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ABSTRACT 

The recent growth in network usage has motivated the creation of 
new malicious code for various purposes, including economic and 
other malicious purposes. Currently, dozens of new malicious 
codes are created every day, and this number is expected to 
increase in coming years. Today’s signature-based anti-viruses 
and heuristic-based methods are accurate, but cannot detect new 
malicious code. Recently, classification algorithms were used 
successfully for the detection of malicious code. We present a 
complete methodology for the detection of unknown malicious 
code, inspired by text categorization concepts. However, this 
approach can be exploited further to achieve a more accurate and 
efficient acquisition method of unknown malicious files. We use 
an Active-Learning framework that enables the selection of the 
unknown files for fast acquisition. We performed an extensive 
evaluation of a test collection consisting of more than 30,000 
files. We present a rigorous evaluation setup, consisting of real-
life scenarios, in which the malicious file content is expected to be 
low, at about 10% of the files in the stream. We define specific 
evaluation measures based on the known precision and recall 
measures, which show the accuracy of the acquisition process and 
the improvement in the classifier resulting from the efficient 
acquisition process. 
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1. INTRODUCTION 
The term malicious code (malcode) commonly refers to pieces of 
code, not necessarily executable files, which are intended to harm, 
generally or in particular, the specific owner of the host. Malcodes 
are classified, based mainly on their transport mechanism, into 
five main categories: worms, viruses, Trojans, and a new group 
that is becoming more common, which comprises remote access 
Trojans and backdoors. The recent growth in high-speed internet 
connections and internet network services has led to an increase in 
the creation of new malicious codes for various purposes, based 
on economic, political, criminal or terrorist motives (among 
others). Some of these codes have been used to gather 

information, such as passwords and credit card numbers, as well 
as for behavior monitoring. A recent survey by McAfee indicates 
that about 4% of search results from the major search engines on 
the web contain malicious code. Additionally, Shin et al. [17] 
found that above 15% of the files in the KaZaA network 
contained malicious code. Thus, we assume that the proportion of 
malicious files in real life is about or less than 10%, but we also 
consider other options. 

Current anti-virus technology is primarily based on two 
approaches. Signature-based methods, which rely on the 
identification of unique strings in the binary code, while being 
very precise, are useless against unknown malicious code. The 
second approach involves heuristic-based methods, which are 
based on rules defined by experts, which define a malicious 
behavior, or a benign behavior, in order to enable the detection of 
unknown malcodes [6]. Other proposed methods include behavior 
blockers, which attempt to detect sequences of events in operating 
systems, and integrity checkers, which periodically check for 
changes in files and disks. However, besides the fact that these 
methods can be bypassed by viruses, their main drawback is that, 
by definition, they can only detect the presence of a malcode after 
the infected program has been executed, unlike the signature-
based methods, including the heuristic-based methods, which are 
very time-consuming and have a relatively high false alarm rate. 

The generalization of the detection methods, so that unknown 
malcodes can be detected, is therefore crucial. Recently, 
classification algorithms were employed to automate and extend 
the idea of heuristic-based methods. As we will describe in more 
detail shortly, the binary code of a file is represented by n-grams, 
and classifiers are applied to learn patterns in the code and 
classify large amounts of data. A classifier is a rule set which is 
learnt from a given training-set, including examples of classes, 
both malicious and benign files in our case. Recent studies, which 
we survey in the next section, have shown that this is a very 
successful strategy. 

Another problem which is troubling the anti virus community is 
the acquisition of new malicious files, which it is very important 
to detect as quickly as possible. This is often done by using 
honey-pots. Another option is to scan the traffic at the internet 
service provider, if accessible, to increase the probability of 
detection of a new malcode. However, the main challenge in both 
options is to scan all the files efficiently, especially when scanning 
internet node (router) traffic. 

We present a methodology for malcode categorization based on 
concepts from text categorization. We present an extensive and 
rigorous evaluation of many factors in the methodology, based on 
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SVM classifiers using three types of kernels. The evaluation is 
based on a test collection containing more than 30,000 files. In 
this study we focus on the problem of efficiently scanning and 
acquiring new malicious code in a stream of executable files using 
Active Learners. We start with a survey of previous relevant 
studies. We describe the methods we used to represent the 
executable files. We present our approach of acquiring new 
malcodes using Active Learning and perform a rigorous 
evaluation. Finally, we present our results and discuss them. 

2. BACKGROUND 

2.1 Detecting Malcodes via Data Mining 
Over the past five years, several studies have investigated the 
option of detecting unknown malcode based on its binary code. 
Schultz et al. [16] were the first to introduce the idea of applying 
machine learning (ML) methods for the detection of different 
malcodes based on their respective binary codes. They used three 
different feature extraction (FE) approaches -- program header, 
string features, and byte sequence features -- in which they 
applied four classifiers -- a signature-based method (anti-virus), 
Ripper, a rule-based learner, Naïve Bayes, and Multi-Naïve 
Bayes. This study found that all the ML methods were more 
accurate than the signature-based algorithm. The ML methods 
were more than twice as accurate, with the out-performing method 
being Naïve Bayes, using strings, or Multi-Naïve Bayes using 
byte sequences. Abou-Assaleh et al. [1] introduced a framework 
that used the common n-gram (CNG) method and the k nearest 
neighbor (KNN) classifier for the detection of malcodes. For each 
class, malicious and benign, a representative profile was 
constructed and assigned a new executable file. This executable 
file was compared with the profiles and matched to the most 
similar. Two different datasets were used: the I-worm collection, 
which consisted of 292 Windows internet worms, and the win32 
collection, which consisted of 493 Windows viruses. The best 
results were achieved using 3-6 n-grams and a profile of 500-5000 
features. Kolter and Maloof [9] presented a collection that 
included 1971 benign and 1651 malicious executables files. N-
grams were extracted and 500 were selected using the information 
gain measure [12]. The vector of n-gram features was binary, 
presenting the presence or absence of a feature in the file and 
ignoring the frequency of feature appearances. In their 
experiment, they trained several classifiers: IBK (KNN), a 
similarity based classifier called TFIDF classifier, Naïve Bayes, 
SVM (SMO), and Decision tree (J48), the last three of which 
were also boosted. Two main experiments were conducted on two 
different datasets, a small collection and a large collection. The 
small collection consisted of 476 malicious and 561 benign 
executables and the larger collection of 1651 malicious and 1971 
benign executables. In both experiments, the four best-performing 
classifiers were Boosted J48, SVM, boosted SVM, and IBK. 
Boosted J48 out-performed the others, The authors indicated that 
the results of their n-gram study were better than those presented 
by Schultz and Eskin [16]. Recently, Kolter and Maloof [10] 
reported an extension of their work, in which they classified 
malcodes into families (classes) based on the functions in their 
respective payloads. In the categorization task of multiple 
classifications, the best results were achieved for the classes: mass 
mailer, backdoor, and virus (no benign classes). In attempts to 
estimate their ability to detect malicious codes based on their 
issue dates, these classifiers were trained on files issued before 

July 2003, and then tested on 291 files issued from that point in 
time through August 2004. The results were, as expected, not as 
good as those of previous experiments. These results indicate the 
importance of maintaining such a training set through the 
acquisition of new executables, in order to cope with unknown 
new executables. Henchiri and Japkowicz [7] presented a 
hierarchical feature selection approach which makes possible the 
selection of n-gram features that appear at rates above a specified 
threshold in a specific virus family, as well as in more than a 
minimal amount of virus classes (families). They applied several 
classifiers, ID3, J48 Naïve Bayes, SVM- and SMO, to the dataset 
used by Schultz et al. [16] and obtained results that were better 
than those obtained using a traditional feature selection, as 
presented in [16], which focused mainly on 5-grams. However, it 
is not clear whether these results are reflective more of the feature 
selection method or of the number of features that were used. 
Moskovitch et al [13], who are the authors of this study, presented 
a test collection consisting of more than 30,000 executable files, 
which is the largest known to us. They performed a wide 
evaluation consisting of five types of classifiers and focused on 
the imbalance problem in real life conditions, in which the 
percentage of malicious files is less than 10%, based on recent 
surveys. After evaluating the classifiers on varying percentages of 
malicious files in the training set and test sets, it was shown to 
achieve the optimal results when having similar proportions in the 
training set as expected in the test set. 

2.2 Active Learning and Selective Sampling 
A major challenge in supervised learning is labeling the examples 
in the dataset. Often the labeling is expensive since it is done 
manually by human experts. Labeled examples are crucial in order 
to train a classifier, and we would therefore like to reduce the 
number of labeling requirements. The Active Learning (AL) 
approach proposes a method which asks actively for labeling of 
specific examples, based on their potential contribution to the 
learning process. AL is roughly divided into two major 
approaches: the membership queries [2] and the selective-
sampling approach [11]. In the membership queries approach the 
learner constructs artificial examples from the problem space, then 
asks for its label from the expert, and finally learns from it and so 
forth, in an attempt to cover the problem space and to have a 
minimal number of examples that represent most of the types 
among the existing examples. However, a potential practical 
problem in this approach is requesting a label for a nonsense 
example. The selective-sampling approach usually comprises a 
pool-based sampling, in which the learner is given a large set of 
unlabeled data (pool) from which it iteratively selects the most 
informative and contributive examples for labeling and learning, 
based on which it is carefully selects the next examples, until it 
meets stopping criteria. 

Studies in several domains successfully applied active learning in 
order to reduce the effort of labeling examples. Unlike in random 
learning, in which a classifier is trained on a pool of labeled 
examples, the classifier actively indicates the specific examples 
that should be labeled, which are commonly the most informative 
examples for the training task. Two AL methods were considered 
in our experiments: Simple-Margin Tong and Koller [18] Error-
Reduction Roy and McCallum [14]. 



2.3 Acquisition of New Malicious Code Using 

Active Learning  
As we presented briefly earlier the option of acquiring new 
malicious files from the web and internet services providers is 
essential for fast detection and updating of the anti-viruses, as 
well as updating of the classifiers. However, manually inspecting 
each potentially malicious file is time-consuming, and often done 
by human experts. We propose using Active Learning as a 
selective sampling approach based on a static analysis of 
malicious code, in which the active learner identifies new 
examples which are expected to be unknown. Moreover, the 
active learner is expected to present a ranked list of the most 
informative examples, which are probably the most different from 
what currently is known. 

3. METHODS 

3.1 Text Categorization 
To detect and acquire unknown malicious code, we suggest 
implementing well-studied concepts from the information 
retrieval (IR) and more specific text categorization domain. In 
execution of our task, binary files (executables) are parsed and n-
gram terms are extracted. Each n-gram term in our task is 
analogous to words in the textual domain. Here are descriptions of 
the IR concepts used in this study. Salton and Weng [15] 
presented the vector space model to represent a textual file as a 
bag-of-words. After parsing the text and extracting the words, a 
vocabulary of the entire collection of words is constructed. Each 
of these words may appear zero to multiple times in a document. 
A vector of terms is created, such that each index in the vector 
represents the term frequency (TF) in the document. Equation 1 
shows the definition of a normalized TF, in which the term 
frequency is divided by the maximal appearing term in the 
document with values in the range of [0-1]. Another common 
representation is the TF Inverse Document Frequency (TFIDF), 
which combines the frequency of a term in the document (TF) and 
its frequency in the documents collection, as shown in Equation 2, 
in which the term's (normalized) TF value is multiplied by the 
IDF = log (N/n), where N is the number of documents in the 
entire file collection and n is the number of documents in which 
the term appears. 
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3.2 Data Set Creation 
We created a dataset of malicious and benign executables for the 
Windows operating system, which is the most commonly used and 
attacked. To the best of our knowledge, this collection is the 
largest ever assembled. We acquired the malicious files from the 
VX Heaven website1, having 7688 malicious files. To identify the 
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files, we used the Kaspersky2 anti-virus and the Windows version 
of the Unix ‘file’ command for file type identification. The files in 
the benign set, including executable and Dynamic Linked Library 
(DLL) files, were gathered from machines running the Windows 
XP operating system, which is currently considered the most used, 
on our campus. The benign set contained 22,735 files, which were 
reported by the Kaspersky anti-virus program as being completely 
virus-free. 

3.3 Data Preparation and Feature Selection 
We parsed the binary code of the executable files using several n-
gram lengths moving windows, denoted by n. Vocabularies of 
16,777,216, 1,084,793,035, 1,575,804,954 and 1,936,342,220, for 
3-gram, 4-gram, 5-gram and 6-gram, respectively, were extracted. 
Later the TF and TFIDF representation were calculated for each 
n-gram in each file. 

In machine learning applications, the large number of features 
(many of which do not contribute to the accuracy and may even 
decrease it) in many domains presents a huge problem. Moreover, 
in our task a reduction in the amount of features is crucial for 
practical reasons, but must be performed while simultaneously 
maintaining a high level of accuracy. This is due to the fact that, 
as shown earlier, the vocabulary size may exceed billions of 
features, far more than can be processed by any feature selection 
tool within a reasonable period of time. Additionally, it is 
important to identify those terms that appear in most of the files, 
in order to avoid zeroed representation vectors. Thus, initially the 
features having the highest DF value (Equation 2) were extracted. 
Based on the DF measure, two sets were selected, the top 5,500 
terms and the top 1,000-6,500 terms. The set of top 1000 to 6,500 
set of features was inspired by the removal of stop-words, as often 
done in information retrieval for common words. Later, feature 
selection methods were applied to each of these two sets. Since it 
is not the focus of this paper, we will describe the feature 
selection preprocessing very briefly. We used a filters approach, 
in which the measure was independent of any classification 
algorithm, to compare the performances of the different 
classification algorithms. In a filters approach, a measure is used 
to quantify the correlation of each feature to the class (malicious 
or benign) and estimate its expected contribution to the 
classification task. Three feature selection measures were used: as 
a baseline we used the document frequency measure DF 
(Equation 2), and additionally the Gain Ratio (GR) [12] and 
Fisher Score [5]. Eventually the top 50, 100, 200 300, 1000, 1500 
and 2000 were selected from each feature selection. 

3.4 Support Vector Machines 
We employed the SVM classification algorithm using three 
different kernel functions, in a supervised learning approach. We 
briefly introduce the SVM classification algorithm and the 
principles and implementation of Active Learning that we used in 
this study. SVM is a binary classifier which finds a linear 
hyperplane that separates the given examples into the two given 
classes. Later an extension that enables handling multiclass 
classification was developed. SVM is widely known for its 
capacity to handle a large amount of features, such as text, as was 
shown by Joachims [8]. We used the Lib-SVM implementation of 
Chang [4] that also handles multiclass classification. Given a 
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training set, in which an example is a vector xi = <f1,f2…fm>, 
where fi' is a feature, and labeled  by yi = {-1,+1}, the SVM 
attempts to specify a linear hyperplane that has the maximal 
margin, defined by the maximal (perpendicular) distance between 
the examples of the two classes. Figure 1 illustrates a two 
dimensional space, in which the examples are located according to 
their features and the hyperplane splits them according to their 
label. 

Class (+1)

Class(-1)

margin

W

 

Figure 1. An SVM that separates the training set into two classes, 
having maximal margin in a two dimensional space. 

The examples lying closest to the hyperplane are the "supporting 
vectors" W, the Normal of the hyperplane, is a linear combination 
of the most important examples (supporting vectors), multiplied 
by LaGrange multipliers (alphas). Since the dataset in the original 
space often cannot be linearly separated, a kernel function K is 
used. SVM actually projects the examples into a higher 
dimensional space in order to create linear separation of the 
examples. Note that when the kernel function satisfies Mercer's 
condition, as was explained by Burges [3], K can be written as 
shown in Equation 3, where Φ is a function that maps the example 
from the original feature space into a higher dimensional space, 
while K relies on "inner product" between the mappings of 
examples x1, x2. For the general case, the SVM classifier will be in 
the form shown in Equation 4, while n is the number of examples 
in training set, and w is defined in Equation 5. 
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Two commonly used kernel functions were used: Polynomial 
kernel, as shown in Equation 6, creates polynomial values of 
degree p, where the output depends on the direction of the two 
vectors, examples x1, x2, in the original problem space. Note that a 
private case of a polynomial kernel, having p=1, is actually the 
Linear kernel. Radial Basis Function (RBF), as shown in Equation 
7, in which a Gaussian is used as the RBF and the output of the 
kernel depends on the Euclidean distance of examples x1, x2. 
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3.5 Active Learning 
In this study we implemented two selective sampling (pool-based) 
AL methods: the Simple Margin presented by Tong and Koller, 
[18] and Error Reduction presented by Roy and McCallum, [14]. 

3.5.1 Simple-Margin 

This method is directly oriented to the SVM classifier. As was 
explained in the section 3.4, by using a kernel function, the SVM 
implicitly projects the training examples into a different (usually 
higher dimensional) feature space, denoted by F. In this space 
there is a set of hypotheses that are consistent with the training-
set, meaning that they create linear separation of the training-set. 
This set of consistent hypotheses is called the Version-Space 
(VS). From among the consistent hypotheses, the SVM then 
identifies the best hypothesis that has the maximal margin. Thus, 
the motivation of the Simple-Margin AL method is to select those 
examples from the pool, so that these will reduce the number of 
hypotheses in the VS, in an attempt to achieve a situation where 
VS contains the most accurate and consistent hypotheses. 
Calculating the VS is complex and impractical when large 
datasets are considered, and therefore this method is oriented 
through simple heuristics that are based on the relation between 
the VS and the SVM with the maximal margin. Practically, 
examples that lie closest to the separating hyperplane (inside the 
margin) are more likely to be informative and new to the 
classifier, and thus will be selected for labeling and acquisition. 

3.5.2 Error-Reduction 

The Error Reduction method is more general and can be applied 
to any classifier that can provide probabilistic values for its 
classification decision. Based on the estimation of the expected 
error, which is achieved through adding an example into the 
training-set with each label, the example that is expected to lead 
to the minimal expected error will be selected and labeled. Since 
the real future error rates are unknown, the learner utilizes its 
current classifier in order to estimate those errors. In the 
beginning of an AL trial, an initial 

classifier
)|(^

xyP D  is trained over a randomly 
selected initial set D. For every optional label y∈Y (of every 
example x in the pool P) the algorithm induces a new classifier 

)|(^
| xyP

D  trained on the extended training set D' = 
D + (x, y), Thus (in our binary case, malicious and benign are the 
only optional labels) for every example X there are two classifiers, 
each one for each label. Then for each one of the example's 
classifiers the future expected generalization error is estimated 
using a log-loss function, shown in Equation 8. The log-loss 
function measures the error degree of the current classifier over all 
the examples in the pool, where this classifier represents the 
induced classifier as a result of selecting a specific example from 
the pool and adding it to the training set, having a specific label. 
Thus, for every example x∈P we actually have two future 
generalization errors (one for each optional label as was 
calculated in Equation 8). Finally, an average is calculated for the 
two errors, which is called the self-estimated average error, based 



on Equation 9. It can be understood that it is built of the weighted 
average so that the weight of each error of example x with label y 
is given by the prior probability of the initial classifier to classify 
correctly example x with label y. Finally, the example x with the 
lowest expected self-estimated error is chosen and added to the 
training set. In a nutshell, an example will be chosen from the 
pool only if it dramatically improves the confidence of the current 
classifier more than all the examples in the pool (means lower 
estimated error). 
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4. Evaluation 
To evaluate the use of AL in the task of efficient acquisition of 
new files, we defined specific measures derived from the 
experimental objectives. The first experimental objective was to 
determine the optimal settings of the term representation (TF or 
TFIDF), n-grams representation (3, 4, 5 or 6), the best global 
range (top 5500 or top 1000-6500) and feature selection method 
(DF, FS or GR), and the top selection (50, 100, 200, 300, 1000, 
1500 or 2000). After determining the optimal settings, we 
performed a second experiment to evaluate our proposed 
acquisition process using the two AL methods. 

4.1 Evaluation Measures 
For evaluation purposes, we measured the True Positive Rate 
(TPR) measure, which is the number of positive instances 
classified correctly, as shown in Equation 10, False Positive Rate 
(FPR), which is the number of negative instances misclassified 
Equation 10, and the Total Accuracy, which measures the number 
of absolutely correctly classified instances, either positive or 
negative, divided by the entire number of instances, shown in 
Equation 11. 

||||

||

FNTP

TP
TPR

+
= ; 

||||

||

TNFP

FP
RFP

+
=  (10) 

||||||||

||||

FNTNFPTP

TNTP
AccuracyTotal

+++
+

=  (11) 

4.2 Evaluation Measures for the Acquisition 

Process 
In this study we wanted to evaluate the acquisition performance of 
the Active-Learner from a stream of files presented by the test set, 
containing benign and malicious executables, including new 
(unknown) and not-new files. Actually, the task here is to evaluate 
the capability of the module to acquire the new files in the test set, 
which cannot be evaluated only by the common measures 
evaluated earlier. Figure 2 illustrates the evaluation scheme 
describing the varying contents of the test set and Acquisition set 
that will be explained shortly. The datasets contain two types of 
files: Malicious (M) and Benign (B). While the Malicious region 
is presented as a bit smaller, it is actually significantly smaller. 

These datasets contain varying files partially known to the 
classifier, from the training set, and a larger portion of New (N) 
files, which are expected to be acquired by the Active Learner, 
illustrated by a circle. The active learner acquires from the stream 
part of the files, illustrated by the Acquired (A) circle. Ideally the 
Acquired circle will be identical to the New circle. 

 

Figure 2. Illustration of the evaluation scheme, including the 
Malicious (M) and Benign (B) Files, the New files to acquire (N) 
and the actual Acquired (A) files. 

To define the evaluation measures, we define the resultant regions 
in the evaluation scheme by: 

• A ∩ M \ N – The Malicious files Acquired, but not New. 

• A ∩ M ∩ N – The Malicious files Acquired and New. 

• M ∩ N \ A – The New Malicious files, but not Acquired. 

• A ∩ B \ N – The Benign files Acquired, but not New. 

• A ∩ B ∩ N – The Benign files Acquired and New. 

For the evaluation of the said scheme we used the known 
Precision and Recall measures, often used in information retrieval 
and text categorization. We first define the traditional precision 
and recall measures. Equation 12 represents the Precision, which 
is the proportion of the accurately classified examples among the 
classified examples. Equation 13 represents the Recall measure, 
which is the proportion of the classified examples from a specific 
class in the entire class examples. 

{ } { }
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As we will elaborate later, the acquisition evaluation set will 
contain both malicious and benign files, partially new (were not in 
the training set) and partially not-new (appeared in the training 
set), and thus unknown to the classifier. To evaluate the selective 
method we define here the precision and recall measures in the 
context of our problem. Corresponding to the evaluation scheme 
presented in Figure 2, the precision_new_benign is defined in 
Equation 14 by the proportion among the new benign files which 
were acquired and the acquired benign files. Similarly the 
precision_new_malicious is defined in Equation 15. The 
recall_new_benign is defined in Equation 16 by how many new 



benign files in the stream were acquired from the entire set of new 
benign in the stream. The recall_new_malicious is defined 
similarly in Equation 17. 
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The acquired examples are important for the incremental 
improvement of the classifier; The Active Learner acquires the 
new examples which are mostly important for the improvement of 
the classifier, but not all the new examples are acquired, 
especially these which the classifier is certain on their 
classification. However, we would like to be aware of any new 
files (especially malicious) in order to examine them and add 
them to the repository. This set of files are the New and not 
Acquired (N\A), thus, we would like to measure the accuracy of 
the classification of these files to make sure that the classifier 
classified them correctly. This is done using the Accuracy 
measure as presented in Equation 11 on the subset defined by 
(N\A), where for example |TP (N \ A)| is the number of malicious 
executables that were labeled correctly as malicious, out of the 
un-acquired new examples. In addition we measured the 
classification accuracy of the classifier in classifying examples 
which were not new and not acquired. Thus, using again the 

Accuracy measure (Equation 11) for the ¬(N∪ A) defines our 
evaluation measure.  

5. Experiments and Results 

5.1 Experiment 1 
To determine the best settings of the file representation and the 
feature selection we performed a wide and comprehensive set of 
evaluation runs, including all the combinations of the optional 
settings for each of the aspects, amounting to 1536 runs in a 5-
fold cross validation format for all the three kernels. Note that the 
files in the test-set were not in the training-set presenting 
unknown files to the classifier. 

Global Feature Selection vs n-grams. Figure 3 presents the mean 
accuracy of the combinations of the term representations and n-
grams. The top 5,500 features outperformed with the TF 
representation and the 5-gram in general. The out-performing of 
the TF has meaningful computational advantages, on which we 
will elaborate in the Discussion. In general, mostly the 5-grams 
outperformed the others. 

 

Figure 3. The results of the global selection, term representation, 
and n-grams, in which the Top 5500 global selection having the 
TF representation is outperforming, especially with 5-grams. 

Feature Selections and Top Selections. Figure 4 presents the 
mean accuracy of the three feature selection methods and the 
seven top selections. For fewer features, the FS outperforms, 
while above the Top 300 there was not much difference. 
However, in general the FS outperformed the other methods. For 
all the three feature selection methods there is a decrease in the 
accuracy when using above Top 1000 features.  

 

Figure 4. The accuracy increased as more features were used, 
while in general the FS outperformed the other measures. 

Classifiers. After determining the best configuration of 5-Grams, 
Global top 5500, TF representation, Fischer score, and Top300, 
we present in Table 1 the results of each SVM kernel. The RBF 
kernel out-performed the others and had a low false positive rate, 
while the other kernels also perform very well. 



Table 1. The RBF kernel outperformed while maintaining a low 
level of false positive.  

Classifier Accuracy FP FN 

SVM-LIN 0.921 0.033 0.214 

SVM-POL 0.852 0.014 0.544 

SVM-RBF 0.939 0.029 0.154 

5.2 Experiment 2: Files Acquisition 
In the second experiment we used the optimal settings from 
experiment 1, applying only the RBF kernel which outperformed 
(Table 1). In this set of experiments, we set an imbalanced 
representation of malicious-benign proportions in the test-set to 
reflect real life conditions of 10% malicious files in the stream, 
based on the information provided in the Introduction. In a 
previous study [13] we found that the optimal proportions in such 
scenario are similar settings in the training set. The Dataset 
includes 25000 executables (22,500 benign, 2500 malicious), 
having 10% malicious and: 90% benign contents as in real life 
conditions. 

The evaluation test collection included several components: 
Training-Set, Acquisition-Set (Stream), and Test-set. The 
Acquisition-set consisted of benign and malicious examples, 
including known executables (that appeared in the training set) 
and unknown executables (which did not appear in the training 
set) and the Test-set included the entire Data-set. 

These sets were used in the following steps of the experiment:  

1.  A Learner is trained on the Training-Set. 
2. The model is tested on the Test-Set to measure the initial 

accuracy. 
3.  A stream of files is introduced to the Active Learner, which 

asks selectively for labeling of specific files, which are 
acquired. 

4.  After acquiring all the new informative examples, the Learner 
is trained on the new Training-Set. 
5.  The Learner is tested on the Test-Set. 
 
We applied the learners in each step using 2 different variation of 
cross validation for each AL method. For the Simple-Margin we 
used variation of 10-fold cross validation. Thus, the Acquisition 
Set (stream) contained part of the folds in the Training Set and the 
Test Set, which was used for evaluation prior to the Acquisition 
phase and after, contained all the folds. 

5.2.1 Simple-Margin AL method 
We applied the Simple Margin Active Learner in the experimental 
setup presented earlier. Table 2 presents the mean results of the 
cross validation experiment. Both the Benign and the Malicious 
Precision were very high, above 99%, which means that most of 
the acquired files were indeed new. The Recall measures were 
quite low, especially the Benign Recall. This can be explained by 
the need of the Active Learner to improve the accuracy. An 
interesting fact is the difference in the Recall of the Malicious and 
the Benign, which can be explained by the varying proportions in 
the training set, which was 10% malicious. 

The classification accuracy of the new examples that were not 
acquired was very high as well, being close to 99%, which was 
also the classification accuracy of the not new, which was 100%. 
However, the improvement between the Initial and Final accuracy 
was significant, which shows the importance and the efficiency in 
the acquisition process. 

Table 2: The Simple-Margin acquisition performance. 

Measure 
Simple Margin 

Performance 

Precision Benign 99.81% 

Precision Malicious 99.22% 

Recall Benign 33.63% 

Recall Malicious 82.82% 

)\( ANAccuracy
 98.90% 

 A)(N∪¬Accuracy
 100% 

Initial  Accuracy on Test-Set 86.63% 

Final Accuracy on Test-Set 92.13% 

Number Examples in Stream 10250 

Number of New Examples 7750 

Number Examples Acquired 2931 

5.2.2 Error-Reduction AL method 
We performed the experiment using the Error Reduction method. 
Table 3 presents the mean results of the cross validation 
experiment. In the acquisition phase, the Benign Precision was 
high, while the Malicious Precision was relatively low, which 
means that almost 30% of the examples that were acquired were 
not actually new. The Recall measures were similar to those for 
the Simple-Margin, in which the Benign Recall was significantly 
lower than the Malicious Recall. The classification accuracy of 
the not acquired files was high both for the new and for the not 
new examples. 

Table 3: The Error-reduction acquisition performance. 

Measure 

Error Reduction 

Performance 

Precision Benign 97.563% 

Precision Malicious 72.617% 

Recall Benign 29.050% 

Recall Malicious 75.676% 

)\( ANAccuracy
 98.316% 

 A)(N∪¬Accuracy
 100% 

Initial  Accuracy on Test-Set 85.803% 

Final Accuracy on Test-Set 89.045% 

Number Examples in Stream 3010 

Number of New Examples 2016 

Number Examples Acquired 761 



6. Discussion and Conclusions 
We introduced the task of efficient acquisition of unknown 
malicious files in a stream of executable files. We proposed using 
Active Learning as a selective method for the acquisition of the 
most important files in the stream to improve the classifier's 
performance. This approach can be applied at a network 
communication node (router) at a network service provider to 
increase the probability of acquiring new malicious files. A 
methodology for the representation of malicious and benign 
executables for the task of unknown malicious code detection was 
presented, adopting ideas from Text Categorization. 

In the first experiment, we found that the TFIDF representation 
has no added value over the TF, which is not the case in IR. This 
is very important, since using the TFIDF representation introduces 
some computational challenges in the maintenance of the 
measurements whenever the collection is updated. To reduce the 
number of n-gram features, which ranges from millions to 
billions, we used the DF threshold. We examined the concept of 
stop-words in IR in our domain and found that the top features 
have to be taken (e.g., top 5500 in our case), and not those of an 
intermediate level. Having the top features enables vectors which 
are less zeroed, since the selected features appear in most of the 
files. The Fisher Score feature selection outperformed the other 
methods, and using the top 300 features resulted in the best 
performance. 

 In the second experiment, we evaluated the proposed method of 
applying Active Learning for the acquisition of new malicious 
files. We examined two AL methods, Simple Margin and Error 
Reduction, and evaluated them rigorously using cross validation. 
The evaluation consisted of three main phases: training on the 
initial Training-set and testing on a Test-set, acquisition phase on 
a dataset including known files (which were presented in the 
training set) and new files, and eventually evaluating the classifier 
after the acquisition on the Test-set to demonstrate the 
improvement in the classifier performance. For the acquisition 
phase evaluation we presented a set of measures based on the 
Precision and Recall measures dedicated for the said task, which 
refer to each portion of the dataset, the acquired benign and 
malicious, separately. For the not acquired files we evaluated the 
performance of the classifier in classifying them accurately to 
justify that indeed they did not need to be acquired. 

In general, both methods performed very well, with the Simple 
Margin performing better than the Error Reduction. In the 
acquisition phase, the benign and malicious Precision was often 
very high; however, the malicious Precision for the Error 
Reduction was relatively low. The benign and malicious Recalls 
were relatively low and reflected the classifier's needs. An 
interesting phenomenon was that a significantly higher percentage 
of new malicious files, relatively to the benign files, were 
acquired. This can be explained by the imbalanced proportions of 
the malicious-benign files in the initial training set. The 
classification accuracy of the not acquired files, unknown and 
known, was extremely high in both experimental methods. 

The evaluation of the classifier before the acquisition (initial 
training set) and after showed an improvement in accuracy which 
justifies the process. However, the relatively low accuracy, unlike 
in the first experiment, can be explained by the small training set 
which resulted from the cross validation setup. 

When applying such a method for practical purposes we propose 
that a human first examine the malicious acquired examples. 
However, note that there might be unknown files which were not 
acquired, since the classifier didn’t consider them as informative 
enough and often had a good level of classification accuracy. 
However, these files should be acquired. In order to identify these 
files, one can apply an anti-virus on the files which were not 
acquired and were classified as malicious. The files which were 
not recognized by the anti-virus are suspected as unknown 
malicious files and should be examined and acquired.  
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