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Abstract

We present an operating system independent and tamper -resi stant wor m-contai nment end-system.
This system continuously observes outgoing network traffic over a finite-duration traffic window, and
using heuristic rules executing in a secondary environment, detects infections. It automatically
guarantines the infected host to stop further spread of the worm. We present four heuristic rules, and
using network traffic traces collected from an enterprise network demonstrate that a port/protocol-tuned
version of the heuristic provides lowest false-positives rate for different settings. Using simulations, we
further evaluate the effectiveness of this heuristic in containing the spread of a worm in a medium-sized
network. We then demonstrate that different window sizes are required for containing worms with
different spread rates. Consequently, to be effective across a broad range of worms, we show it is
advisable to use a heuristic that uses multiple window sizes. We also demonstrate that by effectively
tuning the heuristic parameters and Dynamic Host Configuration Protocol (DHCP) server settings, one
can contain worms with spread rates from 2 scans per second to upwards of 100,000 scans per second.

1. Introduction

Internet worms present a serious threat to today’s highly networked computing environment.
Unlike viruses and trojans, worms typically spread automatically without active human intervention,
resulting in infection rates that are considerably higher than those of conventional viruses. For example,
the Slammer worm attained probe rates of as high as 26,000 scans per second [14]. Additionally, the
Witty worm outbreak demonstrated that patching may not be possible in time, given the worm appeared
only one day after publication of the corresponding vulnerability. Thus, understanding the mechanism of
automatic worm spread and developing appropriate containment strategies is important.

Modeling worm-spread is closely related with worm-containment, as worm-spread models allow
us to analyze the effectiveness of a worm-containment strategy. Models proposed so far include
differential-equation models [6, 8, 25] as well as Markov models [6, 11, 18]. Barring some disagreements
regarding networks that demonstrate localized interactions [13], researchers agree that worms spread at
exponential rates [8, 25] after initial infection. This exponential spread-pattern allows the network
administrators extremely short reaction time to take any countermeasures [16].

The fast response times required emphasize the need for an automated mechanism to locally
detect and control the spread of a worm. Traditionally, network administrators have used host-based
firewalls and various intrusion-detection systems [10] for this purpose. Such systems attempt to prevent
infection by scanning for worm signatures in the network traffic. Also, such firewalls prevent vulnerable
services from being exposed to the network. Although these measures are effective against known worms,
they are not effective against zero-day worm outbreaks. Moreover, most of these firewalls and intrusion-
detection systems are software based, and hence are vulnerable to tampering and exploitation by worms
themselves. Examples include the Witty worm [1] that infected a host intrusion detection software
package.

Worms typically spread by exploiting some software vulnerability in the target system. For
example, including the Morris worm [9] as well as the Code Red | and Code Red Il worms [15],
numerous worms have exploited different types of buffer overflow vulnerabilities [19]. Thus, researchers
have proposed proactive mechanisms, such as, using robust-programming practices [7, 19], and
generating automated tools that generate robust code [9]. However, these techniques require the existing
software to be recompiled and/or rewritten. Also, such approaches mandate replacing entire software suite
on the network, as any piece of software could expose vulnerability. Moreover, such mechanisms may
result in performance degradation [9].



Recently researchers have proposed using the novel paradigm of worm containment—instead of
preventing the infection, they detect the infection, and quarantine the infected host from the network [12,
16, 17, 21, 22, 23, 24]. Self-propagating worms spread by locating vulnerable hosts on the network, and
compromising a vulnerable service running on those hosts [9, 15]. A typical mechanism used by worms
for this purpose is called random address scan, where the worm randomly generates Internet Protocol (IP)
addresses, and attempts to compromise vulnerable services on the hosts with those IP addresses. For
example, the Code Red and the Slammer worms used random address scan to find vulnerable machines
on the network. Other methods of scan, such as serial scan (where a worm scans IP address in a serial
fashion), local preference scan (where a worm generates local IP addresses with higher probability), and
divide-and-conguer scan (where a worm splits the range of IP addresses to scan when it propagates to a
new computer) are also discussed in the literature [25]. Examples of worms using these other scanning
techniques include Code Red Il (local preference scan) and Blaster worm (serial scan) [25]. Worm-
containment systems leverage this scanning behavior to detect infected hosts, and then, either throttle the
traffic from the infected host [24, 17], or quarantine the infected host entirely [21, 17]. However, we note
that, such systems, if implemented in OS-resident software, could be vulnerable to tamper and/or
exploitation by worms. For example, nmap hackers were able to bypass the connection throttling
mechanism implemented in the OS by sending out raw Ethernet frames onto the network [3].

Researchers have suggested increasing the effectiveness of such containment systems using
Dynamic Host Configuration Protocol (DHCP) scattering to slow down the propagation of random-
scanning worms [21]. In DHCP scattering, the network administrator uses IP addresses from a large
private domain (such as, 10.10.0.0/16), and uses a Network Address Translation (NAT) device to map
these IP addresses to external densely populated IP addresses. This address mapping makes random-
scanning worms, including local preferential scan worms, encounter a large number of misses, resulting
in a relatively slower spread of the worm. For example, if an enterprise with 1024 (2'°) computers uses a
10.10.0.0/16 address space, then the probability that any given random scan is successful is about 1/64,
and thus the worm spends most of its time in the scanning phase.

In this paper we present a platform-based, OS-independent’ worm-containment system. The
system continuously observes outgoing network connections over a finite-duration traffic window (we
refer to the duration of this window as the window size), and using heuristic rules, determines if the host is
infected. For infected hosts, it automatically quarantines the host from the rest of the network to stop
further spread of the worm into the network. We present four different heuristic rules that are extensions
of the address-scan heuristic rule presented by Williamson [24]. We evaluate these four heuristic rules
using 7981 hours of real enterprise network traffic, and demonstrate that a port/protocol-tuned version of
the heuristic provides lowest false-positives rate for different window sizes. Using simulations, we further
evaluate the effectiveness of this heuristic in containing the spread of a worm in a medium-sized network.
Our simulations show that different window sizes are required for containing worms with different spread
rates, and consequently, to be effective across a broad range of worms, it is advisable to use a multi-
timescale heuristic (a heuristic that uses multiple window sizes). We also demonstrate that by
appropriately tuning the heuristic parameters and using DHCP scattering, one can effectively contain
extremely fast as well as extremely slow worms.

The rest of paper is organized as follows. In Section 2, we present related work and state our key
contributions. In Section 3, we describe the system architecture, the various heuristics, and a prototype
implementation. In Section 4, we provide simulation details and simulation results. In Section 5, we
discuss the implications of our simulation results. We present our conclusions in Section 6.

! Our worm-containment system resides in isolated environment, and hence is robust against attacks on the OS.



2. Related Work and Our Key Contributions

Automatic worm containment is an active area of research [12, 17, 21, 22, 23, 24]. Most such
systems assume that once a host is infected with a worm, it starts scanning the network for vulnerable
hosts using random | P addresses. One of the best-known of such systemsis the Threshold Random Walk
(TRW) detection scheme proposed by Jung et al. [12]. They assume that, in normal behavior, a host
generates more successful communication attempts than unsuccessful attempts and detect an infection
using sequential hypothesis testing. The authors describe this system as an intrusion-detection system,
even though it is straightforward to use it as a worm-containment system.

One of the short-comings of the TRW detection scheme is that typically it takes non-trivia time
to determine whether a connection attempt is successful or not. Meanwhile, the worm could send out
thousands of additional scan probes, infecting additional hosts before it gets quarantined. Schechter et al.
[17] propose limiting the number of new first-time connection requests out of the host while outcome of
previous requests is not known. However, they do not provide any analysis of what fraction of the
network a worm would infect, if their system were deployed on every node in large networks. Note that
they provide empirical analysis regarding what fraction of times they were able to detect a worm infection
in real-life traffic traces. However, since at least a few worm-scan probes escape the containment system
before detection, this ratio does not provide any insight into whether the worm would be stopped before
infecting the entire network, if the worm were to attack a fully connected network (as is the case with
most enterprise networks). The Weaver containment system [21] approximates the TRW using a
connection-cache, which holds information about al the incoming and outgoing connection attempts. If
the unsuccessful attempts exceed successful attempts by more than a pre-determined threshold, then the
Weaver containment system reports an anomaly, and quarantines the host.

The above approaches are effective in catching traditional worms. However, if such systems were
to become prevalent, future worms may specifically target these systemsto circumvent their defenses. For
example, a targeted worm can easily circumvent the above TRW-like systems [12, 17, 21], by
continuously generating successful connections to known good addresses. In this manner, the difference
between the number of successful connections and unsuccessful connection attempts will always be low,
and hence the sequential hypothesis test will fail to detect the worm scan.

Whyte et al. [22] observe that normal network traffic results in Domain Name Service (DNS)
lookups, while, address-scan traffic does not cause DNS lookups. Thus, they correlate the DNS activity
with the outgoing connection activity to detect scanning activity. They present a similar technique
correlating Address Resolution Protocol (ARP) traffic with outgoing traffic [23]. However, they
acknowledge that this technique may not be applicable to all networking protocols, and may result in
large number of false positives for various types of applications (e.g., peer-to-peer applications).

Williamson [24] leverages the observation that, over a small time period, an infected host makes
aconsiderably larger number of connection attempts than an uninfected host. This is because, without the
knowledge of the vulnerable hosts, the worm would have to attempt to infect many different hosts on the
network in a short period of time to penetrate the network quickly. Williamson proposes delaying new
outbound connections for containing such worms, but does not provide any insight into how effective this
system is in containing worms. In other words, he does not provide any analysis showing by how much
the worm would be slowed down, if his system were to be deployed in enterprise networks.

Here, we extend Williamson’s address-scan detection scheme® Our key contributions are as
follows. We present an OS-independent architecture for the worm-containment system, and present four
flavors of the address-scan heuristic. We use 7981 hours of real network traffic data from a corporate
network to evaluate false-positive rate of these different flavors, and demonstrate that the port/protocol-
based version performs the best at various values of record sizes (herein referred to as window sizes) and

2 Our approach differs from Williamson’s in that we quarantine the infected system entirely, instead of rate-limiting
it. This, however, is acceptable, since as we show later, our false positives rates are extremely low.



threshold values. We use simulations to demonstrate the effectiveness of two such window sizes in
containing worms with different scan rates under varying degree of DHCP address-space usage. Our
simulations demonstrate that using multiple window sizes increases the effectiveness of the containment
system.

3. Tamper Resistant Worm-containment System
3.1. System Architecture

3.1.1. Overview of the Architecture

Our worm-containment system works by applying heuristic rules to the outbound traffic from the
host. If the heuristic rules detect an anomaly, the worm-containment system quarantines the host from the
network. Figure 1 shows the architectural overview of our worm-containment system. As shown in the
figure, our worm-containment system is divided into two units—the Inline Processing Unit (IPU), and the
Sideband Processing Unit (SPU). Below we describe the functionality of each of these units.
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Figure 1: Tamper-resistant worm-containment architecture

3.1.2. InlineProcessing Unit

The IPU includes the components that are in the direct path of the inbound/outbound host
network traffic. Consequently, the operations performed by these components are bounded-time
operations. There are two main IPU components—Packet Filters and Packet Header Cache. The Packet
Filters operate on IP and TCP/UDP protocol header fields of the host network traffic. As a result of this
filtering, the IPU may take specific actions, such as, dropping the packets. The Packet Header Cache
holds a copy of time-stamped packet headers corresponding to inbound/outbound traffic. After passing
through the packet filters, the packet headers are deposited into this cache. The SPU picks these headers
up from this cache for sideband processing using standard platform buses (e.g., PCI [4]).

3.1.3. Sideband Processing Unit

The SPU includes the components that are not inline with the network traffic. These components
analyze the traffic using the heuristic rules, and manage the configuration of the heuristics and Packet
Filters in IPU. We delegate this functionality to SPU to avoid negative impact of heuristic processing on
the system throughput. The SPU could be implemented in a tamper-resistant environment, isolated from
the host operating environment. There are several possible ways of creating such a tamper-resistant
partition. For example, the SPU could be implemented in a dedicated co-processor. Alternatively, the host
could be partitioned using virtualization techniques, and the SPU could be implemented in a partition
independent of the main operating system.



In our architecture, the SPU is endowed with an out-of-band (OOB) management channel. This
channel is used to configure heuristic rules. Additionally, the SPU can use this communication channel to
send out alerts and events to a remote administrator.

As shown in Figure 1, the SPU hosts the Heuristic Rules Engine, which applies the various worm
containment heuristic rules (described later in this paper) to the packet headers read from the Packet
Header Cache of the IPU. If the Heuristic Rules Engine detects evidence of anomalous traffic, it can
install appropriate remedia Packet Filtersinto the IPU. Additionally, the Heuristic Rules Engine can send
an alert to a remote administrator through the OOB management channel. Thus the inline and sideband
processing € ements congtitute a closed-loop automated worm containment system.

3.2. Heuristic Rules

Our worm-containment system relies on heuristic rules to detect traffic anomalies that could
indicate scanning activity by a worm. Here we present four such heuristic rules. These heuristic rules are
devised based on the fundamenta property of all self-propagating worms— a worm has to contact new
hosts to spread into the network. Thus, all our heuristic rules identify events that suggest contact with a
new host, and monitor such events for anomalous patterns.

set last_time = current time w
LT Yes
Initialize counter(s) J

Get next header from Packet) No
Header Cache ) No o

Interesting event observed?

Yes

Y
Increment appropriate
counter

current_time - last_time >
window_size?

Any Counter > threshold?

]
Yes

A §

Possible Intrusion

Quarantine host and send
notification

Figure 2: Basic operation of a heuristic

Figure 2 shows the basic mechanism employed by all of our heuristics. All of our heuristics
observe packet headers, and count the number of “interesting events” in a given time interval. For this
purpose, every heuristic exposes two configurable parameters—a window size and a threshold. The
window size indicates the period at which a heuristic resets its counters. The threshold represents a limit
value, which when crossed by the counter, indicates an anomalous event. As described earlier, if the
heuristic detects an anomaly, the SPU quarantines the host from the rest of the network by installing
appropriate packet filters in the IPU. Given this basic mechanism, the only aspect on which heuristics
differ from each other is what they consider as interesting events and how they update their counters.
Below we describe these four heuristics.

The New Connections Heuristic: This heuristic counts the number of unique connections observed by
the worm-containment system in the given traffic window. A unigue connection is described by a unique



triple, source port, destination port, and destination address. If the number of such connections in the
traffic window exceeds the threshold value, the heuristic reports an anomaly.
The Pure Address Scan Heuristic: This heuristic counts the number of unique destination |P addresses
in the given traffic window. If this number exceeds the threshold value, it reports an anomaly.
The Port-based Address Scan Heuristic: This heuristic counts the unique destination |P addresses
grouped by destination port. If this number exceeds the threshold value for any destination port, it reports
atraffic anomaly.
Port/Protocol-based Address scan: This heuristic divides all the traffic in the traffic window into TCP
and UDP traffic. For the TCP traffic, it counts the number of unique destination |P addresses appearing in
TCP-SY N requests grouped by destination port. For the UDP traffic, it counts the total number of unique
destination | P addresses grouped by destination port. If any of these counters (either TCP or UDP for any
port) exceeds the threshold value, it reports atraffic anomaly.

Note that all of these heuristics can be implemented as simple hash table lookups, followed by
incrementing appropriate counters. Thus the heuristic rules engine can be implemented using a sideband
processor with very low processing power.

3.3. Prototype Implementation

To test this architecture, we developed a system prototype using a commodity PC with a gigabit
Ethernet network interface card running Linux OS (kernel version 2.4). We used a virtual machine
implementation (Guest OS) on this platform to represent the infected-system. The IPU Packet Header
Cache and the Packet Filters were implemented on the PC using Linux netfilter [2] and IPTables [5]
respectively. The SPU was implemented on an Intel XScale® architecture-based 10P 80310 10-controller
card. The 10P80310 uses embedded Linux OS (kernel version 2.4.19). The heuristics engine was
implemented as an application on the 10P 80310 board. The PCI channel was used for IPU-SPU
communication. This communication interface is used by the Heuristics Rule Engine to periodically read
the packet header cache as well as to configure the Packet Filters after traffic analysis.

We tested this prototype against four well-known, self-propagating worms— SQL Slammer,
MSBlaster, CodeRed Il and Slapper— by running their live copies on the virtual machine. Our prototype
was able to detect all the four worms at reasonable parameter settings (explained later).

Note that the above IPU implementation is independent of the infected OS, as the infected OS is
running on a virtual machine. Other OS-independent IPU implementation that we prototyped include

e Sampling the transmit ring buffers setup by the device driver from memory directly using the

I0P80310 board. This implements the Packet Header Cache on the IOP80310 board.

* Implementing the IPU components on the 10P80310 board and funneling traffic through the
10P80310 board. This implements both the IPU components on the embedded processor.

We mention here that when we sampled the device driver ring buffer using the 10P80310, we
were able to capture only 3 to 5 percent of the traffic headers. Alternatively, the IPU can be implemented
in hardware as part of communications controller as shown in Figure 1.

3.4. Performance Analysis

We analytically demonstrate that the above worm-containment system is not CPU intensive. We
assume that the SPU is implemented using an embedded 100 MHz processor with clocks-per-instruction
of 1, cache line width of 64-bytes, and memory latency (to fetch one cache line) of 400nS (these are
reasonable assumptions for low-end commodity memory and embedded processors). For our heuristics,
the only fields of interest are the destination address, destination port, protocol, and TCP flags. The packet
header cache can store these fields from one header using a 16-byte block. Thus, on average, it takes the
SPU 100nS to fetch each header from the packet header cache. Noting that all of our heuristic algorithms
can be implemented as simple hash look-ups, it is safe to assume that our heuristic takes no more than 50



instructions® (500nS) to process one packet header from the packet header cache, if it does not encounter
a cache miss. Allowing additional 50 clock cycles (500nS) for cache misses, and embedded OS
operations, we need about 1100nS to process each header. This implies we can process over 900,000
headers per second. Now, assuming that an average packet size of 200 bytes®, we expect a 1Gigabit
Network Interface Card (NIC) to deposit at most 1€9/(8*200) = 625,000 headers in the packet header
cache. Thus, we have enough processing power to support a Gbps NIC operating at its full speed. In
reality, we expect the number of headersin the packet header cache to be much smaller than the estimated
in this analysis because of various platform latencies, framing overheads and non-TCP/non-UDP traffic.
It should however be noted that this analysis only deals with IPv4 traffic, and IPv6 traffic would result in
different numbers.

4. Simulations

4.1. Data Collection and Simulation Setup

We evaluate our worm containment system using two metrics—the false positives rate and the
effectiveness of the system in stopping various worms. A false positive is an event when the worm-
containment system determines the host to be infected, even when the host is not infected. The other
metric, effectiveness of the system in stopping various worms, represents whether the system is capable
of stopping a worm, and what percentage of the network the worm infects before al infected hosts are
completely quarantined. We use simulations to evaluate our system using these two metrics.

Our simulations consist of two parts. The first part—called Sim1—simulates the behavior of the
worm-containment system presented above on traffic traces collected using windump or tcpdump. We use
this simulator to measure the fal se-positive rate of the various heuristics presented above on real network
traffic collected from variety of client host systems located in a corporate network of alarge corporation.
Overal, we collected IP network usage traces on 39 client host systems. The client host systems were
chosen from a cross section of the corporation, including manufacturing, information, technology, and
networking labs. These client systems were distributed geographically around the world, however,
majority of them were located in the United States of America. We collected the data traces over a period
of about 40 days. At the end of the data-collection effort, it was determined from system logs that one of
the client systems could have been infected during the data collection epoch, and hence traffic traces from
this system were not used for analysis. The total length of our network traces (excluding the potentially
infected system) was 7981 hours. The information technology system logs indicate that these network
traces represent worm-free traffic, and hence we use these traces with Sim1 for false-positives analysis.

The second simulator, called Sim2, simulates a medium-sized (8192 hosts) computer network
under a worm attack. We assume that every host on the network is reachable from every other host, and
that these hosts are uniformly spread across a large DHCP address space (size of the DHCP address space
isasimulation parameter). We assume that all of hosts on the network are vulnerable to the worm attack,
and stay connected for the entire duration of smulation. We assume that the network has enough
bandwidth so that the worm-spread traffic combined with the legitimate traffic does not cause any
congestion (ideal conditions for worm spread).

For Sim2, we model our network as a Markov chain, and simulate the worm propagation using
transition probabilities of the Markov chain. In this aspect, our simulations resemble the work of Spears et
al. [18] and Billings et al. [6]. In our simulations, each host has one of three states—susceptible, infected,
and quarantined. We start our simulations in a state where ten randomly selected hosts are in the infected
state, and all the other hosts are in the susceptible state. We simulate the worm propagation as a discrete-
time Markov chain, with the time epoch set to 100 microseconds. The maximum duration of a simulation

3 Wang [20] presents numerous hashing algorithms that can be implemented using less than 20 instructions.
* This assumption is reasonable, as the headers from various layers add up to more than 50 bytes, and worms need to
add some payload to spread. For example, the Slammer worm used UDP packets that were 404 bytesin size [14].



run is 5 hours (1.8e+8 epochs), as we believe that thisis sufficient time for the network administrator to
take effective countermeasures against the worm spread. At each epoch, each infected host generates a
random number of scan probes to scan for susceptible hosts on the network. The number of scan probes
generated by a host is a Poisson random variable with mean as determined by the worm spread rate, and
the IP address for each probe is chosen uniformly from the entire DHCP address space (note that the
DHCP address space, typically, has more addresses than the number of hosts on the network). If an IP
address for the scan probe matches the 1P address of a susceptible hogt, the susceptible host transitions to
infected state. Each of the outgoing probes from an infected host is observed by the worm-containment
system on that host, and the system quarantines the host when the heuristic rule reports a traffic anomaly.
A gquarantined host does not scan for additional vulnerable hosts.

Thus, each run of Sim2 presents us a worm-propagation trgjectory, describing the number of
machines in each state (susceptible, infected, and quarantined) at each time epoch. Averaging the number
of infected and quarantined machines across multiple trajectories provides us with average worm
penetration (expressed in number of hosts) into the network at each time epoch. Note that our Sim2
simulations do not take into account any background, legitimate traffic. In redlity, such traffic would also
be observed by the worm-containment system, and hence the real worm-containment system may trigger
sooner than the simulated worm-containment system. This would result in even faster quarantine of the
infected host. Thus, in one way, our Sim2 results represent the worst-case performance of the worm-
containment system.

4.2. Simulation Results

To evaluate the false positives rates of the four heuristics (New Connection, Pure Address Scan,
Port-based Address Scan, and Port/Protocol-based Address Scan), we applied these heurigtics to the 7981
hours of enterprise network traffic traces using the simulator Sim1. For these evaluations, we used
window sizes of 1mS, 5mS, 50mS, 1S, and 50S. For each window size, each heuristic was evaluated with
a threshold value of 2, 4, 8, 16, 32, 64, 128, and 256. Table 1 shows the number of false positives per
hour of network traffic produced by each of these heuristics. It can be seen from Table 1 that the
Port/Protocol-based Address Scan heuristic gives the lowest fal se positives for any window-size/threshold
combination. Consequently, this heuristic attains zero false positives for the smalest threshold value
among all heurigtics for any given window size. Thus, this heuristic can be used with most stringent
threshold values across all window sizes keeping the false alarm rate zero (or extremely low).

In Table 1, we aso estimate the worms each heuristic would catch at various values of window
size, if it were to use the smallest threshold value that gives zero false positives. These estimates are based
on the spread rates of five well-known worms—Slammer, Code Red Il, Slapper, and MSBlaster, as
reported on various Internet web sites (e.g., [14]). Each cdl with zero false positives includes letters
representing the worms that would be stopped with the setting in that cell. The convention used is a
Slammer, b-Witty, c-Code Red |1, d-Slapper, and e-M SBlaster.

Next we evaluate how effective our worm-containment system is in stopping the worm using
Sim2. For demonstration purpose, we use window sizes of 1ImS and 50S (smallest and largest from
Siml). Also, we use the Port/Protocol-based Address Scan heuristic—because of its superior false-
positives performance—for our Sim2 results. For the window size of 1mS, we choose the threshold value
of 8, and for the window size of 50S, we choose the threshold value of 64. These are the smallest
threshold values for which this heuristic yields zero fase positives on our data set. This way, we
demonstrate the effectiveness of our worm-containment system at reasonabl e parameter settings.



Table 1: The number of false positives per hour produced by each of the four heurstics at various val ues of the
window size and the threshold parameters. The table also estimates the various worms that would be caught by
various settings. See Page 8 for more explanation.

New Connections Heuristic Pure Address Scan Heuristic
Window Size Window Size

1mS 5mS 50mS 1S 50S 1mS 5mS 50mS 1S 50S
2 105.47 | 189.88 | 523.27 | 1680.2 | 7671.9 2 85.219 129 263.41 | 961.35 | 6612.2
33.187 | 59.784 | 162.56 | 760.54 | 4605.3 4 28.38 | 47.296 | 78.414 | 257.25 | 3400.5
k) 8 2.9664 | 9.9703 | 35.732 | 280.25 | 2334.3 o 8 1.365 | 6.3988 | 15.978 | 49.312 | 803.98
% 16 | 0.2778 | 1.2394 | 6.5588 | 69.342 | 903.07 % 16 0, 0.0243 | 0.095 | 0.8211 | 84.43
E 32 | 0.0038 | 0.1227 | 0.3327 | 10.377 | 248.92 % 32 0 [0S 0.0154 | 0.092 | 3.3634
64 0 0z 0.0033 | 0.4077 | 70.785 64 0 0z Oap 0.0048 | 0.6677

128 0 0 [0S 0.0435 | 14.399 128 0 0 Oab Oab Oabcde

256 0 0 0z Oap 0.3355 256 0 0 0z [0S Oabed

Port-based Address Scan Heuristic Port/Protocol-based Address Scan Heuristic
Window Size Window Size

1mS 5mS 50mS 1S 50S 1mS 5mS 50mS 1S 50S
2 31.304 | 32.764 | 45.505 | 91.099 | 490.6 2 0.7116 | 1.671 | 5.9771 | 38.852 | 396.77
16.339 | 16.792 | 17.308 | 20.929 | 86.588 4 0.0853 | 0.1296 | 0.6069 | 4.3086 | 53.749
k) 0.0332 | 0.1083 | 0.149 0.349 | 12.705 o [0S 0z 0.0001 | 0.1965 | 12.578
% 16 0, 0.0229 | 0.0685 | 0.1004 | 1.2372 % 16 0, [0S [0S 0.0003 | 1.175
E 32 0 Oz 0.014 | 0.0318 | 0.2209 % 32 0 0ap 0z Oabed 0.1812
64 0 Oab Oab Oab Oabcde 64 0 Oab Oab Oab Oabede

128 0 0 Oz Oap Oabede 128 0 0 0z Oz Oabcde

256 0 0 0z Oap Oabed 256 0 0 0z 0z Oabed

Figure 3 shows the network penetration of worms with various spread rates as a function of
DHCP address prefix size for the two parameter settings above (window size = 1mS, threshold = 8, and
window size = 50S, threshold = 64 ). Each point on these graphs was obtained by averaging ten
trajectories of the worm-spread generated using Sim2 (different random-number generator seed for each
tragjectory). The X axis in these graphs shows the prefix-size of the DHCP address space. A prefix-size of
n implies that al the addresses in the DHCP address space have first n bits in common. Thus, for
example, the DHCP address space with a prefix-size of 8 has first 8 bits fixed, and consequently has 2%
addressesin it. Asthe prefix size increases, the address space has fewer addresses available in it. Thus, in
these graphs, as the DHCP prefix size increases, the DHCP usage becomes increasingly dense. This is
because the total number of hosts in the system is constant, however with increasing DHCP prefix size,
available number of addresses in the address space decreases. The Y axis in these graphs shows the level
of worm penetration in 5 hoursin terms of percent vulnerable hosts infected.

As can be seen from these figures, the heuristic with window size of 1mS and threshold of 8 is
capable of stopping only the fastest-spreading worm, the one with a scan rate of 100,000 connections per
second. On the other hand, with sufficiently small DHCP prefix size, the heuristic with window size of
50S and threshold of 64, is capable of stopping all the worms, except for the slowest worm (with a scan
rate of 0.5 connections per second). This certainly is not a surprise, considering that any worm with a
spread rate of less than 8000 scans per second is expected to fly under the radar of the heuristic with
window size of 1mS and threshold of 8. However, it should be noted that, for the fastest spreading worm
(100,000 scans per second), this heuristic configuration is capable of stopping the worm with much larger
DHCP prefix sizes than the 50564 connections configuration. This is because the 1mS/8 connections
configuration is capable of detecting the worm scan much earlier (only after about 8 scan probes) than the
other configuration (after about 64 scan probes), and hence is more effective in stopping the worm.
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Figure 3: Worm-penetration as a function of DHCP address-space size (a) Effectiveness of 1mS window with
threshold set to 8, (b) Effectiveness of 50S window with threshold set to 64

This implies that a combined heuristic, which would use both, the ImS window and the 50S
window, with appropriate threshold values, would be effective across a wider range of worms. Also, as
we have chosen the threshold values to give zero (or very low) false positives, the resulting combination
would also result in zero (or very low) false positives.

Also, note that even though the worm with spread rate of 0.5 connections per second spreads to
the entire network for ailmost al network prefix sizes, the speed of penetration of such a slow worm is
very sow. Sim2 can be used to look at these numbers. Along with the maximum network penetration
attained, each run of Sim2 also provides time it takes for the worm to attain this level network penetration
for that run (this could be less than 100%). We note down these times for each of the 10 random runs used
for plotting Figure 3, and consider the minimum of the 10 time values for each setting. This value gives
us the estimate of how much time, a a minimum, the worm would take to attain its maximum level of
penetration into the network. Figure 4 plots these time values as a function of the DHCP prefix size. As
can be seen Figure 4, for both the heuristic settings, the slow worm (0.5 scans per second) worm takes
over 5000 seconds (about 1.5 hours) to penetrate networks with prefix sizes of 11 and below. We believe
that this gives ample opportunity for the network administrators to react to such worm outbreaks.
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Figure 4: Minimum time for worm to attain its maximum penetration as a function of DHCP address-space size (@)
Time taken with 1mS window with threshold set to 8, (b) Time taken with 50S window with threshold set to 64

5. Discussion

We demonstrate that multi-time scale heuristics provide a better defense against a wide range of
worms. Our conclusion to employ multi-timescale heuristic is based on the results shown below. Using
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multi-timescale heurigtic, one can monitor worms with a large range of propagation speeds. This can be
achieved without generating false positives by tuning the threshold value at each timescale to achieve
zero false positives at that timescale. Multi-timescale heuristics clearly have an advantage over single-
timescal e heuristics based worm-containment systems. Table 2 summarizes the effect of the two window
sizes on worms with various spread rates from our Sim2 runs. The table lists the worm penetration into
the network for the lower window (ImS—L in the round braces), as well as the upper window (50S—U
in round braces). As can be seen, the heuristic with the smaller window size is more effective for the fast
worm, where as the heuristic with the larger window size is effective for slower worms. However, the
threshold values for both of these window sizes were chosen to give zero false positives using the Sm1l
results. Thus, our results demonstrate that the multi-timescale heuristics are capable of intercepting a
range of slow as well as fast spreading worms, without a prohibitive number of false positives.
Table 2: Effectiveness of different timescales in stopping the worm before it infects the entire network against
different worm-propagation rates

Address Space Size (Prefix Size)
Small (14-16) Medium (11-13) Large (8-10)
80-100% (V) 0.2-2.2% (V) 0.13-0.14% (V)
Fast (100000 scans per second)
0.15-3% (L) 0.13 (L) 0.12 (L)
3 ) 80-100% (V) 0.16-5% (U) 0.12-0.14% (V)
© | Medium (1000 scans per second)
& 100% (L) 100% (L) 100% (L)
€ 80-100% (V) 0.16-3% (U) 0.12-0.14% (V)
S Slow (2 scans per second)
= 100% (L) 100% (L) 100% (L)
100% (U,L) 100% (U,L) 8-100% (V)
Very Slow (0.5 scans per second)
100% (L)

Our simulation and prototype results show the effect of modifying network parameters, such as
DHCP prefix sizes (DHCP usage), on the spread of self-propagating worms. Patching of systems is a
slow process, and therefore DHCP address space control provides a better tool for such control. We also
note that, in our experience, DHCP usage in enterprise networks is typicaly clustered in address
subspaces. Such alocation is beneficia to worms that have simple spread address generation methods,
such as linear address scan or subnet preference scan. Thus, we recommend randomly distributing the
allocated 1P addresses uniformly across the DHCP address space. We also recommend using extremely
large private DHCP addresses, and then using a global NAT device (one that keeps a 1.1 mapping
between external and internal 1P addresses) for exposing the hosts to the Internet.

Our multi-timescale heuristics still suffer from some deficiencies. As can be seen from Table 2,
very slow worms could penetrate a large portion of the network largely undetected. Also worms that
employ target lists could use a divide and conquer scanning approach [25] to achieve fast network
penetration even at slow propagation speeds. However, note that our architecture has an OOB channel
from the SPU to other entities on the network. This channel can be used to communicate the local triggers
of the worm-containment system to the backend processing unit, which can use centralized inference
mechanisms for detecting worms[21].

6. Conclusions

We demonstrate a tamper-resistant, OS independent approach to zero-day worm detection and
containment. We have tested a prototype of this system using four flavors of the address-scan heuristic
against live, well-known worms, and have verified the capability of the prototype to contain these worms.
We simulate the effect of our worm-containment system on real enterprise traffic to demonstrate that,
with appropriate values of heuristic parameters, it is possible to achieve extremely low false-positives
rate. Using our own network simulator, we also demonstrate that these parameter settings can effectively
contain worms with various spread rates. Our simulations indicate that different parameter settings are
more effective against different worm-spread patterns. Thus, we propose the use of multi-time scale
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heuristics to provide coverage for the range of dow and fast propagating worms. We demonstrate the
effect of DHCP address prefix size on the spread of self-propagating worms. Large address spaces
prefixes possible using IPv6 or NAT devices can take advantage of this concept to reduce the
effectiveness of self-propagating worms. Also, an administrator can estimate the risk profile of their
networks for newer worms as they are discovered using the analysis approach provided in this paper.
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