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Abstract

One way that anti-virus programs identify the presence of a virus in an executable file, a
boot record, or memory is by using short identifiers called signatures, which consist of sequences
of bytes in the machine code of the virus. A good signature is one that is found in every object
nfected by the virus, but is unlikely to be found if the virus is not present; i.e. the likelihood of
both false negatives and false positives must be minimized. Typically, a human ezpert chooses
a signature for a new virus by means of a laborious, time-consuming procedure. Unfortunately,
the accelerating influz of new computer viruses threatens to outpace the ability of human experts
to analyze and find signatures for them.

To help alleviate this burden, we have developed a statistical method for automatically ez-
tracting good signatures from the machine code of a virus. The basic idea is to characterize
statistically a large corpus of programs (currently about half a gigabyte), and then to use this
mformation to estimate false-positive probabilities for proposed virus signatures. In effect,
the algorithm extrapolates from the corpus to the much larger universe of executable programs
which do or might exist. In practice, signatures extracted by this method are very unlikely to
generate false positives, even when the scanner that employs them permits some mismatches.

This patent-pending technique has been used to either extract or evaluate the more than
2500 virus signatures used by IBM AntiVirus. It obviates the need for a small army of virus
analysts, permitting IBM’s signature database to be maintained by a single virus expert working
halftime.



1 Introduction

One of the most widely-used methods for the detection of computer viruses is the virus scan-
ner, which uses short strings of bytes to identify particular viruses in executable files, boot
records, or memory. The byte strings (referred to as signatures) for a particular virus must be
chosen such that they always discover the virus if it is present, but seldom give a false alarm.
Typically, a human expert makes this choice by converting the binary code of the virus to
assembler, analyzing the assembler code, picking sections of code that appear to be unusual,
and identifying the corresponding bytes in the machine code.

Unfortunately, new viruses and new variations on previously-known viruses are appearing at
a high rate, as illustrated by Fig. 1. For the last several years, IBM’s High Integrity Computing
Laboratory has been collecting new viral strains from anti-virus researchers around the world.
In June, 1991, the rate at which new viruses were added to the collection was approximately
0.6 per day. By June, 1994, the rate had quadrupled to approximately 2.4 per day. Other
researchers, using a somewhat different (but equally valid) method for counting the number
of distinct viruses, report that the current rate at which new viruses are written is about 5
per day. In any case, it cannot be denied that the high rate of new viruses is creating a heavy
burden for human experts, who must spend an increasing proportion of their valuable time
performing a task that demands both a high level of skill and a high tolerance for tedium.
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Figure 1: Cumulative number of viruses for which signatures have been obtained by IBM’s High
Integrity Computing Laboratory vs. time.

In order to alleviate this problem, we have developed a statistical method for automatically
extracting near-optimal signatures from computer virus code. The algorithm examines each
sequence of code in the virus and estimates the probability for that code to be found in
legitimate software. The code sequence with the lowest “false-positive” probability is chosen
as the signature. IBM has used this technique to extract nearly 2000 virus signatures. In
addition, it has been used to evaluate and improve hundreds of signatures which had been
chosen previously by human experts.



The existence of an automatic technique for signature extraction also opens the possibility
of ameliorating a long-criticized deficiency of virus scanners: the delay between when a virus
first appears in the world and when a signature capable of recognizing that virus is distributed
to an appreciable fraction of the population. At the High Integrity Computing Laboratory,
we are planning to eliminate this delay for a large class of viruses by incorporating automatic
signature extraction into an automatic immune system for computer networks [1].

First, in section 2, we shall explain briefly some of the philosophy and pragmatics underlying
the use of virus scanners and signatures. Then, in section 3, we shall describe the signature
extraction/evaluation algorithm in some detail. As will be seen, the probability estimates
generated by the algorithm must be calibrated before the algorithm can be used to extract or
evaluate signatures; a method for doing this is described in section 4. Section 5 presents some
results which demonstrate that the algorithm does an excellent job of discriminating between
good and bad signatures. In section 6, I describe briefly an automatic immune system that we
are planning to implement, of which the signature extractor is a vital component. We conclude
in section 7 with a brief summary.

2 Virus Scanners and Signatures

For simplicity, let us first consider file-infecting viruses that infect their host programs with
exact or near-exact copies of themselves. Self-garbling viruses, particularly those which are
polymorphic, have naturally received most of the hype and hoopla, but a majority of PC DOS
viruses — even those found to in actual incidents — are of this “simple” type.

Suppose that we wish to determine whether a particular host program P is infected with
a particular simple virus V. The most obvious method would be to scan the machine code
of P, looking for a pattern of bytes that exactly matched V. However, there are several
practical problems with this approach. Typical computer viruses are a few hundred to a few
thousand bytes in length. Given that there are several thousand PC DOS viruses (and thus
several thousand patterns to be matched), the amount of memory required just to contain all
of the patterns would be several megabytes, which would be prohibitive. Second, it would be
dangerous for anti-virus software to contain a large library of known viruses. Virus writers
would no doubt be very grateful if we were to make virus collections so easily accessible to
them.

Rather than requiring an exact match, the typical practice is to use just a small piece
of the virus code as a means for identification. These short templates, called signatures, are
much easier to handle, and reveal nothing useful to virus authors. There is an additional, very
important advantage to using short signatures: they still work even when other parts of the
virus change.

There are two sources of viral mutation. First, viruses are sometimes modified deliberately
by humans who wish to produce new viral strains without having to take the trouble to write
one from scratch. However, the new strain will still be detected unless the change is made
somewhere in the sequence of bytes corresponding to the virus signature.’

The second source of viral mutation is programmatic. A small but growing minority of
viruses are programmed to modify their form deliberately whenever they replicate in an at-
tempt to evade detection by virus scanners. Generally, this is done by garbling the main

1Unfortunately, this region of the virus is the favorite target of virus-author wannabees because it can enable the
new strain to go undetected until a new signature is chosen.



portion of the virus using a key that is selected randomly at the time of replication. When
the transmuted virus is loaded into memory and executed, the first several bytes of code (the
“head”) degarbles the main portion of the virus, which is then executed. However, the “head”
is often a fixed sequence of bytes, and a signature can be selected it. A small portion of today’s
viruses are able to overcome this deficiency by randomly generating a large number of differ-
ent heads, which may or may not possess the same functionality. These polymorphic viruses
present more of a challenge to anti-virus technology. So far, human experts have been able to
devise detection algorithms for all such viruses; the algorithms tend to employ methods that
are much more complex than simple signature scanning.

Although short signatures allow one to capture much possible variation, there is a significant
drawback to their use. The shorter the signature, the more likely it is to be found in some
perfectly legitimate code just by coincidence. To minimize this possibility, experts choose
sequences of bytes which look unusual to them. This tedious technique works adequately for
the most part. However, it is not uncommon for a new release of a virus scanner to be followed
quickly by numerous reports of false positives generated by one of the new signatures. Some
in the anti-virus industry feel that false positives are a worse problem than viruses themselves
because they create panic, confusion, and unnecessary work, and undermine people’s faith
in anti-virus technology. No matter what the signature, one can not guarantee that false
positives will never occur, but it is imperative that the false-positive probability be reduced
to acceptable levels.

Human-selected signatures for viruses that have been written in high-level languages are
particularly prone to false positives because most of the generated code is taken verbatim from
libraries specific to the compiler. Unless the expert spends an unconscionable amount of time
familiarizing himself with the boring details of the machine code typically generated by every
C, FORTRAN, Pascal, etc. compiler in the world, he will not be qualified to judge whether
a particular sequence of bytes is really unusual. This is a job for a computer, not a human
being!

In order to increase the likelihood of capturing new variations of a previously-known virus,
some virus scanners (for example the one employed by IBM AntiVirus) recognize inexact
matches between scanned bytes and signatures as a mutant strain of a known virus. The
benefits of capturing a broader range of mutations must be weighed against the increased
probability of a false positive. Again, human experts are not in a good position to make such
a tradeoff because it is nearly impossible for them to quantify how much more risk is involved.

To summarize, a signature must satisfy two conflicting criteria. The signature (and its
associated matching criterion) must capture a broad variety of conceivable mutations for a
particular virus, but the false-positive probability must be as low as possible. Ultimately,
the tradeoff must be based on human judgment, but that judgment must be founded on
a reasonable estimate of the false-positive probability. The next two sections of this paper
describe an algorithm for obtaining such an estimate.

3 The Extraction/Evaluation Algorithm

Suppose that we have just obtained a sample of a new virus imbedded in some host (infected)
executable program. We wish to find a good signature for that virus: one that will appear in
every instance of the virus, but is extremely unlikely to appear just by coincidence in code not
containing the virus.

This is accomplished in two phases. First, a set of signatures that are likely to appear in



each instance of the virus is generated. Second, one or a few signatures that minimize the
false-positive probability are chosen from this set.

3.1 Generating candidate signatures

In our virus isolation laboratory, we use the following procedure to identify portions of the
virus that are likely to be invariant from one instance to another. An automatic algorithm runs
the infected sample on a DOS machine, and then tries to lure the virus into infecting a diverse
suite of “decoy” programs. A decoy’s sole purpose in life is to become infected. To increase
the chances of success in this noble, selfless endeavor, decoys are designed to be as attractive
as possible to those types of viruses that spread most successfully. A good strategy for a virus
to follow is to infect programs that are touched by the operating system in some way. Such
programs are most likely to be executed by the user, and thus serve as the most successful
vehicle for further spread. Therefore, the algorithm entices a putative virus to infect the decoy
programs by executing, reading, writing to, copying, or otherwise manipulating each of them.
Such activity tends to attract the attention of many viruses that remain active in memory
even after they have returned control to their host. To catch viruses that do not remain
active in memory, the decoys are placed in places where the most commonly used programs in
the system are typically located, such as the root directory, the current directory, and other
directories in the path. The next time the infected file is run, it is very likely to select one of
the decoys as its victim. From time to time, each of the decoy programs is examined to see
if it has been modified. Any that have been modified are assumed to have been infected with
the virus, and are stored in a special directory, where they await the next processing step.

After having obtained several infected decoys, the infected regions of the decoys are com-
pared with one another to establish which regions of the virus are constant from one instance
to another. Usually, most of the virus is constant, with one or more small regions that vary. In
some cases, there is a fairly short constant region near the beginning of the virus, followed by a
large variable region; this is indicative of a simple self-garbling virus. In a small percentage of
cases, the constant regions are so short as to be useless for the purpose of extracting signatures.
Such a situation indicates that the virus is at least moderately polymorphic, and in this case
the algorithm gives up, and a human expert performs the analysis. Further improvements to
the algorithm could be made to handle certain types of polymorphism, but there will always
be a place for human virus experts!

Provided that the virus is not overly polymorphic, there are at this point one or more sec-
tions of the virus which tentatively have been classified as being invariant. However, it is quite
conceivable that not all of the potential variation has been captured within the samples. Var-
ious heuristics are employed to identify portions of the “invariant” sections of the virus which
by their nature are unlikely to vary from one instance of the virus to another. In particular,
“code” portions of the virus which represent machine instructions (with the possible exception
of bytes representing addresses) are typically invariant. “Data” portions of the virus, which
for example could represent numerical constants, character strings, screen images, work areas
for computations, addresses, etc. are often invariant as well, but are much more vulnerable to
modification by the virus itself when it replicates itself or by humans who intentionally modify
viruses so as to help them elude virus scanners. We use a variety of techniques to segregate
code and data portions, and only the code portions are retained for further processing.

At this point, there are one or more sequences of invariant machine code bytes from which
viral signatures could be selected. We take the set of candidate signatures to be all possible
contiguous blocks of S bytes found in these byte sequences, where S is a signature length
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specified by the user or determined by the algorithm itself. (Typically, S ranges between
approximately 12 and 36.) The remaining goal is to select from among the candidates one or
perhaps a few signatures that are least likely to lead to false positives.

3.2 Choosing the best signature

Before describing the selection process, it is worth noting two things. First, the aforementioned
procedure for generating the candidate signatures is not crucial. Any other technique, including
manual labor by a human expert, could be used. Second, the number of candidate signatures
could be very small — even just one. This would be appropriate if one were using the signature
extractor to evaluate a signature that has been chosen previously, most likely by a human
expert.

The key idea behind the algorithm is to estimate the probability that each of the candidate
signatures will match a randomly-chosen block of bytes in the machine code of a randomly-
chosen program, either exactly or with some specified number or pattern of mismatches. In
the case of extraction, we select one or more signatures with the lowest estimated “false-
positive” probabilities of all the candidates, making sure that this probability is less than
some established threshold. In the case of evaluation, we just place a seal of approval on a
signature if its estimated false-positive probability is less than the established threshold. Thus
the problem of signature extraction or evaluation is reduced to the following problem: For a
given sequence of S bytes BB, ...Bg (call it B for short), estimate the probability p(B) for
B to occur in a large body of normal, uninfected code.

The most obvious way to compute p(B) is to tally the number of occurrences of B in a
large corpus of uninfected programs. Call this quantity f(5). Then p(B) could be estimated
as simply

f(B)

Ts ’
where Ts is the number of S-byte sequences in the corpus.
However, there is a serious problem with this technique. Suppose that the corpus is rea-

(1)

sonably large — on the order of a gigabyte or so. For relatively common sequences (ones that
could be expected to appear several times per gigabyte), the probability estimate given by Eq.
1 would be reasonably accurate. Somewhat common sequences (ones that could be expected to
appear once or twice per gigabyte, or once in every few gigabytes) might or might not appear
in the corpus. Extremely rare sequences almost certainly would not appear in the corpus. It
is readily apparent from these considerations that the technique prescribed in Eq. 1 has very
little ability to discriminate between somewhat common and very uncommon sequences. An-
other way to express this is that the dynamic range of possible probability estimates yielded
by this method is inadequate; it cannot produce estimated probabilities less than i,
10~° for a gigabyte corpus.

A more illustrative way to understand the inadequacy of this technique is by making an
analogy to a problem encountered in training machines to understand human speech. In order

or about

to make sense of a stream of phonemes that have been extracted from an utterance, it is often
useful to have a language model that is derived from a large corpus of utterances. The problem
is similar to that of estimating the probability that a given sentence will be uttered, given a
large corpus of previous utterances. For example, suppose that we have access to a recording
of all press interviews with United States senators during the 1980’s, and that we would like



to estimate the probability for each of the following three sentences to be spoken by a U.S.
Senator sometime during the 1990’s:

1. God bless America.
2. It’s all true — we are space aliens.
3. We bless all true American space god aliens.

The 1980’s corpus would probably consist of tens or hundreds of millions of sentences.
Within that corpus, we might expect sentence 1 to appear several times. It would be somewhat
surprising to find an instance of sentence 2 in the corpus, but not absolutely inconceivable.
Sentence 3 seems extremely unlikely. It is not the sort of sentence that one would expect
to occur naturally in ordinary human discourse; it has the look of something generated by a
somewhat incompetent computer program.

The most likely scenario is that one would find several instances of sentence 1 in the 1980°s
corpus, but no instances of sentences 2 and 3. Under these circumstances, the method of Eq. 1
would assign an estimated probability of zero to sentences 2 and 3. It would fail to distinguish
sentence 2 as being unusual, but significantly more likely than sentence 3.

In fact, less than halfway through the 1990’s, we find that sentence 1 has indeed been
uttered several times. But we also find that sentence 2 has been uttered at least once — by
Senator Phil Gramm of Texas, who made his stunning confession on June 7, 1994, after the
question of his extraterrestial origin was posed by a reporter from The Weekly World News
[2]. As far as we are aware, the world is still waiting for sentence 3.

There is a critical need for an algorithm capable of distinguishing the likelihood of sentence 2
as much greater than that of sentence 3, even if neither one appears in the corpus. Fortunately,
researchers in the field of speech recognition have been dealing with just this sort of problem
for many years. The solution is to collect statistics on short sequences of adjacent words.
Trigrams (sequences of three adjacent phonemes or words) are fairly popular in the speech
community. The key insight is that reasonably good statistics can be obtained for sufficiently
short sequences. Then, a simple approximation formula can be used estimate the probability
of a long sequence by combining the measured frequencies of the shorter sequences from which
it is composed.

In sentence 2, the sequences “It’s all true” and “we are” are quite common, and “space
aliens” is only somewhat unusual, so the overall sentence can be classified as unusual, but not
terrifically so. In sentence 3, none of the individual words are very unusual, but the sequences
“American space god”, and “space god aliens” are quite unusual, and contribute to a very low
overall estimated probability for the sentence. In effect, the trigram technique (which is easily
generalized to higher-order n-grams) allows one to extrapolate beyond an existing corpus to
a vastly larger universe of statistically similar utterances. This permits one to discriminate
between somewhat unusual and extremely unusual utterances.

The technique that we have developed for automatic signature extraction is completely
analogous to this standard speech recognition technique. Suppose that trigram statistics were
tallied for a large corpus. Then the estimated probability for the sequence By B, ... Bs would
be calculated from

f(BleBa)f(BzBaB4) .- -f(BS—ZBS—lBS)
f(BzBa)f(BaB4) .- -f(BS—zBS—l)Ta

where T3 is the number of trigrams in the corpus.

p(B1B2 .. Bs) =

(2)



To get some insight into the derivation of Eq. 2, consider the simpler problem of estimating
the probability of a 4-byte sequence B, B, BsB, from measured frequencies of its constituents.
First, one can re-write p(B; B, B3 B,) in the form:

P(BleBaB4) = P(BleBa)P(B4|BleBa) (3)

where p(A|B) is to be interpreted as the probability of byte sequence A having been preceded
by byte sequence B. Eq. 3 is exact up to this point. However, if we suppose the correlation
between byte B; and byte B, is sufficiently weak that it can be ignored, the term p(B4|B1 B2 B3)
can be replaced as follows:

B;B3B
BB Ba ) ~ p(Ba By ) = P2 4)
Inserting Eq. 4 into Eq. 3 yields
p(ByB,Bs)p(B;BsB,)
B1B;B3B,) = ;
P( 1D2D3 4) p(BQBg) , ( )

a special case of Eq. 2.

The extension of Eq. 2 to higher-order n-grams is conceptually trivial. The technique used
to extract and evaluate IBM AntiVirus’s signatures is a more sophisticated variant of Eq. 2
that incorporates measured frequencies of 1-, 2-, 3-, 4-, and b-grams. A few additional tricks
are used to solve the problem of adequate storage for the 3-, 4-, and 5-gram frequencies?.

The more sophisticated variant of Eq. 2 has some additional useful capabilities. Signatures
with fixed wildcards are handled by letting the wildcards serve as demarcations between non-
wildcarded regions. The estimated probabilities of all non-wildcarded regions are multiplied to
obtain the overall estimated probability of the signature. To calculate estimated probabilities
of signatures for which m mismatches are permitted, one can (conceptually) generate all of the
ﬁ possible mismatch configurations, treat each configuration individually as a signature
with m fixed wildcards, and then add the probabilities of all configurations together. If im-
plemented naively, and if m is more than 4 or 5, the combinatorics can make the computation
painfully slow, even on a fast workstation. Fortunately, I have developed a recursive algorithm
that bypasses the combinatorics, and obviates the need to generate each mismatch configura-
tion explicitly. The recursive algorithm permits the estimated probability of a signature to be
computed very quickly, regardless of the number of allowed mismatches.

Note that, in the speech recognition example, the trigram technique achieved good dis-
crimination between the likelihood of sentences 2 and 3 without having any real knowledge
of grammar and semantics. Similarly, the automatic signature extraction technique makes no
attempt to understand code in the same way that a human expert in machine code/assembly
language would. It does not know what instructions mean; in fact, it does not even know
that instructions exist. It sees machine code as nothing more than a long sequence of bytes,
and it applies a blind, brute-force force statistical technique to those bytes. Remarkably, this
lack of understanding is more than offset by the algorithm’s ability to acquire a knowledge of
machine code statistics to a depth to which no human expert could or would hope to aspire.
This allows the algorithm to perform extremely well, as will now be seen.

2Although the algorithm is typically run on an IBM RS/6000 workstation, the code has been ported successfully
to OS/2.



4 How Good is the Algorithm?

We have used two different methods to assess the quality of the signatures obtained by the
extraction algorithm described in the previous section. One technique is to generate ran-
dom sequences, and compare estimated and actual measured probabilities of those random
sequences with one another. The resulting plot of estimated vs. actual probabilities provides
a very clear picture of the algorithm’s effectiveness. The second technique is to compare the
estimated probabilities of signatures extracted from viruses by either the algorithm itself or
a human expert, and observe the number of false positives as a function of the estimated
probability. The remainder of the section treats both techniques in some detail.

4.1 Characterizing the algorithm using random sequences

Although using random sequences to characterize the relationship between estimated and
actual probabilities sounds like a fine idea in principle, there is a hitch: a randomly generated
byte sequence of any length is extremely unlikely to be found in any corpus. For example,
there are 256'¢ ~ 3.4 - 10%® different sequences of length 16; the probability of any given one
of them being found in a 1 gigabyte corpus would be about 3 - 10~2°.

The obvious solution is to reserve a section of the corpus, and choose from it “random”
sequences that have a much better chance of having something in common with the sequences
found in the rest of the corpus. In these experiments, the corpus (containing thousands of DOS,
Windows, and OS/2 executable programs, comprising roughly half a gigabyte) is divided into
three partitions: a small “probe” set, and training and test sets of roughly equal size. On the
order of 10,000 sequences of s (where s is typically in the range of 12-24) contiguous bytes
are drawn randomly from the probe set, and treated as candidate signatures. The probability
estimation algorithm is run against the candidate signatures and the training corpus, while
the number of instances of each candidate signature in the test corpus is tallied and divided
by the size of the test corpus to obtain an “actual” probability for each signature. Then, the
actual and estimated probability for each of the candidate signatures are plotted against one
another on a logarthmic scale.

A typical result is displayed in Fig. 2. In this case, the candidate signature length was s =
24, and no mismatches were permitted. Ideally, one would like all of the pairs of estimated and
actual probabilities to fall on the dashed line, which represents perfect agreement between the
two probabilities. Obviously, the algorithm falls far short of this ideal. The actual probabilities
are almost always greater than the estimated probabilities because the correlations among bytes
that are separated by several bytes — which are assumed to be negligible in the approximation
in Eq. 4) — are in fact strongly positive.

At first glance, Fig. 2 seems to contain nothing but bad news. However, the ultimate goal
is not accurate probability estimation; it is simply to discriminate good signatures from bad
ones. In fact, the results of Figure 2 show that this is quite feasible! Consider the vertical
stripe at the left-hand side of Fig. 2. It corresponds to sequences which never appeared in the
test corpus. Thus, we shall refer to them as “good” sequences. The cloud of points to the right
of it corresponds to sequences which appeared one or more times in the reduced corpus. These
we refer to as the “bad” sequences. In using the automatic extraction/evaluation algorithm, we
must select a threshold for the estimated log-probability such that it excludes all or practically
all bad sequences without eliminating too many good sequences. In this case, setting the
estimated log-probability threshold at approximately -70 excludes practically all of the bad
sequences, while apparently there are still many good sequences which would not be excluded.
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Figure 2: Estimated vs. actual exact-match probabilities for 10,535 24-byte sequences selected
randomly from the probe set. Dashed line indicates equality between estimated and actual prob-
abilities. For the several thousand probe sequences which never appeared in the test corpus, the
logarithm of the actual probability is —oco. The estimated log-probabilities for these “good” se-
quences varied from approximately -165 to -18, resulting in a nearly-continuous vertical line at the
left-hand side of the figure. The vertical striations to the right of it correspond to sequences which
appeared once, twice, etc. in the test corpus. The estimated log-probabilities for these “bad”
sequences also varied over a considerable range.



However, in order to tell exactly what proportion of good sequences are not excluded, we must
look at the data in a different way.

In order to select a reasonable log-probability threshold 7', we first need to compute two
quantities as a function of 7': the number of good sequences which are accepted by the threshold
T, Ayooa(T), and the number of bad sequences which are accepted by T', Ay.q(T"). Note that
Agooa(0) and Ayuq(0) represent the total number of good and bad sequences, respectively.
Then, in order not to reject too many good sequences, we want to minimize the false-rejection

probability 1 — %, which can be done by making T as large (close to 0) as possible.
On the other hand, we also want to minimize the false-positive probability #m,

which requires that 7' be made as low as possible. Figure 2 displays the false-rejection and
false-positive probabilities derived from the data presented in Fig. 2.
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Figure 3: False-rejection and false-positive probabilities as a function of log-probability threshold
T, derived from the data presented in Fig. 2.

Now we are in a position to make a well-informed tradeoff between false rejection and false
positives. In this example, the false-positive probability is zero for T' < —68, at which point
the false-rejection probability is 48%. We can lower the false-rejection probability further by
choosing T' > —68, but only if we are willing to accept the chance of false positives. This can
be seen clearly from Fig. 2. However, if we are willing to tolerate a false-positive probability
of 0.5%, we can reduce the false-rejection probability to 36% by increasing 7 to -60.

What is a reasonable tradeoff? We think it is important to keep the probability of a false
positive occurring in a collection of software distinct from (but similar in size to) our half-
gigabyte corpus to at most a few tenths of one percent. To help illustrate what this means,
suppose that we have a large collection of software containing no duplicates. In order for there
to be a reasonable chance of obtaining a false positive, the size of the collection would have
to be at least several hundred gigabytes. This may be on the order of the total amount of
software in common usage in today’s world.

The flip side of the tradeoff is the false-rejection probability. If we are extracting signatures
from virus code, we can often live with a reasonably high false-rejection probability; certainly
more than 50%, and perhaps even 80% or 90%. Viruses typically contain at least several
hundreds or thousands of byte sequences from which to choose. We only need one or perhaps a
few signatures, so we can afford to throw away many good ones. However, there are situations
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in which we don’t have the luxury of several dozen signatures from which to choose. For
example, for self-garbling viruses we must choose the signature from the head, which can be
fairly short. In this case, we might be forced to raise the threshold and accept a higher false-
positive probability. In the case of signature evaluation, the signature is presumably one that
has been recommended by an expert. It ought to be judged on the same basis as the extracted
signatures. If the signature is rejected by the threshold, the proper course of action is to obtain
a sample of the virus and extract the signature automatically.

In the case of Fig. 3, one need not struggle much to find a reasonable compromise. A choice
of T somewhere in the range between -60 and -70 would satisfy both of our criteria quite well.

It is interesting to note that, in Fig. 3, the false-positive probability is quite high when
T = 0 — approximately 34%. In other words, out of a corpus of approximately half a gigabyte,
if one chooses at random a 24-byte sequence, there is a 34% chance of finding that same 24-
byte sequence somewhere else in the corpus. The moral of this is that sheer length offers little
protection from the risk that a signature will generate false positives. Cleverness, be it human
or algorithmic, is an essential ingredient in choosing good computer virus signatures.

We emphasize that the term “false-positive” probability has been used above to mean the
probability of a byte sequence being found in a body of programs both statistically similar
to and comparable in size to our corpus. To allow for the fact that the number of programs
that exist or could exist in the world exceeds the number of programs in the corpus by a
considerable margin, it might be prudent to diminish the threshold probability by a factor of
10 or 100. In other words, perhaps the log-probability threshold T should be reduced by 4
or 5. However, this may be overly conservative because a majority of virus code is written
in assembler, not the high-level languages in which most of today’s PC software applications
are being written. Thus selection of thresholds based upon studies of probes taken from the
corpus itself is likely to be overly pessimistic for viruses, which are somewhat atypical software.
Practical experience indicates that, very roughly, the two effects cancel one another.

4.2 The false-positive record

The algorithm has been used to extract most of the computer virus signatures used by IBM
AntiVirus. Only a small handful of false positives have been reported. In most cases, the
offending signatures have been those taken from a virus written in a high-level language such
as C or Pascal. Such viruses tend to be even more of a problem for human experts than for
the algorithm!

It is often difficult to extract decent signatures for such viruses because compilers tend to
introduce a lot of boiler-plate code that gets intermingled with the meat of the virus code,
obscuring any idiosyncracies that might be used to identify the virus. In other words, program
individuality is largely washed out by compilers, making it intrinsically difficult to find a good
signature. Usually, there are just a few pockets of unusual code, which can be very difficult
for even the most expert of humans to find. It is hard to imagine that a human would want
to be good at doing this, because it takes a lot of very specific knowledge about machine
code that is produced by each of the several dozen most commonly used compilers. But the
algorithm is perfectly happy to become intimately acquainted with such statistical details, and
for this reason it tends to be much better than humans at extracting signatures from compiled
viruses. It is easy to tell when the algorithm is working on such a virus, because almost all
of the candidate signatures have very high estimated probabilities. In almost every case, the
algorithm locates the pockets that contain good signature material, and chooses a signature
from one of them.
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We are well on the way to understanding the nature of what went wrong in the very few
cases where the algorithm has selected signatures that have later proved to yield false posi-
tives. We are very optimistic about one particular idea that we think will lead to substantial
improvements in the algorithm’s performance on compiled viruses (stay tuned!)
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Figure 4: Histogram of estimated signature probabilities for Virus Bulletin signatures from 1991.
Black histogram represents virus signatures responsible for one or more false positives.
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Figure 5: Number of times that each of the six “bad” signatures of Fig. 4 was found in the corpus,
using fuzzy matching criteria. Note that all of the bad signatures have log probabilities that are
much higher than our chosen threshold. In other words, the automatic algorithm would not have
come close to selecting any of these poor signatures.

Another way to evaluate the performance of the algorithm is to find an alternative source of
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virus signatures and then check to see how the false-positive rate correlates with the probability
estimated by the algorithm. The Virus Bulletin is a very convenient source of signatures. As
an experiment, we took a large set of signatures that had been published in Virus Bulletin
over the course of several months during mid-1991, and used the algorithm to estimate their
false positive probabilities. Then, we incorporated the Virus Bulletin signatures (which were
typically 16 bytes in length) into IBM’s virus scanner.

The Virus Bulletin signatures were only intended to be used with exact matching. However,
in order to encourage them to produce false positives, we turned on fuzzy matching, which
declared a match if 12 or more of the 16 bytes matched, and scanned the corpus to see which
signatures (if any) caused “false positives”.

Out of 267 signatures, 6 yielded one or more false positives. As demonstrated in Fig. 4, the
signatures that caused false positives were those for which the estimated probability was much
greater than average. The signature with the highest estimated probability, Kamikaze, turned
out to be the most notorious false-positive generator; it was found over 60 times in the corpus
(see Fig. 5). In many cases, there were just 2 mismatched bytes. Jocker, which the algorithm
claimed was one of the 5 worst signatures, turned out to be the second worst offender in the
scanner test; it hit on about 10 files in the corpus.

In short, the automatic algorithmic did an excellent job of identifying signatures that were
more at risk for generating false positives.

5 Application: Computer Immune System

The existence of an automatic method for extracting signatures from viruses raises the pos-
sibility that a computer encountering a previously-unknown virus could develop something
like an antibody to that virus without any human intervention. Removing humans from the
loop could cut the response time to a new virus from several days or even several weeks to a
few hours or less. The main difficulty with today’s method of updating scanners is not that
humans are too slow in choosing signatures; it is that the distribution mechanism for signature
updates is often slow and uncertain.

Along with several of our colleagues at the High Integrity Computing Laboratory at the
Thomas J. Watson Research Center, we have been designing an automatic immune system for
computers and computer networks [1], for which there is a patent pending. The automatic
signature extraction technique is just one of several components that have been implemented
in our laboratory, and which are already supplying information that is useful for updating
signature files and other databases used by IBM AntiVirus. Over the course of the next few
years, our intent is that IBM AntiVirus will evolve into an immune system for computers as
various components are phased into the product.

The immune system (illustrated in Fig. 6) would monitor a system’s memory, file system,
and boot record for suspicious, virus-like behavior. Periodic scans for known viruses would
take place. Any infections attributable to known viruses would be eliminated by repairing or
restoring the infected host programs. To a greater or lesser degree, several of today’s existing
anti-virus programs include these features, and some of them integrate these functions in useful
ways. The new element would be an ability to adapt to a new virus not included among the
set of known viruses.

If a virus-like anomaly were detected by the immune system, the first response would be
to trigger a scan for known viruses. If the anomaly could not be attributed to a known virus,
the immune system would try to lure any virus that might be present in the system to infect a
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Immune System Overview
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Figure 7: Fighting self-replication with self-replication. When a computer detects a virus, it
eliminates the infection, immunizes itself against future infection, and sends a “kill signal” to its
neighbors. Receipt of the kill signal results in the immunization of uninfected neighbors; infected
neighbors are both immunized and prompted to send kill signals to their neighbors. Thus detection
of a virus by a single computer can trigger a wave of kill signals that propagates along the path
taken by the virus, destroying the virus in its wake.
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diverse suite of “decoy” programs, as described earlier in this paper. From time to time, each
of the decoy programs is examined to see if it has been modified. If one or more have been
modified, it is almost certain that an unknown virus is loose in the system, and each of the
modified decoys contains a sample of that virus.

The next step would be to extract a signature for the virus automatically. In addition, an-
other automatic virus analysis tool under development in our laboratory would determine how
the virus attached to host programs, and extract information that would allow any program
infected by the virus to be repaired.

Having automatically developed both a recognizer and a repair algorithm appropriate to
the virus, the information can be added to the corresponding databases. If the virus is ever
encountered again, the immune system will recognize it immediately as a known virus. A
computer with an immune system could be thought of as “ill” during its first encounter with a
virus, since a considerable amount of time and energy (or CPU cycles) would be expended to
analyze the virus. However, on subsequent encounters, detection and elimination of the virus
would occur much more quickly: the computer could be thought of as “immune” to the virus.

An additional feature, which we refer to as the “kill signal”, would be used by a computer
to inform neighboring computers on the network that it was infected. The signal would also
convey to the recipient any signature or repair information that might be of use in detecting
and eradicating the virus. If the recipient finds that it is infected, it would send the signal to
its neighbors, and so on. If the recipient is not infected, it does not pass along the signal, but
at least it has received the database updates — effectively immunizing it against that virus
(see Fig. 7).

Theoretical modeling has shown the kill signal to be extremely effective, particularly in
topologies that are highly localized or sparsely connected [3, 4].

No virus detector can handle every conceivable virus, as Fred Cohen first showed by a simple
adaptation of the halting problem contradiction [5]. Similarly, biological immune systems do
not offer perfect protection against all diseases. The proposed computer immune system is
not immune to these incontrovertible facts of mathematics and of nature. The intent is that
the computer immune system should automatically deal with the myriad “common colds” of
the virus world, and that it should alert humans when it is having trouble with a particularly
nasty, difficult-to-analyze virus. Humans should only have to analyze a relatively small residue
of new, especially difficult viruses.

6 Conclusion

The automatic signature extraction and evaluation algorithm has been used to extract about
2000 of IBM AntiVirus’s virus signatures. Currently, the decoys are run on a specially instru-
mented PC, while the probability estimation is performed on an RS/6000 workstation. In a
recent run, the algorithm extracted 634 signatures in just 30 minutes (not including the time
required to create the virus samples).

Not only is the speed much faster than can be attained by any human expert, but the
quality of the signatures (judging by IBM AntiVirus’s extremely low false-positive rate) is
overall at least as good as those produced by humans, and in the case of viruses written in
high-level languages it may even be better.

The automatic signature extraction algorithm has greatly reduced the burden on the virus
experts in our research group. We don’t need to employ a dozen or more virus analyzers;
instead, the virus signature database is maintained by one virus expert working halftime. This
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allows our virus experts to devote their skills to more challenging tasks.

Improvements are continually being made to the algorithm; the next major one will be to
address the occasional false positives that are generated by signatures taken from compiled
viruses. Much more exciting is the incorporation of the algorithm into a computer immune
system. Over the course of the next few years, we hope to phase elements of the immune
system design into IBM AntiVirus.
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