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AbstractOne way that anti-virus programs identify the presence of a virus in an executable �le, aboot record, or memory is by using short identi�ers called signatures, which consist of sequencesof bytes in the machine code of the virus. A good signature is one that is found in every objectinfected by the virus, but is unlikely to be found if the virus is not present; i.e. the likelihood ofboth false negatives and false positives must be minimized. Typically, a human expert choosesa signature for a new virus by means of a laborious, time-consuming procedure. Unfortunately,the accelerating in
ux of new computer viruses threatens to outpace the ability of human expertsto analyze and �nd signatures for them.To help alleviate this burden, we have developed a statistical method for automatically ex-tracting good signatures from the machine code of a virus. The basic idea is to characterizestatistically a large corpus of programs (currently about half a gigabyte), and then to use thisinformation to estimate false-positive probabilities for proposed virus signatures. In e�ect,the algorithm extrapolates from the corpus to the much larger universe of executable programswhich do or might exist. In practice, signatures extracted by this method are very unlikely togenerate false positives, even when the scanner that employs them permits some mismatches.This patent-pending technique has been used to either extract or evaluate the more than2500 virus signatures used by IBM AntiVirus. It obviates the need for a small army of virusanalysts, permitting IBM's signature database to be maintained by a single virus expert workinghalftime.
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1 IntroductionOne of the most widely-used methods for the detection of computer viruses is the virus scan-ner, which uses short strings of bytes to identify particular viruses in executable �les, bootrecords, or memory. The byte strings (referred to as signatures) for a particular virus must bechosen such that they always discover the virus if it is present, but seldom give a false alarm.Typically, a human expert makes this choice by converting the binary code of the virus toassembler, analyzing the assembler code, picking sections of code that appear to be unusual,and identifying the corresponding bytes in the machine code.Unfortunately, new viruses and new variations on previously-known viruses are appearing ata high rate, as illustrated by Fig. 1. For the last several years, IBM's High Integrity ComputingLaboratory has been collecting new viral strains from anti-virus researchers around the world.In June, 1991, the rate at which new viruses were added to the collection was approximately0.6 per day. By June, 1994, the rate had quadrupled to approximately 2.4 per day. Otherresearchers, using a somewhat di�erent (but equally valid) method for counting the numberof distinct viruses, report that the current rate at which new viruses are written is about 5per day. In any case, it cannot be denied that the high rate of new viruses is creating a heavyburden for human experts, who must spend an increasing proportion of their valuable timeperforming a task that demands both a high level of skill and a high tolerance for tedium.
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The existence of an automatic technique for signature extraction also opens the possibilityof ameliorating a long-criticized de�ciency of virus scanners: the delay between when a virus�rst appears in the world and when a signature capable of recognizing that virus is distributedto an appreciable fraction of the population. At the High Integrity Computing Laboratory,we are planning to eliminate this delay for a large class of viruses by incorporating automaticsignature extraction into an automatic immune system for computer networks [1].First, in section 2, we shall explain brie
y some of the philosophy and pragmatics underlyingthe use of virus scanners and signatures. Then, in section 3, we shall describe the signatureextraction/evaluation algorithm in some detail. As will be seen, the probability estimatesgenerated by the algorithm must be calibrated before the algorithm can be used to extract orevaluate signatures; a method for doing this is described in section 4. Section 5 presents someresults which demonstrate that the algorithm does an excellent job of discriminating betweengood and bad signatures. In section 6, I describe brie
y an automatic immune system that weare planning to implement, of which the signature extractor is a vital component. We concludein section 7 with a brief summary.2 Virus Scanners and SignaturesFor simplicity, let us �rst consider �le-infecting viruses that infect their host programs withexact or near-exact copies of themselves. Self-garbling viruses, particularly those which arepolymorphic, have naturally received most of the hype and hoopla, but a majority of PC DOSviruses | even those found to in actual incidents | are of this \simple" type.Suppose that we wish to determine whether a particular host program P is infected witha particular simple virus V . The most obvious method would be to scan the machine codeof P , looking for a pattern of bytes that exactly matched V . However, there are severalpractical problems with this approach. Typical computer viruses are a few hundred to a fewthousand bytes in length. Given that there are several thousand PC DOS viruses (and thusseveral thousand patterns to be matched), the amount of memory required just to contain allof the patterns would be several megabytes, which would be prohibitive. Second, it would bedangerous for anti-virus software to contain a large library of known viruses. Virus writerswould no doubt be very grateful if we were to make virus collections so easily accessible tothem.Rather than requiring an exact match, the typical practice is to use just a small pieceof the virus code as a means for identi�cation. These short templates, called signatures, aremuch easier to handle, and reveal nothing useful to virus authors. There is an additional, veryimportant advantage to using short signatures: they still work even when other parts of thevirus change.There are two sources of viral mutation. First, viruses are sometimes modi�ed deliberatelyby humans who wish to produce new viral strains without having to take the trouble to writeone from scratch. However, the new strain will still be detected unless the change is madesomewhere in the sequence of bytes corresponding to the virus signature.1The second source of viral mutation is programmatic. A small but growing minority ofviruses are programmed to modify their form deliberately whenever they replicate in an at-tempt to evade detection by virus scanners. Generally, this is done by garbling the main1Unfortunately, this region of the virus is the favorite target of virus-author wannabees because it can enable thenew strain to go undetected until a new signature is chosen.2



portion of the virus using a key that is selected randomly at the time of replication. Whenthe transmuted virus is loaded into memory and executed, the �rst several bytes of code (the\head") degarbles the main portion of the virus, which is then executed. However, the \head"is often a �xed sequence of bytes, and a signature can be selected it. A small portion of today'sviruses are able to overcome this de�ciency by randomly generating a large number of di�er-ent heads, which may or may not possess the same functionality. These polymorphic virusespresent more of a challenge to anti-virus technology. So far, human experts have been able todevise detection algorithms for all such viruses; the algorithms tend to employ methods thatare much more complex than simple signature scanning.Although short signatures allow one to capture much possible variation, there is a signi�cantdrawback to their use. The shorter the signature, the more likely it is to be found in someperfectly legitimate code just by coincidence. To minimize this possibility, experts choosesequences of bytes which look unusual to them. This tedious technique works adequately forthe most part. However, it is not uncommon for a new release of a virus scanner to be followedquickly by numerous reports of false positives generated by one of the new signatures. Somein the anti-virus industry feel that false positives are a worse problem than viruses themselvesbecause they create panic, confusion, and unnecessary work, and undermine people's faithin anti-virus technology. No matter what the signature, one can not guarantee that falsepositives will never occur, but it is imperative that the false-positive probability be reducedto acceptable levels.Human-selected signatures for viruses that have been written in high-level languages areparticularly prone to false positives because most of the generated code is taken verbatim fromlibraries speci�c to the compiler. Unless the expert spends an unconscionable amount of timefamiliarizing himself with the boring details of the machine code typically generated by everyC, FORTRAN, Pascal, etc. compiler in the world, he will not be quali�ed to judge whethera particular sequence of bytes is really unusual. This is a job for a computer, not a humanbeing!In order to increase the likelihood of capturing new variations of a previously-known virus,some virus scanners (for example the one employed by IBM AntiVirus) recognize inexactmatches between scanned bytes and signatures as a mutant strain of a known virus. Thebene�ts of capturing a broader range of mutations must be weighed against the increasedprobability of a false positive. Again, human experts are not in a good position to make sucha tradeo� because it is nearly impossible for them to quantify how much more risk is involved.To summarize, a signature must satisfy two con
icting criteria. The signature (and itsassociated matching criterion) must capture a broad variety of conceivable mutations for aparticular virus, but the false-positive probability must be as low as possible. Ultimately,the tradeo� must be based on human judgment, but that judgment must be founded ona reasonable estimate of the false-positive probability. The next two sections of this paperdescribe an algorithm for obtaining such an estimate.3 The Extraction/Evaluation AlgorithmSuppose that we have just obtained a sample of a new virus imbedded in some host (infected)executable program. We wish to �nd a good signature for that virus: one that will appear inevery instance of the virus, but is extremely unlikely to appear just by coincidence in code notcontaining the virus.This is accomplished in two phases. First, a set of signatures that are likely to appear in3



each instance of the virus is generated. Second, one or a few signatures that minimize thefalse-positive probability are chosen from this set.3.1 Generating candidate signaturesIn our virus isolation laboratory, we use the following procedure to identify portions of thevirus that are likely to be invariant from one instance to another. An automatic algorithm runsthe infected sample on a DOS machine, and then tries to lure the virus into infecting a diversesuite of \decoy" programs. A decoy's sole purpose in life is to become infected. To increasethe chances of success in this noble, sel
ess endeavor, decoys are designed to be as attractiveas possible to those types of viruses that spread most successfully. A good strategy for a virusto follow is to infect programs that are touched by the operating system in some way. Suchprograms are most likely to be executed by the user, and thus serve as the most successfulvehicle for further spread. Therefore, the algorithm entices a putative virus to infect the decoyprograms by executing, reading, writing to, copying, or otherwise manipulating each of them.Such activity tends to attract the attention of many viruses that remain active in memoryeven after they have returned control to their host. To catch viruses that do not remainactive in memory, the decoys are placed in places where the most commonly used programs inthe system are typically located, such as the root directory, the current directory, and otherdirectories in the path. The next time the infected �le is run, it is very likely to select one ofthe decoys as its victim. From time to time, each of the decoy programs is examined to seeif it has been modi�ed. Any that have been modi�ed are assumed to have been infected withthe virus, and are stored in a special directory, where they await the next processing step.After having obtained several infected decoys, the infected regions of the decoys are com-pared with one another to establish which regions of the virus are constant from one instanceto another. Usually, most of the virus is constant, with one or more small regions that vary. Insome cases, there is a fairly short constant region near the beginning of the virus, followed by alarge variable region; this is indicative of a simple self-garbling virus. In a small percentage ofcases, the constant regions are so short as to be useless for the purpose of extracting signatures.Such a situation indicates that the virus is at least moderately polymorphic, and in this casethe algorithm gives up, and a human expert performs the analysis. Further improvements tothe algorithm could be made to handle certain types of polymorphism, but there will alwaysbe a place for human virus experts!Provided that the virus is not overly polymorphic, there are at this point one or more sec-tions of the virus which tentatively have been classi�ed as being invariant. However, it is quiteconceivable that not all of the potential variation has been captured within the samples. Var-ious heuristics are employed to identify portions of the \invariant" sections of the virus whichby their nature are unlikely to vary from one instance of the virus to another. In particular,\code" portions of the virus which represent machine instructions (with the possible exceptionof bytes representing addresses) are typically invariant. \Data" portions of the virus, whichfor example could represent numerical constants, character strings, screen images, work areasfor computations, addresses, etc. are often invariant as well, but are much more vulnerable tomodi�cation by the virus itself when it replicates itself or by humans who intentionally modifyviruses so as to help them elude virus scanners. We use a variety of techniques to segregatecode and data portions, and only the code portions are retained for further processing.At this point, there are one or more sequences of invariant machine code bytes from whichviral signatures could be selected. We take the set of candidate signatures to be all possiblecontiguous blocks of S bytes found in these byte sequences, where S is a signature length4



speci�ed by the user or determined by the algorithm itself. (Typically, S ranges betweenapproximately 12 and 36.) The remaining goal is to select from among the candidates one orperhaps a few signatures that are least likely to lead to false positives.3.2 Choosing the best signatureBefore describing the selection process, it is worth noting two things. First, the aforementionedprocedure for generating the candidate signatures is not crucial. Any other technique, includingmanual labor by a human expert, could be used. Second, the number of candidate signaturescould be very small | even just one. This would be appropriate if one were using the signatureextractor to evaluate a signature that has been chosen previously, most likely by a humanexpert.The key idea behind the algorithm is to estimate the probability that each of the candidatesignatures will match a randomly-chosen block of bytes in the machine code of a randomly-chosen program, either exactly or with some speci�ed number or pattern of mismatches. Inthe case of extraction, we select one or more signatures with the lowest estimated \false-positive" probabilities of all the candidates, making sure that this probability is less thansome established threshold. In the case of evaluation, we just place a seal of approval on asignature if its estimated false-positive probability is less than the established threshold. Thusthe problem of signature extraction or evaluation is reduced to the following problem: For agiven sequence of S bytes B1B2 : : :BS (call it B for short), estimate the probability p(B) forB to occur in a large body of normal, uninfected code.The most obvious way to compute p(B) is to tally the number of occurrences of B in alarge corpus of uninfected programs. Call this quantity f(B). Then p(B) could be estimatedas simply f(B)TS ; (1)where TS is the number of S-byte sequences in the corpus.However, there is a serious problem with this technique. Suppose that the corpus is rea-sonably large | on the order of a gigabyte or so. For relatively common sequences (ones thatcould be expected to appear several times per gigabyte), the probability estimate given by Eq.1 would be reasonably accurate. Somewhat common sequences (ones that could be expected toappear once or twice per gigabyte, or once in every few gigabytes) might or might not appearin the corpus. Extremely rare sequences almost certainly would not appear in the corpus. Itis readily apparent from these considerations that the technique prescribed in Eq. 1 has verylittle ability to discriminate between somewhat common and very uncommon sequences. An-other way to express this is that the dynamic range of possible probability estimates yieldedby this method is inadequate; it cannot produce estimated probabilities less than 1TS , or about10�9 for a gigabyte corpus.A more illustrative way to understand the inadequacy of this technique is by making ananalogy to a problem encountered in training machines to understand human speech. In orderto make sense of a stream of phonemes that have been extracted from an utterance, it is oftenuseful to have a language model that is derived from a large corpus of utterances. The problemis similar to that of estimating the probability that a given sentence will be uttered, given alarge corpus of previous utterances. For example, suppose that we have access to a recordingof all press interviews with United States senators during the 1980's, and that we would like5



to estimate the probability for each of the following three sentences to be spoken by a U.S.Senator sometime during the 1990's:1. God bless America.2. It's all true | we are space aliens.3. We bless all true American space god aliens.The 1980's corpus would probably consist of tens or hundreds of millions of sentences.Within that corpus, we might expect sentence 1 to appear several times. It would be somewhatsurprising to �nd an instance of sentence 2 in the corpus, but not absolutely inconceivable.Sentence 3 seems extremely unlikely. It is not the sort of sentence that one would expectto occur naturally in ordinary human discourse; it has the look of something generated by asomewhat incompetent computer program.The most likely scenario is that one would �nd several instances of sentence 1 in the 1980'scorpus, but no instances of sentences 2 and 3. Under these circumstances, the method of Eq. 1would assign an estimated probability of zero to sentences 2 and 3. It would fail to distinguishsentence 2 as being unusual, but signi�cantly more likely than sentence 3.In fact, less than halfway through the 1990's, we �nd that sentence 1 has indeed beenuttered several times. But we also �nd that sentence 2 has been uttered at least once | bySenator Phil Gramm of Texas, who made his stunning confession on June 7, 1994, after thequestion of his extraterrestial origin was posed by a reporter from The Weekly World News[2]. As far as we are aware, the world is still waiting for sentence 3.There is a critical need for an algorithm capable of distinguishing the likelihood of sentence 2as much greater than that of sentence 3, even if neither one appears in the corpus. Fortunately,researchers in the �eld of speech recognition have been dealing with just this sort of problemfor many years. The solution is to collect statistics on short sequences of adjacent words.Trigrams (sequences of three adjacent phonemes or words) are fairly popular in the speechcommunity. The key insight is that reasonably good statistics can be obtained for su�cientlyshort sequences. Then, a simple approximation formula can be used estimate the probabilityof a long sequence by combining the measured frequencies of the shorter sequences from whichit is composed.In sentence 2, the sequences \It's all true" and \we are" are quite common, and \spacealiens" is only somewhat unusual, so the overall sentence can be classi�ed as unusual, but notterri�cally so. In sentence 3, none of the individual words are very unusual, but the sequences\American space god", and \space god aliens" are quite unusual, and contribute to a very lowoverall estimated probability for the sentence. In e�ect, the trigram technique (which is easilygeneralized to higher-order n-grams) allows one to extrapolate beyond an existing corpus toa vastly larger universe of statistically similar utterances. This permits one to discriminatebetween somewhat unusual and extremely unusual utterances.The technique that we have developed for automatic signature extraction is completelyanalogous to this standard speech recognition technique. Suppose that trigram statistics weretallied for a large corpus. Then the estimated probability for the sequence B1B2 : : :BS wouldbe calculated fromp(B1B2 : : :BS) = f(B1B2B3)f(B2B3B4) : : :f(BS�2BS�1BS)f(B2B3)f(B3B4) : : :f(BS�2BS�1)T3 (2)where T3 is the number of trigrams in the corpus.6



To get some insight into the derivation of Eq. 2, consider the simpler problem of estimatingthe probability of a 4-byte sequence B1B2B3B4 from measured frequencies of its constituents.First, one can re-write p(B1B2B3B4) in the form:p(B1B2B3B4) = p(B1B2B3)p(B4jB1B2B3) (3)where p(AjB) is to be interpreted as the probability of byte sequence A having been precededby byte sequence B. Eq. 3 is exact up to this point. However, if we suppose the correlationbetween byte B1 and byte B4 is su�ciently weak that it can be ignored, the term p(B4jB1B2B3)can be replaced as follows:p(B4jB1B2B3) � p(B4jB2B3) = p(B2B3B4)p(B2B3) : (4)Inserting Eq. 4 into Eq. 3 yieldsp(B1B2B3B4) � p(B1B2B3)p(B2B3B4)p(B2B3) ; (5)a special case of Eq. 2.The extension of Eq. 2 to higher-order n-grams is conceptually trivial. The technique usedto extract and evaluate IBM AntiVirus's signatures is a more sophisticated variant of Eq. 2that incorporates measured frequencies of 1-, 2-, 3-, 4-, and 5-grams. A few additional tricksare used to solve the problem of adequate storage for the 3-, 4-, and 5-gram frequencies2.The more sophisticated variant of Eq. 2 has some additional useful capabilities. Signatureswith �xed wildcards are handled by letting the wildcards serve as demarcations between non-wildcarded regions. The estimated probabilities of all non-wildcarded regions are multiplied toobtain the overall estimated probability of the signature. To calculate estimated probabilitiesof signatures for which m mismatches are permitted, one can (conceptually) generate all of theS!m!(S�m)! possible mismatch con�gurations, treat each con�guration individually as a signaturewith m �xed wildcards, and then add the probabilities of all con�gurations together. If im-plemented na��vely, and if m is more than 4 or 5, the combinatorics can make the computationpainfully slow, even on a fast workstation. Fortunately, I have developed a recursive algorithmthat bypasses the combinatorics, and obviates the need to generate each mismatch con�gura-tion explicitly. The recursive algorithm permits the estimated probability of a signature to becomputed very quickly, regardless of the number of allowed mismatches.Note that, in the speech recognition example, the trigram technique achieved good dis-crimination between the likelihood of sentences 2 and 3 without having any real knowledgeof grammar and semantics. Similarly, the automatic signature extraction technique makes noattempt to understand code in the same way that a human expert in machine code/assemblylanguage would. It does not know what instructions mean; in fact, it does not even knowthat instructions exist. It sees machine code as nothing more than a long sequence of bytes,and it applies a blind, brute-force force statistical technique to those bytes. Remarkably, thislack of understanding is more than o�set by the algorithm's ability to acquire a knowledge ofmachine code statistics to a depth to which no human expert could or would hope to aspire.This allows the algorithm to perform extremely well, as will now be seen.2Although the algorithm is typically run on an IBM RS/6000 workstation, the code has been ported successfullyto OS/2. 7



4 How Good is the Algorithm?We have used two di�erent methods to assess the quality of the signatures obtained by theextraction algorithm described in the previous section. One technique is to generate ran-dom sequences, and compare estimated and actual measured probabilities of those randomsequences with one another. The resulting plot of estimated vs. actual probabilities providesa very clear picture of the algorithm's e�ectiveness. The second technique is to compare theestimated probabilities of signatures extracted from viruses by either the algorithm itself ora human expert, and observe the number of false positives as a function of the estimatedprobability. The remainder of the section treats both techniques in some detail.4.1 Characterizing the algorithm using random sequencesAlthough using random sequences to characterize the relationship between estimated andactual probabilities sounds like a �ne idea in principle, there is a hitch: a randomly generatedbyte sequence of any length is extremely unlikely to be found in any corpus. For example,there are 25616 � 3:4 � 1038 di�erent sequences of length 16; the probability of any given oneof them being found in a 1 gigabyte corpus would be about 3 � 10�30.The obvious solution is to reserve a section of the corpus, and choose from it \random"sequences that have a much better chance of having something in common with the sequencesfound in the rest of the corpus. In these experiments, the corpus (containing thousands of DOS,Windows, and OS/2 executable programs, comprising roughly half a gigabyte) is divided intothree partitions: a small \probe" set, and training and test sets of roughly equal size. On theorder of 10,000 sequences of s (where s is typically in the range of 12{24) contiguous bytesare drawn randomly from the probe set, and treated as candidate signatures. The probabilityestimation algorithm is run against the candidate signatures and the training corpus, whilethe number of instances of each candidate signature in the test corpus is tallied and dividedby the size of the test corpus to obtain an \actual" probability for each signature. Then, theactual and estimated probability for each of the candidate signatures are plotted against oneanother on a logarthmic scale.A typical result is displayed in Fig. 2. In this case, the candidate signature length was s =24, and no mismatches were permitted. Ideally, one would like all of the pairs of estimated andactual probabilities to fall on the dashed line, which represents perfect agreement between thetwo probabilities. Obviously, the algorithm falls far short of this ideal. The actual probabilitiesare almost always greater than the estimated probabilities because the correlations among bytesthat are separated by several bytes | which are assumed to be negligible in the approximationin Eq. 4) | are in fact strongly positive.At �rst glance, Fig. 2 seems to contain nothing but bad news. However, the ultimate goalis not accurate probability estimation; it is simply to discriminate good signatures from badones. In fact, the results of Figure 2 show that this is quite feasible! Consider the verticalstripe at the left-hand side of Fig. 2. It corresponds to sequences which never appeared in thetest corpus. Thus, we shall refer to them as \good" sequences. The cloud of points to the rightof it corresponds to sequences which appeared one or more times in the reduced corpus. Thesewe refer to as the \bad" sequences. In using the automatic extraction/evaluation algorithm, wemust select a threshold for the estimated log-probability such that it excludes all or practicallyall bad sequences without eliminating too many good sequences. In this case, setting theestimated log-probability threshold at approximately -70 excludes practically all of the badsequences, while apparently there are still many good sequences which would not be excluded.8
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However, in order to tell exactly what proportion of good sequences are not excluded, we mustlook at the data in a di�erent way.In order to select a reasonable log-probability threshold T , we �rst need to compute twoquantities as a function of T : the number of good sequences which are accepted by the thresholdT , Agood(T ), and the number of bad sequences which are accepted by T , Abad(T ). Note thatAgood(0) and Abad(0) represent the total number of good and bad sequences, respectively.Then, in order not to reject too many good sequences, we want to minimize the false-rejectionprobability 1� Agood(T )Agood(0) , which can be done by making T as large (close to 0) as possible.On the other hand, we also want to minimize the false-positive probability Abad(T )Agood(T )+Abad(T ) ,which requires that T be made as low as possible. Figure 2 displays the false-rejection andfalse-positive probabilities derived from the data presented in Fig. 2.
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

–180 –160 –140 –120 –100 –80 –60 –40 –20 0

False Positive

False Rejection

24–byte sequences
0 mismatches
n_Max = 5

Threshold

P
ro

ba
bi

lit
y

Figure 3: False-rejection and false-positive probabilities as a function of log-probability thresholdT , derived from the data presented in Fig. 2.Now we are in a position to make a well-informed tradeo� between false rejection and falsepositives. In this example, the false-positive probability is zero for T � �68, at which pointthe false-rejection probability is 48%. We can lower the false-rejection probability further bychoosing T > �68, but only if we are willing to accept the chance of false positives. This canbe seen clearly from Fig. 2. However, if we are willing to tolerate a false-positive probabilityof 0.5%, we can reduce the false-rejection probability to 36% by increasing T to -60.What is a reasonable tradeo�? We think it is important to keep the probability of a falsepositive occurring in a collection of software distinct from (but similar in size to) our half-gigabyte corpus to at most a few tenths of one percent. To help illustrate what this means,suppose that we have a large collection of software containing no duplicates. In order for thereto be a reasonable chance of obtaining a false positive, the size of the collection would haveto be at least several hundred gigabytes. This may be on the order of the total amount ofsoftware in common usage in today's world.The 
ip side of the tradeo� is the false-rejection probability. If we are extracting signaturesfrom virus code, we can often live with a reasonably high false-rejection probability; certainlymore than 50%, and perhaps even 80% or 90%. Viruses typically contain at least severalhundreds or thousands of byte sequences from which to choose. We only need one or perhaps afew signatures, so we can a�ord to throw away many good ones. However, there are situations10



in which we don't have the luxury of several dozen signatures from which to choose. Forexample, for self-garbling viruses we must choose the signature from the head, which can befairly short. In this case, we might be forced to raise the threshold and accept a higher false-positive probability. In the case of signature evaluation, the signature is presumably one thathas been recommended by an expert. It ought to be judged on the same basis as the extractedsignatures. If the signature is rejected by the threshold, the proper course of action is to obtaina sample of the virus and extract the signature automatically.In the case of Fig. 3, one need not struggle much to �nd a reasonable compromise. A choiceof T somewhere in the range between -60 and -70 would satisfy both of our criteria quite well.It is interesting to note that, in Fig. 3, the false-positive probability is quite high whenT = 0 | approximately 34%. In other words, out of a corpus of approximately half a gigabyte,if one chooses at random a 24-byte sequence, there is a 34% chance of �nding that same 24-byte sequence somewhere else in the corpus. The moral of this is that sheer length o�ers littleprotection from the risk that a signature will generate false positives. Cleverness, be it humanor algorithmic, is an essential ingredient in choosing good computer virus signatures.We emphasize that the term \false-positive" probability has been used above to mean theprobability of a byte sequence being found in a body of programs both statistically similarto and comparable in size to our corpus. To allow for the fact that the number of programsthat exist or could exist in the world exceeds the number of programs in the corpus by aconsiderable margin, it might be prudent to diminish the threshold probability by a factor of10 or 100. In other words, perhaps the log-probability threshold T should be reduced by 4or 5. However, this may be overly conservative because a majority of virus code is writtenin assembler, not the high-level languages in which most of today's PC software applicationsare being written. Thus selection of thresholds based upon studies of probes taken from thecorpus itself is likely to be overly pessimistic for viruses, which are somewhat atypical software.Practical experience indicates that, very roughly, the two e�ects cancel one another.4.2 The false-positive recordThe algorithm has been used to extract most of the computer virus signatures used by IBMAntiVirus. Only a small handful of false positives have been reported. In most cases, theo�ending signatures have been those taken from a virus written in a high-level language suchas C or Pascal. Such viruses tend to be even more of a problem for human experts than forthe algorithm!It is often di�cult to extract decent signatures for such viruses because compilers tend tointroduce a lot of boiler-plate code that gets intermingled with the meat of the virus code,obscuring any idiosyncracies that might be used to identify the virus. In other words, programindividuality is largely washed out by compilers, making it intrinsically di�cult to �nd a goodsignature. Usually, there are just a few pockets of unusual code, which can be very di�cultfor even the most expert of humans to �nd. It is hard to imagine that a human would wantto be good at doing this, because it takes a lot of very speci�c knowledge about machinecode that is produced by each of the several dozen most commonly used compilers. But thealgorithm is perfectly happy to become intimately acquainted with such statistical details, andfor this reason it tends to be much better than humans at extracting signatures from compiledviruses. It is easy to tell when the algorithm is working on such a virus, because almost allof the candidate signatures have very high estimated probabilities. In almost every case, thealgorithm locates the pockets that contain good signature material, and chooses a signaturefrom one of them. 11



We are well on the way to understanding the nature of what went wrong in the very fewcases where the algorithm has selected signatures that have later proved to yield false posi-tives. We are very optimistic about one particular idea that we think will lead to substantialimprovements in the algorithm's performance on compiled viruses (stay tuned!)
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virus signatures and then check to see how the false-positive rate correlates with the probabilityestimated by the algorithm. The Virus Bulletin is a very convenient source of signatures. Asan experiment, we took a large set of signatures that had been published in Virus Bulletinover the course of several months during mid-1991, and used the algorithm to estimate theirfalse positive probabilities. Then, we incorporated the Virus Bulletin signatures (which weretypically 16 bytes in length) into IBM's virus scanner.The Virus Bulletin signatures were only intended to be used with exact matching. However,in order to encourage them to produce false positives, we turned on fuzzy matching, whichdeclared a match if 12 or more of the 16 bytes matched, and scanned the corpus to see whichsignatures (if any) caused \false positives".Out of 267 signatures, 6 yielded one or more false positives. As demonstrated in Fig. 4, thesignatures that caused false positives were those for which the estimated probability was muchgreater than average. The signature with the highest estimated probability, Kamikaze, turnedout to be the most notorious false-positive generator; it was found over 60 times in the corpus(see Fig. 5). In many cases, there were just 2 mismatched bytes. Jocker, which the algorithmclaimed was one of the 5 worst signatures, turned out to be the second worst o�ender in thescanner test; it hit on about 10 �les in the corpus.In short, the automatic algorithmic did an excellent job of identifying signatures that weremore at risk for generating false positives.5 Application: Computer Immune SystemThe existence of an automatic method for extracting signatures from viruses raises the pos-sibility that a computer encountering a previously-unknown virus could develop somethinglike an antibody to that virus without any human intervention. Removing humans from theloop could cut the response time to a new virus from several days or even several weeks to afew hours or less. The main di�culty with today's method of updating scanners is not thathumans are too slow in choosing signatures; it is that the distribution mechanism for signatureupdates is often slow and uncertain.Along with several of our colleagues at the High Integrity Computing Laboratory at theThomas J. Watson Research Center, we have been designing an automatic immune system forcomputers and computer networks [1], for which there is a patent pending. The automaticsignature extraction technique is just one of several components that have been implementedin our laboratory, and which are already supplying information that is useful for updatingsignature �les and other databases used by IBM AntiVirus. Over the course of the next fewyears, our intent is that IBM AntiVirus will evolve into an immune system for computers asvarious components are phased into the product.The immune system (illustrated in Fig. 6) would monitor a system's memory, �le system,and boot record for suspicious, virus-like behavior. Periodic scans for known viruses wouldtake place. Any infections attributable to known viruses would be eliminated by repairing orrestoring the infected host programs. To a greater or lesser degree, several of today's existinganti-virus programs include these features, and some of them integrate these functions in usefulways. The new element would be an ability to adapt to a new virus not included among theset of known viruses.If a virus-like anomaly were detected by the immune system, the �rst response would beto trigger a scan for known viruses. If the anomaly could not be attributed to a known virus,the immune system would try to lure any virus that might be present in the system to infect a13
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diverse suite of \decoy" programs, as described earlier in this paper. From time to time, eachof the decoy programs is examined to see if it has been modi�ed. If one or more have beenmodi�ed, it is almost certain that an unknown virus is loose in the system, and each of themodi�ed decoys contains a sample of that virus.The next step would be to extract a signature for the virus automatically. In addition, an-other automatic virus analysis tool under development in our laboratory would determine howthe virus attached to host programs, and extract information that would allow any programinfected by the virus to be repaired.Having automatically developed both a recognizer and a repair algorithm appropriate tothe virus, the information can be added to the corresponding databases. If the virus is everencountered again, the immune system will recognize it immediately as a known virus. Acomputer with an immune system could be thought of as \ill" during its �rst encounter with avirus, since a considerable amount of time and energy (or CPU cycles) would be expended toanalyze the virus. However, on subsequent encounters, detection and elimination of the viruswould occur much more quickly: the computer could be thought of as \immune" to the virus.An additional feature, which we refer to as the \kill signal", would be used by a computerto inform neighboring computers on the network that it was infected. The signal would alsoconvey to the recipient any signature or repair information that might be of use in detectingand eradicating the virus. If the recipient �nds that it is infected, it would send the signal toits neighbors, and so on. If the recipient is not infected, it does not pass along the signal, butat least it has received the database updates | e�ectively immunizing it against that virus(see Fig. 7).Theoretical modeling has shown the kill signal to be extremely e�ective, particularly intopologies that are highly localized or sparsely connected [3, 4].No virus detector can handle every conceivable virus, as Fred Cohen �rst showed by a simpleadaptation of the halting problem contradiction [5]. Similarly, biological immune systems donot o�er perfect protection against all diseases. The proposed computer immune system isnot immune to these incontrovertible facts of mathematics and of nature. The intent is thatthe computer immune system should automatically deal with the myriad \common colds" ofthe virus world, and that it should alert humans when it is having trouble with a particularlynasty, di�cult-to-analyze virus. Humans should only have to analyze a relatively small residueof new, especially di�cult viruses.6 ConclusionThe automatic signature extraction and evaluation algorithm has been used to extract about2000 of IBM AntiVirus's virus signatures. Currently, the decoys are run on a specially instru-mented PC, while the probability estimation is performed on an RS/6000 workstation. In arecent run, the algorithm extracted 634 signatures in just 30 minutes (not including the timerequired to create the virus samples).Not only is the speed much faster than can be attained by any human expert, but thequality of the signatures (judging by IBM AntiVirus's extremely low false-positive rate) isoverall at least as good as those produced by humans, and in the case of viruses written inhigh-level languages it may even be better.The automatic signature extraction algorithm has greatly reduced the burden on the virusexperts in our research group. We don't need to employ a dozen or more virus analyzers;instead, the virus signature database is maintained by one virus expert working halftime. This16



allows our virus experts to devote their skills to more challenging tasks.Improvements are continually being made to the algorithm; the next major one will be toaddress the occasional false positives that are generated by signatures taken from compiledviruses. Much more exciting is the incorporation of the algorithm into a computer immunesystem. Over the course of the next few years, we hope to phase elements of the immunesystem design into IBM AntiVirus.AcknowledgmentsWe are grateful to Steve White and Dave Chess for several useful lunchtime and hallway con-versations, from which the idea of an automatic signature extractor grew. Steve's �rst e�ortsgoaded us into developing something a little more sophisticated. Dave's constant complaintsabout the functioning of the signature extractor/evaluator have helped to improve its per-formance greatly. We are also grateful to Greg Sorkin for new insights into how to improvethe performance of the signature extraction algorithm, particularly in the case of compiledviruses, and for his invention of many of the automatic virus analysis techniques that will beincorporated into the computer immune system.References[1] Je�rey O. Kephart, to appear in Proceedings of Arti�cial Life IV, R. Brooks and P. Maes,eds., MIT Press, 1994.[2] Teddy Gerald,\Weekly World News scoops planet with space alien revelation," WeeklyWorld News, June 28, 1994, p. 15.[3] Je�rey O. Kephart and Steve R. White. Measuring and modeling computer virus preva-lence. Proceedings of the 1993 IEEE Computer Society Symposium on Research in Securityand Privacy. Oakland, California, May 24{26, 1993, 2{15.[4] Je�rey O. Kephart, \How Topology A�ects Population Dynamics", submitted to C. Lang-ton, ed., Proceedings of Arti�cial Life III, 1992.[5] Fred Cohen, A Short Course on Computer Viruses, ASP Press, Pittsburgh, 1990.
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