
1 looking.forward

The IEEE Computer Society’s Student Magazine

Summer 2003 Vol. 11, No. 2

Message from the Editor-in-Chief

Mohsen Shaaban & Cengiz Gunay

Ph.D. Students
The Center of Advanced Computer Studies

University of Louisiana at Lafayette
mmm5554@cacs.louisiana.edu
cxg9789@cacs.louisiana.edu

Dear Colleagues,

We proudly present the Spring 2003 issue of
the Looking Forward E-zine. This issue is to
reflect the work done by the IEEE Student
Group at The Center for Advanced
Computer Studies (CACS) at the University
of Louisiana at Lafayette (UL Lafayette)
[www.cacs.louisiana.edu].

CACS is a research-oriented department of
computer science and computer engineering,
where the primary missions of the center are
to conduct research and provide graduate-
level education.

One of the yearly events of CACS is the
student paper contest, organized by the

IEEE Student Chapter. The winners of the
contest are announced at the annual
graduation ceremony of the department.

2 looking.forward

CACS Director Dr. Magdy A. Bayoumi initiating the
graduation ceremony.

This ceremony includes honoring the
Bachelor’s, Master’s and Ph.D. graduates of
Spring 2003 semester.

Speech from a graduating student at the ceremony.

Students and faculty attending the graduation
ceremony.

Local business and technology leaders are
invited as guest speakers, thereby giving a
chance for all students to meet them and
learn from their experiences.

Presenting Lafayette parish industry leaders.

This year the IEEE student chapter
organized a poster session for the paper
contestants, which gave them a chance to
showcase their work.

CACS faculty listening to a student presenting his
work at the poster session.

Award prizes were given to all the
contestants, including high prizes for the
first three places.

3 looking.forward

First prize winner at our year 2003 student paper
contest.

The ceremony also featured talented
students playing music and therefore
creating a relaxing atmosphere for students
and faculty to come together. We, as the
IEEE Student Chapter, prepared T-shirts and
sold them for fund raising during the
ceremony.

Talented CACS students playing music during the
event.

IEEE Student Chapter officer selling T-
shirts for fund raising.

The papers presented below targets the
following fields: Algorithms, Operating
Systems, Computer Architectures, Wireless
Communications, and VLSI. All these fields
are current research areas in CACS.

We present selected articles from this year’s
student paper competition in this issue. We
hope that you find them useful.

Yours sincerely,

Guest Editors,
Mohsen Shaaban and Cengiz Gunay.

4 looking.forward

Table of Contents:

Peiyi Zhao, Tarek Darwish, and Magdy Bayoumi 5
Low power Conditional-Execution Pulsed Flip-Flop

Chun-yan Bai and Gui-liang Feng 8
Defending against DoS by using A-G Codes

Sumeer Goel and Magdy Bayoumi 14
 Improved Hybrid-Latch Flip-Flop for low-power VLSI systems

Moinuddin Mohammed and Arun Lakhotia 19
A method to detect metamorphic computer viruses

5 looking.forward

Low Power Conditional-Execution Pulsed Flip-Flop

Peiyi Zhao, Tarek Darwish, and Magdy Bayoumi

The Center for Advanced Computer Studies ,University of Louisiana at Lafayette
{pxz6874, tkd5171, mab}@cacs.louisiana.edu

Abstract

We propose conditional execution technique to reduce the
redundant switching activity of the internal nodes in flip-
flops. Double-edge clocking is utilized to further reduce
the power consumption. With a data switching activity of
37.5%, the new conditional execution pulsed Flip-Flop
(CEPFF) can achieve 12% improvement in terms of PDP.

1. Introduction
With chip frequency doubling every two years and feature
size shrinking, power consumption becomes one of the
main concern for high performance digital systems. Flip
flops are used intensively across the whole chip and
consumes considerable amount of power.

Different flip-flops can be found in the literature [1-22]
include master-slave topology and pulse-triggered
topology, etc. For high speed applications, pulse-triggered
flip-flops are more suitable for their small DQ delay
properties. Pulse triggered flip-flops could be classified
into two types: implicit pulse triggered flip-flops (ip-FF)
such as HLFF [7], SDFF [8], ip-DCO [9] and explicit
pulse triggered flip-flops (ep-FF) such as ep-DCO [9],
and the flip-flops in [10] and [11]. One common property
among most of these flip-flops is the utilization of
dynamic structure to achieve superior performance.
However there are large amounts of internal redundant
switching activity that cause a lot of wasted dynamic
power dissipation [21]. In this paper, we achieve lower
power consumption by utilizing conditional execution
technique which helps in reducing the switching activity,
and double-edge triggering which maintains data
bandwidth with lower clock frequency. This paper is
organized as follows: Section 2 describes one pulse-
triggered flip-flop. Section 3 presents the new flip-flop
utilizing the conditional execution power reduction
technique. Section 4 simulates these flip-flops. Finally,
we conclude in section 5.

2. Explicit Pulsed Flip-Flops

One example of the explicit pulsed flip-flops is the ep-
DCO flip-flop [9], Fig. 1. In the precharging phase, the
node X is pulled up HIGH via P1. At clock pulse rising
edge, the transistors N2 and N3 turn on, and the flip-flop
will be in the evaluation phase. If the input data D is
LOW, X will stay at the HIGH state and transistor N4 will
be on which will discharge the output Q to LOW. If D is

HIGH, X will be discharged by transistors N1 andN3. As
a result, transistor P2 turns on and pulls Q to the HIGH
state. When clock is low, N3 and N2 are off, the

discharging paths are disabled, and the flip-flop is in hold
mode.

Figure 1: Explicit-Pulsed triggered Flip-flop, ep-DCO

Careful analysis of the above semidynamic flip-flop
reveals a significant amount of power being consumed by
charging and discharging the internal node X even when
the input D is stable HIGH and these internal activities do
not produce useful operation. Glitches appear at the
output that would cause noise problem. To tackle this
problem, we propose conditional execution flip-flop.

3. Proposed Conditional Execution Flip-Flop
Conditional Execution Technique is proposed in this
paper: an NMOS transistor controlled by Qb is inserted in
the discharge path of the stage with the high switching
activity.

The proposed explicit pulsed Conditional Execution Flip-
Flop is shown in Fig. 2. The latching part, which is made
of two stages, is activated only during a small window of
time (called sampling window) the width of which is
specified by the topology of the pulse generator. The
double edge pulse generator [9] was utilized to further
reduce the power consumed on the clock tree and the
clocked transistors in the pulse generator. The flip-flop
associated with this double edge pulse generator will have
the same data throughput as that of the flip-flop
associated with a single edge pulse generator at only half
the frequency of the single edge flip-flop. The power
saved in the clock distribution network is not included
when we compare the power consumption. Although the

CLK

D

Clock
Pulse

* *

P1

N1

N3

P2

N2

N4

QX

6 looking.forward

input load is increased, significant savings in the overall
power is expected.

The first stage of the latching part is responsible for
capturing the LOW→HIGH transition of the input.
Assume a LOW at D was latched in a previous cycle
causing the output Q and Qb to be LOW and HIGH
respectively. If later on, D undergoes a LOW→HIGH
transition and it is captured in the sampling window, the
internal node X is discharged, since its discharge path is
on via CLK, D and Qb. As a result, the output node will
be charged HIGH through PMOS transistor P2 and the
outputs states for (Q, Qb) change from (LOW, HIGH) to
(HIGH, LOW). Subsequently, if D stays HIGH for a long
time, node X will only precharge to HIGH once and stays
precharged afterwards since its discharge path is disabled
by Qb=LOW. This precharging occurs when CLK goes
LOW after the first transparent window which captured
the LOW→HIGH transition on D. Unlike the flip-flops
mentioned in section 2, this flip-flop will have no extra
switching activity at the internal node X and thus no extra
power will be dissipated by the new flip-flop.

Stage two captures the HIGH→LOW input transition.
Continuing with the above scenario, if D undergoes a
HIGH→LOW and it is captured by the sampling window,
Y will be HIGH, and N4 will be on, the discharge path of
the second stage is enabled causing the outputs (Q,Qb) to
change from (HIGH,LOW) to (LOW,HIGH). If D stays
LOW afterwards, stage one will be disabled, and stage
two will always be enabled maintaining the outputs’ states
(LOW, HIGH). Since node X is not charged and
discharged every clock cycle when D stays HIGH, no
glitches associated with the clock edge appear on the
output node Q, and thus eliminating the power consumed
by the spurious glitches.

CLK
D

*

P1

N1

N3

P2

N2

N4

Q

X

Y

Qb

CLK

Qb
N5

I1

I2

I3

I4

I5I6 I7 I8

TG1

TG2

CLK

Figure 2: Proposed Conditional Execution pulsed Double-Edge

Triggered Flip-Flop

One of the drawbacks of the conditional execution
technique is adding one transistor to the NMOS stack of
the first stage of the above flip-flop. But as X need only
drive one PMOS transistor in the flip-flop, the external
capacity load of the X node is lowered; hence alleviating
the negative effect of the increasing stack on delay.

4. Simulation Results
The simulations were done in 1.8-V, 0.18-µm CMOS
technology at room temperature using HSPICE. The value
of the capacitance load at Q is selected to simulate a fan
out of fourteen standard sized inverters (FO14) [17]. The
setup used in our simulations is shown in Fig. 3, we have
supplied D with 16-cycle pseudorandom input data with
activity 37.5%. A Clock frequency of 250 MHz is used
for single edge triggered ep-DCO flip-flop, whereas a 125
MHz frequency is used for double edge triggered CEPFF.
Circuits were optimized for minimum power delay
product, PDP. The minimum D-to-Q delay [22] is
obtained by sweeping the 0→1 and 1→0 data transition
times with respect to the clock edge and the minimum
data to output delay corresponding to optimum setup time
is recorded. This optimization methodology is mainly
from[9].

Table 1 shows the minimum D-to-Q propagation delays,
average power consumption, and power-delay-product
(PDP) for several flip-flops at target D-to-Q delay about
140ps. PDP is reduced in the case of CEPFF by 12%
comparing with ep-DCO. CEPFF can have the pulse
generator shared by other flip flops to distribute the pulse
generator overhead.

FlipFop
Under Test

D

CLK

Q

CLoad

 Figure 3: Setup for simulations

Table 1: Comparison of number of transistors, minimum DQ delay,
average power and PDP.

 No. of
Transistors

Minimum
DQ (ps)

Average
Power(uw)

PDP (fF)

ep-DCO 26 140 24.2 3.38
CEPFF 30 142 21.0 2.96
HLFF 20 140.7 23.62 3.32

7 looking.forward

 Figure 4: Waveforms of the proposed CEPFF

Figures 4 show the waveforms of the proposed CEPFF.
The above proposed CEPFF is used to build a chip of 8-
bit counter and has been fabricated by 0.5um technology
from MOSIS. Part of the chip layout is shown on Fig. 5. It
is clear that Conditional execution technology could be
applied to ip-DCO [9], SAFF [24], SDFF [8], etc.

Fig. 5 Chip layout of the 8-bit counter built by the proposed CEPFF

5. Conclusion
In this study, the conditional execution pulsed flip-flop
(CEPFF) is proposed to reduce the switching activity of
internal node in semidynamic flip-flop. With a data switching
activity of 37.5%, the new flip-flops can have 12%
improvement in PDP, and eliminate glitches that associated
with the clock coupling, so it is suitable for low power, high
speed designs.

6. Acknowledgments

The authors acknowledge the support of the U.S.
Department of Energy (DoE), EETAPP program,
DE97ER12220 and the Governor’s Information
Technology Initiative. Thanks Mr. Tschanz, Intel for his
valuable help.

7. References

[1] H. Kawaguchi, and T. Sakurai, ”A reduced clock-swing flip-flop
(RCSFF) for 63% power reduction,” IEEE Journal Solid-State
Circuits, Vol. 33, No.5, pp. 807—811, May 1998.

[2] A. Chandrakasan, W. Bowhill, and, F. Fox, Design of High-
Performance Microprocessor Circuits, IEEE press 2001, New
York, 1st edition.

[3] G. Gerosa, “A 2.2W, 80 MHz superscalar RISC microprocessor,”
vol. 29, no. 12, pp. 1440-1454, IEEE J. Solid-State Circuits, 1994.

[4] U. Ko and P. Balsara, “High-Performance Energy-Efficient D-
Flip-Flop Circuits,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Vol. 8, No.1, pp. 94-98, Feb 2000.

[5] J. Yuan and C. Svensson, “High-Speed CMOS Circuit Technique,”
IEEE Journal of Solid-State Circuits, Vol.24, No.1, pp.62-70, Feb.
1989.

[6] B. Nikolic, V. G. Oklobzija, V. Stojanovic, W. Jia, J.K. Chiu and
M.M. Leung, "Improved Sense-Amplifier-Based Flipflop: Design
and Measurements," IEEE J. Solid-State Circuits, vol. 35, No.6,
pp. 876-883, June 2000.

[7] H. Partovi et al., "Flow-through latch and edge-triggered flip-flop
hybrid elements," Digest ISSCC, February 1996, pp. 138—139

[8] F. Klass, "Semi-dynamic and dynamic flip-flops with embedded
logic," in Symp. on VLSI Circuits, Dig. of Tech. Papers, June 1998,
pp. 108--109.

[9] J. Tschanz, S. Narendra, Z.P. Chen, S. Borkar, M. Sachdev, and V.
De, “Comparative delay and energy of single edge-triggered &
dual edge-triggered pulsed flip-flops for high-performance
microprocessors,” ISPLED’01, Aug. 2001, Huntington Beach,
California, pp. 207- 212.

[10] S. Hesley, V. Andrade, et al., ”A 7th-generation X86
Microprocessor,'' 1999 IEEE International Solid State Circuits
Conference Digest of Technical Papers, 1999, pp. 92-93

[11] C. F. Webb, C. J. Anderson, et al., “A 400-MHz S/390
Microprocessor,”' IEEE Journal of Solid State Circuits, vol. 32,
no. 11, pp. 1665-1675, Nov. 1997.

[12] N. Nedovic and V.G. Oklobdzija, “Hybrid Latch Flip-Flop with
Improved Power Efficiency,” Proceedings of the Symposium on
Integrated Circuits and Systems Design, SBCCI2000, Manaus,
Brazil, September 18-22, 2000, pp. 211-215

[13] N. Nedovic, M. Aleksic, and V.G. Oklobdzija, “Conditional Pre-
Charge Techniques for Power-Efficient Dual-Edge Clocking,”
Proceedings of the International Symposium on Low-Power
Electronics and Design, Monterey, California, August 12-14,
2002. pp. 56 –59

[14] Y. Zhang, H. Yang, and H. Wang, “Low clock-swing conditional-
precharge flip-flop for more than 30% power reduction,” Apr.
2000, Vol.36, No.9, pp.785 -786, Electronics Letters.

[15] B.Kong, S.Kim, and Y.Jun, “Conditional-capture flip-flop for
statistical power reduction,” IEEE Journal of Solid-State Circuits,
Vol.36, No.8, pp. 1263 –1271, Aug. 2001.

[16] N. Nedovic, M. Aleksic, and V.G. Oklobdzija, “Conditional
Techniques for Small Power Consumption Flip-Flops,”
Proceedings of the 8th IEEE International Conference on
Electronics, Circuits and Systems, Malta, September 2-5, 2001, pp.
803-806

[17] V.G. Oklobdzija, ”Clocking in multi-GHz environment,“ 23rd
International Conference on Microelectronics, 2002. MIEL 2002,
Volume: 2, 2002, Vol. 2, pp. 561-568

[18] N. Nedovic, M. Aleksic, and V.G. Oklobdzija, “Conditional Pre-
Charge Techniques for Power-Efficient Dual-Edge Clocking,”
Proceedings of the International Symposium on Low-Power
Electronics and Design Monterey, California, August 12-14,
2002. pp. 56 –59

[19] P. Zhao, T. Darwish, M. Bayoumi, “Low Power and High Speed
Explicit-Pulsed Flip-Flops,” 45th IEEE International Midwest
Symposium on Circuits and Systems Conference, Tulsa, Oklahoma,
August 4-7, 2002.

[20] Q.wu, M.Pedram, X.Wu, “ Clock-gating and its application to low
power design of sequential circuits,” IEEE Trans. on Circuits
and Systems I: Fundamental Theory and Applications, Vol. 47,
No.3, 415- 420, 2000.

[21] R. Ramanarayanan, N. Vijaykrishnan and M.J.Irwin, “
Characterizing Dynamic and Leakage Behavior in Flip-Flops.”
15th Annual IEEE International ASIC/SOC Conference,
September 2002.

[22] V. Stojanovic, and V. Oklobdzija, “Comparative Analysis of
Master-Slave Latches and Flip-Flops for High-Performance and
Low Power System,” IEEE Journal of Solid State Circuits, Vol.34,
No.4, pp. 536-548, 1999.

8 looking.forward

Defending against DoS by using A-G Codes

Chun-yan Bai and Gui-liang Feng
Center for Advanced Computer Studies

University of Louisiana at Lafayette, Lafayette, LA 70504, USA.
Email: cxb7146@cacs.louisiana.edu and glf@cacs.louisiana.edu

Abstract

 In this paper, IP traceback problem
over the Internet was solved by using the
algebraic-geometric codes. Comparisons
between the algebraic-geometric codes
based construction and the Reed-
Solomon codes based construction show
the feasibility of the AG code based
construction.

1. Introduction

 One of the major problems on the
Internet today is the denial of service
(DoS) attack against machines and
networks. Most DoS attacks are
characterized by a flood of packets with
spoofed addresses. Finding the source of
these spoofed packets, which we call the
IP traceback problem, is amongst the
hardest security problems to address.

 Most prior attempts to solve the IP
traceback problem can be described by
tracing attacks back towards their
origins, in hopes of stopping attackers at
the source [6-8]. This approach tries to
find out the path information of
attacking packets in near real-time,
thereby controlling the attacks at far
routers. We will review the related work
in Section 2.

 In this paper, we attempt to find a
mathematical expression for algebraic-

geometric codes solution to the
polynomial reconstruction problem,
which is the key step for the IP traceback
problem over the Internet. Also, how to
reduce the overhead in the IP header is
proposed and analyzed in this paper. The
result in this paper shows that our
scheme can not only be implemented for
today's routers, but also can be extended
for future use whenever the router IP
address need to be enlarged to 48 bits.

2. Related work

 There have been several efforts to
fight against the DoS attack[2-8]. All
these efforts are different in terms of the
management cost, additional network
load, overhead on the router, ability to
trace multiple simultaneous attacks,
ability of tracing attacks after they have
completed, and whether they are
preventive or reactive. Considering the
actual situation of today's Internet, we
will focus on tracing back the attacking
packets.

 Tracing packets back to their physical
source can be done manually by
contacting an ISP and having it test each
link to determine if a large number of
packets are traversing the link destined
for the victim network [3]. This method
requires significant cooperation and
attention from all the intervening
ISPs(Internet Service Provider), which

9 looking.forward

has proven to be a problem over the
Internet. Burch and Cheswick proposed
a method of controlled flooding [3], in
which the victim floods in a tree-like
manner during the attack in order to
check the correlation of the flooding
with the attack. Hence the victim is able
to gather information about the sources
of the attacks. But this approach can
apply only to on-going attacks. In [4], a
scheme is suggested which logs packets
at key routers and then use data mining
techniques to determine the path that the
packets traversed. In [5], the router-
generated ICMP traceback messages are
used to find the source of attacking
packets. Both the schemes have the
drawbacks of potentially enormous
resource requirements and a large scale
inter-provider database integration
problem.

 Tracing attacking packets can also be
achieved by marking packets with IP
addresses probabilistically or
deterministically [6,7]. In [6], Savage et
al. proposed a clever path encoding
scheme (FMS) which lets each router
along the way probabilistically mark
packets with path information during
packet forwarding. The victim can
reconstruct the complete paths after
receiving a modest number of packets
that contain the marking. This approach
has a low overhead for routers and the
network. Also, this approach allows a
victim to identify the network paths
traversed by the attack traffic without
requiring interactive support from ISPs.
In [7], two IP marking techniques are
presented which are Advanced Marking
Scheme and the Authenticated Marking
Scheme. These two techniques allow the
victim to traceback the approximate
origin of spoofed packets with the same
low network and router overhead as

FMS in [6]. These two approaches are
more efficient and accurate for the
attacker path reconstruction under DDos.
However both the work from [6] and [7]
have two disadvantages: the
combinatorial explosion during the edge
identification step and the few feasible
parameterizations.

 In contrast to the exact traceback
problem, which determines the exact
attack path and the associated attack
origin for each attacker, the approximate
traceback problem defined in [6] finds a
candidate attack path for each attacker
that contains the true attack path as a
suffix. We will continue to address the
approximate traceback problem because
it is possible that the exact attack origin
used for solving the exact traceback
problem may never be identified.

3. Overview

 The directed acyclic graph (DAG)
rooted at V in Figure 1 depicts our
example network. The root V represents
the victim that is attacked and leaf nodes
A={A1,A2,A3,A4} stand for attackers.
Round nodes R = {R1, R2, R3,…,R8}
denote routers on the way from attackers
Ai,i=1,2,3,4 to the victim V. An attack
path from Ai is an ordered list of routers
between Ai and V that the attack packet
has traversed. For example, the two
dotted lines in Figure 1 indicate two
attack paths (R5,R3,R2,R1) and (R7, R4,
R2, R1). The path (R3,R5, R6, R4, R2, R1)
will be a valid candidate for the
approximate attacking path from attacker
A2 to the victim V.

 In [8], a new solution to the problem
of approximate traceback is presented.
The scheme reframes the traceback
problem as a finite field polynomial

reconstruction problem and uses
techniques from algebraic coding theory
to provide robust methods of
transmission and reconstruction. Next,
we will summarize the idea of the so-
called full-path encoding scheme
discussed in [8].

 Let f(x) be a polynomial of degree d
over the finite field GF(p), we can
recover f(x) given f(x) evaluated at (d+1)
unique points. Let A1,A2,...,An be the 32-
bit IP addresses of the routers on path P
and xj be the ID for the jth packet. Let

n
n
j

n
jjP AxAxAxf ???? ?? ...)(2

2
1

1 ,

which will be evaluated as the packet xj
travels along the path P, accumulating
the result of the computation in a
running total along the way. When
enough packets from the same path
reach the destination, fP can be
reconstructed by interpolation. That is,
the defined polynomial can be
reconstructed by solving the following
matrix equation (1) over GF(p). The
right hand side of the equation is a Reed-
Solomon codeword. As long as all the
xj's are distinct, the matrix is a
Vandermonde matrix (and thus has full

rank) that is solvable in O(n2) field
operations.

)1...(

)(
..

)(
)(

..

..1
..........

..1

..1

2

1

1

1

12

1
2

2
22

1
1

2
11

??
?
?
?

?

?

??
?
?
?

?

?

?

??
?
?
?

?

?

??
?
?
?

?

?

?
?
?
?
?

?

?

?
?
?
?
?

?

?

?

?

?

?

nP

P

P

n

n

n
nnn

n

n

xf

xf
xf

A

A
A

xxx

xxx
xxx

4. IP traceback based on AG
codes

4.1 Background on AG codes

 Algebraic-geometric codes are known
to be more efficient than Reed-solomn
codes in many parameter ranges. They
also offer more flexibility in the choice
of code parameters. However, in order to
understand AG codes, one needs an
extensive background in algebraic-
geometry. A simpler approach, referred
to as improved algebraic-geometric
codes makes AG code more accessible
[9].

 Let us consider the Hermitian curve
x8+y7+y=0 over the finite field
GF(72)={0,1,? ,? 2,...,? 47}. This curve
has a total of 73 roots [9]. Improved
geometric Goppa codes can be
constructed from algebraic-geometric
curves based on a well-behaving
sequence H [9]. Next, we will show how
to construct an improved geometric code
from the Hermitian curve discussed
above.

 Consider the Hermitian curve
x8+y7+y=0 over GF(72) again and let
w(x)=7 and w(y)=8, where w(x) is the
weight of x. A well-behaving sequence
H is found to be:

Fig.1 Example network layout

10 looking.forward

,...}.,,,

,,,,,,,,

,,,,,,,...,,

,,,,,,,,,,,1{

876253

4435267765243

34256765223

4322322

yxyyxyx

yxyxyxyxyxyyxyx

yxyxyxxyxyyxyx

xyxyyxxyxyxyxH ?

After taking a detailed look at the H
sequence, we find that starting from the
item x7, we can divide the rest of the H
sequence into groups. Each group
includes 8 items

? ?765243342567 ,,,,,,, yxyyxyxyxyxyxxy i

for i=0,1,2,.…That is, each group is
formed by multiplying each element of
the previous group by y. This procedure
continues until all the |H|=343 elements
in the sequence are obtained.

With this well-behaving sequence H, an
improved algebraic-geometric code of
length n=343 can be defined for
different designed minimum distance,
e.g. (343,338,4) code or (343, 334, 6)
code following the Construction 2.1 in
[9].

4.2 IP traceback based on AG code

Let))((jP xfl be the length of ? ?jP xf .
From [8] we know that we can trade off
bits for packets by splitting a router's IP
address into c chunks. Inspired by the
work in [8] and enriched by the fact that
the codeword length of algebraic-
geometric codes over GF(q) are not
limited to q, we can use algebraic-
geometric codes to construct the
FullPath polynomial. Consequently, we
can further reduce the bits needed to
encode the FullPath by using algebraic-
geometric codes instead of Reed-
Solomon codes. Next we will

demonstrate the construction with
details.

Let us once again consider the AG code
(length 343) defined by the Hermitian
curve x8+y7+y=0 over GF(72). Noticing
the group repetition in the obtained H
sequence, we take

765243342567 ,,,,,,, yxyyxyxyxyxyxx

as the base for our polynomial
construction. Because the base contains
8 elements, we split the router ID Aj into
8 chunks as shown in Figure 2.

Also, we divide the packet ID xj into two
parts (xj,yj). Representing each xj or yj
needs only half number of bits compared
to the representation of the original xj.
Thus, the FullPath polynomial will be
represented as:

? ? ...(, 2526170 ???? jjnjjnjnjjP yxAyxAxAyxf

???? ???
252

1
61

1
70

1
77 () jjnjjnjnjjn yxAyxAxAyyA

?????? ??? jjinjin
i
jjn yxAxAyyA 617077

1 (...)...

????? ?
? jjj

n
jjin yxAxAyyA 61

1
70

1
177 (...)...

).... 77
1 jyA?

Similar to the Reed-Solomon code based
construction in [8], the FullPath
information ? ?jjP yxf , , together with
the packet ID xj will be passed on to the
next router. An additional message

11 looking.forward

12 looking.forward

y_jID, which is used to indicate which of
the 7 yjs is corresponding to the given xj
over GF(72), is also required to
transferred to the next router. Each
router Ai calculates

776170 ... jinjjinjin yAyxAxA −−− +++ ,

then multiplies it with i
jy and adds the

value to the accumulator. As long as
enough (8*n in this case) packets are
received, the polynomial ()jjP yxf , can
be reconstructed by interpolating the
running total value. Thus the router ID
can be retrieved.

5. Discussion and Comparison

Suppose l(Ak)=32 bits, which is
reasonable for today's actual IP address,
and l(xj)=8 bits in our analysis. If we
consider the Hermitian curve constructed
above (x8+y7+y=0 over GF(72)), then
the number of chunks we split the router
IP address into is 8. Thus

() 4
8
32

=



=i

kAl

bits and

() ()   6log
27

2 === jj ylxl bits,

where l(xj) and l(yj) are the number of
bits used for representing elements over
the finite field GF(72). Consequently,
()  27

2log≤i
kAl guarantees that the

multiplication operations among xj, yj
and ()i

kAl can be performed over GF(72).
From the inequality R*(7+1)<73, which
is used to make the scheme
accommodate the required number R of
routers along the way, we have R≤42.
That is, the constructed AG code based

IP traceback scheme can accommodate
at most 42 routers along the way from
the attacker to the victim, which is
enough to fight back most of the Denial-
of-Service attacks. Totally, this scheme
requires

()() () 13)34(6, =++=++ IDyxlyxfl jjjjP

bits per packet in the packet header,
where ()() () (){ }j

j
kjjP xlAlyxfl ,max, =

=max{4,6}=6 bits. The second item
comes from the fact that we divide the 8
bits packet ID into two parts (xj,yj), pass
only the first part 4 bits ()jxl and the
corresponding yj index to the next router.
The 4 bits ()jxl will be extended to 6
bits for the polynomial calculation by
attaching 2 zeros as the most significant
two bits. yjID=3 because each value of xj
corresponds to 7 values of yjs according
to the Hermitian curve x8+y7+y=0,
which needs 3 bits to represent.

Now, let us go back to the RS code
based scheme. In order to accommodate
at least 42 routers, the best way is to split
the router IP address into 4 chunks. Then

() 8
4

32
=



=i

kAl bits. Thus

() ()j
i
k xlAl ≤ =8 guarantees that the

multiplication operation ()i
jj Ax ∗ in the

()xf P polynomial calculation can be
performed over the finite field GF(q).
From R*4≤28, we have R≤64. Although
the RS code based scheme can
accommodate more routers, it needs

()() () 1688 =+=+ jjP xlxfl bits, which
is 3 bits more than the AG code based
scheme. This shows an great
improvement of the AG code based
scheme over the RS code based scheme
because free bits in the IP header which
can be assigned for traceback purpose is
extremely limited. Usually, 42 routers

13 looking.forward

are enough for resisting the Denial-of-
Service attacks. The increase in the
number of routers has no great
significance in practice. Furthermore,
there is one more benefit for the given
AG code based scheme. We can extend
the router ID from 32 bits to 48 bits
without affecting the performance of the

scheme. Since () 6
8
48

==jxl bits is still

less than or equal to l(xj)=6 bits, the
scheme can work well without making
any modification. This is a potential
advantage for the AG code based
scheme to be used in the future
whenever the current 32 bits IP address
is not enough.

Conclusion and future work

In this paper, we determined a
mathematical expression required for an
algebraic-geometric code to solve the
polynomial reconstruction problem, i.e.,
the IP traceback problem over the
Internet. The scheme is demonstrated by
utilizing and illustrating several useful
features of the improved algebraic-
geometric codes. Comparisons are made
between the algebraic-geometric code
based construction and the Reed-
Solomon code based construction.

However, this is still an initial step in
applying AG codes to the IP traceback
problem. Further attempts by using the
theoretical analysis are necessary to
make the scheme complete from both the
practical and theoretical point of views.
Furthermore, a strategy which is robust
in the presence of incorrect data or data
from multiple paths is also urgently
sought.

References

1. "Computer emergency response team, cert

advisory ca-2000-01:Denial-of-service
developments,"
http://www.cert.org/advisories/CA-000-
01.html, 2000.

2. P.Ferguson and D.Senie, "Network Ingress
Filtering: Defeating Denial of Service
Attacks Which Employ IP Source Address
Spoofing", RFC 2267, Jan.1998.

3. H.Burch and B.Cheswick, "Tracing
Anonymous Packets to Their Approximate
Source," 2000 LIXA XIV, December 3-8,
2000, New Orleans, LA.

4. R.Stone, "CenterTrack: An IP Overlay
Network for Tracking DoS Floods,"
Proceedings of the 2000 USENIX security
symposium, Denver, CO, July 2000

5. S.M.Bellovin, "ICMP Traceback Messages",
Internet Draft:draft-bellovin-itrace-00.txt,
Mar.2000.

6. S.Savage, D.Wetherall, A.KArlin and
T.Anderson, "Practical Network Support for
IP Traceback", SIGCOMM'00, Stockholm,
Sweden.

7. D.Song and A.Perrig, "Advanced and
Authenticated Marking Schemes for IP
Traceback, Technical Report UCB?CSD-00-
1107, University of California, Berkeley,
June 2000.

8. D.Dean, M.Franklin and A.Stubblefield,
"An algebraic approach to IP Traceback,"
Network and Distributed System Security
Symposium, NDSS'01, Feb.2001.

9. G.L. Feng and T.R.N. Rao, "Improved
Geometric Goppa Codes Part I: Basic
Theory,", IEEE Transactions on Information
Theory, vol.41, No.6, 1995.

10. G.L. Feng, V.K. Wei, T.R.N. Rao, and K.K.
Tzeng, Simplified Understanding and
Efficient Decoding of a Class of Algebraic-
Geometric Codes. IEEE Transaction on IT,
vol.40, No.4, Jul. 1994.

11. V.Guruswami and M.Sudan, "Improved
Decoding of Reed-Solomon and Algebraic-
Geometric Codes," IEEE Transactions on
IT, vol.45, p1757-1767, 1999.

12. J.H.van Lint and G.van der Geer,
Introduction to coding theory and Algebraic
geometry, Birkhauser Verlag publisher,
Boston, 1988.

14 look ing.forward

Improved Hybrid-Latch Flip-Flop for low-power VLSI systems

Sumeer Goel and Magdy Bayoumi
VLSI Research Lab, Center for Advanced Computer Studies

University of Louisiana at Lafayette

Abstract

This paper presents an enhanced hybrid-latch flip-flop
(E-HLFF) that achieves low-power consumption as
compared to the hybrid-latch flip-flop (HLFF) without
trading-off speed of operation. The technique used to
reduce power consumption is to prevent alternate
charging and discharging of internal nodes at every clock
cycle when no useful work is done. This is achieved by
restructuring the dynamic stage of the HLFF and re-
ordering the transistors in the critical path. Simulation
results show that there is major reduction in power
consumption (8% - 40%) and an 18.9% improvement in
power-delay product. The proposed design displays high
performance at variable load, supply voltage and
operating speeds.

1. Introduction

Research shows that timing elements such as flip-flops
and latches constitute of almost 30-40% of the integrated
system. Reducing power consumption in this fraction can
lead to significant power savings in the total system.
These timing elements are driven by clock signal(s) for
controlling their operation and their performance depend
heavily on it. As clock speed is increased, flip-flops are
plagued with high power dissipation and clock skew
effects. Also, they should be able to satisfy various timing
constraints [1] like setup and hold time and data to output
latency while keeping power consumption to the
minimum possible. A detailed analysis for the selection of
an appropriate master-slave flip-flop for high-
performance and low power is presented in [2]. The effect
of electrical load on delay and power consumption for
flip-flop characterization to avoid sub-optimal selection
has been shown to be vital in [3]. In [4], they present an
analysis of low-energy flip-flops. These studies show that
the most commonly used design techniques are
conventional master-slave latch-pairs and pulse-triggered
latches. Most of the recently reported flip-flops using
these design techniques deal with the possibility of a trade
off between speed and power consumption. In this paper,
we present an enhanced version of the hybrid-latch flip-
flop (HLFF) to achieve low-power operation without any
reduction in speed of operation. The paper is organized as
follows: Section 2 discusses the present flip-flop designs
and their disadvantages. In section 3, we discuss in detail
the working of the HLFF and its weak points. In section 4

we present our proposed design and section 5 presents the
analysis criterion used to analyze the proposed design.
Simulation results follow next. Section 7 concludes the
paper.

2. Existing Flip-Flop Design

The most commonly used flip-flops for implementing
high-performance digital systems are the HLFF [5], sense
amplifier-based flip-flop (SAFF) [6] and transmission-
gate flip-flop (TGFF) [7]. All of them possess qualities
like small D-to-Q delay, capability to absorb clock skew
and embedding logic functions into themselves to reduce
pipeline stage. The main disadvantage of these designs is
that they are inefficient in power consumption. This is
attributed to the unwanted internal transitions i.e.
charging or discharging of internal nodes even when there
is no useful work being done. These unnecessary
transitions lead to considerable increase in power
expenditure of the flip-flops. The internal power
dissipation may be more pronounced for a specific input
pattern. This may be attributed either to the working
principle or its structure. Some of these flip-flops like
HLFF have master-slave configuration in which the
master is dynamic and slave is static. The internal
transitions in such a case are the precharging and
discharging or the internal nodes in the dynamic structure
for every clock cycle. In TGFF, considerable power
consumption occurs due to heavy clock load and its
feedback path. Even when the input switching activity is
low, it accounts for a large portion of power consumption.
SAFF has a differential structure; every clock cycle, there
is a transition in one end of the structure regardless of the
input. Each of the above design is suitable for certain
application depending upon the availability of power and
the speed requirements. A trade-off has to be made
considering the best option.

3. Hybrid-Latch Flip-Flop

The HLFF has two stages, first stage is a dynamic

master stage and second stage is a static slave stage. The
clock (clk), delayed clock (clkd) and data input (D) are
fed to the PMOS-transistors P1, P4 and P3 respectively
(see Fig. 1). The node X is pulled high when either of
these is a low. Essentially, the first stage is a three input
NAND-gate. In the second stage, clk and clkd together
contribute in latching onto X and its complement is

15 look ing.forward

passed to the output Y. Consequently, the string of
NMOS-transistors N4, N5 and N6 act as an inverter.

clk

D

X Y Qb

N3

N2

N1

P1

N6

N5

N4

P2 P3 P4

Figure 1. Hybrid-Latch Flip-Flop (HLFF).

Now, consider the case when clk is low and D remains

at high i.e. same as previous cycle. So at the output, there
is a low and at node Y there is a high. The transistor P1 is
ON and precharges to a high making the P2 OFF and N5
ON in the slave stage. The internal node X is at high. Due
to this, the input is completely isolated from the output.
Now, when the rising-edge of the clock signal appears, it
makes P1 OFF and N4 ON. The clkd signal connected to
N6 keeps it ON for some time. During this time, the pull-
down path to ground in the first stage is completed
thereby pulling down node X to low. This causes N5 to
break the pull down path in the second stage latching the
correct output. If the input D remains high, then there is
an alternate charging and discharging of the internal node
X. This causes unnecessary power-dissipation when no
real work is being done.

Also note that the NMOS-transistor N4, which is the
clocked NMOS-transistor at the second stage, causes
down shoot at the output at each clock cycle if the output
stays high. This happens due to a completed path between
ground and node Y i.e. N4, N5 and N6 are all ON
simultaneously for a short period of time. As a result, a
glitch in the output is produced which can be distinctly
noticed in the output waveforms (see Fig. 3). These
glitches not only can cause functional failure at a later
cascaded stage but also contribute to the redundant power
dissipation at every clock cycle.

4. Enhanced HLFF (E-HLFF)

HLFF has a semi-dynamic structure where the first

stage i.e. the master stage is dynamic and the second stage
i.e. the slave stage is static. As mentioned earlier, in the
dynamic stage, there is an alternate precharge and
discharge occurring every clock cycle. This happens
regardless of an output transition causing unnecessary
power loss. This is taken care of by the removing the
PMOS transistors that switch every clock cycle i.e. P1
and rearranging the first stage (see Fig. 2).

Now, consider the case when clk is low and D remains
high. So at the output, there is a low and at node Y there

is a high. The PMOS-transistor P1 is now OFF because of
the rearranged inputs. Depending upon the previous cycle,
the internal node X maybe at any logic level. Before the
rising edge is encountered, the input is completely
isolated from the output. Now, when the rising-edge of
the clock signal appears, it makes N1 ON. The delayed
clock signal connected to N3 keeps it ON for some time
and N2 is already ON due to high D input. The pull-down
path to ground in the first stage is completed thereby
pulling down node X to ground if it was high and
maintaining low if it was low previously. Node X makes
P2 ON delivering a high at node Y latching the correct
output. During this cycle, there is no unnecessary power
dissipation. Even if the input remains constant, there is no
alternate charging and discharging of the internal node X.
This prevents the E-HLFF to make unnecessary power-
dissipation when no real work is being done.

clk

D

X Y Qb

N3

N2

N1

P3

N6

N5

N4

P2

N6

Figure 2. Enhanced HLFF (E-HLFF).

Clk

D

XHLFF

QHLFF

PHLFF

XE-

HLFF

QE-

HLFF

PE-

HLFF

Figure 3. Output waveforms for HLFF and E-HLFF.

Also note that now the NMOS-transistor N5 does not

become ON because the node X is not precharging at
every clock pulse. Although N4 is ON at rising edge and
N6 is ON because of the delayed clock, a completed path
between ground and node Y is not possible. The resulting
output is glitch free with considerable saving in power
consumption. Note that rearranging the input stage does
not change either the clock load or the input load. There is
no loss in operating speed after these modifications.

16 look ing.forward

These results can be graphically verified by the
waveforms generated for each design (see Fig. 3). For
HLFF, when input remains high, there is internal
switching at node XHLFF (circled region in figure). Also
note the presence of glitches in the output QHLFF. For the
same input pattern, there are no redundant transitions at
node XE-HLFF and no output glitches. The cumulative
effect can be noted by comparing the spikes in PHLFF &
PE-HLFF. Every power spike at the rising edge is bigger
than the spike in the E-HLFF. These waveforms also
highlight the noise-tolerant [9] behavior of this design.
The noise spikes present at the clock and D inputs do not
affect the output levels at any time. As compared to the
HLFF, the E-HLFF displays more noise-tolerance.

5. Analysis Criterion

5.1. Power Considerations

Power consumption of a circuit depends strongly on

the structure and statistics of the applied inputs. As shown
earlier, the structural changes made in HLFF effect the
power consumption. To make a fair comparison, we
conduct power measurements using data patterns
comprising the worst, average and best cases for
switching activity. We use three different input patterns.
Assuming uniform data distribution, the first pattern is a
32 cycle pseudorandom input pattern comprising of
‘11111111001100110000000010101010’ [2]. ‘1111...’
and ‘0000...’ represent a switching activity of 0, ‘0011...’
represents a switching activity of 0.5 and ‘1010...’
represents a maximum switching activity of 1. The second
pattern used is a 96-clock cycle input pattern. The first 16
cycles input is low and for next 16 cycles, input is high.
Then on, the input changes every single cycle, every two
cycles, every four cycles and every 8 cycles, each for 16
cycles [8]. The last sequence is a random input pattern.
These input patterns are shown in Figure 4.

5.2. Timing Considerations

In this paper, we investigate the timing characteristics

of the flip-flop designs by measuring the clock-to-output
delay (DCQ) and the data-to-output delay (DDQ). Both, DCQ
and DDQ are calculated for the low-to-high (0-1) and high-
to-low (1-0) transitions and the bigger value is kept. For
optimum measurement of the DDQ delay, we find the
minimum power consumption at a target DDQ delay. The
transistors are sized using TILOS algorithm [10] and
parasitic information is included in the netlist. There can
be many resultant transistor sizes achieving the target DDQ
but one with least power consumption is picked. This is
repeated for a wide range of DDQ values starting from
200ps going down to 120ps.

5.3. Load Considerations

Flip-flops are abundantly used in the critical paths of a
system thereby making their performance vital towards
system performance. However, to avoid sub-optimal
selection of a flip-flop design for a specific application,
studying the effect of absolute load on the performance is
important [3]. Here, we study the effect of variable load
on the power consumption and DCQ for the HLFF and E-
HLFF. The designs are optimized at a given load for
minimum power-delay product and this is repeated for a
wide range of loads (2.0fF to 16fF).

(a)

(b)

Figure 4(a). 96 cycle test input. (b) Random test input.

clk

D
Qb

Flip-Flop
under test Cload

5

3

12

5

5

3

9

5

Figure 5. Simulation testbench.

6. Simulation Setup and Results

All the circuits are implemented using MAGIC 7.1
layout tool, extracted using TSMC 0.18-µ technology and
simulated using HSPICE. All simulations were carried out
with 1.8v Vdd at a temperature of 25°C. To simulate real
environment, we use input buffers for both the clock and
data inputs. The size of these buffers is so chosen that
there is sufficient signal distortion expected in an actual
circuit. The simulation testbench used is shown in Fig. 5.
Note that the power consumption results are inclusive of
the power consumed by the input buffers. Since a
comparison is being made, it is fair to have this overhead
added to both the compared configurations. A constant
output load of 5.6fF (equivalent to 14 inverters in 0.18 µ
technology) is used for power and delay measurements.

The simulation results for power-consumption, DCQ
and power-delay product are compiled in Table 1. At an
average, for wave 1 and 2, there is a 19% power saving in
the E-HLFF as compared to HLFF. This reduction is
achieved solely due to the prevention of the alternate
precharging and discharging. The E-HLFF demonstrates a
saving of 39.8% when input sequence is ‘1111...’. This is
due to the internal switching at node X for every clock

17 look ing.forward

cycle. E-HLFF shows an improvement of 8.5% when the
input is ‘0000...’. It is low because there is no internal
switching activity in either design. The power saving
comes from the transistors removed from the HLFF.
Under maximum activity, the E-HLFF shows 8.1% power
saving. At a switching activity of 0.5, the E-HLFF
exhibits a saving of 22.6%. For the whole input pattern,
there is an average saving of 21%. These results are
shown in Fig. 6.

Table 1: Simulation results at 1.8v Vdd and 5.6fF load.

 HLFF E-HLFF
 Wave 1 Wave 2 Wave 1 Wave 2
P (µW) 21.09 21.84 17.05 18.07
DCQ (ns) 2.331 1.288 2.317 1.271
PDP (nJ) 49.16 28.13 39.51 22.97

Wave 1: 96 cycle input pattern. Wave 2: Random input pattern.

As observed from Table 1, for both input patterns,

there is insignificant change in the delay values (less than
1%) in fact the E-HLFF shows slightly better delay
characteristics than its counterpart. This negligible change
in the delay is attributed to the removed transistors. Since
these transistors did not constitute the critical path they do
not affect the delay value by a large amount. Fig. 7 also
shows the DDQ vs power-consumption results. The curve
for E-HLFF lies above (18% saving) the curve for HLFF
showing that the E-HLFF is capable of delivering a
constant power saving at different operating speeds.
Owing to its structural properties, this behavior is
predicted to be similar even at higher speeds and lower
DDQ delays ranging down to 20ps. For variable loads, the
E-HLFF exhibits better performance both in terms of
power and delay displaying a constant improvement for a
wide range of load values. The behavior of E-HLFF over
a wide range of operating voltages (0.6v – 3.3v) is
determined in terms of power and delay (see Fig. 7).
These results strengthen the observation that the E-HLFF
is capable of delivering higher performance for a wide
range of operating speeds, loads and supply voltages.

7. Conclusion

We have presented an enhanced design based on the

HLFF. The enhancement was achieved by structural
modification made to the standard design. These changes
prevented the undesired internal switching at every clock
cycle when no useful work was done. The E-HLFF shows
an improvement of 8% - 40% in power-consumption
without any noticeable loss in operating speed. There is
an average improvement of 18.9% in the power delay
product of the E-HLFF. These improvements are constant
over a wide range of operating speeds, loads and supply

voltages making the E-HLFF advantageous in many
conditions depending upon the application.

8. Acknowledgements

The authors acknowledge the support of the U.S.

Department of Energy (DoE), EETAPP program,
DE97ER12220 and the Governor’s Information
Technology Initiative.

9. References

[1] N. Nedovic, M. Aleksic and V. Oklobdzija, “Timing
characterization of dual-edge triggered flip-flops,” in
Proc. Intl. Conf. on Computer Design, Austin, Texas,
2001, pp 538–541.

[2] V. Stojanovic and V. Oklobdzija, “Comparative
analysis of master-slave latches and flip-flops for high-
performance and low-power systems,” IEEE Jnl. of Solid-
State Circuits, Vol: 34, Issue: 4, Apr1999, pp 536-548.

[3] S. Heo and K. Asanovic, “Load-sensitive flip-flop
characterization,” in Proc. IEEE Computer Society
Workshop on VLSI, Orlando, Florida, 2001, pp 87-92.

[4] D. Markovic, B. Nikolic and R. Brodersen, “Analysis
and design of low-energy flip-flops,” in Proc. Intl. Symp.
on Low Power Electronics and Design, Huntington
Beach, California, 2001, pp 52-55.

[5] H. Partovi, et al., “Flow-through latch and edge-
triggered flip-flop hybrid elements,” in International Solid
State Circuits Conference, Digest of Technical Papers,
February 1996, pp 138-139.

[6] F. Klass, “Semi-dynamic and dynamic flip-flops with
embedded logic,” in Symposium on VLSI circuits, Digest
of Technical Papers, June 1998, pp 108-109.
[7] G. Gerosa et al., “A 2.2 W 80Mhz superscalar RISC
microprocessor,” IEEE Journal of Solid State Circuits,
vol. 29, Dec. 1994, pp. 1440 – 1452.

[8] T. Darwish and M. Bayoumi, “Reducing the switching
activity of modified saff flip-flop for low power
applications,” Proc. 14th Intl. Conf. on Microelectronics,
Beirut, Lebanon , 2002, pp 96-99.
[9] S. Goel, T. Darwish and M. Bayoumi, “A novel
technique for noise-tolerance in dynamic circuits,” Proc.
IEEE Comp. Society Annual Symp. on VLSI, Tampa,
Florida, 2003, pp 203-206.

[10] J. Fishburn, A. Dunlop, "TILOS: A posynomial
programming approach to transistor sizing", Proc. IEEE
Int. Conf. Computer-Aided Design, 1985, pp 326-328.

18 look ing.forward

0

2

4

6

8

10

12

14

00000000 11111111 11001100 10101010 whole
patternInput Data Pattern

P
ow

er
 C

on
su

m
pt

io
n

(m
ic

ro
W

)
HLFF

E-HLFF

Power vs DQ Delay

0

10

20

30

40

50

100 140 180 220
DQ Delay (ps)

P
ow

er
 C

on
su

m
pt

io
n

(m
ic

ro
W

)

HLFF

E-HLFF

C-to-Q Delay vs Vdd

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3
Supply Voltage (V)

C
-to

-Q
 D

el
ay

 (n
s)

HLFF

E-HLFF

Power-Consumption vs Vdd

0

10

20

30

40

50

60

70

80

90

0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3

Supply Voltage (V)

Po
w

er
-C

on
su

m
pt

io
n

(m
ic

ro
W

)

HLFF

E-HLFF

Load vs CQ Delay

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20
Output Load (fF)

C
Q

 D
el

ay
 (n

s)

HLFF

E-HLFF

Load vs Power-Consumption

10

20

30

0 5 10 15 20
Load (fF)

Po
w

er
 C

on
su

m
pt

io
n

(m
ic

ro
W

)

HLFF

E-HLFF

Figure 6. Simulation results comparing the HLFF with the E-HLFF for different input patterns, output loads, supply

voltages and operating speeds.

19 looking.forward

A method to detect metamorphic computer viruses

Moinuddin Mohammed and Arun Lakhotia
{mxm1110, arun} @cacs.louisiana,edu

Software Research Laboratory

Center for Advanced Computer Studies
University of Louisiana at Lafayette

ABSTRACT

Metamorphic computer viruses programmati-
cally vary their instructions to create a different
form for each infection. This is done using code
evolution techniques, such as, introducing dead
code, reordering statements, reshaping expres-
sions, and changing variable names. Current
anti-virus technologies use signature, a fixed
sequence of bytes, from a sample of a virus, to
detect its copies on a user’s machine. This tech-
nique does not work very well with metamorphic
viruses since two versions of a metamorphic
virus may have very little in common. This paper
presents a method to transform different variants
of a metamorphic virus to the same form, called
the zero form. Current technologies can be im-
proved to detect metamorphic viruses by using
the zero form of a virus, and not the original ver-
sion, for extracting signature.

Keywords: Computer virus detection, metamor-
phic computer viruses, anti-virus technology,
compiler optimizations, program transforma-
tions.

1 Introduction
Computer security is an important concern for
any organization that uses computers, which in
today’s world leaves out very few organizations,
if any. A compromise in computer security can
cause severe losses in terms of sensitive informa-
tion, money, time, and reputation of the organi-
zation. Most common and damaging security
attacks are done using programs called computer
viruses and worms. These are computer pro-
grams that can rapidly spread from one machine
to another. They spread by exploiting some
weakness in the existing programs on a com-
puter, or weakness in the security policy of an
organization, or by simply fooling the user into
executing the programs. Damages caused by
viruses and worms are estimated to be in billions

of dollars. For example, CodeRed II worm is
estimated to have caused damages in excess of
$2.6 billion [15].

The number of virus and worm attacks is in-
creasing at an alarming rate. The number of
known viruses was about 70,000 in 2002, which
is 700% more than the number of known viruses
in 1997 [3, 12]. This enormous increase can be
attributed to the increasing use of Internet. As the
number of machines on the Internet increases, so
does the number of target hosts that can be ex-
ploited. The most common exploit is to transmit
a virus by email. In addition, hackers also exploit
the Internet to connect to remote, compromised
machines to initiate an attack. They also use
compromised machines to give commands to
viruses on other compromised machines. Using
compromise machines help a hacker in hiding
his/her identity.

Though viruses and worms are very complex
computer programs, it is not very difficult to
write a virus. The recipe for writing such pro-
grams is abundantly available on the Internet.
There is no need to write these programs from
scratch. The simplest method is to modify an
existing virus to generate a new one. One does
not need to be a programmer to write a virus
either. There are many virus generation tools
available on the Internet [14]. Using these tools
creating a new virus is as easy as selecting its
lethality from a menu of options and clicking
“ok”.

Current AV technologies use virus signature, a
sequence of bytes extracted from a sample of a
virus, to detect copies of that virus. Thus they
can detect a virus if the virus signature extracted
in the laboratory of the AV Company is found in
a program on user’s desktops.

It has been observed before that detecting
whether a given program is a virus is an unde-
cidable problem. A problem is undecidable if a
computer (or a network of computers) cannot

20 looking.forward

solve it no matter how fast the computer(s) may
be. AV technologies are thus limited by this
theoretical result. While they can detect a spe-
cific virus that is known a priori to the technol-
ogy, they cannot always detect whether an arbi-
trary program is a virus.

Virus writers exploit this inherent limitation of
AV technologies. If a virus is written such that
two instances of the virus do not have the same
signature, then the virus can evade detection.
This is precisely what metamorphic viruses do.
A metamorphic virus can modify its own pro-
gram as it spreads from one host to another [4, 7-
10]. The child virus, the one on the newly in-
fected host, may not have the same sequence of
bytes as the parent virus. Hence the same signa-
ture cannot be used for detecting such viruses.

The experiments conducted by Christodorescu et
al. [1] suggest that commercial anti-virus soft-
ware fails to detect morphed virus variants, the
virus variants obtained by changing the program
text without changing the virus behavior. If anti-
virus were to detect metamorphic viruses using
signature scanning approach, they would need to
maintain signatures for all possible variants of
the metamorphic viruses. This approach is infea-
sible as the number of signatures to be main-
tained is too high. More sound methods need to
be developed.

In this paper, we present a strategy for augment-
ing current AV technologies to detect metamor-
phic viruses. They key contribution is a sequence
of transformations called zeroing transforma-
tions to nullify the effect of the code modifica-
tions performed by a metamorphic virus. Zeroing
transformations are used to map any program to
a zero form, a single-unique form for all variants
of a program created using modifications applied
by known metamorphic viruses. The name zero-
ing transformations is derived from number zero.
Multiplication of any real number with zero al-
ways results in zero. Similarly, application of
zeroing transformations on programs result in the
zero forms of programs.

The zero form of a program may be used in the
laboratory of an AV company to generate a zero
signature. The zero signatures may be distributed
to the AV scanners on user’s desktops. The
scanners may also convert a program to a zero
form and then match the zero signatures. Since
variants of a metamorphic virus will have the
same zero form, this method improves the ability

of AV technologies in detecting metamorphic
viruses. Moreover zero signatures reduce the
overhead of maintaining a separate signature for
every variant of a virus.

The rest of the paper is organized as follows.
Section 2, introduces metamorphic viruses and
describes the transformations applied by cur-
rently known metamorphic viruses. Section 3
outlines our method for creating a zero form of a
program. This method may be used in AV tech-
nologies to generate zero signatures. Section 4
presents the related work. Section 5 gives the
conclusion and future work.

2 Metamorphic Viruses
A computer virus is a program that infects a host
program with its malicious code [2]. The in-
fected host program when executed further
spreads the infection to other host programs.
Metamorphic viruses are viruses that alter their
instructions before spreading to a host. These
viruses change their instructions without chang-
ing their behavior.

Figure 1 gives a diagrammatic representation of
the working of a metamorphic virus. The varying
shapes in the Figure 1 suggest different variants
of the same virus. The transformations that the
virus applies to change its program code (shape)
without changing its behavior are called morph-
ing transformations.

Definition Variant of a virus: A variant of a vi-
rus V is a virus V’ where V, V’ have same be-
havior but have some difference in the code.

Virus
Variant -3

Virus
Variant -1

Virus
Variant -2

M M

S1 S2
S3

Legend

M – Morphing transformations
{S1, S2, S3} – Virus Signatures

Virus
Variant -3

Virus
Variant -1

Virus
Variant -2

M M

S1 S2
S3

Legend

M – Morphing transformations
{S1, S2, S3} – Virus Signatures

Figure 1: Metamorphic viruses

21 looking.forward

Definition Morphing Transformations: Morph-
ing transformations are the transformations that
when applied to a virus yields a variant of that
virus. These transformations change the shape of
a virus, but do not change its behavior.

Definition Morpher: The part of virus program
logic, responsible for generating different vari-
ants of the virus using morphing transformations,
is referred to as morpher.

Definition Metamorphic virus: Metamorphic
virus is a virus that carries a morpher with itself
to generate a variant for each infection.

2.1 Morphing transformations
Common morphing transformations used by vi-
rus writers are: dead code insertion, variable re-
naming, statement reordering, expressions re-
shaping and break & join transformations. This
section discusses these transformations.

2.1.1 Dead code insertion

Dead code is the part of program code that is
either not executed in the program or has no ef-
fect on results of the program. Addition of such
code to a program doesn’t change its behavior.

Figure 2 shows an example of dead code inser-
tion. Adding dead-code-1, dead-code-2 and
dead-code-3 to V1 creates V2, a morphed variant
of V1. Similarly, addition of dead-code-4 and
dead-code-5 to V2 creates V3. All the three vari-
ants, V1, V2 and V3, have same behavior. If AV
software uses the sequence of bytes correspond-
ing to the instructions xor edx, edx and div ecx as
the virus signature, the morphed variants V2, and
V3 will get undetected as dead-code-2 is inserted
after xor edx, edx.

2.1.2 Variable Renaming

Variable renaming transformation changes vari-
ables’ names by changing all the instances of a
variable with a new name. Morphed variants
created by variable renaming have the same be-
havior, as this transformation doesn’t change the
program behavior.

Figure 3 shows an example of variable renaming
transformations. The example code segment
shown in Figure 3 is in assembly language. Re-
naming variables corresponds to renaming regis-

ters in assembly language. Instructions in vari-
ants V1, V2 and V3 differ in their usage of regis-
ters. The register edx is renamed to eax from V1
to its morphed variant V2. If the signature for V1
has edx in its byte sequence, its morphed variants
V2 and V3 will not be detected using that signa-
ture.

2.1.3 Break & Join Transformations

Break & Join transformations break a program
into pieces, select a random order of these
pieces, and use unconditional branch statements
to connect these pieces such that the statements
are executed in the same sequence as in the
original program.

….
mov eax, V_S - 1
nop
add eax, ecx
sub ebx, 0
xor edx, edx
add eax, 0
nop
div ecx
nop
mul ecx
push eax
….

….
mov eax, V_S - 1
add eax, ecx
xor edx, edx
div ecx
mul ecx
push eax
….

….
mov eax, V_S - 1
nop
add eax, ecx
xor edx, edx
add eax, 0
div ecx
nop
mul ecx
push eax
….

D

Legend

D => dead code inserion
{V1, V2, V3} => virus variants

V1

V2

V3

D

….
mov eax, V_S - 1
nop
add eax, ecx
sub ebx, 0
xor edx, edx
add eax, 0
nop
div ecx
nop
mul ecx
push eax
….

….
mov eax, V_S - 1
add eax, ecx
xor edx, edx
div ecx
mul ecx
push eax
….

….
mov eax, V_S - 1
nop
add eax, ecx
xor edx, edx
add eax, 0
div ecx
nop
mul ecx
push eax
….

D

Legend

D => dead code inserion
{V1, V2, V3} => virus variants

V1

V2

V3

D

Figure 2: Dead code insertion

22 looking.forward

Figure 4 shows an example of break and join
transformation. The order of statements in V2 is
different from the order in which these state-
ments appear in V1. Unconditional branch

statements (GOTO statements) are used to con-
nect these pieces so that the statements in V1 and
V2 are executed in the same order.

2.1.4 Expression Reshaping

Generating random permutations of operands in
expressions with commutative and associative
operators reshapes expressions in programs. This
results in a change in the structure of expression.
Expression reshaping doesn’t change the behav-
ior of the program.

Figure 5 shows an example of expression reshap-
ing transformations. The expression x*100+2 in
V1 is reshaped to 2+x*100 in V2. Behavior of
the variants V1, V2, and V3 remains same. If the
virus signature of V1 includes the expression

….
push ecx
mov ecx, esi
mov edi, 000Ah
add ecx, edi
pop edi
….

….
push edx
mov edx, ecx
mov ebx, 000Ah
add edx, ebx
pop ebx
….

….
push eax
mov eax, ebx
mov edx, 000Ah
add eax, edx
pop edx
….

R

R

Legend

R =>variable renaming transformations
{V1, V2, V3} => virus variants

V1

V2

V3

….
push ecx
mov ecx, esi
mov edi, 000Ah
add ecx, edi
pop edi
….

….
push edx
mov edx, ecx
mov ebx, 000Ah
add edx, ebx
pop ebx
….

….
push eax
mov eax, ebx
mov edx, 000Ah
add eax, edx
pop edx
….

R

R

Legend

R =>variable renaming transformations
{V1, V2, V3} => virus variants

V1

V2

V3

Figure 3: Variable renaming

B

statement-1
statement-2
statement-3
statement-4
statement-5
statement-6

goto L1
L3:
statement-3
goto L4
L1:
statement-1
statement-2
goto L3
L5:
statement-5
goto L6
L4:
statement-4
goto L5
L6:
statement-6

Legend

S=> break & join transformations

{V1, V2} => virus variants

V2

V1

B

statement-1
statement-2
statement-3
statement-4
statement-5
statement-6

goto L1
L3:
statement-3
goto L4
L1:
statement-1
statement-2
goto L3
L5:
statement-5
goto L6
L4:
statement-4
goto L5
L6:
statement-6

Legend

S=> break & join transformations

{V1, V2} => virus variants

V2

V1

Figure 4: Break & Join Transformations

….
if (i < b * a * c)
{

a = 100 * x + 2;
b = i * 10;
c = b+ y * a;
i = a + c + b;

}
….

….
if (i < a * b * c)
{

a = x * 100 + 2;
b = 10 * i;
c = y * a + b;
i = a + b + c;

}
….

….
if (i < a * b * c)
{

a = 2 + x * 100;
b = 10 * i;
c = a * y + b;
i = b + c + a;

}
….

S

S

Legend

S => expression reshaping
{V1, V2, V3} => virus variants

V2

V3

V1

….
if (i < b * a * c)
{

a = 100 * x + 2;
b = i * 10;
c = b+ y * a;
i = a + c + b;

}
….

….
if (i < a * b * c)
{

a = x * 100 + 2;
b = 10 * i;
c = y * a + b;
i = a + b + c;

}
….

….
if (i < a * b * c)
{

a = 2 + x * 100;
b = 10 * i;
c = a * y + b;
i = b + c + a;

}
….

S

S

Legend

S => expression reshaping
{V1, V2, V3} => virus variants

V2

V3

V1

Figure 5: Expression Reshaping

23 looking.forward

x*100+2, V2 and V3 will not be detected by AV
software.

2.1.5 Statement Reordering

Statement reordering transformation reorders
statements in a program such that the behavior of
the program doesn’t change. It is possible to re-
order statements iff there are no dependences
between the statements being reordered [6]. If
the virus signature includes bytes corresponding
to a statement from this set of reorderable state-
ments, application of statement reordering trans-

formation makes the original virus signature use-
less for morphed variants.

Figure 6 shows an example of statement reorder-
ing transformations. Statements a=y*i, b=200*i,
and a=x*y+i*z can be reordered as there are no
dependences between these statements. Selection
of random permutations of such reorderable
statements creates the morphed variants V2, and
V3.

3 Detection Approach
We now propose zeroing transformations, a set
of transformations to nullify the effect of morph-
ing transformations. Zeroing transformations,
when applied to a virus result in its zero form.
The idea is to apply these transformations on any
morphed variant of a virus to get the same form.
Figure 7 illustrates the idea of applying zeroing
transformations to create zero forms of the vi-
ruses. V1, V2, and V3 in Figure 7 are trans-
formed to Vc. AV companies can use this
method and store the virus signature extracted
from Vc instead of maintaining separate virus
signatures for V1, V2 and V3. To use these zero
signatures for virus detection, the AV software
will need to apply zeroing transformations on the
program to be checked for existence of virus
behavior. Zero forms of the programs can be
searched for zero signatures of viruses.

….
z= 100;
x = 25;
y = x +get_index();
while (i < y + z)
{

b = 200 * i;
a = x * y + i * z;
c = y * i;
i = i + 1;

}
….

….
x = 25;
y = x + get_index();
z= 100;
while (i < y + z)
{

a = x * y + i * z;
b = 200 * i;
c = y * i;
i = i + 1;

}
….

….
x = 25;
z= 100;
y = x + get_index();
while (i < y + z)
{

c = y * i;
b = 200 * i;
a = x * y + i * z;
i = i + 1;

}
….

O

O

Legend

O => statement reordering
{V1, V2, V3} => virus variants

V2

V3

V1

….
z= 100;
x = 25;
y = x +get_index();
while (i < y + z)
{

b = 200 * i;
a = x * y + i * z;
c = y * i;
i = i + 1;

}
….

….
x = 25;
y = x + get_index();
z= 100;
while (i < y + z)
{

a = x * y + i * z;
b = 200 * i;
c = y * i;
i = i + 1;

}
….

….
x = 25;
z= 100;
y = x + get_index();
while (i < y + z)
{

c = y * i;
b = 200 * i;
a = x * y + i * z;
i = i + 1;

}
….

O

O

Legend

O => statement reordering
{V1, V2, V3} => virus variants

V2

V3

V1

Figure 6: Statement Reordering

Virus
Variant -3

Virus
Variant -1

Virus
Variant -2

M M

S1 S2
S3

Legend

M – Morphing transformations
P – Zeroing Transformations
{S1, S2, S3} – Virus Signatures
Sc – Zero signature

Zero form

Sc

P
P

P

Virus
Variant -3

Virus
Variant -1

Virus
Variant -2

M M

S1 S2
S3

Legend

M – Morphing transformations
P – Zeroing Transformations
{S1, S2, S3} – Virus Signatures
Sc – Zero signature

Zero form

Sc

P
P

P

Figure 7: Detection Approach

24 looking.forward

Figure 8 shows the procedure for creating zero
form of a program. A series of transformations
are applied to the Input program. These trans-
formations include dead-code elimination [5],
constant propagation and removal of redundant
computations [5], elimination of spurious uncon-
ditional branch statements, reshaping expres-
sions to zero form, fixing an order for the state-
ments that can be reordered and renaming vari-
ables to a zero form.

For fixing an order of the statements in the pro-
gram [16], we calculate the sets of statements
that can be reordered without changing the pro-
gram behavior and order these sets using a lexi-
cographic ordering based on the syntactic repre-
sentation of the program statements, which is
independent of variable names. As our method
follows heuristics, the statement ordering gener-
ated by zeroing transformations may not always
be the same for all morphed variants of a virus.
But in practice, we observed that on an average
94% of the statements in the program could be
given a unique order.

4 Related Work
The Bloodhound technology of Symantec Inc.,
uses heuristics for detecting malicious code [13].
Bloodhound uses two types of heuristic scanners:
static and dynamic. The static heuristic scanner
maintains a signature database. The signatures
are associated with program code representing
the different functional behaviors. The dynamic
heuristic scanner uses CPU emulation to gather
information about the interrupt calls the program
is making. Based on this information it can iden-
tify the functional behavior of the program. Once
different functional behaviors are identified us-
ing the static and dynamic heuristic scanners,
they are fed to an expert system, which judges
whether the program is malicious or not. Static
heuristics fail to detect morphed variants of the
viruses as morphed variants have different signa-
tures. Dynamic heuristics consider only one pos-
sible execution of a program. A virus can avoid
being detected by a dynamic scanner by intro-
ducing arbitrary loops.

Lo et al.’s MCF [11] uses program slicing and
flow analysis for detecting computer viruses,
worms, trojan-horses, and time/logic bombs.
MCF identifies telltale signs that differentiate
between malicious and benign programs. MCF
slices a program with respect to these telltale
signs to get a smaller program segment repre-
senting the malicious behavior. This smaller
program segment is manually analyzed for the
existence of virus behavior.

Szappanos [10] uses code normalization tech-
niques to detect polymorphic viruses. Normaliza-
tion techniques remove junk code & white
spaces, and comments in programs before they
generate virus signature. To deal with variable
renaming, Szappanos suggests two methods –
first, renaming variables by the order they appear
in the program and second, renaming all the
variables in a program with a same name. For-
mer approach fails if the virus reorders its state-
ments, and the later approach abstracts a lot of
information and may lead to incorrect results. As
our approach fixes the order of the statements in
a program, the first approach suggested by Szap-
panos for renaming the variable can be used in
combination with our method.

Our work relates to the work done by Christo-
dorescu et al. [1] for detecting of malicious pat-
terns in the executables. They use abstract pat-
terns, patterns with typed variables and instruc-

Propagate constants

Eliminate dead code

Remove redundant
computations

Remove spurious unconditional
branch statements

Reshape Expressions

Fix statement order

Rename Variables

Program

Zero Form

Propagate constants

Eliminate dead code

Remove redundant
computations

Remove spurious unconditional
branch statements

Reshape Expressions

Fix statement order

Rename Variables

Program

Zero Form

Figure 8: Zeroing Transformations

25 looking.forward

tion sequences that use these typed variables, to
represent the instructions in the program. A
problem with abstract patterns is that it becomes
difficult for AV companies to distribute virus
signatures, as the virus can be reconstructed us-
ing these patterns. Their approach gives fewer
false positives but the cost of creating and
matching the abstract patters is high. They detect
the virus variants created by performing dead
code insertion, variable renaming, and break &
join transformations. Our method, in addition to
the above morphing transformations, can detect
the computer viruses that apply statement reor-
dering and expression reshaping transformations.

5 Conclusions and Future Work
We have described a method for detecting
morphed variants of the viruses. Our approach
can augment the current AV technologies such as
traditional signature scanning approach, and
other static and dynamic detection schemes. We
map different variants of a virus to one zero
form. The effectiveness of our method is deter-
mined by the effectiveness of zeroing transfor-
mations that map a program to a zero form. We
take into account dead code insertion, statement
reordering, variable renaming, expression re-
shaping, and break & join transformations.

As a future work, we like to do a more detailed
investigation on zeroing transformations that
map a program to its zero form.

6 References
[1] Mihai Christodorescu and Somesh

Jha,"Static analysis of executables to
detect malicious patterns," In 12th
USENIX Security Symposium, Washing-
ton, DC, 2003.

[2] Fredrick Cohen, "Computer Viruses--
Theory and Experiments," Computers
and Security, pp:22-35, 6(1), 1984.

[3] Jan Hruska, "Computer viruses preven-
tion : a primer," Sophos, 2002
http://www.oucs.ox.ac.uk/viruses/docu
ments/artdef.pdf.

[4] Myles Jordon, "Dealing with metamor-
phism," Virus Bulletin, pp:4-6, 2002.

[5] Robert Morgan, "Building an optimiz-
ing compiler," Butterworth-Heinemann,
1998.

[6] Fleming Nielson, Hanne Riis Nielson
and Chris Hankin, "Principles of pro-
gram analysis," Springer, 1999.

[7] Gabor Szappanos, "Polymorphic Macro
Viruses, Part One," Security Focus,
2002
http://online.securityfocus.com/infocus/
1635.

[8] Péter Ször and Peter Ferrie,"Hunting for
Metamorphic," In Procedings of the
11th International Virus Bulletin Con-
ference, pp:521-541, 2001.

[9] Vesselin Bontchev,"Macro and script
virus polymorphism," In Proceedings of
the 12th International Virus Bulletin
Conference, pp:406-438, 2002.

[10] Gabor Szappanos,"Are there any poly-
morphic macro viruses at all? (… and
what to do with them)," In Procedings
of the 12th International Virus Bulletin
Conference, pp:477-477, 2002.

[11] Raymond W. Lo, Karl N. Levitt and
Ronald A. Olsson, "MCF: a Malicious
Code Filter," Computers & Security,
pp:541-566, 14(6), 1995.

[12] Lawrence M. Bridwell, "ICSA Labs 7th
Annual Computer Virus Prevalence
Survey 2001," ICSA Labs, 2001.

[13] Symantec, "Understanding Heuristics;
Symantec's Bloodhound Technology,"
1997.

[14] VX Heavens, "Virus Creation Tools,"
2002 http://vx.netlux.org/dat/vct.shtml.

[15] David Moore, Colleen Shannon and
Jeffery Brown,"Code-Red: a case study
on the spread and victims of an Internet
worm," In 2nd Internet Measurement
Workshop, 2002.

[16] Moinuddin Mohammed, "Zeroing in on
metamorphic viruses," Center for Ad-
vanced Computer Studies, University of
Louisiana at Lafayette, 2003.

