
COMMUNICATIONS OF THE ACM January 2001/Vol. 44, No. 1 105

Since its introduction in
1997, the Palm line of
handheld computers has

become a popular product choice,
with many millions of units sold
worldwide. A large number of
third-party applications exist, from
personal organizer programs to
spreadsheet applications, email,
and Web browser clients. Many of
these programs are low-cost share-
ware, available for downloading
from individual Web sites, central-
ized Web repositories, or from CD
collections.

With such a large number of
applications available from dis-
parate sources it is interesting to
note that only recently have
reports emerged about the first
publically disseminated malicious
Palm applications. The Trojan-
horse Palm program “Liberty,”
reported in August 2000, deletes
all applications on the handheld.
The first virus carrying the Palm
program “Phage,” reported in Sep-
tember 2000, infects applications
installed on the handheld with
copies of itself. Both are rated as
low-risk by antivirus companies
[3]. At press time neither of these
malicious applications were classi-
fied as “in the wild”—viruses that
exist and are considered to be
spreading [4]. We would like to

think that the Palm handheld, at
least as it is currently used, is not a
very attractive proposition to a
malicious virus writer.

Palm software is distributed as a
serialized Palm resource (PRC) file
of the application that can be
stored on the user’s local file
server/workstation. When the
handheld and the local file
server/workstation are synchro-
nized (hotsync’d) the PRC file is
installed as an executable on the
handheld.

A Palm virus spread in this way
will have limited success: follow-
ing initial infection, subsequent
spread to other programs is gener-
ally limited to the handheld unit
alone. Once a program is infected
(on the handheld) it must be
uploaded to the user’s worksta-
tion/file server and distributed
from there before it can become a
threat to other handheld units.
While users regularly synchronize
databases (containing application
data) on the handheld with their
workstation, it is unusual to
upload programs since the original
backup copies are already saved on
the user’s workstation.

It is unlikely that a Palm virus
would be accidentally distributed
by a developer. Palm applications
are typically coded and cross-com-

piled on a local workstation, gen-
erating a PRC file ready for down-
loading. If a development
environment does come in contact
with a Palm virus, while it is possi-
ble infection may occur on devel-
opment handhelds (or emulators),
it should not transfer to the devel-
opment PRC files so long as these
files are not uploaded from the
Palm handheld. Of course, there is
always the possibility of a PC
virus that infects PRC files with a
Palm virus.

Once an infected application is
downloaded, the virus can spread
within a single handheld quite
effectively. The Palm operating
system (Palm OS) is designed to
indirectly launch applications as
the result of certain events. For
example, the “Find” operation
invokes each application, in turn,
requesting a search for a given
string within the application’s
databases. Other events that lead
to indirect invocation include syn-
chronization, alarms, certain oper-
ating system preference changes,
and soft-reset of the unit.

The paradigm of synchronizing
the Palm with a local (or remote)
system provides a simple barrier:
while an infected program can be
installed and spread within a
handheld, it cannot easily spread

Are Handheld Viruses a
Significant Threat?

Simon N. Foley and Robert Dumigan

to other programs beyond the
handheld unit. With synchroniza-
tion, Palms tend to be directly
infected from the same source; a
virus released in an application
will be spread only by that appli-
cation. This will make reporting
and isolating the malicious code
easier. However, this synchroniza-
tion barrier fails once handheld
units become more connected.
Any protocol that facilitates direct
communication between Palm
handhelds may facilitate the
spread of a virus.

Third-party applications pro-
viding alternative methods for
installing Palm programs are now
emerging. For example, a third-
party POP/IMAP client runs on
the Palm and allows PRC files to
be sent and received as Palm email
attachments. While the recipient
must still explicitly install the
attached program, the normal syn-
chronization barrier has been
bypassed.

September 1998 saw Palm

computing introduce infrared
IrDA support in Palm OS Version
3, allowing programs and data to
be beamed directly from one
handheld to another. Even though
this beaming normally requires
explicit user authorization by both
sender and receiver, it can never-
theless be used to spread infected
programs. While we do not know
how prevalent the practice of
beaming of applications is, there is
reason to believe that it is not
uncommon. For example, com-
menting in a Wired interview on
his Palm quickwriting program
presented at the 1998 ACM User
Interface Software and Technology
Symposium, Ken Perlin remarked
“By the time I gave my talk, she
had beamed it [via the PalmPilot’s
infrared connection] to several
people in the room. It spread
through the room like a virus.”

An analogy can be drawn
between virus threats to Palm
handhelds (Palm OS Version 3)
and to PCs during the 1980s

before networking was wide-
spread. Bulletin boards have been
replaced by Web downloads,
exchanging floppy disks is similar
to beaming, and shrink-wrapped
software is not unlike using a reli-
able Web repository or CD distri-
bution. Viruses from that era,
such as Brain (1987) and Lehigh
(1987) typically spread via bulletin
boards and floppy disks. If the
beaming of Palm applications was
to become as prevalent as was PC
application sharing via floppy
disks during the 1980s, then one
could conjecture that the Palm
would be similarly vulnerable to
virus infection.

Poorly implemented applica-
tions may facilitate the spread of
viruses between handhelds. For
example, a popular third-party
document reader allows the beam-
ing of document databases as
application databases between
handhelds. However, the recipient
of a beamed database has no way
of knowing, in advance, whether
the beamed database is a docu-
ment database or is an application
database that possibly contains a
virus. We suspect this vulnerability
was the result of a coding short-
cut, using an existing Palm OS
API call that beams applications,
rather than developing specialized
code for beaming document
databases.

The Palm VII, introduced in
May 1999, uses a two-way radio
service and greatly increases the
potential for connectivity. At pre-
sent the service provides instant
messaging and indirect access to
the Internet. Internet access is
achieved via a Web-clipping proxy
service that “clips” specific Web
pages and delivers the low-band-
width result to their associated
Palm Query Applications (PQAs)
on the handheld. While it should

106 January 2001/Vol. 44, No. 1 COMMUNICATIONS OF THE ACM

Keeping your Palms Clean of Infection

The following are some general recommendations
for safely handling Palm programs.

■ Obtain applications from reliable sources. Palm applications should be downloaded/

registered directly from a trusted repository.

■ Check new software before installing. It is usually a good idea to run any new software

first using POSE—an easy-to-use Palm OS emulator that runs on the user’s workstation.

This may help to identify potential problems before installation on the handheld unit.

■ Synchronize regularly. This ensures that up-to-date “backups” of application databases

are maintained on the user’s workstation/file server. Since regular database synchroniza-

tion between a handheld and workstation is an integral part of how a handheld is used, we

suspect that average users probably have a superior backup regime for their handhelds

than is common for PCs.

■ Avoid uploading programs from a handheld. If an infected program is uploaded to

the workstation/server, the possibility of subsequent distribution will spread the virus.

■ Remember that applications can be indirectly invoked. Not launching a suspect

application will not stop Palm OS from invoking it.

■ Avoid direct program exchanges between handhelds. Emailing or IrDA beaming a

program from one handheld to another is probably the easiest way for a virus to spread.

be technically possible for a PQA
to use the Web-clipping service to
deliver a PRC file and subse-
quently install it, we believe such
an application, if developed,
would not be widely used for
downloading arbitrary applica-
tions. Web clipping is intended for
low-bandwidth Internet queries,
taking under 10 seconds to deliver
up to 500B as a result of a typical
request from a PQA [2]. This
would make downloading even
the smallest Palm applications
(1–5KB) unattractive.

But what of the future?
Using synchronization to install
applications can inhibit the spread
of Palm viruses, but this resistance
diminishes with the development
of applications and hardware facil-
itating or encouraging direct shar-
ing of programs between
handhelds. This resistance may be
further diminished by the develop-
ment of support for executable
content, for example, document
macros. While we are unaware of
any Plam application that supports
macros, the effectiveness of PC
macro viruses such as Melissa leads
us to call for any developments in
this direction to properly address
the security concerns.

Simon Foley (s.foley@cs.ucc.ie) is a
statutory lecturer in computer science at
University College, Cork, Ireland.
Robert Dumigan was a student at
University College, Cork, when this work was
done. He is currently with Logica Mobile
Networks, Dublin.

References
1. Cohen, F. A Short Course on Computer Viruses.

John Wiley, 2d Ed.,1994.
2. Palm Computing. Palm VII Connected

Organizer. Whitepaper 1999.
3. Trend Virus Encyclopedia; www. antivirus.com.
4. Wildlist Organization International; www.

wildlist.org

© 2001 ACM 0002-0782/01/0100 $5.00

COMMUNICATIONS OF THE ACM January 2001/Vol. 44, No. 1 107

The Palm handheld range is built around the Motorola 68328 DragonBall series

processor—a 16MHz microcontroller based on the Motorola 68000 processor. The

Palm operating system (Palm OS) is based on a preemptive multitasking real-time

kernel with (user-interfaced) applications effectively running within a single thread. A

memory manager manages that part of memory used to hold applications and data,

and is comparable to the file system on a conventional system. This memory is orga-

nized as a heap and is structured as a collection of databases, each one storing a pro-

gram or data. The records of a program (database) provide the code, forms, global

variable data and other resources that make up the application.

Both Palm applications and Palm hacks (user-provided Palm OS patches) can be

used to host and spread a virus. For the purposes of our study, we prototyped a sim-

ple virus that spreads by attaching itself to Palm application code resources (see the

figure here). The virus was developed using the GNU C toolset and its size is less

than 700B. It has a benign behavior, simply infecting other programs without any

malicious attack. Its behavior is not unlike a conventional transient file-style virus that

is active only when its host program runs [1].

When an application is invoked, control is passed to its CODE1 resource, which

contains the necessary startup code, followed by the application-specific code.

Startup code launches the application, looking after the allocation of a new stack

frame, global variables, and so forth. A good place to execute virus code is after the

startup and before the application-specific code executes. We coded our virus as a C

function, such that, when executed, it searches for its own executable code within its

host application’s CODE1 resource, appends this code to the CODE1 resource of

the target, and then inserts a call to itself between the startup code and application

code.

Launching a Palm virus may trigger a variety of attacks from simple data diddling

of standard databases such as calendars and address books, to more catastrophic fail-

ures, including corruption of Palm OS flash memory. These triggers may be condi-

tioned on the Palm OS events that launch the application. For example, the first time

a virus executes, it might send a request to the Alarm Manager to wake up its host

application at some future point in time. This wake up is recognized as the trigger for

the attack; other invocations (of the host) may result in different attacks based on

different triggers. Attacks might degrade performance, such as slowing down the

response or interfering with power management. For example, efficient power

management on the Palm ensures that it can operate for up to two months on just

two AAA batteries. A virus that activates the serial port can have a detrimental effect

on this. c

Anatomy of a Simple Palm Virus

on launch of host application:
 find start of viral code in CODE1 resource of host
 select CODE1 resource of random target program
 if target not already infected then
 insert host viral code to target;
 if triggered then atttack, possibly based on launch-code;

A simple Palm virus

