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Abstract

Internet worms have become a widespread threat to
system and network operations. In order to fight
them more efficiently, it is necessary to analyze newly
discovered worms and attack patterns. This paper
shows how techniques based on Kolmogorov Com-
plexity can help in the analysis of internet worms and
network traffic. Using compression, different species
of worms can be clustered by type. This allows us to
determine whether an unknown worm binary could
in fact be a later version of an existing worm in an
extremely simple, automated, manner. This may be-
come a useful tool in the initial analysis of malicious
binaries. Furthermore, compression can also be use-
ful to distinguish different types of network traffic
and can thus help to detect traffic anomalies: Cer-
tain anomalies may be detected by looking at the
compressibility of a network session alone. We fur-
thermore show how to use compression to detect mali-
cious network sessions that are very similar to known
intrusion attempts. This technique could become a
useful tool to detect new variations of an attack and
thus help to prevent IDS evasion. We provide two
new plugins for Snort which demonstrate both ap-
proaches.

1 Introduction

Recent years have seen a sharp increase in internet
worms, such as Sasser and Msblaster, causing dam-
age to millions of systems worldwide. Worms are
automated programs that exploit vulnerabilities of
computers connected to the network in order to take
control of them. Once they have successfully infected
a system, they continue to search for new victims.
When a worm finds a new vulnerable computer it

will infect it as well. Worms thus spread through the
network on their own.

Given the enormous problems caused by worms, it
is important to develop defenses against them. For
this we need to analyze them in detail. Once a system
is found to be infected, we would like to know how
this happened, what actions the worm might perform
and how we can prevent infection in the future. This
paper is concerned with one of the first steps in such
a diagnosis: we want to determine, whether we have
seen this worm before or whether it is very similar
to a known worm. To achieve this, we analyze the
binary executable of the worm. Many known worms,
such as Sasser, often come in a number of variants.
These are usually successive versions released by the
same author to extend the worm’s functionality. All
such versions together then form a family of related
worms. Using compression, we first cluster the dif-
ferent versions of worms by family. We compare an
unknown worm to a number of known worms using
compression, which often allows us to guess its fam-
ily which simplifies further analysis. This very simple
approach does not make use of any manual compar-
isons of text or especially selected patterns contained
in the worm used in conventional analysis. Many bi-
naries found in the wild are also compressed using
UPX, which is then modified to prevent decompres-
sion. This makes it very difficult to analyze the bi-
nary using approaches which rely on disassembling
the binary and comparing the flow of execution of
two programs. Surprisingly, our approach still works
even if UPX is used, although it becomes less accu-
rate. Therefore compression may be a useful tool in
the initial analysis of newly captured worms.

Infected systems and network attacks often cause
variations in network traffic. In order to recognize
and prevent such attacks one would like to detect
these variations. Typically, anomalies are detected

1



by searching for specific patterns within the network
traffic. For example, Snort [11] can trigger an alarm
when the string “msblast.exe” is found back in a TCP
session. This works very well, once it is known what
patterns we need to look for. Here, we are inter-
ested in recognizing anomalies even if we don’t know
what to look for. First of all, we explore the complex-
ity of different types of network traffic using com-
pression. The differences in complexity allow us to
make a rough guess what class of application proto-
cols gave rise to a certain network interaction. Intu-
itively, the complexity of an object is determined by
how well it compresses. If something compresses well
we say it has low complexity. If, on the other hand,
it can hardly be compressed at all, we say it has high
complexity. For example, the complexity of SSH ses-
sions is very high. If we observe TCP sessions on the
same port with much lower complexity, we suspect
an anomaly. This requires no additional knowledge
of the anomaly or a search for specific traffic patterns.
The compress Snort plugin, allows Snort to trigger an
alarm if the complexity of the observed traffic does
not fall within a specified range.

Finally, we make use of compression to compare
two different sessions. An attacker or a new version
of a worm may generate slightly different network
traffic, which no longer contains the specific pattern
we were looking for and thus escape detection. Here,
we are interested in recognizing patterns which are
very similar to an existing ones. Informally, we say
that two protocol sessions are close together if their
combined complexity is not much larger than their
individual complexity. This is the case if two ses-
sions are very similar and thus describe each other
very well. We can use this to determine whether
an observed TCP session is similar to a prerecorded
session corresponding to a known attack. The NCD
Snort plugin allows Snort to trigger an alarm if an
observed session is at a certain distance from a given
session. Even though compression is a relatively ex-
pensive operation to perform on network traffic, we
believe this approach could be useful to detect new
types of attacks. Once such attacks have been recog-
nized, specific patterns can be constructed and used
in conventional intrusion detection.

1.1 Related Work

Graph-based methods have been used with great suc-
cess in order to compare executable objects by Halvar
Flake [5] as well as Carrera and Erdélyi [1]. Recently,
Halvar Flake has also been applied this to the analy-

sis of malware [3]. Using these methods it is possible
to gain information about the actual security prob-
lems used by worms, by comparing different versions
of the same executable. This requires disassembly of
the binary. Whereas this approach has the advantage
of disclosing actual information about the nature of
the security vulnerability, our focus here is very dif-
ferent. We provide a fast method for guessing the
family of an observed worm without the need for dis-
assembly, which can be used in he initial analysis of
the executable. Based on this analysis, other meth-
ods can be applied more accurately.

Much work has been done to determine the nature
of network traffic. What makes our approach funda-
mentally different is that we do not make any pre-
selection of patterns or specific characteristics. We
leave it entirely to the compressor to figure out any
similarities.

Kulkarni and Bush [6] have previously considered
methods based on Kolmogorov complexity to moni-
tor network traffic. Their approach however is dif-
ferent as they do not use compression to estimate
Kolmogorov complexity. Furthermore they argue
that anomalies in network traffic stand out in that
their complexity is lower than ’good’ network traffic.
Whereas we find this to be true for network prob-
lems caused by for example faulty hardware prompt-
ing a lot of retransmissions, we argue that anomalies
are generally characterized by a different complexity
than we would normally expect for a certain protocol.
For example, if normally we expect only HTTP traffic
on port 80 outgoing and we now find sessions which
have a much higher complexity, this may equally well
be caused by a malicious intruder who is now running
an encrypted session to the outside. In this specific
example, the complexity has increased for malicious
traffic.

Evans and Barnett [4] compare the complexity of
legal FTP traffic to the complexity of attacks against
FTP servers. To achieve this they analyzed the head-
ers of legal and illegal FTP traffic. For this they
gathered several hundred bytes of good and bad traf-
fic and compressed it using compress. Our approach
differs in that we use the entire packet or even en-
tire TCP sessions. We use this as we believe that in
the real world, it is hard to collect several hundred
bytes of bad traffic from a single attack session using
headers alone. Attacks exploiting vulnerabilities in
a server are often very short and will not cause any
other malicious traffic on the same port. This is es-
pecially the case in non-interactive protocols such as
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HTTP where all interactions consist of a request and
reply only.

Kulkarni, Evans and Barnett [7] also try to track
down denial of service attacks using Kolmogorov
complexity. They now estimate the Kolmogorov com-
plexity by computing an estimate of the entropy of
1’s contained in the packet. They then track the com-
plexity over time using the method of a complexity
differential. For this they sample certain packets from
a single flow and then compute the complexity differ-
ential once. Here, we always use compression and do
not aim to detect DDOS attacks.

1.2 Contribution

• We propose compression as a new tool in the
initial analysis of internet worms.

• We show that differences in the compression ra-
tio of network sessions can help to distinguish
different types of traffic. This leads to a sim-
ple form of anomaly detection which does not
assume prior knowledge of their exact nature.

• Finally, we demonstrate that compression can
help to discover novel attacks which are very sim-
ilar to existing ones.

1.3 Outline

In Section 2, we take a brief look at the concept of
normalized compression distance, which we will use
throughout this paper. Section 3 then shows how
we can apply this concept to the analysis of internet
worms. In Section 4 we examine how compression
can be useful in the analysis of internet traffic. Fi-
nally, in Section 4.1.2 and Section 4.2 we use these
observations to construct two snort plugins to help
recognize network anomalies.

2 Preliminaries

In this paper we use the notion of normalized com-
pression distance (NCD) based on Kolmogorov com-
plexity [8]. Informally, the Kolmogorov complexity
C(x) of a finite binary string x is equal to the length
of the shortest program which outputs x. The Kol-
mogorov complexity is in fact machine independent
up to an additive constant. This means that it does
not matter which type of programming language is
used, as long as one such language is fixed. This is

all we will need here. More information can be found
in the book by Li and Vitanyi [8].

What does this have to do with compression? We
can regard the compressed version of a string x as a
program to generate x running on our “decompres-
sor machine”. Thus the Kolmogorov complexity with
respect to this machine cannot be any larger than
the length the compressed string. We thus estimate
C(x) by compression: We take a standard compres-
sor (here bzip2 or zlib) and compress x which gives
us xcompressed. We then use length(xcompressed) in
place of C(x). In our case, the string x will be the
executable of a worm or the traffic data.

The normalized compression distance (NCD) of
two string x and y is given by

NCD(x, y) =
C(xy) − min{C(x), C(y)}

max{C(x), C(y)}
.

More details about the NCD can be found in [13].
The NCD is a very intuitive notion: If two strings
A and B are very similar, one “says” a lot about
the other. Thus given string A, we can compress a
string B very well, as we only need to encode the
differences between A and B. Then the compressed
length of string A alone will be not very different
from the compressed length of strings A and B to-
gether. However, if A and B are rather different, the
compressed length of the strings together will be sig-
nificantly larger than the compressed length of one of
the strings by itself. For clustering a set of objects we
compute the pairwise NCD of all objects in the set.
This gives us a distance matrix for all objects. We
then fit a tree to this matrix using the quartet method
described in [13]. Objects which appear close to each
other in the tree, are close to each other in terms of
the NCD.

To construct the trees displayed throughout this
paper we make use of the CompLearn toolkit [2].
For information about networking protocols we re-
fer to [10]. Information about the different Worms
we analyzed can be found in the Virus Encyclope-
dia [12].

3 Analyzing Worms

We now apply the notion of NCD to analyze the bi-
nary executables of internet worms. Once we iden-
tified a malicious program on our computer we try
to determine its relation to existing worms. Many
worms exist in a variety of different versions. Often
the author of a worm later makes improvements to
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his creation thereby introducing new versions. This
was also in the case of the recent Sasser worm. We
call such a collection of different versions a family.
The question we are asking now is: Given a worm,
are there more like it and which family does it belong
to?

For our tests, we collected about 790 different
worms of various kinds: IRC worms, vb worms, linux
worms and executable windows worms. Roughly 290
of those worms are available in more than one version.

3.1 Clustering Worms

First of all, we examine the relations among differ-
ent families of worms using clustering. Our method
works by computing the NCD between all worms used
in our experiment. This gives us a distance matrix
to which a tree is fit for visualization. In this section,
we use bzip2 as our compressor.

3.1.1 Different classes of Worms

To gain some insight into the relations among sev-
eral families of worms, we first cluster worms of com-
pletely different types. For this we make use of text
based worms (such as IRC worms, labeled mIRC and
IRC) and worms whose names contain PIF targeted
at windows systems. Worms prefixed with Linux are
targeted at the Linux operating system. All other
worms are aimed at Windows systems and are binary.

Looking at Figure 1 we see that text based worms
have been clustered well together. We also see a split
between binary and text based worms as expected.
This in itself is of course not very interesting. Never-
theless, this naive application of our method yielded
some interesting surprises which caused us to com-
pletely reexamine our worm data. What is the Lin-
uxGodog worm among the text based worms? Upon
closer inspection we discovered that unlike the other
Linux worms which were all binary executables, Lin-
uxGodog was a shell script, thus being too similar to
the script based IRC worms. A similar discovery was
made when looking at the two windows worms Fozer
and Netsp, which are both windows batch scripts.
We also found out that SpthJsgVa was mislabeled,
and is an IRC worm very closely related to the IRC-
Spth series. In fact, manual inspection revealed that
it must be another variant. Similarly, IRCDreamir-
cVi was clustered with the other irc worms. It ap-
peared that this was the only non-binary member of
the IRCDreamirc series. Another interesting fact was

revealed by clustering the Alcaul worm. A large num-
ber of different Alcaul worms were available, all in
binary format. However during this test we acciden-
tally picked the only one which was mime encoded
and thus appears closer to text than to the binary
worms. Our test also puts binary Linux worms closer
together then binary worms for other systems. Only
LinuxAdm appears further apart. We attribute this
to the fact that binaries of linux and windows are
still not too far apart even if they are of different ex-
ecutable formats. Worms of the same family are put
together. We can for example see a clear separation
between the IRCSpth and the IRCSimpsalapim series
of text based worms. However, the separation of the
Mimail and Netres family shows that this approach is
also applicable to binaries. The MyDoom worm was
initially thought to be an exception. The two ver-
sions of MyDoom we obtained, were not as similar as
other worms of equal families. Closer examination,
however, revealed that the MyDoom.a we used was
in fact a truncated version of the binary. In general,
our initial overview clusters the different worm types
well.

3.1.2 Windows Worms

As text based worms are easy to analyze manually,
we concentrate on binary executables. We first of all
clustered a variety of windows worms, which were not
UPX compressed. Surprisingly even binary worms
cluster quite well, which indicates that they are in-
deed very similar. The compressor seems to find a
lot of similarities that are not immediately obvious by
manual inspection. Figure 2 shows that the two avail-
able Sasser variants were clustered nicely together.
The same goes for the two versions of Nimda. This
shows that classification by compression might be a
useful approach.

3.1.3 The effect of UPX compression

Many worms found in the wild are compressed exe-
cutables, where the compression is often modified to
prevent decompression. This makes it much harder
to obtain the actual binary of the worm. But with-
out this binary, we cannot compare text strings em-
bedded in the executable or disassemble the worm to
apply an analysis of the program flow. If a string
is already compressed very well it is almost impos-
sible to compress it much more. Thus we expected
initially that we would be unable to apply our com-
pression based method with any success. Surpris-
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Figure 1: Different Classes of Worms
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ingly, however, we are still able to cluster UPX com-
pressed worms reasonably well. This indicates that
UPX, which allows the binary to remain executable,
does not achieve the same strength of compression as
bzip2.

Figure 3 shows a clustering experiment with worms
which found UPX compressed initially. It shows that
even though our method becomes less accurate, we
still observe clustering, as for example in the case of
the Batzback series. For other worms, such as Al-
caul.q, clustering worked less well. This indicates
that even if worms are UPX compressed, we still
stand a chance of identifying their family by simple
compression. Figure 4 shows the result of the clus-
tering process, after removing UPX compression. We
now observe better results.

However, it is not always possible to simply re-
move UPX compression before the analysis of the
worm. UPX compression can be modified in such a
way that the worm still executes, but decompression
fails. This makes an analysis of the worm a lot more
difficult. We therefore investigated how UPX com-
pression scrambling influences the clustering process.
All worms in our next experiment were selected to
be UPX compressed and scrambled in the wild. Of
the Alcaul series, only Alcaul.r was scrambled. We
included the other UPX compressed Alcaul worms,
to determine whether having part of the family UPX
compressed and scrambled and part of it just plain
UPX compressed would defeat the clustering process.

As Figure 5 shows, our method could be used to
give a first indication to the family of the worm, even
if it cannot be UPX decompressed without great man-
ual effort. Our Alcaul.r worm which was scrambled
clusters nicely with the unscrambled Alcaul worms.
Also the Lentin series is put together.

3.1.4 Worms and Legitimate Windows Pro-

grams

Finally, we examine existing windows programs and
their relation to internet worms. For this we collected
a number of small executables from a standard win-
dows installation and clustered them together with
various different types of worms. Figure 6 depicts
the outcome of our test. The legal windows pro-
grams in use where: net, netsh, cacls, cmd, netstat,
cscript,debug.exe and command.com. Surprisingly,
our experiment shows most of the windows programs
closely together. It even appears that programs with
similar functionality appear closely related. Only de-
bug.exe and command.com are placed elsewhere in
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the tree, which we attribute to the fact that they
have quite different functionality compared to the
other programs. It would, however, be premature
to conclude from this experiment that compression
can always be used to distinguish worms from legal
windows programs. Our test included only a very
limited selection of programs. However, it seems to
suggest that programs with similar functionality are
closely related. For example, CodeGreen is very close
to CodeRed, which may be due to the fact that it ex-
ploits the same vulnerability.

3.2 Classifying Worms

We are now trying to guess the family of an un-
known worm. Determining the family of a worm
can make further analysis a lot easier. Again, we
do not search for specifically selected patterns in the
executables or apply an analysis of the actual pro-
gram. Instead, we simply use the NCD. To find the
family of a worm, we compute the NCD between the
worm and all available binary worms. The best match
t is the worm which was closest to w in terms of
NCD. We then set the family of w to t’s family. In
short, we assign the new worm w to family F such
that for ∃t ∈ F, ∀k ∈ W, NCD(w, t) ≤ NCD(w, k)
where W is the set of all test worms. To avoid bad
matches, we assign the label “unknown” to a worm
if NCD(w, t) ≥ 0.65. This value was determined by
experiment from our data set and may need to be
adjusted in a different situation.

In our first experiment we use 719 different worms,
binary and non-binary. Of 284 of these worms, we
had more than one representative of each family avail-
able. For every worm, we determined its closest
match among the remaining worms. In 179 of the
284 cases were matching to its family would have
been possible, we have succeeded. We obtained 39
bad matches. This may seem to be a very low num-
ber of correct assignments. Note, however, that we
here matched all types of worms against each other
and used a very large set of worms which occurred
in only one version. In practice, one could restrict
the search for the family of a worm to a more se-
lected data set to obtain better results. For example,
consider only worms which propagate via email. Re-
stricting our attention to worms labeled ”I-Worm”
alone, we can obtain a better classification as shown
in Table 1. We used 454 of such worms, where we
had more than one representative of a family for 184
of these worms. Now only 13 worms were classified
incorrectly.
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Figure 6: Worms and Legitimate Windows Programs

Match 454 Worms (184 in Family) Average NCD

Good Family 106 0.68
Bad Family 13 0.43

No Family Found 335 0.84

Table 1: Classifying Worms
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Our experiment makes us quite hopeful that this
simple method could be of practical use in the future.

4 Analyzing Network Traffic

A lot of effort has been done to detect attackers on a
network. Next to a large number of available intru-
sion detection systems (IDS), intrusion detection is
still a very active area of research. Intrusion detection
can be split into two categories: host based intrusion
detection which focuses on detecting attackers on a
certain machine itself and network based intrusion
detection which aims to detect attackers by observ-
ing network traffic. Many IDS use a combination of
both. In this section, however, we are only concerned
with network based intrusion detection.

The most commonly used approach in existing sys-
tems is signature matching. Once a known attack
pattern has been identified, a signature is created
for it. Later network traffic is then searched for all
possible signatures. A popular open source IDS sys-
tem (Snort [11]), for example, offers this approach.
Clearly this works very well to identify the exact na-
ture of the attack. However, it first of all requires a
lot of manual effort: prior identification of malicious
data and signature creation becomes necessary. Sec-
ondly, if the number of signatures is large it is hard to
check them all on a high volume link. In Section 4.1
we present a very simple compression based approach
which does not suffer from these problems. Finally,
if a worm slightly alters its behavior it will no longer
correspond to the signature and escape detection. In
Section 4.2 we examine an approach which is able to
recognize attack patterns which are similar to exist-
ing ones.

Signature matching is sometimes also referred to
as misuse detection, as it looks for specific patterns
of abuse. We speak of anomaly detection if we are
interested in identifying all kinds of anomalies, even
caused by new and unknown forms of attacks. Sig-
nature based schemes can also be used for anomaly
detection. For example, an IDS has a profile of typ-
ical behavior of each user. It then tries to match
observed behavior to the profile. If the deviation is
too large an alarm is triggered. Various efforts have
also been made to apply neural networks for anomaly
detection. Neural networks are often used to perform
off-line analysis of data, as they are computationally
very expensive. This makes approaches based on neu-
ral networks not very widespread so far. In the fol-
lowing, we examine the use of compression as a tool

to detect anomalies in network traffic.

4.1 The Complexity of Network Traf-

fic

4.1.1 The Complexity of Protocols

The simplest approach we use is to estimate the com-
plexity of different types of traffic. We thereby try to
answer the following question: Examining sessions on
a specific port, can we determine whether one kind
of traffic has been replaced by another? This may
be useful to detect the success of certain remote ex-
ploits. For example, we may only observe SSH traffic
on port 22. After an attacker successfully exploited
the SSH server he may obtain a remote shell on the
same port. His session is then very different from a
normal SSH session.

The method we use here is again extremely sim-
ple. For different protocols we identify the average
compression ratio of a session S: We take the pay-
load of a session S and compress it using bzip2. The
length of the compressed session Scompresssed gives us
an estimate for the complexity of S, C(S). We then
calculate the compression ratio R as

R =
ℓ(Scompressed)

ℓ(S)
.

Intuitively, R tells us how well S compresses. If R is
small, S compresses well and thus has a low complex-
ity. If R is close to 1, S can hardly be compressed at
all and its complexity is very high.

In order to apply this method in practice, the av-
erage compression ratio of good sessions on a certain
port needs to be determined. In order to find anoma-
lies in a new session, we extract the session from net-
work traffic and compress it. If its compression ratio
deviates significantly from the average compression
ratio of expected traffic, we conclude that an anomaly
has occurred.

For the following comparison, traffic was collected
on a small site providing web, email and shell ser-
vices to about 10 users and an ADSL uplink. The
tag “nc” is used for terminal interactions. The pay-
load of sessions was extracted into separate files using
chaosreader and compressed using bzip2. We then
calculated the compression ratio of each file. From
this we computed the average compression ratio and
standard deviation of this ratio of all files belonging
to a certain protocol.

As expected the purely text based protocols, such
as IRC and nc compress very well. Protocol ses-

9



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

daa dns ftp imaps irc nc ntp smtp ssh torrent http

C
om

pr
es

si
on

 R
at

io

Protocol

Compressibility

"meanDat2"

Figure 7: Average compressibility and standard de-
viation

sions that carry encrypted data or binary data which
is usually already compressed, on the other hand,
can not be compressed very well. For example, SSH
and IMAPS sessions, carrying an encrypted payload,
hardly compress at all. Neither do HTTP and tor-
rent sessions which carry compressed files. Why does
SMTP traffic compress so badly? Closer inspection
revealed that most captured SMTP sessions carried
compressed viruses instead of text messages. It may
therefore be desirable to examine only the non-data
part of an SMTP session. We see that the stan-
dard deviation of SMTP traffic is quite high, which is
caused by the fact that emails containing compressed
attachments compress muss less well than plain text
messages.

This initial test shows that this method may well be
applicable to separate protocols which differ greatly
in their complexity. For example, we could tell an
IRC session from binary web traffic. Likewise, we
could identify a terminal interaction from the back-
ground of SSH traffic. However, this method is un-
suited for distinguishing protocols for file transfer or
protocols carrying encrypted data. We furthermore
note that averages for web and SMTP traffic may
vary greatly depending on the web server accessed.
Therefore averages would need to be determined for
every site individually. We also hope to use this
method to detect new and unknown protocols an at-
tacker may use as long as their compression ratio dif-
fers from the average compression ratio we expect.

4.1.2 Detecting complexity differences using

Snort

In order to test for complexity differences, we provide
the compress plugin for the popular open-source IDS
system Snort [11]. We can use it to specify a lower
and upper limit on the allowed compression ratio. If
the observed traffic data falls outside this window, an
alarm is triggered. The following rule will trigger an
alarm if the compressibility of traffic on port 22 drops
below 0.9 and use zlib for compression.

alert tcp $HOME NET any -> any 22 (msg:”Low

complexity on port 22”; compress:moreThan 0.9,zlib;

flow:to client,established; classtype:bad-unknown;

sid:2565; rev:5;)

In this example no explicit upper limit is given, so
the default value of 2 will be used. The compression
ratio can become larger than 1, if the input is com-
pletely incompressible and will actually be enlarged
by the compressor. The compress plugin takes the
following comma delimited arguments:

• moreThan <x>: legal traffic has a compression
ratio of more than x, where x is a number be-
tween 0 and 1.

• lessThan <x>: legal traffic has a compression
ratio of less than x.

• < compressor >: type of compressor to use.
Current values are zlib for gzip style compres-
sion and rle for a simple simulation of runlength
encoding.

4.2 Identifying similar attacks using

Snort

In order to determine whether the observed network
traffic is similar to an existing attack pattern, we
again make use of the normalized compression dis-
tance (NCD) from Section 2. If the NCD between
a known attack pattern and the observed traffic is
small, we conclude that a similar attack is in progress.
This method is used by the NCD plugin. Since sin-
gle packets can be very small, it makes sense to use
the NCD plugin in combination with stream4 TCP
stream reassembly and only examine fully reassem-
bled TCP sessions.

In the following simple example, we have recorded
a session of an attack using an older vulnerability
of Apache using PHP 3.0.15 on FreeBSD. This used
to be widely available exploit with the name ph-
ploit.c [9]. This exploit comes with different options,
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as to whether a shell should be opened on the vul-
nerable host on a different port following the attack,
or whether a shell should be executed directly. In
our recorded session, we used the option of binding
a shell to another port. We then made the following
entry in our Snort configuration:

alert tcp $HOME NET any -> webserver 80

(msg:”Close to phploit attack.”; flow:only stream;

ncd:dist 0.8, file recordedSession; classtype:bad-unknown;

sid:2566; rev:5;)

This entry tells Snort to trigger an alarm on all
TCP sessions which have an NCD of less than 0.8 to
the data contained in the file recordedSession. A new
attack using the same options triggered this rule with
an NCD of 0.608 to the recorded session. Executing
the attack with the option to execute a shell directly
also triggered this rule with an NCD of 0.638. Mir-
roring the entire website on the test server did not
result in any false positives. We have thus succeeded
in recognizing the new, but slightly different attack.
Whereas the above variation on the attack could have
been easily recognized by selecting a different pattern
to look for initially, it nevertheless illustrates that
the NCD may indeed be very useful in the detection
of new attacks. Selected patterns are typically very
short, which can make it much easier to escape de-
tection by creating a small variation of the attack.

The plugin currently makes use of the zlib library
for compression. Other compression methods would
be possible. It currently takes a single argument: dist
<x>, where x is maximum safe distance before the
rule is triggered.

5 Conclusion and Open Ques-

tions

We analyzed the binary executables of worms of dif-
ferent families and clustered them by family. Our
analysis shows that many worms cluster well. Our
method even performs reasonably well, if the worms
are UPX compressed and the compression has been
scrambled, which makes conventional analysis much
harder. This indicates that our method may be a
very useful tool in the initial analysis of new found
worms in the future. Many improvements are pos-
sible. Different compression methods may give bet-
ter results. Secondly, one could pre-classify worms
into email viruses, internet worms, irc worms and vb
scripts. In Section 3.2, we showed that restricting
ourselves to worms labeled “I-Worm” already gave

better results. Right now our aim was to provide a
tool for the analysis of worms. It may be interest-
ing see how this method can be incorporated in an
automated virus scanner for email.

We showed that different types of traffic have dif-
ferent complexity. This might be a simple and ef-
fective tool to distinguish between legal and illegal
traffic on the same port provided the complexity of
the traffic differs largely. It does not require a pri-
ori knowledge of specific patterns which occur only
in specific types of traffic. The compress plugin for
Snort allows the detection of potentially malicious
packets and sessions which fall outside the specified
compressibility window. It would be interesting to
see how this method performs under high load. Our
simple approach also compresses traffic only once. A
better performance may be achieved by compressing
traffic in a continuous fashion. Some initial experi-
ments which did not make use of snort showed this
to be rather promising. Compression is an expensive
operation, but so is pattern matching. Using efficient
and simulated compression may outperform match-
ing a large pattern list.

Using the normalized compression distance (NCD),
we can detect anomalies similar to existing ones. The
NCD plugin for Snort can sound an alarm, when the
observed session is too close to a given attack ses-
sion in terms of the NCD. This comparison is ex-
pensive. Nevertheless, we believe that our approach
could be useful to detect new variations of attacks
initially. Once such a variation has been recognized,
new patterns can be extracted to be used in con-
ventional intrusion detection systems. Our method
seems promising and leaves room for further explo-
ration: In this paper, we have only made use of stan-
dard compression programs. This also limits us to
comparing packets and sessions exceeding a certain
size so that they can still be compressed to a smaller
size by these programs. Perhaps a compression pro-
gram specifically targeted at compressing small pack-
ets would give better results. It would also be possi-
ble to create a faster version of an existing compressor
by merely simulating compression, because we never
want to decompress again.

Finally, our method can be defeated by an attacker
who intentionally alters the complexity of the traffic
he generates. For example, he may interleave random
with the actual data, to artificially increase the com-
plexity of this session. Nevertheless, we believe that
there are many scenarios where this is not possible or
makes an attack considerably more difficult.
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