A Proposed Taxonomy of Software
Weapons

Master’s thesis in Computer Security
by

Martin Karresand

LITH-1SY-EX-3345-2002
Linkoping

22nd December 2002

This page is intentionally left blank, except for this text.

A Proposed Taxonomy of Software
Weapons

Master’s thesis in Computer Security
at Linkdping University
by Martin Karresand

LiTH-ISY-EX-3345-2002

Linkdping 22nd December 2002

Examiner: Viiveke Fak
ISY, Link6ping University, Sweden

Supervisor: Mikael Wedlin

Swedish Defence Research Agency,
Linkdping, Sweden

Avdelning, Institution Datum
Division, Department Date
2002-12-18

A R Institutionen for Systemteknik
g so= 581 83 LINKOPING

Sprak Rapporttyp ISBN
Language Report category
Svenska/Swedish Licentiatavhandling
X Engelska/English X Examensarbete ISRN LITH-ISY-EX-3345-2002
g:ippziz Serietitel och serienummer ISSN
PP Title of series, numbering
Ovrig rapport

URL for elektronisk version
http://www.ep.liu.se/exjobb /isy/2002/3345/

Titel Ett forslag pa taxonomi for programvaruvapen
Title
A Proposed Taxonomy of Software Weapons

Forfattare Martin Karresand
Author

Sammanfattning

Abstract

The terms and classification schemes used in the computer security field today are not
standardised. Thus the field is hard to take in, there is a risk of misunderstandings, and there is a
risk that the scientific work is being hampered.

Therefore this report presents a proposal for a taxonomy of software based IT weapons. After an
account of the theories governing the formation of a taxonomy, and a presentation of the requisites,
seven taxonomies from different parts of the computer security field are evaluated. Then the
proposed new taxonomy is introduced and the inclusion of each of the 15 categories is motivated
and discussed in separate sections. Each section also contains a part briefly outlining the possible
countermeasures to be used against weapons with that specific characteristic.

The final part of the report contains a discussion of the general defences against software weapons,
together with a presentation of some open issues regarding the taxonomy. There is also a part
discussing possible uses for the taxonomy. Finally the report is summarised.

Nyckelord
Keyword
computer security, malware, software weapon, taxonomy, trojan, virus, worm

Abstract

The terms and classification schemes used in the computer security field today are
not standardised. Thus the field is hard to take in, there is a risk of misunderstand-
ings, and there is a risk that the scientific work is being hampered.

Therefore this report presents a proposal for a taxonomy of software based IT
weapons. After an account of the theories governing the formation of a taxonomy;,
and a presentation of the requisites, seven taxonomies from different parts of the
computer security field are evaluated. Then the proposed new taxonomy is intro-
duced and the inclusion of each of the 15 categories is motivated and discussed in
separate sections. Each section also contains a part briefly outlining the possible
countermeasures to be used against weapons with that specific characteristic.

The final part of the report contains a discussion of the general defences against
software weapons, together with a presentation of some open issues regarding the
taxonomy. There is also a part discussing possible uses for the taxonomy. Finally
the report is summarised.

vii

Acknowledgements

I would like to thank Arne Vidstrom for sharing his deep knowledge of software
weapons with me and for always being prepared to discuss definitions, formula-
tions, and other highly abstract things.

I would also like to thank my supervisor Mikael Wedlin and my examiner
Viiveke Fak for their support and for having confidence in me.

Likewise I would like to thank Jonas, Helena, Jojo and the rest of my class, as
well as my other friends, for brightening my life by their presence.

And last but not least | would like to thank my beloved fiancée Helena for
always supporting me no matter how hard | studied. I love you from the bottom of
my heart, now and forever.

Contents

1 Introduction 1
1.1 Background 2

1.2 PUMPOSE o 2

1.3 Questionstobeanswered 2

1.4 Scope 3

15 Method 3

1.6 Intendedreaders. 3

1.7 Why read the NordSec paper? 4
1.7.1 Chronology ofwork 4

1.7.2 Sequenceofwriting 5

1.7.3 Lineofthought 5

1.8 Structure of thethesis 5

2 The abridged NordSec paper 7
2.1 A Taxonomy of Software Weapons 7
2.1.1 ADraftforaTaxonomy 10

3 Theory 15
3.1 Whydowe needataxonomy? 15
311 Ingeneral 15

3.1.2 Computersecurity 17

313 FOI ... 18

314 Summaryofneeds 19

3.2 Taxonomictheory 19
3.21 Beforecomputers 20

3.2.2 Requirementsof ataxonomy 21

3.3 Definitionof malware 23

4 Earlier malware categorisations 25
41 BONGY e 25
411 Summary of evaluation 26

42 Bontchev 26
4.2.1 Summary of evaluation 27

Xi

Xii CONTENTS

43 Brunnstein. 28
4.3.1 Summaryofevaluation 30

44 CARO 31
441 Summaryofevaluation 33

45 Helenius 33
451 Harmful programcode 34
4.5.2 Virus by infection mechanism 35
4.5.3 Virus by general characteristics 35

454 Summaryofevaluation 36

46 Howard-Longstaff 37
4.6.1 Summaryofevaluation 38

4.7 Landwehr 39
471 Summary of evaluation 39

48 Conclusion 39
5 TEBIT 41
5.1 Definition 41
511 nstructions 41

512 Successful 42

513 Attack 42

52 Taxonomy e 44
53 Indepth 45
531 Type. e 45

532 Violates 46

5.3.3 Durationofeffect. 48

534 Targeting 48

535 Attack 49

536 Functionalarea 49

53.7 Affecteddata 49

5.3.8 Usedvulnerability 50

5.3.9 Topologyofsource 50
5.3.10 Targetofattack 51
5.3.11 Platformdependency 51
5.3.12 Signature of replicatedcode 54
5.3.13 Signatureofattack 54
5.3.14 Signaturewhenpassive 55
5.3.15 Signature whenactive 55

54 Inpractice 55
6 Discussion 59
6.1 Generaldefences 59
6.2 How ataxonomy increasessecurity 62
6.3 Inthefuture 63

6.4 SUMMAIY 64

CONTENTS

7 Acronyms

Bibliography

A The NordSec 2002 paper

B Categorised Software Weapons

C Redefined Terms

Xiii

67

69

81

103

127

Xiv CONTENTS

List of Figures

4.1 TheBoneytree 26
4.2 TheBontchevtree 28
4.3 TheBrunnsteintree 30
44 TheScheidltree 33
45 TheHeleniustree 37
4.6 The Howard-Longstafftree 38
4.7 The Landwehretal.tree 40
5.1 Anplatform dependentprogram 52
5.2 A platform independent program; two processors 53
5.3 A platform independent program; no APl 53
6.1 The Roebuck tree of defensive measures 60

XV

XVi LIST OF FIGURES

List of Tables

2.1

51

5.2

5.3

The taxonomic categories and their alternatives

The taxonomic categories and their alternatives, updated since the
publication of the NordSec paper
The categorised weapons and the references used for the categor-
isation
The standard deviation d; of Tppos, Tworms, L, and the distin-
guishing alternatives (d; >0)

XVii

Xviii LIST OF TABLES

Chapter 1

Introduction

The computer security community of today can be compared to the American Wild
West once upon a time; no real law and order and a lot of new citizens. There is a
continuous stream of new members pouring into the research community and each
new member brings his or her own vocabulary. In other words, there are no unified
or standardised terms to use.

The research being done so far has mainly been concentrated to the technical
side of the spectrum. The rate of development of new weapons is high and there-
fore the developers of computer security solutions are fighting an uphill battle.
Consequently, their solutions tend to be pragmatic, many times more or less just
mending breaches in the fictive walls surrounding the computer systems.

As it is today, there is a risk of misunderstanding between different actors in
the computer security field because of a lack of structure. By not having a good
view of the field and no well defined terms to use, eventually unnecessary time is
spent on making sure everyone knows what the others are talking about.

To return to the example of the Wild West again; as the society evolved it
became more and more structured. In short, it got civilised. The same needs to
be done for the computer security society. As a part of that there is a need for a
classification scheme of the software tools used for attacks.

Also the general security awareness of the users of the systems will benefit
from a classification scheme where the technical properties of a tool are used, be-
cause then they will better understand what different types of software weapons
actually can do. They will also be calmer and more in control of the situation if
the system is attacked, because something known is less frightening to face, than
something unknown.

One important thing is what lies behind the used terms, what properties they
are based on. The definitions of malware used today all involve intent in some
way, the intent of the user of the malicious software, or the intent of the creator
of the software. Neither is really good, it is really impossible to correctly measure
the intents of a human being. Instead the definition has to be based on the tool
itself, and solely on its technical characteristics. Or as Shakespeare let Juliet so

1

2 CHAPTER 1. INTRODUCTION

pertinently describe it in Romeo and Juliet! [2, ch. 2.2:43-44]:

What’s in a name? That which we call a rose
By any other word would smell as sweet;

Therefore this proposed taxonomy of software weapons might have a function to
fill, although the work of getting it accepted may be compared to trying to move
a mountain, or maybe even a whole mountain range. But by moving one small
rock at a time, eventually even the Himalayas can be moved, so please, continue
reading!

1.1 Background

During the summer of 2001 a report [3] presenting a proposal for a taxonomy
of software weapons (software based IT weapons?) was written at the Swedish
Defence Research Agency (FOI). This report was then further developed in a paper
that was presented at the 7th Nordic Workshop on Secure IT Systems (NordSec
2002) [4].

The proposal was regarded as interesting and therefore a deepening of the re-
search was decided upon in the form of a master’s thesis. The project has been
driven as a cooperation between Linkdping University, Sweden, and FOI.

1.2 Purpose

The purpose of this thesis is to deepen the theoretical parts of the previous work
done on the taxonomy and also empirically test it. If needed, revisions will be
suggested (and thoroughly justified). To facilitate the understanding of the thesis
the reader is recommended to read the NordSec paper, which is included as an
appendix (see Appendix A).

Also the general countermeasures in use today against software weapons with
the characteristics described in the taxonomy will be presented.

1.3 Questions to be answered
The thesis is meant to answer the following questions:

e What are the requirements connected to the creation of a taxonomy of soft-
ware weapons?

1The citation is often given as ‘[...] any other name [...]’, which is taken from the bad, 1st
Quarto. The citation given here is taken from the good, 2nd Quarto. [1]

2The Swedish word used in the report is ‘IT-vapen’ (IT weapon). This term has another, broader
meaning in English. Instead the term malware (malicious software) is used when referring to viruses,
worms, logic bombs, etc. in English. However, to avoid the implicit indication of intent from the word
malicious, the term software weapon is used in the paper presented at the 7th Nordic Workshop on
Secure IT Systems (NordSec 2002), as well as in this thesis.

1.4. SCOPE 3

o Are there any other taxonomies covering the field and if so, can they be used?

e What use do the computer security community have for a taxonomy of soft-
ware weapons?

e Are the categories in the proposed taxonomy motivated by the above men-
tioned purpose for creating a taxonomy?

e How well does the taxonomy classify different types of weapons?

1.4 Scope

As stated in [3, 4] the taxonomy only covers software based weapons. This ex-
cludes chipping®, which is regarded as being hardware based.

The work is not intended to be a complete coverage of the field. Due to a
lack of good technical descriptions of software weapons, especially the empirical
testing part of the thesis will not cover all different sectors of the field.

No other report or paper exclusively and in detail covering a taxonomy of soft-
ware based IT weapons is known to have been published until now?, but there are
several simpler categorisation schemes of software weapons. Mainly they use two
or three tiered hierarchies and concentrate on the replicating side of the spectrum,
i.e. viruses and worms. They are all generally used as parts of taxonomies in other
fields closely related to the software weapon field.

This affects the theoretic part of the thesis, which only describes some of the
more recent and well known works in adjacent fields, containing parts formulating
some kind of taxonomy or classification scheme of software weapons. These parts
have also been evaluated to see how well they meet the requirements of a proper
taxonomy.

Mainly the chosen background material covers taxonomies of software flaws,
computer attacks, computer security incidents, and computer system intrusions.

1.5 Method

The method used for the research for this thesis has been concentrated on studies
of other taxonomies in related computer security fields. Also more general inform-
ation regarding trends in the development of new software weapons has been used.
This has mainly been information regarding new types of viruses.

1.6 Intended readers

The intended readers of the thesis are those interested in computer security and
the software based tools of information warfare. To fully understand the thesis

SMalicious alteration of computer hardware.
“This is of course as of the publishing date of this thesis.

4 CHAPTER 1. INTRODUCTION

the reader is recommended to read the paper presented at NordSec 2002 (see Ap-
pendix A) before reading the main text. The reader will also benefit from having
some basic knowledge in computer security.

1.7 Why read the NordSec paper?

This thesis rests heavily on a foundation formed by the NordSec paper, which is
included as Appendix A. To really get anything out of the text in the thesis the
paper has to be read before the thesis. In the following sections the reasons for this
are further explained.

For those who have already read the paper, but need to refresh their memories,
Chapter 2 contains the most important parts.

1.7.1 Chronology of work

The first outlines of the taxonomy were drawn in the summer of 2001, when the au-
thor was hired to collect different software based IT weapons and categorise them
in some way. To structure the work a list of general characteristics of such weapons
was made. Unfortunately the work with developing the list, which evolved into a
taxonomy, took all the summer, so no weapons were actually collected. This ended
in the publication of a report in Swedish [3] later the same year.

The presentation of the report was met with great interest and the decision to
continue the work was taken. The goal was to get an English version of the report
accepted at a conference, and NordSec 2002 was chosen. Once again the summer
was used for writing and the result was positive, the paper got accepted.

However, before the answer from the NordSec reviewers had arrived, the de-
cision was made that the paper-to-be was to be extended into a master’s thesis.
This work was set to start at the beginning of September 2002, at the same date as
the possible acceptance from the NordSec reviewers was to arrive. The goal was
to have completed the thesis before the beginning of 2003.

Therefore the work with attending to the reviewers comments on the paper,
and the work on the master’s thesis run in parallel, intertwined. The deadline for
handing in the final version of the paper was set to the end of October. After that
date the thesis work got somewhat more attention, until the NordSec presentation
had to be prepared and then produced in early November. Finally all efforts could
be put into writing the thesis.

The deadline for having a checkable copy of the thesis to present to the exam-
iner was set to the end of November and therefore the decision to use the paper as
an introduction was taken, to avoid having to repeat a lot of background material.
Hence, due to a shortage of time in the writing phase of the thesis work and thus
the paper being used as a prequel, the two texts are meant to be read in sequence.
They may actually be seen as part 1 and 2 of the master’s thesis.

1.8. STRUCTURE OF THE THESIS 5

1.7.2 Sequence of writing

As stated in the previous section the work with deepening the research ran in par-
allel with amending the paper text. Therefore the latest ideas and theories found
were integrated into the paper text until the deadline. The subsequent results of the
research was consequently put into the thesis.

Because the text was continuously written as the research went along, there was
no time to make any major changes to the already written parts, as to incorporate
them into the flow of the text. The alternative of cutting and pasting the paper text
into the thesis was considered, but was regarded to take to much time from the
work with putting the new results on paper. Hence, the text in the paper supplies
the reader with a necessary background for reading the text in the thesis.

1.7.3 Line of thought

Because this taxonomy is the first one to deal with software weapons exclusively,
the work has been characterised by an exploration of a not fully charted field. The
ideas on how to best create a working taxonomy have shifted, but gradually settled
down into the present form. Sometimes the changes have been almost radical, but
they have always reflected the knowledge and ideas of that particular time. They
therefore together span the field and thus are necessary to be acquainted with, be-
cause they explain why a certain solution was chosen and then maybe abandoned.
Consequently, to be able to properly understand the taxonomy, how to use it, and
follow the line of thought, the reader has to read both parts of the work, i.e. both
the paper and the thesis.

1.8 Structure of the thesis

The thesis is arranged in five chapters and three appendices that are shortly intro-
duced below.

Chapter 1 This is the introduction to the thesis. It states the background and pur-
pose of the thesis, together with some questions which will be answered
in the document. Furthermore the scope, method, and intended readers are
presented. There is also a section explaining why it is important to read the
NordSec paper. Finally the structure of the thesis is outlined.

Chapter 2 To help those who have read the NordSec paper earlier to refresh their
memories this chapter contains some of the more important sections of the
paper. These include the reasons of why no other taxonomy of software
weapons has been created, the discussion of the old and new definition of
software weapons and a short introduction to the categories of the taxonomy
as they were defined at that time.

Chapter 3 This chapter introduces the theories behind a proper taxonomy and
also some reasons on why a taxonomy as this one is needed. The discussion,

6 CHAPTER 1. INTRODUCTION

which was started in the NordSec paper on the problems regarding the use
of the term malware (see Section 2.1), is continued.

Chapter 4 The chapter presents the evaluation of seven taxonomies from adjacent
fields containing some sort of classification schemes of software weapons
(called malware). Each evaluation shows how well the evaluated categor-
isation scheme meets the needs stated in Section 3.1.4 and the requirements
stated in Section 3.2.2. The last section in the chapter summarises the eval-
uations.

Chapter 5 In this chapter the proposed taxonomy of software weapons is presen-
ted together with the accompanying definition. Each of the fifteen categor-
ies and their alternatives are discussed regarding changes, the reasons for
including them in the taxonomy, and general methods to protect computer
systems from weapons with such characteristics as the categories represent.
The revisions made are mainly related to the formulation of the names of
the categories and their alternatives. Also some of the categories have been
extended to avoid ambiguity and make them exhaustive, and to facilitate a
more detailed categorisation. Last in the chapter the result of a small test of
the taxonomy is presented.

Chapter 6 This chapter contains the discussion part and the summary. Some gen-
eral countermeasures to be used to secure computer systems from attacks
are given. Also the future use and developments of the taxonomy needed
to further push it towards a usable state are presented. Finally the thesis is
summarised.

Appendix A This appendix contains the the paper presented at the NordSec work-
shop.

Appendix B In this appendix the categorisations of nine software weapons are
given. The categorisations were made by the author of the thesis and are
meant to function as a test of the taxonomy. The reader can independently
categorise the same weapons as the author and then compare his or her res-
ults with the categorisations presented in this appendix.

Appendix C The appendix shows the proposed definitions (or categorisations),
made by the author of the thesis, of the three terms trojan horse, virus, and
worm. These categorisations indicates how the taxonomy may be used to
redefine the nomenclature of the computer security field. Also completely
new terms may be defined in this way.

Chapter 2

The abridged NordSec paper

In this chapter some of the more important parts of the NordSec paper will be
presented as they where published, to refreshen the memory of readers already
familiar with the paper. To somewhat incorporate the text from the paper into the
flow of the main text of the thesis, the references are changed to fit the numbering
of the thesis. Apart from this everything else is quoted verbatim from the paper.

2.1 A Taxonomy of Software Weapons

My own hypothesis of why no other taxonomy of software weapons has yet been
found can be summarised in the following points:

e The set of all software weapons is (at least in theory) infinite, because new
combinations and strains are constantly evolving. Compared to the biolo-
gical world, new mutations can be generated at light speed.

e |tis hard to draw a line between administrative tools and software weapons.
Thus it is hard to strictly define what a software weapon is.

e Often software weapons are a combination of other, atomic, software weapons.
It is therefore difficult to unambiguously classify such a combined weapon.

e There is no unanimously accepted theoretical foundation to build a taxonomy
on. For instance there are (at least) five different definitions of the term worm
[5] and seven of trojan horse [6].

e By using the emotionally charged word malicious together with intent, the
definitions have been crippled by the discussion whether to judge the pro-
grammer’s or the user’s intentions.

8 CHAPTER 2. THE ABRIDGED NORDSEC PAPER

Preliminary Definition.

The preliminary definition of software weapons! used at FOI? has the following
wording (translated from Swedish):

[...] software for logically influencing information and/or pro-
cesses in IT systems in order to cause damage.®

This definition satisfies the conditions mentioned earlier in the text. One thing
worth mentioning is that tools without any logical influence on information or pro-
cesses are not classified as software weapons by this definition. This means that
for instance a sniffer is not a software weapon. Even a denial of service weapon
might not be regarded as a weapon depending on the interpretation of ‘logically
influencing . .. processes’. A web browser on the other hand falls into the software
weapon category, because it can be used in a dot-dot* attack on a web server and
thus affect the attacked system logically.

Furthermore, the definition does not specify if it is the intention of the user
or the programmer, that should constitute the (logical) influence causing damage.
If it is the situation where the tool is used that decides whether the tool is a soft-
ware weapon or not, theoretically all software ever produced can be classified as
software weapons.

If instead it is the programmer’s intentions that are decisive, the definition gives
that the set of software weapons is a subset (if yet infinite) of the set of all possible
software. But in this case we have to trust the programmer to give an honest answer
(if we can figure out whom to ask) on what his or her intentions was.

A practical example of this dilemma is the software tool SATAN, which accord-
ing to the creators was intended as a help for system administrators [7, 8]. SATAN
is also regarded as a useful tool for penetrating computer systems [9]. Whether
SATAN should be classified as a software weapon or not when using the FOI defin-
ition is therefore left to the reader to subjectively decide.

New Definition.

When a computer system is attacked, the attacker uses all options available to get
the intended result. This implies that even tools made only for administration of
the computer system can be used. In other words there is a grey area with powerful
administrative tools, which are hard to decide whether they should be classified as
software weapons or not. Hence a good definition of software weapons is hard to

1The term IT weapon is used in the report FOI report.

2Swedish Defence Research Agency

3In Swedish: ‘[...] programvara for att logiskt péverka information och/eller processer i IT-
system for att stadkomma skada.’

4A dot-dot attack is performed by adding two dots directly after a URL in the address field of
the web browser. If the attacked web server is not properly configured, this might give the attacker
access to a higher level in the file structure on the server and in that way non-authorised rights in the
system.

2.1. A TAXONOMY OF SOFTWARE WEAPONS 9

make, but it might be done by using a mathematical wording and building from a
foundation of measurable characteristics.

With the help of the conclusions drawn from the definitions of information war-
fare the following suggestion for a definition of software weapons was formulated:

A software weapon is software containing instructions that are ne-
cessary and sufficient for a successful attack on a computer system.

Even if the aim was to keep the definition as mathematical as possible, the
natural language format might induce ambiguities. Therefore a few of the terms
used will be further discussed in separate paragraphs.

Since it is a definition of software weapons, manual input of instructions is
excluded.

Instructions. It is the instructions and algorithms the software is made of that
should be evaluated, not the programmer’s or the user’s intentions. The instructions
constituting a software weapon must also be of such dignity that they together
actually will allow a breakage of the security of an attacked system.

Successful. There must be at least one computer system that is vulnerable to
the tool used for an attack, for the tool to be classified as a software weapon. It
is rather obvious that a weapon must have the ability to do harm (to break the
computer security) to be called a weapon. Even if the vulnerability used by the
tool might not yet exist in any working computer system, the weapon can still be
regarded as a weapon, as long as there is a theoretically proved vulnerability that
can be exploited.

Attack. An attack implies that a computer program in some way affects the con-
fidentiality®, integrity® or availability” of the attacked computer system. These
three terms form the core of the continually discussed formulation of computer se-
curity. Until any of the suggested alternatives is generally accepted, the definition
of attack will adhere to the core.

The security breach can for example be achieved through taking advantage
of flaws in the attacked computer system, or by neutralising or circumventing its
security functions in any way.

The term flaw used above is not unambiguously defined in the field of IT se-
curity. Carl E Landwehr gives the following definition [11, p. 2]:

[...] a security flaw is a part of a program that can cause the
system to violate its security requirements.

5¢[P]revention of unauthorised disclosure of information.’[10, p. 5]
6<[P]revention of unauthorised modification of information.’[10, p. 5]
*[P]revention of unauthorised withholding of information or resources.’[10, p. 5]

10 CHAPTER 2. THE ABRIDGED NORDSEC PAPER

Another rather general, but yet functional, definition of ways of attacking computer
systems is the definition of vulnerability and exposure [12] made by the CVE®
Editorial Board.

Computer System. The term computer system embraces all kinds of (elec-
tronic)® machines that are programmable and all software and data they contain. It
can be everything from integrated circuits to civil and military systems (including
the networks connecting them).

2.1.1 A Draft for a Taxonomy

The categories of the taxonomy are independent and the alternatives of each cat-
egory together form a partition of the category. It is possible to use several alternat-
ives (where applicable) in a category at the same time. In this way even combined
software weapons can be unambiguously classified. This model, called character-
istics structure, is suggested by Daniel Lough [15, p. 152].

In Table 2.1 the 15 categories and their alternatives are presented. The altern-
atives are then explained in separate paragraphs.

Table 2.1: The taxonomic categories and their alternatives

Category Alternative 1l Alternative 2 Alternative 3
Type atomic combined

Affects confi dentiality integrity availability
Duration of effect temporary permanent

Targeting manual autonomous

Attack immediate conditional

Functional area loca remote

Sphere of operation host-based network-based

Used vulnerability CVE/CAN other method none
Topology singlesource distributed source

Target of attack single multiple

Platform dependency dependent independent

Signature of code monomorphic polymorphic

Signature of attack monomorphic polymorphic

Signature when passive visible stealth

Signature when active visible stealth

8<[CVE is a] list of standardized names for vulnerabilities and other information security ex-
posures — CVE aims to standardize the names for all publicly known vulnerabilities and security
exposures. [...] The goal of CVE is to make it easier to share data across separate vulnerability
databases and security weapons.” [13]. The list is maintained by MITRE [14].

This term might be to restrictive. Already advanced research is done in for example the areas of
biological and quantum computers.

2.1. A TAXONOMY OF SOFTWARE WEAPONS 11

Type.

This category is used to distinguish an atomic software weapon from a combined
and the alternatives therefore cannot be used together.

A combined software weapon is built of more than one stand-alone (atomic
or combined) weapon. Such a weapon can utilise more than one alternative of a
category. Usage of only one alternative from each category does not necessarily
implicate an atomic weapon. In those circumstances this category indicates what
type of weapon it is.

Affects.

At least one of the three elements confidentiality, integrity and availability has to
be affected by a tool to make the tool a software weapon.

These three elements together form the core of most of the definitions of IT
security that exist today. Many of the schemes propose extensions to the core, but
few of them abandon it completely.

Duration of effect.

This category states for how long the software weapon is affecting the attacked
system. It is only the effect(s) the software weapon has on the system during
the weapon’s active phase that should be taken into account. If the effect of the
software weapon ceases when the active phase is over, the duration of the effect is
temporary, otherwise it is permanent.

Regarding an effect on the confidentiality of the attacked system, it can be tem-
porary. If for example a software weapon e-mails confidential data to the attacker
(or another unauthorised party), the duration of the effect is temporary. On the
other hand, if the software weapon opens a back door into the system (and leaves
it open), the effect is permanent.

Targeting.

The target of an attack can either be selected manual[ly] by the user, or autonom-
ous[ly] (usually randomly) by the software weapon. Typical examples of autonom-
ously targeting software weapons are worms and viruses.

Attack.

The attack can be done immediate[ly] or conditional[ly]. If the timing of the at-
tack is not governed by any conditions in the software, the software weapon uses
immediate attack.

12 CHAPTER 2. THE ABRIDGED NORDSEC PAPER

Functional Area.

If the weapon attacks its host computer, i.e. hardware directly connected to the
processor running its instructions, it is a local weapon. If instead another physical
entity is attacked, the weapon is remote.

The placement of the weapon on the host computer can be done either with
the help of another, separate tool (including manual placement), or by the weapon
itself. If the weapon establishes itself on the host computer (i.e. breaks the host
computer’s security) it certainly is local, but can still be remote at the same time. A
weapon which is placed on the host computer manually (or by another tool) need
not be local.

Sphere of Operation.

A weapon affecting network traffic in some way, for instance a traffic analyser, has
a network-based operational area. A weapon affecting stationary data, for instance
a weapon used to read password files, is host-based, even if the files are read over
a network connection.

The definition of stationary data is data stored on a hard disk, in memory or on
another type of physical storage media.

Used Vulnerability.

The alternatives of this category are CVE/CAN?, other method and none. When
a weapon uses a vulnerability or exposure [12] stated in the CVE, the CVE/CAN
name of the vulnerability should be given!! as the alternative (if several, give all of
them).

The alternative other method should be used with great discrimination and only
if the flaw is not listed in the CVE, which then regularly must be checked to see if
it has been updated with the new method. If so, the classification of the software
weapon should be changed to the proper CVE/CAN name.

Topology.

An attack can be done from one single source or several concurrent distributed
sources. In other words, the category defines the number of concurrent processes
used for the attack. The processes should be mutually coordinated and running on
separate and independent computers. If the computers are clustered or in another

19The term CAN (Candidate Number) indicates that the vulnerability or exposure is being invest-
igated by the CVE Editorial Board for eventually receiving a CVE name [16].

UNIST (US National Institute of Standards and Technology) has initiated a meta-base called ICAT
[17] based on the CVE list. This meta-base can be used to search for CVE/CAN names when
classifying a software weapon.

The meta-base is described like this: ‘ICAT is a fine-grained searchable index of standardized
vulnerabilities that links users into publicly available vulnerability and patch information’. [18]

2.1. A TAXONOMY OF SOFTWARE WEAPONS 13

way connected as to make them simulate a single entity, they should be regarded
as one.

Target of Attack.

This category is closely related to the category topology and has the alternatives
single and multiple. As for the category topology, it is the number of involved
entities that is important. A software weapon concurrently attacking several targets
is consequently of the type multiple.

Platform Dependency.

The category states whether the software weapon (the executable code) can run
on one or several platforms and the alternatives are consequently dependent and
independent.

Signature of Code.

If a software weapon has functions for changing the signature of its code, it is
polymorphic, otherwise it is monomorphic. The category should not be confused
with Signature when passive.

Signature of Attack.

A software weapon can sometimes vary the way an attack is carried out, for ex-
ample perform an attack of a specific type, but in different ways, or use different
attacks depending on the status of the attacked system. For instance a dot-dot at-
tack can be done either by using two dots, or by using the sequence ¥2e%e. If
the weapon has the ability to vary the attack, the type of attack is polymorphic,
otherwise it is monomorphic.

Signature When Passive.

This category specifies whether the weapon is visible or uses any type of stealth
when in a passive phase!?. The stealth can for example be achieved by catching
system interrupts, manipulating checksums or marking hard disk sectors as bad in
the FAT (File Allocation Table).

Signature When Active.

A software weapon can be using instructions to provide stealth during its active
phase. The stealth can be achieved in different ways, but the purpose is to con-
ceal the effect and execution of the weapon. For example man-in-the-middle or

2 passive phase is a part of the code constituting the software weapon where no functions per-
forming an actual attack are executed.

14 CHAPTER 2. THE ABRIDGED NORDSEC PAPER

spoofing weapons use stealth techniques in their active phases through simulating
uninterrupted network connections.
If the weapon is not using any stealth techniques, the weapon is visible.

Chapter 3

Theory

The formulation of a taxonomy needs to follow the existing theories regarding the
requirements of a proper taxonomy. They have evolved over time, but the core
is more or less unchanged since Aristotle (384-322 B.C.) began to divide marine
life into different classes [19, 20]. Some of the more recent works done within
the computer security field dealing with taxonomies have also contributed to the
theory.

A taxonomy also needs to be based on a good definition. This report discusses
software weapons and consequently this term needs to be defined. One section
therefore presents some alternative ways of defining software weapons, a.k.a mal-
ware.

3.1 Why do we need a taxonomy?

A field of research will benefit from a structured categorisation in many ways. In
this section both general arguments for the use of a taxonomy, as well as more
specific arguments concerning the computer security field, and specifically FOI,
will be given.

3.1.1 In general

In [20] the main focus lies on the botanical and zoological taxonomies developed
and used throughout time. In spite of this it gives a few general arguments for the
use of a taxonomy. One of the main arguments is formulated in the following way:

A formal classification provides the basis for a relatively uniform
and internationally understood nomenclature, thereby simplifying cross-
referencing and retrieval of information.

To enable systematic research in a field, there is a need for a common language and
the development of a taxonomy is part of the formulation of such a language. [21]
When searching for new things the history must first be known and understood.
Therefore a common nomenclature within the field of research is vital, otherwise

15

16 CHAPTER 3. THEORY

resent discoveries might not be remembered in a few years time and will have to
be made again. This may lead to a waste of time and money.

Essentially a taxonomy summarises all the present knowledge within a field.
In [22, p. 16] a citation from The principles of classification and a classification of
mammals by George Gaylord Smith [23] with the following wording is presented:

Taxonomy is at the same time the most elementary and the most
inclusive part of zoology, most elementary because animals cannot be
discussed or treated in a scientific way until some systematization has
been achieved, and most inclusive because taxonomy in its various
guises and branches eventually gathers together, utilizes, summarizes,
and implements everything that is known about animals, whether mor-
phological, physiological, or ecological.

The citation deals solely with zoology, but the idea is perfectly applicable to other
fields as well, also computer security. There already exist frequently and com-
monly used terms for different types of software weapons. But they do not cover
the complete field and thus do not help in structuring the knowledge attained this
far.

A good taxonomy has both an explanatory and a predictive value. In other
words, a taxonomy can be used to explain the scientific field it covers through
the categorisation of entities. By forming groups, subgroups and so on with clear
relationships in between, the field is easier to take in. The structuring also makes it
possible to see which parts of the field that would benefit from more research. [22]

A parallel can be drawn to the exploration of a new world. To be able to find
the unexplored areas, some knowledge of the ways of transport between the already
explored parts will be of much help. Thus a structuring of the attained knowledge
will speed up the exploration of the rest of the world.

A good and often used example of such a classification is the periodic system
of elements. Simply by looking at the position of an element in the table, it is
possible to get a feeling for the general properties of that element. The table has
also been used to predict the existence of new elements, research which in the end
has resulted in a couple of Nobel Prizes.

In [24, p. 21] the following arguments for the need of a categorisation are given:

¢ the formation and application of a taxonomy enforces a structured analysis
of the field,

e ataxonomy facilitates education and further research because categories play
a major role in the human cognitive process,

e categories which have no members but exist by virtue of symmetries or other
patterns may point out white spots on the map of the field and

o if problems can be grouped in categories in which the same solutions apply,
we can achieve more efficient problem solving than if every problem must
be given a unique solution.

3.1. WHY DO WE NEED A TAXONOMY'? 17

Therefore the scientists active within a field of research would gain a lot from
spending some time and effort to develop a formally correct classification scheme
of the field.

3.1.2 Computer security

Today none of the widely used terms given to different types of software weapons
are strictly and unanimously defined. Almost every definition has some unique
twist to it.

For example such terms as trojan horse, virus, and worm all have several dif-
ferent definitions for each term. Also the way the terms relate to each other differ
among the classification schemes, as shown in Section 4. This is also described by
Jakub Kaminski and Hamish O”Dea in the following way [25]:

One of the trends we have been observing for some time now is
the blurring of divisional lines between different types of malware.
Classifying a newly discovered “creature’ as a virus, a worm, a Trojan
or a security exploit becomes more difficult and anti-virus researchers
spend a significant amount of their time discussing the proper classi-
fication of new viruses and Trojans.

Therefore some sort of common base to build a definition from is needed. If all
terms used have the same base, they are also possible to compare and relate. By
forming the base from general characteristics of software weapons the measurabil-
ity requirement is met.

There is also a need for a better formal categorisation method regarding soft-
ware weapons. By placing the different types of weapons in well defined categories
the complete set of software weapons is easy to take in. Also the communication
within the computer security community is facilitated in this way.

Much of the previous research being done has been concentrated to the three
types of software weapons mentioned above. The concept of for example a denial
of service (DoS) weapon was not on the agenda until the large attacks on eBay,
Yahoo and E*trade took place. Because these weapons represents rather new con-
cepts, they sometimes are forgotten when talking about software weapons. This is
unfortunate, because in a study done in 2001 the number of DoS attacks on dif-
ferent hosts on the Internet over a three week period was estimated to be more
than 12,000. [26] A categorisation of the complete set of software weapons would
consequently lessen the risk of forgetting any potential threats.

The research in computer security would also benefit from having a common
database containing specimens of all known software weapons. Both the problem
with naming new software weapons and the tracing of their relationship may be
solved having access to such a database.

Another thinkable field of use is in forensics. In the same way as the police
have collections of different (physical) weapons used in crimes today, they (or any
applicable party) may benefit from having a similar collection of software weapons.

18 CHAPTER 3. THEORY

Then the traces left in the log files after an attack may be used as unique identifiers
to be compared to those stored in the software weapon collection. If needed the
weapon may even be retrieved from the collection and used to generate traces in a
controlled environment.

Today many anti-virus companies maintain their own reference databases for
computer viruses, but there is no publicly shared database. Therefore the WildList
Organization International has taken on the challenge of creating such a database
for computer viruses. [27]

3.1.3 FOI

Regarding the specific needs for a taxonomy at FOI, they mainly relate to defens-
ive actions and the protection of military computer systems. For example there
is a need for tools to help creating computer system intrusion scenarios. [28] One
part of such a tool would be some sort of rather detailed descriptions of the gen-
eral characteristics of different existing and also non-existing, but probable, soft-
ware weapons. These descriptions therefore need to be both realistic regarding the
weapons existing today, as well as comprehensive enough to be usable even in the
foreseeable future.

The threats posed to the network centric warfare (NCW) concept by different
software weapons have to be met. To be able to do that the properties of different
types of weapons have to be well structured and well known to make it possible to
counter them in an effective way.

The level of detail of the categorisation needs to be rather high, but yet usable
even by laymen. Therefore also the used vocabulary (for example the names of the
different classes) need to be both general and technically strict.

There is also a need to extend the terminology further, especially in the non-
viral software weapon field. There are as many different types of viruses defined
as there are of all other software weapons together. For example in [29] fourteen
different types of viruses and ten non-viral weapons are listed. And in [30] there
are eleven non-viral software weapons given and about as many types of viruses
(depending on how they are categorised). In [31] two (three including joke pro-
grams) types of non-viral software weapons and five or ten virus types (depending
on the chosen base for the categorisation) are presented.

To facilitate the creation of the scenario tools mentioned above many more
types of software weapons are needed than what the categorisation schemes offer
today. What really is needed is the same level of detail as offered by the scen-
ario creation tools used for conventional warfare. These tools sometimes contains
classes of troop formations down to platoon level.

In a computer system intrusion situation (not only directly involving the milit-
ary) all involved personnel need to be fully aware of what the different terms used
really mean. Thus the terminology needs to be generally accepted and unambigu-
ous. To enable the definition of such generally accepted terms some common base
has to be used. A natural base to build a definition from would be the technical

3.2. TAXONOMIC THEORY 19

characteristics of the weapons representing the different terms.

A taxonomy of software weapons will have educational purposes too, espe-
cially when training new computer security officers. Then the usability of the
taxonomy is very important. Each category and its alternatives need to be easy
to understand and differentiate. The taxonomy then also may function as an intro-
duction to the different technologies used in the software weapon world.

Because of the intended use in the development of the defence of military com-
puter systems, the categories have to be defined as unambiguously as possible.
They also have to be measurable in some way, to enable the objective evaluation of
the defensive capacity of different proposed computer security solutions.

3.1.4 Summary of needs

The different reasons for having a taxonomy of software weapons can be summar-
ised in the following points:

e The nomenclature within the computer security field needs to be defined in
an objective, generally accepted, and measurable way, because today the
lines between the terms are blurring. It also has to be further extended, es-
pecially within the non-viral field.

e The use of a taxonomy makes a structured analysis and thus a more sci-
entific approach to the software weapon field possible. In that way the field
will be easier to take in, which would benefit the training of new computer
security personnel. Also the future research will be helped by the predictive
properties of a taxonomy.

e To be able to find better solutions to problems quicker and lessen the risk
of forgetting important types of weapons a good way of grouping different
software weapons is needed.

e When constructing computer system intrusion scenarios a rather detailed cat-
egorisation of the different tools available, both today and in the future, is
needed.

3.2 Taxonomic theory

In this section the theory behind a taxonomy will be presented. First of all the
classical theory dating back to Aristotle (384-322 B.C.) is introduced. Then the
formal requirements of a taxonomy are specified and connected to the need for a
taxonomy of software weapons. Finally some of the taxonomies in the computer
security field are evaluated with respect to how well they fit the requirements of a
taxonomy of software weapons. The evaluated taxonomies were chosen because
they were well known, closely related to the software weapon field, and fairly
recently written.

20 CHAPTER 3. THEORY

3.2.1 Before computers

The word taxonomy comes from the Greek words taxis (arrangement, order) and
nomos (distribution) and is defined in the following way in [32]:

Classification, esp. in relation to its general laws or principles; that
department of science, or of a particular science or subject, which con-
sists in or relates to classification; esp. the systematic classification of
living organisms.

Another definition of the term taxonomy, this time from a more explicit biological
point of view, is given in [33]:

[SYSTEMATICS] A study aimed at producing a hierarchical sys-
tem of classification of organisms which best reflects the totality of
similarities and differences.

In the beginning the word was used in zoology and botany, but in more recent
times the usage has been widened and today comprises almost every thinkable
field. This trend has actually started to make the term somewhat watered down,
which is unfortunate. In many cases the taxonomies are simply lists of terms,
lacking much of the basic requirements of a taxonomy stated in the theory.

The fundamental idea of a taxonomy is described in the following way in [11,

p. 3]:

A taxonomy is not simply a neutral structure for categorizing spe-
cimens. It implicitly embodies a theory of the universe from which
those specimens are drawn. It defines what data are to be recorded
and how like and unlike specimens are to be distinguished.

According to Encyclopedia Britannica the American evolutionist Ernst Mayr has
said that ‘taxonomy is the theory and practice of classifying organisms’. [20] This
guotation summarises the core of the ideas behind a taxonomy in a good way.

The first one to look into the theory of taxonomies was Aristotle. He studied
the marine life intensively and grouped different living things together by their
nature, not by their resemblance. This form of classification was used until the
19th century. [19, 20]

In 1758 the famous Swedish botanist and zoologist Carolus Linnaeus (Carl von
Linné), usually regarded as the father of modern taxonomy, used the Aristotelian
taxonomic system in his work. He extended the number of levels in the binomial
hierarchy and defined them as class, order, genus, and species. In other words,
he should really not be credited for inventing the taxonomy, but for his work in
naming a big amount of plants and animals and creating workable keys for how to
identify them from his books. [20]

When Darwin in 1859 published his work ‘The Origin of Species’ the theory
of taxonomy began to develop and seep into other fields. [22] Later both Ludwig
Wittgenstein and Eleanor Rosch have questioned the theory. The work of Rosch

3.2. TAXONOMIC THEORY 21

led to her formulation of the prototype theory, which suggests that the categories
of a taxonomy should have prototypes against which new members of the category
are compared. [24]

The idea of having a prototype to compare new members against is also stated
in [20]. Such prototypes should be stored in a public institution, so researchers can
have free access to the material. It is then also possible to correct mistakes made
in earlier classifications, the first taxonomist maybe missed an important property,
or new technology makes it possible to further examine the prototype.

Additionally, by having one publicly available specimen being the criterion of
the group, it is in reality working as a three dimensional, touchable definition of
the members of the group.

There is also a third theory mentioned in [24] and that is conceptual clustering.
The theory is by some regarded as lying between the classical theory and prototype
theory. In short it states that items should be arranged by simple concepts instead
of solely on predefined measures of similarity. The theory is directed towards
automatic categorisation and machine learning.

3.2.2 Requirements of a taxonomy

Some of the references used in this section relates to biology, others to computer
security. The given references and requirements are really applicable to all types
of taxonomies and thus also to a taxonomy of software weapons.

To make a taxonomy usable in practice, it must fulfil some basic requirements.
First of all, a taxonomy without a proper purpose is of little or no use and thus
the purpose must be used as a base when developing the taxonomy. To fit the
purpose the items categorised with the help of the taxonomy must be chosen in
some way. Therefore the taxonomy has to be used in conjunction with a definition
of the entities forming the field to be categorised, because the definition functions
as a filter, which excludes all entities not belonging to the field and thus not fitting
the taxonomy. How to formulate such a definition for software weapons is further
discussed in Section 3.3.

Also, the properties of the items to be categorised, i.e. the categories of the
taxonomy, must be easily and objectively observable and measurable. If not, the
categorisation of an item is based on the personal knowledge of the user of the
taxonomy, as stated in this citation from [22, p. 18]:

Obijectivity implies that the property must be identified from the
object known and not from the subject knowing. [...] Objective and
observable properties simplify the work of the taxonomist and provide
a basis for the repeatability of the classification.

In [15, p. 38] a list compiled from five taxonomies in different fields of computer
security is presented. From that list four different properties can be extracted that
the categories of a taxonomy must have. These properties are stated in [21, 22, 24,
34, 35], although different names are used in some papers. The categories must be:

22 CHAPTER 3. THEORY

e mutually exclusive,
e exhaustive,

e unambiguous, and
o useful.

If the categories are not mutually exclusive the classification of an item cannot be
made, because there are more than one alternative to choose from. This property is
closely connected to the property unambiguous. If a category is not clearly defined
and objectively measurable, the boundary between different categories becomes
inexact and an item may belong to more than one category.

The property exhaustive is also important. If the category does not completely
cover all possible variations in the field, an entity may be impossible to categorise.
It simply does not belong anywhere, even if it should. Thus an alternative other
may be needed to make a category exhaustive, although then there is a risk of
getting too many entities categorised in this class.

Finally the categories have to be useful, which is connected to the whole idea
of having a taxonomy. As mentioned in the beginning of this section a taxonomy
must have a purpose to be of any use. In [24, p. 85] it is stated that:

The taxonomy should be comprehensible and useful not only to
experts in security but also to users and administrators with less know-
ledge and experience of security.

Even Lough mentions the usefulness as an important property [15, p. 2]. If the
categories and terminology used in the taxonomy are hard to understand, the group
of people able to use it tend to be rather small and the descriptive property is lost.

Summary of properties

If the categories of a taxonomy lack any of the properties mentioned in this sec-
tion, a classification done by one person cannot be repeated by another, or even by
the same person at different occasions. Then, in practice, the taxonomy becomes
useless. Therefore, the approach taken in this thesis is that a proper taxonomy is
required to:

¢ have a definition properly limiting the set of items to be categorised,

o have categories based on measurable properties of the items to be categor-
ised,

¢ have mutually exclusive categories,
o have exhaustive categories,
e have unambiguous categories, and

o be formulated in a language and way that makes it useful.

3.3. DEFINITION OF MALWARE 23

3.3 Definition of malware

How to define malware (or whatever name used) is a disputed question. Most,
if not all the different definitions made previously incorporate malicious intent in
some way. The problem is that it is very hard, if not to say impossible, to correctly
decide the intent behind the creation or use of a software. The problem is described
in the following way in [36], which is quoted verbatim:

Dr. Ford has a program on his virus testing machine called gf.com.
gf.com will format the hard drive of the machine it is executed on, and
place a valid Master Boot Record and Partition Table on the machine.
It displays no output, requests no user input, and exists as part of the
automatic configuration scripts on the machine, allowing quick and
easy restoration of a "known" state of the machine. Clearly, this is not
malware.

1. If | take the executable, and give it to my wife, and tell her what
it is, is it malware?

2. If | take the executable, and give it to my wife, and don’t tell her
what it is, is it malware?

3. If I mail the executable to my wife, and tell her it is a screen
saver, is it malware?

4. If 1 post the executable to a newsgroup unlabelled[,] is it mal-
ware?

5. If I post the executable to a newsgroup and label it as a screensaver[,]
is it malware?

Ford then concludes that the only thing not changing is the software itself. There-
fore his personal belief is ‘[...] that any definition of malware must address what
the program is expected to do’. But he does not specify what he means with ‘ex-
pected to do’. Is it up to each user to decide what is expected? Or should it be more
generally defined expectations, and if so, how should they be found?

Another article debating the use of the words malicious intent in the definition
of malware is written by Morton Swimmer [37]. There he states that:

In order to detect Malware, we need to define a measurable prop-
erty, with which we can detect it. [...] “Trojan horses” are hard to
pin one particular property to. In general, “intent” is hard even for a
human to identify and is impossible to measure, but malicious intent
is what makes code a Trojan horse.

He gives viruses the property of self-replication, but then argues that the con-
sequence of such a definition is that a copy program copying itself would fit the
definition, and thus be a virus. In other words, a false positive?.

LAn indication of something being of some type, which it in reality is not. Crying ‘wolf!” when
there is none, so to speak.

24 CHAPTER 3. THEORY

Also there will always be false negatives?, in [38] Fred Cohen mathematically
prove that the same definition as above of the virus property is undecidable. The
proof is built on the idea that a possible virus has the ability to recognise whether
it is being scanned by a virus detection algorithm looking for the virus property. If
the virus detects the scanning, it does not replicate, it just exits, i.e. it is not a virus
in that context. The virus code would look something like thisS:

if (Scan(this) == TRUE) {
exit();

} else {
Replicate(this);

}

Cohen’s proof has been criticised for being too theoretical, and only valid in a
rather narrow environment. A generalisation of the original proof has been presen-
ted by three scientists at IBM in [39].

Also Kaminski and O"Dea have commented on the problem of determining
whether a tool is malicious or not. They write, in the abstract of a paper [25]
presented at the Virus Bulletin 2002 conference, that:

[...] the real problems start when the most important division line
dissolves - the one between intentionally malicious programs and the
legitimate clean programs.

As can be deducted from above, the use of intent in the definition of malware is
not optimal, because it is impossible to measure. If the creator of a software tool is
found, it is very hard to decide if he or she gives an honest answer to the question
on the intended purpose of the software tool used in an attack.

Consequently a new way of defining a software weapon has to be found, a
definition not involving intent in any way. It has to be based on a measurable
property of a software weapon and focus on the weapon itself, not the surrounding
context or other related things.

Therefore the following formulation of a definition is proposed to be used in
conjunction with the taxonomy [4]:

A software weapon is software containing instructions that are ne-
cessary and sufficient for a successful attack on a computer system.

This definition is further explained in Section 2.1 and also in Section 5.1.

2Something in reality being of some type, which it is not indicated as being of. Saying ‘lamb’,
when one really ought to cry ‘wolf!” instead.

3The Java-like code might very well be optimised, but it has not been done because of readability
issues.

Chapter 4

Earlier malware
categorisations

Although the concept of a categorisation of the existing software weapons has been
proposed a few times already, nobody has yet dedicated a whole paper to it. In this
section some of the works containing some kind of proposed categorisation of soft-
ware weapons are presented. Each presentation is followed by a short evaluation of
its significance and how well it meets the requirements of a taxonomy of software
weapons. Each summary following an evaluation includes a figure showing how
the specific taxonomy relates the three terms trojan horse, virus and worm to each
other.

4.1 Boney

The purpose of this paper is to develop a software architecture for offensive in-
formation warfare. [40] Thus Boney needs to form a taxonomy from earlier work
in rogue programs, which are defined as all classes of malicious code. He credits
Lance Hoffman? for inventing the term and follows the discussion in a book written
by Feudo?. Boney writes that rogue programs primarily have been used in denial
of service attacks.

He lists trojan horses, logic bombs, time bombs, viruses, worms, trapdoors and
backdoors as being the complete set of malicious programs. His definition of a
trojan horse states that it is appearing as a legitimate program and at the same time
performing hidden malicious actions. A virus in its turn ‘[...] may be a trojan
horse but has the additional characteristic that it is able to replicate’. [40, p. 6] The
more formal definition of a virus states that it is parasitic and replicates in an at
least semi-automatic way. When transmitting itself it uses a host program. Worms

The hook is not part of the background material used for this thesis. If anyone is interested the
reference to the book is [41].

2The book is not part of the background material used for this thesis. If anyone is interested the
reference to the book is [42].

25

26 CHAPTER 4. EARLIER MALWARE CATEGORISATIONS

are defined as being able to replicate and spread independently through network
connections. If they too may be trojan horses is not explicitly stated by Boney, but
he writes that the difference between a virus and a worm is the way they replicate.
Eventually the conclusion may be drawn that also worms might be trojan horses.

4.1.1 Summary of evaluation

Boney’s taxonomy is rather simple, it is a number of short definitions of some
common terms used in the computer security field. He does not mention if the list
is meant to be exhaustive.

He states that ‘[a] virus may be a Trojan horse’ [40, p. 6], but at the same
time he does not define virus as a subclass of trojan horse, which indicates that
the two categories are not mutually exclusive. The same thing may be true for
worms, but Boney does not explicitly state whether worms may be trojan horses
(see Figure 4.1).

Consequently the categorisation scheme does not fulfil the requirements of a
taxonomy stated in this thesis (see Section 3.2.2). Also the shortness and lack of
clear definitions make the taxonomy not fulfilling the needs of FOI for a detailed
taxonomy (see Section 3.1.3).

\ ~N

~N
AT T TSN ~ T T TN
(. Worm » ¢ Worm)

Figure 4.1: The relationship of a trojan horse, a virus and a worm according to
Boney.

4.2 Bontchev

The report does not give any specific definition of the term malware, more than
referring to it as ‘malicious computer programs’. The goal of the presented clas-
sification scheme is to make it cover all known kinds of malicious software [30,
p. 11].

Four main types of malware are given; logic bomb, trojan horse, virus, and
worm. They are then further divided into sub-categories. The relationship between
the different types of malware are given implicitly by the levels of the section
headers used in the report. [30, pp. 14-22]

Logic bomb is the simplest form of malicious code and can be part of other types
of malware, often trojan horses. A special variant of a logic bomb is a time

4.2. BONTCHEV 27

bomb. Logic bombs typically work as the triggering part of other types of
malicious software.

Trojan Horse is defined as a piece of software containing one or more, by the user,
unknown and destructive functions. Often the trojan horse also poses as a
legitimate software. If the software warns the user and asks for authorisation
when the destructive function is activated, it is not a trojan horse.

Virus is described as a computer program that is able to replicate by attaching it-
self to other computer programs in some way. The program the virus attaches
to is called a host or victim program.

Worm is a replicating stand-alone program, which in some cases can be regarded
as a subclass of viruses, according to Bontchev.

Bontchev writes that most specialists favour the view that viruses are not to be
regarded as forming a subclass of trojan horses. Instead the two types are to be
placed on the same level, with viruses defined as replicating software and trojan
horses are non-replicating. His definition of a trojan horse (as shown above) only
specifies that there should exist destructive functions, unknown to the user, and that
there should be no warning when the destructive function is activated. He does not
explain why he chose not to follow the other experts.

A subclass of the worm class is the software weapon type chain letter, which is
defined as the simplest form of a worm. It is an attachment to an e-mail and needs
user intervention to be able to execute and replicate. The text part of the message
is meant to convince the user the attached file contains some useful function. But
instead the weapon performs some kind of destructive action, mostly including
sending the message and attachment on to addresses found in the affected user’s
address book. Consequently this description does fit both the worm class and the
trojan horse class, but Bontchev does not mention this, or tries to solve the ambi-

guity.

4.2.1 Summary of evaluation

Bontchev states that worms sometimes can be considered a special case of viruses.
This makes the resulting tree somewhat difficult to draw. However, one possible
variant is the one shown in Figure 4.2.

His definitions of the non-viral software weapons are not completely mutually
exclusive in some cases. One example is the definition of chain letters, which also
fits the definition of trojan horses.

His own definition of trojan horses is contradicted when he writes that the
view favoured by most specialists is the division of viruses and trojan horses into
replicating respectively non-replicating programs. He does not give any reason
for his choice to not follow the other specialists. This unfortunately brings some
ambiguity to his work.

28 CHAPTER 4. EARLIER MALWARE CATEGORISATIONS

e

Crofanhorse > (Vi

Figure 4.2: The relationship of a trojan horse, a virus and a worm according to
Bontchev.

An example of the taxonomy not being exhaustive (and at the same time am-
biguous) is the logic bomb, which is said to most often be embedded in larger
programs and there be used to trigger for instance a trojan horse. But if the logic
bomb resides inside another program, it may be viewed as the unknown and de-
structive function defining a trojan horse. Thus, the definition of the logic bomb
as a separate class does really necessitate the forming of other types of hidden and
destructive functions being part of trojan horses.

Even if the part dealing with viruses is rather detailed, the taxonomy as a whole
is too coarse to really fit the needs for a detailed taxonomy stated in Section 3.1.4.
Nor are the formal requirements, formulated in Section 3.2.2, fulfilled.

4.3 Brunnstein

In [43] Klaus Brunnstein writes about the difficulties of defining malware. He re-
gards the traditional definitions as self-contradicting and not exhaustive. Therefore
he proposes a new way of defining the term, which he calls intentionally dysfunc-
tional software. His definition is meant to distinguish normal dysfunctionalities
from intentionally malevolent ones.

To be able to define the term, he postulates that all software which is essential to
some business or individual also is governed by a specification of all its functions
(at least those which may have an effect on the system in use). If not, such a
specification can be replaced by some sort of reverse engineering.

He then defines functionality in the following way [43, Def. 1-2] (quoted ver-
batim from the source):

A program’s or module’s or object‘s functionality” is character-
ized by the set of all specifications, formal or informal, from which
information about proper work” of a program can be concluded, and
from which certain undesired functions can be excluded.

Remark: it is irrelevant whether the manufacturer‘s specifications,
formal or informal, are explicitly known to the user. Even if a manu-
facturer decides to hide functions (e.g. for objects with limited visib-

4.3. BRUNNSTEIN 29

ility and inheritance), such functions belong to the functionality of a
software. If a manufacturer decides to include some hidden Trojanic
payload, then this becomes part of the specification and therefore the
functionality of that software.

[...] A software or module is called "’dysfunctional’ when at least
one function deviates from the specification.

In other words, if the creator of a software weapon includes the destructive func-
tions in some sort of secret specification, the software is perfectly good (or not
dysfunctional anyway). He also admits this consequence later in the text, at least
regarding trojan horses.

According to Brunnstein, intentionally dysfunctional software is a piece of
code where some essential function is not contained in the manufacturer’s spe-
cification [43, Def. 3]. He also writes that the deviation from the specification
shall be significant to make the software dysfunctional. Later he states that [43,
Def. 4]:

A software or module is called malicious™ (’malware™) if it is
intentionally dysfunctional, and if there is sufficient evidence (e.g. by
observation of behaviour at execution time) that dysfunctions may ad-
versely influence the usage or the behaviour of the original software.

It is left to the reader to decide what ‘essential function’ and ‘significant deviation’
really mean. Neither does he try to grade these ambiguous terms to make the
definitions easier to use.

He continues his line of argument with the definition stating how software is
turned into malware. The text is quoted from [43, Def. 5]

A software or module with given functionality is transformed into
“malware” by a process called “’contamination”.

The definition gives that it is not the contaminating code that should be regarded as
malware, but the victim of the contamination.

Brunnstein then gives three types of contamination; infection, propagation and
trojanisation. [43, Example of def. 5] The first two relates to viruses and worms
respectively and the last one, logically, to trojan horses. He then defines a trojan
horse in the following way, quoted from [43, Def. 7]:

A “Trojan Horse” is a software or module that, in addition to
its specified functions, has one or more additional hidden functions
(called " Trojanic functions”) that are added to a given module in a con-
tamination process (“trojanization”) usually unobservable for a user.
These hidden functions may activate depending upon specific (trigger)
conditions.

However, it is somewhat unclear if the definition should be interpreted as trojan
horses having an infectious property, or if it is the victim of a trojanisation that

30 CHAPTER 4. EARLIER MALWARE CATEGORISATIONS

becomes a trojan horse. The definition of contamination stated in [43, Def. 5]
gives that the latter alternative probably is the correct one.

To handle the software working as specified, but having intentionally destruct-
ive functions, he introduces a new term; critter. However, such software is not to
be included in the malware category, according to him.

Brunnstein writes that real malware ‘[...] may be constructed by repetitively
combining different types or instances of self-reproducing software for one or sev-
eral platforms with Trojanic functions’ and gives an example in WNT/RemoteExplorer.

Finally he summarises his line of thought in a final definition of how malware
may appear [43, Def. 8]:

Malware may be developed from a given (functional) software
or module by intentionally contaminating it with unspecified (hid-
den) functions. Such malware may consist of combinations of self-
replicating or propagating part, or both, which may be triggered by
some built-in condition. Malware may include hidden Trojanic func-
tions, which may also activate upon some built-in condition (trigger).
The development of malware (in the contamination process, namely
the Trojanization) may be observed in cases of self-reproducing soft-
ware, but it is (at present) difficult to anticipate the malicious Trojanic
behaviour before it materializes.

He claims that by using these definitions it is possible to completely characterise all
currently known malwares by their combinations of replicative and trojanic parts.

4.3.1 Summary of evaluation

Brunnstein does not present a real hierarchical system. Instead he concentrates
on the definition of malware and therefore really has only one level in his hier-
archy. This level contains three types of malware, namely trojan horse, virus and
worm, which then are combined into what he calls ‘real malware’. This is shown

in Figure 4.3.

CIojnnorse > Qi (Worm>

Figure 4.3: The relationship of a trojan horse, a virus and a worm according to
Brunnstein.

The goal of creating a definition distinguishing normal software dysfunction-
alities from intentionally malevolent ones, that Brunnstein stated in the paper, is

4.4. CARO 31

not reached. By concentrating on the specification of software he misses all those
softwares which are intended and specified to have the ability to create havoc in
computer systems. Such softwares, given the name critters, are explicitly said not
to be malware.

Another problem with the proposed definitions is the idea that a malware is
formed in a contamination process. Brunnstein states that a good software is trans-
formed into malware by being contaminated with non-specified functions that may
adversely affect the usage of the system. The definition might work if applied
in a software development environment, but not as it is now, on real and exist-
ing software, which has passed the developmental phase. The effect is that what
Brunnstein defines as malware really is the victim of for instance a virus attack.
What he does may be compared to trying to eradicate a disease by declaring the
patients as evil. Of course, if it is possible to kill the patients faster than the disease
can infect new victims, the battle might be won. The question is, who won the
war?

His declaration of real malware as being a combination of trojan horses, vir-
uses, and worms may have the effect that almost all existing malwares will belong
to the same category. There is a maximum of seven different categories to place a
specific malware in and the present trend is to create more and more complex com-
binations of malware from simpler types. Consequently there is a risk of getting
almost all malwares in a single category, namely the trojan horse-virus-worm one.

The rather ambiguous vocabulary used for the definitions and the fact that all
malwares are seen as contaminated, makes the proposed definitions and classific-
ation scheme not fulfilling the needs stated in Section 3.1.4. Nor are the require-
ments specified in Section 3.2.2 fulfilled.

4.4 CARO

All the anti-virus companies today name the viruses they have found in their own
way, several of them similar to the Computer Antivirus Research Organization
(CARO) naming convention established in 1991. [29, 44] Unfortunately the com-
panies have not managed to agree on a common implementation. One of the bigger
obstacles on the road towards a common naming scheme is money. Each company
wants to show that they where the first to find a virus and also to present a cure for
it. Therefore they are reluctant to share information to facilitate a common naming
of a virus. [45]

An attempt to fix this has been made. The project is named VGrep and is a
list or database linking the different names used by the anti-virus companies to the
same virus. More information can be found at [46].

CARO is, as written above, a naming convention and should not be evaluated
as a taxonomy. However, one of the reasons for using a taxonomy is to be able to
name the entities in the field in question and in that way get a better understanding
of them. The CARO naming scheme also divides viruses into a four (or actually

32 CHAPTER 4. EARLIER MALWARE CATEGORISATIONS

five) tiered hierarchy and thus have some resemblance of a taxonomy. The levels
are [47]:

1. family name

2. group name

3. major variant

4. minor variant

5. modifier
The authors propose an informal way of grouping the different existing viruses into
families, by categorising them after their structural similarities. For example small
viruses which only replicate and do not contain any other distinctive feature are
grouped into six families depending on the type of file they infect. The given list
is not exhaustive any longer, because it only states that . COMor . EXE files are
infected. There are no alternatives for the other types of executable files (or really
interpreted, for instance Java) used by more recent viruses.

The lower levels are defined in similar ways. Most parts of the definitions deal
with how to form a proper name, which words are to be used and not to be used.

Scheidl proposes in [48] an extension to the CARO naming convention adding
categories for platform, multi-partite virus, type, and language. The category type
does specify other types of software weapons. The new types are [48, p. 2]:
Joke —just a funny program made to pull someone’s leg, not a virus.

Testfile —an anti-virus test file such as the EICAR-testfile.

Trojan —a program which claims to be useful but turns out to be malware at some
point during the execution.

Worm - a program which does not replicate on the same computer as it resides
on, but spreads over networks.

Dropper —not a virus, but a program that drops a virus.
Germ - the first generation of a virus in its initial, programmed form.

Intended — a program which is intended to be a virus, but which for some reason
cannot replicate.

Malware - an unspecified type of malware.

4.5. HELENIUS 33

4.4.1 Summary of evaluation

The CARO naming convention is specifically stated to be a naming scheme by the
authors and therefore should not really be treated as a taxonomy. However, it is a
rather significant document and it does build on categorising viruses into families,
groups, etc. It is included in the evaluation because it might be possible to use it to
categorise software weapons anyway.

The original version of the naming convention does only cover viruses and it
lacks a category for file viruses infecting other file types than . COMor . EXE files.
This makes the convention not fulfilling the requirement of a taxonomy to have
exhaustive categories. Neither version defines the term virus and it is thus hard to
decide whether the proposed extension makes the categories exhaustive, even if the
extension adds more file types.

The proposed extension made by Scheidl does have categories for trojan horses
and worms. They are put on the same level as viruses, but a virus with the abilities
of both a worm and a virus is to be classified as a virus (the term virus is not defined
anywhere in the text). Therefore the two classes are not mutually exclusive, as
shown in Figure 4.4.

Cirus S Worm>

Figure 4.4: The relationship of a trojan horse, a virus and a worm according to
Scheidl.

The above mentioned reasons implies that the CARO naming convention, with
or without the extension by Scheidl, does not fulfil the needs specified in Sec-
tion 3.1.4, or the requirements of a proper taxonomy stated in Section 3.2.2. It
therefore is hard to use as a basis to build a complete taxonomy from, without
major changes being made to the scheme.

45 Helenius

Helenius has written a dissertation with the title ‘A System to Support the Analysis
of Antivirus Products’ Virus Detection Capabilities’. [31] Hence, the reason for
having a classification of malware (here called harmful program code) is to famil-
iarise the reader with certain terms used in the dissertation. Helenius also needs
to establish a set of terms describing the different types of harmful program code
handled by the anti-virus products. Thus, a classification scheme of harmful pro-
gram code is formulated and also two ways of categorising viruses, one based on
the infection mechanism and one based on more general characteristics.

34 CHAPTER 4. EARLIER MALWARE CATEGORISATIONS

Helenius first concludes that not even among computer anti-virus researchers
the term malware is unanimously agreed on. He also points out that the term is
hard to define because the maliciousness of a software depends on the purpose of
the use and gives the example of the disk formating tool presented in [36] (see also
Section 3.3).

4.5.1 Harmful program code

The classification scheme of harmful program code he presents is constructed from
Brunnstein’s definition (see Section 4.3). However, this one is not as detailed
as Brunnstein’s and also differs in some ways. He has also been influenced by
Bontchev (see Section 4.2). This can be seen from Helenius definition of harmful
program code as being ‘[...] any part of a program code which adds any sort of
functionality against the specification or intention of the system’. [31, p. 12]

He then continues by stating that ‘[h]armful program code includes all pro-
gram parts which are against the system’s specification or intention’ [31, p. 12].
However, he does not specify how the intention of the system is to be measured or
whom to ask.

The interesting part of the scheme (from the point of view of this thesis) is
the part defining intentionally harmful program code, which is said to be equal to
malicious program code. The class includes four types; trojan horses, computer
viruses, joke programs and malicious toolkits (in the accompanying figure there is
a fifth type; others). Helenius admits the list may not be exhaustive®.

The category joke programs is defined in the following way by Helenius [31,
p. 12]:

[...] a program which imitates harmful operation, but does not
actually accomplish the object of imitation and does not contain any
other malicious operation.

Noteworthy is the fact that they are regarded as only imitating harmful operations,
without accomplishing anything harmful. Helenius does not further explain the
underlying causes for including them in the intentionally harmful program code
class.

Computer viruses are said to have the capability to replicate recursively by
themselves and may also include operations typical for trojan horses and malicious

3The actual wording used in Helenius dissertation is: ‘The list may not be exclusive.” [31, p. 12]
This has been regarded a typing error. Helenius’ text can be interpreted in two ways, either there is a
word missing (mutually), or he really meant to write exhaustive. Because Helenius specifically writes
that ‘[a malware type] may include operations, which are typical for [other types of malware], but
this does not make such [types into other types]’ the list actually becomes mutually exclusive. Thus
he probably did not intend to write ‘may not be [mutually] exclusive’. Furthermore, in the figure
accompanying the scheme in the dissertation there is an extra category named ‘Others?’, which
makes the class exhaustive. This category is not included in the text and therefore the more probable
alternative is that he meant to write exhaustive.

4.5. HELENIUS 35

toolkits. However, this does not make them belong to those categories, according
to Helenius.

The same thing is said to be valid for computer worms, but they are instead
independent, by themselves recursively replicating programs. He also specifies
them as a subgroup of computer viruses.

He defines a trojan horse as a self-standing program with hidden destructive
functions, in the same way as Bontchev does (see Section 4.2). The term self-
standing is said to have the meaning not being able to replicate by itself. In the
same way as for the types described above he writes that a trojan horse might
include operations typical for a malicious toolkit, but that does not make the trojan
horse belong to that category.

Finally Helenius describes a malicious toolkit, which is said to be designed
to help malicious intentions aimed at computer systems. The class includes such
programs as virus creation toolkits, among others.

4.5.2 Virus by infection mechanism

Helenius divides computer viruses into 4 4 1 groups based on their infection mech-
anisms. Four groups are mutually exclusive and the fifth group indicates that two
or more of the mechanisms are used together in the virus. The groups are:

File viruses, which are viruses replicating via infecting executable files.

Boot sector viruses, which replicate by infecting boot sectors of diskettes or hard
disks, or partition sectors of hard disks, or a combination thereof.

Macro viruses, which use application macros for replication.

Script viruses, which replicates via operating scripting language, such as for ex-
ample DOS batch files, Visual Basic Scripting, or Unix shell scripts.

Multi-partition viruses, which form a combination of two or more of the previ-
ous four infection mechanisms.

However, in the classification scheme of harmful program code, worms are said
to be a subclass of viruses, but that is not reflected in this scheme. Furthermore,
worms are said to be independent programs capable of replicating on their own,
without using a host program. Therefore not all the different mechanisms in the
scheme are applicable to worms. This is especially true for the file virus class, an
independent program using a host program is a contradiction.

4.5.3 Virus by general characteristics

The classification by characteristics is shown as a tree, but would fit equally well as
a matrix, because a virus categorisation can be formed by combining any number
of the given characteristics. Helenius writes that the set of characteristics might
not be exhaustive and that there might appear previously unknown characteristics

36 CHAPTER 4. EARLIER MALWARE CATEGORISATIONS

in the future. He also points out that a virus always has to have at least one of the
two characteristics memory resident or direct action.
The characteristics in Helenius’ scheme [31, pp. 15-17] are:

e polymorphic,

e companion,

e stealth, with subclass tunnelling,
e direct action or memory resident,
e linking, and

o information distributing, with subclasses self-distributing and e-mailing, which
in turn have the common subclass self-e-mailing.

4.5.4 Summary of evaluation

The classification scheme of harmful program code is really not exhaustive, es-
pecially not the subclasses of malware, which Helenius also admits. The classi-
fication is also somewhat ambiguous, because viruses, worms, and trojan horses
are said to eventually include operations typical for other types of malware, but
should yet not be classified as such. How to differentiate the malware types in
those situations is not specified. Helenius would also need to further explain why
the non-harmful (derived from his definition) category joke programs is included
in the malware class, which he has defined as programs deliberately made harmful.

Regarding the classification scheme based on different infection mechanisms
for viruses, it does not specify where to place worms, which are regarded as a
subclass of viruses. Consequently a user of the classification scheme needs an
implicit understanding of the field to be able to classify a virus or a worm, i.e. the
scheme is hard to use in practice.

Also the last presented way of categorising viruses, namely after their (general)
characteristics, suffers from not being exhaustive. Moreover, the two categories
stealth and linking are not mutually exclusive, because one way of acquiring stealth
is to change the linking of sectors in the file system, which also happens to be the
definition of the linking class.

How Helenius relates the three malware types trojan horse, virus and worm to
each other is shown in Figure 4.5.

None of the three categorisation schemes presented by Helenius in [31] does fill
all the requirements of a taxonomy stated in Section 3.2.2). The parts about viruses
are shorter versions of Bontchev’s, which was regarded as not detailed enough for
filling the needs of FOI (see Section 3.1.3).

4.6. HOWARD-LONGSTAFF 37

Figure 4.5: The relationship of a trojan horse, a virus and a worm according to
Helenius.

4.6 Howard-Longstaff

Howard and Longstaff aim at creating a common language for computer secur-
ity incidents and therefore also has to categorise the tools used for ‘exploiting a
computer or network vulnerability’ [21, p. 13].

The outline of the proposed incident taxonomy is fairly the same as in [35]. The
tool part contains the same categories, but the definitions are more detailed in the
latter. However, that report does not mention anything about the exclusiveness or
exhaustiveness of the categorisation. Therefore, only the first one, [21], is evaluated
here.

The list of tools used covers a wider spectrum than just software based IT
weapons. The software based tools listed are (quoted from [21, pp. 13-14]):

Script or program - a means of exploiting a vulnerability by entering commands
to a process through the execution of a file of commands (script) or a program
at the process interface. Examples are a shell script to exploit a software bug,
a Trojan horse login program, or a password cracking program.

Autonomous agent —a means of exploiting a vulnerability by using a program, or
program fragment, which operates independently from the user. Examples
are computer viruses or worms.

Toolkit — a software package which contains scripts, programs, or autonomous
agents that exploit vulnerabilities. An example is the widely available toolkit
called rootkit.

Distributed tool - a tool that can be distributed to multiple hosts, which can then
be coordinated to anonymously perform an attack on the target host simul-
taneously after some time delay.

Each category is said to have the possibility to contain any number of the other
categories. There is an ordering of the categories from simpler to more sophistic-

38 CHAPTER 4. EARLIER MALWARE CATEGORISATIONS

ated.* When using their taxonomy, often a choice has to be made among several
tools. By always categorising by the highest category of tool used, Howard and
Longstaff claim the categories become mutually exclusive in practice. Based on
their experience they also claim their list of tools is exhaustive.

4.6.1 Summary of evaluation

Howard and Longstaff do not explicitly state how they relate the three malware
types trojan horse, virus and worm to each other. Consequently, what is shown
in Figure 4.6 is the relationship extracted from the definitions of their categories,
where they use the three malware types as examples.

Vi rus/@

Figure 4.6: The relationship of a trojan horse, a virus and a worm according to
Howard and Longstaff.

The software part of their classification scheme is really simple, using only
four categories in a strictly hierarchical structure. By specifying that a tool always
shall be categorised by the highest category of tool it may belong to, their scheme
becomes unambiguous.

However, the category toolkit is placed below a distributed tool in the hier-
archy of their classification scheme. A toolkit containing (among other things) a
distributed denial of service (DDoS) weapon would accordingly be classified as
a distributed tool, even if it in practice is even more advanced than such a tool.
Thus, their scheme might need an extension and the exhaustiveness may therefore
be questioned.

Even if the taxonomy almost (apart from the questioned exhaustiveness) did
fill the requirements stated in Section 3.2.2 the simple hierarchy with only one
alternative in each level is far to coarse to fit the needs of FOI stated in Section 3.1.3
and the taxonomy cannot be used as a taxonomy of software weapons.

“Howard and Longstaff do not specify the ordering in more detail, but they give user command
(not software based and therefore not in the list above, in their list it is written before script or
program) as the lowest level and distributed tool as the highest. Supposedly their list actually is
ordered in the same way as it is written.

4.7. LANDWEHR 39

4.7 Landwehr

The work by Landwehr et al. outlines a taxonomy of computer program security
flaws. They have chosen to use the term malicious flaw as a synonym for malware
and in that way managed to incorporate the term into their taxonomy.

They acknowledge the difficulties of characterising intention, that it is hard
to decide whether a program flaw is made on purpose or not. But they use the
term anyway, because as they see it the risk of inadvertently creating a malware is
minimal in practice.

A trojan horse is by them specified as [11, p. 6]:

[...] a program that masquerades as a useful service but exploits
rights of the program’s user — rights not possessed by the author of the
Trojan horse — in a way the user does not intend.

They then define a virus as a trojan horse ‘[...] replicating itself by copying its
code into other program files’. Accordingly a worm becomes a trojan horse that
‘[...] replicates itself by creating new processes or files to contain its code, instead
of modifying existing storage entities’.

They place trapdoors and logic bombs (including time bombs) as separate
classes on the same level as trojan horses. However, trapdoors and time bombs
are said to be possible to include in trojan horses, so the classes are not mutually
exclusive.

4.7.1 Summary of evaluation

The uppermost level of the Landwehr et al. proposed classification scheme of mali-
cious flaws is formed by trojan horses, trapdoors, and time bombs or logic bombs.
But because of the possibility to incorporate the other two classes into trojan horses,
the classes are not mutually exclusive. Consequently the scheme is not detailed
enough to fill the needs stated in Section 3.1.4. Nor does the scheme meet the
requirements stated in Section 3.2.2).

Landwehr et al. regard viruses and worms as subclasses of trojan horses, as
shown in Figure 4.7.

4.8 Conclusion

None of the evaluated taxonomies or categorisation schemes fulfil all the require-
ments of a proper taxonomy, specified in Section 3.2.2. The part of Howard’s and
Longstaff’s incident taxonomy covering software was the one closest to fulfilling
the requirements. The reason for this was its simple structure with only one cat-
egory at each level in the hierarchy. On the other hand, this simplicity made it far
from fulfilling the needs presented in Section 3.1.4. Actually, the required level of
detail is not available in any of the different categorisation schemes used today.

40 CHAPTER 4. EARLIER MALWARE CATEGORISATIONS

Trojan horse

Qs> Corm>

Figure 4.7: The relationship of a trojan horse, a virus and a worm according to
Landwehr et al.

Regarding the CARO naming convention it should not really have been evalu-
ated as a taxonomy. However, it was included because it is a widely known docu-
ment, which might have been used to form the basis for a new taxonomy. Unfor-
tunately it was not found to be exhaustive, probably because it is rather old. The
new types of viruses missing from the specification were maybe not predicted by
the authors. The proposed extension by Scheidl was not detailed enough to bring
the naming scheme up to a high enough standard for making the scheme usable
as a taxonomy. Also the fact that it is focused on viruses made it too weak on the
non-viral side to meet the requirements of FOI.

The figures indicating the relationship of the three software weapon types tro-
jan horse, virus, and worm show how differently each classification scheme define
these types. Not two figures are alike! If any conclusion is to be drawn from this,
there is a tendency of putting all three types on the same level®, although they in
several cases are defined as not being mutually exclusive.

The differences in the figures also clearly show the need for a redefinition of
the three terms, a redefinition made from a common base.

°Figures 4.1, 4.2, 4.3, and 4.4 representing 2 of the set

Chapter 5

TEBIT

The name TEBIT is a Swedish acronym for ‘Technical characteristics’ description
model for IT-weapons’®. The acronym has only been kept because no better Eng-
lish alternative has been found.

In this chapter the definition accompanying the taxonomy, as well as the tax-
onomy will be discussed. The taxonomy has been slightly updated since the pub-
lishing of the NordSec paper. Therefore all the categories have got their own sec-
tion containing the motivation for including them, the changes made, as well as
any other necessary information.

Note that the information presented in the NordSec paper will not be repeated
(not on purpose anyway). The reader is therefore recommended to read the paper
(see Appendix A or Section 2.1.1) before reading this chapter.

5.1 Definition

The definition used is based solely on measurable characteristics of software weapons.
As stated earlier in the text, the definition reads as follows:

A software weapon is software containing instructions that are ne-
cessary and sufficient for a successful attack on a computer system.

The italicised words are all explained in Section 2.1, paragraph New Definition and
then the first three words are further explained in the sections below.

5.1.1 Instructions

Because the instructions constituting the code are to be used to decide whether a
tool is a software weapon or not, they have to be available in a readable format.
How this is to be achieved falls outside the scope of this thesis, but a few possible
ways might be mentioned anyway.

L“Teknisk beskrivningsmodel for 1T-vapen’ in Swedish.

41

42 CHAPTERS. TEBIT

First of all the compiled code may be possible to decompile or in any other
way reverse-engineer. For example the anti-virus companies are sometimes using
such methods when dissecting new strains of computer viruses. Professor Klaus
Brunnstein, head of the Virus Test Center (VTC) in the Computer Science Depart-
ment at the University of Hamburg, Germany has been teaching reverse engineer-
ing methods to students since 1988 [43]. Thus the methods are there and possible
to use.

Secondly, tools simulating complete virtual network environments exist. These
can then be used to study the behaviour of different software weapons and in that
way give a rather good idea of the technical characteristics of the weapons. One
problem with this method is that the exhaustiveness of the study is undecidable,
there is no way of proving that all properties have been found. Not even a lower
boundary of the quality of the study is possible to calculate. The problem might be
compared to software testing (debugging) and quality control, but in the software
weapon case there is often no specification available to tell what the software is
expected to do.

There is always the possibility that the source code of a weapon might be avail-
able in some way. Then the only thing required is programming skills in the lan-
guage used and such a thing is always achievable.

5.1.2 Successful

For a software tool to be a weapon there has to be at least one system (real or
theoretical) containing a vulnerability or exposure that the software tool uses to
violate the computer security of the system. The vulnerability or exposure does
not have to be known in advance, as soon as a software tool violates the computer
security in any way, it is to be regarded as a software weapon. Nor has the system to
be on the market or in a working condition. It is enough that the weapon violates
the computer security of a system in development, or simply any algorithm that
might be included in a future system, because if the system or algorithm is ever
used, it will be vulnerable to that specific weapon.

This was not clearly stated in the NordSec paper (see Section 2.1, Successful).
The text somewhat contradicted itself, because it was first stated that at least one
system had to be vulnerable, then that a used vulnerability did not have to be part
of an existing system. As stated above, it is enough to have proven that the weapon
will break the security of a system as soon as that system exists.

5.1.3 Attack

Regarding the definition of attack, some terms can be further explained. First of all
the definition of computer security is not generally agreed upon. [10, 49, 50] How-
ever, the inclusion of the three objectives confidentiality, integrity, and availability
is almost unanimous.

5.1. DEFINITION 43

In the NordSec paper the definitions of the terms where cited from Gollmann
[10, p. 5] (who cited ITSEC). A fairly similar definition is the following one, quoted
from Common Criteria (CC) [51, p. 14]:

Security specific impairment commonly includes, but is not lim-
ited to, damaging disclosure of the asset to unauthorised recipients
(loss of confidentiality), damage to the asset through unauthorised
modification (loss of integrity), or unauthorised deprivation of access
to the asset (loss of availability).

The real difference is that CC uses the word ‘damaging’ and ‘damage’ in the defin-
itions of confidentiality and integrity, which Gollmann and ITSEC does not. As
seen above even CC acknowledges the core as these three terms and agrees that
sometimes also other terms are included.

In [24, p. 6] vulnerability (and the accompanying term security policy) is defined
in the following way, which is quoted verbatim from the source:

Vulnerability is a condition in a system, or in the procedures affect-
ing the operation of the system, that makes it possible to to [sic!]
perform an operation that violates the explicit or implicit security
policy of the system.

Security policy is some statement about what kind of events are al-
lowed or not allowed in the system. An explicit policy consists
of rules that are documented (but not necessarily correctly en-
forced), while an implicit policy encompasses the undocumented
and assumed rules which exist for many systems.

Another definition is the one used in [12]. It is a long text, but the main idea is
that the term vulnerability can have two different interpretations, one wide and one
narrow. In the first case a vulnerability is regarded as a breaking of the security of
a computer system in some context. The more narrow interpretation concerns only
deviations from the specification of the functionality of a software, somewhat in ac-
cordance with Brunnstein’s definition of dysfunctional software (see Section 4.3).
In this way programs that work as specified, but in an insecure way, are not re-
garded as containing any vulnerabilities.

Because there are several interpretations of vulnerability, the Common Vulner-
abilities and Exposures (CVE) Editorial Board decided to use the term exposure to
work together with the narrow interpretation, in order to make the two alternative
definitions more equal. The term exposure is then defined as everything relating
to computer security not regarded as being a vulnerability by some, but still intro-
ducing a weakness into the affected program or computer system. The definition
proposed by the CVE Editorial Board is not a strict one and is expected to change
over time. However, in 1999 they voted to accept a content decision describing the

44 CHAPTERS. TEBIT

terminology to be used in CVE, ratifying the proposed definitions discussed above.
[12]

Because the definition and the taxonomy are created from a technical point of
view, the preferred definition of a vulnerability (and exposure) is the CVE one.
Also the definition made by Lindgvist (see above or [24, p. 6]) is applicable, with
the restriction that it should only be weaknesses in the software constituting the
system, that are used to violate the security of the system. In other words, a bad
policy or careless users are not to be regarded as vulnerabilities (even if they in
some cases really might be qualifying as such ...).

5.2 Taxonomy

A few changes have been made to the taxonomy since the publication of the Nord-
Sec paper. Each change is discussed in depth in Section 5.3. The original defini-
tions of the categories are shown in Section 2.1.1.

The current taxonomy consists of 15 categories (see Table 5.1), but new changes
might be needed after the taxonomy has been further tested.

Table 5.1: The taxonomic categories and their alternatives, updated since the pub-

lication of the NordSec paper

Category Alt. 1 Alt. 2 Alt. 3 Alt. 4

Type atomic combined

Violates confidentiality integrity; integrity; availability
parasitic non-parasitic

Duration of effect ~ temporary permanent

Targeting manual autonomous

Attack immediate conditional

Functional area local remote

Affected data stationary in transfer

Used vulnerability CVE/CAN other vuln. none

Topology of source single distributed

Target of attack single multiple

Platf. depend. dependent independent

Sgn. of repl. code monomorphic polymorphic not repl.

Sgn. of attack monomorphic polymorphic

Sgn. w. passive visible stealth

Sgn. w. active visible stealth

All categories in the taxonomy are independent, but they are not mutually ex-
clusive. If they were, the taxonomy would not be possible to use, the requirement
to use at least one alternative from each category would contradict the mutual ex-
clusiveness. As soon as one category was used, the others would be disqualified.

Instead the alternatives in each category, except for the category Violates, are
mutually exclusive and unambiguous (based on an empirical evaluation). Together
the alternatives in a category form a partitioning of the category and thus they

5.3. IN DEPTH 45

also are exhaustive. The alternatives in the category Violates are only disjunct, not
mutually exclusive.

Another way of describing the taxonomy is to view it as a 15-dimensional
basis spanning the set of all software weapons. Then the mutual exclusiveness,
exhaustiveness, and unambiguity come naturally.

Regarding the usability the names of the categories and alternatives are selected
to be as short and at the same time as descriptive as possible. The chosen level of
abstraction of the properties described by the categories are rather high to make
the taxonomy future proof, yet detailed enough to satisfy the requirements of FOI
regarding the scenario development tool. The number of possible categories are

2% (22 — 1)1 (23 — 1)% % (2¢ — 1) = 260406090

which is more than enough to fulfil the needs of FOI.

The format of the taxonomy can be either a (two-dimensional) matrix, or a
one-dimensional vector. The real difference is that the matrix is easier to read
and understand, furthermore it is compact. The vector format can be viewed as a
34-bit binary string which facilitates the comparison of different categorisations.
The definitions of the categories and alternatives are the same for the two views,
they are just different ways to view the same thing. This is further discussed in
Section 5.3.1.

5.3 In depth

In this section each category of the taxonomy is discussed regarding its interpreta-
tion, why it should be included in the taxonomy (its relevance regarding the needs
stated in Section 3.1.4), and a brief discussion of possible countermeasures.

The explanations of the different categories presented in the NordSec paper
(see are repeated in Section 2.1.1. In this section changes made since the public-
ation of the paper and further explanations will be given. The user is therefore
recommended to read section 2.1.1, which explains the background of the categor-
ies, before reading the text in the