
J Comput Virol
DOI 10.1007/s11416-006-0010-4

ORIGINAL PAPER

A parallel “String Matching Engine” for use in high speed network
intrusion detection systems

Gerald Tripp

Received: 13 January 2006 / Accepted: 27 March 2006
© Springer-Verlag France 2006

Abstract This paper describes a finite state machine
approach to string matching for an intrusion detection
system. To obtain high performance, we typically need
to be able to operate on input data that is several bytes
wide. However, finite state machine designs become
more complex when operating on large input data words,
partly because of needing to match the starts and ends
of a string that may occur part way through an input
data word. Here we use finite state machines that each
operate on only a single byte wide data input. We then
provide a separate finite state machine for each byte
wide data path from a multi-byte wide input data word.
By splitting the search strings into multiple interleaved
substrings and by combining the outputs from the indi-
vidual finite state machines in an appropriate way we
can perform string matching in parallel across multiple
finite state machines. A hardware design for a paral-
lel string matching engine has been generated, built for
implementation in a Xilinx Field Programmable Gate
Array and tested by simulation. The design is capable
of operating at a search rate of 4.7 Gbps with a 32-bit
input word size.

1 Introduction

Network intrusion detection consists of monitoring com-
puter networks for various types of security attack. This
can be network wide monitoring (network based) or it
can be at each individual host computer in the system

G. Tripp (B)
The Computing Laboratory, University of Kent,
Canterbury, Kent, CT2 7NF, UK
e-mail: G.E.W.Tripp@kent.ac.uk

(host based). Basic network security is provided by net-
work firewalls, which act as an intermediary between the
Internet and a local network — these filter network traf-
fic on the basis of header fields in the packets such as the
source and destination IP address and TCP port num-
bers. This type of filtering is good at blocking a large pro-
portion of unwanted incoming traffic. However, some
network attacks may be targeted at machines such as
web and mail servers that need to be visible through the
firewall. In this case, it may be necessary to look inside
each incoming data packet to determine whether it rep-
resents a potential threat. We may then wish to block
that traffic (intrusion prevention) or be able to gener-
ate an alert that potentially malicious traffic is present
(intrusion detection). The problem is that we may have
no particular field to examine inside the packet, and
may need to search the entire packet. This is the stan-
dard technique that we use for intrusion detection: we
first look at the header fields of the packet to see if the
packet is potentially of interest and if so we then search
the content of the packet for one or more related intru-
sion detection “signatures”. These signatures are short
search strings which are chosen as representing a high
probability of an attack occurring when present, whilst
having a low probability of occurring otherwise.

A lot of current intrusion detection systems are soft-
ware based, the most well known example probably
being Snort [17]. Software solutions can however have
problems when presented with a high network load. One
solution can be to use host based intrusion detection and
to require each computer to perform its own intrusion
detection. This however can be targeted by denial of
service attacks to put the intrusion detection software
on individual machines under heavy load. Host based
solutions are also only possible if we are able to add

G. Tripp

intrusion detection software to each host system, and
this may not be the case with some embedded systems.

1.1 Summary of this paper

This paper looks at the string matching part of intru-
sion detection and describes how it is possible to build a
“string matching engine” for implementation in a field
programmable gate array (FPGA) that uses fine grained
parallelism to improve its search rate. The method used
is to operate on a multi byte input data word and to
partition the matching operation between a set of finite
state machines (FSMs), each of which processes one of
the byte streams from a multi-byte wide network input
and looks for parts of the search string. The results from
these multiple FSMs are then combined in a particu-
lar way so as to determine whether a string has been
matched across all the FSMs.

The next section describes the background and out-
lines some of the related work in this field. The follow-
ing section describes the operation of the parallel string
matching system proposed in this paper. The FSM imple-
mentation section gives details of an existing scheme for
compact FSM implementation and an explanation of our
modifications to this scheme. The software section gives
the results of processing multiple search strings and the
resource requirements for various string set sizes and
implementation options. The next section gives details
of a hardware design for a string matching engine and
its performance and resource requirements. The final
section gives conclusions and ideas for further work.

2 Background and related work

A lot of existing intrusion detection systems are soft-
ware based, the most well known example probably be-
ing Snort [17]. Many improvements have been made to
Snort by optimising the order in which data is compared.
Work by Kruegel and Toth [13] uses rule clustering and
is implemented as a modified snort rule engine. This
uses decision trees to reduce the number of compari-
sons made against incoming network data and uses a
multiple string matching algorithm based on the work
by Fisk and Varghese [8].

A paper by Abbes et al. [1] describes a system using a
decision tree in conjunction with protocol analysis. The
protocol analysis uses a specification file for the proto-
col being monitored and performs “Aho–Corasick” [2]
string matching on only the appropriate parts of the data
stream. This technique reduces the overall workload and
also reduces the number of false positives as compared

with performing matching on the entire data packet or
using simple offset and depth constraints.

Work by Paul [16] looks at distributed firewalls and
implements stateful packet classification spread across
consecutive firewalls. This helps to spread the workload
between separate machines.

It can be difficult to perform intrusion detection in
software at high network traffic rates and hardware solu-
tions may be required. Software solutions being essen-
tially sequential also suffer from performance problems
as we increase the number of rules; [6] state that a soft-
ware system with 500 rules may have difficulty in sustain-
ing a throughput of 100 Mbps. Hardware solutions have
different limitations; we can often increase the number
of rules without affecting throughput because of the use
of parallelism — the cost of increasing the number of
rules may be an increase in hardware resource utilisa-
tion instead.

2.1 Overview of existing solutions

A number of hardware based string matching systems
for intrusion detection have been described in the lit-
erature; an overview of some of the techniques is given
below.

A product called ClassiPi from PMC-Sierra is de-
scribed by Iyer, et al. [11], this is a classification engine
and implemented as an application specific integrated
circuit (ASIC). This device allows software-like algo-
rithms to be used for various packet classification and
packet inspection operations, including the use of regu-
lar expressions to search the contents of packets.

Work by Attig and Lockwood [3] uses Bloom filters to
perform string searching. Bloom filters provide an effi-
cient method to perform searching for a large number
of strings in parallel, but suffer from the disadvantage of
producing false positive matches. Attig and Lockwood
show that Bloom filters can be used as a very efficient
front end to remove the bulk of the network traffic that
is known to be benign before input into a conventional
software intrusion detection system.

Cho et al. [6] describe a system that uses multiple
matching systems, each of which will search incoming
network data for a set of distinct string “prefixes”. For
each possible string prefix, their system will lookup the
remaining part of the string that must be compared
sequentially against the incoming data to determine
whether that string is actually present. Multiple strings
with identical prefixes need to be distributed between
different matching systems.

An interesting approach is taken by Baker and Pra-
sanna [4], who have a series of input comparators for
each data byte of interest — the output of these compar-

High speed network intrusion detection systems

ators each feed into a pipeline of flip-flops. Strings can
be identified by the use of an AND function that looks
for all the required data bytes for a string in the appro-
priate positions within the pipeline. They show that this
can be extended to operate with multi-byte input data
by the use of multiple sets of pipelines and looking for
strings across the set of pipelines at all byte alignments.

2.2 Finite state machine approaches

A number of systems have been designed that use FSM
to perform the searching — most of these use a deter-
ministic finite automata (DFA) to implement string match-
ing. This type of FSM has sets of states, inputs and out-
puts; the FSM can be in one of its states and there is a
mapping between each pair of current state and input to
the next state and output. When used in string matching,
we use the FSM state to define how much of a string we
have matched so far.

The approaches taken by Sugawara et al. [19] and
by Tripp [21] is to first compress multi-byte input data
into a number of different patterns that are of interest
and then to use DFAs to perform string matching sev-
eral bytes at a time. Moscola et al. [15] convert regular
expressions into DFA that operate one byte at a time
and show that this can be used to perform matching for
standard spam-assassin rules without creating too many
DFA states.

A different approach is taken by Franklin et al. [9],
who implement non-deterministic finite automata (NFA)
in hardware to perform matching of strings from the
Snort rule set, this approach first being proposed by Sid-
hu and Prasanna [18]. This was extended by Clark and
Schimmel [7] to operate with multi byte input data.

The text by Hopcroft et al. [10] gives a comprehensive
coverage of Deterministic and Non-deterministic Finite
Automata.

2.3 String matching algorithms

There are many string matching algorithms described
in the literature, most of which were originally devised
for software implementation. A hardware implementa-
tion has slightly different requirements than that for a
software implementation and may well need to be less
complex. For efficiency it is more common to build sys-
tems that work on a stream of data, rather than provid-
ing random access to the contents of a buffer; ideally we
would like the string matching to operate at a determin-
istic rate to avoid the need for buffering.

The fastest method of matching strings is considered
to be the Boyer–Moore algorithm [5] and its successors.
This performs string matching on a “right to left” basis

and skips forward on a mismatch. This gives an average
performance that is usually sub-linear, but a worst case
performance that may require us to look at some input
bytes many times.

The “Knuth Morris Pratt” (KMP) algorithm [12], per-
forms matching on a left to right basis and on mismatch
will use the longest partial match as a starting point for
further matching. The algorithm can be adapted to oper-
ate at deterministic data rate and not re-examine input
data on a mismatch.

The Aho–Corasick algorithm [2] matches several strings
at the same time. This works by constructing a trie con-
taining the various strings and this is traversed as the
data arrives. As with KMP, this can also be modified to
operate at a deterministic rate only looking at each input
data item once.

Both KMP and Aho–Corasick can be implemented
by creating a FSM that operates at one input data item
per clock cycle and are therefore ideal for hardware
implementation. A common method of implementa-
tion for both these algorithms uses a maximum FSM
size of an initial state and one state per search charac-
ter (in one or all strings). When using Aho–Corasick,
we would have fewer states when common prefixes of
search strings enable us to share a FSM state. The state
transition information in both cases will vary in com-
plexity determined by whether on mismatch of a partly
matched string there exists a suffix of the data matched
that forms a smaller partial match of that string (or an-
other).

3 Parallel string matching

From the work presented by Sugawara et al. [19] and
Tripp [21], we can see that high performance can be
obtained by creating a FSM that will match multiple
bytes in the same clock cycle. However this has the over-
head of compressing the input data so as to present a
small input word to the FSM. A second issue is that the
start and ends of strings have a high chance of appearing
part way through an input data word, so we may need
to match parts of the start and end of a string with “wild
card” characters.

It is far easier to match data from an 8-bit input
bus, but this does not give such good throughput. The
solution proposed here is to use multiple finite state
machines in parallel to process the input data. Course
grained parallel FSM solutions have already been imple-
mented, such as the work described by Moscola et al.
[15], where input packets are allocated to a number of
content scanners on a round robin basis. We propose a

G. Tripp

Fig. 1 Matching interleaved
substrings

M(w)

8w-bit input
data word

8w Finite State
Machine - n

Finite State
Machine - n

Finite State
Machine n

Finite State
Machine - n

8

8

8

8

w

w

w

w

w 8-bit busses w Finite State Machines, each
searching for w substrings

w2-bit combine
operation

Fig. 2 Interleaved substrings Word size = 4

Search string = “the-cat-sat-on-the-mat”

Substring 0 = “ e t t - - ” = “ett--”

Substring 1 = “ - - - t m ” = “---tm”

Substring 2 = “t c s o h a ” = “tcsoha”

Substring 3 = “ h a a n e t” = “haanet”

 (The substrings are sorted by the order of completion, the reason for which will be explained
below.)

fine-grained from of parallelism, where multiple finite
state machines process each packet in parallel.

3.1 Parallel finite state machines

The approach we take here is to provide a finite state
machine for each byte stream from a multi-byte input
data word. If we have a w-byte wide input word, then we
can use w separate finite state machines, each of which
are looking for all w instances of the “substrings” made
up from a w-way interleave from the search string. An
example of such a system is shown in Fig. 1. A related,
but different, approach is taken by Tan and Sherwood,
[20] who use multiple FSMs running in parallel to match
a sequence of bits, with each FSM matching a particular
bit position from the input data.

All w instances of our FSM are identical, and each
will be looking for all w substrings. Each FSM has a
w-bit Boolean “match vector” output to specify the sub-
strings matched in any clock cycle. If we find all w sub-
strings appearing in an appropriate order across all w
finite state machines at the correct time, then we will
have found our search string. We can see an example of
a set of substrings of a given search string when w = 4
in Fig. 2.

3.2 Combining the output of multiple FSMs

By sorting our substrings on the basis of the order of
completion of the match, we have a sequence in byte
terms of w consecutive substring matches. However, we
are processing our data on the basis of a w-byte input

word. The string may be aligned in one of w different
ways, with the last w bytes occurring in one or two input
data words — the occurrence of each of the last w bytes
of the search string relate to the instant when each of
the related substring matches will occur. We define here
an alignment of c as meaning that of the last w bytes of
the search string, c of these will occur in one input word,
followed by(w − c) in the following input word, where
0 ≤ c < w.

Byte stream x is being monitored by finite state ma-
chine x. Each of the finite state machines is searching
for all w substrings, and has a Boolean “match” output
for each substring y. Thus we have a group of w2 FSM
outputs: Ox y where 0 ≤ x < w and 0 ≤ y < w, relating
to whether FSM x has detected substring y in the cur-
rent clock cycle. We are also interested in whether string
matches occurred in the previous clock cycle, and O′

x y
is a delayed (pipelined) copy of Ox y from the previous
clock cycle.

Taking the case where w = 4 and c = 1 for the string
in Fig. 2, we have the alignment shown in Table 1.

Table 1 String match at alignment c = 1 (*S indicates when a
match occurs for substring S)

Input byte Input word

n−5 n−4 n−3 n−2 n−1 n

0 – – – t m *1
1 t c s o h a *2
2 h a a n e t *3
3 e t t – – *0

High speed network intrusion detection systems

We define Mc(w) as being a Boolean operation speci-
fying whether a match occurs at alignment c, in a system
with a word size w. In our example above, we have c = 1
and w = 4; we can see from Table 1, that M1(4) is as
shown in (1).

M1(4) = O′
3 0 . O0 1 . O1 2 . O2 3. (1)

This follows a very simple pattern, and we can pro-
duce a general formula for Mc(w). Our complete string
match is then defined as M(w) which determines whether
the match occurs at any of the w possible alignments.
This is shown in (2)1.

Mc(w) =
w−1∧

i=0

if(i ≥ c) then (O(i−c) i) else (O′
(i+w−c) i),

M(w) =
w−1∨

c=0

Mc(w) (2)

=
w−1∨

c=0

⎛

⎝
w−1∧

i=0

if(i ≥ c) then (O(i−c) i) else (O′
(i+w−c) i)

⎞

⎠ .

The combine operation M(w) is independent of the
search string and can be implemented as a fixed logic

function for a given value of w. We also need
w−1∑
x=1

x D-

type flip-flops to generate the delayed versions of some
of the inputs. As an example, the combine operation
required for a system with a word size of 4 bytes is
shown in (3).

M(4) = O0 0 . O1 1 . O2 2. O3 3 + O′
3 0 . O0 1 . O1 2 . O2 3

+O′
2 0 . O′

3 1 . O0 2 . O1 3+O′
1 0 . O′

2 1 . O′
3 2 . O0 3.

(3)

This requires four 4-input and gates, one 4-input or
gate and six D-type flip-flops.

3.3 Summary

In terms of overall complexity, the move from a standard
byte-wide Aho–Corasick multi-string matching system
to the technique described here requires us to replace a
single FSM with w instances of a new FSM for matching
sub-strings and one instance of the combine operation
described above. The new FSM will have a similar num-
ber of states to the original, but will require a factor
of w increase in the number of match outputs. Actual

1 Note that in (2), we use the signs
∨

(respectively
∧

) to repre-
sent the Boolean “inclusive-or summation” (respectively the “and
product”).

resource utilisation will depend on many parameters re-
lating to the FSM implementation, as will be shown later.
The resources required for the combine operation are
trivial for small values of w — but will grow rapidly in
size with w as it implements a w2 input Boolean function.

4 FSM implementation

Each FSM has to be able to match multiple strings, and
this can be done using the Aho–Corasick multiple string
matching algorithm. As we are using a multiple string
matching algorithm, then this can actually be used to
perform substring matching for multiple search strings.
There are many ways in which we can implement the
FSM; the method chosen here is to use a table to hold
the state transition information and then store the cur-
rent state in a register. This approach has the advantage
that we can have a fixed core of logic and memory for any
FSM (up to a certain size) and then determine the oper-
ation performed by the FSM by specifying the contents
of the FSM table. The FSM table can be implemented
as a two dimensional array, with the current state and
the input as the two index values — as shown in Fig. 3.
Each element in the array specifies the next state of the
FSM and any output. The FSM in Figure 3 is actually a
“Mealy Machine”, as it allows the output from the FSM
to be dependent on both the state and the input data.
The alternative is to use a “Moore machine” as shown in
Fig. 4. The Moore machine has an output that is depen-
dent only on the current state and not the input value —
this may be simpler in terms of table based implementa-
tion as the main FSM table only contains the next state
and we only need a one-dimensional state decoder table
for the output.

In terms of string matching, the disadvantage of the
Moore machine is that we often need more states than
for a Mealy machine as we need to have one or more
“Terminal states” that the machine can pass through
to indicate successful matches. The Moore machine can
however be quite good for implementing Aho–Corasick

Input data

FSM table

Match output

output

Next

state

Next state state

register

Current state

Fig. 3 Table based implementation of a “Mealy Machine”

G. Tripp

Fig. 4 Table based
implementation of a “Moore
Machine”

Input

State transition table

OutputNext state state
register

Current state

State decoder table

string matching as we potentially require a large number
of “match” outputs. The state decoder table can often
be replaced by a logic function, but we need to be aware
that strings can be identified as matching in more than
one state, for example where one string forms part of an-
other — so this may require us to vary the logic function
dependent on the search strings used.

4.1 Memory resources

A problem with a simple table based approach is that
this can easily require a large amount of memory. For
a Mealy machine with s states, i input bits and o output
bits, we have a memory requirement M in bits as shown
in (4).

M = (⌈
log2 s

⌉ + o
)

. 2i+�log2 s�. (4)

We may find in practice that a string matching FSM pre-
sented with a raw data bus as its input, may only be
interested in a small number of different input values.
We can reduce the complexity of the FSM by first com-
pressing the input data so that we have a compact set
of input values representing the values of interest and
a single value that represents all other characters. By
compressing the input data, it may then be possible to
represent this with a smaller bus width as input to the
FSM and hence reduce the FSM table sizes.

In practice, even after input compression, the state
transition table may be very redundant. We can see

Table 2 State transition table for a KMP implementation for the
string “attack”

Current state Input

0 1 2 3 4
(z) (a) (c) (k) (t)

0 () 0 1 0 0 0
1 (a) 0 1 0 0 2
2 (at) 0 1 0 0 3
3 (att) 0 4 0 0 0
4 (atta) 0 1 5 0 2
5 (attac) 0 1 0 6 0
6 (attack) 0 1 0 0 0

Table 3 Default and difference arrays

Current state Input

0(z) 1(a) 2(c) 3(k) 4(t)

Difference array
0 ()
1 (a) 2
2 (at) 3
3 (att) 4
4 (atta) 5 2
5 (attac) 6
6 (attack)
Default array

0 1 0 0 0

this in the example shown in Table 2, which implements
KMP based string matching of the string “attack”, using
a table based Moore machine2. This implementation of
the KMP algorithm is modified to perform matching at
a rate of one character per FSM cycle — and is the same
as a similarly modified Aho–Corasick implementation
with the same single string.

The state transition table in Table 2 contains the next
state for the FSM, based on the current state and input.
The input value z indicates that the input is a value that
is not equal to any of the characters that the FSM is
interested in. The FSM in this example has states that
relate to the number of characters in the string that
have been matched so far; with the string match being
indicated when the FSM is in state 6. We can see that
in this example, many of the values of next state are 0
which relates to the IDLE (or initial) state, and 1 which
relates to the first character having been matched.

4.2 Packed transition tables

A mechanism for compacting the state transition table
was described by Sugawara et al. [19]. Their method
works on the basis that for a given input value I, a large
proportion of transition table entries for current state S

2 This particular example was chosen as it was found to produce
tables that were small enough to include within the body of this
paper, both for this subsection and those following.

High speed network intrusion detection systems

Table 4 Packed array
creation

will be the same as for that input in the IDLE state. The
algorithm uses a default array that contains table entries
for all input values of I in the IDLE state. All we need in
addition to this are the entries from the full state transi-
tion table that differ to the entries in the default array —
this difference array is typically very sparse. The remain-
der of this sub-section gives an example to illustrate how
the algorithm by Sugawara et al. [19] operates.

Taking the example used in Table 2, we can generate
a default array that contains the state transition table
entries for all input values in the IDLE state. We then
generate a difference array that contains all the table
entries that are different to the values for the given input
recorded in the default array. These are shown in Table 3.
To find the next state for any current state and input, we
first look in the difference array for an entry. If there is
no entry in the difference array, then we use the value
for the current input from the default array instead.

Although this works well, we do not save any space
unless we have a more compact way to store the differ-
ence array. This difference array is decomposed into a
series of state vectors, and these are packed together
(overlapping) into a one-dimensional packed array —
carefully avoiding any collisions between active entries.
Each entry in the packed array is tagged with the cur-
rent state it belongs to — with, in this example, “−1”
being used to flag entries that are unused. To retrieve an
entry from the packed array we need to know the base
address of the state vector for the current state in the
packed array and then use the current input as an offset

from that point. If the entry fetched from the packed
array has a tag that is equal to the current state, then we
have found a valid difference array entry — if not, there
is no entry for the current state and input in the packed
array, so we use the value from the default array for the
current input instead.

We can see an example in Table 4 of how the packed
array for our example can be created. To improve per-
formance, each entry (in both arrays) also contains the
base address of the state vector in the packed array for
the next state. This packed array implementation can be
implemented within a FPGA, and will operate at a rate
of one input value per clock cycle. A schematic of the
design used by Sugawara et al. [19] is given in Fig. 5. The
two blocks of RAM are used to hold the default and
packed arrays. The current state is held in the register,
and multiplexers are used to select between the default
and packed arrays depending on whether the tag value
from the packed array matches the current state.

This algorithm gives a significant memory saving for
large FSMs, as we avoid the use of two dimensional
arrays. The creation of this packed array is actually a
search operation which requires us to scan through the
packed array that we are building trying to find a fit for
all the valid entries for each state vector — there are
therefore many different packed array contents possi-
ble for any particular set of data. It is difficult to give a
figure for the resource utilisation as the packed arrays
will vary in density, as there are usually many entries in
the packed array that are never used.

G. Tripp

Fig. 5 Finite state machine
implementation from [19]

+

Input

Next State

State and Base Address
for saving

=?

Next S

Reload

Base

RAM

Base

Next S

Tag

RAM

REG

CLK

Previous State and
Base Address to reload

Base Address

State

Table 5 Bitwise exclusive-or
based packed array creation

4.3 Modifications to the FSM implementation

For our work, the design in Fig. 5 was setup to operate
on one packet at a time by providing a restore input cor-
responding to the IDLE state. After preliminary testing
of the FSM design, it was found that performance was
limited by the adder carry chain used in the implemen-
tation of the “+” operation that provides the index into
the packed array. The ‘+’ operator is the obvious way

of performing the indexing operation into the packed
array — but not the only way. In practice, we are not
interested in where the actual entries are located within
the packed array, so long as whatever indexing operation
we use is consistent and that we never have more that
one offset value (for a given base address) that takes
us to any particular location in the packed array. On
investigation, it was found that it was possible to replace
the ‘+’ operator with bitwise exclusive-or (XOR) — this

High speed network intrusion detection systems

has the advantage of being faster as there is no need
for the carry chain that we needed for the ‘+’ operation.
The XOR has rather a different effect (than using ‘+’),
as for an offset value represented by an i bit input, the
different offsets will all be mapped within a 2i size block
of entries that starts on a 2i boundary. The locations in
the packed array for a group of consecutive offsets will
most often no longer be in consecutive locations within
the packed array.

If we take the width of the base address in memory
as b bits, and the width of the input as being i bits, then
assuming that b ≥ i, then we have a group of b − i bits
from the base address that specify a particular 2i sized
“page” in memory, and a group of i bits from the base
address that perform a rearrangement of the order of
the offset values of the input within that page.

Table 5 shows how a packed array can be built for
our difference array from Table 3, this time using XOR
based indexing. Again we perform a search operation to
pack the difference array into a one-dimensional table.
This time, rather than moving down the packed array
with a pattern of entries, we look at 2i different arrange-
ments of the offset values within a particular page. If we
have no success at fitting these within one page we move
to the next and so on.

The XOR based indexing has some advantages in
terms of having different arrangements of the entries
within a single page, but a disadvantage that all the
entries for a particular state vector need to be in the
same page. To show how the offset values in Table 5 are
rearranged, these are indicated below each of the state
vectors. The results of the XOR operation between the
base address and the offset for values of 0–7 are shown in
Table 6 to help illustrate how this rearrangement works.

4.4 Summary

Section 4 has shown the general background to table
based FSM implementation and the method used by
Sugawara et al. [19] to reduce the FSM memory require-
ments. Our proposal, as explained in Sect. 4.3, is to mod-
ify this algorithm to use bitwise exclusive-or in place of
the ‘+’ operator used for indexing, as this should enable
a faster hardware implementation because we will no
longer need the adder carry chain that was previously
required.

5 Software

Rather than generating a specific piece of hardware for
a given rule set, it was decided that we should identify
an efficient size of “string matching engine” and then

instantiate a number of these to cover the set of strings.
We will not know in advance how many strings will fit
into a FSM of any particular size, as this will depend on
how compact the packed array can be made. The best
size of FSM will depend on a number of factors, but will
relate in particular to the memory resources available in
the hardware. As we don’t know in advance how many
strings we can fit into a given FSM, we need to take an
iterative approach and try increasing numbers of strings
to see how many will actually fit.

Software was written to take a set of strings and to
build an Aho–Corasick trie for performing the substring
matching for the parallel string matching scheme out-
lined in Sect. 3. The design was optimised using standard
techniques to enable the matching to be performed at a
rate of one byte per clock cycle. From this, a state transi-
tion table was produced and then compressed using the
technique described by Sugawara et al. [19] and outlined
in Sect. 4. The FSM was provided with a state decoder
table that produces a separate match output for each
substring of each search string — this potentially has
some redundancy, as there may be substrings that relate
to more than one search string, but it enables us to have
a system that has a fixed core of logic that is indepen-
dent of the search strings used. As strings shorter than
the word size can generate a match from a subset of
the FSMs, we allow one or more of its substrings to be
the “null string” which will match in any state, thus we
always require a match from all FSMs irrespective of
search string length.

The first stage was to choose a sensible size for the
FSM. The software was modified so that instead of read-
ing in all the search strings, it stops after a certain limit of
search characters had been exceeded and the memory
resources required for that amount of search characters
reported. This was repeated for a range of maximum
numbers of search characters – the search strings being
taken from a randomised order set of case dependant
rules from the hogwash [14] “insane” rule set. The oper-
ator for the packed array index was chosen initially as
the ADD operator. It is important to note here that
these are experimental results and report the resources
required with the above software and the randomised
rule set noted above. As previously explained there is
quite a lot of variation in the amount of memory re-
quired for the packed array, depending on the packing
density that is achieved.

The tests were performed for a range of input bus
sizes, and the memory requirements for a single 8-bit
slice are given in Fig. 6. We see that the amount of mem-
ory required increases with the input bus width; a major
component of this increase is due to the state decoder,
as the memory width of this lookup table is equal to the

G. Tripp

Fig. 6 Memory use Memory use
(for one 8-bit slice of an n -bit word)

0

400

800

1200

1600

0 1000 2000 3000 4000 5000 6000

Total characters in search strings

b
it

s/
ch

ar
ac

te
r

n=8

n=16

n=32

n=64

Fig. 7 FSM resources FSM resources
(for one 8-bit slice of a 32-bit word)

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000

Total characters in search strings

N
o

d
es

0

2

4

6

8

10

12

14

N
o

n
-d

ef
au

lt
 E

d
g

es

nodes/char

edges/node

edges/char

total number of substrings, and the number of substrings
increases with the number of 8-bit slices.

The traces in Figure 6 are roughly linear for a range
of total characters from 200 to 2,000. The approximate
memory requirements Bw in bits for word size w and
character count s in this range are shown in (5). Mem-
ory usage will of course vary with the particular set of
strings chosen.

B8 = 0.10s + 51, B16 = 0.19s + 53,

B32 = 0.33s + 33, B64 = 0.35s + 54. (5)

When we get to a word size of 64-bits, the total amount of
memory required does not increase as much as expected,
as there are an increasing number of short identical sub-
strings, including null strings. Calculations here show
the exact amount of memory required — in practice
the memory will only be available in particular sizes, as
shown later.

Interestingly, the amount of memory required per
search character increases with the total amount of char-
acters in the search strings. This is partly due to the mem-
ory requirements of the state decoder, but this effect
is present even if we do not take this into account. We
would expect to get some gain as we increase the number
of search strings as we should have nodes within the trie
shared between multiple search strings. We can see this

effect in Fig. 7. The number of trie nodes per search char-
acter decreases with the total number of search charac-
ters as expected; however, this effect is counteracted
by the increase in the number of “non-default edges”.
The “non-default edges” are transitions from one node
to another that are recorded in the packed array and
this relates to the FSM becoming more complex and
there being more interconnectivity between nodes. The
overall effect is that the number of non-default edges
per search character increases with the number of char-
acters. The total memory requirements for the packed
array are roughly proportional to the number of non-
default edges, as each “non-default edge” will require
its own entry in the packed array.

All three traces in Fig. 7 are approximately linear up
to a total of 1,700 characters in the search strings. The
approximate results in this range, for a total of s charac-
ters are shown in (6).

nodes/char = 0.79 − 9 × 10−5s,

edges/node = 3.3 × 10−3s + 0.82, (6)

edges/char = 2.0 × 10−3s + 0.81.

From Fig. 7, it can be seen that when using this style of
implementation it is not necessarily the best option to
have large Aho–Corasick FSMs. The per search char-
acter resources used appear to be lower when only a

High speed network intrusion detection systems

Fig. 8 One 8-bit slice of
matching system Optional

input
compression

FSM State
Decoder

Match vector 8-bit

Input data

State

Fig. 9 Xilinx memory use
versus the number of search
characters

Xilinx memory use
(for one 8-bit slice of a 32-bit word)

0

0.04

0.08

0.12

0.16

0 200 400 600 800 1000

Total characters in search strings

B
R

A
M

s/
ch

ar
ac

te
r

add, raw

xor, raw

add, comp

xor,comp

Xilinx memory use - enlarged section
(for one 8-bit slice of a 32-bit word)

0.01

0.015

0.02

0.025

0.03

0 100 200 300 400

Total characters in search strings

B
R

A
M

s/
ch

ar
ac

te
r

add, raw

xor, raw

add, comp

xor,comp

small number of strings are searched for; this however
will be dependent on the sizes of memory available for
the various FSM tables.

5.1 Determining an optimal FSM size

The software was modified to re-run a number of tests
for a fixed input word size of 32-bit, using variations
of the algorithms. The tests were run for an increasing
number of search strings and the total memory resources
required were calculated for implementation within a
Xilinx Virtex-II FPGA [22] – this type of FPGA con-
tains 18 Kbit Block RAM primitives (BRAMs) that can
be configured in various ways. As an experiment, we also
test the effect of preceding each FSM input with a cus-
tom built compression table to reduce the redundancy
in the input data — as shown in Fig. 8. The tests were
run with either raw or compressed input data and with
either ADD or XOR used for packed array indexing.
The results are shown in the left graph of Fig. 9; the four
traces are very close together and an enlarged section,
where the resource utilisation is the lowest, is given in
the right graph for clarity.

The use of compression did not have much effect
when we used a large number of strings, however with
a small number of strings the memory used increased
because the extra memory needed for input compres-
sion was greater than any memory saved within the FSM
tables. This is perhaps to be expected when we use the
packed array implementation, as we are primarily just
concerned about how many entries we need to make in
the packed array. The only time when input compres-

Table 6 Results of the bitwise exclusive-or function applied to
input value 0 to 7

Base Address Offset

0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

Table 7 Maximum number of search strings for a three BRAM
implementation

FSM input Packed Search Search
array index strings characters

Raw ADD 22 275
Raw XOR 24 295
Compressed ADD 18 234
Compressed XOR 18 234

sion would be particularly important would be for very
small FSMs with a small packed array. The choice of
ADD or XOR algorithms had very little effect. From
the results shown in Fig. 9, the best option appears to be
a small FSM implementation dealing with a maximum
of 200–300 search characters, and one which uses three
BRAM components. The best results for each of the
four algorithm combinations are shown in Table 7.

G. Tripp

Fig. 10 Matching engine
FSM

State 8
State

decoder

108

27
Match

Vector

8

FSM
State8

State

decoder

1088

FSM

State8

State

decoder

1088

FSM
State 8

State

decoder

108 8

32
Network

Input

27 instances

of the M(4)

combine

operation

5.2 Summary

A number of experiments have been performed to deter-
mine a suitable size and implementation options for
constructing a FSM for a “string matching engine”. We
found that the choice of using ADD or XOR as the
method of indexing into our packed array had little ef-
fect in the memory resources used for the FSM imple-
mentation – so changing the implementation to use
XOR does not appear to be a problem. In many sys-
tems, the use of input compression can have a signifi-
cant impact on the amount of memory resources used,
however, in this example we found that we often ended
up using more resources because of the overhead of the
compression table. In our example, we are dealing with
an 8-bit input bus, and this is smaller than the address
input to the FSM packed array memory. How far apart
the table entries are spread out inside the memory does
not appear to have much effect on the memory require-
ments. In other cases the input compression may still
be important, such as when the memory address input
would ideally be smaller than the raw data input width.

For this particular implementation, we found that we
used fewer memory resources per search character by
using a relatively small FSM design. This could be used
in a hardware implementation by instantiating a num-
ber of small string matching engines, rather than one
large one. Rule sets such as those defined by Snort will
allow us to have content matching that is case indepen-
dent. We could deal with this by allocating these strings
to separate ‘string matching engines’ to the ones used
for strings that are case dependent and pre-pending an
input function that maps all upper case letters to lower
case.

6 Hardware implementation

A VHDL model was built of a 32-bit string matching
engine that consisted of four 8-bit wide matching “slices”
and a unit to combine together the results, as shown in

Fig. 10. On the basis of the results above, a decision was
made not to use input compression and to use the XOR
function for indexing into the packed array for the FSM.
The VHDL model was tested by simulation, the design
synthesised and built for a Xilinx XC2V250-6 FPGA to
determine its performance and resource utilisation. The
design was also simulated “post place and route” to test
the resulting FPGA design. The parameters of the FSM
design were taken from the rule processing results of
the previous section. Each FSM has an 8-bit input, an 8-
bit state variable and a 108-bit3 substring match output.
Four instances of the FSMs were used with a fixed com-
bine operation to generate a matching engine having
a 32-bit data input and a 27-bit match output. This is
capable of matching up to 27 search strings in parallel,
depending on the length of the strings. The use of the
match vector output enables us to indicate matches of
multiple search strings occurring at the same time; this
match vector output could be used to generate an indica-
tion of which strings occurred within a given input data
packet (including the detection of multiple matches of
different strings).

6.1 Performance and resource utilisation

The VHDL model was first configured for using a bit-
wise exclusive-or operator for the FSM table index oper-
ation and this gave a minimum clock cycle time of 6.7 ns
(149 MHz) — given the 32-bit input, this corresponds to
a search rate of around 4.7 Gbps.

The resources required for a Xilinx XC2V250-6 FPGA
were as follows:

• 12 Block RAM components (out of a total of 24),
• 250 logic slices (out of a total of 1,536).

We can see from the above that the size of any design
will be limited by the Block RAM resources. The FPGA

3 Note: The value of 108 was chosen as it is a multiple of one of
the BRAM memory widths, which is 36-bits.

High speed network intrusion detection systems

Table 8 A few of the test
patterns used and the
expected results

component used as the target of these experiments is
however, by current standards, rather small. Taking the
top of the range Virtex4FX FPGA as a comparison, we
should be able to fit 46 of these matching engines within
the FPGA, using all of the BRAM resources and around
20% of the logic slices. This would enable us to perform
a parallel search of a maximum of 1,242 search strings.
This will depend however on string length, and a conser-
vative estimate of 20 search strings per matching engine
would give us around 900.

For comparison, the VHDL model was rebuilt to use
an ADD operator for the packed array indexing and this
gave a minimum clock cycle time of 8.4 ns (119 MHz —
giving a 3.6 Gbps search rate). This confirms the earlier
assertion that using the XOR operator for the packed
array indexing would be faster than using ADD.

6.2 Testing

The design has been tested by simulation with a large
set of artificial input data containing various combina-
tions of the strings being searched for, including: iso-
lated instances of search strings; combinations of search
strings at various spacing and overlap; and some strings
rearranged in all 24 variations of the byte ordering in a
group of 4 bytes. These tests were repeated for all four
byte alignments of the input data — giving a total of
288 test cases. The results of the tests were compared
with the expected outcomes to ensure that the search
strings only matched as and when was expected. All tests
passed correctly both for the original VHDL design and
the post place and route simulations. A few examples of
patterns used to test matching and the expected results
are shown in Table 8.

7 Conclusion

This paper describes the design and simulation of a par-
allel algorithm for the implementation of high speed
string matching; this uses fine-grained parallelism and
performs matching of a search string by splitting the
string into a set of interleaved substrings and then match-
ing all of the substrings simultaneously.

We show that the FSM implementation technique de-
scribed by Sugawara et al. [19] can be modified by the use
of bitwise exclusive-or in place of ADD for the index-
ing operation to improve its performance. We also see
that this implementation can be optimised in terms of
resource utilisation by the choice of FSM size.

A VHDL model of a string matching engine based
on the above ideas has been produced, synthesised and
built for a Xilinx FPGA and tested via simulation. The
results show a search rate of around 4.7 Gbps for a 32-bit
input word. The design is table based and changes to the
search strings can be made by generating new contents
for the tables rather than having to generate a new logic
design — this is particularly important for systems being
updated in the field.

7.1 Future work

One area where the resources in this design could be
reduced is in the state decoder table – which accounts
for 50% of the memory resources. This gives a substring
match vector for the current state of the FSM, thus show-
ing which substrings match in a given state. This table
could be replaced with a piece of logic, but this would
need to be rebuilt for every set of strings.

Further work is needed to see if the memory require-
ments for the state decoder can be decreased, possibly
taking advantage of the redundancy that exists within
this table. This could, for example, be replaced by a two
stage decoder design. Finally, it would also be interest-
ing to see if any parts of the state decoder could be
implemented as fixed logic.

References

1. Abbes, T., Bouhoula, A., Rusinowitch, M.: Protocol analy-
sis in intrusion detection using decision tree. In: Proceedings
of international conference on information technology: cod-
ing and computing (ITCC’04), Volume 1 (pp. 404–408). Las
Vegas, Nevada (2004)

2. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to
bibliographic search. Commun ACM 18(6), 333–340 (1975)

3. Attig, M., Lockwood, J.W.: SIFT: snort intrusion filter for
TCP. In: Proceedings of IEEE symposium on high perfor-
mance interconnects (Hot Interconnects-13). Stanford, Cali-
fornia (2005)

G. Tripp

4. Baker, Z.K., Prasanna, V.K.: A methodology for synthesis
of efficient intrusion detection systems on FPGAs. In: Pro-
ceedings of IEEE symposium on field-programmable custom
computing machines FCCM ’04. Napa, California (2004)

5. Boyer, R.S., Moore, J.S.: A fast string searching algorithm.
commun. assoc. comput. mach. 20(10), 762–772 (1977)

6. Cho, Y., Mangione-Smith, W.: Deep packet filter with dedi-
cated logic and read only memories. In: Proceedings of IEEE
symposium on field-programmable custom computing ma-
chines FCCM ’04. Napa, California (2004)

7. Clark, C., Schimmel, D.: Scalable multi-pattern matching on
high-speed networks. In: Proceedings of IEEE symposium on
field-programmable custom computing machines FCCM ’04.
Napa, California (2004)

8. Fisk, M., Varghese, G.: An analysis of fast string matching
applied to content-based forwarding and intrusion detec-
tion (2001) (successor to UCSD TR CS2001-0670, UC San
Diego, 2001). Retrieved 9 March 2006, from http://pub-
lic.lanl.gov/mfisk/papers/setmatch-raid.pdf

9. Franklin, R., Carver, D., Hutchings, B.L.: Assisting network
intrusion detection with reconfigurable hardware. In: Pro-
ceedings of IEEE symposium on field-programmable custom
computing machines FCCM ’02, pp.111-120. Napa, California,
USA (2002)

10. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to
automata theory, languages and computation, 2nd edition.
Addison-Wesley, Reading (2001)

11. Iyer, S., Rao Kompella, R., Shelat, A.: ClassiPi: an architec-
ture for fast and flexible packet classification. IEEE Network,
15(2), 33–41 (2001)

12. Knuth, D.E., Morris J.H., Pratt, V.B.: Fast pattern matching in
strings. SIAM J Comput, 6(2), 323–350 (1977)

13. Kruegel, C., Toth, T.: Using decision trees to improve sig-
nature-based intrusion detection. In: Proceedings of the
6th symposium on recent advances in intrusion detection
(RAID2003), Lecture Notes in Computer Science, LNCS
2820, pp. 173–191. Springer Berlin Heidelberg New York
(2003)

14. Larsen, J., Haile, J.: Securing an unpatchable webserver
… HogWash. Retrieved 9 March 2006, (2001) from
http://www.securityfocus.com/infocus/1208

15. Moscola, J., Lockwood, J., Loui, R.P., Pachos, M.: Implemen-
tation of a content-scanning module for an internet firewall.
In: Proceedings of IEEE symposium on field-programma-
ble custom computing machines FCCM ’03. Napa, California
(2003)

16. Paul, O.: Improving distributed firewalls performance through
vertical load balancing. In: Proceedings of third IFIP-TC6 net-
working conference, NETWORKING 2004, Lecture Notes
in Computer Science, LNCS 3042 pp. 25–37. Springer Berlin
Heidelberg New York (2004)

17. Roesch, M.: Snort - lightweight intrusion detection for net-
works. In: Proceedings of LISA ’99: 13th systems administra-
tion conference, pp. 229–238. Seattle, WA : USENIX (1999)

18. Sidhu, R. Prasanna, V.K.: Fast regular expression match-
ing using FPGAs. In: Proceedings of the 9th international
IEEE symposium on FPGAs for custom computing machines,
FCCM’01. Rohnert Park, California, USA (2001)

19. Sugawara, Y., Inaba, M., Hiraki, K.: Over 10 Gbps string
matching mechanism for multi-stream packet scanning sys-
tems. In: Proceedings of field programmable logic and appli-
cations, 14th international conference, FPL 2004, pp. 484–493.
Springer Berlin Heidelberg New York (2004)

20. Tan, L., Sherwood, T.: A high throughput string matching
architecture for intrusion detection and prevention. In: The
proceedings of the 32nd annual international symposium
on computer architecture (ISCA 2005). Madison, Wisconsin,
USA (2005)

21. Tripp, G.: A finite-state-machine based string matching sys-
tem for intrusion detection on high-speed networks. In: Paul
Turner, Vlasti Broucek (eds) EICAR conference best paper
proceedings, pp. 26–40. Saint Julians, Malta (2005)

22. Xilinx Virtex-II Platform FPGAs: complete data sheet – prod-
uct specification. (2005). Xilinx Inc. Retrieved 9 March 2006
from http://direct.xilinx.com/bvdocs/publications/ds031.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

