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ABSTRACT

The applicability of fault tolerance techmques to computer
security problems is currently being investigated at the UCLA
Dependable Computing and  Fault-Tolerant  Systems
Laboratory. A recent result of this research is that extensions
of Program Flow Monitors and N-Version Programming can
be combined to provide a solution to the detection and
containment of computer viruses. The consequence is that a
computer can tolerate both deliberate faults and random
physical faults by means of one common mechanism.
Specifically, the technique described here detects control flow
errors due to physical faults as well as the presence of viruses.

1. INTRODUCTION

This paper addresses the computer virus problem as
first introduced in [Cohe 84]: "A computer virus is a program
that can infect other programs by modifying them" (i.e., their
executable file) "to include a possibly evolved copy of itself.
With the infection property, a virus can spread throughout a
computer system or network using the authorizations of every
user, using it to infect their programs. Every program that gets
infected may also act as a virus and thus the infection grows."
Additionally, we address the case where a Trojan horse in a
program handling tool (e.g., a compiler) infects an unprotected
program it is manipulating.

Some apparent properties of viral infections are: (1)
most viruses add themselves to the beginning of an executable
file, (2) the date of the most recent write to an executable file is
likely 1o get changed, (3) the size of an infected executable file
is very likely to be larger than the original, and (4) the behavior
of an infected executable will change. The approaches taken
here use item (4) as a basis for detection and containment
mechanisms. The scheme presented in [Denn 86] also
monitors system behavior to detect viruses and other threats;
however, it does that at a coarse-grain level of monitoring.
The viras detection approach described here utilizes a fine-
grained monitoring of program control flow for detection.
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The general taken in this paper is somewhat different
from those taken by current computer security researchers. We
treat computer viruses as a fault tolerance problem, and thus
we apply a fault tolerance perspective in our attempt to prevent
viruses from affecting proper system service.

In a fault tolerance approach it is assumed that faults
will occur in the system and that run-time mechanisms must be
included in the design in order to tolerate them. These
mechanisms are complementary to fault avoidance (e.g.,
formal verification) techniques which aim to remove all faults
(or flaws, hardware and software) throughout a computer
system’s life-cycle. All the faults to be handled are defined
and characterized by standard fault classes [Aviz 87]. Once
this is done, error detection, masking, error recovery, and error
containment boundaries are selected. This has been the
general approach that has led to the proposed solution to
computer viruses presented here. This approach has also been
applied to other security threats (e.g., trap doors, denial-of-
service, covert channels) [Jose 88].

The rest of the paper is organized as follows: section 2
presents a fault tolerance oriented characterization of computer
viruses, sections 3 and 5 provide introductions to Program
Flow Monitors (PFM) and N-Version Programming (NVP)
respectively, section 4 extends the basic program flow monitor
approach in order to detect computer viruses, and section 6
discusses how NVP can eliminate the effects of a Trojan horse
in program handling tools.

2. COMPUTER VIRUSES --
BOTH A FAULT AND AN ERROR

A fault is the identified or hypothesized cause of an
error or of a failure. An error is an undesired state of a
resource (computing system) that exists either at the boundary
or at an internal point in the resource and may be experienced
as a failure when it is propagated to and manifested at the
boundary. A failure is a loss of proper service (i.e., specified
behavior) that is experienced by the user (i.e., a human or
another system) at the boundary of a resource [Aviz 86].



A design fault is a human-made fault (or flaw),
resulting in a deviation of the design from its specification. It
includes both implementation faults (e.g., coding errors) and
interpretation faults Gie., misinterpretation or
misunderstanding of the specification, rather than a mistake in
the specification), and can occur in both hardware and
software. For example, failing to check input values is an
interpretation fault, while being unable to retrieve records from
a database is an implementation fault [Aviz 84]. Design faults
can partially be characterized by the fault class "by intent,"
which includes both random (i.e., "accidental”) and deliberate
faults [Aviz 86]. The idea of applying fault tolerance
techniques that are used to address random faults, to the
tolerance of deliberate ones is further explored in [Jose 87].

Figure 1 is a fault tolerance oriented characterization of
the behavior of a computer virus. Initially a computer virus
can start as a special type of Trojan horse that injects or infects
an executable file with a virus. The Trojan horse is a deliberate
design fault, and causes an “error” by changing the state of the
executable file resource. Next, the infected executable spreads
or propagates the error to other executables. Thus, the error
becomes the fault causing other errors, and a typical error
propagation occurs just as it does in the case of a random fault.
The characterization of a virus as both a fault and an error
indicates that viruses should be countered with two
mechanisms, rather than just one.

O

tault —error—®fault —»error
The computer virus error propagaies.

1: Initially a computer virus can be a special Trojan
horse that injects the virus into a computer system
[Pozz86]. This is a deliberate design fault.
2: e.g., the virus writes to an executable file, or
unprotected part of RAM such as a process’s stack
space in the Intel 8086 processor.

Figure 1 Computer Virus: A Fault and an Error
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Figure 2 provides a somewhat different perspective by
indicating the types of damage a computer virus can cause.
The figure shows that a computer virus design fault can
potentially cause the following errors: loss of integrity of
function and data, i.e., the actions of the Trojan horse injecting
the virus (see section 5), unauthorized modifications of
programs, unauthorized disclosure, denial-of-service, and
spoofing (e.g., the virus pretends to be the program it has
infected). Note, that ‘DAC’ in the figure refers to discretionary
access control.

The two life stages of a virus (i.e., first a design fault
via a Trojan horse, and then an error propagating or infecting
executables) can be detected and recovered from differently.
The deliberate design fault via a Trojan horse can be masked
out with the use of N versions of that program (e.g., 3 versions
of a compiler, see section 6). However, since NVP is too
expensive to be applied everywhere, it must be accompanied
by a mechanism that can detect the computer virus in its error
stage. A scheme to detect and recover from the viral infection
is presented in section 4 and is an extension of PFMs [Mahm
88].

Computer Virus (fault)1

Loss of Integrity of System design flaw
function and data (e.g., DAC inadequacy)

~.

Unauthorized
modification of
2 programs :

Computer Virus (error)

\

+
3
Denial /4 5 Unauthorized
of Spoofing disclosure
Service

1: Initially a computer virus can be a special Trojan horse that
injects the virus into a computer system. This is a deliberate
design fault.

2- Infection property (i.e., error propagation), or loading a
program intc a privileged domain (i.e., gain of privileges).

3: e.g., insert use of a covert channel.

4: [Glig83, p.140]:"...it is possible that a malicious user can
modify the intended service behaviour in a non-obvious way
by exploiting design flaws in the service access mechanism
or policy. ..misbehaved service.." [Cohe84]: place all infected
executables into an infimte loop, thus resulting in CPU
resource denied.

5. e.g., computer virus runs before original program, and
pretends to be the original program.

Figure 2 Fault Tree for a Computer Virus



3. PROGRAM FLOW MONITORS

A Program Flow Monitor (PFM) is a concurrent error
detection mechanism that can be used in the design of a fault-
tolerant computer. It is basically a watchdog processor, which
is "a small and simple coprocessor used to perform concurrent
system-level error detection by monitoring the behavior of the
main processor” [Mahm 88]. It is used to detect control flow
errors due to transient (e.g., single event upset) and permanent
faults.

Control flow errors are ‘“incorrect sequences of
instructions, branch to wrong addresses, branching from a
wrong address, etc.". These "errors can be the result of faults
in the instruction register, the program counter, the address
register, decoding circuitry, memory addressing circuitry, etc.”
[Mahm 88].

Detection of control flow errors is done by comparing
dynamic characteristics of program behavior with the expected
behavior. One approach is to associate a signature to a
sequence of assembly language statements that do not contain
any control flow change instructions (e.g., branches, subroutine
calls). The signatures are. derived from the assembly language
statements. After generation, the signatures can be stored in'a
control flow graph (CFG), embedded graph program, or
embedded in the executable code. The signatures and control
flow graph are generated by a compiler and linker [Mahm 88].

As a program runs on a CPU, the fetched instructions
go through a signature generator which is based on a linear
feedback shift register (LFSR). Thus, a signature is computed
by a given primitive polynomial (e.g.,
X%4+x124x34+X +1). When a control flow change
instruction passes through the signature generator, the current
signature value is passed to the PEM. The PFM then compares
the run-time generated and link-time generated signatures, and
a disagreement indicates an error condition. If a control flow
graph is used, then it is traversed as these signature
comparisons are made.

The applicability of a PFM-based scheme to the
detection of computer viruses is based on the observation that
actions of a virus also represent an invalid sequence of
instructions. However, the basic PFM schemes must be
extended to prevent a virus from hiding from it.

4. EXTENDED PFM TO HANDLE
VIRAL INFECTIONS

The present PFM schemes are designed to detect
random physical and possibly some design faults, but not
deliberate faults. Thus, the existing schemes are susceptible to
all but a few viral attack scenarios,
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The first weakness against viruses is that PFMs use
only one primitive polynomial to compute all signatures.
Thus, a computer virus fault compiled on the monitored
machine will have valid signatures generated for it. If a CFG
is used, then the virus would have to add its signatures to it.

A computer virus error propagating over a network may
not have valid signatures, and thus would be detected by even
the existing PFM designs. However, the backward recovery
mechanisms used with a PFM (e.g., rollback) would end up
mistaking the virus as a permanent fault. This inability to
distinguish between viruses and random faults is the second
weakness of existing PFM designs. Any PFM-based scheme
must have a recovery approach that can identify a viral attack,
since the recovery action is different for transients,
permanents, and viruses.

The following five extensions are made to a PFM
scheme that utilizes a control flow graph (CFG):
(1) The signature generator must be able to employ many
different primitive polynomials. This is easily done by
constructing an LFSR with sufficient D-flip-flops, XOR
gates, and feedback loops to generate an entire range of
polynomials (e.g., a subrange from degree 16 to 32
could be chosen). The PFM specifies to the LESR
which polynomial to use by enabling/disabling XOR
gates and feedback loops. The polynomial is
represented as a 32 bit wide vector that is latched at the
LFSR. The bits of this vector control the
enabling/disabling.
(2)  The compiler and linker pair must randomly assign a
primitive polynomial for each compiled program. This
polynomial must be protected from disclosure and
modification. Thus, the polynomial bit vector can be
stored in the CFG along with the link-time generated
signatures, and then the entire CFG is encrypted.
3) Immediately before program execution the PEM must
decrypt the delivered CFG to obtain the pre-calculated
signatures and the polynomial. Thus, this approach
must also provide management of different encryption
keys per CFG, and must ensure executable file - CFG
association. Once the polynomial bit vector is
obtained, it is transferred to the LFSR. Note that the
executable file is itself both readable and writable.
G All I/O operations are atomic. They are performed
only if the signature comparisons for their code
sequence is valid. This feature blocks the infection
capability of the virus. For fault-tolerant computer
systems that use backward error recovery (ie.,
rollback) this is a necessary requirement, since most
I/O operations cannot be rolled back without adversely
affecting the service.



The current PFM designs concentrate on error detection
and do not explicitly address the methods of subsequent
recovery. However, details of recovery are important
for our application of PFMs, since we need to
distinguish between virus errors and physical faults.
Upon detection of an error condition it is necessary to
save the invalid, dynamically generated signature, and
the location in the code at which the error manifested
itself in the PFM. Then, the program’s execution is
resumed with a rollback (backward error recovery), and
proceeds from a rollback point in the program that
immediately follows a previous signature check.

®

The rollback procedure allows the identification of the
type of fault as follows. First, if the initial error was caused by
a transient fault, the recomputation will succeed, and the
program will continue on after a successful signature check.
Second, if the initial error was due to a permanent fault, the
fault will still cause an improper dynamically generated
signature after the rollback. For some faults, the second
signature will not be identical to the first invalid signature, and
a permanent physical fault is indicated. Third, the initial error
may have been caused by a permanent fault which causes the
identical error to appear again. Generation of the identical, but
incorrect, signature after the first rollback will require
diagnostics to be run to locate the permanent fault. Lastly, if
diagnostics do not detect a fault, then a high probability exists
that a virus error has been detected.

For computer architectures without effective process
isolation (e.g., the Intel 8086, the non-protect mode of the Intel
80286), the memory address for writing to memory can be
monitored by the PFM. This will detect a viral infection of an
executable during run-time (e.g., a block move of virus code
into a process’s unused stack space). This approach is a design
option of a PFM, not a real extension of the technique. In fact,
all externally visible actions of a CPU can be monitored by the
PFM.

A PFM-based virus detection approach offers some
significant advantages. First, it protects an executable even
during run-time, while the schemes presented in [Pozz 86] and
[Cohe 87} do not provide this protection. Second, it also
provides detection of errors caused by physical, and possibly
certain design faults. Third, standard PFM schemes can be
extended for virus detection at a modest additional cost.
Fourth, no run-time performance degradation occurs, after
CFG decryption. Finally, the PFM is virus proof, since all of
its components are either hardwired or ROM based, and the
PFM local memory, as well as the LFSR can only be accessed
by the PFM.

The additional costs of the PFM-based approach are as
follows: (a) the compiler and linker pair must assign
polynomials; (b) the CFG should be encrypted, and the keys
for each CFG must be managed and protected; (c)
modifications to existing compilers and linkers are needed; (d)
extra mechanisms for atomic I/O are required, and (e) due to
the overhead associated with the setup of a CFG in a PFM
memory, this scheme is applicable to environments in which
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process context switches are not frequent (e.g., multiprocessor
applications, embedded applications, personal computers).

5. SECURITY ASPECTS OF N-VERSION
PROGRAMMING

Several definitions for integrity in a security context are
presented in [Port 85]. The relevant definitions are:

1. How correct (we believe) the information in an object
is.

2. How confident we are that the information in that
object is actually from the alleged source, and that it
has not been altered from its original form.

3. How correct (we believe) the functioning of a process
is.

4. How confident we are that the functioning of a process
[or any software or hardware] is as it was designed to
be.

5. How concerned we are that the information in an object

not be altered.

Each item above is referred to by : “integrity-#." Integrity-2
and integrity-5 are classical concerns, since these are what the
current state-of-the-art can ensure [Biba 77] [Voyd 83].

[Port 85] later continues with the interesting statement
that "..., we first eliminate integrity-3 and 4, until we have a
way to deal with design issues.” Integrity-1 is also bypassed
for approximately the same reason. However, through the use
of fault tolerance techniques integrity-1, 3, and 4 can be
supported. Integrity-3 and 4 from a fault tolerance perspective
involves ensuring proper service of a function (software or
hardware) with respect to a defined fault class. Integrity-1 can
be partially provided by preventing a failing function from
generating incorrect data (e.g., for missile targeting).

We designate the items integrity-1, 3 and 4 as ensuring
"integrity of function and data." Two examples of violations to
be avoided are: inaccurate (old) data deliberately placed into a
database, and incorrect actions (e.g., fire a missile at an ally).
It was observed from the very beginning of this research that
these integrity concerns were very close to those addressed in
both hardware and software fault tolerance.

NVP is an approach that aims to provide reliable
software by means of design fault tolerance [Aviz 85]. N >2
versions of one program are independently designed and
implemented from a common specification (or even from two
or more specifications). Al N versions are executed
concurrently, typically on an N-processor computer system.
During execution, the versions periodically form a consensus
on intermediate results and on the final result. As long as a
majority of versions produce correct results, design faults in
one or more version will be detected and masked out. The



strength of this approach is that reliable computing does not
depend on the total absence of design faults.

A natural extension of this approach is to employ NVP
to maintain the integrity of function and data by masking out
the incorrect outputs of deliberate design faults. The
probability of identically behaving versions of malicious logic
appearing in a majority of the N versions of programs is
diminished due to the independent design, implementation, and
maintenance of multiple versions.

6. NVP PROTECTION OF PROGRAM
HANDLING TOOLS

The design fault stage of a computer virus can existin a
program handling tool (e.g., a compiler), as well as in an
ordinary application program [Cohe 84] [Pozz 86]. Thompson
[Thom 84] gives an example of how a Trojan horse in a C-
language compiler can implant a trap door into a UNIX* login
program. In this example, the Trojan horse is particularly
insidious in that it is designed to detect its own compilation
(i.e., the C compiler’s source code) and then to implant a copy
of itself into the generated executable. Furthermore, the actual
code for the Trojan horse can be removed from the compiler’s
source after its first compilation because of the preceding
property. This makes the detection of this Trojan horse attack
by source code inspection and verification impossible.
Currently, addressing the correctness of program handling
tools is beyond the requirements for class Al secure systems
[DoD 85], and thus it is a deficiency in any current defense. In
summary, a virus can infect a program during an editing
session, compilation, assembly, linking, or loading.

In addition, assurance of the correctness of hardware
and firmware (i.e., the absence of random and deliberate
hardware design faults) for the TCB of a system is also beyond
Al for the hardware of both development environments and
operational systems. Current research in secure execution
environments is directed towards the use of advanced formal
verification techniques for both hardware and software [Bevi
87]. While this research looks promising, a solution of the
problem for large, complex systems is not certain for the near
future. Specifically, the approach used for hardware
verification does not include timing, nor system behavior in the
presence of faults (i.e., the system may be broken into due to
deliberately induced faults).

In this section we propose a potential alternative to
formal verification. It is the design of secure development
tools based on N-Version Programming, and secure
development hardware based on hardware design diversity. A
secure 3-version (two version systems are susceptible to
denial-of-service attacks [Jose 87]) C-language compiler, for
example, would operate as follows. Consensus voting between

* A trademark of AT&T Bell Laboratories.
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versions would periodically occur on several items: (a) parts
of the local state, (b) temporary output at each phase of
compilation, (c) actions which manipulate files, and (d) the
final generated code. The voting locations ("cc-points") and
the values to be voted on ("cc-vectors”) need to be clearly
defined in the compiler’s design specification before it is built.
(We note that for this to work strict guidelines on code
generation and optimization must be provided.) Item ‘c’ above
includes an "action voting" requirement for NVP (ie., the
external actions taken by a process, for example, the system
calls, are voted on, as well as, the data generated [Jose 88]).

Experiments at UCLA have already demonstrated the
feasibility of constructing an reliable NVP text processor
[Chen 78]. However, an NVP-based tool is just as vulnerable
to a computer virus error as any other executable file. Thus, if
a virus infects a majority of the versions the NVP scheme
would be defeated. To prevent this from occurring, each
version must be monitored by a PFM, or protected by a scheme
such as presented in [Pozz 86], [Cohe 87].

In summary, the reason why NVP-based program
handling tools can counter the design fault stage of a virus, and
also many actions of general Trojan horses, is that all
maliciously generated actions are masked out by the N version
consensus operation.

7. CONCLUSIONS

The need for fault-tolerant and secure computing
systems is becoming quite evident (e.g., the SDI application).
This has sparked the exploration of the issues concerning the
design of computing systems that possess both attributes. Fault
tolerance and security concerns are not disjoint. For example,
security considerations may prevent the use of rollback to
recover from an error [Turn 86].

Attacks on a computer system can take one of three
forms: from completely outside the computing system, from a
legitimate, authorized user trying to extend his or her allowed
access rights, and from within the computer system itself due
to design flaws purposely planted by its designers [Jose 87]. It
should no longer be acceptable to consider only the classical
security concerns of preventing the unauthorized disclosure of
sensitive information, and the unauthorized modification of
information and programs. The elimination of the effects of
malicious logic must be addressed, and this problem reveals
many similarities to problems in fault tolcrance.

It is envisioned that in the near future most military
computer systems will require both security and fault tolerance
properties. Other critical systems may follow soon (e.g.,
financial, point-of-sale, and plane reservations) where failures,
deliberate or otherwise, will be unacceptable due to loss of life,
finances, and/or privacy. For example, as of 1987, an average
of a trillion dollars in payments, on a typical day, are
exchanged by banks over electronic telecommunications
networks [FRBS 87]. This represents a potential financial



disaster if fault-tolerant, secure, and high
communications and processing are not guaranteed.

integrity

The approach presented in this paper is just one step
towards a cost-effective design of a fault-tolerant, secure
computing system. The extension of PFMs is an excellent
example of a fault tolerance technique that solves both
accidental and deliberate faults: the detection of computer
virus errors, and control flow errors due to transient and
intermittent faults. We note that extended PFM, by itself, does
not protect against denial-of-service [Glig 83] due to repeated
infection of the same executable.
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