostly harmless, but will activate on October 23rd when it displays the
message ‘Karin hat GEBURTSTAG’.

Karin BBOO 0153 F3A4 BE0OO F8BF 8000 B980 O00F3
Kemerovo - CN: A Russian, 257 byte virus. Some infected programs fail to execute
properly, but no other effects are known.

Kemerovo 0400 89C7 B904 00A4 E2FD 89D7 29D3 B81EB
Kemerovo-B - CN: Similar to the original Kemerovo virus, but appears to have been
assembled with a different assembler. Does nothing of interest.

Kemerovo-B 0400 8BF8 B904 00A4 E2FD 8BFA 2BDA B81EB
Kennedy - CN: A simple COM infecting virus, probably originating from Sweden.
When an infected file is run, it will infect a single COM file in the current directory,
expanding it by 333 bytes at the end. The virus activates on three dates: 6th June, 18th
November and 22nd November and displays the message ‘Kennedy er dod - lange leve
‘The Dead Kennedys”.

Kennedy E817 0072 04B4 4FEB F38B C505 0301 FFEO
Keyboard Bug - CER: This virus was received from Kiev, but has not yet been fully
analysed. Analysis is complicated by the fact that the virus uses multiple layers of
encryption, as well as other methods to hide from debuggers. The effects are unknown,
but are assumed to be keyboard-related. The length has been reported as 1720, but the
actual increase in length is variable.

Keyboard Bug 1E53 2EFF B597 07BB 6E06 B928 0158 2E30
Keydrop - DR: Infects only floppy disks. Awaiting disassembly.
Keydrop ACOA C075 0832 E4CD 16CD 19EB DBB4 O0EB7

Keypress, Turku, Twins - CER: This virus was discovered at the same time in Finland,
USSR and Bulgaria, which makes its origin somewhat uncertain. It will infect COM and
EXE files, but the length ofthe virus code is different, 1232 and 1472 bytes, respectively.
After being resident for some time the virus will interfere with the keyboard, causing
keys to ‘repeat’.

Keypress 7405 C707 0100 F9FS5 1FC3 Fé606 1801 0174
Keypress-1228 - CER: Only slightly different from the 1232 byte mutation, but was
discovered in Kansas. It is detected by the ‘Keypress’ pattern.

Keypress-1744 - CER: Not fully analysed, but does not seem to be significantly different
from the other mutations.

Keypress-1744 3F02 7405 C707 0200 F9F5 1FC3 F606 1801
Kiev - CR: Infected files grow by 483 bytes, but this increase is not visible when a DIR
command is issued.

Kiev 8BD3 81C2 FBFF 8BDF B440 CD21 5B72 0053

186 APPENDIX G

Kit - CER: This virus has one serious ‘bug’ - it will re-infect the same file over and over.
Itis 2384 bytes long, but has not been fully analysed. Contains the text ‘Copyright 1991-
1999. KIT VIRUS (version 2.0).’

Kit 2EC5 1619 00B8 2425 CD21 071F S5FS5E SA59
Klaeren - CER: This 974 byte virus contains a serious error, which prevents it from
infecting successfully any file larger than 4096 bytes. This encrypted virus contains the
text string ‘Klaeren Ha, Ha!’ (Klaeren: the name of a professor in the school where the
virus was written.)

Klaeren 5351 E800 005B 81EB AF03 B9A5 0380 37
KO-407, Dodo-Pig, GIP - CR: Closely related to the Ko-408 virus. It contains the text
‘GIP’. There is yet another mutation, 408 bytes long, which contains the text ‘Birdie
Hop!’ and is also detected with the same pattern.

KO-407 B802 4233 C9BA FFFF CD21 508B D033 C9B8
KO-408 - CR: 408 byte virus. Not yet analysed.
KO-408 5B53 B802 4233 C9BA FFFF CD21 8BDO 33C9

Korea, NJH - DR: A simple boot sector virus with no side-effects. It may cause damage
to data, as the original boot sector is always written to sector 11. There are two versions,
probably due to two different assemblers being used.

Korea CO8E DB8S8E DOBC FOFF FBBB 1304 8B07 4848
KuKu - CN: This 448 byte virus may either infect files in an ordinary way, or overwrite
them with a small program, which will display the word ‘Kuku!’ on the screen when it is
run.

Kuku 241F 3COA 750C B42C CD21 80E6 0775 E3BD
Kylie - CER: A 2272 byte mutation of the Jerusalem virus, which plays a tune when it
activates.

Kylie E2FE C3E4 6124 FCE6 61C3 5357 4343 8B3E
Lao Duong - ?: A boot sector virus from Thailand awaiting analysis. It reportedly plays
a Laotian funeral dirge when it activates.

Lao Doung A34C 0006 1FF6 C280 7539 BBOO 7EBA 8001
Lazy - CR: A primitive 720 byte virus, which always occupies the same area in memory
and may cause system crashes if a large program is run. The major effect of the virus is
a slowdown of the computer.

Lazy 1E84 0026 Al86 008E C026 8B07 BB90 5029
LBBCV-Timid - CN: Trivial virus published in the Little Black Book of Computer
Viruses by Mark Ludwig. No side effects.

LBBCV-Timid 2EFC FF09 00BA 2AFF B41A CD21 ES83E 0075
LBBCV-Intruder - EN: Trivial virus published in the Little Black Book of Computer
Viruses by Mark Ludwig. No side effects.

LBBCV-Intruder E867 0375 18E8 6B03 EB86E 03E8 2600 7509
LBBCV-Kilroy - DN: Trivial virus published in the Little Black Book of Computer
Viruses by Mark Ludwig. No side effects.

LBBCV-Kilroy 721A 813E FEO6 S55AA 7512 ESFE 00BA 8001

KNOWN IBM-PC VIRUSES 187

LBBCV-Stealth - MR: Trivial virus published in the Little Black Book of Computer
Viruses by Mark Ludwig. No side effects.

LBBCV-Stealth FB80 FC02 740A 80FC 0374 3C2E FF2E 3070

Leech - CR: A 1024 byte virus which has not been analysed yet. It uses self-modifying
encryption, which makes the extraction of a usable pattern difficult.

Leech FA1E 078B ECSB E681 C4E4 038C
Leech live - CR: Awaiting analysis.
Leech live S5E1E FAQ07 8BEC 8BE6 81C4 E403 8CCB8 8CDl

Lehigh - CR: The virus only infects COMMAND.COM. It is 555 bytes long and
becomes memory-resident when the infected copy is run. If a disk is accessed which
contains an uninfected COMMAND.COM, the copy is infected. A count of infection
generation is kept inside the virus, and when it reaches 4 (or 10 in a mutated version), the
current disk is trashed each time a disk is infected, provided that (a) the current disk is in
either the A drive or B drive, (b) the disk just infected is in either the A drive or B drive
and (c) the disk just infected is not the current one. The trashing is done by overwriting
the first 32 sectors following the boot sector. Infection changes the date and time of
COMMAND.COM.

Lehigh 8B54 FC8B 44FE 8ED8 B844 25CD 2106 1F33
Leningrad, Sovl, Sov2 - CN: Two viruses, 600 and 543 bytes long, first reported in
Leningrad (now St. Petersburg), and probably written by the same author. The 600 byte
mutation has not been analysed, but the other mutation will activate on any Friday the
13th, and display the message ‘That could be a crash, crash, crash!’.

Leningrad-1 F3A4 E8D4 01E8 8C01 7303 E8CO 01E8 1900
Leningrad-2 E80D 02E8 9801 3C00 740D E8B4 013C 0074
Leprosy - CN: A 666 byte encrypted overwriting virus, similar to Leprosy-B but using a

different encryption method.

Leprosy 558B ECS56 8B76 04EB 0480 2CO0A 4680 3C00
Leprosy-B - CER: A 666 byte overwriting virus, which is easily detected, as infected
programs do not run normally, but instead display a message announcing the virus.

Leprosy-B 8A27 3226 0601 8827 4381 FBCB 037E F1C3
Leprosy-Busted - CN: A primitive, encrypted, overwriting virus.

Leprosy-Busted 8BOE 0B02 51E8 OF00 5BB9 3B02 BAQO 01B4
Leprosy-C - E?: Awaiting disassembly.

Leprosy-C 5633 F6E8 5100 OBCO 740A E818 0046 FEO06
Leprosy-C2 - CEN: A primitive 666 byte overwriting virus. When run, it displays the
message ‘Program to big to fit in memory’. This virus is floating around on virus BBSs
under the name of ‘Durango’, but in fact it is just a minor mutation of the Leprosy-C
virus.

Leprosy-C2 S3E8 1000 5B90 BY99A 02BA 0001 B440 CD21
Leprosy-D - CN: A 370 byte overwriting virus, derived fom one of the earlier mutations.
Infected programs must be deleted.

Leprosy-D B43B CD21 4683 FE03 7CE6 EBOO 5EC3 8Bl16

188 APPENDIX G

Leprosy-Viper - CEN: This 840 byte mutation is similar to the Plague mutation, but it
uses a slightly modified encryption algorithm. Just like the C2 mutation it is only found
on virus BBSs, and is not a serious threat.

Leprosy-Viper BB3A 018A 2732 2606 0188 2790 9090 4381
Leszop - C7: Virus awaiting disassembly.
Leszop 1FC7 060C 7C62 008C 060E 7CFB FF2E 0C7C

Liberty - CEDR: A multi-partite virus from Indonesia with an infective length of 2857
bytes. When triggered, the virus reformats track 0 on the hard disk. When exhibiting
multi-partite behaviour, the virus only infects floppy disk boot sectors. (VB Oct 91)

Liberty 0174 031F 595B 5053 5152 1E06 1EOE 1FE8

Liberty-1 B931 2833 D2CD 1306 BBS5C 0653 CB2E B03E
Liberty 1186 - CR: Awaiting analysis. Not connected with the Liberty virus.

Liberty 1186 AO2E 01CD 2183 FBFF 7431 B403 33DB CD10

Liberty-SSSSS - CR: This 1170 virus bears some resemblance to the Liberty virus, but
might not be directly related. It is 1170 bytes long, but has not been fully analysed.

Liberty-SSSSS FACD 21FA OEL1F B425 AO2E 01BA FFFF 1F1E
Little Brother - P: A 299 byte ‘companion’ virus, which does not seem fully finished.

Little Brother 7418 5253 501E 063D 004B 7503 E810 0007
Little Pieces - ER: A 1374 byte virus, which has not been fully analysed. It will
occasionally clear the screen and display the message: ‘One of these days I'm going to
cut you into little pieces’.

Little Pieces 9DCA 0200 33DB 8EDB C747 4C56 018C 4F4E
Locker - CER: A 1642 byte mutation of the Murphy virus, written by Cracker Jack and
detected by the HIV pattern. The virus has not been fully analysed yet, but under certain
circumstances it will ask the user for a password.

Lozinsky - CR: A Russian, 1023 byte virus, which uses a simple encryption algorithm.

Lozinsky FCBF 2000 O3FE B9DO 032E 3005 47E2 FABS
Lozinsky-1018 - CER: Very closely related to the 1023 byte version.
Lozinsky-1018 EB00 O00SE 2E8A 44FC BF20 0003 FEB9 CBO3

LoveChild - CN: Infective length is 488 bytes. Contains strings ‘v2 (c¢) Flu Systems (R)’
and ‘LoveChild in reward for software sealing.” [sic]. The virus trojanises certain
program files which, when trigerred, overwrite sectors 1-16, heads 0-3 on every track of
the first hard disk with garbage. (VB Feb 91)

LoveChild 33C0 8ECO E800 O00SE 8BEE BFEO 01FC 2681
LoveChild Trojn B901 OOBA 8003 8BDY B810 03CD 13FE CE79
Lovechild-B3 - MR: This virus is probably written by the author of the Lovechild virus,

but it is totally unrelated - very similar to the New Zealand virus.

Lovechild-B3 33C0 8ECO B801 028B DC2E 803E 047D 0074
Lucifer - CER: A 1086 byte mutation of the Diamond virus. Detected by the Diamond
pattern.

KNOWN IBM-PC VIRUSES 189

Macedonia - CR: One of the few viruses which carry a political message - ‘Macedonia
To The Macedonians’. This 400 byte virus has no effects other than displaying this
message.

Macedonia 7527 E871 002E 8B04 2EA3 0001 2E8B 4402
Macho - CEN: Swaps every string ‘MicroSoft’ with ‘MachoSoft’ on the hard disk.
Searches 20 sectors at a time, storing the last sector searched in IBMNETIO.SYS which
is marked hidden and system. After searching the last sector it starts again. This will only
happen after 1st January 1985 and if the environment variable VIRUS is not set to OFF.
Infective length is 3550 to 3560 bytes. Random directory search for uninfected files.
Infects COMMAND.COM. This virus is closely related to Syslock. (VB May 91)

Macho 5051 56BE 5900 B926 0890 D1E9 BAE1l B8ACl
Malaga - CERD: One of the relatively rare multi-partite viruses. It is 2610 bytes long,
but in addition to infecting files it will also infect DOS boot sectors on diskettes and hard
disks.

Malaga 2D04 00A3 1304 B106 D3EO 2DCO 078E CO8B
Maltese Amoeba, Irish, Grain of Sand - CER: A destructive virus which overwrites the
first four sectors of tracks 0 to 29 of the hard disk and any diskette in the disk drive, if the
date is 1st November or 15th March of any year. A psychedelic screen effect follows.
When the machine is powered up, a fragment of a poem (The Auguries of Innocence) by
William Blake (1745-1827) appears on the screen and the machine hangs. Infection
happens at load-and-execute and file close. The virus employs self-modifying encryption
and no search pattern is possible. (VB Dec 91)

Mannequin - CER: A 778 byte virus which has only one unusual effect - it intercepts
INT 17H (the printer interrupt) and strips the top bit of any character sent to the printer.
Mannequin 5251 5350 32C0 1E07 8BFA B941 O00FC F2AE
Magnitogorsk, 2560 - CER: This virus has not been fully analysed yet, but it contains a

greeting to a Mr. Lozinsky, who seems to be the author of an anti-virus program.

Magnitogorsk 2E8B 851F 003D FFFF 7413 BE3E 0003 F7B9
Manuel - CR: This 957 byte virus contains the text: ‘Soy un Manuel Virus de tipo C’. Not
fully analysed.

Manuel F9C3 A675 FBF8 C3FC 268A 25AC 3C00 7415

Marauder - CN: This virus contains text which indicates it was written by the authors of
the Phalcon and Skism viruses. It is polymorphic, and no simple search string is possible
from the decryption routine. The virus is 860 bytes long.

Marauder ES00 O00SE 81EE 0E01 E805 00E9 8700
Marauder-560 - CN: This seems to be an older and more primitive mutation of the
Marauder virus. One significant difference is that the encryption routine is not polymorphic.

Marauder-560 0056 5D81 C646 018B FEFC AD33 8619 O1AB
Mardi Bros - DR: The major effect of the virus is to change the volume label to ‘Mardi
Bros’. It is believed to be of French origin.

Mardi Bros EOBE COBE 007C 31FF B900 14FC F3A4 06B8

190 APPENDIX G

MG - CR: A simple, 500 byte Bulgarian virus.

MG AA1lF 1E07 585E 1EBB 0001 53CB 3D04 4B74
MG-1A - CR: A minor mutation of the MG virus.

MG-3 - CR: A 500 byte Bulgarian virus, reported to be written by the same author as the
MG virus.

MG-3 C43E 0600 BOEA 49F2 AE26 C43D B83EF DFEA
MG-4 - CR: A 500 byte virus from Bulgaria, which is closely related to the MG-3 virus,
and is detected by the same pattern..

MGTU - CN: A simple, 273 byte Russian virus.

MGTU 03F8 BEOO 018B 0589 048B 4502 8944 02B8
Michelangelo - MR: A mutation of the New Zealand virus, which will activate on March
6th and overwrite the first 17 sectors on every track of the hard disk, heads 0 to 4. On
360K floppies it will destroy sectors 1 to 9, heads 0 and 1, while on other floppies it will
destroy the first 17 sectors of each track. Original MBS is stored in Head 0, Cylinder 0,
Sector 7. (VB Jan 92)

Michelangelo BEOO 7C33 FFFC F3A4 2EFF 2E03 7C33 CO8E
Micro-128 - CR: This virus from Bulgaria is the smallest memory-resident virus known.
It occupies part of the interrupt table and does nothing but replicate.

Micro-128 7501 A5A4 31C0 8ECO BF03 03Bl 7DF3 A4AF
Microbes - DR: An Indian virus the effects of which are not fully known, except that
booting from an infected disk has been reported to cause some computers to ‘hang’.

Microbes 042D 0400 A313 04Bl1 06D3 EO8E CO006 C706
Migram-1 - ER: A 1219 byte mutation of the Murphy virus. Detected by the Murphy 2
pattern.

Migram-2 - ER: A 1221 byte mutation of the Murphy virus. Detected by the HIV
pattern.

Milan Overwriting, BadGuy, Exterminator - CN: A group of primitive, overwriting
viruses from Italy. Two mutations are known - BadGuy, which is 265 bytes long and does
nothing but replicate and Exterminator which is 451 bytes long. When it activates, it
overwrites the beginning of the hard disk, generally destroying the FAT and root

directory of drive C.
Exterminator 02EB E2B4 2ACD 213C 0174 O03EB 2F90 C606
BadGuy 02EB D9B4 2ACD 213C 0174 11EB 1DSO0 071F

Milana - CER: This 1160 byte virus contains various pieces of code which seem to have
been copied from the Dark Avenger virus, so they should probably be classified as
belonging to the same family. The name is derived from the string ‘I Love Milana’, but
the effects are not fully known.

Milana A4A5 1F8B 2606 0033 DB53 FFEO BA10 OOF7
Milous, Cadkill - CER: This 1163 byte virus has not been fully analysed yet.
Minimal-30 - CN: This virus is only 30 bytes long. When an infected program is run, it
will overwrite the first file in the current directory.

Minimal-30 3DBA 9E00 CD21 93B4 408B D68B CECD 21C3

KNOWN IBM-PC VIRUSES 191

Minimal-30-B - CN: This is practically the same virus as the Minimal-30 virus, but it has
been assembled with a different assembler, which has produced a slight difference.

Minimal-30-B 3DBA 9E00 CD21 93B4 4089 F28B CECD 21C3
Minimal-45 - CN: This Bulgarian overwriting virus is only 45 bytes long. When run, it
will overwrite all COM files in the current directory with itself.

Minimal-45 0001 B92D 00B4 40CD 21B4 3ECD 21B4 4FEB
Minimal-46 - CN: A primitive overwriting virus which does nothing but replicate,
Minimal-46 D8BA 0001 B12E B440 CD21 B43E CD21 B44F

MIR - CER: A 1745 byte mutation of the Dark Avenger virus. The first generation
sample contains the text ‘M.LR. *-*-*-* Sign of the time!’, but it is corrupted in later
generations. Detected by the ‘Dark Avenger’ pattern.

Mirror - ER: The virus is 924 bytes long, but infected programs may grow by a
maximum of 940 bytes. When the virus activates it reverses the contents of the screen,
displaying a mirror image of what was there before.

Mirror 8A07 2688 0743 E2F8 B821 2506 1FBA DCOO
Mistake, Typoboot - DR: Exchanges letters for phonetically similar ones (for example
‘C’ & ‘K’) while they are being output to the printer. Reportedly written in Israel. A
mutation of the Italian virus with about 35% of the code rewritten. The boot sector is
almost identical to the Italian virus.

Mistake 32E4 CD1A 80FE 0376 0AS90 9090 9090 52E8
MIX1 - ER: The virus infects only EXE files, attaching itself to the end. When an
infected program is run, the virus will copy itself to the top of the free memory. Some
programs may overwrite this area, causing the machine to crash. The virus traps printer
and asynch interrupts and corrupts traffic by substituting characters. 50 minutes after
infection, the virus alters the Num Lock and Caps Lock keyboard settings. 60 minutes
after infection, a display similar to the Italian virus (bouncing ball display) will be
produced. The virus will infect every tenth program run. Infected files always end in
‘MIX1’ and the infective length of MIX1 is 1618 to 1633 bytes and MIX1-2 1636 to
1651 bytes. (VB Dec 89)

MIX1 B800 O008E C026 803E 3C03 7775 09S5F S5ES59
MIX1-2 B800 008E COBE 7103 268B 3E84 0083 C70A
MIX2 - CER: This is a 2280 byte Israeli virus based on MIX1 but improved with the

addition of encryption and COM file infection.

MIX2 EE8C C803 C650 B826 0050 CBSS S08C COES
MLTI - CR: This 830 byte Russian virus contains the following text, which clearly refers
to the Dark Avenger virus. ‘Eddie die somewhere in time! This programm was written in
the city of Prostokwashino (C) 1990 RED DIAVOLYATA Hello! MLTI!’

MLTI 5B73 05B8 0001 50C3 83FC E072 F62E C747
Mono-1063 - CR: A 1063 byte Polish virus, which deletes files when it activates,
provided it is running on a machine with monochrome display.

Mono FDF3 A406 E800 0059 83Cl 0651 CB2E B8C4F

192 APPENDIX G

Monkey - MR: Two viruses based on the New Zealand virus, which store the original
boot sector encrypted making disinfection more difficult.

Monkey-1 48A3 1304 B106 D3EC 0420 8ECO C356 8BFB
Monkey -2 48BF 1404 4F89 05B1 06D3 E004 208E CO0C3
Monxla, Time - CN: A 939 byte mutation of the Vienna virus, which activates on the 13th

day of any month and then damages programs, instead of just infecting them.

Monxla 8B07 S5B8E COBF 0000 5E56 83C6 1AAC B900
Monxla-B - CN: This 535 byte virus is probably an older version of the Monxla virus. It
retains code from the Vienna virus which deletes programs instead of infecting them 1 in
every 8 times.

Monxla-B 8994 1600 B42C CD21 80E6 0775 10B4 40BO
Mosquito - ER: A 1024 byte virus awaiting analysis.
Mosquito 5650 BE49 002E 8A24 2E32 261E 002E 8824

Mosquito-Pisello - ER: 1024 bytes long, just like the original version, but not fully
analysed.

Mosquito-Piselo 5650 BES1 032E 8A24 2E32 265D 012E 8824
Mosquito-Topo - ER: A 1536 byte mutation of the Mosquito virus. Awaiting analysis.

Mosquito-Topo 5650 BE68 002E 8A24 2E32 263D 002E 8824
MPS-OPC - CN: Three Polish viruses, 469, 640 and 654 bytes long. Not yet analysed.
MPS-OPC 1.1 B447 CD21 SE8B FE81 C72D 0232 COB9 4000

MPS-OPC 3.1/3.2 OADB 7441 B42C CD21 3ADA 7304 2AD3 EBF8
MPS-OPC 4.01 - ER: This virus is probably written by the same author(s) as the other
MPS-OPC viruses - a Mr. Marek Pande, according to reports from Poland. Structurally it
is very different however, and belongs to a different virus family. Not yet analysed.

MPS-OPC 4.01 CD27 A12C 008E D833 FF8B 0547 0BCO 75F9
Mshark - CN: The name of this 373 byte virus is derived from the string ‘(C) Mshark-S
v.1.0’. This is a simple virus, with no effects other than possibly causing a reboot.

Mshark 0103 D6CD 2132 DB56 81C6 5601 B914 00AC
MSTU - CEN: This virus contains the text ‘This program was written in MSTU,1990’
Not fully analysed, but appears to do nothing of interest. Virus length is 532 bytes.

MSTU BB16 0026 8B07 3DEB 55C3 SEB8B C6Bl 04D3
MSTU-554 - CEN: Closely related to the 532 byte mutation and detected by the same
pattern.

Mule - CER: A 4112/4117 byte encrypted mutation of Jerusalem, which was first
reported in Australia, but may have originated in Thailand. Not yet analysed. Detected by
the Jerusalem 1 pattern.

Multiface, Portugese - CR: This is a 1441 byte virus from Portugal. It is reported to
display multiple ‘smileys’ on the screen. (VB May 92)

Multiface 8ED8 58C6 075A C747 0100 0089 4703 5B8D
Munich - CN: Encrypted 2355 byte virus. Not yet analysed.

KNOWN IBM-PC VIRUSES 193

Murphy - CER: Two versions exist. One produces a click from the loudspeaker when any
DOS functions are called, while the other may produce a bouncing ball effect when the
user enters ROM BASIC. The virus will only activate between 10:00 and 11:00 a.m.

Murphy 1 1EE8 0000 B859 4BCD 2172 03E9 2801 HKELé

Murphy 2 1EE8 0000 B84D 4BCD 2172 03E9 2601 5E56
Murphy-3 - CER: A 1284 byte mutation of Murphy detected by the ‘HIV’ pattern.
Murphy-4 - CER: A 1480 byte mutation of Murphy detected by the ‘Murphy 2’ pattern.
Murphy-Amilia - CER: This Canadian virus is based on the HIV mutation, and is only
slightly modified. It is 1614 bytes long, and detected by the HIV pattern.

Murphy-Bad Taste - CER?: This encrypted virus should be able to infect COM files, but
during testing it only infected EXE files, unlike other Murphy mutations. It contains the
text ‘Bad Taste Ltd. (C) 1991 by Odrowad Trow.....who am 1???’ This 1188 byte virus is
detected by the pattern for Murphy-2, but only in EXE files.

Murphy-Brothers - CER: A 2045 byte mutation of the Murphy virus, which contains the
text ‘Brothers in arm’. Detected by the HIV pattern. Not yet analysed.
Murphy-Tormentor - CER?: This virus would actually only infect EXE files during
testing, but it seems to contain code to infect COM files too. Detected by the HIV
pattern.

Murphy-Tormentor-D - ER: This 1040 byte mutation is closely related to the Tormentor
mutations. Detected with the HIV pattern.

Music Bug - DR: Contains text strings ‘MusicBug v1.06 MacroSoft Corop.” and ‘-
Made in Taiwan --’. If a machine has been infected for more than 4 months, a random
tune of 36 notes may be played (14% probability). (VB Nov 91)

Music Bug 08FC F3A5 06B8 0002 50CB 5053 5152 2EA3
Mutant - CN: Three mutations of this virus are known, of which two, 123 and 127 bytes
long, are only able to infect small files correctly. This is ‘corrected’ in the third mutation,
also 127 bytes long. The viruses have no interesting side-effects.

Mutant C98B D1B8 0042 CD21 5972 065A 52B4 40CD
Mutation Engine: Not a virus on its own, but provides an easy way of adding self-
modifying encrypting behaviour to an existing virus.

Mutation Engine ES8BE 0059 SEBF 5905 2BF9 5752 F3A4 595A
New BadGuy, Milan Overwriting-208, Crackpot-208 - CN: A 208 byte mutation of the
BadGuy virus by Cracker Jack, created by adding NOP instructions at various locations
in the code. The only effect other than replication is to display a message on Mondays.

New BadGuy 2E8A 1780 F243 90B4 02CD 2190 43FE (€990
New Zealand, Stoned, Marijuana - MR: The virus consists of a boot sector only. It infects
all disks and occupies 2K of RAM. On floppy disks, logical sector 0 is infected, while on
hard disks sector 1 head 0 track 0 (Master boot sector) is infected. The original boot
sector is stored in track 0 head 1 sector 3 on a floppy disk and track 0 head 0 sector 2 on
ahard disk. The boot sector contains two character strings: ‘Your PC is now Stoned!’ and
‘LEGALISE MARIJUANA'’ but only the former one is displayed, once in eight times,
and only if booted from floppy disk. The version (2) stores the original boot sector at

194 APPENDIX G

track 0 head 0 sector 7 on a hard disk. The second string is not transferred when a hard
disk is infected. A mutation displays the message ‘Your PC is now Sanded’. A mutation
has been reported in Australia which also displays ‘LEGALISE MARIJUANA'’.
(VB May 90)

New Zealand (1) 0400 B801 020E 07BB 0002 B901 0033 D29C

New Zealand (2) 0400 B801 020E 07BB 0002 33C9 8BD1 419C
Nina - CR: Yet another small virus from Bulgaria. This one is 256 bytes long.

Nina 03F7 B900 O01F3 A458 1EBD 0001 55CB 5858
Nines Complement - CR: This 705 byte virus interferes with printer operations,
changing numbers 0 to 9, 1 to 8 etc. (VB June 92)

Nines Complemnt E800 005B BE11l 0003 F3B9 AA02 89F7 AC30
Nines Complement-776, 706 - CR: Two new mutations have appeared, where the initial
decryption routine has been modified, in order to bypass scanners detecting the original
version.

Nines Comp-766 E800 005B BEOE 0003 F3B9 F402 301C 46E2
Nines Comp-706 E800 005D BE17 0001 EEB9 AS502 89F7 8BDD
NKOTB, Cover Girl - CN: A 723 byte overwriting virus, where most of the virus body

contains a silly message.

NKOTB BAOO 01CD 21B4 3ECD 219F B908 00D3 C82B
No Bock, 440 - CN: When this 440 byte virus activates, it displays the message ‘No Bock
today error. System Halted’ and stops the system.

No' Bock A48B FDC3 B104 D3EO OAC6 FEC1 D3EO OAC2
Nolnt, Stoned III - MR: Boot virus with no payload, infecting floppies in A and B as well
as the hard disk. Infects when disk read is attempted, and returns the original boot sector
when sector 1 is read. The original boot sector is stored in head 1 cylinder 0 sector 3 on
diskettes and head 0 cylinder 0 sector 7 on hard disks.

NoInt 0175 2451 B907 00B8 0102 9C2E FF1lE 0CO1
Nomenklatura - CER: Infective length is 1024 bytes, and only files longer than 1024
bytes are infected. The virus infects on executing a program or opening a file, which
means that a virus scanning program will infect all files on the system if the virus is
resident in memory. The virus scrambles the FAT on a random basis. (VB Dec 90)

Nomenklatura B8AA 4BCD 2173 785E 5606 33C0 8ED8 C41E
November 17th, 855 - CER: This virus activates on 17th November, trashing the
beginning of the current drive. (VB June 92)

November 17th CD21 80FE 0B75 1280 FAl11l 720D B419 CD21
NTKC, C-23693 - CN: A 23693 byte mutation of Vienna, detected by the ‘Vienna (4)’
pattern.

Numberl - CN: An old, simple, overwriting, Pascal virus, originally published in the
‘Computer Viruses - A High Tech Disease’ book by Burger. Infective length depends on
the compiler used, but 11980 and 12032 byte examples have been found in the wild.

Numberl B800 0050 BFCC 031E B142 E8E8 FEB8 015C

KNOWN IBM-PC VIRUSES 195

Number1 2 - CN: Mutation of Burger’s Pascal Number! virus
Numberl 2 B800 0050 BFCA 031E B142 EBE8 FEB8 015C
Number of the Beast, 666, V512 - CR: An advanced virus from Bulgaria, only 512 bytes
long. The length of the file does not appear to increase since the virus overwrites the first
512 bytes of the programs it infects with itself, storing the original 512 bytes in the
unused space of a disk cluster, after the logical end of file. (VB May 90, June 90)
Number of Beast 5A52 OEQ7 OE1F 1EBO 5050 B43F CBCD 2172
Number of Bea 1 B800 3DCD 2193 S5A52 OE1F 1E07 B102 B43F
Number of Bea E 1607 8BD6 B102 B43F CD21 8AD1 86CD BFFE
Number of Bea F S5A52 OE1F 1E07 06B0 5050 B43F CBCD 2172
NV71 - ER?: This virus has been reported elsewhere as ‘1840’, but this name should be
avoided, as the virus is only 1827 bytes long. It has also been reported to infect COM
files, but this has not been confirmed.

NV71 9CFA FC8C DA83 C210 2E01 1603 0033 CO8SE
Ohio, Hacker - DR: Boot sector virus, which is an older version of Den Zuk and written
by the same author.

Ohio FAFA 8CC8 8ED8 8EDO BCO00 FOFB E845 0073

Old Yankee - EN: This is the first of the viruses which play ‘Yankee Doodle Dandy’. It
only infects EXE files, increasing their length by 1961 bytes. When an infected program
is run, it will infect a new file and then play the melody. (VB June 90)

0ld Yankee 03F3 8CCO 8904 OE07 53B8 002F CD21 8BCB
Omega - CN: A 440 byte virus, proably from Finland. When it activates it overwrites the
beginning of the first two hard disks trashing the partition table.

Omega BOSC AA89 7E2E 83EC 15B9 1500 8BFC 8BF5
Ontario - CER: A 512 byte encrypted virus. It uses self-modifying encryption, and a full
16-byte search pattern cannot be extracted. The asterisks in the string indicate a byte
which may change from one infected file to another.

Ontario 8A84 EB01 B9E8 01F6
Orion - CR: Two simple viruses, probably from Bulgaria. They contain the texts
‘Hello,boy! Im a new virus’ and ‘Orion system !’. The viruses, which are 262 and 365
bytes long contain one error - they cannot properly infect very short files.

Orion AB33 COAB 1616 1F07 8BC3 CB3D 004B 7406
Oropax, Music virus - CR: The length of infected files increases between 2756 & 2806
bytes and their length becomes divisible by 51. 5 minutes after infection, the virus plays
three different tunes at 7-minute intervals. Does not infect COMMAND.COM.

Oropax 06B8 E033 CD21 3CFF 7423 8CCE B8ECE& B8B36
Padded - CN: The most unusual feature of this 1589 byte virus is that it is padded with a
large block of zero bytes, which serve no apparent purpose.

Padded BAOO 00CD 215A 4AB4 40B9 0300 CD21 B802
Paris, TCC - CEN: The virus will infect all EXE files in the current directory, when an
infected file is run. Length is 4904 bytes.

Paris 8CD8 03C3 8ED8 8ECO 8D3E 0301 B00OO AAEB

196 APPENDIX G

Parity - CN: A Bulgarian 441 byte virus which may emulate a memory failure when an
infected program is run, displaying the message ‘PARITY CHECK 2’ and halting the
computer.

Parity 40B9 B901 BA0OO 0103 D7CD 21B8 0157 8B8D
Path - CN: A 547 byte virus from East Europe, which searches the path for files to infect.
Path B90D 0057 8A07 8805 4347 E2F8 C605 O005F

Pathhunt - EN: Even though this virus only infects EXE files, they are infected as if they
were COM files - the first few bytes are overwritten with a jump to the virus body. Not
yet analysed.

Pathhunt 03FD B8AOD 2ED2 OF59 43E2 EEEB 1DBB 1A01
PC-Flu - CR: This 802 byte virus was made available with the original commented
source code from the author. It seems to be intended to bypass three specific anti-virus
programs, Flushot, Vstop and Virblock, but this has not been tested. This virus is of
Polish origin. (VB Jan 92)

PC-Flu 501F BBOO 0180 3FES 7537 4380 3F15 7531
PC-Flu-2 - CER: Animproved 2112 byte mutation of PC-Flu, with several new features,
such as self-modifying encryption. No simple search pattern is possible.

PC-Flu mutations - CER: Several mutations of PC-Flu have now appeared. Just like the
original virus, no search pattern is possible.

PcVrsDs - CER: A destructive encrypted virus which deletes every file opened and
infects every file executed. It does not infect COMMAND.COM. A routine in the virus
causes occasional typing errors by incrementing the ASCII value of the character typed
by 1. On Monday 23rd of every month, except in 1990, it will format side 0 of the first 32
tracks on the first fixed disk. (VB Apr 91)

PcVrsDs 33DB BE1C 00B9 4F07 2EBA 9708 002E 0010
Peach - CER: Yet another virus targeted against anti-virus programs - in this case Central
Point’s Anti-Virus. This 887 byte virus contains the text ‘No 2 Peach Garden’. (VB May 92)

Peach 33C9 33D2 E851 FFB4 40B9 1800 8BD7 807D
Pentagon - DR: The virus consists of a boot sector and two files. The sample obtained
does not work, but it contains the code which would survive a warm boot (Ctrl-Alt-Del).
It could only infect 360K floppy disks, and will look for and remove Brain from any disk
it infects. It occupies SK of RAM.

Pentagon 8CC8 8EDO BCOO FOS8E D8FB BD44 7C81 7606
Perfume - CR: The infected program will sometimes ask the user for input and not run
unless the answer is 4711 (name of a perfume). In some cases the question is ‘Bitte gebe
den G-Virus Code ein’, but in others the message has been erased. The virus will look for
COMMAND.COM and infect it. Infective length is 765 bytes.

Perfume FCBF 0000 F3A4 81EC 0004 06BF BAOO S7CB
Perfume-731 - CR: A slight mutation of the Perfume virus, only 731 bytes long. This
may well be an earlier mutation.

Perfume-731 FCBF 0000 F3A4 81EC 0004 06BF BCO0 57CB
Pest - CER: A 1910 byte mutation of the Murphy virus. Detected by the HIV pattern.

KNOWN IBM-PC VIRUSES 197

Phalcon, Cloud - CN: A 1117 byte virus, awaiting analysis. It contains a strange text
message about a Bob Ross.

Phalcon BE15 0103 3606 018A 24B9 2304 83C6 2D90
Phalcon-Ministry - CN: Encrypted, 1168 byte mutation of the Phalcon virus.

Phalco-Ministry BE15 0103 3606 018A 24B9 5504 81C6 2E00
Phantom - CR: A 2201 bytes long virus, which has not yet been fully analysed. The virus
contains an encrypted text message stating it was written in Hungary.

Phantom CF8B FA1lE 07B0 00B9 5000 FCF2 AE83 EF04
Phenome - CER: A minor mutation of the Jerusalem virus 1808 (1813) bytes long, just
like the original. Detected by the Jerusalem-USA pattern.

Phoenix, P1 - CR: This Bulgarian virus is 1701 bytes long, but a mutation, 1704 bytes
long, has also been reported. Despite the identical lengths, they are not related to the
Cascade viruses. These viruses use an advanced encryption method, so that no search
pattern is possible.

Phoenix-2000 - CR: This is a polymorphic virus which cannot be detected with a simple
search pattern. In addition to infecting COM files, it Trojanizes EXE files - overwriting
them with code to trash a part of the hard disk. This Trojan can be detected with a pattern.

Phoenix-Trojan B413 CD2F 06B0 FS5E6 6033 COE6 618E C093
Piter - CR: A Russian, 529 byte virus.

Piter 8E1E 2C00 33F6 ACOA 0475 FB83 C603 8BD6
Pixel - CN: The Pixel viruses are practically identical to the Amstrad virus, although they
are shorter: 345 and 299 bytes. No side-effects are noticeable until the 5th generation is
reached, at which stage there is a 50 % chance that the following message will appear
when an infected program is executed: ‘Program sick error: Call doctor or buy PIXEL for
cure description’. Several new mutations of the Pixel/Amstrad virus have been discovered,
most of which are very similar to previous mutations, and are detectable by the ‘Pixel’
pattern. (VB June 90)

Pixel (1) OE1F 2501 0074 4CBA D801 B409 CD21 CD20
Pixel (2) BA9E 00B8 023D CD21 8BD8 061F BA2B 01B9
Pixel (3) 0001 0001 2E8C 1E02 018B C32E FF2E 0001

Pixel-257, 275, 295, 283 - CN: detected by the ‘Pixel (1)’ pattern.
Pixel-779, 837, 850, 854 - CN: detected by the ‘Amstrad’ pattern.
Pixel-892 - CN: detected by the ‘Pixel (3)’ pattern.
Pixel-897, 899A, 899B, 905 - CN: Four mutations, which are all detected by the
Pixel-936 pattern. Contain code to format track 1.
Pixel-936 - CN: A 936 byte mutation of the Pixel/Amstrad virus.
Pixel-936 C706 0001 0001 2E8C 1E02 012E FF2E 0001

Pixel-Pixie 1.0 - CN: Closely related to the Pixel-936 virus, and detected with the same
pattern.

Pixel-Rosen - CN: The smallest member of the Pixel family, only 131 bytes long. Does
nothing but replicate.

Pixel-Rosen A433 FF06 57CB 1E07 BE83 01BF 0001 1E57

198 APPENDIX G

Plague - CR: A simple 591 byte overwriting virus, based on the Leprosy virus.
Plague 8A27 3226 0601 8827 4381 FB83 037E F1EB
Plaice - CR: 1129 bytes. Not yet analysed. One mutation of this virus exists, which has
not yet been named, but the sample circulating in the anti-virus community is named
1720C.COM. This is a variable-length, polymorphic mutation, with a base length of
1701 bytes. It does not work properly on certain types of hardware. No search string is

possible for this mutation.

Plaice 0001 5033 CO033 DB33 (€933 D233 F633 FF33
Plastique 521 - C?: Virus awaiting disassembly.
Plastique 521 0681 002E 8C06 8500 2E8C 0689 008C CO005

Plovdiv, New Bulgarian 800 - CR: This virus is 800 bytes long, but the increase is hidden
while the virus is active. It contains the text ‘(c) Damage inc.Ver 1.1,Plovdiv,1991°, but
has not been fully analysed yet.

Plovdiv 80E2 1F80 FAlE 7506 2681 6F1D 2003 079D
Plovdiv-1.3 - CR: This 1000 byte virus is related to the 800 byte Plovdiv virus.
According to atext string inside the virus, it should be named ‘Damage’, but this name
was rejected to avoid confusion with the Diamond/V1024-derived ‘Damage’ virus. The
virus is ‘semi-stealth’, hiding increases in file length when it is active.

Plovdiv 1.3 80E2 1F80 FAlE 7506 2681 6F1D E803 079D
Plovdiv 1.3B - CR: 1000 bytes long, but only slightly different from the 1.3 mutation.
Plovdiv 1.3B 80E2 1F80 FAlE 7506 2681 6F1D EB803 075A

Polimer - CN: A 512 byte Hungarian virus, which only displays the following message
when an infected program is executed: ‘A le’ jobb kazetta a Polimer kazetta ! Vegye ezt !’
Polimer 8CD8 0500 108E D8B4 40CD 218C D82D 0010
Polish 217 - CR: A simple 217 byte virus from Poland, which does nothing but replicate.

Polish 217-A is a minor mutation, probably changed to bypass some scanner.

Polish 217 D201 BF00 01B9 0300 F3A4 SEB4 4EBA C901
Polish Color - CN: A simple 376 byte Polish virus, which does nothing but replicate.
Polish Color 56B9 0400 81Cé6 6D01 8CD8 B8ECO BFO0O0 O01F3

Polish Minimal-45 - CN: This is a Polish attempt to create the world’s smallest virus. As
it overwrites the files it infects, they cannot be disinfected.

Polish-45 023D CD21 8BD8 B440 BAOO 01B1 2DCD 21B4
Polish Pixel - CN: Two Pixel mutations from Poland, which contain crude self-modifying
code. They are 457 and 550 bytes long, and detected by the Pixel (1) pattern.
Possessed - CER: A 2438 byte virus (a 2446 byte mutation has been reported) which
contains the text ‘POSSESSED! Bwa! ha! ha! ha! ha! Author JonJon Gumba of AdU’.
The virus is reported to delete files occasionally, after it has been resident for a while.

Possessed 8BF2 83C6 028B DE80 3C5C 7506 8BDE 43EB
Possessed-B - CER: A 2446 byte mutation of the Possessed virus, and detected by the
pattern for that virus.

KNOWN IBM-PC VIRUSES 199

Possessed-2443 - CER: This mutation is very similar to the other two known mutations,
which are 2438 and 2446 bytes long, and detected with the same pattern as the original
virus.

Pregnant - CR: A 1199 byte encrypted virus, related to the 1024PrScr virus. It activates
on Fridays, between 10 PM and 11 PM, making all infected files appear to be named
PREGNANT.!!! if the DIR command is used. As the decryption routine is very short,
only a 16 byte search pattern containing a wildcard is possible. The virus hides the
increase in file length.

Pretoria, June 16th - CN: Overwrites the first 879 bytes of infected files with a copy of
itself and stores the original 879 bytes at the end of the file. When an infected program is
executed, the virus searches the entire current drive for COM files to infect. On 16th June
the execution of an infected file will cause all entries in the root directory to be changed
to ‘ZAPPED’. The virus is encrypted.

Pretoria AC34 ASAA 4B75 F9C3 Al1lF 0150 A11D 01A3
PrintScreen - DR: Occasionally performs a Print Screen (PrtSc) operation.

Printscreen FA33 CO8E DOBC 00F0 1E16 1FAl 1304 2D02
Protecto - C?: Virus awaiting disassembly.

Protecto 8BD6 83C2 4AB8 003D CD21 7303 EB39 908B
Proud - CR: This 1302 byte virus is a member of a Bulgarian family of 4 viruses, which
also includes 1226, Evil and Phoenix. As they all use the same encryption method, no
search pattern is possible. (VB Dec 90)

Prudents - EN: Infective length is 1205 bytes and the virus will destroy the last 32 bytes
of any infected file. Activates during the first four days of May of every year, turning
every write operation into a verify operation, which results in the loss of data.

Prudents 0E07 BEAF 04B9 2300 5651 E87E 0359 5EE8
Ps!ko - CER: A 1803 byte mutation of the Dark Avenger virus, and detected by the same
pattern as the original.

PSQR - CER: A mutation of Jerusalem with the signature changed to ‘PSQR’. The
infective length is 1715 (COM) and 1720 bytes (EXE).

PSOR FCB8 OFFF CD21 3D01 0174 3B06é B8F1 35CD
QMU-1513 - CR: This virus has not been analysed yet, but it appears to contain an entire
boot sector.

QMU-1513 5053 8BDA B000 4338 0775 FBB8 4F4D 3947
Quiet - CR: 2048 bytes long. Not yet analysed.
Quiet A12C 008E COBB FFFF 4326 803F 0075 F926

Rage - CR: Encrypted virus which overwrites sectors 0 through 225 of hard drives C to
Z on the 13th of every month. Issues an ‘are you there’ call to test if VIREXPC.COM is
in memory and if present, restores control to the host program. (¥B Oct 91)

Rage BOFD 018A 2451 8AC8 D2C4 5988 24FE C046
Rape - CR: Two viruses with the same primary effect of overwriting the first 256 sectors
of each drive. The shorter is 500 bytes long, but the longer one, which is 747 bytes long

200 APPENDIX G

has limited ‘stealth-like’ abilities: no increase in file length is visible if the DIR
command is given while the virus is active in memory.

Rape B980 00AC 3C61 7206 3C7A 7702 2C20 8844
Rat - ER: This Bulgarian virus infects EXE files in a very unusual way by locating itself
in the unused area between the header and the start of the program, preventing the
increase in the file size. Most EXE files are immune to the infection by this virus.

Rat FCB8 2B35 CD21 8CDD OE1F 012E 6A0A BE10
Raub - C?: Virus awaiting disassembly.
Raub A3DC 03E8 9FFB 8CC8 8ECO E804 FBBA 3F01

Raubkopi - CR: This virus adds 2219 bytes in front of COM files, but much of that is
occupied by a text message in German, directed against pirated software. The virus
contains code to format the boot sector of the hard disk, but that code contains an error.

Raubkopi 0500 013D 0002 7204 25FF 0142 B104 D3ES
Revenge Attacker - CR: This virus produces a strange effect on some machines, as
directories may appear corrupted, containing multiple copies of the same file. The major
effect of this virus is the destruction of all files on the disk. It is 1127 bytes long, and
reported to have originated in the Philippines.

Revenge Attacker 7510 4080 3F00 750A 4080 3F00 7504 F8E9
RNA - CEN: Like many other large viruses, this one is written in some high-level
language, and adds itself in front of the files it infects. Version 1 is 7296 bytes long, and

version 2 is 7408 bytes long.
RNA (1) 1E57 C43E F601 0657 B800 2050 BFFF 011E
RNA (2) 1E57 C43E 0C02 0657 B8FO 1C50 BF19 021E

Diamond-Rock Steady - CER: This 666 byte mutation has been modified considerably.
A number of ‘garbage’ instructions have been added, probably to bypass some scanner.
The major effect has been changed - the virus now attempts to format the hard disk on the
13th of any month.

Rock Steady BF00 0150 5857 5058 ABS0 58A4 95C3 EB1C
Russian Mirror - CR: This vicious virus from Russia trashes disks. Infective length is
482 bytes.

Russian Mirror E89D FF80 FC4B 7403 E9C4 002E FEOE 6400

Rybka - CER: This is a mutation of one of the Vacsina (TP-series) viruses. It may infect
the same file over and over, increasing its size by 1344 bytes each time. Detected by the
Vacsina pattern.
Saddam - CR: This virus extends the file length by 917 to 924 bytes. Displays the
following string (which is stored encrypted) ‘HEY SADAM LEAVE QUEIT BEFORE I
COME’ after 8 requests for INT 21H. Resides in the area of memory not labelled as used,
so large programs will overwrite it.

Saddam BB0O 0153 5052 1E1E B800 O00O8E D8A1l 1304
Sadist - EN: This 1434 byte virus does not seem to do anything but replicate.

Sadist 2EC6 045C B908 0046 4526 8A46 002E 8804

KNOWN IBM-PC VIRUSES 201

SBC - CER: A polymorphic 1024 byte virus, with full stealth abilities hiding file size
increases as well as file changes when active. This virus is not just a laboratory virus - it
is spreading in Canada and the US. No search pattern is possible.

Scion, Doomsday One, Null Set - CN: Naming this virus is slightly difficult - it has been
named ‘Null Set’, but this name is far from being obvious. The author named it
‘Doomsday One’, but the name ‘Scion’ is recommended, derived from the text ‘A scion
to none’ which it contains. It is 733 bytes long, and has not been fully analysed, but
contains potentially destructive code (INT 26H calls). The virus is encrypted, and as the
decryption routine is very short, only a partial search string is possible.

Scott’s Valley - CER: This virus is closely related to the Australian Slow virus, using an
almost identical encryption method. It is somewhat longer, 2126 bytes.

Scott’s Valley E800 00S5E 8BDE 9090 81C6é 3200 B912 0B2E
Screamer - CER: A 711 byte virus, which contains the text ‘Screaming Fist’. Not yet
analysed.

Screamer 89D7 BO2E BO9FF 00F2 AEE3 2889 FE26 AD25
Screamer II, Screaming Fist II - CER: Probably written by the same person as wrote the
Screamer (Screaming Fist) virus, but more ‘advanced’. The virus is now 838 bytes long
and includes limited polymorphic ability, but can nevertheless be detected with a string
containing wildcards.

Semtex - CR: Infects every COM file opened or executed. Awaiting analysis.

Semtex 8B3E 8400 268B 1686 008E C226 813D 9C50
Sentinel - CER: This virus is written in Turbo Pascal and is 4625 bytes long.
Sentinel FCAD 2EA3 0001 AC2E A202 0189 ECSD B800

Sentinel 3 - CER: Infection length is 5173 bytes, but the virus hides the increase by
intercepting find-first / find-next function calls. Written in Turbo-Pascal in Bulgaria.
Discovered by Sentinel-5 pattern.
Sentinel 5 - CER: Infection length is 5402 bytes, but the virus hides the increase by
intercepting find-first / find-next function calls. Written in Turbo-Pascal in Bulgaria.
Sentinel-5 B803 12CD 2F1E 0731 C989 CF49 D1ES B82E
September 18th - CEN: This virus activates on September 18th, after 7:00 AM,
overwriting the hard disk. Two mutations are known, 789 and 801 bytes long, but the
virus adds 1-16 extra bytes to programs before infecting them. These viruses may be
related to the StarDot virus. Detected by the Italian 803 pattern.
Seventh son - CN: A 332 byte virus which contains the text ‘Seventh son of a seventh
son’. It seems to do nothing but replicate.
Seventh son 1F5A B824 25CD 215A B801 33CD 210E OE1F
Seventh Son 350, Seventh Son 284 - CN: Two slightly modified versions of the 332 byte
virus which are 350 and 284 bytes long.

Seventh son 350 73F3 1FS5A B824 25CD 215A B801 33CD 210E
Seventh son 284 56A5 ASS5E B800 33CD 2152 9940 50CD 21BS8

202 APPENDIX G

Sex revolution - MR: Two versions are known and they both contain the text ‘EXPORT
OF THE SEX REVOLUTION’. The virus is a mutation of the New Zealand virus and is
detected by the New Zealand (2) pattern.

Shadowbyte - CN: A 723 byte virus which is awaiting analysis.

Shadowbyte 8B54 0183 C203 B442 CD21 89F2 83C2 03B9
Shadowbyte-2 - CR: A 635 byte mutation of the Shadowbyte virus. When it activates it
will format the beginning of the first hard disk in the system.

Shadowbyte-2 B405 B280 B600 B500 B002 CD13 B405 B200
Shake - CR: A primitive 476 byte virus which reinfects previously infected files.
Infected programs sometimes reboot when executed. Occasionally, infected programs
display the text ‘Shake well before use !’ when executed.

Shake BB803 42CD 213D 3412 7503 EB48 90B4 4ABB
Shaker - CR: A mutation of Backtime, just like Blinker, and probably written by the
same author. Produces a ‘shaky’ screen when an infected program is run. Detected by the
Backtime pattern.

SHHS - CN: A 585 byte overwriting virus. Extremely unlikely to spread, but contains
code to trash the hard disk.

SHHS 01C3 BB3E 01A0 0601 OACO 740B 3007 4302
Shirley - ER: A 4096 byte virus, probably from Germany, which contains several long
text messages, including the string TWANTSHIRLEY’. Awaiting analysis.

Shirley B887 4BCD 213D 6366 7566 2EA1 OEOE 8CDB
Shirley-Vivaldi - ER: This is a mutation of the Shirley virus, with the same infective
length as the original, 4096 bytes. As it is rather long, and does not seem interesting at all,
it has not yet been analysed. Detected by the Shirley pattern.

Simulation - CN: This is a variable length, self-modifying encrypted virus, which adds
around 1300 bytes to the files it infects. When it activates it displays a message
announcing the infection or a message which is normally associated with a different
virus, such as April 1st (Suriv 1), Frodo, Datacrime or Devil’s Dance. No search pattern
is possible.

Sistor - CER: Two viruses from the USSR. The 2225 byte mutation triggers after 16:00,
displaying a familiar bouncing-ball/falling letters effect. The later mutation has been
improved somewhat - it is not as obvious, and includes code to bypass interrupt
monitoring programs.

Sistor-2225 5BFA 891E 7000 8C06 7200 FB33 COS8E D8BS8
Sistor-2380 5B33 C089 1E70 008C 0672 0033 CO8S8E D8B8
Skism -CER: A 1808/1813 byte minor mutation of Jerusalem. Detected by the Jerusalem-

USA pattern.
Slow - CER: This encrypted virus is a 1716 byte long mutation of the Jerusalem virus. It
originates from Australia and its side-effect is reported to be a slow-down of the infected
PC. No other side-effects are known, as the virus is awaiting analysis.

Slow E800 OOSE 8BDE 9090 81Cé 1B0OO0 B990 062E

KNOWN IBM-PC VIRUSES 203

Smack, Patricia - CER: A mutation of the HIV virus, containing a message for Patricia
Hoffman. Two mutations are known, 1835 and 1841 bytes, both probably written by the
same person, who calls himself ‘Cracker Jack’. Both mutations can be detected by the
HIV pattern.

Smallv-115 - CN: A very small virus from Bulgaria. Does nothing of interest.
Smallv-115 B802 3DCD 218B D8B9 0300 8BDS B43F CD21
Smiley - CN: A 1983 byte virus which contains code to trash the hard disk. Not yet fully

analysed.

Smiley BBOS 018B €881 E10F 00D1 E8D1 E8D1 ESD1
Socha - CR: This 753 byte virus has not been fully analysed yet, but it contains code
which will only be activated if the year is set to 1981.

Socha COBF FS5FF 268B 0547 4726 3305 4747 2633
Something - CR: A 658 byte virus, which attaches itself in front of COM files. It has not
been fully analysed, but appears destructive, containing code to delete files.

Something 8BD8 BYFF FF1E 5233 D22E 8ELE 8303 B43F
South African, Friday the 13th, Miami, Munich, Virus-B - CN: Infective length is 419
bytes, but some reports suggest mutations with an infective length between 415 and 544
bytes. Does not infect files with Read-Only flag set. Virus-B is a non-destructive
mutation containing South African 2 pattern. COMMAND.COM is not infected. Every
file run on a Friday 13th will be deleted.

S African 1 1E8B ECC7 4610 0001 E800 0058 2DD7 00B1

S African 2 1E8B ECC7 4610 0001 E800 0058 2D63 00B1
South African 408 - CN: A 408 byte version of the South African virus, partially
rewritten to foil scanners, but with no new effects.

S African 408 1E8B ECC7 4610 0001 E800 0058 2D5A 0090
South African 416 - CN: Yet another minor mutation. The following search pattern can
be used to detect all known mutations of this virus.

S African 416 FF36 0301 FF36 0501 B43F BS903 00BA 0301
South African 623 - CN: This mutation of the South African Friday the 13th virus was
discovered in New Zealand. It will activate on any Friday the 13th, just like the original,
and is detected by the same pattern.

Spanish Telecom - MCER: This encrypted virus contains a message by ‘Grupo
Holokausto’ demanding ‘lower telephone tariffs, more services’. It proclaims to be an
‘Anti-CTNE’ virus where CTNE is ‘Compania Telefonica Nacional Espana’. A message
in English states that the virus was programmed in Barcelona, Spain. The master boot
sector part of the virus counts the number of times the PC is rebooted and triggers after
400 boots, overwriting all data on the first two fixed disks. This is a stealth virus: boot
sector is substituted and the length of infected files subtracted. Original MBS is stored in
Head 0, Cylinder 0, Sector 7. (VB Jan 91)

Spanish Head 1 8B1D B200 83FB 0074 18BF 5500 B2

Spanish Head 2 83ED 09BE 2001 O03F5 FCB6
Spanish Trojan BB00 7C33 COFA 8EDO 8BE3 FBS8E D8A1 1304

204 APPENDIX G

Spanish Telecom 2 - MCER: A mutation of the Spanish Telecom virus. The virus is self-
encrypting and modifying. No search pattern is possible.

Spanz - CN: A 639 byte virus. All infected files end with ‘INFECTED! * SPANZ *’.
Virus searches the current directory followed by path for the first uninfected COM file.
If the copy of the virus is more than 6 months old, the virus changes the volume label of
the current disk to ‘INFECTED!’ if the test is performed in the first second of any
minute. (VB Feb 92)

Spanz 8D9C 7D03 0683 BC76 0300 7415 8B84 7403
Sparse - CR: This virus is 3840 bytes long, but most of it contains zero byes. It has no
interesting side-effects.

Sparse FFOF CD21 50B4 3DBO 02CD 2189 C3B4 42B9

Squawk - CER: An 852 byte virus from Asia is easy to discover, as an infected machine
will produce a high-pitch sound.

Squawk 4B8E DBA1 0100 0306 0300 3B06 1200 722F
Squeaker - CER: A 1091 byte virus awaiting analysis.
Squeaker 80FC 7F75 03B4 BOCF BOFC 4B74 052E FF2E

Staf - CN: A 2083 byte ‘demonstration’ virus, which seems to have no harmful effects.
The virus contains the following text: Virus Demo Ver.: 1.1 - Handle with care! By STAF
(Tel.: (819) 595-0787).

Staf 89D3 33F6 8038 0074 0343 EBF8 C600 245A
Stahlplatte - CR: This 750 byte virus is awaiting analysis.
Stahlplatte 0E58 BBOO 7F39 D872 03E9 4701 8EC3 BEOO

Stardot-600 - EN: This virus by be related to the ‘September 18th’ viruses. It is
destructive, and will overwrite the beginning of each logical drive when activated.

Stardot-600 32F6 B908 0033 DB51 B901 00D1 C250 CD26
StinkFoot - CN: This virus from South Africa uses instructions which do not exist on
8088/8086 and it will crash on such machines. It adds 259 bytes to the beginning of files,
and 995 bytes at the end.

StinkFoot 600E S9BA 0400 B435 B024 CD21 061F B9OF
Striker 1 - CN: A 461 byte virus, which has not been analysed yet. It contains an error
which causes incorrect infection of COM files shorter than 13 bytes.

Striker 1 5A8B 4606 39C2 7403 42EB E840 8946 06A0Q
Stupid-Profesor - CR: Almost identical to the SADAM mutation, but the text string has
been changed to ‘The Profesor is in town again’. Detected with the SADAM (Saddam)
pattern.

Subliminal - CR: This 1496 byte virus is probably an earlier version of the Dyslexia
virus. When active, the virus will attempt to flash the message ‘LOVE, REMEMBER’ on
the screen for a fraction of a second, which is too short to be easily noticed.

Subliminal AE26 3805 EOF9 8BD7 83C2 0306 1F2E C706
Sunday - CER: Variation of Jerusalem. Infective length is 1631 bytes (EXE) and 1636
(COM). Activates on Sunday and displays message ‘Today is SunDay! Why do you work

KNOWN IBM-PC VIRUSES 205

so hard? All work and no play make you a dull boy.’. There are unconfirmed reports of
FAT damage on infected systems.

Sunday FCB4 FFCD 2180 FCFF 7315 80FC 0472 10B4

Suomi - CN: A 1008 byte virus from Finland, which uses self-modifying encryption, like
the 1260 virus. The virus seems to disinfect previously infected files under certain
conditions, but COMMAND.COM seems to remain permanently infected. No harmful
side-effects have been reported, but the virus is awaiting disassembly. No search pattern
is possible.
Suriv 1.01, April 1st COM - CR: A precursor to Jerusalem infecting only COM files with
the virus positioned at the beginning of the file. Infective length is 897 bytes. If the date
is 1st April, the virus will display ‘APRIL 1ST HA HA HA YOU HAVE A VIRUS’ and
the machine will lock. If the date is after 1st April 1988, the virus produces the message
‘YOU HAVE A VIRUS !!!” but the machine will not lock. The virus is memory resident
and will not infect COMMAND.COM. (VB Aug 89)

Suriv 1.01 OE1F B42A CD21 81F9 C407 721B 81FA 0104
Suriv 1-Argentina - CR: This mutation of the April 1st virus was reported in Argentina.
It is 1249 bytes long, and may display messages on various dates which are of patriotic
significance in Argentina.

Suriv 1-Argenti OE1F B42A CD21 81FA 1905 7415 81FA 1406
Suriv 1-Anti-D - CR: This mutation of the Suriv 1 or ‘April 1st’ virus was discovered in
Argentina. It is 945 bytes long and interferes with the ‘D’ key on the keyboard.

Suriv 1-Anti-D OE1F C606 4801 00B4 2ACD 2181 F9C4 0772
Suriv 1-Xuxa - CR: Yet another Suriv 1 mutation from Argentina. It is reported to play
music between SPM and 6PM. Infective length is 1413 bytes.

Suriv 1-Xuxa 0EL1F B42A CD21 81F9 C407 720D 81lFA 0208
Suriv 2,01, April 1st EXE - ER: A precursor to Jerusalem infecting only EXE files with
the virus positioned at the beginning of the file. Infective length is 1488 bytes. Ifthe date
is 1st April, the virus will display ‘APRIL 1ST HA HA HAYOU HAVE A VIRUS’. If the
yearis 1980 (DOS default) or the day is Wednesday after 1st April 1988, the machine will
lock one hour after infection. (VB Aug 89)

Suriv 2.01 81F9 C407 7228 81FA 0104 7222 3C03 751E
Suriv 3.00, Israeli - CER: An earlier version of Jerusalem infecting COM and EXE files
and displaying the side-effects 30 seconds after infection instead of 30 minutes. Infective
length is 1813 bytes (COM) and 1808 bytes (EXE). Program delete does not work.
(VB Aug 89)

Suriv 3.00 03F7 2E8B 8D15 00CD 218C €805 1000 8EDO
Surrender, Jews - CER: A 513 byte Russian virus, containing the text ‘Jews never
surrender!’. Awaiting analysis.

Surrender 061F BB00 43CC 51B8 0143 33C9 CCB8 023D
SVC-1740 - CER: This 1740 byte virus is closely related to the 1689 byte mutation (SVC
4.0), and is detected by the same pattern.

206 APPENDIX G

SVC 3.1 - CER: This 1064 byte virus is probably an older version of the SVC virus.
SVC 3x1 C39D BA90 19CF SALF EBBD 33C0 8ECO 26C4
SVC4.0 - CER: A Russian, 1689 byte virus, containing the following message ‘(c) 1990
by SVC,Vers. 4.0’. The virus attempts to avoid detection by the use of ‘stealth’ methods,

so any increase in file length is not visible while the virus is active in memory.

SVC 4.0 7416 B80FC 1174 0EB0 FC12 7409 9D2E FF2E
SVC 5.0 - CER: An improved version of the earlier SVC viruses, and fully ‘stealth’.
(VB Dec 91)

SVC 5.0 5606 86E0 35FF FF8E COOE 1F33 FFB9 990B

SVC 6.0 - MCER : A 4644 byte stealth multi-partite virus. The original Master Boot
Sector is not stored anywhere. Virus code is copied to Sectors 1 to 11 of Track 0, Head 0.

(VB Dec 91)
SVC 6.0 33D2 B484 CD21 5E56 81FA 9019 750A 2E3A
Sverdlov - CER: A Russian, 1962 byte virus, using a simple XOR-encryption.
Sverdlov 2D00 O03FE 2E30 0547 E2FA E800 005SE 83EE
Svir - EN: A simple 512 byte virus with no side-effects. Svir means ‘music’ in Bulgarian.
Svir 33F6 4626 8BOC E302 EBF8 8BD6 83C2 04ES8

SVS - CR: This virus has been reported elsewhere as ‘Terminator’, but that name should
be avoided, as it conflicts with the other Terminator viruses. It is 526 bytes long and
activates on December 25th, when it displays the message ‘TERMINATOR 1991. Made
by SVS-009°.

SVs B104 D3EB 83C3 11B4 4ACD 21D3 E34B 4BS8B

Swami, Guru, Bhaktivedanta - CER: A 1250 byte ‘Murphy’ mutation containing the text
‘Bhaktivedanta Swami Prabhupada (1896-1977). Detected by the ‘HIV’ pattern.
Swap - DR: Does not infect until ten minutes after boot. Creates one bad cluster on track
39, sectors 6 & 7 (head unspecified). Uses 2K of RAM. Infects floppy disks only. Does
not store the original boot sector anywhere. Virus creates a display similar to Cascade,
but is transmitted via boot sector.

Swap 31C0 CD13 B802 02B9 0627 BAQO 01BB 0020
Swedish Disaster - MR: The name is derived from the text inside the virus. The virus is
awaiting analysis.

Swedish 0102 BBOO 02B9 0100 2BD2 9C2E FF1E 0800
Swiss-143 - CN: A simple 143 byte virus with no interesting effects.

Swiss-143 B44F 8BDS EBBC C646 0000 45C7 4600 0DOO

Sylvia - CN: The virus displays messages including ‘This program is infected by a
HARMLESS Text-Virus V2.1°, “You might get an ANTIVIRUS program....." when an
infected program is executed, but if the above text is tampered with, the (encrypted)
messages ‘FUCK YOU LAMER !!!!’, ‘system halted....$’ will be displayed. The victim
is told to send a ‘funny postcard’ to a genuine address of a Dutch woman called Sylvia.
When an infected program is run, the virus will look for five COM files on drive C and
the current drive. COMMAND.COM, IBMBIO.COM and IBMDOS.COM are not

KNOWN IBM-PC VIRUSES 207

infected. The virus adds 1301 bytes to the beginning of the infected files and 31 bytes at
the end.

Sylvia CD21 EBFE C3Al 7002 A378 0233 COA3 9E02
Sylvia-2 - CN: This version of the Sylvia virus has been patched to avoid detection, but
appears functionally equivalent to the Sylvia virus. It is 1332 bytes long, just as the
original, and detected by the ‘Sylvia’ pattern.

Sylvia B - CR: A rewritten version of the Sylvia virus, but of the same length. Detected
by the Sylvia pattern.

Sylvia Hong Kong - CN?: A message ‘to help Hong Kong in 1997’ is incorporated in
this virus. Mutation of Sylvia but sample does not replicate.

Sylvia-HK CD21 EBFE C3A1 8302 A38B 0233 COA3 B102
Syslock - CEN: This encrypted virus attaches itself to the end of a COM or an EXE file.
Infective length is 3551 bytes. It infects a program one in four times when executed. Will
not infect if the environment contains SYSLOCK=@.

Syslock 8AE1 8AC1 3306 1400 3104 4646 E2F2 5ES9
Tabulero - ER: A 2048 byte virus, which bears some resemblance to the Jerusalem virus,
but is not directly derived from it. Not yet analysed.

Tabulero 2E8B 4702 2E89 052E 8B47 042E 8945 022E
Tack - CN: A simple 449 byte virus, which may display the message ‘Hello, I am virus’.
The virus appends itself to the end of infected files, and overwrites the first six bytes, but
only restores the first five, which may result in unpredictable behaviour of infected files.

Tack 5850 0500 01A3 3C02 C706 3E02 FFEO C606
Taiwan - CN: The virus activates on the 8th day of every month and overwrites the FAT
and the root directory of drives C and D. Two versions are known with different infection
lengths: 708 and 743 bytes.

Taiwan 07E4 210C 02E6 21FB B980 0033 F6BB 8000
Taiwan (2) 07E4 210C 02E6 21FB B980 00BE 0000 BB80
Taiwan-C - CN: A new 752 byte mutation of the Taiwan virus. The major effect is

unchanged - destruction of the FAT and root directory on C: and D:

Taiwan-C 0BO0 33F6 BB80 008B 0050 4646 E2F9 FE06
Taiwan-D - CN: Closely related to Taiwan-C, but only 677 bytes. It can be detected by
the same search pattern.

Tenbyte, Valert - CER: This virus was posted by accident to the V-ALERT electronic
mail listrecently. Adds 1554 bytes to infected files. Activates on 1st September corrupting
data written to disk.

Tenbyte 1EOE 1F8D 36F7 04BF 0001 B920 O0OF3 A42E
Tequila - EMR: An encrypted, multi-partite, self-modifying virus from Switzerland.
Contains encrypted text ‘Welcome to T.TEQUILA’s latest production’, ‘Contact
T.TEQUILA/P.0.Box 543/6312 St’hausen/Switzerland’. No pattern for infected files is
possible, but the boot sector does not change. The original master boot sector is stored in
the first sector after the end of the first partition, which is decreased by 6 sectors after
infection. Displays a crude Mandelbrot set pattern on screen. (VB June 91). Original

208 APPENDIX G

MBS is stored in the first sector after the end of the partition as recorded in the partition
table.

Tequila boot B82A 0250 B805 028B 0E30 7C41 8Ble 327C
Terminator 918 - CR: Overwrites original program. Awaiting analysis.

Terminator 918 FABC C88E D8C6 0678 0200 B435 BOFE CD21
Terminator 1501 - CR: 1501 byte overwriting virus without any stealth features.

Terminator 1501 FAB8 0000 8ECO BR6C 0426 8B07 0538 O00A3
Terror - CER: This Bulgarian virus has not been analysed yet.

Terror 2E8C 1E41 0550 B859 ECCD 213B EB75 3EOE

Testvirus B - CN: This 1000 byte virus is clearly written for demonstration purposes, as
it asks the user if it should infect all COM files in the current directory or not. It has no
harmful side-effects.

Testvirus B 018A 1780 FAOO0 7501 C3CD 2143 E2F3 2EAl
Thursday 12th - CER: An encrypted virus from Germany which triggers every Thursday
12th, popping up window with a warning that the next day is Friday 13th. Calls itself
VirCheck V1.2 (C)1991. Text includes ‘thanks’ to various virus researchers. Avoids
infecting any files matching patterns ‘SCAN’, ‘CLEAN’, ‘VIR’, ‘ARJ’, ‘FLU’,
‘COMMAND’.

Thursday 12th BEOF 01B9 5501 E8BD FFBE 6D02 B9D4 01ES8
Tic - CN: A simple 109 byte virus which does nothing but replicate.
Tiec B44E EB06 B43E CD21 B44F OE1lF CD21 B91lE

Timeslice, 2330 - CER: A 2330 byte virus, written in the USSR. It does not appear to do
anything but replicate, but the infection mechanism is rather unusual, as the virus
intercepts INT 28H and therefore infects at irregular intervals.

Timeslice 1EB8E C64E B8EDE C745 0108 0009 C975 0581
Timid - CN: Two mutation of this ‘Little Black Book’ virus are now known - 305 and 306
bytes long. Both are very obvious, but as the source code is available, they can easily be
modified.

Timid-306 8B16 FCFF 83C2 00B9 3F00 B44E CD21 OACO
Timid-305 8B16 FCFF B93F 00B4 4ECD 210A C075 OBES8
Tiny - CN: A mutation of the Kennedy virus only 163 bytes long. It has no side-effects

other than replication. (VB Sept 90)

Tiny 408D 94AB 01B9 0200 CD21 B43E CD21 FFES
Tiny DI - CN: Four new mutations of the family which was previously called Mutant.
The viruses are 94, 101, 108 and 110 bytes long and do nothing but replicate. Only the
110 byte mutation works correctly - the shorter mutations are not able to infect most files
correctly, but simply destroy them.

Tiny DI (01) B802 3DCD 218B D806 1F8B D749 B43F CD21
Tiny DI (02) B802 3DCD 218B D806 1F8B D733 C949 B43F

Tiny Family - CR: This is a family of at least 10 Bulgarian viruses, which includes the
shortest viruses now known. The viruses are not related to the Danish ‘Tiny’ virus, but

KNOWN IBM-PC VIRUSES 209

just like it, they do nothing but replicate. The lengths of mutations range from 133 to 198
bytes.

Tiny Family (1) CD32 B43E CD32 071F S5F5A 595B 582E FF2E
Tiny Family (2) 2687 B85E0 FEAB E3F7 931E 07C3 3D00 4B7S
Tiny Family-Ghost - CR: This virus differs from the other members of the Tiny family
in two ways. Itis fairly long, 330 bytes, and it has one effect other than replicating - it will
display the message ‘This scan program can’t find me I’'m a GHOST in your machine!!’,

if it detects the execution of a virus scanner.

Tiny-Ghost 9191 2687 85E0 FEAB E3F7 931E 07C3 3D00
Tokyo - EN: A 1258 byte virus, which is reported to have originated in Japan. It has not
been fully analysed, but appears to do nothing interesting.

Tokyo B42F CD21 8C06 0600 891E 0400 OEO07 8Dlé
Tony - CN: This 200 byte Bulgarian virus will only infect files with a name starting with
‘B’ on the first day of any month. On the second day it will only infects files with a name
beginning in ‘C’ and so on. The virus uses some curious undocumented features, but
does nothing of particular interest.

Tony CC8C C880 C410 8ECO BECO 0133 FF8B CEF3
TPworm - PN: A ‘companion’ virus written by the author of the Vacsina and Yankee
Doodle viruses. The virus has been distributed in the form of ‘C’ source code. The
infective length and hexadecimal patterns, hence, depend on the ‘C’ compiler used.
TPWorm - EN: This Bulgarian virus was first made available in source form only, but
now an executable has appeared as well. It is 12969 bytes long, but because of the
unreliability of search patterns for HLL viruses (they would be invalidated if the code
was compiled with a new compiler) no pattern can be used.

Traceback, Spanish - CER: This virus attaches itself to the end of a COM or EXE file.
Infective length is 3066 bytes. It becomes memory-resident when the first infected
program is run and will infect any program run. If the date is Sth December or later, the
virus will look for, and infect one COM or EXE file either in the current directory or the
first one found, starting with the root directory. If the date is 28th December 1988 or later,
the virus produces a display similar to Cascade one hour after infection. If nothing is
typed, the screen restores itself after one minute. This display will repeat every hour.
Spanish is an earlier version with a reported infective length of 2930 or 3031 bytes.

(VB Sept 89)
Traceback B419 CD21 89B4 5101 8184 5101 8408 8CBC
Spanish EB29 06E8 E005 B419 CD21 8884 E300 ES8CE

Traceback-3029 - CER: This is the first new member of the Traceback family to appear.
Not fully analysed, but does notappear to be significantly different from the other known
mutations.

Traceback-3029 B419 CD21 89B4 5101 8184 5101 SF08 8C8C
Trackswap - DR: A small Bulgarian master boot sector virus, which is awaiting analysis.
Trackswap FBA1l 1304 48A3 1304 B106 D3EO 8ECO 06BD

210 APPENDIX G

Traveller Virus - CER: A 1220 byte virus which infects COM (including
COMMAND.COM) and EXE files. Infection is via Function 4Bh (LOAD AND
EXECUTE) and Function 36h (GET FREE SPACE). When a LOAD AND EXECUTE
call is issued, a program and one other file in current directory are infected. When GET
FREE SPACE request is issued (eg. by the DIR command) one file in current directory is
infected. Infection marker is the seconds field set to 62 and COM files will increase in

green on blue background on line 13 of the screen after 23 infections and thereafter every
twentieth infection.

Traveller A303 0029 1612 00A1 1200 8ECO OE1lF B8BDE
Trilogy - ?: Virus awaiting disassembly.
Trilogy 9C55 568C CD83 CS50A 8DB6 F6FF 56BE 2601

Trivial-30D - CN: Yet another attempt to create the smallest overwriting virus. Does
nothing but replicate.

Trivial-30D CD21 BASE 00B8 013D CD21 938B D6B1 1EB4
Trivial-38 - CN: Yet another ‘minimalist’ virus - does nothing but replicate by overwriting
the beginning of other programs.

Trivial-38 3DCD 2193 B126 BAOO 01B4 40CD 21B4 4FEB
Trivial-44 - CN: Yet another non-interesting overwriting virus from Bulgaria.

Trivial-44 023D CD21 8BD8 B92C 00BA 0001 B440 CD21
Trivial-Hastings - CN: This overwriting virus is 200 bytes long, but most of that code is
taken up by a long text message. The virus does nothing but replicate.

Hastings B802 3DBA F001 CD21 720C 8BD8 B440 BO9CS8
Troi - CR: A very simple, 322 byte virus, which does nothing but replicate.
Prox 0157 AS5A4 C32A COCF 9C80 FCFC 7504 BOAS

Tula-419 - CER: Probably a Russian virus. It is 419 bytes long and will only infect on
machines with a colour display.

Tula-419 B43F CD21 7225 BEAO OFAC 3C4D 7505 AC3C
Tumen - CR: Two mutations are known of this virus. Version 0.5 is 1663 bytes long and
plays a tune when Ctrl-Alt-Del is pressed. Version 2.0 is 1092 bytes long, but has not
been fully analysed.

Tumen 8CCe 488E D881 2E03 0000 0181 2E12 00
Tumen 1.2 - CR: A 1225 byte member of the Tumen family. Detected by the pattern for
the other two mutations.

TUQ, RPVS - CN: A simple virus from West Germany without side-effects. Infective
length is 453 bytes.

TUQ 5653 8CC8 8ED8 BE01 012E 8B04 0503 0157
Turbo 448 - CR: A 448 byte Hungarian virus which will infect COM files when they are
opened, for example by a virus scanner, but not when they are executed. The virus
contains the text ‘Udv minden nagytudasunak! Turbo @’.

Turbo 448 890E 0201 8CD8 8ECO 5958 BB0O O01FF E3Al

KNOWN IBM-PC VIRUSES 211

Turbo Kukac - CR: A 512 byte virus, which resembles the Turbo 448 virus, but is
somewhat longer, 512 bytes. COMMAND.COM will crash, if infected with this virus.

Turbo Kukac FFE3 8CD8 488E D8A1 0300 2D41 00A3 0300
TV-730 - ER: A 730 byte virus, which has also been named Ontario-730, but this name

was rejected because the virus does not seem related to another virus named ‘Ontario’.
Not fully analysed, but contains code to trash the hard disk.

TV-730 BF00O 01B8 6E4B CD21 3D54 5675 O0AC7 O0O5EB

Twin - ERP: Companion virus with no payload. Likely to crash where an infected file is
larger than about 64K.

Twin B810 FFCD 213C 0775 07E8 2500 B44C CD21
Typo, Typo COM, Fumble - CR: Infects all COM files in the current directory on odd
days of every month. If typing fast, substitutes keys with the ones adjacent on the
keyboard. Infective length is 867 bytes. (VB Apr 90)

Typo 5351 521E 0656 OE1F E800 O0OSE 83EE 24FF
USSR-311 - CN: A 311 byte virus, which does not seem to do anything else apart from
replicating.

USSR-311 8BF2 83C6 0203 C12D 0300 0500 0189 04B4

USSR-492 - CR: A Bulgarian virus which has not been analysed. The only available
sample seems to be corrupted.

USSR-492 2E8B 1E01 0183 C303 B104 D3EB 8CD8 03C3

USSR-516, Leapfrog - CR: This 516 byte Russian virus is the first virus which does not
modify the beginning of the programs it infects, but places the jump to the virus code

inside the host program.

USSR-516 431E 53C5 1F46 SF07 8B07 3DFF FF75 F283
USSR-600 - CR: An encrypted, 600 byte Russian virus.

USSR-600 BE10 01B9 3200 8A24 80F4 DD88 2446 E2F6
USSR-696 - CN: A 696 byte Russian virus awaiting analysis.

USSR-696 3C00 7412 8CC8 B10F D3EO 3D00 8074 O7BA
USSR-707 - CR: A 707 byte Russian virus awaiting analysis

USSR-707 83C3 OF33 CO8E C033 F68C C040 3DFF OF76
USSR-711 - CR: A 711 byte Russian virus awaiting analysis.

USSR-711 C88E COSE D833 CO8B FOBF 0000 BBOO O1FF

USSR-948 - CER: A Russian, 948 byte virus, which seems partially based on the Yankee
virus.

USSR-948 5051 56B9 FF00 FC8B F28A 0446 3C00 EOF9
USSR-1049 - CER: A 1049 byte Russian virus awaiting analysis.
USSR-1049 EB10 8CDA 83C2 102E 0316 2000 522E FF36

USSR-1594 - EN: A 1594 byte virus which uses a self-modifying algorithm. No fixed
search pattern is possible.

212 APPENDIX G

USSR-2144 - CER: A 2144 byte Russian virus, not yet analysed.

USSR-2144 1E06 33CO0 8ED8 FB2E 8B94 1000 EC34 O03EE
V-1 - DCR: This virus is one of the first to infect both the boot sector and programs. It is
1253 bytes long and destructive. When activated, it overwrites the disk with garbage.

V=1 8ECO 26A1 1304 4848 503D 0001 7203 2D3E
V2P2 - CN: This virus, written by Mark Washburn is closely related to the 1260 virus,
but is more complicated. It will, for example, add a random number of ‘garbage’ bytes to
the programs it infects, to make identification more difficult. No search pattern is
possible.

V2P6 - CN: This virus is written by the same author as 1260 and V2P2, but is longer and
more complicated. It uses several different encryption methods, which makes it impossible
to provide a search pattern.

V472 - CR: A 472 byte virus, probably from Eastern Europe, which does nothing but
replicate.

V472 01D6 31DB B8EC3 BB84 0026 8BOF 890C 4646
Vacsina - CER: Infective length is 1206 to 1221 bytes (COM) and 1338 to 1353 bytes
(EXE). After successful infection of a COM file, a bell is sounded. Infects any file loaded
via INT 21H function 4BH (load and execute), i.e. COM, EXE, OVL and APP (GEM)
files. Checks version number of itself (current is 5) and replaces with newer code. A
member of the ‘Bulgarian 50’ (see Yankee). (VB June 90, May 92)

Vacsina (1) 8CC8 B8ED8 8ECO BEDO 83C4 02B8 0000 502E
Vacsina (2) E800 005B 2E89 47FB B800 008E C026 A1lCS
Veomm - ER: This virus first increases the length of infected programs so that it
becomes a multiple of 512 bytes. Then it adds 637 bytes to the end of the file. The

resident part will intercept any disk write and change it into a disk read.

Vcomm 80FC 0375 04B4 02EB 0780 FCOB 7502 B40A
VCS 1.0 -CN: A 1077 byte virus which will delete AUTOEXEC.BAT and CONFIG.SYS
when it activates. Generated by a German program called ‘Virus Construction Set’
(VCS) which allows the incorporation of a user-specified message into the virus.

VCS 1.0 89FE AC32 C4AA E2FA C35E 81EE 0301 56ES8
VCS-Manta - CN: A virus generated by the VCS program. Detected by the VCS 1.0
pattern.

VCS-VDV-853 - CN: This virus is detected by the same pattern as the VCS 1.0 virus, but
1s somewhat different; for example, it is only 853 bytes long. Not yet analysed.
VESI - CN: A simple 437 byte Bulgarian virus.

VFSI 100E 1FB8 001A BA81 00CD 21BE 0001 FFEé6
Victor - CEN: A 2442 byte virus from the USSR which is awaiting disassembly. The only
known damaging effect is the corruption of the FAT.

Victor 8CC8 8BD8 B104 D3EE 03C6 S50B8 D800 50CB
Vienna, Austrian, Unesco, DOS62, Lisbon - CN: The virus infects the end of COM files.
Infective length is 648 bytes. It looks through the current directory and the directories in
the PATH for an uninfected COM file. One file in eight becomes overwritten. Seconds

KNOWN IBM-PC VIRUSES 213

stamp of an infected file is set to 62. A number of mutations, shorter than the original, but
functionally equivalent, have been reported in Bulgaria.

Vienna (1) 8BF2 83C6 0A90 BF00 01BS

Vienna (2) FC8B F281 C60A O0OO0OBF 0001 B903 00F3 A48B
Vienna (3) FC89 D683 C60A 90BF 0001 B903 00F3 A489
Vienna (4) FC8B F283 C60A BF00 01BY9 0300 F3A4 8BF2
Vienna (5) CD21 OE1F B41A BABQO 00CD 2158 C3AC 3C3B
Vienna (6) 8E1E 2C00 AC3C 3B74 093C 0074 03AA EBF4

Vienna-534B - CN: A member of the W13 group in the Vienna family - closely related to
534 A, and detected with the W13 pattern.

Vienna-618 - CN: Detected with the Vienna (1) pattern.

Vienna-621 - CN: This mutation is detected with the Vienna (4) pattern. It is similar to
the original virus, but instead of overwriting programs with an instruction that resets the
computer, it overwrites them with the instruction JMP C800:0000, which may cause a
low-level format of the hard disk on certain machines.

Vienna-622 - CN: A new version of the Vienna virus from Bulgaria. It is detected by the
Vienna (4) pattern.

Vienna-625 - CN: A minor mutation of Vienna. Detected by the Vienna (4) pattern.
Vienna-637 - CN: Very similar to the original version, and detected with the Vienna (1)
pattern.

Vienna-644 - CN: A 644 byte version of the Vienna virus, which does not infect
programs every time it is run.

Vienna-644 BFOO 01FC ASAS AS58B F252 B42C CD21 5A80
Vienna-644B - CN: Very closely related to the original 648 byte mutation, but slightly
shorter. Detected with the Vienna (1) pattern.

Vienna-645 - CN: A 645 byte mutation of Vienna, detected by the Vienna (1) pattern.
Vienna-645B - CN: Closely related to the Vienna-645 virus. Detected with the Ghostballs
pattern.

Vienna-656 - CN: A non-remarkable 656 byte mutation.

Vienna-656 895C 018C 4403 07BA 6000 01F2 B41A CD21
Vienna-712 - CN: This mutation seems most closely related to the Dr Q. mutation, and
just like it, it uses limited encryption. It is detected with the Vienna (4) and Dr Q.
patterns.

Vienna-726 - CN: A 726 byte mutation, detected by the Vienna (4) pattern.
Vienna-733 - CN: An encrypted mutation of Vienna. It activates if an infected program
is run on the second day of the month and produces a high-pitch sound.

Vienna-733 89D6 81EE F201 89F7 B956 (01FC ACFE COAA
Vienna-776 - CN: A 776 byte mutation. Not fully analysed, but appears to do nothing of
particular interest. One very similar 757 byte mutation has also been found.

Vienna-776 B44E BADD 0003 D6BS 0300 CD21 EBO04 B44F
Vienna-757 B44E BASB 0003 D6B9 0300 CD21 EBO4 B44F

214 APPENDIX G

Vienna-822 - CN: The effects of this mutation have not been fully determined, but seem
to involve the boot sector. It is detected by the pattern for GhostBalls.
Vienna-Betaboys - CN: This 679 byte mutation was written in Sweden, or possibly in
Finland. It activates in February of any year, trashing the beginning of drives C, D and E.

Betaboys 90AC B900 80F2 AEB9 0400 ACAE 75EA E2FA
Vienna-Dr. Q - CN: An 1161 byte mutation, which includes encryption of the data area.
Not yet analysed.

Vienna-Dr. Q 8E06 2C00 BFO0O 0O05E 5683 C61A ACB9 0080
Vienna-Dr. Q 1028 - CN: Very similar to the 1161 byte version and detected by the same
search pattern. 1028 bytes long.

Vienna-Infinity - CN: A 732 byte Vienna mutation, with only one unusual feature: it will
not infect files if the PSQR virus is active in memory.

Vienna-Infinity ACB9 0080 F2AE B904 00AC AE75 EDE2 FASE
Vienna-Kuzmitch - CN: An encrypted, variable-length mutation of the Vienna virus,
which contains a block of text in Russian. The base length of the virus is 810 bytes. No
simple search pattern is possible. Second-generation copies of this virus do not always
seem able to replicate.

Vienna-Mob 1a - CN: A 1024 byte Canadian member of the Vienna family. Detected by
the Parasite 2 pattern.

Vienna-Parasite - CN: Yet another Vienna mutation of Canadian origin - 1132 bytes
long. Version 2B of this virus is presumably written by the same author, but is only 903
bytes long. Detected by the Parasite 2 pattern.

Vienna-Parasite-2 - CN: 901 bytes, closely related to the Parasite and Parasite-2B
mutations.

Parasite 2 ACB9 0080 F2AE B904 00AC AE75 EDE2 FASE
Vienna-Polish 634 - CN: This modified version is detected by the Vienna (1) pattern.
Vienna-Violator-B2 - CN: This 969 byte mutation is not new, and is not expected to
become a serious threat, as it only works properly for a single generation - after that
copies seem to be corrupted.

Vienna-Viola-B2 90AC B900 80F2 AEB9 0400 ACAE 7S5ED E2FA
Vienna-Viperize - CN: One more non-remarkable Vienna mutation - 934 bytes long.

Vienna-Viperize FC8B F290 83C6 0A90 90BF 0001 90B9 0300
Vindicator - CR: A 734 byte virus, which can be found at the beginning of infected files.
Probably of Russian origin. Awaiting analysis.

Vindicator FAB8 0010 F6E7 0500 B88E D831 F6B8 2000
Violator - CN: This is an unsually long mutation of the Vienna virus. Itis 1055 bytes long
and it activates on 15th August. The virus is awaiting analysis. (VB Apr 91)

Violator BF00 01F3 A48B F2B4 30CD 213C 0075 03E9
Violator-B - CN: This 716 byte mutation is detected by the Violator pattern.
Violator-B3 - CN: An 843 byte virus, related to the Violator and Christmas Violator
viruses, and probably written by the same authors.

Violator-B3 803E D003 0274 0B80 3EDO 0303 7407 C3CD

KNOWN IBM-PC VIRUSES 215

Violator-D - CN: Infectious length is 969 bytes. Awaiting analysis.

Violator-D BF00O 01F3 A48B F2B4 30C6 0656 0401 90E8
Violetta - CR: This 3840 byte virus contains some of the least interesting pieces of code
of any virus - it shows a remarkable lack of talent. Not fully analysed.

Violetta B425 BOFF 061F B89DA CD21 OEL1F B425 B021

Violetta-1024 - CN: Probably just an earlier mutation of the Violetta virus. This mutation
has also been reported as ‘Thimble’. Detected by the Violetta pattern.
Virdem - CN: This virus was published in the R. Burger book ‘Computer Viruses - A
High Tech Disease’. Originally intended as a demonstration virus, but now also found in
the wild. Infective length is 1336 bytes. Two versions are known to exist with texts in
English and German. (VB July 90)

Virdem BE80 008D 3EBF 03B9 2000 F3A4 B800 0026
Virdem-1 BE8S0O 008D 3ED7 03B9 2000 F3A4 B800 0026
Virdem-Gen 434B 7409 B44F CD21 72AC 4B75 F7B4 2FCD

Virdem-792 - CN: A destructive mutation of the Virdem virus, which will overwrite the
first 5 sectors on all disks when it activates.

Virdem-792 431E 8CCO 8ED8 8BD3 B43B CD21 1FBE 5203
Virdem-824 - CN: A new uninteresting member of the Virdem family. It can be detected
by the same pattern found in all the other Virdem mutations.

Virdem-family 83C3 1C26 C707 205C 431E 8CCO 8ED8 8BD3
Virdem-1542 - CN: A longer mutation of the Virdem virus, but detected by the same
pattern as the original.

Virdem-Killer - CN: This mutation is closely related to the original Virdem virus. The
length is unchanged at 1336 bytes, although some text strings have been altered. The
virus is detected by the Virdem pattern.

Virus 9 - CN: Infects all COM files in current directory and recursively back to root
directory. Infected files contain virus code at end of file but no link to the code. The virus
will replicate only once. There are no side effects.

Virus 9 3ECD 21B4 4FCD 2172 02EB BOB4 3BBA 7501
Virus-90 - CN: The author of this virus is Patrick A. Toulme. He uploaded the virus to a
number of Bulletin Boards, stating that the source was available for $20. When an
infected program is run it will display the message ‘Infected’, infect a COM file in drive
A and display the message ‘Done’. Infective length is 857 bytes.

Virus-90 558B 2E01. 0181 C503 0133 C033 DBBY 0900

Virus-101 - CN: This virus was written by the same author as Virus-90. The virus is
encrypted and self-modifying. An infected file has the seconds field set to 62. Will not
infect if the first instruction in the file is not a ‘JMP NEAR’. Infective length is 2560
bytes, but COMMAND.COM length does not change. Awaiting disassembly.
Virus-B - CN: ‘Test virus® which was available as a restricted access file from the
Interpath Corporation BBS in the USA. It is a mutation of the South African virus, with
the destructive code of the original disabled. The identification pattern is the same as for
the South African virus.

216 APPENDIX G

Void Poem - CR: A strange virus, with a considerable portion of the 1825 byte virus body
containing an encrypted poem. Not yet analysed.

Void Poem OAEO B9CB 0430 2547 E2FB BAD5 04B8 0125
Voronezh - CER: A Russian, 1600 byte virus, which overwrites the first 1600 bytes of
the host, and moves the original code to the end, where it is written in encrypted form.

Voronezh 3E89 078E COBF 0001 BEOO 015B 5301 DEOE
YVoronezh-370 - CR: This virus is closely related to the Voronezh and USSR-600 viruses,
perhaps their common ancestor. It appears to do nothing but replicate.

Voronezh-370 0500 018B FOBF 0001 FCBA 0434 BB88 0546
Voronezh-Chemist-650 - CR: A 650 byte member of the Voronezh family, reported to
have originated at the Moscow State University. It contains a text string in Russian which
translates to ‘The Chemist & the Elephant’. The virus activates if an infected program is
run at xx:03 o’clock when it displays the message ‘Video mode 80x25 not supported.’
and switches to 40 column mode if possible.

VoronezhChem650 0500 018B FOBF 0001 FCBA 0434 CC88 0546
VP -CN: Contains a variable number (1 to 15) of NOPs at the beginning followed by 909
bytes of virus code. When an infected program is run, the virus may attempt to locate,
infect and execute another program.

VP 0001 FCBF 0001 B910 00F2 A4B8 0001 FFEO
Vriest - CN: This virus adds 1280 bytes in front of the COM files it infects. When it
activates it will display ‘Something’s coming up ...", produce a high-pitched sound fora
few seconds, and finally display ‘Vriest of g greets Vic ear Moeli~’.

Vriest B489 CD21 3D23 0174 32B8 2135 CD21 8C06
VVF 3.4 - CR: This Russian virus only works on some machines, but crashes on certain
types of hardware, such as IBM XT. Awaiting disassembly.

VVF 3.4 7606 81C3 0001 8BF3 FCF3 A41E BBOO 0153
Water Detect - CN: A destructive virus 621 bytes long. Displays ‘Water detected ...’
message on 1st of every month, destroys disk on Friday 13th.

Water Detect B42A CD21 80FA 0175 03E9 A301 81F9 D007
W13 - CN: A primitive group of viruses from Poland, based on the Vienna virus. They
have no known side-effects and two versions which exist are 534 and 507 bytes long. The
507-byte version has some bugs corrected.

W13 8BD7 2BF9 83C7 0205 0301 03Cl 8905 B440
W13-C - CN: A minor modification of the 507-byte W13-B mutation. The only
modification is that this mutation sets the month field to 12, not 13, which makes all files
created in December immune to infection. Detected by the W13 pattern.
W13-361 - CN: A member of the W13 group of Vienna-related viruses. It is detected by
the W13 pattern, but does not function properly, as infected programs (second generation)
will never run. A 377 byte mutation also exists, and it is able to replicate without
problems.
W13-REQ! - CN: This 494 byte member of the W13 group contains the text ‘REQ ! Ltd
(c) 18:41:22 3-1-1991°. It is of Polish origin, but has not been analysed yet.

W13-REQ! 8B4F 1683 E11E 83F9 1E74 EC81 7F1A O00FA

KNOWN IBM-PC VIRUSES 217

Warrier - 7: Awaiting analysis
Warrier B430 CD21 3D03 1E75 09B4 34CD 21BB 6014
Warrior - EN: This virus adds 1012 bytes to any files it infects. It contains the following

text: ‘...and justice to all! (US constitution) Dream over ... And the alone warrior is
warrior. The powerfull WARRIOR!” Awaiting analysis.

Warrior AC2C 8032 E403 F826 8035 01E2 F3B4 19CD
We’re here - CN: This 836 byte virus has not been fully analysed yet.

We’re here B905 00CD 21BF 8600 B0O90 BYSOF OOFC F3AA
Westwood - CER: A 1824 byte mutation of the Jerusalem virus.

Westwood 4DOF CD21 8CC8 0510 O008E DOBC 1007 50BS8
Whale - CER: The infective length of this virus is 9216 bytes. The virus slows the system
down by about 50% and uses dynamic decryption of parts of its code. Much of the code
is dedicated to disabling DEBUG. Does not run on 8086-based computers. (VB Nov 90)

Whale 00 56E8 0200 4569 S5A0E 81EA A023 1FB9 D80B
Whale 01 FDE8 0200 OE4F S5A0E 81EA A023 1FBS D70B
Whale 02 E828 008C CB53 8CDB 1F81 C361 DCE8 1EO00
Whale 03 E829 008C CB53 8CDB 1F81 C361 DCE8 1F0Q0
Whale 04 ES828 008C CB1E S8EDB 5B81 EB9F 23E8 1EQ0
Whale 05 E801 00C3 BB61 DC59 01CB OEBS9 C411 1FFE
Whale 06 E801 00C3 59BB 61DC 01CB OEB9 C310 1FFE
Whale 07 50E8 2A00 81C2 60DC B511 B1C3 87DA ESDF
Whale 08 E82B 0087 D381 C361 DCB9 C311 EBEQ FFFé
Whale 09 OE1F E8F8 FF81 C35D DCB9 Cl111 8BQ7 4343
Whale O0A OE1F E8F7 FF81 EBA3 23B9 Cl11 8B17 4343
Whale OB OEFD 1F58 E82B 0093 B9C3 1183 EBLE 8Al7
Whale O0OC 5BOE 1FE8 2B00 9383 EB1D B9C3 118A 0728
Whale 0D 00D7 EBF6 S5A81 EA9D 23F9 87DA BS98A 2CF8
Whale OE EBF7 582D 9C23 93B9 2EDE 81F1 ABFD Fé17
Whale OF OEF8 1FEB 2300 B184 81ED A123 8BDD B523
Whale 10 OE1F EB823 0081 EAAO 2389 D3B9 2384 86CD
Whale 11 E8F1 FFB9 9F23 29CB 83E9 1AE8 1700 75FB
Whale 12 E8F1 FFB8 9F23 29C3 B91A 0033 C8E8 1600
Whale 13 E907 OOFE 0743 E2FB EBEl EB822 00B9 8523
Whale 14 OE1F EB13 EBE7 FFF8 75FA 585B 5955 FF36
Whale 15 OE1F EB15 EBE6 FF75 FB58 5BFB 59FF 3666
Whale 16 ES800 OOEB OD8B D058 8BD8 5891 FFl6 6625
Whale 17 E82F 00FF 1699 25EB F7B8 0200 81C3 61DD
Whale 18 EB2E 0059 FFl6 9825 EBF6 B802 0081 C361
Whale 19 E803 0040 33DE 0OBF6 FEC7 5B81 EBAl 2383
Whale 1A E802 0033 DEB1 F676 185B 5E81 EB9F 23B9
Whale 1B E803 00BB 0156 5B81 EBSF 23B9 3489 B985
Whale 1C E829 0081 EBY9F 23B9 8723 49F9 4980 3710
Whale 1D E801 00F8 5B81 EBO9F 23B5 23B1 85E8 1900
Whale 1E E800 O00OE 1F5B B81lEB 9F23 B985 23FE 0F43
Whale 1F EB00 009C 9DOE 5058 1F26 5B24 0581 EBSF

Whale 20 E800 0095 930E 9395 1FFC S5B16 1781 EBOF

218 APPENDIX G

Wisconsin, Death to Pascal - CR: This virus adds 815 bytes to the beginning of infected
programs, and 10 bytes to their end. Infected programs may display the message ‘Death
to Pascal’ and attempt to delete all .PAS files in the current directory.

Wisconsin 8BOE 0601 BEO8 018A 0434 FF88 0446 E2F7
Witcode - ER: A 966 byte virus awaiting analysis.

Witcode 83FB 0473 088C C048 8ECO 83C3 1026 8B77
Wolfman - CER: A 2064 byte virus from Taiwan with unknown effects.

Wolfman 8ECO BE04 0026 837C FC00 7404 46EB F6EA
Wonder - EN: An overwriting virus, 7424 bytes long, which appears to have been written
in Borland C++. Not a serious threat, but not yet analysed.

Wonder 83C4 0856 B800 1D50 B801 0050 FF76 04E8
Words - CER: A series of 4 Polish viruses, 1069, 1085, 1387 and 1503 bytes long. The
two longest mutations use self-modifying encryption, and no simple search pattern is
possible. The other mutations can be detected by using a pattern.

Words 8066 OEFE 5958 8BC1 SESD 9DCF 528B D6B4
Wordswap-1391, Wordswap-1485 - CER: Just as in the case of the 1387 and 1503 byte
mutations, no search pattern is possible for these two mutations.

WWT -CN: Very simple, overwriting viruses, with no side-effects other than replication.
Two versions are known: WWT-01, which is 67 bytes long and WWT-02 with a length of

125 bytes.
WWT-01 B44E B901 00CD 2173 02EB 1EBA 9E00 B802
WWT-02 B44E B901 00CD 2173 02EB 10E8 OF00 BA8O

XA1 - CN: The XAl virus overwrites the first 1539 bytes of infected COM files with a
copy of itself and stores the original code at the end of the file. On 1st April the boot
sector will be overwritten, causing the computer to ‘hang’ on the next boot. The virus will
also activate on 21st December and stay active until the end of the year. It will then
display a Christmas tree and the text: ‘Und er lebt doch noch: Der Tannenbaum! Frohe
Weihnachten’.

XAl (1) B02C 8846 FF8B 7E00 884E FEBA 4EFF 000D

XAl (2) OEE8 0000 FA8B EC58 32C0 8946 0281 4600
Xabaras - CER: An encrypted, overwriting 1972 byte virus written by Cracker Jack. A
mutation of the Leprosy virus.

Xabaras 908A 2790 9090 9090 9090 3226 0601 9090
XPEH - CER: Probably related to the Yankee virus, as it is detected by the Yankee
pattern, but modified considerably. Itis 4016 bytes long and of Eastern European origin.
Not yet analysed. g
Yafo - CN: A 328 byte virus, which contains the text ‘Maccabi Yafo Alufa !!!’.

Yafo 03F5 BF80 00B9 8000 FCF3 A4C3 B802 3DCD

Yale, Alameda, Merritt - DR: This virus consists of a boot sector and infects floppies in
drive A only. It becomes memory-resident and occupies 1K of RAM. The original boot
sector is held in track 39 head 0 sector 8. The machine will hang if the virus is run on an
80286 or 80386 machine. If a warm boot is performed after the machine hangs, an

KNOWN IBM-PC VIRUSES 219

uninfected disk will still become infected. It contains code to format track 39 head 0, but
this is not accessed. Survives a warm boot.

Yale BB40 008E DBAl1l 1300 F7E3 2DEO 078E COOE

Yankee - CER: This is a member of the ‘Bulgarian 50’ group of viruses, which consists
of some 50 related versions, all written by the same person. Vacsina viruses belong to the
same group. All the viruses in the group will remove infections by older versions, and the
size varies from 1200 to 3500 bytes. The Yankee viruses will play the tune ‘Yankee
Doodle Dandy’, either at 5:00 p.m. or when Ctrl-Alt-Del is pressed.

Yankee 0000 7402 B603 S20E 5143 CFE8 0000 5B8l
Yankee-1150 and Yankee-1205 - CER: Two closely related, stripped-down versions of
the Yankee virus which do not play any music.

Yankee-1150 CB5B 5383 EB44 C32E 80BF 0100 0074 0681
Yankee-1202 CB5B 5383 EB45 C32E 80BF 0100 0074 0681
Yankee-1905/1909 - CER: Also known as the ‘83’, this mutation is slightly unusual in
that EXE files grow by 1905 bytes, but the virus adds 1909 bytes to COM files. Detected

with the Yankee pattern.

Yankee-Login - CER: This 3045 byte mutation of the Yankee Doodle virus has been
reported to operate as a password ‘snatcher’ on a network, and to cause irreversible
damage to data. It does not seem to work on certain types of hardware, including XTs
with monochrome displays. At least four minor mutations have been reported, but they
are virtually identical, and have the same length.

Yankee-Login B440 EB02 B43F E809 0072 023B C1C3 32C0
Yaunch, Wench - EN: A 2537 byte virus, which has not been analysed.
Yaunch BESC 012B DB8A 058A 2032 C488 0547 3BFA

Yukon - CN: A simple, 151 byte overwriting virus. Does nothing else apart from
displaying the message ‘Divide overflow’.

Yukon 01CD 218B D8B4 57B0 00CD 2151 52B4 40B9

Zeleng - CER: Slightly modified mutation of the Dark Avenger virus. It is 1800 bytes
long and detected by the Dark Avenger pattern.
Zero Bug, Palette - CR: Infective length is 1536 bytes and the virus attaches itself to the
beginning of COM files. The virus modifies the seconds field of the time stamp to 62
(like Vienna). If the virus is active in memory and the DIR command is issued, the
displayed length of infected files will be identical to that before the infection. When the
virus activates, a ‘smiley’ (IBM ASCII character 1) may appear on the screen, and ‘cat’
all zeros found.

Zero Bug 81C9 1F00 CD21 B43E CD21 S5ALF 59B4 43BO
Zero Hunt, Minnow - CR: A 416 byte overwriting virus, which will only infect a file if
it locates a sufficiently large block of zero bytes.

Zero Hunt S521E B802 3DCD 2193 B43F 33C9 8EDY 41BA
Zherkov-1882 - CER: A 1882 byte version of the Zherkov (formerly Lozinsky) virus. It
uses a slightly more sophisticated encryption algorithm than the older mutations, and is
able to infect EXE files. The 1958, 2968 and 2970 byte mutations are probably later

220 APPENDIX G

versions. All the viruses are targeted against the AIDSTEST program, a Russian anti-
virus program written by D. Lozinzky, deleting it if it is executed. The virus also attempts
to corrupt data on diskettes in a unique way - it sets the byte at location 1AH in the boot
sector (Number of sides) to zero - causing the DIR command to produce a ‘Division by
zero’ error. The larger viruses have slightly different effects - the 2968 and 2970 byte
mutations display a large sign ‘AIDSTEST’ if no key is typed for 30 seconds, and then
restore the screen on the next keystroke. 2970 mutation is detected by the 1915 pattern.

Zherkov-1882 5051 061E E800 0OSE 2E8A 44F8 3C00 740F

Zherkov-1915 5006 1EE8 0000 5E2E 8A44 F93C 0074 118B

Zherkov-2968 5706 1EE8 0000 SE2E 8A44 F53C 0074 118B
ZK-900 - CER: A 900 byte virus, which plays a simple tune at regular intervals after an
infected program is run.

ZK-900 B44A 8CCl 418E C1CD 2172 49B4 484A 8BDA
G.4 TROJAN HORSES

AIDS Information Diskette: Widely distributed disk which is an extortion attempt.
Installs multiple hidden directories and files, as well as AIDS.EXE in the main directory
and REM$.EXE in a hidden subdirectory ($ is the non-printing character FF Hexadecimal).
(VB Jan 90)

REMS . EXE 4DSA 0CO01 1EO1 0515 6005 0D03 FFFF 3D21
AIDS.EXE 4D5A 1200 5201 411B E006 780C FFFF 992F
Twelve Tricks: A Trojan replacing the DOS bootstrap sector with a dummy version.
Damage includes corruption of the FAT and twelve effects which may be mistaken for

hardware failure.
Twelve tricks BAB8 DBBE 6402 3194 4201 D1C2 4E79 F733

INDEX

A

access control
active

attack 139
partition 32
algorithm 139
checksumming 38, 88, 89,94
data compression 94
encryption 50, 188,211,219
symmetric 151
ANSI 139

X99 125
ANSLSYS 19,32,76
anti-virus
procedures 52,78,97,103

software 37,78, 79, 80, 87, 88, 94, 95, 104, 136,

153,156

software testing 92

strategy 24, 80, 89

Apple Macintosh 154
ARC 18,93

ASCIT 139
asymmetric

encryption 139
audit

log 139

trail 139

authentication 140

77,79, 104, 139

Little One! Oh, Little One!
| am searching everywhere!

James Stephens, ‘The Snare’

authorisation 140
AUTOEXEC.BAT 20, 33, 34,76, 212
availability 140

B

back door 140
background operation 140
backup 140
as an anti-virus measure 36, 56, 76, 84, 104
off-site 148
bad sectors 140, 165, 180, 181, 206
BAT files 33, 140, 162
Trojan horse 18
BBS 18,19, 46,51,71, 78, 140
as a virus transmission medium 37, 104
source of test viruses 215
transmission of boot sector viruses 42
virus exchange 51, 187, 188
Bell-LaPadula 140
Biba model 140
binary 140
virus 52
biometrics 141
BIOS 141
direct calls 19
interrupt 67,98
bit
copying 141
definition 141

222

block cipher 141
boot protection 141
boot sector
definition 141
DOS 32, 34, 35,42, 84, 144
master 32, 34, 35, 42, 46, 67, 84, 101, 147
virus 18, 29, 34, 35, 36, 39, 42, 44, 46, 52, 67,
68,71,79, 84, 101, 141
bootstrapping 141
accidental 29, 30, 35, 46, 98
secure 30, 52,95, 154
bug 141
bulletin board, see BBS
byte 141

C

cache 142
CBC 142
CCC 65,142
CCTA 142
Central Computer and Telecommunications Agency,
see CCTA
CESG 142
CFB 142
chain letter 26
Chaos Computer Club, see CCC
checksum
cryptographic 88, 89,94, 95, 143
definition 142
cipher 142
block chaining, see CBC
feedback 142
stream 151
ciphertext 142
CMOS 142
memory on IBM ATs 32
co-processor 143
COM files 112,126, 142
as virus carriers 32, 34, 35, 44, 46
Communications-Electronics Security Group,
see CESG
companion virus 35, 47,98, 142
compiler 55, 142, 168, 194, 209
COMPSEC 142
COMPUSEC 142
computer
crime 142
personal, see PC
virus, see virus
confidentiality 143
CONFIG.SYS 19, 32, 34,76, 212
conventional memory 143
copy protection 143
CPU 143
CRC 89,143
cryptanalysis 143
cryptographic
checksum 88, 89, 94, 95, 143
checksumming software 88, 94,95, 153
fingerprints 125
cyclic redundancy check, see CRC

D

data
compression 18,93
encryption standard 143
protection 143

DEBUG 66, 71,154,217

INDEX

deciphering 143
decryption

definition 143

key 143

routine in virus code 49, 50, 68
DES

definition 143
implementation 125

device driver 32, 34, 76, 143
digital signature 143

disk

editor 68,153

floppy 145

hard 145

mirroring 147

operating system, see DOS
optical 148
smart 151
diskless

node 144
workstation
dongle 144
DOS
bootstrap sector
definition 144
internal command 33
downloading 36, 37,71, 78, 104, 144

E

EAROM 144
ECB 144
education
anti-virus measures 78, 109, 154
EEPROM 144
electrically alterable read only memory, see EAROM
electronic
codebook, see ECB
mail 26, 36, 144, 207
enciphering 144
encryption ;
algorithm 50, 188,211, 219
asymmetric 139
definition 144
key 144
proprietary algorithm 150
used by viruses 24, 49
EPROM 144
exclusive-or 53,152
EXE files 112, 126, 144
as virus carriers 32, 34, 35, 44, 46
exhaustive key search 144
expanded memory 89, 144
extended memory 89, 145

F

FAT 145
corruption 161, 167, 171, 173, 176, 190, 194,
205, 207,212, 220
virus attack on Netware 101
virusllgbelling ofbad clusters 43, 165, 172, 180,
1

file

allocation table, see FAT
BAT 140

COM 142
compression 145
encryption 145

EXE 144

103, 104, 106, 144

32,34,35,42,84,112, 144

integrity 145
labelling 145
OVL 148
server 145
SYS 151
FINGER 88,113,125
fimware 145
floppy disks 145

H

hacker 64,145
hard disk 145
hardware 145
problem 153
hash function 146
hashing 146
hexadecimal
definition 146
pattern 50, 66, 69, 72, 74, 88, 156

/O port 146, 181
IC 146
ID 146,169
identification code, see ID
initialisation variable, see IV
Input/Output port, see I/O port
integrated circuit, see IC
integrity
definition 146
ofasystem 95
of files 38
of the software 37,40
shell 91
international dialling 135

International Organisation for Standardisation,

see [SO
Internet 26, 146
interrupt 146, 153

interception 25, 49, 51, 52, 76, 89, 90

IPX 98,100, 105, 106, 154
ISO 146
IV 146

K

KByte 146
key
definition 146
management 146
search 144
secret 150

k

LAN 147
Jerusalem virus infection 102
Manager 97
letterbomb 147
link virus 35, 42, 47, 147
local area network, see LAN
logic bomb 18, 23, 65, 147
LOGIN 98,105, 154, 169
Ludwig, Mark 63
LZEXE 93,159,175

M
MAC 147

INDEX

Macintosh, Apple 154
mainframe 147

viruses 65
worm 26
MAP 105,154

223

master bootstrap sector 32, 34, 35, 42, 46, 67, 84,

101, 147
MByte 147
memory

conventional 143
expanded 89,144
extended 89, 145
non-volatile 148
random access, see RAM
read only, see ROM
menu-driven 147
message

authentication 147
authentication code, see MAC
digest
microprocessor 147
minicomputer 147

viruses 65
MIPS 147
mirroring 147
modem 148

boot sector virus transmission 36
dialling virus 163

virus infiltration route 104
mouse 148
MS-DOS 148,149

multi-partite virus 35, 36, 46, 57, 84, 98, 101, 106,

148
multitasking 148
Mutation Engine 51, 171, 193

N

NET3 98, 100, 105, 106, 154
NetWare 97,169,178
286 97,98
3.11 97,98,99, 154
Encyclopedia 40
network
local area, see LAN
virus-infection 97,154
wide area, see WAN
non-volatile memory 148

Novell 154
0
OFB 148

off-sitebackup 148
one-way function 148

Open Systems Interconnection, see OSI

operating system 148
optical disk 148

082 91,148

OSI 148

output feedback, see OFB
OVL files 33,34,112, 148

p

parasitic virus 35, 36, 46, 67, 98, 101, 149

partition table 149, 176, 195, 208
passive attack 149
password 149,188

on NetWare 98

snatching virus 105, 169, 219

224

PC 149
PC-DOS 148,149
peripheral
access control 149
definition 149
pestprogram 149
PKLITE 93
PKZIP 93
plaintext 149
polymorphic virus 50, 51, 54, 55, 111, 149
Popp, Dr. Joseph Lewis 22
port access control 149
processor 149
program 150
proprietary encryption algorithm 150
PS/2 68,150
public domain 150
software 37,38,78

R

RAM 150

random access memory, see RAM
read only memory, see ROM
reverse-engineering 150

ROM 150
RS-232 150
S

scrambling 150
SEARCH 88,111,156
secretkey 150
secure bootstrapping 154
of NetWare 100, 106
security
definition 150
policy 150
server 150
server 151
smartdisk 151
software 151
anti-virus manufacturers 136
spoofing 151
stealth virus 151
stealth viruses 51, 57, 94, 100, 103, 105, 154
stream cipher 151
symmetric algorithm 151
SYS files 34,112, 151

T

telephone numbers
international dialling 135
terminal 151
terminate and stay resident, see TSR
timebomb 151
timeout 151
token 151
Toulme, Patrick 63
trapdoor 151
Trojan horse 18, 26, 34, 151, 220
forextortion purposes 22
in BAT files 18
used for virus system penetration 18, 42
using ANSLSYS 19, 37
TSR 151
anti-virus software 89
vius 49

INDEX

u

uninterruptible power supply, see UPS
Unix 91,151
worm 26
unknownvirus 153
uploading 36, 37, 46, 152
avirus 215
UPS 152

\

VDU 152
video on viruses 109, 154
virus
active in memory 30, 49, 52, 182
attack 153
binary 52
boot sector 18, 29, 34, 35, 36, 39, 42, 44, 46, 52,
67,68,71,79, 84, 101, 141
companion 35,47, 98, 142
definition 152
description language 111
disguise 24
education 109, 154
link 35,47, 147
memory-resident 49
multi-partite 35, 36, 46, 57, 84, 98, 101, 106,
148
naming 155
non-specific software 88, 90, 94, 95, 104
on mainframes 65
on minicomputers 65
parasitic 35, 36, 46, 67, 98, 101, 149
pattern 111
polymorphic 50, 51, 54,55, 111, 149
scanner 50, 55, 74, 88, 91, 93, 153
signature 41,152
specific software 88, 89, 92, 104, 111, 153
stealth 51,57, 94, 100, 103, 105, 151, 154
unknown 153
Virus Bulletin 102, 111, 155, 156
visual display unit, see VDU
VMS 19,26,91

w

WAN 152
Washburn, Mark 51, 63
wide area network, sce WAN
workstation 152
worm
attack 152
Christmas Tree 26
definition 152
onInternet 26
on SPAN network 26
written by students 65
write-protection 153, 154
as a hardware function 82
for secure bootstrapping 52, 76, 83, 105
of software masters 78
use by service engineers 40

X
XOR 53,152

COMPUTER VIRUSES AND ANTI-VIRUS WARFARE
Second Revised Edition

‘if you read nothing else in this field, you must read Dr Hruska’s book’ - in
essential reading for anyone who has, oris even worried
about having, a bad case of viruses on their hands’

Readership:

Dr Jan Hruska

SECURITY MECHANISMS FOR COMPUTER NETWORKS

S HORWOOD

