A Software Authentication System for the Prevention of Computer Viruses

Lein Harn*

Hung-Yu Lin*

Shoubao Yang**

* Computer Science Telecommunications Program
University of Missouri-Kansas City, Kansas City, MO 64110 USA
E-mail: harn@ cstp.umke.edu

** Department of Computer Science
University of Science and Technology of China, Hefei, Anhui 230026 PRC

Abstract

In the absence of systematic techniques to detect the
existence of computer viruses, preventing suspicious
software from entering the system at the initial point of
entry appears to be the best method to protect computing
resources against attacks of computer viruses. Currently,
software is distributed primarily by diskettes instead of on-
line transmission. Diskettes are more susceptible to
modification and masquerading while on-line transmission
usually follows proper user/message authentication. A
software authentication system is proposed which does not
require a mutually trusted center of both software vendors
and users, or users’ interaction with any key center. Vendors
assume responsibility by signing released software and
users verify the authenticity of received software before
using it. Through such an authentication process, users
eliminate the risk of running "unlicensed” or modified
programs, thus eliminating the possibility of virus
infections.

I. Introduction

In recent years, computer viruses have become major
threats to the computing environment. Many anti-viral
products to protect systems from infections are available on
the market. These products do help users protect their
computers from viral attacks to some extent by either
monitoring running programs or by identifying certain
patterns in infected programs.

However, a satisfactory solution to prevent virus attack
has not yet been reached. Formal secure models (1, 2, 3]
may help to reduce the possibility of a virus infection by
logically isolating or limiting access to computing
resources. However these methods are usually too
complicated and expensive to implement. Also, they
unnecessarily limit the sharing of computing resources.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific parmission.

© 1992 ACM 089791-472-4/92/0002/0447 $1.50

447

Currently, the prevention of virus infection relies on
the users' experiences. Vendors are not taking active roles in
preventing their released programs from virus infections.
Without vendor involvement, virus problem cannot be
solved in any acceptable manner.

In this paper, we will review three different anti-viral
approaches and their associated problems. Then, a software
authentication system, which requires a software vendor to
sign his released programs and provides users an easy way
to verify the authenticity of the programs, is proposed
along with the discussion of several practical
considerations.

II. Review of Anti-viral Approaches

Recently, three different anti-viral approaches are well
discussed in literatures. Here we review each of them
together with their associated problems.

1. Pattern-matching

This is the most straightforward method and widely
used in many commercial anti-viral products. It searches for
code sequences (virus signatures, which may be those used
by the virus itself to avoid reinfection) that are known to
exist in programs infected by a specific strain of virus.
Once a code pattern is matched, a certain virus is detected.
However, it cannot detect any new/unknown virus.
Whenever there is a new virus, the anti-viral products also
need to be upgraded. Such upgrades result in the increase of
program size and the downgrade of its performance. When
the number of viruses increases beyond some point, this
approach will become impractical.

2. Software integrity-checking

Based on the fact that detecting a virus (especially an
unknown one) is difficult [4], and a program will always be
modified after being infected by a virus, software integrity
checks {(more specifically, the checksum method [5]) turns
out to be a promising and cost-effective approach in
detecting potential virus.

The checksum algorithm is carried out by executing a
checksum generator utility over the program resulting in a
checksum value which is then stored along with the
program for later reference. Any change in program content
will be reflected in a change of the checksum value
regenerated later. By comparing this regenerated checksum
value with the pre-stored one, we can detect any
modification of the program. However, one implicit but
dangerous assumption has been made in the realization of
this method. It assumes that all counterparts -- original
program, checksum value and the checksum utility itself --
are virus-free. This dangerous assumption usually comes
from our common belief that software purchased from well
known vendors is trustworthy. Is this common belief
justified?

Consider the case of software counterfeiting, where one
sells a fake program claimed to be the one from a famous
vendor with its checksum value computed according to the
publicly known checksum generating algorithm of the
vendor. The user will falsely believe that this program is
“clean” after checksum verification, even when this fake
program contains a Trojan horse or is already virus-infected.
Another possible situation is that the virus-infected
program is indeed written by a malicious employee of the
vendor who carelessly distributes it. How can one make a
clear distinction between these two cases, and who should
be responsible for the damages caused to the user?
Unfortunately, most solutions in this approach cannot
answer this question because the released software contains
insufficient information for the user to verify the
authenticity of the software. Without proper authentication
one can never be sure that a received program is indeed from
the original licensed vendor and therefore it has no way to
resolve the dispute, if any, between a software vendor and a
user,

3. Software authentication

In order to overcome the problems associated with the
previous approach, the software authentication method
requires software vendors to sign their released programs and
users to accept only genuine programs by verifying the
signatures of received software.

Although a public-key cryptosystem can provide digital
signatures for the released software of vendors, its
implementation is not so simple and straightforward as
mentioned in a recent paper [6]. In that paper, a method was
also proposed to realize software authentication in which it
assumes the existence of a mutually trusted center of both
software vendors and users. This assumption is hardly
acceptable when there are many participants in a large
commercial group [7].

Besides, if a mutually trusted center does exist, any
software vendor needs to go through a registration process
of this center to become a "licensed” vendor. In order to
preserve the overall security, this mutually trusted center
should be completely destroyed after issuing all secret keys

AARO

to software vendors. Thus, any new software vendor cannot
be registered after the center is destroyed. This situation is
also totally unacceptable. Vendors are established on an
almost daily basis. Therefore, this center can never be
destroyed, and it leads to the risk that once the registration
center is compromised, one can pretend to be a licensed
software vendor to distribute virus-infected programs or
Trojan horse. Under this situation, should software vendors
be responsible for the damages caused by these programs?
Thus, no vendor wants to risk their reputation by "trusting”
someone who cannot be really trusted.

II1. The Proposed Software Authentication
System

In order to alleviate the worry of software vendors, the
software authentication system should allow vendors to
sign programs with their own secret keys. In order to make
the verification of an acquired program as convenient as
possible, the verification process should be performed
locally by the user only without interacting with any
registration or key center. With these considerations in
mind, a software authentication system is proposed here.

1. System Components

In this system, there are four major components:
software vendors who sell software.

users who import software from software vendors.

the secret-generating machine(SGM) which generates
one pair of public and secret keys and breaks the secret
key up into pieces to be held by several certification
centers,

certification centers(CC's) which are accredited
organizations selected by the users and each provides a
partial certificate for the signature system of a vendor.

oe

The SGM and the certification centers do not have to
be trusted by vendors and the SGM can be destroyed after
distributing secret keys to certification centers.

2. System Initialization
a. Based on RSA cryptosystem [8], the SGM generates a
small public key e, the corresponding secret key d, and
the modulus n. Then it breaks d up into t shadows, dj,
j=1tot, such that

dy+dy+.+d;=d
and distributes d; to certification center CC; secretly.
The SGM publishes e and n, and is then destroyed.

Each vendor i chooses a signature system and a pair of
public and secret keys (a;, b;), and then has his {ID;, S,
a;} registered with the proper authorities. ID;, S and a;
are the identification, signature function and public key
of vendor i, respectively. The registered information
will serve for the purpose of jurisdiction to resolve
disputes, if any, between vendors and users. For
convenience, we will say a vendor is licensed if he has

done this registration, otherwise, the vendor is
unlicensed.

The vendor also sends {ID;, S, a;} to certification

centers for certificating. After verifying that vendor i is
licensed, each certification center will return back a
partial certificate

¢j= <ID; IS 1 2>% modn

to vendor i, where |l denotes concatenation and < > is
used as an integer value derived from the ASCII string.
Now vendor i can compress all the partial certificates
and results in a single certificate of his signature
system, cert;, by computing

d

certj =cp*co*....%c, = <ID; I S Il a;>™ mod n.

Note that such certificate can be easily verified by
using the public key e.

3. Distribution of software

Now if a program P is to be released by vendor i, it
will consist of four parts:

{IDy, P, signj(P), cert;},
with
signj(P) = Sbi(h(P))

where sign;(P) is vendor i's signature of P, Sbi is the

signature function S using vendor i's secret key by, and h is

a publicly known one-way hash function, which maps
programs to a smaller domain to speed up signature
generation and verification.

4. Authentication of software

When a user acquires (IDj, P, sign;'(P"), cert;} from
vendor i, he can derive vendor i's identification, signature
function identifier, and public key through the system's
public key e by computing

<ID; S lhap> = certie mod n.

If the result does not contain ID; and a meaningful signature

function identifier, the program P’ should be discarded. If it
does, the user will obtain the signature function, S, and the
correct public key of vendor i, a;. This process is called

key certification. If cert; passes this process, the user can
continue to compute the hash value of P', h(P') and verify
the signature sign;'(P"). If sign;'(P") has been verified (i.e.
h(P)=83;(sign;'(P"))), program P" is indeed from vendor i
without being modified. Otherwise, either P’ or sign;(P™)

has been modified. Again, this process is called signature
verification.

449

IV, Discussion

We would like to discuss this software authentication
method from three different aspects.

1. Security

From the properties of public-key cryptosystems, only
the vendor himself can either generate the signature or
modify a program without being detected. Therefore, no one
else can forge a licensed vendor's program and no vendor can
evade the responsibility for his released programs.

~

From a vendor's viewpoint, he trusts his own signature
system and nothing else. In other words, a licensed vendor
does not have to be responsible for programs which are not
released by himself, even when all of the certification
centers are compromised, since one can never pretend to be
a licensed vendor to sign programs without knowing the
secret key bj, which is only known to the vendor.

Although an unlicensed vendor may create a consistent
pair of P* and signy'(P") with a chosen signature system and
related public and secret keys, he still cannot pass the key
certification process because he won't get the proper
certificates from certification centers. By employing
multiple certification centers instead of only one, it is
impossible for any unlicensed vendor to generate a valid
certificate, even when only one certification center remains
confidential and the other t-1 ones are compromised. From
the user's viewpoint, the system is secure unless all of the
certification centers are compromised.

Even though all certification centers could be
compromised, nevertheless, users can still choose a new set
of certification centers with newly generated shadows of the
system's secret key d before such disaster really happens.
This work can be done by constructing a simple circuit
which accepts old dj's from each certification center and
outputs a new set of shadows to the newly chosen
certification centers.

2. Flexibility

By separating key certification and signature
verification in the authentication process, software vendors
can change their signature systems for security
considerations without introducing any change in current
key certification process. The only thing vendors need to do
is to get new certificates from the certification centers.

For the same reason, users can choose another set of
certification centers if necessary without changing the
vendors' current certificates as mentioned in the above
subsection.

3. Performance

In this proposed system, software authentication
consists of two processes: key certification and signature

verification. No third party is involved in these two
processes and the interaction with certification centers
happens only when the certificate is requested by a new
vendor.

For any vendor, before releasing any program, all he
needs to do is to sign this program without having to
recompute his certificate. For users, the time required for
the key certification will not be long because the system’s
public key can be made as small as possible (e.g. e=3).
Again, if vendors' own signature systems are RSA-based,
their public keys can also be made as small as possible to
reduce the time required for signature verification. Therefore,
the authentication of software in this system is quite
efficient. In fact, software authentication is required only
when a new software is acquired from foreign sources, so
the speed of verification will not become a critical issue.

V. Conclusion

A software authentication system is proposed in this
paper, in which users can verify the signatures of a program
when first acquired from a software vendor. Through such
authentication, suspicious programs can be filtered out and
the risk of virus infections can be reduced. For software
vendors, this system is secure because they can choose their
own signature schemes and keys without having to trust
any third party. For users, this system is secure, since one
can be deceived with programs distributed by unlicensed
vendors unless all certification centers are compromised.
For both software vendors and users, this system is
acceptable because it provides a mechanism to resolve
disputes, if any, between the two parties.

References
[1] D.E. Bell and L.J. LaPadula, Secure Computer
System:Unified Exposition and Multics Interpretation,
MITRE Tech. Report MTR- 2997, Miue Corp.,
Bedford, Mass., March, 1976.

K. J. Biba, Integrity Consideration for Secure
Computer System, MITRE Tech. Report, MTR-
3153, June, 1975.

D. D. Clark and C. T. Wilson, A Comparison of
Commercial and Military Computer Security Policies,
Proc. 1987, IEEE Symp. Security and Privacy,
Oakland, CA, April, 1987, pp. 184-194,

Fred Cohen, Computer Viruses: Theory and
Experiments, IFIP-TC11 Computers and Security,
Vol 6, No. 1, 1987, pp. 23-35.

Y J. Huang and F. Cohen, Some Weak Points on One
Fast Cryptographic Checksum Algorithm and its
Improvement, IFIP TC-11 Computers and Security,
Vol. 8, No. 1, 1989.

E. Okamoto and H. Masumoto, ID-based
Authentication System for Computer Virus Detection,
Electronics Letters, Vol. 26, No.15, July, 1990, pp.
1169-1170.

1. Ingemarsson and G. J. Simmons, A protocol to set
up shared secret schemes without the assistance of a

(2

(3]

(4]

&)

(6]

7

(8]

mutually trusted party, Proc. of Eurocrypt ‘90, May
21-24, 1990.

R.L. Rivest, A. Shamir, and L. Addleman, A Method
for Obtaining Digital Signatures and Public Key
Cryptosystem, Communication of ACM, Vol. 21,
No. 2, Feb. 1978, pp. 120-126.

