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Dear Colleagues, 
 
We proudly present the Spring 2003 issue of 
the Looking Forward E-zine. This issue is to 
reflect the work done by the IEEE Student 
Group at The Center for Advanced 
Computer Studies (CACS) at the University 
of Louisiana at Lafayette (UL Lafayette) 
[www.cacs.louisiana.edu]. 
 
CACS is a research-oriented department of 
computer science and computer engineering, 
where the primary missions of the center are 
to conduct research and  provide graduate-
level education. 
 
One of the yearly events of CACS is the 
student paper contest, organized by the 

IEEE Student Chapter. The winners of the 
contest are announced at the annual 
graduation ceremony of the department. 
 

 



2 looking.forward  
 

CACS Director Dr. Magdy A. Bayoumi initiating the 
graduation ceremony. 
 
This ceremony includes honoring the 
Bachelor’s, Master’s and Ph.D. graduates of 
Spring 2003 semester.  
 

 
Speech from a graduating student at the ceremony. 
 

 
Students and faculty attending the graduation 
ceremony. 
 
Local business and technology leaders are 
invited as guest speakers, thereby giving a 
chance for all students to meet them and 
learn from their experiences.  
 

 
Presenting Lafayette parish industry leaders. 
 
 
This year the IEEE student chapter 
organized a poster session for the paper 
contestants, which gave them a chance to 
showcase their work.  
 

 
CACS faculty listening to a student presenting his 
work at the poster session. 
 
Award prizes were given to all the 
contestants, including high prizes for the 
first three places.  
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First prize winner at our year 2003 student paper 
contest. 
 
The ceremony also featured talented 
students playing music and therefore 
creating a relaxing atmosphere for students 
and faculty to come together. We, as the 
IEEE Student Chapter, prepared T-shirts and 
sold them for fund raising during the 
ceremony. 
 

 

Talented CACS students playing music during the 
event. 
 

 
IEEE Student Chapter officer selling T-
shirts for fund raising. 
 
The papers presented below targets the 
following fields: Algorithms, Operating 
Systems, Computer Architectures, Wireless 
Communications, and VLSI. All these fields 
are current research areas in CACS. 
 
We present selected articles from this year’s 
student paper competition in this issue. We 
hope that you find them useful. 
 
Yours sincerely, 
 
Guest Editors,  
Mohsen Shaaban and Cengiz Gunay. 
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Abstract 

We propose conditional execution technique to reduce the 
redundant switching activity of the internal nodes in flip-
flops. Double-edge clocking is utilized to further reduce 
the power consumption. With a data switching activity of 
37.5%, the new   conditional execution pulsed Flip-Flop 
(CEPFF) can achieve 12% improvement in terms of PDP. 
 

1. Introduction 
With chip frequency doubling every two years and feature 
size shrinking, power consumption becomes one of the 
main concern for high performance digital systems. Flip 
flops are used intensively across the whole chip and 
consumes considerable amount of power. 

 
Different flip-flops can be found in the literature [1-22] 
include master-slave topology and pulse-triggered 
topology, etc. For high speed applications, pulse-triggered 
flip-flops are more suitable for their small DQ delay 
properties. Pulse triggered flip-flops could be classified 
into two types: implicit pulse triggered flip-flops (ip-FF) 
such as HLFF [7], SDFF [8], ip-DCO [9] and explicit 
pulse triggered flip-flops (ep-FF) such as ep-DCO [9], 
and the flip-flops in [10] and [11]. One common property 
among most of these flip-flops is the utilization of 
dynamic structure to achieve superior performance. 
However there are large amounts of internal redundant 
switching activity that cause a lot of wasted dynamic 
power dissipation [21]. In this paper, we achieve lower 
power consumption by utilizing conditional execution 
technique which helps in reducing the switching activity, 
and double-edge triggering which maintains data 
bandwidth with lower clock frequency. This paper is 
organized as follows: Section 2 describes one pulse-
triggered flip-flop. Section 3 presents the new flip-flop 
utilizing the conditional execution power reduction 
technique. Section 4 simulates these flip-flops. Finally, 
we conclude in section 5. 

 
2. Explicit Pulsed Flip-Flops 

One example of the explicit pulsed flip-flops is the ep-
DCO flip-flop [9], Fig. 1. In the precharging phase, the 
node X is pulled up HIGH via P1. At clock pulse rising 
edge, the transistors N2 and N3 turn on, and the flip-flop 
will be in the evaluation phase. If the input data D is 
LOW, X will stay at the HIGH state and transistor N4 will 
be on which will discharge the output Q to LOW. If D is 

HIGH, X will be discharged by transistors N1 andN3. As 
a result, transistor P2 turns on and pulls Q to the HIGH 
state. When clock is low, N3 and N2 are off, the 

discharging paths are disabled, and the flip-flop is in hold 
mode.  

Figure 1: Explicit-Pulsed triggered Flip-flop, ep-DCO 
 
Careful analysis of the above semidynamic flip-flop 
reveals a significant amount of power being consumed by 
charging and discharging the internal node X even when 
the input D is stable HIGH and these internal activities do 
not produce useful operation. Glitches appear at the 
output that would cause noise problem. To tackle this 
problem, we propose conditional execution flip-flop. 
 

3. Proposed Conditional Execution Flip-Flop 
Conditional Execution Technique is proposed in this 
paper: an NMOS transistor controlled by Qb is inserted in 
the discharge path of the stage with the high switching 
activity.  

 
The proposed explicit pulsed Conditional Execution Flip-
Flop is shown in Fig. 2.  The latching part, which is made 
of two stages, is activated only during a small window of 
time (called sampling window) the width of which is 
specified by the topology of the pulse generator.  The 
double edge pulse generator [9] was utilized to further 
reduce the power consumed on the clock tree and the 
clocked transistors in the pulse generator. The flip-flop 
associated with this double edge pulse generator will have 
the same data throughput as that of the flip-flop 
associated with a single edge pulse generator at only half 
the frequency of the single edge flip-flop. The power 
saved in the clock distribution network is not included 
when we compare the power consumption. Although the 
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input load is increased, significant savings in the overall 
power is expected. 
 
The first stage of the latching part is responsible for 
capturing the LOW→HIGH transition of the input. 
Assume a LOW at D was latched in a previous cycle 
causing the output Q and Qb to be LOW and HIGH 
respectively. If later on, D undergoes a LOW→HIGH 
transition and it is captured in the sampling window, the 
internal node X is discharged, since its discharge path is 
on via CLK, D and Qb. As a result, the output node will 
be charged HIGH through PMOS transistor P2 and the 
outputs states for (Q, Qb) change from (LOW, HIGH) to 
(HIGH, LOW). Subsequently, if D stays HIGH for a long 
time, node X will only precharge to HIGH once and stays 
precharged afterwards since its discharge path is disabled 
by Qb=LOW. This precharging occurs when CLK goes 
LOW after the first transparent window which captured 
the LOW→HIGH transition on D. Unlike the flip-flops 
mentioned in section 2, this flip-flop will have no extra 
switching activity at the internal node X and thus no extra 
power will be dissipated by the new flip-flop.  
 
Stage two captures the HIGH→LOW input transition. 
Continuing with the above scenario, if D undergoes a 
HIGH→LOW and it is captured by the sampling window, 
Y will be HIGH, and N4 will be on, the discharge path of 
the second stage is enabled causing the outputs (Q,Qb) to 
change from (HIGH,LOW) to (LOW,HIGH). If D stays 
LOW afterwards, stage one will be disabled, and stage 
two will always be enabled maintaining the outputs’ states 
(LOW, HIGH). Since node X is not charged and 
discharged every clock cycle when D stays HIGH, no 
glitches associated with the clock edge appear on the 
output node Q, and thus eliminating the power consumed 
by the spurious glitches.  
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Figure 2: Proposed Conditional Execution pulsed Double-Edge 

Triggered Flip-Flop  
 

One of the drawbacks of the conditional execution 
technique is adding one transistor to the NMOS stack of 
the first stage of the above flip-flop. But as X need only 
drive one PMOS transistor in the flip-flop, the external 
capacity load of the X node is lowered; hence alleviating 
the negative effect of the increasing stack on delay. 

 
 

4. Simulation Results 
The simulations were done in 1.8-V, 0.18-µm CMOS 
technology at room temperature using HSPICE. The value 
of the capacitance load at Q is selected to simulate a fan 
out of fourteen standard sized inverters (FO14) [17].  The 
setup used in our simulations is shown in Fig. 3, we have 
supplied D with 16-cycle pseudorandom input data with 
activity 37.5%.  A Clock frequency of 250 MHz is used 
for single edge triggered ep-DCO flip-flop, whereas a 125 
MHz frequency is used for double edge triggered CEPFF. 
Circuits were optimized for minimum power delay 
product, PDP. The minimum D-to-Q delay [22] is 
obtained by sweeping the 0→1 and 1→0 data transition 
times with respect to the clock edge and the minimum 
data to output delay corresponding to optimum setup time 
is recorded. This optimization methodology is mainly 
from[9].  

 
Table 1 shows the minimum D-to-Q propagation delays, 
average power consumption, and power-delay-product 
(PDP) for several   flip-flops at target D-to-Q delay about 
140ps.  PDP is reduced in the case of CEPFF by 12% 
comparing with ep-DCO. CEPFF can have the pulse 
generator shared by other flip flops to distribute the pulse 
generator overhead.  

FlipFop
Under Test

D

CLK

Q

CLoad

 
          Figure 3: Setup for simulations 
 
Table 1: Comparison of number of transistors, minimum DQ delay, 
average power and PDP. 

 No. of 
Transistors 

Minimum 
DQ (ps) 

Average 
Power(uw) 

PDP (fF) 

ep-DCO 26 140 24.2 3.38 
CEPFF 30 142 21.0 2.96 
HLFF 20 140.7 23.62 3.32 
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   Figure 4: Waveforms of the proposed CEPFF  

 
Figures 4 show the waveforms of the proposed CEPFF.    
The above proposed CEPFF is used to build a chip of 8-
bit counter and has been fabricated by 0.5um technology 
from MOSIS. Part of the chip layout is shown on Fig. 5. It 
is clear that Conditional execution technology could be 
applied to ip-DCO [9], SAFF [24], SDFF [8], etc.  

 

Fig. 5  Chip layout of the 8-bit counter built by the proposed CEPFF   
 

5. Conclusion 
In this study, the conditional execution pulsed  flip-flop 
(CEPFF ) is proposed to reduce the switching activity of 
internal node in semidynamic flip-flop. With a data switching 
activity of 37.5%, the new flip-flops can have 12% 
improvement in PDP, and eliminate glitches that associated 
with the clock coupling, so it is suitable for low power, high 
speed designs. 
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Abstract 
 
     In this paper, IP traceback problem 
over the Internet was solved by using the 
algebraic-geometric codes. Comparisons 
between the algebraic-geometric codes 
based construction and the Reed-
Solomon codes based construction show 
the feasibility of the AG code based 
construction. 
 
1. Introduction 
 
    One of the major problems on the 
Internet today is the denial of service 
(DoS) attack against machines and 
networks. Most DoS attacks are 
characterized by a flood of packets with 
spoofed addresses. Finding the source of 
these spoofed packets, which we call the 
IP traceback problem, is amongst the 
hardest security problems to address. 
 
    Most prior attempts to solve the IP 
traceback problem can be described by 
tracing attacks back towards their 
origins, in hopes of stopping attackers at 
the source [6-8]. This approach tries to 
find out the path information of 
attacking packets in near real-time, 
thereby controlling the attacks at far 
routers. We will review the related work 
in Section 2. 
 
    In this paper, we attempt to find a 
mathematical expression for algebraic-

geometric codes solution to the 
polynomial reconstruction problem, 
which is the key step for the IP traceback 
problem over the Internet. Also, how to 
reduce the overhead in the IP header is 
proposed and analyzed in this paper. The 
result in this paper shows that our 
scheme can not only be implemented for 
today's routers, but also can be extended 
for future use whenever the router IP 
address need to be enlarged to 48 bits. 
 
2. Related work 
 
    There have been several efforts to 
fight against the DoS attack[2-8]. All 
these efforts are different in terms of the 
management cost, additional network 
load, overhead on the router, ability to 
trace multiple simultaneous attacks, 
ability of tracing attacks after they have 
completed, and whether they are 
preventive or reactive. Considering the 
actual situation of today's Internet, we 
will focus on tracing back the attacking 
packets. 
 
    Tracing packets back to their physical 
source can be done manually by 
contacting an ISP and having it test each 
link to determine if a large number of 
packets are traversing the link destined 
for the victim network [3]. This method 
requires significant cooperation and 
attention from all the intervening 
ISPs(Internet Service Provider), which 
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has proven to be a problem over the 
Internet. Burch and Cheswick proposed 
a method of controlled flooding [3], in 
which the victim floods in a tree-like 
manner during the attack in order to 
check the correlation of the flooding 
with the attack. Hence the victim is able 
to gather information about the sources 
of the attacks. But this approach can 
apply only to on-going attacks. In [4], a 
scheme is suggested which logs packets 
at key routers and then use data mining 
techniques to determine the path that the 
packets traversed. In [5], the router-
generated ICMP traceback messages are 
used to find the source of attacking 
packets. Both the schemes have the 
drawbacks of potentially enormous 
resource requirements and a large scale 
inter-provider database integration 
problem. 
 
    Tracing attacking packets can also be 
achieved by marking packets with IP 
addresses probabilistically or 
deterministically [6,7]. In [6], Savage et 
al. proposed a clever path encoding 
scheme (FMS) which lets each router 
along the way probabilistically mark 
packets with path information during 
packet forwarding. The victim can 
reconstruct the complete paths after 
receiving a modest number of packets 
that contain the marking. This approach 
has a low overhead for routers and the 
network. Also, this approach allows a 
victim to identify the network paths 
traversed by the attack traffic without 
requiring interactive support from ISPs. 
In [7], two IP marking techniques are 
presented which are Advanced Marking 
Scheme and the Authenticated Marking 
Scheme. These two techniques allow the 
victim to traceback the approximate 
origin of spoofed packets with the same 
low network and router overhead as 

FMS in [6]. These two approaches are 
more efficient and accurate for the 
attacker path reconstruction under DDos. 
However both the work from [6] and [7] 
have two disadvantages: the 
combinatorial explosion during the edge 
identification step and the few feasible 
parameterizations. 
 
    In contrast to the exact traceback 
problem, which determines the exact 
attack path and the associated attack 
origin for each attacker, the approximate 
traceback problem defined in [6] finds a 
candidate attack path for each attacker 
that contains the true attack path as a 
suffix. We will continue to address the 
approximate traceback problem because 
it is possible that the exact attack origin 
used for solving the exact traceback 
problem may never be identified. 
 
3. Overview 
 
    The directed acyclic graph (DAG) 
rooted at V in Figure 1 depicts our 
example network. The root V represents 
the victim that is attacked and leaf nodes 
A={A1,A2,A3,A4} stand for attackers. 
Round nodes R = {R1, R2, R3,…,R8} 
denote routers on the way from attackers 
Ai,i=1,2,3,4 to the victim V. An attack 
path from Ai is an ordered list of routers 
between Ai and V that the attack packet 
has traversed. For example, the two 
dotted lines in Figure 1 indicate two 
attack paths (R5,R3,R2,R1) and (R7, R4, 
R2, R1). The path (R3,R5, R6, R4, R2, R1) 
will be a valid candidate for the 
approximate attacking path from attacker 
A2 to the victim V. 
 
    In [8], a new solution to the problem 
of approximate traceback is presented. 
The scheme reframes the traceback 
problem as a finite field polynomial 



reconstruction problem and uses 
techniques from algebraic coding theory 
to provide robust methods of 
transmission and reconstruction. Next, 
we will summarize the idea of the so-
called full-path encoding scheme 
discussed in [8]. 
 

 

  
    Let f(x) be a polynomial of degree d 
over the finite field GF(p), we can 
recover f(x) given f(x) evaluated at (d+1) 
unique points. Let A1,A2,...,An be the 32-
bit IP addresses of the routers on path P 
and xj be the ID for the jth packet. Let   
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which will be evaluated as the packet xj 
travels along the path P, accumulating 
the result of the computation in a 
running total along the way. When 
enough packets from the same path 
reach the destination, fP can be 
reconstructed by interpolation. That is, 
the defined polynomial can be 
reconstructed by solving the following 
matrix equation (1) over GF(p). The 
right hand side of the equation is a Reed-
Solomon codeword. As long as all the 
xj's are distinct, the matrix is a 
Vandermonde matrix (and thus has full 

rank) that is solvable in O(n2) field 
operations. 
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4. IP traceback based on AG 
codes 
 
4.1 Background on AG codes 
 
    Algebraic-geometric codes are known 
to be more efficient than Reed-solomn 
codes in many parameter ranges. They 
also offer more flexibility in the choice 
of code parameters. However, in order to 
understand AG codes, one needs an 
extensive background in algebraic-
geometry. A simpler approach, referred 
to as improved algebraic-geometric 
codes makes AG code more accessible 
[9]. 
 
    Let us consider the Hermitian curve 
x8+y7+y=0 over the finite field 
GF(72)={0,1,? ,? 2,...,? 47}. This curve 
has a total of 73 roots [9]. Improved 
geometric Goppa codes can be 
constructed from algebraic-geometric 
curves based on a well-behaving 
sequence H [9]. Next, we will show how 
to construct an improved geometric code 
from the Hermitian curve discussed 
above. 
 
    Consider the Hermitian curve 
x8+y7+y=0 over GF(72) again and let 
w(x)=7 and w(y)=8, where w(x) is the 
weight of x. A well-behaving sequence 
H is found to be: 

Fig.1 Example network layout  
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After taking a detailed look at the H 
sequence, we find that starting from the 
item x7, we can divide the rest of the H 
sequence into groups. Each group 
includes 8 items 
 

? ?765243342567 ,,,,,,, yxyyxyxyxyxyxxy i

 
for i=0,1,2,.…That is, each group is 
formed by multiplying each element of 
the previous group by y. This procedure 
continues until all the |H|=343 elements 
in the sequence are obtained. 
 
With this well-behaving sequence H, an 
improved algebraic-geometric code of 
length n=343 can be defined for 
different designed minimum distance, 
e.g. (343,338,4) code or (343, 334, 6) 
code following the Construction 2.1 in 
[9]. 
 
4.2 IP traceback based on AG code  
 
Let ))(( jP xfl  be the length of ? ?jP xf . 
From [8] we know that we can trade off 
bits for packets by splitting a router's IP 
address into c chunks. Inspired by the 
work in [8] and enriched by the fact that 
the codeword length of algebraic-
geometric codes over GF(q) are not 
limited to q, we can use algebraic-
geometric codes to construct the 
FullPath polynomial. Consequently, we 
can further reduce the bits needed to 
encode the FullPath by using algebraic-
geometric codes instead of Reed-
Solomon codes. Next we will  

demonstrate the construction with 
details. 
 
Let us once again consider the AG code 
(length 343) defined by the Hermitian 
curve x8+y7+y=0 over GF(72). Noticing 
the group repetition in the obtained H 
sequence, we take  
 

765243342567 ,,,,,,, yxyyxyxyxyxyxx  
 
as the base for our polynomial 
construction. Because the base contains 
8 elements, we split the router ID Aj into 
8 chunks as shown in Figure 2. 
 
 

 
 
Also, we divide the packet ID xj into two 
parts (xj,yj). Representing each xj or yj 
needs only half number of bits compared 
to the representation of the original xj. 
Thus, the FullPath polynomial will be 
represented as: 
 

? ? ...(, 2526170 ???? jjnjjnjnjjP yxAyxAxAyxf

???? ???
252

1
61

1
70

1
77 () jjnjjnjnjjn yxAyxAxAyyA

?????? ??? jjinjin
i
jjn yxAxAyyA 617077

1 (...)...

????? ?
? jjj

n
jjin yxAxAyyA 61

1
70

1
177 (...)...  

).... 77
1 jyA?  

 
Similar to the Reed-Solomon code based 
construction in [8], the FullPath 
information ? ?jjP yxf , , together with 
the packet ID xj will be passed on to the 
next router. An additional message 
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y_jID, which is used to indicate which of 
the 7 yjs is corresponding to the given xj 
over GF(72), is also required to 
transferred to the next router. Each 
router Ai calculates 
 

776170 ... jinjjinjin yAyxAxA −−− +++ , 
 

then multiplies it with i
jy  and adds the 

value to the accumulator. As long as 
enough (8*n in this case) packets are 
received, the polynomial ( )jjP yxf ,  can 
be reconstructed by interpolating the 
running total value. Thus the router ID 
can be retrieved. 
 
5. Discussion and Comparison 
 
Suppose l(Ak)=32 bits, which is 
reasonable for today's actual IP address, 
and l(xj)=8 bits in our analysis. If we 
consider the Hermitian curve constructed 
above (x8+y7+y=0 over GF(72) ), then 
the number of chunks we split the router 
IP address into is 8. Thus 
 

( ) 4
8
32

=



=i

kAl  

bits and  
 

( ) ( )   6log
27

2 === jj ylxl  bits, 
 
where l(xj) and l(yj) are the number of 
bits used for representing elements over 
the finite field GF(72). Consequently, 
( )  27

2log≤i
kAl  guarantees that the 

multiplication operations among xj, yj 
and ( )i

kAl  can be performed over GF(72). 
From the inequality R*(7+1)<73, which 
is used to make the scheme 
accommodate the required number R of 
routers along the way, we have R≤42. 
That is, the constructed AG code based 

IP traceback scheme can accommodate 
at most 42 routers along the way from 
the attacker to the victim, which is 
enough to fight back most of the Denial-
of-Service attacks. Totally, this scheme 
requires  

( )( ) ( ) 13)34(6, =++=++ IDyxlyxfl jjjjP

bits per packet in the packet header, 
where ( )( ) ( ) ( ){ }j

j
kjjP xlAlyxfl ,max, =  

=max{4,6}=6 bits. The second item 
comes from the fact that we divide the 8 
bits packet ID into two parts (xj,yj), pass 
only the first part 4 bits ( )jxl  and the 
corresponding yj index to the next router. 
The 4 bits ( )jxl  will be extended to 6 
bits for the polynomial calculation by 
attaching 2 zeros as the most significant 
two bits. yjID=3 because each value of xj 
corresponds to 7 values of yjs according 
to the Hermitian curve x8+y7+y=0, 
which needs 3 bits to represent. 
 
Now, let us go back to the RS code 
based scheme. In order to accommodate 
at least 42 routers, the best way is to split 
the router IP address into 4 chunks. Then 

( ) 8
4

32
=



=i

kAl  bits. Thus 

( ) ( )j
i
k xlAl ≤ =8 guarantees that the 

multiplication operation ( )i
jj Ax ∗  in the 

( )xf P  polynomial calculation can be 
performed over the finite field GF(q). 
From R*4≤28, we have R≤64. Although 
the RS code based scheme can 
accommodate more routers, it needs 

( )( ) ( ) 1688 =+=+ jjP xlxfl  bits, which 
is 3 bits more than the AG code based 
scheme. This shows an great 
improvement of the AG code based 
scheme over the RS code based scheme 
because free bits in the IP header which 
can be assigned for traceback purpose is 
extremely limited. Usually, 42 routers 
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are enough for resisting the Denial-of-
Service attacks. The increase in the 
number of routers has no great 
significance in practice. Furthermore, 
there is one more benefit for the given 
AG code based scheme. We can extend 
the router ID from 32 bits to 48 bits 
without affecting the performance of the 

scheme. Since ( ) 6
8
48

==jxl  bits is still 

less than or equal to l(xj)=6 bits, the 
scheme can work well without making 
any modification. This is a potential 
advantage for the AG code based 
scheme to be used in the future 
whenever the current 32 bits IP address 
is not enough. 
 
Conclusion and future work 
 
In this paper, we determined a 
mathematical expression required for an 
algebraic-geometric code to solve the 
polynomial reconstruction problem, i.e., 
the IP traceback problem over the 
Internet. The scheme is demonstrated by 
utilizing and illustrating several useful 
features of the improved algebraic-
geometric codes. Comparisons are made 
between the algebraic-geometric code 
based construction and the Reed-
Solomon code based construction. 
 
However, this is still an initial step in 
applying AG codes to the IP traceback 
problem. Further attempts by using the 
theoretical analysis are necessary to 
make the scheme complete from both the 
practical and theoretical point of views. 
Furthermore, a strategy which is robust 
in the presence of incorrect data or data 
from multiple paths is also urgently 
sought. 
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Abstract 
 

This paper presents an enhanced hybrid-latch flip-flop 
(E-HLFF) that achieves low-power consumption as 
compared to the hybrid-latch flip-flop (HLFF) without 
trading-off speed of operation. The technique used to 
reduce power consumption is to prevent alternate 
charging and discharging of internal nodes at every clock 
cycle when no useful work is done. This is achieved by 
restructuring the dynamic stage of the HLFF and re-
ordering the transistors in the critical path. Simulation 
results show that there is major reduction in power 
consumption (8% - 40%) and an 18.9% improvement in 
power-delay product. The proposed design displays high 
performance at variable load, supply voltage and 
operating speeds. 
 
1. Introduction 
 

Research shows that timing elements such as flip-flops 
and latches constitute of almost 30-40% of the integrated 
system. Reducing power consumption in this fraction can 
lead to significant power savings in the total system. 
These timing elements are driven by clock signal(s) for 
controlling their operation and their performance depend 
heavily on it. As clock speed is increased, flip-flops are 
plagued with high power dissipation and clock skew 
effects. Also, they should be able to satisfy various timing 
constraints [1] like setup and hold time and data to output 
latency while keeping power consumption to the 
minimum possible. A detailed analysis for the selection of 
an appropriate master-slave flip-flop for high-
performance and low power is presented in [2]. The effect 
of electrical load on delay and power consumption for 
flip-flop characterization to avoid sub-optimal selection 
has been shown to be vital in [3]. In [4], they present an 
analysis of low-energy flip-flops. These studies show that 
the most commonly used design techniques are 
conventional master-slave latch-pairs and pulse-triggered 
latches. Most of the recently reported flip-flops using 
these design techniques deal with the possibility of a trade 
off between speed and power consumption. In this paper, 
we present an enhanced version of the hybrid-latch flip-
flop (HLFF) to achieve low-power operation without any 
reduction in speed of operation. The paper is organized as 
follows: Section 2 discusses the present flip-flop designs 
and their disadvantages. In section 3, we discuss in detail 
the working of the HLFF and its weak points. In section 4 

we present our proposed design and section 5 presents the 
analysis criterion used to analyze the proposed design. 
Simulation results follow next. Section 7 concludes the 
paper. 
 
2. Existing Flip-Flop Design 
 

The most commonly used flip-flops for implementing 
high-performance digital systems are the HLFF [5], sense 
amplifier-based flip-flop (SAFF) [6] and transmission-
gate flip-flop (TGFF) [7]. All of them possess qualities 
like small D-to-Q delay, capability to absorb clock skew 
and embedding logic functions into themselves to reduce 
pipeline stage. The main disadvantage of these designs is 
that they are inefficient in power consumption. This is 
attributed to the unwanted internal transitions i.e. 
charging or discharging of internal nodes even when there 
is no useful work being done. These unnecessary 
transitions lead to considerable increase in power 
expenditure of the flip-flops. The internal power 
dissipation may be more pronounced for a specific input 
pattern. This may be attributed either to the working 
principle or its structure. Some of these flip-flops like 
HLFF have master-slave configuration in which the 
master is dynamic and slave is static. The internal 
transitions in such a case are the precharging and 
discharging or the internal nodes in the dynamic structure 
for every clock cycle. In TGFF, considerable power 
consumption occurs due to heavy clock load and its 
feedback path. Even when the input switching activity is 
low, it accounts for a large portion of power consumption. 
SAFF has a differential structure; every clock cycle, there 
is a transition in one end of the structure regardless of the 
input. Each of the above design is suitable for certain 
application depending upon the availability of power and 
the speed requirements. A trade-off has to be made 
considering the best option. 

 
3. Hybrid-Latch Flip-Flop 

 
The HLFF has two stages, first stage is a dynamic 

master stage and second stage is a static slave stage. The 
clock (clk), delayed clock (clkd) and data input (D) are 
fed to the PMOS-transistors P1, P4 and P3 respectively 
(see Fig. 1). The node X is pulled high when either of 
these is a low. Essentially, the first stage is a three input 
NAND-gate. In the second stage, clk and clkd together 
contribute in latching onto X and its complement is 
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passed to the output Y. Consequently, the string of 
NMOS-transistors N4, N5 and N6 act as an inverter. 

 

clk 

D 

X Y Qb

N3 

N2 

N1 

P1 

N6 

N5 

N4 

P2 P3 P4

 
Figure 1. Hybrid-Latch Flip-Flop (HLFF). 

 
Now, consider the case when clk is low and D remains 

at high i.e. same as previous cycle. So at the output, there 
is a low and at node Y there is a high. The transistor P1 is 
ON and precharges to a high making the P2 OFF and N5 
ON in the slave stage. The internal node X is at high. Due 
to this, the input is completely isolated from the output. 
Now, when the rising-edge of the clock signal appears, it 
makes P1 OFF and N4 ON. The clkd signal connected to 
N6 keeps it ON for some time. During this time, the pull-
down path to ground in the first stage is completed 
thereby pulling down node X to low. This causes N5 to 
break the pull down path in the second stage latching the 
correct output. If the input D remains high, then there is 
an alternate charging and discharging of the internal node 
X. This causes unnecessary power-dissipation when no 
real work is being done. 

Also note that the NMOS-transistor N4, which is the 
clocked NMOS-transistor at the second stage, causes 
down shoot at the output at each clock cycle if the output 
stays high. This happens due to a completed path between 
ground and node Y i.e. N4, N5 and N6 are all ON 
simultaneously for a short period of time. As a result, a 
glitch in the output is produced which can be distinctly 
noticed in the output waveforms (see Fig. 3). These 
glitches not only can cause functional failure at a later 
cascaded stage but also contribute to the redundant power 
dissipation at every clock cycle. 

 
4. Enhanced HLFF (E-HLFF) 

 
HLFF has a semi-dynamic structure where the first 

stage i.e. the master stage is dynamic and the second stage 
i.e. the slave stage is static. As mentioned earlier, in the 
dynamic stage, there is an alternate precharge and 
discharge occurring every clock cycle. This happens 
regardless of an output transition causing unnecessary 
power loss. This is taken care of by the removing the 
PMOS transistors that switch every clock cycle i.e. P1 
and rearranging the first stage (see Fig. 2). 

Now, consider the case when clk is low and D remains 
high. So at the output, there is a low and at node Y there 

is a high. The PMOS-transistor P1 is now OFF because of 
the rearranged inputs. Depending upon the previous cycle, 
the internal node X maybe at any logic level. Before the 
rising edge is encountered, the input is completely 
isolated from the output. Now, when the rising-edge of 
the clock signal appears, it makes N1 ON. The delayed 
clock signal connected to N3 keeps it ON for some time 
and N2 is already ON due to high D input. The pull-down 
path to ground in the first stage is completed thereby 
pulling down node X to ground if it was high and 
maintaining low if it was low previously. Node X makes 
P2 ON delivering a high at node Y latching the correct 
output. During this cycle, there is no unnecessary power 
dissipation. Even if the input remains constant, there is no 
alternate charging and discharging of the internal node X. 
This prevents the E-HLFF to make unnecessary power-
dissipation when no real work is being done. 

 

clk 

D 

X Y Qb

N3 

N2 

N1 

P3 

N6 

N5 

N4 

P2 

N6 

 
Figure 2. Enhanced HLFF (E-HLFF). 
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Figure 3. Output waveforms for HLFF and E-HLFF. 

 
Also note that now the NMOS-transistor N5 does not 

become ON because the node X is not precharging at 
every clock pulse. Although N4 is ON at rising edge and 
N6 is ON because of the delayed clock, a completed path 
between ground and node Y is not possible. The resulting 
output is glitch free with considerable saving in power 
consumption. Note that rearranging the input stage does 
not change either the clock load or the input load. There is 
no loss in operating speed after these modifications. 
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These results can be graphically verified by the 
waveforms generated for each design (see Fig. 3). For 
HLFF, when input remains high, there is internal 
switching at node XHLFF (circled region in figure). Also 
note the presence of glitches in the output QHLFF. For the 
same input pattern, there are no redundant transitions at 
node XE-HLFF and no output glitches. The cumulative 
effect can be noted by comparing the spikes in PHLFF  & 
PE-HLFF. Every power spike at the rising edge is bigger 
than the spike in the E-HLFF. These waveforms also 
highlight the noise-tolerant [9] behavior of this design. 
The noise spikes present at the clock and D inputs do not 
affect the output levels at any time. As compared to the 
HLFF, the E-HLFF displays more noise-tolerance. 

 
5. Analysis Criterion 
 
5.1. Power Considerations 

 
Power consumption of a circuit depends strongly on 

the structure and statistics of the applied inputs. As shown 
earlier, the structural changes made in HLFF effect the 
power consumption. To make a fair comparison, we 
conduct power measurements using data patterns 
comprising the worst, average and best cases for 
switching activity. We use three different input patterns. 
Assuming uniform data distribution, the first pattern is a 
32 cycle pseudorandom input pattern comprising of 
‘11111111001100110000000010101010’ [2]. ‘1111...’ 
and ‘0000...’ represent a switching activity of 0, ‘0011...’ 
represents a switching activity of 0.5 and ‘1010...’ 
represents a maximum switching activity of 1. The second 
pattern used is a 96-clock cycle input pattern. The first 16 
cycles input is low and for next 16 cycles, input is high. 
Then on, the input changes every single cycle, every two 
cycles, every four cycles and every 8 cycles, each for 16 
cycles [8]. The last sequence is a random input pattern. 
These input patterns are shown in Figure 4. 
 
5.2. Timing Considerations 

 
In this paper, we investigate the timing characteristics 

of the flip-flop designs by measuring the clock-to-output 
delay (DCQ) and the data-to-output delay (DDQ). Both, DCQ 
and DDQ are calculated for the low-to-high (0-1) and high-
to-low (1-0) transitions and the bigger value is kept. For 
optimum measurement of the DDQ delay, we find the 
minimum power consumption at a target DDQ delay. The 
transistors are sized using TILOS algorithm [10] and 
parasitic information is included in the netlist. There can 
be many resultant transistor sizes achieving the target DDQ 
but one with least power consumption is picked. This is 
repeated for a wide range of DDQ values starting from 
200ps going down to 120ps. 
 

5.3. Load Considerations 
 

Flip-flops are abundantly used in the critical paths of a 
system thereby making their performance vital towards 
system performance. However, to avoid sub-optimal 
selection of a flip-flop design for a specific application, 
studying the effect of absolute load on the performance is 
important [3]. Here, we study the effect of variable load 
on the power consumption and DCQ for the HLFF and E-
HLFF. The designs are optimized at a given load for 
minimum power-delay product and this is repeated for a 
wide range of loads (2.0fF to 16fF). 
 
 
 
(a) 

 
 
 
(b) 

 
Figure 4(a). 96 cycle test input. (b) Random test input. 
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Figure 5. Simulation testbench. 
 
6. Simulation Setup and Results 
 

All the circuits are implemented using MAGIC 7.1 
layout tool, extracted using TSMC 0.18-µ technology and 
simulated using HSPICE. All simulations were carried out 
with 1.8v Vdd at a temperature of 25°C. To simulate real 
environment, we use input buffers for both the clock and 
data inputs. The size of these buffers is so chosen that 
there is sufficient signal distortion expected in an actual 
circuit. The simulation testbench used is shown in Fig. 5. 
Note that the power consumption results are inclusive of 
the power consumed by the input buffers. Since a 
comparison is being made, it is fair to have this overhead 
added to both the compared configurations. A constant 
output load of 5.6fF (equivalent to 14 inverters in 0.18 µ 
technology) is used for power and delay measurements. 

The simulation results for power-consumption, DCQ 
and power-delay product are compiled in Table 1. At an 
average, for wave 1 and 2, there is a 19% power saving in 
the E-HLFF as compared to HLFF. This reduction is 
achieved solely due to the prevention of the alternate 
precharging and discharging. The E-HLFF demonstrates a 
saving of 39.8% when input sequence is ‘1111...’. This is 
due to the internal switching at node X for every clock 
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cycle. E-HLFF shows an improvement of 8.5% when the 
input is ‘0000...’. It is low because there is no internal 
switching activity in either design. The power saving 
comes from the transistors removed from the HLFF. 
Under maximum activity, the E-HLFF shows 8.1% power 
saving. At a switching activity of 0.5, the E-HLFF 
exhibits a saving of 22.6%. For the whole input pattern, 
there is an average saving of 21%. These results are 
shown in Fig. 6. 

 
Table 1: Simulation results at 1.8v Vdd and 5.6fF load. 

 HLFF E-HLFF 
 Wave 1 Wave 2 Wave 1 Wave 2 
P (µW) 21.09 21.84 17.05 18.07 
DCQ (ns) 2.331 1.288 2.317 1.271 
PDP (nJ) 49.16 28.13 39.51 22.97 

Wave 1: 96 cycle input pattern. Wave 2: Random input pattern. 
 
As observed from Table 1, for both input patterns, 

there is insignificant change in the delay values (less than 
1%) in fact the E-HLFF shows slightly better delay 
characteristics than its counterpart. This negligible change 
in the delay is attributed to the removed transistors. Since 
these transistors did not constitute the critical path they do 
not affect the delay value by a large amount. Fig. 7 also 
shows the DDQ vs power-consumption results. The curve 
for E-HLFF lies above (18% saving) the curve for HLFF 
showing that the E-HLFF is capable of delivering a 
constant power saving at different operating speeds. 
Owing to its structural properties, this behavior is 
predicted to be similar even at higher speeds and lower 
DDQ delays ranging down to 20ps. For variable loads, the 
E-HLFF exhibits better performance both in terms of 
power and delay displaying a constant improvement for a 
wide range of load values. The behavior of E-HLFF over 
a wide range of operating voltages (0.6v – 3.3v) is 
determined in terms of power and delay (see Fig. 7). 
These results strengthen the observation that the E-HLFF 
is capable of delivering higher performance for a wide 
range of operating speeds, loads and supply voltages. 

 
 

7. Conclusion 
 
We have presented an enhanced design based on the 

HLFF. The enhancement was achieved by structural 
modification made to the standard design. These changes 
prevented the undesired internal switching at every clock 
cycle when no useful work was done. The E-HLFF shows 
an improvement of 8% - 40% in power-consumption 
without any noticeable loss in operating speed. There is 
an average improvement of 18.9% in the power delay 
product of the E-HLFF. These improvements are constant 
over a wide range of operating speeds, loads and supply 

voltages making the E-HLFF advantageous in many 
conditions depending upon the application.  
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ABSTRACT 

Metamorphic computer viruses programmati-
cally vary their instructions to create a different 
form for each infection. This is done using code 
evolution techniques, such as, introducing dead 
code, reordering statements, reshaping expres-
sions, and changing variable names. Current 
anti-virus technologies use signature, a fixed 
sequence of bytes, from a sample of a virus, to 
detect its copies on a user’s machine. This tech-
nique does not work very well with metamorphic 
viruses since two versions of a metamorphic 
virus may have very little in common. This paper 
presents a method to transform different variants 
of a metamorphic virus to the same form, called 
the zero form. Current technologies can be im-
proved to detect metamorphic viruses by using 
the zero form of a virus, and not the original ver-
sion, for extracting signature.  
 
Keywords: Computer virus detection, metamor-
phic computer viruses, anti-virus technology, 
compiler optimizations, program transforma-
tions. 

1 Introduction 
Computer security is an important concern for 
any organization that uses computers, which in 
today’s world leaves out very few organizations, 
if any. A compromise in computer security can 
cause severe losses in terms of sensitive informa-
tion, money, time, and reputation of the organi-
zation. Most common and damaging security 
attacks are done using programs called computer 
viruses and worms. These are computer pro-
grams that can rapidly spread from one machine 
to another. They spread by exploiting some 
weakness in the existing programs on a com-
puter, or weakness in the security policy of an 
organization, or by simply fooling the user into 
executing the programs. Damages caused by 
viruses and worms are estimated to be in billions 

of dollars. For example, CodeRed II worm is 
estimated to have caused damages in excess of 
$2.6 billion [15].  
 
The number of virus and worm attacks is in-
creasing at an alarming rate. The number of 
known viruses was about 70,000 in 2002, which 
is 700% more than the number of known viruses 
in 1997 [3, 12]. This enormous increase can be 
attributed to the increasing use of Internet. As the 
number of machines on the Internet increases, so 
does the number of target hosts that can be ex-
ploited. The most common exploit is to transmit 
a virus by email. In addition, hackers also exploit 
the Internet to connect to remote, compromised 
machines to initiate an attack. They also use 
compromised machines to give commands to 
viruses on other compromised machines. Using 
compromise machines help a hacker in hiding 
his/her identity.  
  
Though viruses and worms are very complex 
computer programs, it is not very difficult to 
write a virus. The recipe for writing such pro-
grams is abundantly available on the Internet. 
There is no need to write these programs from 
scratch. The simplest method is to modify an 
existing virus to generate a new one. One does 
not need to be a programmer to write a virus 
either. There are many virus generation tools 
available on the Internet [14]. Using these tools 
creating a new virus is as easy as selecting its 
lethality from a menu of options and clicking 
“ok”. 
 
Current AV technologies use virus signature, a 
sequence of bytes extracted from a sample of a 
virus, to detect copies of that virus. Thus they 
can detect a virus if the virus signature extracted 
in the laboratory of the AV Company is found in 
a program on user’s desktops. 
 
It has been observed before that detecting 
whether a given program is a virus is an unde-
cidable problem. A problem is undecidable if a 
computer (or a network of computers) cannot 
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solve it no matter how fast the computer(s) may 
be. AV technologies are thus limited by this 
theoretical result. While they can detect a spe-
cific virus that is known a priori to the technol-
ogy, they cannot always detect whether an arbi-
trary program is a virus. 
 
Virus writers exploit this inherent limitation of 
AV technologies. If a virus is written such that 
two instances of the virus do not have the same 
signature, then the virus can evade detection. 
This is precisely what metamorphic viruses do. 
A metamorphic virus can modify its own pro-
gram as it spreads from one host to another [4, 7-
10]. The child virus, the one on the newly in-
fected host, may not have the same sequence of 
bytes as the parent virus. Hence the same signa-
ture cannot be used for detecting such viruses.  
 
The experiments conducted by Christodorescu et 
al. [1] suggest that commercial anti-virus soft-
ware fails to detect morphed virus variants, the 
virus variants obtained by changing the program 
text without changing the virus behavior. If anti-
virus were to detect metamorphic viruses using 
signature scanning approach, they would need to 
maintain signatures for all possible variants of 
the metamorphic viruses. This approach is infea-
sible as the number of signatures to be main-
tained is too high. More sound methods need to 
be developed.  
 
In this paper, we present a strategy for augment-
ing current AV technologies to detect metamor-
phic viruses. They key contribution is a sequence 
of transformations called zeroing transforma-
tions to nullify the effect of the code modifica-
tions performed by a metamorphic virus. Zeroing 
transformations are used to map any program to 
a zero form, a single-unique form for all variants 
of a program created using modifications applied 
by known metamorphic viruses. The name zero-
ing transformations is derived from number zero. 
Multiplication of any real number with zero al-
ways results in zero. Similarly, application of 
zeroing transformations on programs result in the 
zero forms of programs. 
 
The zero form of a program may be used in the 
laboratory of an AV company to generate a zero 
signature. The zero signatures may be distributed 
to the AV scanners on user’s desktops. The 
scanners may also convert a program to a zero 
form and then match the zero signatures. Since 
variants of a metamorphic virus will have the 
same zero form, this method improves the ability 

of AV technologies in detecting metamorphic 
viruses. Moreover zero signatures reduce the 
overhead of maintaining a separate signature for 
every variant of a virus. 
 
The rest of the paper is organized as follows. 
Section 2, introduces metamorphic viruses and 
describes the transformations applied by cur-
rently known metamorphic viruses. Section 3 
outlines our method for creating a zero form of a 
program. This method may be used in AV tech-
nologies to generate zero signatures. Section 4 
presents the related work. Section 5 gives the 
conclusion and future work.  

2 Metamorphic Viruses 
A computer virus is a program that infects a host 
program with its malicious code [2]. The in-
fected host program when executed further 
spreads the infection to other host programs. 
Metamorphic viruses are viruses that alter their 
instructions before spreading to a host. These 
viruses change their instructions without chang-
ing their behavior.  
 
Figure 1 gives a diagrammatic representation of 
the working of a metamorphic virus. The varying 
shapes in the Figure 1 suggest different variants 
of the same virus. The transformations that the 
virus applies to change its program code (shape) 
without changing its behavior are called morph-
ing transformations.  
 

 
Definition Variant of a virus: A variant of a vi-
rus V is a virus V’ where V, V’ have same be-
havior but have some difference in the code. 
 

Virus
Variant -3

Virus
Variant -1

Virus
Variant -2

M M

S1 S2
S3

Legend

M – Morphing transformations
{S1, S2, S3} – Virus Signatures

Virus
Variant -3

Virus
Variant -1

Virus
Variant -2

M M

S1 S2
S3

Legend

M – Morphing transformations
{S1, S2, S3} – Virus Signatures

 
Figure 1: Metamorphic viruses 
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Definition Morphing Transformations: Morph-
ing transformations are the transformations that 
when applied to a virus yields a variant of that 
virus. These transformations change the shape of 
a virus, but do not change its behavior. 
 
Definition Morpher: The part of virus program 
logic, responsible for generating different vari-
ants of the virus using morphing transformations, 
is referred to as morpher. 
 
Definition Metamorphic virus: Metamorphic 
virus is a virus that carries a morpher with itself 
to generate a variant for each infection. 

2.1 Morphing transformations 
Common morphing transformations used by vi-
rus writers are: dead code insertion, variable re-
naming, statement reordering, expressions re-
shaping and break & join transformations. This 
section discusses these transformations. 

2.1.1 Dead code insertion 

Dead code is the part of program code that is 
either not executed in the program or has no ef-
fect on results of the program. Addition of such 
code to a program doesn’t change its behavior.  
 
Figure 2 shows an example of dead code inser-
tion. Adding dead-code-1, dead-code-2 and 
dead-code-3 to V1 creates V2, a morphed variant 
of V1. Similarly, addition of dead-code-4 and 
dead-code-5 to V2 creates V3. All the three vari-
ants, V1, V2 and V3, have same behavior. If AV 
software uses the sequence of bytes correspond-
ing to the instructions xor edx, edx and div ecx as 
the virus signature, the morphed variants V2, and 
V3 will get undetected as dead-code-2 is inserted 
after xor edx, edx. 

2.1.2 Variable Renaming  

Variable renaming transformation changes vari-
ables’ names by changing all the instances of a 
variable with a new name. Morphed variants 
created by variable renaming have the same be-
havior, as this transformation doesn’t change the 
program behavior. 
 
Figure 3 shows an example of variable renaming 
transformations. The example code segment 
shown in Figure 3 is in assembly language. Re-
naming variables corresponds to renaming regis-

ters in assembly language. Instructions in vari-
ants V1, V2 and V3 differ in their usage of regis-
ters. The register edx is renamed to eax from V1 
to its morphed variant V2. If the signature for V1 
has edx in its byte sequence, its morphed variants 
V2 and V3 will not be detected using that signa-
ture. 
 

2.1.3 Break & Join Transformations 

Break & Join transformations break a program 
into pieces, select a random order of these 
pieces, and use unconditional branch statements 
to connect these pieces such that the statements 
are executed in the same sequence as in the 
original program.  
 

….
mov eax, V_S - 1
nop
add eax, ecx
sub ebx, 0
xor edx, edx
add eax, 0
nop
div ecx 
nop
mul ecx 
push eax
….

….
mov eax, V_S - 1
add eax, ecx
xor edx, edx
div ecx 
mul ecx 
push eax
….

….
mov eax, V_S - 1
nop
add eax, ecx
xor edx, edx
add eax, 0
div ecx 
nop
mul ecx 
push eax
….

D

Legend

D => dead code inserion
{V1, V2, V3} => virus variants 

V1

V2

V3

D

….
mov eax, V_S - 1
nop
add eax, ecx
sub ebx, 0
xor edx, edx
add eax, 0
nop
div ecx 
nop
mul ecx 
push eax
….

….
mov eax, V_S - 1
add eax, ecx
xor edx, edx
div ecx 
mul ecx 
push eax
….

….
mov eax, V_S - 1
nop
add eax, ecx
xor edx, edx
add eax, 0
div ecx 
nop
mul ecx 
push eax
….

D

Legend

D => dead code inserion
{V1, V2, V3} => virus variants 

V1

V2

V3

D

 
Figure 2: Dead code insertion 
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Figure 4 shows an example of break and join 
transformation. The order of statements in V2 is 
different from the order in which these state-
ments appear in V1. Unconditional branch 

statements (GOTO statements) are used to con-
nect these pieces so that the statements in V1 and 
V2 are executed in the same order. 

2.1.4 Expression Reshaping 

Generating random permutations of operands in 
expressions with commutative and associative 
operators reshapes expressions in programs. This 
results in a change in the structure of expression. 
Expression reshaping doesn’t change the behav-
ior of the program.  
 

Figure 5 shows an example of expression reshap-
ing transformations. The expression x*100+2 in 
V1 is reshaped to 2+x*100 in V2. Behavior of 
the variants V1, V2, and V3 remains same. If the 
virus signature of V1 includes the expression 

….
push ecx
mov ecx, esi
mov edi, 000Ah
add ecx, edi
pop edi
….

….
push edx
mov edx, ecx
mov ebx, 000Ah
add edx, ebx
pop ebx
….

….
push eax
mov eax, ebx
mov edx, 000Ah
add eax, edx
pop edx
….

R

R

Legend

R =>variable renaming transformations
{V1, V2, V3} => virus variants 

V1

V2

V3

….
push ecx
mov ecx, esi
mov edi, 000Ah
add ecx, edi
pop edi
….

….
push edx
mov edx, ecx
mov ebx, 000Ah
add edx, ebx
pop ebx
….

….
push eax
mov eax, ebx
mov edx, 000Ah
add eax, edx
pop edx
….

R

R

Legend

R =>variable renaming transformations
{V1, V2, V3} => virus variants 

V1

V2

V3

 
Figure 3: Variable renaming 
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Figure 4: Break & Join Transformations 

….
if (i < b * a * c)
{

a = 100 * x + 2;
b = i * 10;
c = b+ y * a;
i = a + c + b;

}
….

….
if (i < a * b * c)
{

a = x * 100 + 2;
b = 10 * i;
c = y * a + b;
i = a + b + c;

}
….

….
if (i < a * b * c)
{

a = 2 + x * 100;
b = 10 * i;
c = a * y + b;
i = b + c + a;

}
….

S

S

Legend

S => expression reshaping
{V1, V2, V3} => virus variants 

V2

V3

V1

….
if (i < b * a * c)
{

a = 100 * x + 2;
b = i * 10;
c = b+ y * a;
i = a + c + b;

}
….

….
if (i < a * b * c)
{

a = x * 100 + 2;
b = 10 * i;
c = y * a + b;
i = a + b + c;

}
….

….
if (i < a * b * c)
{

a = 2 + x * 100;
b = 10 * i;
c = a * y + b;
i = b + c + a;

}
….

S

S

Legend

S => expression reshaping
{V1, V2, V3} => virus variants 

V2

V3

V1

 
Figure 5: Expression Reshaping 
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x*100+2, V2 and V3 will not be detected by AV 
software. 

2.1.5 Statement Reordering  

Statement reordering transformation reorders 
statements in a program such that the behavior of 
the program doesn’t change. It is possible to re-
order statements iff there are no dependences 
between the statements being reordered [6]. If 
the virus signature includes bytes corresponding 
to a statement from this set of reorderable state-
ments, application of statement reordering trans-

formation makes the original virus signature use-
less for morphed variants. 
 
Figure 6 shows an example of statement reorder-
ing transformations. Statements a=y*i, b=200*i, 
and a=x*y+i*z can be reordered as there are no 
dependences between these statements. Selection 
of random permutations of such reorderable 
statements creates the morphed variants V2, and 
V3. 

3 Detection Approach 
We now propose zeroing transformations, a set 
of transformations to nullify the effect of morph-
ing transformations. Zeroing transformations, 
when applied to a virus result in its zero form. 
The idea is to apply these transformations on any 
morphed variant of a virus to get the same form. 
Figure 7 illustrates the idea of applying zeroing 
transformations to create zero forms of the vi-
ruses. V1, V2, and V3 in Figure 7 are trans-
formed to Vc. AV companies can use this 
method and store the virus signature extracted 
from Vc instead of maintaining separate virus 
signatures for V1, V2 and V3. To use these zero 
signatures for virus detection, the AV software 
will need to apply zeroing transformations on the 
program to be checked for existence of virus 
behavior. Zero forms of the programs can be 
searched for zero signatures of viruses. 
 

….
z= 100;
x = 25;
y = x +get_index();
while (i < y + z)
{

b = 200 * i;
a = x * y + i * z;
c = y * i;
i = i + 1;

}
….

….
x = 25;
y = x + get_index();
z= 100;
while (i < y + z)
{

a = x * y + i * z;
b = 200 * i;
c = y * i;
i = i + 1;

}
….

….
x = 25;
z= 100;
y = x + get_index();
while (i < y + z)
{

c = y * i;
b = 200 * i;
a = x * y + i * z;
i = i + 1;

}
….

O

O

Legend

O => statement reordering
{V1, V2, V3} => virus variants 

V2

V3

V1

….
z= 100;
x = 25;
y = x +get_index();
while (i < y + z)
{

b = 200 * i;
a = x * y + i * z;
c = y * i;
i = i + 1;

}
….

….
x = 25;
y = x + get_index();
z= 100;
while (i < y + z)
{

a = x * y + i * z;
b = 200 * i;
c = y * i;
i = i + 1;

}
….

….
x = 25;
z= 100;
y = x + get_index();
while (i < y + z)
{

c = y * i;
b = 200 * i;
a = x * y + i * z;
i = i + 1;

}
….

O

O

Legend

O => statement reordering
{V1, V2, V3} => virus variants 

V2

V3

V1

 
Figure 6: Statement Reordering 
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Figure 7: Detection Approach 
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Figure 8 shows the procedure for creating zero 
form of a program. A series of transformations 
are applied to the Input program. These trans-
formations include dead-code elimination [5], 
constant propagation and removal of redundant 
computations [5], elimination of spurious uncon-
ditional branch statements, reshaping expres-
sions to zero form, fixing an order for the state-
ments that can be reordered and renaming vari-
ables to a zero form.  
 

 
For fixing an order of the statements in the pro-
gram [16], we calculate the sets of statements 
that can be reordered without changing the pro-
gram behavior and order these sets using a lexi-
cographic ordering based on the syntactic repre-
sentation of the program statements, which is 
independent of variable names. As our method 
follows heuristics, the statement ordering gener-
ated by zeroing transformations may not always 
be the same for all morphed variants of a virus. 
But in practice, we observed that on an average 
94% of the statements in the program could be 
given a unique order. 

4 Related Work 
The Bloodhound technology of Symantec Inc., 
uses heuristics for detecting malicious code [13]. 
Bloodhound uses two types of heuristic scanners: 
static and dynamic. The static heuristic scanner 
maintains a signature database. The signatures 
are associated with program code representing 
the different functional behaviors. The dynamic 
heuristic scanner uses CPU emulation to gather 
information about the interrupt calls the program 
is making. Based on this information it can iden-
tify the functional behavior of the program. Once 
different functional behaviors are identified us-
ing the static and dynamic heuristic scanners, 
they are fed to an expert system, which judges 
whether the program is malicious or not. Static 
heuristics fail to detect morphed variants of the 
viruses as morphed variants have different signa-
tures. Dynamic heuristics consider only one pos-
sible execution of a program. A virus can avoid 
being detected by a dynamic scanner by intro-
ducing arbitrary loops. 
 
Lo et al.’s MCF [11] uses program slicing and 
flow analysis for detecting computer viruses, 
worms, trojan-horses, and time/logic bombs. 
MCF identifies telltale signs that differentiate 
between malicious and benign programs. MCF 
slices a program with respect to these telltale 
signs to get a smaller program segment repre-
senting the malicious behavior. This smaller 
program segment is manually analyzed for the 
existence of virus behavior.  
 
Szappanos [10] uses code normalization tech-
niques to detect polymorphic viruses. Normaliza-
tion techniques remove junk code & white 
spaces, and comments in programs before they 
generate virus signature.  To deal with variable 
renaming, Szappanos suggests two methods – 
first, renaming variables by the order they appear 
in the program and second, renaming all the 
variables in a program with a same name. For-
mer approach fails if the virus reorders its state-
ments, and the later approach abstracts a lot of 
information and may lead to incorrect results. As 
our approach fixes the order of the statements in 
a program, the first approach suggested by Szap-
panos for renaming the variable can be used in 
combination with our method. 
 
Our work relates to the work done by Christo-
dorescu et al. [1] for detecting of malicious pat-
terns in the executables. They use abstract pat-
terns, patterns with typed variables and instruc-

Propagate constants

Eliminate dead code

Remove redundant 
computations

Remove spurious unconditional 
branch statements

Reshape Expressions

Fix statement order

Rename Variables

Program

Zero Form

Propagate constants

Eliminate dead code

Remove redundant 
computations

Remove spurious unconditional 
branch statements

Reshape Expressions

Fix statement order

Rename Variables

Program

Zero Form
 

Figure 8: Zeroing Transformations 
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tion sequences that use these typed variables, to 
represent the instructions in the program. A 
problem with abstract patterns is that it becomes 
difficult for AV companies to distribute virus 
signatures, as the virus can be reconstructed us-
ing these patterns. Their approach gives fewer 
false positives but the cost of creating and 
matching the abstract patters is high. They detect 
the virus variants created by performing dead 
code insertion, variable renaming, and break & 
join transformations. Our method, in addition to 
the above morphing transformations, can detect 
the computer viruses that apply statement reor-
dering and expression reshaping transformations.  

5 Conclusions and Future Work 
We have described a method for detecting 
morphed variants of the viruses. Our approach 
can augment the current AV technologies such as 
traditional signature scanning approach, and 
other static and dynamic detection schemes. We 
map different variants of a virus to one zero 
form. The effectiveness of our method is deter-
mined by the effectiveness of zeroing transfor-
mations that map a program to a zero form. We 
take into account dead code insertion, statement 
reordering, variable renaming, expression re-
shaping, and break & join transformations.  
 
As a future work, we like to do a more detailed 
investigation on zeroing transformations that 
map a program to its zero form.  
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