
A Tour of the Worm

Donn Seeley

Department of Computer Science
University of Utah

ABSTRACT

On the evening of November 2, 1988, a self-replicating program was released upon the Internet1. This program (a
worm) invaded VAX and Sun-3 computers running versions of Berkeley UNIX, and used their resources to attack still
more computers2. Within the space of hours this program had spread across the U.S., infecting hundreds or thousands
of computers and making many of them unusable due to the burden of its activity. This paper provides a chronology
for the outbreak and presents a detailed description of the internals of the worm, based on a C version produced by
decompiling.

1. Introduction
There is a fine line between helping administrators protect their systems and providing a cookbook for bad guys.
[Grampp and Morris, ‘‘UNIX Operating System Security’’]

November 3, 1988 is already coming to be known as Black Thursday. System administrators around the
country came to work on that day and discovered that their networks of computers were laboring under a huge load.
If they were able to log in and generate a system status listing, they saw what appeared to be dozens or hundreds of
‘‘shell’’ (command interpreter) processes. If they tried to kill the processes, they found that new processes appeared
faster than they could kill them. Rebooting the computer seemed to have no effect—within minutes after starting up
again, the machine was overloaded by these mysterious processes.

These systems had been invaded by a worm. A worm is a program that propagates itself across a network,
using resources on one machine to attack other machines. (A worm is not quite the same as a virus, which is a pro-
gram fragment that inserts itself into other programs.) The worm had taken advantage of lapses in security on sys-
tems that were running 4.2 or 4.3 BSD UNIX or derivatives like SunOS. These lapses allowed it to connect to
machines across a network, bypass their login authentication, copy itself and then proceed to attack still more
machines. The massive system load was generated by multitudes of worms trying to propagate the epidemic.

The Internet had never been attacked in this way before, although there had been plenty of speculation that an
attack was in store. Most system administrators were unfamiliar with the concept of worms (as opposed to viruses,
which are a major affliction of the PC world) and it took some time before they were able to establish what was
going on and how to deal with it. This paper is intended to let people know exactly what happened and how it came
about, so that they will be better prepared when it happens the next time. The behavior of the worm will be exam-
ined in detail, both to show exactly what it did and didn’t do, and to show the dangers of future worms. The epi-
graph above is now ironic, for the author of the worm used information in that paper to attack systems. Since the
information is now well known, by virtue of the fact that thousands of computers now have copies of the worm, it
seems unlikely that this paper can do similar damage, but it is definitely a troubling thought. Opinions on this and
other matters will be offered below.

������������������������������������
1 The Internet is a logical network made up of many physical networks, all running the IP class of network protocols.
2 VAX and Sun-3 are models of computers built by Digital Equipment Corp. and Sun Microsystems Inc., respectively. UNIX is a Re-

gistered Bell of AT&T Trademark Laboratories.



Tour of the Worm 2

2. Chronology
Remember, when you connect with another computer, you’re connecting to every computer that computer has con-
nected to. [Dennis Miller, on NBC’s Saturday Night Live]

Here is the gist of a message I got: I’m sorry. [Andy Sudduth, in an anonymous posting to the TCP-IP list on behalf
of the author of the worm, 11/3/88]

Many details of the chronology of the attack are not yet available. The following list represents dates and
times that we are currently aware of. Times have all been rendered in Pacific Standard Time for convenience.

11/2: 1800 (approx.)
This date and time were seen on worm files found on prep.ai.mit.edu, a VAX 11/750 at the MIT
Artificial Intelligence Laboratory. The files were removed later, and the precise time was lost. Sys-
tem logging on prep had been broken for two weeks. The system doesn’t run accounting and the disks
aren’t backed up to tape: a perfect target. A number of ‘‘tourist’’ users (individuals using public
accounts) were reported to be active that evening. These users would have appeared in the session
logging, but see below.

11/2: 1824 First known West Coast infection: rand.org at Rand Corp. in Santa Monica.

11/2: 1904 csgw.berkeley.edu is infected. This machine is a major network gateway at UC Berkeley. Mike
Karels and Phil Lapsley discover the infection shortly afterward.

11/2: 1954 mimsy.umd.edu is attacked through its finger server. This machine is at the University of Maryland
College Park Computer Science Department.

11/2: 2000 (approx.)
Suns at the MIT AI Lab are attacked.

11/2: 2028 First sendmail attack on mimsy.

11/2: 2040 Berkeley staff figure out the sendmail and rsh attacks, notice telnet and finger peculiarities, and start
shutting these services off.

11/2: 2049 cs.utah.edu is infected. This VAX 8600 is the central Computer Science Department machine at the
University of Utah. The next several entries follow documented events at Utah and are representative
of other infections around the country.

11/2: 2109 First sendmail attack at cs.utah.edu.

11/2: 2121 The load average on cs.utah.edu reaches 5. The ‘‘load average’’ is a system-generated value that
represents the average number of jobs in the run queue over the last minute; a load of 5 on a VAX
8600 noticeably degrades response times, while a load over 20 is a drastic degradation. At 9 PM, the
load is typically between 0.5 and 2.

11/2: 2141 The load average on cs.utah.edu reaches 7.

11/2: 2201 The load average on cs.utah.edu reaches 16.

11/2: 2206 The maximum number of distinct runnable processes (100) is reached on cs.utah.edu; the system is
unusable.

11/2: 2220 Jeff Forys at Utah kills off worms on cs.utah.edu. Utah Sun clusters are infected.

11/2: 2241 Re-infestation causes the load average to reach 27 on cs.utah.edu.

11/2: 2249 Forys shuts down cs.utah.edu.

11/3: 2321 Re-infestation causes the load average to reach 37 on cs.utah.edu, despite continuous efforts by Forys
to kill worms.

11/2: 2328 Peter Yee at NASA Ames Research Center posts a warning to the TCP-IP mailing list: ‘‘We are
currently under attack from an Internet VIRUS. It has hit UC Berkeley, UC San Diego, Lawrence
Livermore, Stanford, and NASA Ames.’’ He suggests turning off telnet, ftp, finger, rsh and SMTP ser-
vices. He does not mention rexec. Yee is actually at Berkeley working with Keith Bostic, Mike
Karels and Phil Lapsley.

11/3: 0034 At another’s prompting, Andy Sudduth of Harvard anonymously posts a warning to the TCP-IP list:
‘‘There may be a virus loose on the internet.’’ This is the first message that (briefly) describes how the



Tour of the Worm 3

finger attack works, describes how to defeat the SMTP attack by rebuilding sendmail, and explicitly
mentions the rexec attack. Unfortunately Sudduth’s message is blocked at relay.cs.net while that gate-
way is shut down to combat the worm, and it does not get delivered for almost two days. Sudduth
acknowledges authorship of the message in a subsequent message to TCP-IP on Nov. 5.

11/3: 0254 Keith Bostic sends a fix for sendmail to the newsgroup comp.bugs.4bsd.ucb-fixes and to the TCP-IP
mailing list. These fixes (and later ones) are also mailed directly to important system administrators
around the country.

11/3: early morning
The wtmp session log is mysteriously removed on prep.ai.mit.edu.

11/3: 0507 Edward Wang at Berkeley figures out and reports the finger attack, but his message doesn’t come to
Mike Karels’ attention for 12 hours.

11/3: 0900 The annual Berkeley Unix Workshop commences at UC Berkeley. 40 or so important system
administrators and hackers are in town to attend, while disaster erupts at home. Several people who
had planned to fly in on Thursday morning are trapped by the crisis. Keith Bostic spends much of the
day on the phone at the Computer Systems Research Group offices answering calls from panicked sys-
tem administrators from around the country.

11/3: 1500 (approx.)
The team at MIT Athena calls Berkeley with an example of how the finger server bug works.

11/3: 1626 Dave Pare arrives at Berkeley CSRG offices; disassembly and decompiling start shortly afterward
using Pare’s special tools.

11/3: 1800 (approx.)
The Berkeley group sends out for calzones. People arrive and leave; the offices are crowded, there’s
plenty of excitement. Parallel work is in progress at MIT Athena; the two groups swap code.

11/3: 1918 Keith Bostic posts a fix for the finger server.

11/4: 0600 Members of the Berkeley team, with the worm almost completely disassembled and largely decom-
piled, finally take off for a couple hours’ sleep before returning to the workshop.

11/4: 1236 Theodore Ts’o of Project Athena at MIT publicly announces that MIT and Berkeley have completely
disassembled the worm.

11/4: 1700 (approx.)
A short presentation on the worm is made at the end of the Berkeley UNIX Workshop.

11/8: National Computer Security Center meeting to discuss the worm. There are about 50 attendees.

11/11: 0038 Fully decompiled and commented worm source is installed at Berkeley.

3. Overview

What exactly did the worm do that led it to cause an epidemic? The worm consists of a 99-line bootstrap pro-
gram written in the C language, plus a large relocatable object file that comes in VAX and Sun-3 flavors. Internal
evidence showed that the object file was generated from C sources, so it was natural to decompile the binary
machine language into C; we now have over 3200 lines of commented C code which recompiles and is mostly com-
plete. We shall start the tour of the worm with a quick overview of the basic goals of the worm, followed by discus-
sion in depth of the worm’s various behaviors as revealed by decompilation.

The activities of the worm break down into the categories of attack and defense. Attack consists of locating
hosts (and accounts) to penetrate, then exploiting security holes on remote systems to pass across a copy of the
worm and run it. The worm obtains host addresses by examining the system tables /etc/hosts.equiv and /.rhosts,
user files like .forward and .rhosts, dynamic routing information produced by the netstat program, and finally ran-
domly generated host addresses on local networks. It ranks these by order of preference, trying a file like
/etc/hosts.equiv first because it contains names of local machines that are likely to permit unauthenticated connec-
tions. Penetration of a remote system can be accomplished in any of three ways. The worm can take advantage of a
bug in the finger server that allows it to download code in place of a finger request and trick the server into execut-
ing it. The worm can use a ‘‘trap door’’ in the sendmail SMTP mail service, exercising a bug in the debugging code
that allows it to execute a command interpreter and download code across a mail connection. If the worm can
penetrate a local account by guessing its password, it can use the rexec and rsh remote command interpreter services



Tour of the Worm 4

to attack hosts that share that account. In each case the worm arranges to get a remote command interpreter which it
can use to copy over, compile and execute the 99-line bootstrap. The bootstrap sets up its own network connection
with the local worm and copies over the other files it needs, and using these pieces a remote worm is built and the
infection procedure starts over again.

Defense tactics fall into three categories: preventing the detection of intrusion, inhibiting the analysis of the
program, and authenticating other worms. The worm’s simplest means of hiding itself is to change its name. When
it starts up, it clears its argument list and sets its zeroth argument to sh, allowing it to masquerade as an innocuous
command interpreter. It uses fork() to change its process I.D., never staying too long at one I.D. These two tactics
are intended to disguise the worm’s presence on system status listings. The worm tries to leave as little trash lying
around as it can, so at start-up it reads all its support files into memory and deletes the tell-tale filesystem copies. It
turns off the generation of core files, so if the worm makes a mistake, it doesn’t leave evidence behind in the form
of core dumps. The latter tactic is also designed to block analysis of the program—it prevents an administrator from
sending a software signal to the worm to force it to dump a core file. There are other ways to get a core file, how-
ever, so the worm carefully alters character data in memory to prevent it from being extracted easily. Copies of disk
files are encoded by repeatedly exclusive-or’ing a ten-byte code sequence; static strings are encoded byte-by-byte
by exclusive-or’ing with the hexadecimal value 81, except for a private word list which is encoded with hexade-
cimal 80 instead. If the worm’s files are somehow captured before the worm can delete them, the object files have
been loaded in such a way as to remove most non-essential symbol table entries, making it harder to guess at the
purposes of worm routines from their names. The worm also makes a trivial effort to stop other programs from tak-
ing advantage of its communications; in theory a well-prepared site could prevent infection by sending messages to
ports that the worm was listening on, so the worm is careful to test connections using a short exchange of random
‘‘magic numbers’’.

When studying a tricky program like this, it’s just as important to establish what the program does not do as
what it does do. The worm does not delete a system’s files: it only removes files that it created in the process of
bootstrapping. The program does not attempt to incapacitate a system by deleting important files, or indeed any
files. It does not remove log files or otherwise interfere with normal operation other than by consuming system
resources. The worm does not modify existing files: it is not a virus. The worm propagates by copying itself and
compiling itself on each system; it does not modify other programs to do its work for it. Due to its method of infec-
tion, it can’t count on sufficient privileges to be able to modify programs. The worm does not install trojan horses:
its method of attack is strictly active, it never waits for a user to trip over a trap. Part of the reason for this is that the
worm can’t afford to waste time waiting for trojan horses—it must reproduce before it is discovered. Finally, the
worm does not record or transmit decrypted passwords: except for its own static list of favorite passwords, the
worm does not propagate cracked passwords on to new worms nor does it transmit them back to some home base.
This is not to say that the accounts that the worm penetrated are secure merely because the worm did not tell anyone
what their passwords were, of course—if the worm can guess an account’s password, certainly others can too. The
worm does not try to capture superuser privileges: while it does try to break into accounts, it doesn’t depend on
having particular privileges to propagate, and never makes special use of such privileges if it somehow gets them.
The worm does not propagate over uucp or X.25 or DECNET or BITNET: it specifically requires TCP/IP. The
worm does not infect System V systems unless they have been modified to use Berkeley network programs like send-
mail, fingerd and rexec.

4. Internals

Now for some details: we shall follow the main thread of control in the worm, then examine some of the
worm’s data structures before working through each phase of activity.

4.1. The thread of control

When the worm starts executing in main(), it takes care of some initializations, some defense and some
cleanup. The very first thing it does is to change its name to sh. This shrinks the window during which the worm is
visible in a system status listing as a process with an odd name like x9834753. It then initializes the random number
generator, seeding it with the current time, turns off core dumps, and arranges to die when remote connections fail.
With this out of the way, the worm processes its argument list. It first looks for an option −−p $$, where $$
represents the process I.D. of its parent process; this option indicates to the worm that it must take care to clean up
after itself. It proceeds to read in each of the files it was given as arguments; if cleaning up, it removes each file
after it reads it. If the worm wasn’t given the bootstrap source file l1.c as an argument, it exits silently; this is
perhaps intended to slow down people who are experimenting with the worm. If cleaning up, the worm then closes



Tour of the Worm 5

its file descriptors, temporarily cutting itself off from its remote parent worm, and removes some files. (One of these
files, /tmp/.dumb, is never created by the worm and the unlinking seems to be left over from an earlier stage of
development.) The worm then zeroes out its argument list, again to foil the system status program ps. The next step
is to initialize the worm’s list of network interfaces; these interfaces are used to find local networks and to check for
alternate addresses of the current host. Finally, if cleaning up the worm resets its process group and kills the process
that helped to bootstrap it. The worm’s last act in main() is to call a function we named doit(), which contains the
main loop of the worm.

doit() runs a short prologue before actually starting the main loop. It (redundantly) seeds the random number
generator with the current time, saving the time so that it can tell how long it has been running. The worm then
attempts its first infection. It initially attacks gateways that it found with the netstat network status program; if it
can’t infect one of these hosts, then it checks random host numbers on local networks, then it tries random host
numbers on networks that are on the far side of gateways, in each case stopping if it succeeds. (Note that this
sequence of attacks differs from the sequence the worm uses after it has entered the main loop.)

After this initial attempt at infection, the worm calls the routine checkother() to check for another worm
already on the local machine. In this check the worm acts as a client to an existing worm which acts as a server;
they may exchange ‘‘population control’’ messages, after which one of the two worms will eventually shut down.

One odd routine is called just before entering the main loop. We named this routine send_message(), but it
really doesn’t send anything at all. It looks like it was intended to cause 1 in 15 copies of the worm to send a 1-byte
datagram to a port on the host ernie.berkeley.edu, which is located in the Computer Science Department at UC
Berkeley. It has been suggested that this was a feint, designed to draw attention to ernie and away from the author’s

������������������������������������������������������������������������������

doit() {
seed the random number generator with the time
attack hosts: gateways, local nets, remote nets
checkother();
send_message();
for (;;) {

cracksome();
other_sleep(30);
cracksome();
change our process ID
attack hosts: gateways, known hosts,

remote nets, local nets
other_sleep(120);
if 12 hours have passed,

reset hosts table
if (pleasequit && nextw > 10)

exit(0);
}

}

‘‘C’’ pseudo-code for the doit() function

������������������������������������������������������������������������������



Tour of the Worm 6

real host. Since the routine has a bug (it sets up a TCP socket but tries to send a UDP packet), nothing gets sent at
all. It’s possible that this was a deeper feint, designed to be uncovered only by decompilers; if so, this wouldn’t be
the only deliberate impediment that the author put in our way. In any case, administrators at Berkeley never
detected any process listening at port 11357 on ernie, and we found no code in the worm that listens at that port,
regardless of the host.

The main loop begins with a call to a function named cracksome() for some password cracking. Password
cracking is an activity that the worm is constantly working at in an incremental fashion. It takes a break for 30
seconds to look for intruding copies of the worm on the local host, and then goes back to cracking. After this ses-
sion, it forks (creates a new process running with a copy of the same image) and the old process exits; this serves to
turn over process I.D. numbers and makes it harder to track the worm with the system status program ps. At this
point the worm goes back to its infectious stage, trying (in order of preference) gateways, hosts listed in system
tables like /etc/hosts.equiv, random host numbers on the far side of gateways and random hosts on local networks.
As before, if it succeeds in infecting a new host, it marks that host in a list and leaves the infection phase for the
time being. After infection, the worm spends two minutes looking for new local copies of the worm again; this is
done here because a newly infected remote host may try to reinfect the local host. If 12 hours have passed and the
worm is still alive, it assumes that it has had bad luck due to networks or hosts being down, and it reinitializes its
table of hosts so that it can start over from scratch. At the end of the main loop the worm checks to see if it is
scheduled to die as a result of its population control features, and if it is, and if it has done a sufficient amount of
work cracking passwords, it exits.

4.2. Data structures

The worm maintains at least four interesting data structures, and each is associated with a set of support rou-
tines.

The object structure is used to hold copies of files. Files are encrypted using the function xorbuf() while in
memory, so that dumps of the worm won’t reveal anything interesting. The files are copied to disk on a remote sys-
tem before starting a new worm, and new worms read the files into memory and delete the disk copies as part of
their start-up duties. Each structure contains a name, a length and a pointer to a buffer. The function getobject-
byname() retrieves a pointer to a named object structure; for some reason, it is only used to call up the bootstrap
source file.

The interface structure contains information about the current host’s network interfaces. This is mainly used
to check for local attached networks. It contains a name, a network address, a subnet mask and some flags. The
interface table is initialized once at start-up time.

The host structure is used to keep track of the status and addresses of hosts. Hosts are added to this list
dynamically, as the worm encounters new sources of host names and addresses. The list can be searched for a par-
ticular address or name, with an option to insert a new entry if no matching entry is found. Flag bits are used to
indicate whether the host is a gateway, whether it was found in a system table like /etc/hosts.equiv, whether the
worm has found it impossible to attack the host for some reason, and whether the host has already been successfully
infected. The bits for ‘‘can’t infect’’ and ‘‘infected’’ are cleared every 12 hours, and low priority hosts are deleted,
to be accumulated again later. The structure contains up to 12 names (aliases) and up to 6 distinct network
addresses for each host.

In our sources, what we’ve called the muck structure is used to keep track of accounts for the purpose of pass-
word cracking. (It was awarded the name muck for sentimental reasons, although pw or acct might be more
mnemonic.) Each structure contains an account name, an encrypted password, a decrypted password (if available)
plus the home directory and personal information fields from the password file.

4.3. Population growth

The worm contains a mechanism that seems to be designed to limit the number of copies of the worm running
on a given system, but beyond that our current understanding of the design goals is itself limited. It clearly does not
prevent a system from being overloaded, although it does appear to pace the infection so that early copies can go
undetected. It has been suggested that a simulation of the worm’s population control features might reveal more
about its design, and we are interested writing such a simulation.

The worm uses a client-and-server technique to control the number of copies executing on the current
machine. A routine checkother() is run at start-up time. This function tries to connect to a server listening at TCP



Tour of the Worm 7

port 23357. The connection attempt returns immediately if no server is present, but blocks if one is available and
busy; a server worm periodically runs its server code during time-consuming operations so that the queue of connec-
tions does not grow large. After the client exchanges magic numbers with the server as a trivial form of authentica-
tion, the client and the server roll dice to see who gets to survive. If the exclusive-or of the respective low bits of
the client’s and the server’s random numbers is 1, the server wins, otherwise the client wins. The loser sets a flag
pleasequit that eventually allows it to exit at the bottom of the main loop. If at any time a problem occurs—a read
from the server fails, or the wrong magic number is returned—the client worm returns from the function, becoming
a worm that never acts as a server and hence does not engage in population control. Perhaps as a precaution against
a cataleptic server, a test at the top of the function causes 1 in 7 worms to skip population control. Thus the worm
finishes the population game in checkother() in one of three states: scheduled to die after some time, with pleasequit
set; running as a server, with the possibility of losing the game later; and immortal, safe from the gamble of popula-
tion control.

A complementary routine other_sleep() executes the server function. It is passed a time in seconds, and it
uses the Berkeley select() system call to wait for that amount of time accepting connections from clients. On entry
to the function, it tests to see whether it has a communications port with which to accept connections; if not, it sim-
ply sleeps for the specified amount of time and returns. Otherwise it loops on select(), decrementing its time
remaining after serving a client until no more time is left and the function returns. When the server acquires a
client, it performs the inverse of the client’s protocol, eventually deciding whether to proceed or to quit.
other_sleep() is called from many different places in the code, so that clients are not kept waiting too long.

Given the worm’s elaborate scheme for controlling re-infection, what led it to reproduce so quickly on an
individual machine that it could swamp it? One culprit is the 1 in 7 test in checkother(): worms that skip the client
phase become immortal, and thus don’t risk being eliminated by a roll of the dice. Another source of system load-
ing is the problem that when a worm decides it has lost, it can still do a lot of work before it actually exits. The
client routine isn’t even run until the newly born worm has attempted to infect at least one remote host, and even if a
worm loses the roll, it continues executing to the bottom of the main loop, and even then it won’t exit unless it has
gone through the main loop several times, limited by its progress in cracking passwords. Finally, new worms lose
all of the history of infection that their parents had, so the children of a worm are constantly trying to re-infect the
parent’s host, as well as the other children’s hosts. Put all of these factors together and it comes as no surprise that
within an hour or two after infection, a machine may be entirely devoted to executing worms.

4.4. Locating new hosts to infect

One of the characteristics of the worm is that all of its attacks are active, never passive. A consequence of
this is that the worm can’t wait for a user to take it over to another machine like gum on a shoe—it must search out
hosts on its own.

The worm has a very distinct list of priorities when hunting for hosts. Its favorite hosts are gateways; the hg()
routine tries to infect each of the hosts it believes to be gateways. Only when all of the gateways are known to be
infected or infection-proof does the worm go on to other hosts. hg() calls the rt_init() function to get a list of gate-
ways; this list is derived by running the netstat network status program and parsing its output. The worm is careful
to skip the loopback device and any local interfaces (in the event that the current host is a gateway); when it
finishes, it randomizes the order of the list and adds the first 20 gateways to the host table to speed up the initial
searches. It then tries each gateway in sequence until it finds a host that can be infected, or it runs out of hosts.

After taking care of gateways, the worm’s next priority is hosts whose names were found in a scan of system
files. At the start of password cracking, the files /etc/hosts.equiv (which contains names of hosts to which the local
host grants user permissions without authentication) and /.rhosts (which contains names of hosts from which the
local host permits remote privileged logins) are examined, as are all users’ .forward files (which list hosts to which
mail is forwarded from the current host). These hosts are flagged so that they can be scanned earlier than the rest.
The hi() function is then responsible for attacking these hosts.

When the most profitable hosts have been used up, the worm starts looking for hosts that aren’t recorded in
files. The routine hl() checks local networks: it runs through the local host’s addresses, masking off the host part
and substituting a random value. ha() does the same job for remote hosts, checking alternate addresses of gateways.
Special code handles the ARPAnet practice of putting the IMP number in the low host bits and the actual IMP port
(representing the host) in the high host bits. The function that runs these random probes, which we named
hack_netof(), seems to have a bug that prevents it from attacking hosts on local networks; this may be due to our
own misunderstanding, of course, but in any case the check of hosts from system files should be sufficient to cover



Tour of the Worm 8

all or nearly all of the local hosts anyway.

Password cracking is another generator of host names, but since this is handled separately from the usual host
attack scheme presented here, it will be discussed below with the other material on passwords.

4.5. Security holes
The first fact to face is that Unix was not developed with security, in any realistic sense, in mind... [Dennis Ritchie,
‘‘On the Security of Unix’’]

This section discusses the TCP services used by the worm to penetrate systems. It’s a touch unfair to use the
quote above when the implementation of the services we’re about to discuss was distributed by Berkeley rather than
Bell Labs, but the sentiment is appropriate. For a long time the balance between security and convenience on Unix
systems has been tilted in favor of convenience. As Brian Reid has said about the break-in at Stanford two years
ago: ‘‘Programmer convenience is the antithesis of security, because it is going to become intruder convenience if
the programmer’s account is ever compromised.’’ The lesson from that experience seems to have been forgotten by
most people, but not by the author of the worm.

4.5.1. Rsh and rexec
These notes describe how the design of TCP/IP and the 4.2BSD implementation allow users on untrusted and possibly
very distant hosts to masquerade as users on trusted hosts. [Robert T. Morris, ‘‘A Weakness in the 4.2BSD Unix
TCP/IP Software’’]

Rsh and rexec are network services which offer remote command interpreters. Rexec uses password authenti-
cation; rsh relies on a ‘‘privileged’’ originating port and permissions files. Two vulnerabilities are exploited by the
worm—the likelihood that a remote machine that has an account for a local user will have the same password as the
local account, allowing penetration through rexec, and the likelihood that such a remote account will include the
local host in its rsh permissions files. Both of these vulnerabilities are really problems with laxness or convenience
for users and system administrators rather than actual bugs, but they represent avenues for infection just like inad-
vertent security bugs.

The first use of rsh by the worm is fairly simple: it looks for a remote account with the same name as the one
that is (unsuspectingly) running the worm on the local machine. This test is part of the standard menu of hacks con-
ducted for each host; if it fails, the worm falls back upon finger, then sendmail. Many sites, including Utah, already
were protected from this trivial attack by not providing remote shells for pseudo-users like daemon or nobody.

A more sophisticated use of these services is found in the password cracking routines. After a password is
successfully guessed, the worm immediately tries to penetrate remote hosts associated with the broken account. It
reads the user’s .forward file (which contains an address to which mail is forwarded) and .rhosts file (which contains
a list of hosts and optionally user names on those hosts which are granted permission to access the local machine
with rsh bypassing the usual password authentication), trying these hostnames until it succeeds. Each target host is
attacked in two ways. The worm first contacts the remote host’s rexec server and sends it the account name found
in the .forward or .rhosts files followed by the guessed password. If this fails, the worm connects to the local rexec
server with the local account name and uses that to contact the target’s rsh server. The remote rsh server will permit
the connection provided the name of the local host appears in either the /etc/hosts.equiv file or the user’s private
.rhosts file.

Strengthening these network services is far more problematic than fixing finger and sendmail, unfortunately.
Users don’t like the inconvenience of typing their password when logging in on a trusted local host, and they don’t
want to remember different passwords for each of the many hosts they may have to deal with. Some of the solu-
tions may be worse than the disease—for example, a user who is forced to deal with many passwords is more likely
to write them down somewhere.

4.5.2. Finger
gets was removed from our [C library] a couple days ago. [Bill Cheswick at AT&T Bell Labs Research, private com-
munication, 11/9/88]

Probably the neatest hack in the worm is its co-opting of the TCP finger service to gain entry to a system.
Finger reports information about a user on a host, usually including things like the user’s full name, where their



Tour of the Worm 9

office is, the number of their phone extension and so on. The Berkeley3 version of the finger server is a really trivial
program: it reads a request from the originating host, then runs the local finger program with the request as an argu-
ment and ships the output back. Unfortunately the finger server reads the remote request with gets(), a standard C
library routine that dates from the dawn of time and which does not check for overflow of the server’s 512 byte
request buffer on the stack. The worm supplies the finger server with a request that is 536 bytes long; the bulk of
the request is some VAX machine code that asks the system to execute the command interpreter sh, and the extra 24
bytes represent just enough data to write over the server’s stack frame for the main routine. When the main routine
of the server exits, the calling function’s program counter is supposed to be restored from the stack, but the worm
wrote over this program counter with one that points to the VAX code in the request buffer. The program jumps to
the worm’s code and runs the command interpreter, which the worm uses to enter its bootstrap.

Not surprisingly, shortly after the worm was reported to use this feature of gets(), a number of people replaced
all instances of gets() in system code with sensible code that checks the length of the buffer. Some even went so far
as to remove gets() from the library, although the function is apparently mandated by the forthcoming ANSI C stan-
dard4. So far no one has claimed to have exercised the finger server bug before the worm incident, but in May 1988,
students at UC Santa Cruz apparently penetrated security using a different finger server with a similar bug. The sys-
tem administrator at UCSC noticed that the Berkeley finger server had a similar bug and sent mail to Berkeley, but
the seriousness of the problem was not appreciated at the time (Jim Haynes, private communication).

One final note: the worm is meticulous in some areas but not in others. From what we can tell, there was no
Sun-3 version of the finger intrusion even though the Sun-3 server was just as vulnerable as the VAX one. Perhaps
the author had VAX sources available but not Sun sources?

4.5.3. Sendmail
[T]he trap door resulted from two distinct ‘features’ that, although innocent by themselves, were deadly when com-
bined (kind of like binary nerve gas). [Eric Allman, personal communication, 11/22/88]

The sendmail attack is perhaps the least preferred in the worm’s arsenal, but in spite of that one site at Utah
was subjected to nearly 150 sendmail attacks on Black Thursday. Sendmail is the program that provides the SMTP
mail service on TCP networks for Berkeley UNIX systems. It uses a simple character-oriented protocol to accept
mail from remote sites. One feature of sendmail is that it permits mail to be delivered to processes instead of mail-
box files; this can be used with (say) the vacation program to notify senders that you are out of town and are tem-
porarily unable to respond to their mail. Normally this feature is only available to recipients. Unfortunately a little
loophole was accidentally created when a couple of earlier security bugs were being fixed—if sendmail is compiled
with the DEBUG flag, and the sender at runtime asks that sendmail enter debug mode by sending the debug com-
mand, it permits senders to pass in a command sequence instead of a user name for a recipient. Alas, most versions
of sendmail are compiled with DEBUG, including the one that Sun sends out in its binary distribution. The worm
mimics a remote SMTP connection, feeding in /dev/null as the name of the sender and a carefully crafted string as
the recipient. The string sets up a command that deletes the header of the message and passes the body to a com-
mand interpreter. The body contains a copy of the worm bootstrap source plus commands to compile and run it.
After the worm finishes the protocol and closes the connection to sendmail, the bootstrap will be built on the remote
host and the local worm waits for its connection so that it can complete the process of building a new worm.

Of course this is not the first time that an inadvertent loophole or ‘‘trap door’’ like this has been found in
sendmail, and it may not be the last. In his Turing Award lecture, Ken Thompson said: ‘‘You can’t trust code that
you did not totally create yourself. (Especially code from companies that employ people like me.)’’ In fact, as Eric
Allman says, ‘‘[Y]ou can’t even trust code that you did totally create yourself.’’ The basic problem of trusting sys-
tem programs is not one that is easy to solve.

4.6. Infection

The worm uses two favorite routines when it decides that it wants to infect a host. One routine that we named
infect() is used from host scanning routines like hg(). infect() first checks that it isn’t infecting the local machine, an
already infected machine or a machine previously attacked but not successfully infected; the ‘‘infected’’ and
������������������������������������

3 Actually, like much of the code in the Berkeley distribution, the finger server was contributed from elsewhere; in this case, it appears that
MIT was the source.

4 See for example Appendix B, section 1.4 of the second edition of The C Programming Language by Kernighan and Ritchie.



Tour of the Worm 10

‘‘immune’’ states are marked by flags on a host structure when attacks succeed or fail, respectively. The worm then
makes sure that it can get an address for the target host, marking the host immune if it can’t. Then comes a series of
attacks: first by rsh from the account that the worm is running under, then through finger, then through sendmail. If
infect() fails, it marks the host as immune.

The other infection routine is named hu1() and it is run from the password cracking code after a password has
been guessed. hu1(), like infect(), makes sure that it’s not re-infecting a host, then it checks for an address. If a
potential remote user name is available from a .forward or .rhosts file, the worm checks it to make sure it is
reasonable—it must contain no punctuation or control characters. If a remote user name is unavailable the worm
uses the local user name. Once the worm has a user name and a password, it contacts the rexec server on the target
host and tries to authenticate itself. If it can, it proceeds to the bootstrap phase; otherwise, it tries a slightly different
approach—it connects to the local rexec server with the local user name and password, then uses this command
interpreter to fire off a command interpreter on the target machine with rsh. This will succeed if the remote host
says it trusts the local host in its /etc/hosts.equiv file, or the remote account says it trusts the local account in its
.rhosts file. hu1() ignores infect()’s ‘‘immune’’ flag and does not set this flag itself, since hu1() may find success on
a per-account basis that infect() can’t achieve on a per-host basis.

Both infect() and hu1() use a routine we call sendworm() to do their dirty work5. sendworm() looks for the
l1.c bootstrap source file in its objects list, then it uses the makemagic() routine to get a communication stream end-
point (a socket), a random network port number to rendezvous at, and a magic number for authentication. (There is
an interesting side effect to makemagic()—it looks for a usable address for the target host by trying to connect to its
TCP telnet port; this produces a characteristic log message from the telnet server.) If makemagic() was successful,
the worm begins to send commands to the remote command interpreter that was started up by the immediately
preceding attack. It changes its directory to an unprotected place (/usr/tmp), then it sends across the bootstrap
source, using the UNIX stream editor sed to parse the input stream. The bootstrap source is compiled and run on the
remote system, and the worm runs a routine named waithit() to wait for the remote bootstrap to call back on the
selected port.

The bootstrap is quite simple. It is supplied the address of the originating host, a TCP port number and a
magic number as arguments. When it starts, it unlinks itself so that it can’t be detected in the filesystem, then it calls
fork() to create a new process with the same image. The old process exits, permitting the originating worm to con-
tinue with its business. The bootstrap reads its arguments then zeroes them out to hide them from the system status
program; then it is ready to connect over the network to the parent worm. When the connection is made, the
bootstrap sends over the magic number, which the parent will check against its own copy. If the parent accepts the
number (which is carefully rendered to be independent of host byte order), it will send over a series of filenames and
files which the bootstrap writes to disk. If trouble occurs, the bootstrap removes all these files and exits. Eventually
the transaction completes, and the bootstrap calls up a command interpreter to finish the job.

In the meantime, the parent in waithit() spends up to two minutes waiting for the bootstrap to call back; if the
bootstrap fails to call back, or the authentication fails, the worm decides to give up and reports a failure. When a
connection is successful, the worm ships all of its files across followed by an end-of-file indicator. It pauses four
seconds to let a command interpreter start on the remote side, then it issues commands to create a new worm. For
each relocatable object file in the list of files, the worm tries to build an executable object; typically each file con-
tains code for a particular make of computer, and the builds will fail until the worm tries the proper computer type.
If the parent worm finally gets an executable child worm built, it sets it loose with the −−p option to kill the command
interpreter, then shuts down the connection. The target host is marked ‘‘infected’’. If none of the objects produces
a usable child worm, the parent removes the detritus and waithit() returns an error indication.

When a system is being swamped by worms, the /usr/tmp directory can fill with leftover files as a conse-
quence of a bug in waithit(). If a worm compile takes more than 30 seconds, resynchronization code will report an
error but waithit() will fail to remove the files it has created. On one of our machines, 13 MB of material represent-
ing 86 sets of files accumulated over 5.5 hours.

������������������������������������
5 One minor exception: the sendmail attack doesn’t use sendworm() since it needs to handle the SMTP protocol in addition to the command

interpreter interface, but the principle is the same.



Tour of the Worm 11

4.7. Password cracking

A password cracking algorithm seems like a slow and bulky item to put in a worm, but the worm makes this
work by being persistent and efficient. The worm is aided by some unfortunate statistics about typical password
choices. Here we discuss how the worm goes about choosing passwords to test and how the UNIX password encryp-
tion routine was modified.

4.7.1. Guessing passwords
For example, if the login name is ‘‘abc’’, then ‘‘abc’’, ‘‘cba’’, and ‘‘abcabc’’ are excellent candidates for passwords.
[Grampp and Morris, ‘‘UNIX Operating System Security’’]

The worm’s password guessing is driven by a little 4-state machine. The first state gathers password data,
while the remaining states represent increasingly less likely sources of potential passwords. The central cracking
routine is called cracksome(), and it contains a switch on each of the four states.

The routine that implements the first state we named crack_0(). This routine’s job is to collect information
about hosts and accounts. It is only run once; the information it gathers persists for the lifetime of the worm. Its
implementation is straightforward: it reads the files /etc/hosts.equiv and /.rhosts for hosts to attack, then reads the
password file looking for accounts. For each account, the worm saves the name, the encrypted password, the home
directory and the user information fields. As a quick preliminary check, it looks for a .forward file in each user’s
home directory and saves any host name it finds in that file, marking it like the previous ones.

We unimaginatively called the function for the next state crack_1(). crack_1() looks for trivially broken pass-
words. These are passwords which can be guessed merely on the basis of information already contained in the pass-
word file. Grampp and Morris report a survey of over 100 password files where between 8 and 30 percent of all
passwords were guessed using just the literal account name and a couple of variations. The worm tries a little
harder than this: it checks the null password, the account name, the account name concatenated with itself, the first
name (extracted from the user information field, with the first letter mapped to lower case), the last name, and the
account name reversed. It runs through up to 50 accounts per call to cracksome(), saving its place in the list of
accounts and advancing to the next state when it runs out of accounts to try.

The next state is handled by crack_2(). In this state the worm compares a list of favorite passwords, one pass-
word per call, with all of the encrypted passwords in the password file. The list contains 432 words, most of which
are real English words or proper names; it seems likely that this list was generated by stealing password files and
cracking them at leisure on the worm author’s home machine. A global variable nextw is used to count the number
of passwords tried, and it is this count (plus a loss in the population control game) that controls whether the worm
exits at the end of the main loop—nextw must be greater than 10 before the worm can exit. Since the worm nor-
mally spends 2.5 minutes checking for clients over the course of the main loop and calls cracksome() twice in that
period, it appears that the worm must make a minimum of 7 passes through the main loop, taking more than 15
minutes6. It will take at least 9 hours for the worm to scan its built-in password list and proceed to the next state.

The last state is handled by crack_3(). It opens the UNIX online dictionary /usr/dict/words and goes through it
one word at a time. If a word is capitalized, the worm tries a lower-case version as well. This search can essentially
go on forever: it would take something like four weeks for the worm to finish a typical dictionary like ours.

When the worm selects a potential password, it passes it to a routine we called try_password(). This function
calls the worm’s special version of the UNIX password encryption function crypt() and compares the result with the
target account’s actual encrypted password. If they are equal, or if the password and guess are the null string (no
password), the worm saves the cleartext password and proceeds to attack hosts that are connected to this account. A
routine we called try_forward_and_rhosts() reads the user’s .forward and .rhosts files, calling the previously
described hu1() function for each remote account it finds.
������������������������������������

6 For those mindful of details: The first call to cracksome() is consumed reading system files. The worm must spend at least one call to
cracksome() in the second state attacking trivial passwords. This accounts for at least one pass through the main loop. In the third state, crack-
some() tests one password from its list of favorites on each call; the worm will exit if it lost a roll of the dice and more than ten words have been
checked, so this accounts for at least six loops, two words on each loop for five loops to reach 10 words, then another loop to pass that number.
Altogether this amounts to a minimum of 7 loops. If all 7 loops took the maximum amount of time waiting for clients, this would require a
minimum of 17.5 minutes, but the 2-minute check can exit early if a client connects and the server loses the challenge, hence 15.5 minutes of
waiting time plus runtime overhead is the minimum lifetime. In this period a worm will attack at least 8 hosts through the host infection routines,
and will try about 18 passwords for each account, attacking more hosts if accounts are cracked.



Tour of the Worm 12

4.7.2. Faster password encryption
The use of encrypted passwords appears reasonably secure in the absence of serious attention of experts in the field.
[Morris and Thompson, ‘‘Password Security: A Case History’’]

Unfortunately some experts in the field have been giving serious attention to fast implementations of the UNIX

password encryption algorithm. UNIX password authentication works without putting any readable version of the
password onto the system, and indeed works without protecting the encrypted password against reading by users on
the system. When a user types a password in the clear, the system encrypts it using the standard crypt() library rou-
tine, then compares it against a saved copy of the encrypted password. The encryption algorithm is meant to be
basically impossible to invert, preventing the retrieval of passwords by examining only the encrypted text, and it is
meant to be expensive to run, so that testing guesses will take a long time. The UNIX password encryption algorithm
is based on the Federal Data Encryption Standard (DES). Currently no one knows how to invert this algorithm in a
reasonable amount of time, and while fast DES encoding chips are available, the UNIX version of the algorithm is
slightly perturbed so that it is impossible to use a standard DES chip to implement it.

Two problems have been mitigating against the UNIX implementation of DES. Computers are continually
increasing in speed—current machines are typically several times faster than the machines that were available when
the current password scheme was invented. At the same time, ways have been discovered to make software DES
run faster. UNIX passwords are now far more susceptible to persistent guessing, particularly if the encrypted pass-
words are already known. The worm’s version of the UNIX crypt() routine ran more than 9 times faster than the
standard version when we tested it on our VAX 8600. While the standard crypt() takes 54 seconds to encrypt 271
passwords on our 8600 (the number of passwords actually contained in our password file), the worm’s crypt() takes
less than 6 seconds.

The worm’s crypt() algorithm appears to be a compromise between time and space: the time needed to
encrypt one password guess versus the substantial extra table space needed to squeeze performance out of the algo-
rithm. Curiously, one performance improvement actually saves a little space. The traditional UNIX algorithm stores
each bit of the password in a byte, while the worm’s algorithm packs the bits into two 32-bit words. This permits
the worm’s algorithm to use bit-field and shift operations on the password data, which is immensely faster. Other
speedups include unrolling loops, combining tables, precomputing shifts and masks, and eliminating redundant ini-
tial and final permutations when performing the 25 applications of modified DES that the password encryption algo-
rithm uses. The biggest performance improvement comes as a result of combining permutations: the worm uses
expanded arrays which are indexed by groups of bits rather than the single bits used by the standard algorithm. Matt
Bishop’s fast version of crypt() does all of these things and also precomputes even more functions, yielding twice
the performance of the worm’s algorithm but requiring nearly 200 KB of initialized data as opposed to the 6 KB
used by the worm and the less than 2 KB used by the normal crypt().

How can system administrators defend against fast implementations of crypt()? One suggestion that has been
introduced for foiling the bad guys is the idea of shadow password files. In this scheme, the encrypted passwords
are hidden rather than public, forcing a cracker to either break a privileged account or use the host’s CPU and (slow)
encryption algorithm to attack, with the added danger that password test requests could be logged and password
cracking discovered. The disadvantage of shadow password files is that if the bad guys somehow get around the
protections for the file that contains the actual passwords, all of the passwords must be considered cracked and will
need to be replaced. Another suggestion has been to replace the UNIX DES implementation with the fastest avail-
able implementation, but run it 1000 times or more instead of the 25 times used in the UNIX crypt() code. Unless the
repeat count is somehow pegged to the fastest available CPU speed, this approach merely postpones the day of
reckoning until the cracker finds a faster machine. It’s interesting to note that Morris and Thompson measured the
time to compute the old M-209 (non-DES) password encryption algorithm used in early versions of UNIX on the
PDP-11/70 and found that a good implementation took only 1.25 milliseconds per encryption, which they deemed
insufficient; currently the VAX 8600 using Matt Bishop’s DES-based algorithm needs 11.5 milliseconds per encryp-
tion, and machines 10 times faster than the VAX 8600 at a cheaper price will be available soon (if they aren’t
already!).

5. Opinions
The act of breaking into a computer system has to have the same social stigma as breaking into a neighbor’s house. It
should not matter that the neighbor’s door is unlocked. [Ken Thompson, 1983 Turing Award Lecture]

[Creators of viruses are] stealing a car for the purpose of joyriding. [R H Morris, in 1983 Capitol Hill testimony, cited
in the New York Times 11/11/88]



Tour of the Worm 13

I don’t propose to offer definitive statements on the morality of the worm’s author, the ethics of publishing
security information or the security needs of the UNIX computing community, since people better (and less)
qualified than I are still copiously flaming on these topics in the various network newsgroups and mailing lists. For
the sake of the mythical ordinary system administrator who might have been confused by all the information and
misinformation, I will try to answer a few of the most relevant questions in a narrow but useful way.

Did the worm cause damage? The worm did not destroy files, intercept private mail, reveal passwords, cor-
rupt databases or plant trojan horses. It did compete for CPU time with, and eventually overwhelm, ordinary user
processes. It used up limited system resources such as the open file table and the process text table, causing user
processes to fail for lack of same. It caused some machines to crash by operating them close to the limits of their
capacity, exercising bugs that do not appear under normal loads. It forced administrators to perform one or more
reboots to clear worms from the system, terminating user sessions and long-running jobs. It forced administrators to
shut down network gateways, including gateways between important nation-wide research networks, in an effort to
isolate the worm; this led to delays of up to several days in the exchange of electronic mail, causing some projects to
miss deadlines and others to lose valuable research time. It made systems staff across the country drop their ongo-
ing hacks and work 24-hour days trying to corner and kill worms. It caused members of management in at least one
institution to become so frightened that they scrubbed all the disks at their facility that were online at the time of the
infection, and limited reloading of files to data that was verifiably unmodified by a foreign agent. It caused
bandwidth through gateways that were still running after the infection started to become substantially degraded—
the gateways were using much of their capacity just shipping the worm from one network to another. It penetrated
user accounts and caused it to appear that a given user was disturbing a system when in fact they were not responsi-
ble. It’s true that the worm could have been far more harmful that it actually turned out to be: in the last few weeks,
several security bugs have come to light which the worm could have used to thoroughly destroy a system. Perhaps
we should be grateful that we escaped incredibly awful consequences, and perhaps we should also be grateful that
we have learned so much about the weaknesses in our systems’ defenses, but I think we should share our grateful-
ness with someone other than the worm’s author.

Was the worm malicious? Some people have suggested that the worm was an innocent experiment that got
out of hand, and that it was never intended to spread so fast or so widely. We can find evidence in the worm to sup-
port and to contradict this hypothesis. There are a number of bugs in the worm that appear to be the result of hasty
or careless programming. For example, in the worm’s if_init() routine, there is a call to the block zero function
bzero() that incorrectly uses the block itself rather than the block’s address as an argument. It’s also possible that a
bug was responsible for the ineffectiveness of the population control measures used by the worm. This could be
seen as evidence that a development version of the worm ‘‘got loose’’ accidentally, and perhaps the author origi-
nally intended to test the final version under controlled conditions, in an environment from which it would not
escape. On the other hand, there is considerable evidence that the worm was designed to reproduce quickly and
spread itself over great distances. It can be argued that the population control hacks in the worm are anemic by
design: they are a compromise between spreading the worm as quickly as possible and raising the load enough to be
detected and defeated. A worm will exist for a substantial amount of time and will perform a substantial amount of
work even if it loses the roll of the (imaginary) dice; moreover, 1 in 7 worms become immortal and can’t be killed
by dice rolls. There is ample evidence that the worm was designed to hamper efforts to stop it even after it was
identified and captured. It certainly succeeded in this, since it took almost a day before the last mode of infection
(the finger server) was identified, analyzed and reported widely; the worm was very successful in propagating itself
during this time even on systems which had fixed the sendmail debug problem and had turned off rexec. Finally,
there is evidence that the worm’s author deliberately introduced the worm to a foreign site that was left open and
welcome to casual outside users, rather ungraciously abusing this hospitality. He apparently further abused this trust
by deleting a log file that might have revealed information that could link his home site with the infection. I think
the innocence lies in the research community rather than with the worm’s author.

Will publication of worm details further harm security? In a sense, the worm itself has solved that problem: it
has published itself by sending copies to hundreds or thousands of machines around the world. Of course a bad guy
who wants to use the worm’s tricks would have to go through the same effort that we went through in order to
understand the program, but then it only took us a week to completely decompile the program, so while it takes for-
titude to hack the worm, it clearly is not greatly difficult for a decent programmer. One of the worm’s most effec-
tive tricks was advertised when it entered—the bulk of the sendmail hack is visible in the log file, and a few
minutes’ work with the sources will reveal the rest of the trick. The worm’s fast password algorithm could be useful
to the bad guys, but at least two other faster implementations have been available for a year or more, so it isn’t very
secret, or even very original. Finally, the details of the worm have been well enough sketched out on various



Tour of the Worm 14

newsgroups and mailing lists that the principal hacks are common knowledge. I think it’s more important that we
understand what happened, so that we can make it less likely to happen again, than that we spend time in a futile
effort to cover up the issue from everyone but the bad guys. Fixes for both source and binary distributions are
widely available, and anyone who runs a system with these vulnerabilities needs to look into these fixes immedi-
ately, if they haven’t done so already.

6. Conclusion
It has raised the public awareness to a considerable degree. [R H Morris, quoted in the New York Times 11/5/88]

This quote is one of the understatements of the year. The worm story was on the front page of the New York
Times and other newspapers for days. It was the subject of television and radio features. Even the Bloom County
comic strip poked fun at it.

Our community has never before been in the limelight in this way, and judging by the response, it has scared
us. I won’t offer any fancy platitudes about how the experience is going to change us, but I will say that I think
these issues have been ignored for much longer than was safe, and I feel that a better understanding of the crisis just
past will help us cope better with the next one. Let’s hope we’re as lucky next time as we were this time.

Acknowledgments

No one is to blame for the inaccuracies herein except me, but there are plenty of people to thank for helping to
decompile the worm and for helping to document the epidemic. Dave Pare and Chris Torek were at the center of
the action during the late night session at Berkeley, and they had help and kibitzing from Keith Bostic, Phil Lapsley,
Peter Yee, Jay Lepreau and a cast of thousands. Glenn Adams and Dave Siegel provided good information on the
MIT AI Lab attack, while Steve Miller gave me details on Maryland, Jeff Forys on Utah, and Phil Lapsley, Peter
Yee and Keith Bostic on Berkeley. Bill Cheswick sent me a couple of fun anecdotes from AT&T Bell Labs. Jim
Haynes gave me the run-down on the security problems turned up by his busy little undergrads at UC Santa Cruz.
Eric Allman, Keith Bostic, Bill Cheswick, Mike Hibler, Jay Lepreau, Chris Torek and Mike Zeleznik provided
many useful review comments. Thank you all, and everyone else I forgot to mention.

Matt Bishop’s paper ‘‘A Fast Version of the DES and a Password Encryption Algorithm’’, 1987 by Matt
Bishop and the Universities Space Research Association, was helpful in (slightly) parting the mysteries of DES for
me. Anyone wishing to understand the worm’s DES hacking had better look here first. The paper is available with
Bishop’s deszip distribution of software for fast DES encryption. The latter was produced while Bishop was with
the Research Institute for Advanced Computer Science at NASA Ames Research Center; Bishop is now at Dart-
mouth College (bishop@bear.dartmouth.edu). He sent me a very helpful note on the worm’s implementation of
crypt() which I leaned on heavily when discussing the algorithm above.

The following documents were also referenced above for quotes or for other material:

Data Encryption Standard, FIPS PUB 46, National Bureau of Standards, Washington D.C., January 15, 1977.

F. T. Grampp and R. H. Morris, ‘‘UNIX Operating System Security,’’ in the AT&T Bell Laboratories Technical
Journal, October 1984, Vol. 63, No. 8, Part 2, p. 1649.

Brian W. Kernighan and Dennis Ritchie, The C Programming Language, Second Edition, Prentice Hall: Englewood
Cliffs, NJ, 1988.

John Markoff, ‘‘Author of computer ‘virus’ is son of U.S. Electronic Security Expert,’’ p. 1 of the New York Times,
November 5, 1988.

John Markoff, ‘‘A family’s passion for computers, gone sour,’’ p. 1 of the New York Times, November 11, 1988.

Robert Morris and Ken Thompson, ‘‘Password Security: A Case History,’’ dated April 3, 1978, in the UNIX

Programmer’s Manual, in the Supplementary Documents or the System Manager’s Manual, depending on where
and when you got your manuals.

Robert T. Morris, ‘‘A Weakness in the 4.2BSD Unix TCP/IP Software,’’ AT&T Bell Laboratories Computing Sci-
ence Technical Report #117, February 25, 1985. This paper actually describes a way of spoofing TCP/IP so that an
untrusted host can make use of the rsh server on any 4.2 BSD UNIX system, rather than an attack based on breaking
into accounts on trusted hosts, which is what the worm uses.

Brian Reid, ‘‘Massive UNIX breakins at Stanford,’’ RISKS-FORUM Digest, Vol. 3, Issue 56, September 16, 1986.



Tour of the Worm 15

Dennis Ritchie, ‘‘On the Security of UNIX,’’ dated June 10, 1977, in the same manual you found the Morris and
Thompson paper in.

Ken Thompson, ‘‘Reflections on Trusting Trust,’’ 1983 ACM Turing Award Lecture, in the Communications of the
ACM, Vol. 27, No. 8, p. 761, August 1984.


