
A Proposed Taxonomy of Software
Weapons

Master’s thesis in Computer Security
by

Martin Karresand

LITH-ISY-EX-3345-2002
Linköping

22nd December 2002

This page is intentionally left blank, except for this text.

A Proposed Taxonomy of Software
Weapons

Master’s thesis in Computer Security
at Linköping University

by Martin Karresand

LiTH-ISY-EX-3345-2002

Linköping 22nd December 2002

Examiner: Viiveke Fåk
ISY, Linköping University, Sweden

Supervisor: Mikael Wedlin
Swedish Defence Research Agency,
Linköping, Sweden

Avdelning, Institution
Division, Department

Institutionen för Systemteknik
581 83 LINKÖPING

Datum
Date
2002-12-18

Språk
Language

Rapporttyp
Report category

ISBN

 Svenska/Swedish
X Engelska/English

 Licentiatavhandling
X Examensarbete

ISRN LITH-ISY-EX-3345-2002

 C-uppsats
 D-uppsats

Serietitel och serienummer
Title of series, numbering

ISSN

 Övrig rapport

URL för elektronisk version
http://www.ep.liu.se/exjobb/isy/2002/3345/

Titel
Title

Ett förslag på taxonomi för programvaruvapen

A Proposed Taxonomy of Software Weapons

Författare
 Author

Martin Karresand

Sammanfattning
Abstract
The terms and classification schemes used in the computer security field today are not
standardised. Thus the field is hard to take in, there is a risk of misunderstandings, and there is a
risk that the scientific work is being hampered.

Therefore this report presents a proposal for a taxonomy of software based IT weapons. After an
account of the theories governing the formation of a taxonomy, and a presentation of the requisites,
seven taxonomies from different parts of the computer security field are evaluated. Then the
proposed new taxonomy is introduced and the inclusion of each of the 15 categories is motivated
and discussed in separate sections. Each section also contains a part briefly outlining the possible
countermeasures to be used against weapons with that specific characteristic.

The final part of the report contains a discussion of the general defences against software weapons,
together with a presentation of some open issues regarding the taxonomy. There is also a part
discussing possible uses for the taxonomy. Finally the report is summarised.

Nyckelord
Keyword
computer security, malware, software weapon, taxonomy, trojan, virus, worm

Abstract

The terms and classification schemes used in the computer security field today are
not standardised. Thus the field is hard to take in, there is a risk of misunderstand-
ings, and there is a risk that the scientific work is being hampered.

Therefore this report presents a proposal for a taxonomy of software based IT
weapons. After an account of the theories governing the formation of a taxonomy,
and a presentation of the requisites, seven taxonomies from different parts of the
computer security field are evaluated. Then the proposed new taxonomy is intro-
duced and the inclusion of each of the 15 categories is motivated and discussed in
separate sections. Each section also contains a part briefly outlining the possible
countermeasures to be used against weapons with that specific characteristic.

The final part of the report contains a discussion of the general defences against
software weapons, together with a presentation of some open issues regarding the
taxonomy. There is also a part discussing possible uses for the taxonomy. Finally
the report is summarised.

vii

Acknowledgements

I would like to thank Arne Vidström for sharing his deep knowledge of software
weapons with me and for always being prepared to discuss definitions, formula-
tions, and other highly abstract things.

I would also like to thank my supervisor Mikael Wedlin and my examiner
Viiveke Fåk for their support and for having confidence in me.

Likewise I would like to thank Jonas, Helena, Jojo and the rest of my class, as
well as my other friends, for brightening my life by their presence.

And last but not least I would like to thank my beloved fiancée Helena for
always supporting me no matter how hard I studied. I love you from the bottom of
my heart, now and forever.

ix

x

Contents

1 Introduction 1
1.1 Background . 2
1.2 Purpose . 2
1.3 Questions to be answered . 2
1.4 Scope . 3
1.5 Method . 3
1.6 Intended readers . 3
1.7 Why read the NordSec paper? 4

1.7.1 Chronology of work . 4
1.7.2 Sequence of writing . 5
1.7.3 Line of thought . 5

1.8 Structure of the thesis . 5

2 The abridged NordSec paper 7
2.1 A Taxonomy of Software Weapons 7

2.1.1 A Draft for a Taxonomy 10

3 Theory 15
3.1 Why do we need a taxonomy? 15

3.1.1 In general . 15
3.1.2 Computer security . 17
3.1.3 FOI . 18
3.1.4 Summary of needs . 19

3.2 Taxonomic theory . 19
3.2.1 Before computers . 20
3.2.2 Requirements of a taxonomy 21

3.3 Definition of malware . 23

4 Earlier malware categorisations 25
4.1 Boney . 25

4.1.1 Summary of evaluation 26
4.2 Bontchev . 26

4.2.1 Summary of evaluation 27

xi

xii CONTENTS

4.3 Brunnstein . 28
4.3.1 Summary of evaluation 30

4.4 CARO . 31
4.4.1 Summary of evaluation 33

4.5 Helenius . 33
4.5.1 Harmful program code 34
4.5.2 Virus by infection mechanism 35
4.5.3 Virus by general characteristics 35
4.5.4 Summary of evaluation 36

4.6 Howard-Longstaff . 37
4.6.1 Summary of evaluation 38

4.7 Landwehr . 39
4.7.1 Summary of evaluation 39

4.8 Conclusion . 39

5 TEBIT 41
5.1 Definition . 41

5.1.1 Instructions . 41
5.1.2 Successful . 42
5.1.3 Attack . 42

5.2 Taxonomy . 44
5.3 In depth . 45

5.3.1 Type . 45
5.3.2 Violates . 46
5.3.3 Duration of effect . 48
5.3.4 Targeting . 48
5.3.5 Attack . 49
5.3.6 Functional area . 49
5.3.7 Affected data . 49
5.3.8 Used vulnerability . 50
5.3.9 Topology of source . 50
5.3.10 Target of attack . 51
5.3.11 Platform dependency . 51
5.3.12 Signature of replicated code 54
5.3.13 Signature of attack . 54
5.3.14 Signature when passive 55
5.3.15 Signature when active 55

5.4 In practice . 55

6 Discussion 59
6.1 General defences . 59
6.2 How a taxonomy increases security 62
6.3 In the future . 63
6.4 Summary . 64

CONTENTS xiii

7 Acronyms 67

Bibliography 69

A The NordSec 2002 paper 81

B Categorised Software Weapons 103

C Redefined Terms 127

xiv CONTENTS

List of Figures

4.1 The Boney tree . 26
4.2 The Bontchev tree . 28
4.3 The Brunnstein tree . 30
4.4 The Scheidl tree . 33
4.5 The Helenius tree . 37
4.6 The Howard-Longstaff tree . 38
4.7 The Landwehr et al. tree . 40

5.1 A platform dependent program 52
5.2 A platform independent program; two processors 53
5.3 A platform independent program; no API 53

6.1 The Roebuck tree of defensive measures 60

xv

xvi LIST OF FIGURES

List of Tables

2.1 The taxonomic categories and their alternatives 10

5.1 The taxonomic categories and their alternatives, updated since the
publication of the NordSec paper 44

5.2 The categorised weapons and the references used for the categor-
isation . 56

5.3 The standard deviation di of TDDoS , Tworms, Tall, and the distin-
guishing alternatives (di > 0) . 57

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

The computer security community of today can be compared to the American Wild
West once upon a time; no real law and order and a lot of new citizens. There is a
continuous stream of new members pouring into the research community and each
new member brings his or her own vocabulary. In other words, there are no unified
or standardised terms to use.

The research being done so far has mainly been concentrated to the technical
side of the spectrum. The rate of development of new weapons is high and there-
fore the developers of computer security solutions are fighting an uphill battle.
Consequently, their solutions tend to be pragmatic, many times more or less just
mending breaches in the fictive walls surrounding the computer systems.

As it is today, there is a risk of misunderstanding between different actors in
the computer security field because of a lack of structure. By not having a good
view of the field and no well defined terms to use, eventually unnecessary time is
spent on making sure everyone knows what the others are talking about.

To return to the example of the Wild West again; as the society evolved it
became more and more structured. In short, it got civilised. The same needs to
be done for the computer security society. As a part of that there is a need for a
classification scheme of the software tools used for attacks.

Also the general security awareness of the users of the systems will benefit
from a classification scheme where the technical properties of a tool are used, be-
cause then they will better understand what different types of software weapons
actually can do. They will also be calmer and more in control of the situation if
the system is attacked, because something known is less frightening to face, than
something unknown.

One important thing is what lies behind the used terms, what properties they
are based on. The definitions of malware used today all involve intent in some
way, the intent of the user of the malicious software, or the intent of the creator
of the software. Neither is really good, it is really impossible to correctly measure
the intents of a human being. Instead the definition has to be based on the tool
itself, and solely on its technical characteristics. Or as Shakespeare let Juliet so

1

2 CHAPTER 1. INTRODUCTION

pertinently describe it in Romeo and Juliet1 [2, ch. 2.2:43–44]:

What’s in a name? That which we call a rose
By any other word would smell as sweet;

Therefore this proposed taxonomy of software weapons might have a function to
fill, although the work of getting it accepted may be compared to trying to move
a mountain, or maybe even a whole mountain range. But by moving one small
rock at a time, eventually even the Himalayas can be moved, so please, continue
reading!

1.1 Background

During the summer of 2001 a report [3] presenting a proposal for a taxonomy
of software weapons (software based IT weapons2) was written at the Swedish
Defence Research Agency (FOI). This report was then further developed in a paper
that was presented at the 7th Nordic Workshop on Secure IT Systems (NordSec
2002) [4].

The proposal was regarded as interesting and therefore a deepening of the re-
search was decided upon in the form of a master’s thesis. The project has been
driven as a cooperation between Linköping University, Sweden, and FOI.

1.2 Purpose

The purpose of this thesis is to deepen the theoretical parts of the previous work
done on the taxonomy and also empirically test it. If needed, revisions will be
suggested (and thoroughly justified). To facilitate the understanding of the thesis
the reader is recommended to read the NordSec paper, which is included as an
appendix (see Appendix A).

Also the general countermeasures in use today against software weapons with
the characteristics described in the taxonomy will be presented.

1.3 Questions to be answered

The thesis is meant to answer the following questions:

• What are the requirements connected to the creation of a taxonomy of soft-
ware weapons?

1The citation is often given as ‘[. . .] any other name [. . .]’, which is taken from the bad, 1st
Quarto. The citation given here is taken from the good, 2nd Quarto. [1]

2The Swedish word used in the report is ‘IT-vapen’ (IT weapon). This term has another, broader
meaning in English. Instead the term malware (malicious software) is used when referring to viruses,
worms, logic bombs, etc. in English. However, to avoid the implicit indication of intent from the word
malicious, the term software weapon is used in the paper presented at the 7th Nordic Workshop on
Secure IT Systems (NordSec 2002), as well as in this thesis.

1.4. SCOPE 3

• Are there any other taxonomies covering the field and if so, can they be used?

• What use do the computer security community have for a taxonomy of soft-
ware weapons?

• Are the categories in the proposed taxonomy motivated by the above men-
tioned purpose for creating a taxonomy?

• How well does the taxonomy classify different types of weapons?

1.4 Scope

As stated in [3, 4] the taxonomy only covers software based weapons. This ex-
cludes chipping3, which is regarded as being hardware based.

The work is not intended to be a complete coverage of the field. Due to a
lack of good technical descriptions of software weapons, especially the empirical
testing part of the thesis will not cover all different sectors of the field.

No other report or paper exclusively and in detail covering a taxonomy of soft-
ware based IT weapons is known to have been published until now4, but there are
several simpler categorisation schemes of software weapons. Mainly they use two
or three tiered hierarchies and concentrate on the replicating side of the spectrum,
i.e. viruses and worms. They are all generally used as parts of taxonomies in other
fields closely related to the software weapon field.

This affects the theoretic part of the thesis, which only describes some of the
more recent and well known works in adjacent fields, containing parts formulating
some kind of taxonomy or classification scheme of software weapons. These parts
have also been evaluated to see how well they meet the requirements of a proper
taxonomy.

Mainly the chosen background material covers taxonomies of software flaws,
computer attacks, computer security incidents, and computer system intrusions.

1.5 Method

The method used for the research for this thesis has been concentrated on studies
of other taxonomies in related computer security fields. Also more general inform-
ation regarding trends in the development of new software weapons has been used.
This has mainly been information regarding new types of viruses.

1.6 Intended readers

The intended readers of the thesis are those interested in computer security and
the software based tools of information warfare. To fully understand the thesis

3Malicious alteration of computer hardware.
4This is of course as of the publishing date of this thesis.

4 CHAPTER 1. INTRODUCTION

the reader is recommended to read the paper presented at NordSec 2002 (see Ap-
pendix A) before reading the main text. The reader will also benefit from having
some basic knowledge in computer security.

1.7 Why read the NordSec paper?

This thesis rests heavily on a foundation formed by the NordSec paper, which is
included as Appendix A. To really get anything out of the text in the thesis the
paper has to be read before the thesis. In the following sections the reasons for this
are further explained.

For those who have already read the paper, but need to refresh their memories,
Chapter 2 contains the most important parts.

1.7.1 Chronology of work

The first outlines of the taxonomy were drawn in the summer of 2001, when the au-
thor was hired to collect different software based IT weapons and categorise them
in some way. To structure the work a list of general characteristics of such weapons
was made. Unfortunately the work with developing the list, which evolved into a
taxonomy, took all the summer, so no weapons were actually collected. This ended
in the publication of a report in Swedish [3] later the same year.

The presentation of the report was met with great interest and the decision to
continue the work was taken. The goal was to get an English version of the report
accepted at a conference, and NordSec 2002 was chosen. Once again the summer
was used for writing and the result was positive, the paper got accepted.

However, before the answer from the NordSec reviewers had arrived, the de-
cision was made that the paper-to-be was to be extended into a master’s thesis.
This work was set to start at the beginning of September 2002, at the same date as
the possible acceptance from the NordSec reviewers was to arrive. The goal was
to have completed the thesis before the beginning of 2003.

Therefore the work with attending to the reviewers comments on the paper,
and the work on the master’s thesis run in parallel, intertwined. The deadline for
handing in the final version of the paper was set to the end of October. After that
date the thesis work got somewhat more attention, until the NordSec presentation
had to be prepared and then produced in early November. Finally all efforts could
be put into writing the thesis.

The deadline for having a checkable copy of the thesis to present to the exam-
iner was set to the end of November and therefore the decision to use the paper as
an introduction was taken, to avoid having to repeat a lot of background material.
Hence, due to a shortage of time in the writing phase of the thesis work and thus
the paper being used as a prequel, the two texts are meant to be read in sequence.
They may actually be seen as part 1 and 2 of the master’s thesis.

1.8. STRUCTURE OF THE THESIS 5

1.7.2 Sequence of writing

As stated in the previous section the work with deepening the research ran in par-
allel with amending the paper text. Therefore the latest ideas and theories found
were integrated into the paper text until the deadline. The subsequent results of the
research was consequently put into the thesis.

Because the text was continuously written as the research went along, there was
no time to make any major changes to the already written parts, as to incorporate
them into the flow of the text. The alternative of cutting and pasting the paper text
into the thesis was considered, but was regarded to take to much time from the
work with putting the new results on paper. Hence, the text in the paper supplies
the reader with a necessary background for reading the text in the thesis.

1.7.3 Line of thought

Because this taxonomy is the first one to deal with software weapons exclusively,
the work has been characterised by an exploration of a not fully charted field. The
ideas on how to best create a working taxonomy have shifted, but gradually settled
down into the present form. Sometimes the changes have been almost radical, but
they have always reflected the knowledge and ideas of that particular time. They
therefore together span the field and thus are necessary to be acquainted with, be-
cause they explain why a certain solution was chosen and then maybe abandoned.
Consequently, to be able to properly understand the taxonomy, how to use it, and
follow the line of thought, the reader has to read both parts of the work, i.e. both
the paper and the thesis.

1.8 Structure of the thesis

The thesis is arranged in five chapters and three appendices that are shortly intro-
duced below.

Chapter 1 This is the introduction to the thesis. It states the background and pur-
pose of the thesis, together with some questions which will be answered
in the document. Furthermore the scope, method, and intended readers are
presented. There is also a section explaining why it is important to read the
NordSec paper. Finally the structure of the thesis is outlined.

Chapter 2 To help those who have read the NordSec paper earlier to refresh their
memories this chapter contains some of the more important sections of the
paper. These include the reasons of why no other taxonomy of software
weapons has been created, the discussion of the old and new definition of
software weapons and a short introduction to the categories of the taxonomy
as they were defined at that time.

Chapter 3 This chapter introduces the theories behind a proper taxonomy and
also some reasons on why a taxonomy as this one is needed. The discussion,

6 CHAPTER 1. INTRODUCTION

which was started in the NordSec paper on the problems regarding the use
of the term malware (see Section 2.1), is continued.

Chapter 4 The chapter presents the evaluation of seven taxonomies from adjacent
fields containing some sort of classification schemes of software weapons
(called malware). Each evaluation shows how well the evaluated categor-
isation scheme meets the needs stated in Section 3.1.4 and the requirements
stated in Section 3.2.2. The last section in the chapter summarises the eval-
uations.

Chapter 5 In this chapter the proposed taxonomy of software weapons is presen-
ted together with the accompanying definition. Each of the fifteen categor-
ies and their alternatives are discussed regarding changes, the reasons for
including them in the taxonomy, and general methods to protect computer
systems from weapons with such characteristics as the categories represent.
The revisions made are mainly related to the formulation of the names of
the categories and their alternatives. Also some of the categories have been
extended to avoid ambiguity and make them exhaustive, and to facilitate a
more detailed categorisation. Last in the chapter the result of a small test of
the taxonomy is presented.

Chapter 6 This chapter contains the discussion part and the summary. Some gen-
eral countermeasures to be used to secure computer systems from attacks
are given. Also the future use and developments of the taxonomy needed
to further push it towards a usable state are presented. Finally the thesis is
summarised.

Appendix A This appendix contains the the paper presented at the NordSec work-
shop.

Appendix B In this appendix the categorisations of nine software weapons are
given. The categorisations were made by the author of the thesis and are
meant to function as a test of the taxonomy. The reader can independently
categorise the same weapons as the author and then compare his or her res-
ults with the categorisations presented in this appendix.

Appendix C The appendix shows the proposed definitions (or categorisations),
made by the author of the thesis, of the three terms trojan horse, virus, and
worm. These categorisations indicates how the taxonomy may be used to
redefine the nomenclature of the computer security field. Also completely
new terms may be defined in this way.

Chapter 2

The abridged NordSec paper

In this chapter some of the more important parts of the NordSec paper will be
presented as they where published, to refreshen the memory of readers already
familiar with the paper. To somewhat incorporate the text from the paper into the
flow of the main text of the thesis, the references are changed to fit the numbering
of the thesis. Apart from this everything else is quoted verbatim from the paper.

2.1 A Taxonomy of Software Weapons

My own hypothesis of why no other taxonomy of software weapons has yet been
found can be summarised in the following points:

• The set of all software weapons is (at least in theory) infinite, because new
combinations and strains are constantly evolving. Compared to the biolo-
gical world, new mutations can be generated at light speed.

• It is hard to draw a line between administrative tools and software weapons.
Thus it is hard to strictly define what a software weapon is.

• Often software weapons are a combination of other, atomic, software weapons.
It is therefore difficult to unambiguously classify such a combined weapon.

• There is no unanimously accepted theoretical foundation to build a taxonomy
on. For instance there are (at least) five different definitions of the term worm
[5] and seven of trojan horse [6].

• By using the emotionally charged word malicious together with intent, the
definitions have been crippled by the discussion whether to judge the pro-
grammer’s or the user’s intentions.

7

8 CHAPTER 2. THE ABRIDGED NORDSEC PAPER

Preliminary Definition.

The preliminary definition of software weapons1 used at FOI2 has the following
wording (translated from Swedish):

[. . .] software for logically influencing information and/or pro-
cesses in IT systems in order to cause damage.3

This definition satisfies the conditions mentioned earlier in the text. One thing
worth mentioning is that tools without any logical influence on information or pro-
cesses are not classified as software weapons by this definition. This means that
for instance a sniffer is not a software weapon. Even a denial of service weapon
might not be regarded as a weapon depending on the interpretation of ‘logically
influencing . . . processes’. A web browser on the other hand falls into the software
weapon category, because it can be used in a dot-dot4 attack on a web server and
thus affect the attacked system logically.

Furthermore, the definition does not specify if it is the intention of the user
or the programmer, that should constitute the (logical) influence causing damage.
If it is the situation where the tool is used that decides whether the tool is a soft-
ware weapon or not, theoretically all software ever produced can be classified as
software weapons.

If instead it is the programmer’s intentions that are decisive, the definition gives
that the set of software weapons is a subset (if yet infinite) of the set of all possible
software. But in this case we have to trust the programmer to give an honest answer
(if we can figure out whom to ask) on what his or her intentions was.

A practical example of this dilemma is the software tool SATAN, which accord-
ing to the creators was intended as a help for system administrators [7, 8]. SATAN
is also regarded as a useful tool for penetrating computer systems [9]. Whether
SATAN should be classified as a software weapon or not when using the FOI defin-
ition is therefore left to the reader to subjectively decide.

New Definition.

When a computer system is attacked, the attacker uses all options available to get
the intended result. This implies that even tools made only for administration of
the computer system can be used. In other words there is a grey area with powerful
administrative tools, which are hard to decide whether they should be classified as
software weapons or not. Hence a good definition of software weapons is hard to

1The term IT weapon is used in the report FOI report.
2Swedish Defence Research Agency
3In Swedish: ‘[. . .] programvara för att logiskt påverka information och/eller processer i IT-

system för att åstadkomma skada.’
4A dot-dot attack is performed by adding two dots directly after a URL in the address field of

the web browser. If the attacked web server is not properly configured, this might give the attacker
access to a higher level in the file structure on the server and in that way non-authorised rights in the
system.

2.1. A TAXONOMY OF SOFTWARE WEAPONS 9

make, but it might be done by using a mathematical wording and building from a
foundation of measurable characteristics.

With the help of the conclusions drawn from the definitions of information war-
fare the following suggestion for a definition of software weapons was formulated:

A software weapon is software containing instructions that are ne-
cessary and sufficient for a successful attack on a computer system.

Even if the aim was to keep the definition as mathematical as possible, the
natural language format might induce ambiguities. Therefore a few of the terms
used will be further discussed in separate paragraphs.

Since it is a definition of software weapons, manual input of instructions is
excluded.

Instructions. It is the instructions and algorithms the software is made of that
should be evaluated, not the programmer’s or the user’s intentions. The instructions
constituting a software weapon must also be of such dignity that they together
actually will allow a breakage of the security of an attacked system.

Successful. There must be at least one computer system that is vulnerable to
the tool used for an attack, for the tool to be classified as a software weapon. It
is rather obvious that a weapon must have the ability to do harm (to break the
computer security) to be called a weapon. Even if the vulnerability used by the
tool might not yet exist in any working computer system, the weapon can still be
regarded as a weapon, as long as there is a theoretically proved vulnerability that
can be exploited.

Attack. An attack implies that a computer program in some way affects the con-
fidentiality5, integrity6 or availability7 of the attacked computer system. These
three terms form the core of the continually discussed formulation of computer se-
curity. Until any of the suggested alternatives is generally accepted, the definition
of attack will adhere to the core.

The security breach can for example be achieved through taking advantage
of flaws in the attacked computer system, or by neutralising or circumventing its
security functions in any way.

The term flaw used above is not unambiguously defined in the field of IT se-
curity. Carl E Landwehr gives the following definition [11, p. 2]:

[. . .] a security flaw is a part of a program that can cause the
system to violate its security requirements.

5‘[P]revention of unauthorised disclosure of information.’[10, p. 5]
6‘[P]revention of unauthorised modification of information.’[10, p. 5]
7‘[P]revention of unauthorised withholding of information or resources.’[10, p. 5]

10 CHAPTER 2. THE ABRIDGED NORDSEC PAPER

Another rather general, but yet functional, definition of ways of attacking computer
systems is the definition of vulnerability and exposure [12] made by the CVE8

Editorial Board.

Computer System. The term computer system embraces all kinds of (elec-
tronic)9 machines that are programmable and all software and data they contain. It
can be everything from integrated circuits to civil and military systems (including
the networks connecting them).

2.1.1 A Draft for a Taxonomy

The categories of the taxonomy are independent and the alternatives of each cat-
egory together form a partition of the category. It is possible to use several alternat-
ives (where applicable) in a category at the same time. In this way even combined
software weapons can be unambiguously classified. This model, called character-
istics structure, is suggested by Daniel Lough [15, p. 152].

In Table 2.1 the 15 categories and their alternatives are presented. The altern-
atives are then explained in separate paragraphs.

Table 2.1: The taxonomic categories and their alternatives

Category Alternative 1 Alternative 2 Alternative 3

Type atomic combined
Affects confidentiality integrity availability
Duration of effect temporary permanent
Targeting manual autonomous
Attack immediate conditional
Functional area local remote
Sphere of operation host-based network-based
Used vulnerability CVE/CAN other method none
Topology single source distributed source
Target of attack single multiple
Platform dependency dependent independent
Signature of code monomorphic polymorphic
Signature of attack monomorphic polymorphic
Signature when passive visible stealth
Signature when active visible stealth

8‘[CVE is a] list of standardized names for vulnerabilities and other information security ex-
posures – CVE aims to standardize the names for all publicly known vulnerabilities and security
exposures. [. . .] The goal of CVE is to make it easier to share data across separate vulnerability
databases and security weapons.’ [13]. The list is maintained by MITRE [14].

9This term might be to restrictive. Already advanced research is done in for example the areas of
biological and quantum computers.

2.1. A TAXONOMY OF SOFTWARE WEAPONS 11

Type.

This category is used to distinguish an atomic software weapon from a combined
and the alternatives therefore cannot be used together.

A combined software weapon is built of more than one stand-alone (atomic
or combined) weapon. Such a weapon can utilise more than one alternative of a
category. Usage of only one alternative from each category does not necessarily
implicate an atomic weapon. In those circumstances this category indicates what
type of weapon it is.

Affects.

At least one of the three elements confidentiality, integrity and availability has to
be affected by a tool to make the tool a software weapon.

These three elements together form the core of most of the definitions of IT
security that exist today. Many of the schemes propose extensions to the core, but
few of them abandon it completely.

Duration of effect.

This category states for how long the software weapon is affecting the attacked
system. It is only the effect(s) the software weapon has on the system during
the weapon’s active phase that should be taken into account. If the effect of the
software weapon ceases when the active phase is over, the duration of the effect is
temporary, otherwise it is permanent.

Regarding an effect on the confidentiality of the attacked system, it can be tem-
porary. If for example a software weapon e-mails confidential data to the attacker
(or another unauthorised party), the duration of the effect is temporary. On the
other hand, if the software weapon opens a back door into the system (and leaves
it open), the effect is permanent.

Targeting.

The target of an attack can either be selected manual[ly] by the user, or autonom-
ous[ly] (usually randomly) by the software weapon. Typical examples of autonom-
ously targeting software weapons are worms and viruses.

Attack.

The attack can be done immediate[ly] or conditional[ly]. If the timing of the at-
tack is not governed by any conditions in the software, the software weapon uses
immediate attack.

12 CHAPTER 2. THE ABRIDGED NORDSEC PAPER

Functional Area.

If the weapon attacks its host computer, i.e. hardware directly connected to the
processor running its instructions, it is a local weapon. If instead another physical
entity is attacked, the weapon is remote.

The placement of the weapon on the host computer can be done either with
the help of another, separate tool (including manual placement), or by the weapon
itself. If the weapon establishes itself on the host computer (i.e. breaks the host
computer’s security) it certainly is local, but can still be remote at the same time. A
weapon which is placed on the host computer manually (or by another tool) need
not be local.

Sphere of Operation.

A weapon affecting network traffic in some way, for instance a traffic analyser, has
a network-based operational area. A weapon affecting stationary data, for instance
a weapon used to read password files, is host-based, even if the files are read over
a network connection.

The definition of stationary data is data stored on a hard disk, in memory or on
another type of physical storage media.

Used Vulnerability.

The alternatives of this category are CVE/CAN10, other method and none. When
a weapon uses a vulnerability or exposure [12] stated in the CVE, the CVE/CAN
name of the vulnerability should be given11 as the alternative (if several, give all of
them).

The alternative other method should be used with great discrimination and only
if the flaw is not listed in the CVE, which then regularly must be checked to see if
it has been updated with the new method. If so, the classification of the software
weapon should be changed to the proper CVE/CAN name.

Topology.

An attack can be done from one single source or several concurrent distributed
sources. In other words, the category defines the number of concurrent processes
used for the attack. The processes should be mutually coordinated and running on
separate and independent computers. If the computers are clustered or in another

10The term CAN (Candidate Number) indicates that the vulnerability or exposure is being invest-
igated by the CVE Editorial Board for eventually receiving a CVE name [16].

11NIST (US National Institute of Standards and Technology) has initiated a meta-base called ICAT
[17] based on the CVE list. This meta-base can be used to search for CVE/CAN names when
classifying a software weapon.

The meta-base is described like this: ‘ICAT is a fine-grained searchable index of standardized
vulnerabilities that links users into publicly available vulnerability and patch information’. [18]

2.1. A TAXONOMY OF SOFTWARE WEAPONS 13

way connected as to make them simulate a single entity, they should be regarded
as one.

Target of Attack.

This category is closely related to the category topology and has the alternatives
single and multiple. As for the category topology, it is the number of involved
entities that is important. A software weapon concurrently attacking several targets
is consequently of the type multiple.

Platform Dependency.

The category states whether the software weapon (the executable code) can run
on one or several platforms and the alternatives are consequently dependent and
independent.

Signature of Code.

If a software weapon has functions for changing the signature of its code, it is
polymorphic, otherwise it is monomorphic. The category should not be confused
with Signature when passive.

Signature of Attack.

A software weapon can sometimes vary the way an attack is carried out, for ex-
ample perform an attack of a specific type, but in different ways, or use different
attacks depending on the status of the attacked system. For instance a dot-dot at-
tack can be done either by using two dots, or by using the sequence %2e%2e. If
the weapon has the ability to vary the attack, the type of attack is polymorphic,
otherwise it is monomorphic.

Signature When Passive.

This category specifies whether the weapon is visible or uses any type of stealth
when in a passive phase12. The stealth can for example be achieved by catching
system interrupts, manipulating checksums or marking hard disk sectors as bad in
the FAT (File Allocation Table).

Signature When Active.

A software weapon can be using instructions to provide stealth during its active
phase. The stealth can be achieved in different ways, but the purpose is to con-
ceal the effect and execution of the weapon. For example man-in-the-middle or

12A passive phase is a part of the code constituting the software weapon where no functions per-
forming an actual attack are executed.

14 CHAPTER 2. THE ABRIDGED NORDSEC PAPER

spoofing weapons use stealth techniques in their active phases through simulating
uninterrupted network connections.

If the weapon is not using any stealth techniques, the weapon is visible.

Chapter 3

Theory

The formulation of a taxonomy needs to follow the existing theories regarding the
requirements of a proper taxonomy. They have evolved over time, but the core
is more or less unchanged since Aristotle (384-322 B.C.) began to divide marine
life into different classes [19, 20]. Some of the more recent works done within
the computer security field dealing with taxonomies have also contributed to the
theory.

A taxonomy also needs to be based on a good definition. This report discusses
software weapons and consequently this term needs to be defined. One section
therefore presents some alternative ways of defining software weapons, a.k.a mal-
ware.

3.1 Why do we need a taxonomy?

A field of research will benefit from a structured categorisation in many ways. In
this section both general arguments for the use of a taxonomy, as well as more
specific arguments concerning the computer security field, and specifically FOI,
will be given.

3.1.1 In general

In [20] the main focus lies on the botanical and zoological taxonomies developed
and used throughout time. In spite of this it gives a few general arguments for the
use of a taxonomy. One of the main arguments is formulated in the following way:

A formal classification provides the basis for a relatively uniform
and internationally understood nomenclature, thereby simplifying cross-
referencing and retrieval of information.

To enable systematic research in a field, there is a need for a common language and
the development of a taxonomy is part of the formulation of such a language. [21]
When searching for new things the history must first be known and understood.
Therefore a common nomenclature within the field of research is vital, otherwise

15

16 CHAPTER 3. THEORY

resent discoveries might not be remembered in a few years time and will have to
be made again. This may lead to a waste of time and money.

Essentially a taxonomy summarises all the present knowledge within a field.
In [22, p. 16] a citation from The principles of classification and a classification of
mammals by George Gaylord Smith [23] with the following wording is presented:

Taxonomy is at the same time the most elementary and the most
inclusive part of zoology, most elementary because animals cannot be
discussed or treated in a scientific way until some systematization has
been achieved, and most inclusive because taxonomy in its various
guises and branches eventually gathers together, utilizes, summarizes,
and implements everything that is known about animals, whether mor-
phological, physiological, or ecological.

The citation deals solely with zoology, but the idea is perfectly applicable to other
fields as well, also computer security. There already exist frequently and com-
monly used terms for different types of software weapons. But they do not cover
the complete field and thus do not help in structuring the knowledge attained this
far.

A good taxonomy has both an explanatory and a predictive value. In other
words, a taxonomy can be used to explain the scientific field it covers through
the categorisation of entities. By forming groups, subgroups and so on with clear
relationships in between, the field is easier to take in. The structuring also makes it
possible to see which parts of the field that would benefit from more research. [22]

A parallel can be drawn to the exploration of a new world. To be able to find
the unexplored areas, some knowledge of the ways of transport between the already
explored parts will be of much help. Thus a structuring of the attained knowledge
will speed up the exploration of the rest of the world.

A good and often used example of such a classification is the periodic system
of elements. Simply by looking at the position of an element in the table, it is
possible to get a feeling for the general properties of that element. The table has
also been used to predict the existence of new elements, research which in the end
has resulted in a couple of Nobel Prizes.

In [24, p. 21] the following arguments for the need of a categorisation are given:

• the formation and application of a taxonomy enforces a structured analysis
of the field,

• a taxonomy facilitates education and further research because categories play
a major role in the human cognitive process,

• categories which have no members but exist by virtue of symmetries or other
patterns may point out white spots on the map of the field and

• if problems can be grouped in categories in which the same solutions apply,
we can achieve more efficient problem solving than if every problem must
be given a unique solution.

3.1. WHY DO WE NEED A TAXONOMY? 17

Therefore the scientists active within a field of research would gain a lot from
spending some time and effort to develop a formally correct classification scheme
of the field.

3.1.2 Computer security

Today none of the widely used terms given to different types of software weapons
are strictly and unanimously defined. Almost every definition has some unique
twist to it.

For example such terms as trojan horse, virus, and worm all have several dif-
ferent definitions for each term. Also the way the terms relate to each other differ
among the classification schemes, as shown in Section 4. This is also described by
Jakub Kaminski and Hamish O´Dea in the following way [25]:

One of the trends we have been observing for some time now is
the blurring of divisional lines between different types of malware.
Classifying a newly discovered ‘creature’ as a virus, a worm, a Trojan
or a security exploit becomes more difficult and anti-virus researchers
spend a significant amount of their time discussing the proper classi-
fication of new viruses and Trojans.

Therefore some sort of common base to build a definition from is needed. If all
terms used have the same base, they are also possible to compare and relate. By
forming the base from general characteristics of software weapons the measurabil-
ity requirement is met.

There is also a need for a better formal categorisation method regarding soft-
ware weapons. By placing the different types of weapons in well defined categories
the complete set of software weapons is easy to take in. Also the communication
within the computer security community is facilitated in this way.

Much of the previous research being done has been concentrated to the three
types of software weapons mentioned above. The concept of for example a denial
of service (DoS) weapon was not on the agenda until the large attacks on eBay,
Yahoo and E*trade took place. Because these weapons represents rather new con-
cepts, they sometimes are forgotten when talking about software weapons. This is
unfortunate, because in a study done in 2001 the number of DoS attacks on dif-
ferent hosts on the Internet over a three week period was estimated to be more
than 12,000. [26] A categorisation of the complete set of software weapons would
consequently lessen the risk of forgetting any potential threats.

The research in computer security would also benefit from having a common
database containing specimens of all known software weapons. Both the problem
with naming new software weapons and the tracing of their relationship may be
solved having access to such a database.

Another thinkable field of use is in forensics. In the same way as the police
have collections of different (physical) weapons used in crimes today, they (or any
applicable party) may benefit from having a similar collection of software weapons.

18 CHAPTER 3. THEORY

Then the traces left in the log files after an attack may be used as unique identifiers
to be compared to those stored in the software weapon collection. If needed the
weapon may even be retrieved from the collection and used to generate traces in a
controlled environment.

Today many anti-virus companies maintain their own reference databases for
computer viruses, but there is no publicly shared database. Therefore the WildList
Organization International has taken on the challenge of creating such a database
for computer viruses. [27]

3.1.3 FOI

Regarding the specific needs for a taxonomy at FOI, they mainly relate to defens-
ive actions and the protection of military computer systems. For example there
is a need for tools to help creating computer system intrusion scenarios. [28] One
part of such a tool would be some sort of rather detailed descriptions of the gen-
eral characteristics of different existing and also non-existing, but probable, soft-
ware weapons. These descriptions therefore need to be both realistic regarding the
weapons existing today, as well as comprehensive enough to be usable even in the
foreseeable future.

The threats posed to the network centric warfare (NCW) concept by different
software weapons have to be met. To be able to do that the properties of different
types of weapons have to be well structured and well known to make it possible to
counter them in an effective way.

The level of detail of the categorisation needs to be rather high, but yet usable
even by laymen. Therefore also the used vocabulary (for example the names of the
different classes) need to be both general and technically strict.

There is also a need to extend the terminology further, especially in the non-
viral software weapon field. There are as many different types of viruses defined
as there are of all other software weapons together. For example in [29] fourteen
different types of viruses and ten non-viral weapons are listed. And in [30] there
are eleven non-viral software weapons given and about as many types of viruses
(depending on how they are categorised). In [31] two (three including joke pro-
grams) types of non-viral software weapons and five or ten virus types (depending
on the chosen base for the categorisation) are presented.

To facilitate the creation of the scenario tools mentioned above many more
types of software weapons are needed than what the categorisation schemes offer
today. What really is needed is the same level of detail as offered by the scen-
ario creation tools used for conventional warfare. These tools sometimes contains
classes of troop formations down to platoon level.

In a computer system intrusion situation (not only directly involving the milit-
ary) all involved personnel need to be fully aware of what the different terms used
really mean. Thus the terminology needs to be generally accepted and unambigu-
ous. To enable the definition of such generally accepted terms some common base
has to be used. A natural base to build a definition from would be the technical

3.2. TAXONOMIC THEORY 19

characteristics of the weapons representing the different terms.
A taxonomy of software weapons will have educational purposes too, espe-

cially when training new computer security officers. Then the usability of the
taxonomy is very important. Each category and its alternatives need to be easy
to understand and differentiate. The taxonomy then also may function as an intro-
duction to the different technologies used in the software weapon world.

Because of the intended use in the development of the defence of military com-
puter systems, the categories have to be defined as unambiguously as possible.
They also have to be measurable in some way, to enable the objective evaluation of
the defensive capacity of different proposed computer security solutions.

3.1.4 Summary of needs

The different reasons for having a taxonomy of software weapons can be summar-
ised in the following points:

• The nomenclature within the computer security field needs to be defined in
an objective, generally accepted, and measurable way, because today the
lines between the terms are blurring. It also has to be further extended, es-
pecially within the non-viral field.

• The use of a taxonomy makes a structured analysis and thus a more sci-
entific approach to the software weapon field possible. In that way the field
will be easier to take in, which would benefit the training of new computer
security personnel. Also the future research will be helped by the predictive
properties of a taxonomy.

• To be able to find better solutions to problems quicker and lessen the risk
of forgetting important types of weapons a good way of grouping different
software weapons is needed.

• When constructing computer system intrusion scenarios a rather detailed cat-
egorisation of the different tools available, both today and in the future, is
needed.

3.2 Taxonomic theory

In this section the theory behind a taxonomy will be presented. First of all the
classical theory dating back to Aristotle (384–322 B.C.) is introduced. Then the
formal requirements of a taxonomy are specified and connected to the need for a
taxonomy of software weapons. Finally some of the taxonomies in the computer
security field are evaluated with respect to how well they fit the requirements of a
taxonomy of software weapons. The evaluated taxonomies were chosen because
they were well known, closely related to the software weapon field, and fairly
recently written.

20 CHAPTER 3. THEORY

3.2.1 Before computers

The word taxonomy comes from the Greek words taxis (arrangement, order) and
nomos (distribution) and is defined in the following way in [32]:

Classification, esp. in relation to its general laws or principles; that
department of science, or of a particular science or subject, which con-
sists in or relates to classification; esp. the systematic classification of
living organisms.

Another definition of the term taxonomy, this time from a more explicit biological
point of view, is given in [33]:

[SYSTEMATICS] A study aimed at producing a hierarchical sys-
tem of classification of organisms which best reflects the totality of
similarities and differences.

In the beginning the word was used in zoology and botany, but in more recent
times the usage has been widened and today comprises almost every thinkable
field. This trend has actually started to make the term somewhat watered down,
which is unfortunate. In many cases the taxonomies are simply lists of terms,
lacking much of the basic requirements of a taxonomy stated in the theory.

The fundamental idea of a taxonomy is described in the following way in [11,
p. 3]:

A taxonomy is not simply a neutral structure for categorizing spe-
cimens. It implicitly embodies a theory of the universe from which
those specimens are drawn. It defines what data are to be recorded
and how like and unlike specimens are to be distinguished.

According to Encyclopedia Britannica the American evolutionist Ernst Mayr has
said that ‘taxonomy is the theory and practice of classifying organisms’. [20] This
quotation summarises the core of the ideas behind a taxonomy in a good way.

The first one to look into the theory of taxonomies was Aristotle. He studied
the marine life intensively and grouped different living things together by their
nature, not by their resemblance. This form of classification was used until the
19th century. [19, 20]

In 1758 the famous Swedish botanist and zoologist Carolus Linnaeus (Carl von
Linné), usually regarded as the father of modern taxonomy, used the Aristotelian
taxonomic system in his work. He extended the number of levels in the binomial
hierarchy and defined them as class, order, genus, and species. In other words,
he should really not be credited for inventing the taxonomy, but for his work in
naming a big amount of plants and animals and creating workable keys for how to
identify them from his books. [20]

When Darwin in 1859 published his work ‘The Origin of Species’ the theory
of taxonomy began to develop and seep into other fields. [22] Later both Ludwig
Wittgenstein and Eleanor Rosch have questioned the theory. The work of Rosch

3.2. TAXONOMIC THEORY 21

led to her formulation of the prototype theory, which suggests that the categories
of a taxonomy should have prototypes against which new members of the category
are compared. [24]

The idea of having a prototype to compare new members against is also stated
in [20]. Such prototypes should be stored in a public institution, so researchers can
have free access to the material. It is then also possible to correct mistakes made
in earlier classifications, the first taxonomist maybe missed an important property,
or new technology makes it possible to further examine the prototype.

Additionally, by having one publicly available specimen being the criterion of
the group, it is in reality working as a three dimensional, touchable definition of
the members of the group.

There is also a third theory mentioned in [24] and that is conceptual clustering.
The theory is by some regarded as lying between the classical theory and prototype
theory. In short it states that items should be arranged by simple concepts instead
of solely on predefined measures of similarity. The theory is directed towards
automatic categorisation and machine learning.

3.2.2 Requirements of a taxonomy

Some of the references used in this section relates to biology, others to computer
security. The given references and requirements are really applicable to all types
of taxonomies and thus also to a taxonomy of software weapons.

To make a taxonomy usable in practice, it must fulfil some basic requirements.
First of all, a taxonomy without a proper purpose is of little or no use and thus
the purpose must be used as a base when developing the taxonomy. To fit the
purpose the items categorised with the help of the taxonomy must be chosen in
some way. Therefore the taxonomy has to be used in conjunction with a definition
of the entities forming the field to be categorised, because the definition functions
as a filter, which excludes all entities not belonging to the field and thus not fitting
the taxonomy. How to formulate such a definition for software weapons is further
discussed in Section 3.3.

Also, the properties of the items to be categorised, i.e. the categories of the
taxonomy, must be easily and objectively observable and measurable. If not, the
categorisation of an item is based on the personal knowledge of the user of the
taxonomy, as stated in this citation from [22, p. 18]:

Objectivity implies that the property must be identified from the
object known and not from the subject knowing. [. . .] Objective and
observable properties simplify the work of the taxonomist and provide
a basis for the repeatability of the classification.

In [15, p. 38] a list compiled from five taxonomies in different fields of computer
security is presented. From that list four different properties can be extracted that
the categories of a taxonomy must have. These properties are stated in [21, 22, 24,
34, 35], although different names are used in some papers. The categories must be:

22 CHAPTER 3. THEORY

• mutually exclusive,

• exhaustive,

• unambiguous, and

• useful.

If the categories are not mutually exclusive the classification of an item cannot be
made, because there are more than one alternative to choose from. This property is
closely connected to the property unambiguous. If a category is not clearly defined
and objectively measurable, the boundary between different categories becomes
inexact and an item may belong to more than one category.

The property exhaustive is also important. If the category does not completely
cover all possible variations in the field, an entity may be impossible to categorise.
It simply does not belong anywhere, even if it should. Thus an alternative other
may be needed to make a category exhaustive, although then there is a risk of
getting too many entities categorised in this class.

Finally the categories have to be useful, which is connected to the whole idea
of having a taxonomy. As mentioned in the beginning of this section a taxonomy
must have a purpose to be of any use. In [24, p. 85] it is stated that:

The taxonomy should be comprehensible and useful not only to
experts in security but also to users and administrators with less know-
ledge and experience of security.

Even Lough mentions the usefulness as an important property [15, p. 2]. If the
categories and terminology used in the taxonomy are hard to understand, the group
of people able to use it tend to be rather small and the descriptive property is lost.

Summary of properties

If the categories of a taxonomy lack any of the properties mentioned in this sec-
tion, a classification done by one person cannot be repeated by another, or even by
the same person at different occasions. Then, in practice, the taxonomy becomes
useless. Therefore, the approach taken in this thesis is that a proper taxonomy is
required to:

• have a definition properly limiting the set of items to be categorised,

• have categories based on measurable properties of the items to be categor-
ised,

• have mutually exclusive categories,

• have exhaustive categories,

• have unambiguous categories, and

• be formulated in a language and way that makes it useful.

3.3. DEFINITION OF MALWARE 23

3.3 Definition of malware

How to define malware (or whatever name used) is a disputed question. Most,
if not all the different definitions made previously incorporate malicious intent in
some way. The problem is that it is very hard, if not to say impossible, to correctly
decide the intent behind the creation or use of a software. The problem is described
in the following way in [36], which is quoted verbatim:

Dr. Ford has a program on his virus testing machine called qf.com.
qf.com will format the hard drive of the machine it is executed on, and
place a valid Master Boot Record and Partition Table on the machine.
It displays no output, requests no user input, and exists as part of the
automatic configuration scripts on the machine, allowing quick and
easy restoration of a "known" state of the machine. Clearly, this is not
malware.

1. If I take the executable, and give it to my wife, and tell her what
it is, is it malware?

2. If I take the executable, and give it to my wife, and don’t tell her
what it is, is it malware?

3. If I mail the executable to my wife, and tell her it is a screen
saver, is it malware?

4. If I post the executable to a newsgroup unlabelled[,] is it mal-
ware?

5. If I post the executable to a newsgroup and label it as a screensaver[,]
is it malware?

Ford then concludes that the only thing not changing is the software itself. There-
fore his personal belief is ‘[. . .] that any definition of malware must address what
the program is expected to do’. But he does not specify what he means with ‘ex-
pected to do’. Is it up to each user to decide what is expected? Or should it be more
generally defined expectations, and if so, how should they be found?

Another article debating the use of the words malicious intent in the definition
of malware is written by Morton Swimmer [37]. There he states that:

In order to detect Malware, we need to define a measurable prop-
erty, with which we can detect it. [. . .] “Trojan horses” are hard to
pin one particular property to. In general, “intent” is hard even for a
human to identify and is impossible to measure, but malicious intent
is what makes code a Trojan horse.

He gives viruses the property of self-replication, but then argues that the con-
sequence of such a definition is that a copy program copying itself would fit the
definition, and thus be a virus. In other words, a false positive1.

1An indication of something being of some type, which it in reality is not. Crying ‘wolf!’ when
there is none, so to speak.

24 CHAPTER 3. THEORY

Also there will always be false negatives2, in [38] Fred Cohen mathematically
prove that the same definition as above of the virus property is undecidable. The
proof is built on the idea that a possible virus has the ability to recognise whether
it is being scanned by a virus detection algorithm looking for the virus property. If
the virus detects the scanning, it does not replicate, it just exits, i.e. it is not a virus
in that context. The virus code would look something like this3:

if (Scan(this) == TRUE) {
exit();

} else {
Replicate(this);

}

Cohen’s proof has been criticised for being too theoretical, and only valid in a
rather narrow environment. A generalisation of the original proof has been presen-
ted by three scientists at IBM in [39].

Also Kaminski and O´Dea have commented on the problem of determining
whether a tool is malicious or not. They write, in the abstract of a paper [25]
presented at the Virus Bulletin 2002 conference, that:

[. . .] the real problems start when the most important division line
dissolves - the one between intentionally malicious programs and the
legitimate clean programs.

As can be deducted from above, the use of intent in the definition of malware is
not optimal, because it is impossible to measure. If the creator of a software tool is
found, it is very hard to decide if he or she gives an honest answer to the question
on the intended purpose of the software tool used in an attack.

Consequently a new way of defining a software weapon has to be found, a
definition not involving intent in any way. It has to be based on a measurable
property of a software weapon and focus on the weapon itself, not the surrounding
context or other related things.

Therefore the following formulation of a definition is proposed to be used in
conjunction with the taxonomy [4]:

A software weapon is software containing instructions that are ne-
cessary and sufficient for a successful attack on a computer system.

This definition is further explained in Section 2.1 and also in Section 5.1.

2Something in reality being of some type, which it is not indicated as being of. Saying ‘lamb’,
when one really ought to cry ‘wolf!’ instead.

3The Java-like code might very well be optimised, but it has not been done because of readability
issues.

Chapter 4

Earlier malware
categorisations

Although the concept of a categorisation of the existing software weapons has been
proposed a few times already, nobody has yet dedicated a whole paper to it. In this
section some of the works containing some kind of proposed categorisation of soft-
ware weapons are presented. Each presentation is followed by a short evaluation of
its significance and how well it meets the requirements of a taxonomy of software
weapons. Each summary following an evaluation includes a figure showing how
the specific taxonomy relates the three terms trojan horse, virus and worm to each
other.

4.1 Boney

The purpose of this paper is to develop a software architecture for offensive in-
formation warfare. [40] Thus Boney needs to form a taxonomy from earlier work
in rogue programs, which are defined as all classes of malicious code. He credits
Lance Hoffman1 for inventing the term and follows the discussion in a book written
by Feudo2. Boney writes that rogue programs primarily have been used in denial
of service attacks.

He lists trojan horses, logic bombs, time bombs, viruses, worms, trapdoors and
backdoors as being the complete set of malicious programs. His definition of a
trojan horse states that it is appearing as a legitimate program and at the same time
performing hidden malicious actions. A virus in its turn ‘[. . .] may be a trojan
horse but has the additional characteristic that it is able to replicate’. [40, p. 6] The
more formal definition of a virus states that it is parasitic and replicates in an at
least semi-automatic way. When transmitting itself it uses a host program. Worms

1The book is not part of the background material used for this thesis. If anyone is interested the
reference to the book is [41].

2The book is not part of the background material used for this thesis. If anyone is interested the
reference to the book is [42].

25

26 CHAPTER 4. EARLIER MALWARE CATEGORISATIONS

are defined as being able to replicate and spread independently through network
connections. If they too may be trojan horses is not explicitly stated by Boney, but
he writes that the difference between a virus and a worm is the way they replicate.
Eventually the conclusion may be drawn that also worms might be trojan horses.

4.1.1 Summary of evaluation

Boney’s taxonomy is rather simple, it is a number of short definitions of some
common terms used in the computer security field. He does not mention if the list
is meant to be exhaustive.

He states that ‘[a] virus may be a Trojan horse’ [40, p. 6], but at the same
time he does not define virus as a subclass of trojan horse, which indicates that
the two categories are not mutually exclusive. The same thing may be true for
worms, but Boney does not explicitly state whether worms may be trojan horses
(see Figure 4.1).

Consequently the categorisation scheme does not fulfil the requirements of a
taxonomy stated in this thesis (see Section 3.2.2). Also the shortness and lack of
clear definitions make the taxonomy not fulfilling the needs of FOI for a detailed
taxonomy (see Section 3.1.3).

Malware

Trojan horseVirus Worm Worm

Figure 4.1: The relationship of a trojan horse, a virus and a worm according to
Boney.

4.2 Bontchev

The report does not give any specific definition of the term malware, more than
referring to it as ‘malicious computer programs’. The goal of the presented clas-
sification scheme is to make it cover all known kinds of malicious software [30,
p. 11].

Four main types of malware are given; logic bomb, trojan horse, virus, and
worm. They are then further divided into sub-categories. The relationship between
the different types of malware are given implicitly by the levels of the section
headers used in the report. [30, pp. 14–22]

Logic bomb is the simplest form of malicious code and can be part of other types
of malware, often trojan horses. A special variant of a logic bomb is a time

4.2. BONTCHEV 27

bomb. Logic bombs typically work as the triggering part of other types of
malicious software.

Trojan Horse is defined as a piece of software containing one or more, by the user,
unknown and destructive functions. Often the trojan horse also poses as a
legitimate software. If the software warns the user and asks for authorisation
when the destructive function is activated, it is not a trojan horse.

Virus is described as a computer program that is able to replicate by attaching it-
self to other computer programs in some way. The program the virus attaches
to is called a host or victim program.

Worm is a replicating stand-alone program, which in some cases can be regarded
as a subclass of viruses, according to Bontchev.

Bontchev writes that most specialists favour the view that viruses are not to be
regarded as forming a subclass of trojan horses. Instead the two types are to be
placed on the same level, with viruses defined as replicating software and trojan
horses are non-replicating. His definition of a trojan horse (as shown above) only
specifies that there should exist destructive functions, unknown to the user, and that
there should be no warning when the destructive function is activated. He does not
explain why he chose not to follow the other experts.

A subclass of the worm class is the software weapon type chain letter, which is
defined as the simplest form of a worm. It is an attachment to an e-mail and needs
user intervention to be able to execute and replicate. The text part of the message
is meant to convince the user the attached file contains some useful function. But
instead the weapon performs some kind of destructive action, mostly including
sending the message and attachment on to addresses found in the affected user’s
address book. Consequently this description does fit both the worm class and the
trojan horse class, but Bontchev does not mention this, or tries to solve the ambi-
guity.

4.2.1 Summary of evaluation

Bontchev states that worms sometimes can be considered a special case of viruses.
This makes the resulting tree somewhat difficult to draw. However, one possible
variant is the one shown in Figure 4.2.

His definitions of the non-viral software weapons are not completely mutually
exclusive in some cases. One example is the definition of chain letters, which also
fits the definition of trojan horses.

His own definition of trojan horses is contradicted when he writes that the
view favoured by most specialists is the division of viruses and trojan horses into
replicating respectively non-replicating programs. He does not give any reason
for his choice to not follow the other specialists. This unfortunately brings some
ambiguity to his work.

28 CHAPTER 4. EARLIER MALWARE CATEGORISATIONS

Malware

Trojan horse Virus

Worm

Figure 4.2: The relationship of a trojan horse, a virus and a worm according to
Bontchev.

An example of the taxonomy not being exhaustive (and at the same time am-
biguous) is the logic bomb, which is said to most often be embedded in larger
programs and there be used to trigger for instance a trojan horse. But if the logic
bomb resides inside another program, it may be viewed as the unknown and de-
structive function defining a trojan horse. Thus, the definition of the logic bomb
as a separate class does really necessitate the forming of other types of hidden and
destructive functions being part of trojan horses.

Even if the part dealing with viruses is rather detailed, the taxonomy as a whole
is too coarse to really fit the needs for a detailed taxonomy stated in Section 3.1.4.
Nor are the formal requirements, formulated in Section 3.2.2, fulfilled.

4.3 Brunnstein

In [43] Klaus Brunnstein writes about the difficulties of defining malware. He re-
gards the traditional definitions as self-contradicting and not exhaustive. Therefore
he proposes a new way of defining the term, which he calls intentionally dysfunc-
tional software. His definition is meant to distinguish normal dysfunctionalities
from intentionally malevolent ones.

To be able to define the term, he postulates that all software which is essential to
some business or individual also is governed by a specification of all its functions
(at least those which may have an effect on the system in use). If not, such a
specification can be replaced by some sort of reverse engineering.

He then defines functionality in the following way [43, Def. 1–2] (quoted ver-
batim from the source):

A program´s or module´s or object‘s ”functionality” is character-
ized by the set of all specifications, formal or informal, from which
information about ”proper work” of a program can be concluded, and
from which certain undesired functions can be excluded.

Remark: it is irrelevant whether the manufacturer‘s specifications,
formal or informal, are explicitly known to the user. Even if a manu-
facturer decides to hide functions (e.g. for objects with limited visib-

4.3. BRUNNSTEIN 29

ility and inheritance), such functions belong to the functionality of a
software. If a manufacturer decides to include some hidden Trojanic
payload, then this becomes part of the specification and therefore the
functionality of that software.

[. . .] A software or module is called ”dysfunctional” when at least
one function deviates from the specification.

In other words, if the creator of a software weapon includes the destructive func-
tions in some sort of secret specification, the software is perfectly good (or not
dysfunctional anyway). He also admits this consequence later in the text, at least
regarding trojan horses.

According to Brunnstein, intentionally dysfunctional software is a piece of
code where some essential function is not contained in the manufacturer’s spe-
cification [43, Def. 3]. He also writes that the deviation from the specification
shall be significant to make the software dysfunctional. Later he states that [43,
Def. 4]:

A software or module is called ”malicious” (”malware”) if it is
intentionally dysfunctional, and if there is sufficient evidence (e.g. by
observation of behaviour at execution time) that dysfunctions may ad-
versely influence the usage or the behaviour of the original software.

It is left to the reader to decide what ‘essential function’ and ‘significant deviation’
really mean. Neither does he try to grade these ambiguous terms to make the
definitions easier to use.

He continues his line of argument with the definition stating how software is
turned into malware. The text is quoted from [43, Def. 5]:

A software or module with given functionality is transformed into
”malware” by a process called ”contamination”.

The definition gives that it is not the contaminating code that should be regarded as
malware, but the victim of the contamination.

Brunnstein then gives three types of contamination; infection, propagation and
trojanisation. [43, Example of def. 5] The first two relates to viruses and worms
respectively and the last one, logically, to trojan horses. He then defines a trojan
horse in the following way, quoted from [43, Def. 7]:

A ”Trojan Horse” is a software or module that, in addition to
its specified functions, has one or more additional hidden functions
(called ”Trojanic functions”) that are added to a given module in a con-
tamination process (”trojanization”) usually unobservable for a user.
These hidden functions may activate depending upon specific (trigger)
conditions.

However, it is somewhat unclear if the definition should be interpreted as trojan
horses having an infectious property, or if it is the victim of a trojanisation that

30 CHAPTER 4. EARLIER MALWARE CATEGORISATIONS

becomes a trojan horse. The definition of contamination stated in [43, Def. 5]
gives that the latter alternative probably is the correct one.

To handle the software working as specified, but having intentionally destruct-
ive functions, he introduces a new term; critter. However, such software is not to
be included in the malware category, according to him.

Brunnstein writes that real malware ‘[. . .] may be constructed by repetitively
combining different types or instances of self-reproducing software for one or sev-
eral platforms with Trojanic functions’ and gives an example in WNT/RemoteExplorer.

Finally he summarises his line of thought in a final definition of how malware
may appear [43, Def. 8]:

Malware may be developed from a given (functional) software
or module by intentionally contaminating it with unspecified (hid-
den) functions. Such malware may consist of combinations of self-
replicating or propagating part, or both, which may be triggered by
some built-in condition. Malware may include hidden Trojanic func-
tions, which may also activate upon some built-in condition (trigger).
The development of malware (in the contamination process, namely
the Trojanization) may be observed in cases of self-reproducing soft-
ware, but it is (at present) difficult to anticipate the malicious Trojanic
behaviour before it materializes.

He claims that by using these definitions it is possible to completely characterise all
currently known malwares by their combinations of replicative and trojanic parts.

4.3.1 Summary of evaluation

Brunnstein does not present a real hierarchical system. Instead he concentrates
on the definition of malware and therefore really has only one level in his hier-
archy. This level contains three types of malware, namely trojan horse, virus and
worm, which then are combined into what he calls ‘real malware’. This is shown
in Figure 4.3.

Real malware

Trojan horse Virus Worm

Figure 4.3: The relationship of a trojan horse, a virus and a worm according to
Brunnstein.

The goal of creating a definition distinguishing normal software dysfunction-
alities from intentionally malevolent ones, that Brunnstein stated in the paper, is

4.4. CARO 31

not reached. By concentrating on the specification of software he misses all those
softwares which are intended and specified to have the ability to create havoc in
computer systems. Such softwares, given the name critters, are explicitly said not
to be malware.

Another problem with the proposed definitions is the idea that a malware is
formed in a contamination process. Brunnstein states that a good software is trans-
formed into malware by being contaminated with non-specified functions that may
adversely affect the usage of the system. The definition might work if applied
in a software development environment, but not as it is now, on real and exist-
ing software, which has passed the developmental phase. The effect is that what
Brunnstein defines as malware really is the victim of for instance a virus attack.
What he does may be compared to trying to eradicate a disease by declaring the
patients as evil. Of course, if it is possible to kill the patients faster than the disease
can infect new victims, the battle might be won. The question is, who won the
war?

His declaration of real malware as being a combination of trojan horses, vir-
uses, and worms may have the effect that almost all existing malwares will belong
to the same category. There is a maximum of seven different categories to place a
specific malware in and the present trend is to create more and more complex com-
binations of malware from simpler types. Consequently there is a risk of getting
almost all malwares in a single category, namely the trojan horse-virus-worm one.

The rather ambiguous vocabulary used for the definitions and the fact that all
malwares are seen as contaminated, makes the proposed definitions and classific-
ation scheme not fulfilling the needs stated in Section 3.1.4. Nor are the require-
ments specified in Section 3.2.2 fulfilled.

4.4 CARO

All the anti-virus companies today name the viruses they have found in their own
way, several of them similar to the Computer Antivirus Research Organization
(CARO) naming convention established in 1991. [29, 44] Unfortunately the com-
panies have not managed to agree on a common implementation. One of the bigger
obstacles on the road towards a common naming scheme is money. Each company
wants to show that they where the first to find a virus and also to present a cure for
it. Therefore they are reluctant to share information to facilitate a common naming
of a virus. [45]

An attempt to fix this has been made. The project is named VGrep and is a
list or database linking the different names used by the anti-virus companies to the
same virus. More information can be found at [46].

CARO is, as written above, a naming convention and should not be evaluated
as a taxonomy. However, one of the reasons for using a taxonomy is to be able to
name the entities in the field in question and in that way get a better understanding
of them. The CARO naming scheme also divides viruses into a four (or actually

32 CHAPTER 4. EARLIER MALWARE CATEGORISATIONS

five) tiered hierarchy and thus have some resemblance of a taxonomy. The levels
are [47]:

1. family name

2. group name

3. major variant

4. minor variant

5. modifier

The authors propose an informal way of grouping the different existing viruses into
families, by categorising them after their structural similarities. For example small
viruses which only replicate and do not contain any other distinctive feature are
grouped into six families depending on the type of file they infect. The given list
is not exhaustive any longer, because it only states that .COM or .EXE files are
infected. There are no alternatives for the other types of executable files (or really
interpreted, for instance Java) used by more recent viruses.

The lower levels are defined in similar ways. Most parts of the definitions deal
with how to form a proper name, which words are to be used and not to be used.

Scheidl proposes in [48] an extension to the CARO naming convention adding
categories for platform, multi-partite virus, type, and language. The category type
does specify other types of software weapons. The new types are [48, p. 2]:

Joke – just a funny program made to pull someone’s leg, not a virus.

Testfile – an anti-virus test file such as the EICAR-testfile.

Trojan – a program which claims to be useful but turns out to be malware at some
point during the execution.

Worm – a program which does not replicate on the same computer as it resides
on, but spreads over networks.

Dropper – not a virus, but a program that drops a virus.

Germ – the first generation of a virus in its initial, programmed form.

Intended – a program which is intended to be a virus, but which for some reason
cannot replicate.

Malware – an unspecified type of malware.

4.5. HELENIUS 33

4.4.1 Summary of evaluation

The CARO naming convention is specifically stated to be a naming scheme by the
authors and therefore should not really be treated as a taxonomy. However, it is a
rather significant document and it does build on categorising viruses into families,
groups, etc. It is included in the evaluation because it might be possible to use it to
categorise software weapons anyway.

The original version of the naming convention does only cover viruses and it
lacks a category for file viruses infecting other file types than .COM or .EXE files.
This makes the convention not fulfilling the requirement of a taxonomy to have
exhaustive categories. Neither version defines the term virus and it is thus hard to
decide whether the proposed extension makes the categories exhaustive, even if the
extension adds more file types.

The proposed extension made by Scheidl does have categories for trojan horses
and worms. They are put on the same level as viruses, but a virus with the abilities
of both a worm and a virus is to be classified as a virus (the term virus is not defined
anywhere in the text). Therefore the two classes are not mutually exclusive, as
shown in Figure 4.4.

Malware

Trojan horse Virus Worm

Figure 4.4: The relationship of a trojan horse, a virus and a worm according to
Scheidl.

The above mentioned reasons implies that the CARO naming convention, with
or without the extension by Scheidl, does not fulfil the needs specified in Sec-
tion 3.1.4, or the requirements of a proper taxonomy stated in Section 3.2.2. It
therefore is hard to use as a basis to build a complete taxonomy from, without
major changes being made to the scheme.

4.5 Helenius

Helenius has written a dissertation with the title ‘A System to Support the Analysis
of Antivirus Products’ Virus Detection Capabilities’. [31] Hence, the reason for
having a classification of malware (here called harmful program code) is to famil-
iarise the reader with certain terms used in the dissertation. Helenius also needs
to establish a set of terms describing the different types of harmful program code
handled by the anti-virus products. Thus, a classification scheme of harmful pro-
gram code is formulated and also two ways of categorising viruses, one based on
the infection mechanism and one based on more general characteristics.

34 CHAPTER 4. EARLIER MALWARE CATEGORISATIONS

Helenius first concludes that not even among computer anti-virus researchers
the term malware is unanimously agreed on. He also points out that the term is
hard to define because the maliciousness of a software depends on the purpose of
the use and gives the example of the disk formating tool presented in [36] (see also
Section 3.3).

4.5.1 Harmful program code

The classification scheme of harmful program code he presents is constructed from
Brunnstein’s definition (see Section 4.3). However, this one is not as detailed
as Brunnstein’s and also differs in some ways. He has also been influenced by
Bontchev (see Section 4.2). This can be seen from Helenius definition of harmful
program code as being ‘[. . .] any part of a program code which adds any sort of
functionality against the specification or intention of the system’. [31, p. 12]

He then continues by stating that ‘[h]armful program code includes all pro-
gram parts which are against the system’s specification or intention’ [31, p. 12].
However, he does not specify how the intention of the system is to be measured or
whom to ask.

The interesting part of the scheme (from the point of view of this thesis) is
the part defining intentionally harmful program code, which is said to be equal to
malicious program code. The class includes four types; trojan horses, computer
viruses, joke programs and malicious toolkits (in the accompanying figure there is
a fifth type; others). Helenius admits the list may not be exhaustive3.

The category joke programs is defined in the following way by Helenius [31,
p. 12]:

[. . .] a program which imitates harmful operation, but does not
actually accomplish the object of imitation and does not contain any
other malicious operation.

Noteworthy is the fact that they are regarded as only imitating harmful operations,
without accomplishing anything harmful. Helenius does not further explain the
underlying causes for including them in the intentionally harmful program code
class.

Computer viruses are said to have the capability to replicate recursively by
themselves and may also include operations typical for trojan horses and malicious

3The actual wording used in Helenius dissertation is: ‘The list may not be exclusive.’ [31, p. 12]
This has been regarded a typing error. Helenius’ text can be interpreted in two ways, either there is a
word missing (mutually), or he really meant to write exhaustive. Because Helenius specifically writes
that ‘[a malware type] may include operations, which are typical for [other types of malware], but
this does not make such [types into other types]’ the list actually becomes mutually exclusive. Thus
he probably did not intend to write ‘may not be [mutually] exclusive’. Furthermore, in the figure
accompanying the scheme in the dissertation there is an extra category named ‘Others?’, which
makes the class exhaustive. This category is not included in the text and therefore the more probable
alternative is that he meant to write exhaustive.

4.5. HELENIUS 35

toolkits. However, this does not make them belong to those categories, according
to Helenius.

The same thing is said to be valid for computer worms, but they are instead
independent, by themselves recursively replicating programs. He also specifies
them as a subgroup of computer viruses.

He defines a trojan horse as a self-standing program with hidden destructive
functions, in the same way as Bontchev does (see Section 4.2). The term self-
standing is said to have the meaning not being able to replicate by itself. In the
same way as for the types described above he writes that a trojan horse might
include operations typical for a malicious toolkit, but that does not make the trojan
horse belong to that category.

Finally Helenius describes a malicious toolkit, which is said to be designed
to help malicious intentions aimed at computer systems. The class includes such
programs as virus creation toolkits, among others.

4.5.2 Virus by infection mechanism

Helenius divides computer viruses into 4+1 groups based on their infection mech-
anisms. Four groups are mutually exclusive and the fifth group indicates that two
or more of the mechanisms are used together in the virus. The groups are:

File viruses, which are viruses replicating via infecting executable files.

Boot sector viruses, which replicate by infecting boot sectors of diskettes or hard
disks, or partition sectors of hard disks, or a combination thereof.

Macro viruses, which use application macros for replication.

Script viruses, which replicates via operating scripting language, such as for ex-
ample DOS batch files, Visual Basic Scripting, or Unix shell scripts.

Multi-partition viruses, which form a combination of two or more of the previ-
ous four infection mechanisms.

However, in the classification scheme of harmful program code, worms are said
to be a subclass of viruses, but that is not reflected in this scheme. Furthermore,
worms are said to be independent programs capable of replicating on their own,
without using a host program. Therefore not all the different mechanisms in the
scheme are applicable to worms. This is especially true for the file virus class, an
independent program using a host program is a contradiction.

4.5.3 Virus by general characteristics

The classification by characteristics is shown as a tree, but would fit equally well as
a matrix, because a virus categorisation can be formed by combining any number
of the given characteristics. Helenius writes that the set of characteristics might
not be exhaustive and that there might appear previously unknown characteristics

36 CHAPTER 4. EARLIER MALWARE CATEGORISATIONS

in the future. He also points out that a virus always has to have at least one of the
two characteristics memory resident or direct action.

The characteristics in Helenius’ scheme [31, pp. 15–17] are:

• polymorphic,

• companion,

• stealth, with subclass tunnelling,

• direct action or memory resident,

• linking, and

• information distributing, with subclasses self-distributing and e-mailing, which
in turn have the common subclass self-e-mailing.

4.5.4 Summary of evaluation

The classification scheme of harmful program code is really not exhaustive, es-
pecially not the subclasses of malware, which Helenius also admits. The classi-
fication is also somewhat ambiguous, because viruses, worms, and trojan horses
are said to eventually include operations typical for other types of malware, but
should yet not be classified as such. How to differentiate the malware types in
those situations is not specified. Helenius would also need to further explain why
the non-harmful (derived from his definition) category joke programs is included
in the malware class, which he has defined as programs deliberately made harmful.

Regarding the classification scheme based on different infection mechanisms
for viruses, it does not specify where to place worms, which are regarded as a
subclass of viruses. Consequently a user of the classification scheme needs an
implicit understanding of the field to be able to classify a virus or a worm, i.e. the
scheme is hard to use in practice.

Also the last presented way of categorising viruses, namely after their (general)
characteristics, suffers from not being exhaustive. Moreover, the two categories
stealth and linking are not mutually exclusive, because one way of acquiring stealth
is to change the linking of sectors in the file system, which also happens to be the
definition of the linking class.

How Helenius relates the three malware types trojan horse, virus and worm to
each other is shown in Figure 4.5.

None of the three categorisation schemes presented by Helenius in [31] does fill
all the requirements of a taxonomy stated in Section 3.2.2). The parts about viruses
are shorter versions of Bontchev’s, which was regarded as not detailed enough for
filling the needs of FOI (see Section 3.1.3).

4.6. HOWARD-LONGSTAFF 37

Malware

Trojan horse Virus

Worm

Figure 4.5: The relationship of a trojan horse, a virus and a worm according to
Helenius.

4.6 Howard-Longstaff

Howard and Longstaff aim at creating a common language for computer secur-
ity incidents and therefore also has to categorise the tools used for ‘exploiting a
computer or network vulnerability’ [21, p. 13].

The outline of the proposed incident taxonomy is fairly the same as in [35]. The
tool part contains the same categories, but the definitions are more detailed in the
latter. However, that report does not mention anything about the exclusiveness or
exhaustiveness of the categorisation. Therefore, only the first one, [21], is evaluated
here.

The list of tools used covers a wider spectrum than just software based IT
weapons. The software based tools listed are (quoted from [21, pp. 13–14]):

Script or program – a means of exploiting a vulnerability by entering commands
to a process through the execution of a file of commands (script) or a program
at the process interface. Examples are a shell script to exploit a software bug,
a Trojan horse login program, or a password cracking program.

Autonomous agent – a means of exploiting a vulnerability by using a program, or
program fragment, which operates independently from the user. Examples
are computer viruses or worms.

Toolkit – a software package which contains scripts, programs, or autonomous
agents that exploit vulnerabilities. An example is the widely available toolkit
called rootkit.

Distributed tool – a tool that can be distributed to multiple hosts, which can then
be coordinated to anonymously perform an attack on the target host simul-
taneously after some time delay.

Each category is said to have the possibility to contain any number of the other
categories. There is an ordering of the categories from simpler to more sophistic-

38 CHAPTER 4. EARLIER MALWARE CATEGORISATIONS

ated.4 When using their taxonomy, often a choice has to be made among several
tools. By always categorising by the highest category of tool used, Howard and
Longstaff claim the categories become mutually exclusive in practice. Based on
their experience they also claim their list of tools is exhaustive.

4.6.1 Summary of evaluation

Howard and Longstaff do not explicitly state how they relate the three malware
types trojan horse, virus and worm to each other. Consequently, what is shown
in Figure 4.6 is the relationship extracted from the definitions of their categories,
where they use the three malware types as examples.

Malware

Virus/worm

Trojan horse

Figure 4.6: The relationship of a trojan horse, a virus and a worm according to
Howard and Longstaff.

The software part of their classification scheme is really simple, using only
four categories in a strictly hierarchical structure. By specifying that a tool always
shall be categorised by the highest category of tool it may belong to, their scheme
becomes unambiguous.

However, the category toolkit is placed below a distributed tool in the hier-
archy of their classification scheme. A toolkit containing (among other things) a
distributed denial of service (DDoS) weapon would accordingly be classified as
a distributed tool, even if it in practice is even more advanced than such a tool.
Thus, their scheme might need an extension and the exhaustiveness may therefore
be questioned.

Even if the taxonomy almost (apart from the questioned exhaustiveness) did
fill the requirements stated in Section 3.2.2 the simple hierarchy with only one
alternative in each level is far to coarse to fit the needs of FOI stated in Section 3.1.3
and the taxonomy cannot be used as a taxonomy of software weapons.

4Howard and Longstaff do not specify the ordering in more detail, but they give user command
(not software based and therefore not in the list above, in their list it is written before script or
program) as the lowest level and distributed tool as the highest. Supposedly their list actually is
ordered in the same way as it is written.

4.7. LANDWEHR 39

4.7 Landwehr

The work by Landwehr et al. outlines a taxonomy of computer program security
flaws. They have chosen to use the term malicious flaw as a synonym for malware
and in that way managed to incorporate the term into their taxonomy.

They acknowledge the difficulties of characterising intention, that it is hard
to decide whether a program flaw is made on purpose or not. But they use the
term anyway, because as they see it the risk of inadvertently creating a malware is
minimal in practice.

A trojan horse is by them specified as [11, p. 6]:

[. . .] a program that masquerades as a useful service but exploits
rights of the program’s user – rights not possessed by the author of the
Trojan horse – in a way the user does not intend.

They then define a virus as a trojan horse ‘[. . .] replicating itself by copying its
code into other program files’. Accordingly a worm becomes a trojan horse that
‘[. . .] replicates itself by creating new processes or files to contain its code, instead
of modifying existing storage entities’.

They place trapdoors and logic bombs (including time bombs) as separate
classes on the same level as trojan horses. However, trapdoors and time bombs
are said to be possible to include in trojan horses, so the classes are not mutually
exclusive.

4.7.1 Summary of evaluation

The uppermost level of the Landwehr et al. proposed classification scheme of mali-
cious flaws is formed by trojan horses, trapdoors, and time bombs or logic bombs.
But because of the possibility to incorporate the other two classes into trojan horses,
the classes are not mutually exclusive. Consequently the scheme is not detailed
enough to fill the needs stated in Section 3.1.4. Nor does the scheme meet the
requirements stated in Section 3.2.2).

Landwehr et al. regard viruses and worms as subclasses of trojan horses, as
shown in Figure 4.7.

4.8 Conclusion

None of the evaluated taxonomies or categorisation schemes fulfil all the require-
ments of a proper taxonomy, specified in Section 3.2.2. The part of Howard’s and
Longstaff’s incident taxonomy covering software was the one closest to fulfilling
the requirements. The reason for this was its simple structure with only one cat-
egory at each level in the hierarchy. On the other hand, this simplicity made it far
from fulfilling the needs presented in Section 3.1.4. Actually, the required level of
detail is not available in any of the different categorisation schemes used today.

40 CHAPTER 4. EARLIER MALWARE CATEGORISATIONS

Malware

Trojan horse

Virus Worm

Figure 4.7: The relationship of a trojan horse, a virus and a worm according to
Landwehr et al.

Regarding the CARO naming convention it should not really have been evalu-
ated as a taxonomy. However, it was included because it is a widely known docu-
ment, which might have been used to form the basis for a new taxonomy. Unfor-
tunately it was not found to be exhaustive, probably because it is rather old. The
new types of viruses missing from the specification were maybe not predicted by
the authors. The proposed extension by Scheidl was not detailed enough to bring
the naming scheme up to a high enough standard for making the scheme usable
as a taxonomy. Also the fact that it is focused on viruses made it too weak on the
non-viral side to meet the requirements of FOI.

The figures indicating the relationship of the three software weapon types tro-
jan horse, virus, and worm show how differently each classification scheme define
these types. Not two figures are alike! If any conclusion is to be drawn from this,
there is a tendency of putting all three types on the same level5, although they in
several cases are defined as not being mutually exclusive.

The differences in the figures also clearly show the need for a redefinition of
the three terms, a redefinition made from a common base.

5Figures 4.1, 4.2, 4.3, and 4.4 representing 4

7
of the set

Chapter 5

TEBIT

The name TEBIT is a Swedish acronym for ‘Technical characteristics’ description
model for IT-weapons’1. The acronym has only been kept because no better Eng-
lish alternative has been found.

In this chapter the definition accompanying the taxonomy, as well as the tax-
onomy will be discussed. The taxonomy has been slightly updated since the pub-
lishing of the NordSec paper. Therefore all the categories have got their own sec-
tion containing the motivation for including them, the changes made, as well as
any other necessary information.

Note that the information presented in the NordSec paper will not be repeated
(not on purpose anyway). The reader is therefore recommended to read the paper
(see Appendix A or Section 2.1.1) before reading this chapter.

5.1 Definition

The definition used is based solely on measurable characteristics of software weapons.
As stated earlier in the text, the definition reads as follows:

A software weapon is software containing instructions that are ne-
cessary and sufficient for a successful attack on a computer system.

The italicised words are all explained in Section 2.1, paragraph New Definition and
then the first three words are further explained in the sections below.

5.1.1 Instructions

Because the instructions constituting the code are to be used to decide whether a
tool is a software weapon or not, they have to be available in a readable format.
How this is to be achieved falls outside the scope of this thesis, but a few possible
ways might be mentioned anyway.

1‘Teknisk beskrivningsmodel för IT-vapen’ in Swedish.

41

42 CHAPTER 5. TEBIT

First of all the compiled code may be possible to decompile or in any other
way reverse-engineer. For example the anti-virus companies are sometimes using
such methods when dissecting new strains of computer viruses. Professor Klaus
Brunnstein, head of the Virus Test Center (VTC) in the Computer Science Depart-
ment at the University of Hamburg, Germany has been teaching reverse engineer-
ing methods to students since 1988 [43]. Thus the methods are there and possible
to use.

Secondly, tools simulating complete virtual network environments exist. These
can then be used to study the behaviour of different software weapons and in that
way give a rather good idea of the technical characteristics of the weapons. One
problem with this method is that the exhaustiveness of the study is undecidable,
there is no way of proving that all properties have been found. Not even a lower
boundary of the quality of the study is possible to calculate. The problem might be
compared to software testing (debugging) and quality control, but in the software
weapon case there is often no specification available to tell what the software is
expected to do.

There is always the possibility that the source code of a weapon might be avail-
able in some way. Then the only thing required is programming skills in the lan-
guage used and such a thing is always achievable.

5.1.2 Successful

For a software tool to be a weapon there has to be at least one system (real or
theoretical) containing a vulnerability or exposure that the software tool uses to
violate the computer security of the system. The vulnerability or exposure does
not have to be known in advance, as soon as a software tool violates the computer
security in any way, it is to be regarded as a software weapon. Nor has the system to
be on the market or in a working condition. It is enough that the weapon violates
the computer security of a system in development, or simply any algorithm that
might be included in a future system, because if the system or algorithm is ever
used, it will be vulnerable to that specific weapon.

This was not clearly stated in the NordSec paper (see Section 2.1, Successful).
The text somewhat contradicted itself, because it was first stated that at least one
system had to be vulnerable, then that a used vulnerability did not have to be part
of an existing system. As stated above, it is enough to have proven that the weapon
will break the security of a system as soon as that system exists.

5.1.3 Attack

Regarding the definition of attack, some terms can be further explained. First of all
the definition of computer security is not generally agreed upon. [10, 49, 50] How-
ever, the inclusion of the three objectives confidentiality, integrity, and availability
is almost unanimous.

5.1. DEFINITION 43

In the NordSec paper the definitions of the terms where cited from Gollmann
[10, p. 5] (who cited ITSEC). A fairly similar definition is the following one, quoted
from Common Criteria (CC) [51, p. 14]:

Security specific impairment commonly includes, but is not lim-
ited to, damaging disclosure of the asset to unauthorised recipients
(loss of confidentiality), damage to the asset through unauthorised
modification (loss of integrity), or unauthorised deprivation of access
to the asset (loss of availability).

The real difference is that CC uses the word ‘damaging’ and ‘damage’ in the defin-
itions of confidentiality and integrity, which Gollmann and ITSEC does not. As
seen above even CC acknowledges the core as these three terms and agrees that
sometimes also other terms are included.

In [24, p. 6] vulnerability (and the accompanying term security policy) is defined
in the following way, which is quoted verbatim from the source:

Vulnerability is a condition in a system, or in the procedures affect-
ing the operation of the system, that makes it possible to to [sic!]
perform an operation that violates the explicit or implicit security
policy of the system.

Security policy is some statement about what kind of events are al-
lowed or not allowed in the system. An explicit policy consists
of rules that are documented (but not necessarily correctly en-
forced), while an implicit policy encompasses the undocumented
and assumed rules which exist for many systems.

Another definition is the one used in [12]. It is a long text, but the main idea is
that the term vulnerability can have two different interpretations, one wide and one
narrow. In the first case a vulnerability is regarded as a breaking of the security of
a computer system in some context. The more narrow interpretation concerns only
deviations from the specification of the functionality of a software, somewhat in ac-
cordance with Brunnstein’s definition of dysfunctional software (see Section 4.3).
In this way programs that work as specified, but in an insecure way, are not re-
garded as containing any vulnerabilities.

Because there are several interpretations of vulnerability, the Common Vulner-
abilities and Exposures (CVE) Editorial Board decided to use the term exposure to
work together with the narrow interpretation, in order to make the two alternative
definitions more equal. The term exposure is then defined as everything relating
to computer security not regarded as being a vulnerability by some, but still intro-
ducing a weakness into the affected program or computer system. The definition
proposed by the CVE Editorial Board is not a strict one and is expected to change
over time. However, in 1999 they voted to accept a content decision describing the

44 CHAPTER 5. TEBIT

terminology to be used in CVE, ratifying the proposed definitions discussed above.
[12]

Because the definition and the taxonomy are created from a technical point of
view, the preferred definition of a vulnerability (and exposure) is the CVE one.
Also the definition made by Lindqvist (see above or [24, p. 6]) is applicable, with
the restriction that it should only be weaknesses in the software constituting the
system, that are used to violate the security of the system. In other words, a bad
policy or careless users are not to be regarded as vulnerabilities (even if they in
some cases really might be qualifying as such . . .).

5.2 Taxonomy

A few changes have been made to the taxonomy since the publication of the Nord-
Sec paper. Each change is discussed in depth in Section 5.3. The original defini-
tions of the categories are shown in Section 2.1.1.

The current taxonomy consists of 15 categories (see Table 5.1), but new changes
might be needed after the taxonomy has been further tested.

Table 5.1: The taxonomic categories and their alternatives, updated since the pub-
lication of the NordSec paper

Category Alt. 1 Alt. 2 Alt. 3 Alt. 4

Type atomic combined
Violates confidentiality integrity; integrity; availability

parasitic non-parasitic
Duration of effect temporary permanent
Targeting manual autonomous
Attack immediate conditional
Functional area local remote
Affected data stationary in transfer
Used vulnerability CVE/CAN other vuln. none
Topology of source single distributed
Target of attack single multiple
Platf. depend. dependent independent
Sign. of repl. code monomorphic polymorphic not repl.
Sign. of attack monomorphic polymorphic
Sign. w. passive visible stealth
Sign. w. active visible stealth

All categories in the taxonomy are independent, but they are not mutually ex-
clusive. If they were, the taxonomy would not be possible to use, the requirement
to use at least one alternative from each category would contradict the mutual ex-
clusiveness. As soon as one category was used, the others would be disqualified.

Instead the alternatives in each category, except for the category Violates, are
mutually exclusive and unambiguous (based on an empirical evaluation). Together
the alternatives in a category form a partitioning of the category and thus they

5.3. IN DEPTH 45

also are exhaustive. The alternatives in the category Violates are only disjunct, not
mutually exclusive.

Another way of describing the taxonomy is to view it as a 15-dimensional
basis spanning the set of all software weapons. Then the mutual exclusiveness,
exhaustiveness, and unambiguity come naturally.

Regarding the usability the names of the categories and alternatives are selected
to be as short and at the same time as descriptive as possible. The chosen level of
abstraction of the properties described by the categories are rather high to make
the taxonomy future proof, yet detailed enough to satisfy the requirements of FOI
regarding the scenario development tool. The number of possible categories are

2 ∗ (22 − 1)11 ∗ (23 − 1)2 ∗ (24 − 1) = 260406090

which is more than enough to fulfil the needs of FOI.
The format of the taxonomy can be either a (two-dimensional) matrix, or a

one-dimensional vector. The real difference is that the matrix is easier to read
and understand, furthermore it is compact. The vector format can be viewed as a
34-bit binary string which facilitates the comparison of different categorisations.
The definitions of the categories and alternatives are the same for the two views,
they are just different ways to view the same thing. This is further discussed in
Section 5.3.1.

5.3 In depth

In this section each category of the taxonomy is discussed regarding its interpreta-
tion, why it should be included in the taxonomy (its relevance regarding the needs
stated in Section 3.1.4), and a brief discussion of possible countermeasures.

The explanations of the different categories presented in the NordSec paper
(see are repeated in Section 2.1.1. In this section changes made since the public-
ation of the paper and further explanations will be given. The user is therefore
recommended to read section 2.1.1, which explains the background of the categor-
ies, before reading the text in the following sections.

5.3.1 Type

Many of the software weapons created today are complex combinations of simpler,
already existing software weapons. Consequently, there is a need for a possibility
to separate the simpler weapons from the combined ones. Therefore this category
has to be included in the taxonomy.

An atom is the smallest part of a software fitting the definition of a software
weapon. There is actually no guarantee that an atom is not utilising more than one
alternative from each category, which then might contradict the mutual exclusive-
ness of the alternatives.

One example of this is the Affects category. Think of the simplest form of a
parasitic virus; the only thing it does is replicate and create new copies of itself

46 CHAPTER 5. TEBIT

within the host file. Of course this affects the integrity;parasitic of the system, but
because of the lack of a birth control function, it will also eventually fill the hard
disk and maybe crash the system. Thus it also affects the availability of the system.

An alternative to the definition of Type used in the NordSec paper (see Sec-
tion 2.1.1) is to regard the category as indicating if there is more than one alternat-
ive used in any category. The alternative atomic would then be changed to the more
appropriate single. Such a weapon would utilise exactly one alternative from each
category and the violation of the mutual exclusiveness would be avoided. How-
ever, if that solution is used, there is no way of telling the different atoms forming
a combined weapon apart. Nor is it possible to learn from the categorisation of a
weapon, whether it is an atom or not, and that is a high price to pay.

However, if the matrix form of the taxonomy is abandoned in favour of a one-
dimensional form, the problem of having to use several mutually exclusive alternat-
ives together might be solved. The taxonomy then can be seen as 34 new categories
constructed from the combination of an old category and an alternative from that
category. These new categories can be either true or false (or 1 or 0). But then the
taxonomy will be rather hard to take in and for an atomic (not nuclear!) weapon
approximately half of the categories might be redundant. Worth noticing is that the
requirement of using at least one alternative from each old category is not relaxed.
One advantage of the one-dimensional form is that it will make the checking of the
deviation between the categorisations of two weapons easier.

The chosen alternative is to retain the matrix form and use it where suitable, be-
cause it increases the readability. However, the preferred definition of the category
Type is the latter one indicating the categorised weapon being an atom, and with
no connection to how many alternatives that may be used in each category. But,
in most cases dealing with an atom, there probably will be only one applicable
alternative in each category, except maybe for the category Violates.

One important thing to observe is that in the category Type it is not possible to
combine the two alternatives atomic and combined. Either the categorised weapon
is an atom, or it is not. In other words this category is really a meta-category, one
level above the other fourteen.

5.3.2 Violates

For a software tool to be defined as a weapon, it has to violate at least one of the
fundamental properties of computer security, namely confidentiality, integrity, or
availability. But these alternatives are actually possible to combine, i.e. they are
not mutually exclusive, only disjunct. Despite of this fact the category, which is re-
named from Affects to Violates, is fundamental for the categorisation of a software
weapon and thus a natural part of the taxonomy.

However, more than the name of the category has changed since the publica-
tion of the NordSec paper (see Section 2.1.1). The alternative integrity has been
divided into two parts; integrity;parasitic and integrity;non-parasitic. The new al-
ternatives are meant to provide a way to separate software weapons needing a host

5.3. IN DEPTH 47

to hold their code (integrity;parasitic) from weapons capable of sustaining their
code themselves (integrity;non-parasitic). The alternative parasitic is not restric-
ted to viruses only, it also includes weapons for instance needing to piggy back on
another file to be able to transfer themselves to new hosts.

A parasite2 in some way connects its own code to code found in the attacked
system, i.e. a host file. The parasite does not replace its host, it needs part of the
host to be alive3 to function. Thus, a file virus which completely replaces all of the
host file content, only leaving the linking of the host file in the file allocation table
(FAT) untouched, is not parasitic. This is also true if the virus keeps the two first
bytes in the .EXE file it infects. The bytes are the same for all .EXE files and are
not to be regarded as a unique part of the code.

Nor is a boot sector virus a parasitic virus, at least not if it replaces all the
original code in the boot sector with its own code. The only thing remaining is
the dead shell, the physical or virtual position, of the original code. Compare the
situation to that of the non-parasitic hermit crab, which uses the abandoned shells
of gastropods as a protective cover [52].

However, if the boot sector virus does not retain the original content of the
boot sector somewhere, the system will crash immediately after the execution of
the virus code. The virus does replicate, but the chance of noticing such a poorly
implemented virus is big.

These two new alternatives of the category are needed in the taxonomy to make
a categorisation more exact regarding how a software weapon is sustaining itself,
if it needs a host file or not to function.

The alternative solution of having a new category called Subsistence added to
the taxonomy is not preferable, because the alternative integrity would be depend-
ent on the alternative parasitic in the new category.

There are no 100% good countermeasures against weapons violating either of
the four alternatives in the category. The possible countermeasures to be used
against respective alternative are:

Confidentiality violating weapons may be counteracted by using cryptographic
methods to render the information unreadable. These methods can also be
used to authenticate the reader of the information.

Integrity;parasitic may be enforced by write-protecting files as far as possible.
Some kind of hashing (checksumming) of the executable files in the system
might also help.

Integrity;non-parasitic In this case some type of cryptography may be used to
sign and verify the correctness of data.

2The term is defined in the following way in [33]: ‘[BIOLOGY] An organism that lives in or on
another organism of different species from which it derives nutrients and shelter.’

3Here defined as needing some unique part of the code to be present.

48 CHAPTER 5. TEBIT

Availability is hard to uphold, but by identifying possible bottlenecks and then
building some redundancy into the weak spots the resistance against attacks
on the availability can be improved.

5.3.3 Duration of effect

This category is included in the taxonomy, because it is vital to know if a weapon
does permanent damage to an attacked system or not. Of course a violation of the
computer security of a system is serious no matter what, but when dealing with for
instance risk assessment and grading of the seriousness of the threat from a specific
weapon, the duration of the effect is good to know.

Sometimes a conventional weapon is defined as being a tool used to inflict
irreversible damage. The same definition is not fully applicable in the world of
computers, where it is possible to make identical copies of files, which then can
be used to restore a destroyed system. However, using such an approach most
attacks using software weapons may be regarded as doing only temporary damage.
Therefore the definition of this category does not take the possible backup and
restoration facilities into account. It is the duration of the effect of a weapon on a
system where no restoring operations are performed that should be measured.

The characteristic of a software weapon described by this category is too gen-
eral to have any specifically applicable countermeasures. What can be done is tak-
ing regular and frequent backups of the data and also always install new software
patches as soon as they are published.

5.3.4 Targeting

Both a manually aimed weapon and an autonomously targeting weapon can do
severe damage. Often it is harder to defend a system against a manually targeted
weapon, because it can be more accurately aimed. In that case there is also most
probably a human being supervising the execution of the weapon and that is the
most formidable enemy to face. Of course the address of the attacked system can
be changed, but then no other parties will be able to reach the victim either.

But on the other hand an autonomously targeting weapon can infect a large
amount of computers in a very short time. It is also possible to think of the use of
artificial intelligence to build agents that choose their targets in a more systematic
way than simply using random IP addresses, as often is the case today.

A possible countermeasure is changing the address of the affected system when
it is being attacked, but that will then turn into a very effective attack on the avail-
ability of the system instead. Other thinkable (and less radical) methods is to use
a firewall or network address translation (NAT) server to hide the actual addresses
of the system.

5.3. IN DEPTH 49

5.3.5 Attack

The concept of flow control is a cornerstone in programming and thus many weapons
use conditions to govern their attack pattern. These weapons often are called lo-
gic bombs, mines etc. Also other types of weapons use conditions to vary their
behaviour. Therefore this category is an essential part of the taxonomy.

In this case the general countermeasure is to utilise a sandbox4 to run suspicious
code in. Also the perimeter defences must make sure that no software weapons are
let into the system.

5.3.6 Functional area

The idea is to separate a weapon using some sort of remote procedure call (RPC),
remote method invocation (RMI), or the like to execute an attack, from a weapon
attacking the computer it is residing on. Also other ways of attacking a remote
computer is thinkable. A weapon not residing on the attacked computer may be
harder to defend against, it might also be harder to detect, at least in its passive
phase. Consequently, to be able to take the correct defensive actions this category
is of utter importance.

To defend a system against weapons of this kind the system has to be properly
updated with all the latest software patches. No unnecessary5 rights should be
given to code in the system and the code has to be thoroughly debugged and tested.
Also the perimeter defences (firewalls, intrusion detection systems (IDSs), etc.)
have to be in place and properly configured.

5.3.7 Affected data

Especially weapons affecting data in transfer can be effective in preparing or even
execute an attack. By sniffing the network traffic valuable information can be re-
trieved. Both the general topology of the network and more specific information,
such as passwords and cryptographic keys, are valuable for making a successful
attack possible. Also for example a man-in-the-middle weapon can be used. In
that case the attacker more or less controls every single bit sent between two users.
Therefore this category needs to be included in the taxonomy.

This category indicates if the attacked data (everything not being hardware) is
stationary or transported over a network. Its name has been changed from Sphere
of operation to Affected data to better indicate this. Also the alternatives of the
category are renamed from the version presented in the NordSec paper (see Sec-
tion 2.1.1). However, the underlying idea is not changed.

4A virtual area in the computer isolated from the rest of the system, where untrusted code can be
executed without affecting the rest of the system.

5Sometimes programs need to have access to services usually reserved for the core of the operat-
ing system. Occasionally a programmer gives such rights to the program as a whole, even if it is not
needed. These rights might then be violated by utilising a software vulnerability in the program.

50 CHAPTER 5. TEBIT

Regarding the characteristic represented by this category the use of good cryp-
tographic solutions will strengthen the defences by making the data unreadable by
an assailant. The communicating parties need to use cryptographic authentication
methods when initiating a session. The rights of the different involved parties also
have to be thought through. If possible the right to write to files should be restric-
ted.

5.3.8 Used vulnerability

By knowing the exact vulnerability used by a weapon to violate the security of
a computer system, it is possible to directly see which software patches protect
a system from a specific weapon. Therefore this category is meant to be used
together with for example the ICAT [17] and CVE [13] databases to facilitate such
a function.

The alternative other method in the category is changed to other vulnerability.
In this way the alternative better reflects the fact that some sort of vulnerability is
used, even if it lacks a CVE/CAN name. To make the alternatives of the category
exhaustive, the alternative should be defined as all technical (not user related) vul-
nerabilities and exposures not listed by CVE. The use of the alternative none then
will indicate that the weapon needs help from a user in the attacked system to be
able to execute.

In this way a trojanic property can be indicated by defining a trojan horse as
a piece of software which is not using any software vulnerability or exposure to
violate the security of the attacked system. In other words, it dupes a user to execute
its code to be able to perform the intrusion or attack.

The preferred definition of a vulnerability or exposure is the one used in con-
nection to the CVE meta-base (see Section 5.1 or [12]).

The best way to keep the defences high is to install all the latest software
patches as soon as possible. Another important thing is to implement a good se-
curity policy, which has to be followed by every user in the system.

5.3.9 Topology of source

A massive, synchronised attack from several concurrent sources is really hard to
find countermeasures for. By distributing daemons to a large number of computers
and then activate them by remote control, a synergy effect can be attained, because
a larger (virtual) area of the Internet is affected. An attacker grossly outnumbering
the victim of an attack has a huge advantage, and if also the sources of the attack
can be spoofed, the victim is more or less defenceless. Thus, the inclusion of this
category in the taxonomy is very important.

Because the distributed daemons are alike, they also are affected by the same
type of countermeasures. If it is possible to identify the software weapon used
for the attack, there might be ways to shut the daemons down by sending special
instructions to them. Then all of them might shut down at the same time. Of course
this is only possible if the source addresses are authentic.

5.3. IN DEPTH 51

Also the system needs to be well patched and using good perimeter defences.

5.3.10 Target of attack

Some weapons have the ability to concurrently attack several targets at once, for
instance to make the spreading of the weapon more effective. One example is
CodeRed [53, 54, 55] utilising 100 threads at the same time to search for new
victims to infect. Also other types of weapons are thinkable, a tool searching for
vulnerabilities scanning a whole range of IP addresses at once, for example. The
multi-threaded weapons can spread very quickly and therefore amount a consid-
erable threat to computer systems. Thus the category has to be included in the
taxonomy.

To be able to defend against software weapons with the characteristics de-
scribed by this category, the use of an IDS is recommended. By checking the
behaviour of the code executed in the system and taking action when something
unusual is discovered (for example generating a lot of threads), the system might
have some protection, or at least other systems might be somewhat protected from
attacks emanating from this system.

5.3.11 Platform dependency

Weapons able to run on several different platforms of course have a greater ability
to do widespread damage and may therefore be more dangerous than single plat-
form weapons. Also the increasing use of mobile code and interactive web sites
for commercial purposes have added to the vulnerability of the modern society.
Therefore it is important to be able to correctly categorise a software weapon with
the ability to run on several platforms and hence the category has to be part of the
taxonomy.

There are no real platform independent programming languages or softwares
yet, at least not in a strict sense. Therefore the choice to use the word independent
as the name of the second alternative might be disputed. What the alternative is
meant to indicate is that the weapon is not depending on one single platform to
run, instead it has the ability to run on several platforms. The word independent
is logically the complement to dependent. It is also a way of making the category
future proof. In a few years time there might exist real platform independent pro-
gramming languages and thus also real platform independent software weapons.

All computer programs need a processor to run on, many of them also need one
or more operating system application program interfaces (APIs) (or other operating
system specific modules) to be able to execute. The most important API in an
operating system needed by an executable file should be chosen to represent the
operating system. One example of such an API is Win32 in the Microsoft Windows
series of operating systems.

To properly include languages running on any kind of emulators the word pro-
cessor should not be literally interpreted. Take the Java language as an example.

52 CHAPTER 5. TEBIT

When compiling a Java program it is converted into byte code. The compiled pro-
gram then can be executed on a Java Virtual Machine (JVM), which is available for
many different combinations of operating system and processors. What the JVM
really does is converting the byte code into machine code specific to that particular
combination of processor and operating system. Therefore the JVM can be likened
to a processor from the Java program’s point of view. Actually there also exist
several different Java hardware processors [56, 57, 58].

The same thing is true for macro or script languages. For example the Visual
Basic for Applications (VBA) scripts used in Microsoft Office as macros are using
the VBA interpreter as a processor to run on, irrespective of the operating system
installed on the computer. Therefore they are to be regarded as platform independ-
ent.

From the code of a program it is possible to see whether the program uses any
APIs or not. It is also possible to see if the program needs a specific processor to
run on. If this is abstracted to a two dimensional graph with the processor type
as the x-axis and the needed operating system specific APIs as the y-axis, it is
possible to describe the platform dependency graphically. This is done through
counting how many points the particular program is represented by in the graph.

A program needing an API specific for one operating system and to be run
on one specific type of processor is represented in the graph as one single point,
which makes it a platform dependent program (see Figure 5.1). The program will
still be platform dependent even if there exists a software emulator implemented in
another operating system or on another type of processor than the program can run
on, because the code of the program still indicates that it needs both a specific API
and a specific processor to execute.

Win32

IA32

[API]

[CPU]

Figure 5.1: This is an example of what the graph of a platform dependent program
would look like.

If the program can utilise APIs from different operating systems and run on
one or more type(s) of processor(s), or vice versa, it is represented by two or more
points, and thus is platform independent (see Figure 5.2). There are examples of
software weapons containing code written in two different languages, for example
the proof-of-concept virus Peelf [59].

5.3. IN DEPTH 53

Win32

Solaris

IA32 Sparc

[API]

[CPU]

Figure 5.2: This fictive platform independent program is represented by two points.

A program not needing any specific APIs to run will be represented by one (or
more) vertical line(s), i.e. be platform independent (see Figure 5.3). This can for
example be a Java program, or a Microsoft Office macro. Also a program written
purely in machine code and not needing any operating system to start would be
platform independent. One thinkable example is a software weapon which is active
before the operating system is loaded. This might seem to be wrong, because the
software weapon might only be able to run on a very narrow series of processors.
However, it would be able to run regardless of the type of operating system installed
on the computer.

JVM

[API]

[CPU]

Figure 5.3: The platform independent program not using any particular API is
represented by a vertical line.

The platform dependency category might seem to suffer from the same problem
as the malware definition, it is the context of the program that decides whether a
program is platform dependent or not. When new operating systems are developed
they in most cases are made compatible with older versions of operating systems
from that manufacturer. They might also contain APIs making them compatible
with operating systems from other manufacturers.

If the platform dependency is to be measured by the number of operating sys-
tems able to run the program, and not the requirements of the program itself stipu-

54 CHAPTER 5. TEBIT

lated in its code, almost all programs would sooner or later become platform inde-
pendent. This would not be a good solution and hence the platform dependency is
to be decided solely from the code of the program. In that way the categorisation
of a software weapon would not have to be changed if a new all-in-one operating
system was developed.

The platform independent software weapons (as well as the dependent ones)
can be counteracted by running all untrusted code in a sandbox. The policy to only
use code verified to be good by a trusted party may also help.

5.3.12 Signature of replicated code

If not the look, the signature, of the thing being searched for is known, it is much
harder to find. Thus, a replicating weapon with the ability to vary the signature of
its code is of course much harder to detect by scanning for code signatures, than
a weapon not changing its signature. Consequently, this characteristic is of great
importance, because it makes it possible to distinguish polymorphic weapons from
monomorphic or not replicating weapons. As a bonus it also gives an opportunity
to indicate whether a weapon replicates or not.

Therefore the name of the category was changed from Signature of code to
Signature of replicated code and the alternative not replicating was added. An-
other reason for the change was to be able to separate non-replicating weapons and
monomorphic weapons, which got lumped together when using the old version of
the category.

The use of heuristic scanners as well as behaviour checking tools will decrease
the risk of being successfully attacked by polymorphic weapons. Regarding the
monomorphic weapons they are possible to defend against using signature scan-
ners, which is also applicable to non-replicating software weapons.

5.3.13 Signature of attack

An important property of a software weapon to know about is the ability to adapt to
the defensive strategies used by its victims, because such a weapon is much harder
to find countermeasures for. Thus, this property must be included in the taxonomy.

The definition of this category used in the NordSec paper was formally correct,
but not really useful. It restricted the alternative polymorphic to weapons able to
vary their attack signature between attacks of the same type.

First of all, by using that definition the category becomes ambiguous. It is left
to the reader to decide whether an attack is of the same type as another. Nothing is
mentioned of the level to make the distinction on, if it is defined as using the same
vulnerability, or if it is some kind of meta level attack, as for example a denial of
service attack.

Secondly, if all users of the taxonomy managed to interpret the category in
the same way, there was a risk of imbalance in the usage of the two alternatives.
Depending on the interpretation used, either almost no weapons (of those existing

5.4. IN PRACTICE 55

today) would be placed in the polymorphic group (when using the stricter interpret-
ation), or the situation could be reversed (when using a meta-level interpretation).

Therefore the definition of the category is changed to distinguish between
weapons able to in some way vary their method of attack independently, without
user intervention (polymorphic), and those using a preset attack method (mono-
morphic). The variation can be random or governed by rules, the important thing
is that the weapon is changing the attack type on its own. When a rule set is used
the weapon can adapt its behaviour to the defensive actions taken by the victim.

An example of a weapon using a random attack pattern is the Tribe Flood
Network 2000 (TFN2K) distributed denial of service weapon which can randomly
switch between four different attacks (see Appendix B and [60]).

An IDS may somewhat protect from attacks performed by software weapons
having the ability to polymorphically change their attack pattern, by detecting them
and maybe even adapt to their behaviour.

5.3.14 Signature when passive

By using some kind of stealth technique a software weapon can hide its presence
from defensive softwares. When the weapon is not performing any attack related
operations, it is in a passive phase. If stealth is used the software weapon can lie
hidden in a system for a long period of time and wait for the right moment to attack.
Therefore it is important to know if a software weapon has such a characteristic and
the category consequently needs to be included in the taxonomy.

There are no really good countermeasures against weapons using stealth tech-
niques, more than never letting them seize the opportunity to attack. In other words
they have to be stopped at the gates (by a firewall, IDS, or the like).

5.3.15 Signature when active

As stated in the Signature when passive category (Section 5.3.14) it is important
to know if a weapon uses stealth techniques to hide. Such techniques can also be
utilised by the weapon when it is in an active phase, i.e. is performing operations
representing an attack on a computer system. Consequently this category is equally
important and thus needs to be included in the taxonomy for the same reasons.

The countermeasures available to defend against weapons using stealth tech-
niques for hiding their active phases are the same as those used against weapons
utilising stealth during their passive phases (see Section 5.3.14).

5.4 In practice

As stated in Appendix A the proposed taxonomy needs to be tested. A proper
testing of its usability would require several different persons to independently
classify a set of software weapons. The resulting classifications would then need
to be completely similar to indicate that the taxonomy might be usable in practice

56 CHAPTER 5. TEBIT

(after corrections of the direct misunderstandings during the classifier’s learning
phase). Also the testers general opinions on the usability of the taxonomy would
have to be collected and any complaint or remark be properly attended to.

To facilitate such a test (at least a small one) nine software weapons have been
classified by the author. The result is shown in Appendix B. The reader of this
thesis then may test the taxonomy on his or her own by classifying these weapons.
The weapons and the references used for the classification are shown in Table 5.2.

Table 5.2: The categorised weapons and the references used for the categorisation

Software weapon Reference(s)

mstream [61]
Stacheldraht [62, 63]
TFN [64]
TFN2K [60]
Trinoo [63]
CodeRed [53, 54, 55]
CodeRed II [65, 66, 67]
Nimda [68, 69, 70]
Sircam [71, 72, 73]

For the taxonomy to be usable in practice it has to classify phylogenetically6

related software weapons in a fairly similar way. Of course weapons not related to
each other then would have to have deviating classifications.

The best way of measuring the level of diversity in a group of software weapons
can be discussed. The method chosen in this thesis is to represent each alternative
as a one-dimensional 34 bit long binary string, which is mathematically represented
as a column vector s (see tables in Appendix B). Each bit of the string has the value
given by si where si ∈ {0, 1} and i = 1, 2, . . . , 34.

A collection of m ≥ 1 categorised software weapons, all represented as vec-
tors in accordance with the format described above, together form a set T . This
set then can be described as a matrix where sij is the value of the i:th bit in the
categorisation of software weapon j.

To measure the level of difference the standard deviation, here called d, is
calculated for each row i in T . Thus the formula becomes

di =

√

√

√

√

1

m− 1

m
∑

j=1

(sij − si)2

The nine weapons were divided into two sets, TDDoS and Tworms. The result-
ing standard deviation di for each set is shown together with the di for the whole

6In [33] phylogeny is defined in the following way: ‘[EVOLUTION] The evolutionary or ances-
tral history of organisms.’

5.4. IN PRACTICE 57

group (Tall) in Table 5.3. The last column shows where di = 0 in each group, but
di > 0 for the complete set. In other words it indicates which combinations of
category and alternative that may be used to distinguish the two groups from each
other. If di > 0 in the Disting. column in the table, that specific combination of
category and alternative distinguishes the two groups.

Table 5.3: The standard deviation di of TDDoS , Tworms, Tall, and the distinguishing
alternatives (di > 0)

Category Alternative TDDoS Tworms Tall Disting.

Type atomic 0 0 0 0
Type combined 0 0 0 0
Violates confidentiality 0 0.5 0.5 0
Violates integrity;parasitic 0 0.5 0.5 0
Violates integrity;non-parasitic 0 0.5 0.5 0
Violates availability 0 0.58 0.44 0
Dur. of effect temporary 0 0.58 0.44 0
Dur. of effect permanent 0 0.5 0.5 0
Targeting manual 0 0 0.53 0.53
Targeting autonomous 0 0 0.53 0.53
Attack immediate 0.45 0.5 0.44 0
Attack conditional 0.45 0.5 0.53 0
Funct. area local 0 0 0.53 0.53
Funct. area remote 0 0.5 0.33 0
Affected data stationary 0 0 0.53 0.53
Affected data in transfer 0 0.5 0.5 0
Used vuln. CVE/CAN 0 0.5 0.5 0
Used vuln. other vuln. 0 0 0 0
Used vuln. none 0 0.5 0.5 0
Topol. of source single 0 0 0.53 0.53
Topol. of source distributed 0 0 0.53 0.53
Target of attack single 0 0.5 0.5 0
Target of attack multiple 0 0.58 0.44 0
Platform depend. dependent 0 0 0 0
Platform depend. independent 0 0 0 0
Sign. of repl. code monomorphic 0 0 0.53 0.53
Sign. of repl. code polymorphic 0 0 0 0
Sign. of repl. code not replicating 0 0 0.53 0.53
Sign. of attack monomorphic 0.45 0 0.33 0
Sign. of attack polymorphic 0.45 0 0.33 0
Sign. when passive visible 0 0.58 0.44 0
Sign. when passive stealth 0 0.58 0.44 0
Sign. when active visible 0 0.58 0.44 0
Sign. when active stealth 0.55 0.58 0.53 0

The result of the standard deviation calculations indicates that the TDDoS was

58 CHAPTER 5. TEBIT

more homogeneous than Tworms. No further conclusions will be drawn from this
than that the term worm is more general than DDoS, but that was no big surprise.
As seen in the table there is a possibility to differentiate between members of the
two groups by looking at how the following categories and alternatives are used:

• Targeting

• Functional area; local

• Affected data; stationary

• Topology of source

• Signature of code; monomorphic

• Signature of code; not replicating

However, the statistical selection is not very large and the results should therefore
not be taken too seriously. The two categories Targeting and Topology of source
empirically seem good to use, but maybe the preferred method of differentiating
classes should be to theoretically find the most prominent properties of each class
not belonging to both of them.

As shown in Sections 4.1– 4.7 the definition of the term trojan horse differs
among many of the computer security experts and the same is true for such terms
as virus and worm. Also the way the three terms are related to each other differs,
which is shown in Figures 4.1– 4.7. These things indicate a problem, because
when the researchers cannot agree on as fundamental terms as these, they certainly
cannot agree on others. One way of solving this dilemma is to make a fresh start,
by defining new terms, or redefining already existing terms and their relationships.

To do this the one-dimensional format of the taxonomy is used. Each com-
bination of category and alternative considered relevant for the term in question is
marked with either a 1 or a 0, and the other combinations are marked with wild-
cards.

By comparing the number of (and which) categories that are relevant (not hav-
ing wildcards) for a certain term, the relationship of the different terms can be
established. The computer security field of research will in that way get a new and
generally agreed upon standard of terms. Then all efforts can be put into finding
countermeasures to the ever increasing amount of software weapons being created.

In Appendix C a proposed way of defining the three terms trojan horse, virus,
and worm is given. These categorisations are to be regarded as recommendations.
The computer security research community has to agree on the proper definitions
together. By using this taxonomy as a base, that mission will be lot easier to ac-
complish.

Chapter 6

Discussion

What everything in this thesis really centres around is computer security and there-
fore also how to secure computer systems from attacks made with the help of soft-
ware weapons. Now the issue of how to defend a computer system against software
weapons is big enough to fill many a PhD thesis. Therefore it will be dealt with
only briefly in one section of this chapter. After all, the thesis is meant to be a
master’s thesis, nothing more.

Before the summarising discussion ending the thesis, the future issues regard-
ing the proposed taxonomy and its further development will be analysed in a sec-
tion.

6.1 General defences

There is an enormous amount of books, papers, articles, reports, etc. published on
how to secure a computer system against intrusion or other non-authorised activ-
ities. This section therefore will only shortly introduce the basic ideas of how to
minimise the risk of a successful attack involving the use of a software weapon.

The protective measures taken to defend a computer system can be divided
into three parts; prevention, detection, and reaction. [10, pp. 4–5] Other names and
ways to divide them have also been used, in [74] they instead are referred to as a
dichotomy1 (see Figure 6.1).

Irrespective of which scheme is used, the idea is to avoid as many as possible
of the dangers by being prepared, both by being precautious and by using technical
aids. If anything happens, and it always will, there also have to be (working)
methods to decrease the damages and restore the system to normal operation again.

It is easy to draw a parallel to fire fighting. Certainly most people are aware
that nothing is really fire proof, also a brick house will burn if drenched in petrol.
Also there are no fail-safe technical countermeasures, sprinkler systems need water
and maintenance to function and even if fire retardant materials burn less intensely,

1From the Greek word dihkotomia, a cutting in two. [32]

59

60 CHAPTER 6. DISCUSSION

Defences

Technical

Pro-active Reactive

Non-technical

Pro-active Reactive

Figure 6.1: The dichotomy of defensive measures presented by Roebuck. [74]

they still burn. And if there is a fire, the faster and more well organised the fire-
fighting, the less devastating the result. Finally, one single fire is all it takes to
suffer damage. [74]

Unfortunately, in computer security the focus is on (imperfect) technical coun-
termeasures. The pro-activity and strong reactivity are almost forgotten. [74] Most
of the efforts are put into developing better anti-virus scanners, firewalls and IDSs.
These efforts are of course not wasted in any way, the methods are needed as peri-
meter defences, but if anything finds another way in, they are useless. Also the
security in operating systems, the core of all computer systems, is concentrated
to stopping unauthorised users from entering the system, while those being let in
sometimes get almost unlimited rights.

Therefore the security policy used at the site is of utter importance. When a
good policy is adhered to, it functions as a pro-active defence. To be good it has to
be strict, but yet allow the users to do their job. If too high a level is enforced the
users feel the system is working against them and they tend to invent short-cuts to
circumvent the implemented security measures.

The policy has to be supported by the management, too. After all, they decide
how much money there is to pay for the computer security. Hence, if they think
that enforcing security is a way to waste money, instead of a way to prevent money
from being lost, there is an uphill battle to fight for the IT staff at the site.

One very important aspect of the computer security policy is to include con-
tinuous education of both the users, the IT staff, and the managers. They all need to
be aware (to different degrees) of the threats posed at the moment. Also they need
to be constantly reminded of the importance of following the computer security
policy.

Regarding the technical aspects of the defence there have to be some sort of
anti-virus scanner installed on each and every computer. Preferably there should
be scanners from different suppliers installed on the servers versus the workstations
or laptops. In that way the risk of a new virus not being included in an update of
the signature database is decreased.

6.1. GENERAL DEFENCES 61

This leads to another important issue connected to anti-virus scanning. There is
a constant flow of new viruses entering the Internet, hence the signature databases
of the anti-virus scanners need to be continuously updated. There are heuristic
scanning algorithms built into most of the modern scanners, meant to detect yet
unknown breeds of viruses, but they tend to give a rather high number of both false
positives and false negatives.

Also the softwares constituting the computer system have to be updated with
the latest patches. This has to be done as soon as possible after the release of a new
patch. There existed patches of the vulnerabilities used by the worms CodeRed and
Nimda months before the two worms showed up. If the patches had been installed
on the affected systems, the worms would not have been able to spread as fast and
far as they did. [75]

A complement to an anti-virus scanner is an integrity checker, which calculates
checksums (or hashes) of files in the system. To be usable in practice only those
files not subject to frequent updates or changes will be included in the check, be-
cause each time a checksum is calculated the file has to be verified to be clean (the
update of the checksum to be authorised) by a user. Consequently the user has to
be aware of the eventual implications of the action.

By using an integrity checker the changing or infection of a file is possible
to detect, but it really is a reactive function. If the period between the change of
the file and the detection is long, for example a virus may have been able to do
considerable damage.

Another problem with using checksums is the fact that they are surjective, i.e.
several files can have the same checksum. Thus a virus can (at least in theory)
infect a file and pad it so the checksum is not changed when checked. Another
way for a virus to defeat an integrity checker is to simply catch the call from the
checksum calculation function and supply the function with an unchanged copy of
the file.

By having a single point of connection to the outside world, or at least as few
as possible, the risk of intrusion is decreased. Of course all the connections need to
be properly secured by firewalls, e-mail filters with anti-virus scanning capabilities,
and IDSs.

One weak point in the perimeter defence is the connection of remote users.
Often they use laptops which are connected through modem connections, which to
be fairly secure have to use encryption and good authentication routines. Also the
users must keep a strict watch over their computers to prevent anyone from stealing
them or maybe install a trojan horse program.

The above mentioned security enhancing methods will not give a 100% effect-
ive protection of a computer system. Therefore it is vital to back up the data in the
system as often as possible. If anything happens and a back up has to be restored,
every change to the data files in system since the time of the back up will be lost.
Multiply the amount of work erased by the back up with the number of affected
users (and customers) and the price will be high for not backing up more regularly.
If then the cost of the bad-will and eventually severed customer relations are added

62 CHAPTER 6. DISCUSSION

to the result, the company might be on the brink of bankruptcy.

6.2 How a taxonomy increases security

The use of a taxonomy of software weapons in the field of computer security will
improve the security related work in many ways. First of all, a taxonomy structures
the field it is used in, both the general understanding of the field, as well as the more
detailed knowledge of each entity contained. By knowing both on a macro level
and a micro level what types of weapons there are and their technical characterist-
ics, the suitable countermeasures against each type can be stated in advance and
easily found when needed.

Of course, the first thing to do when a system is hit is to find out what type of
software weapon is used for the attack. First when that is done different counter-
measures can be applied. The phase of finding and identifying the used weapon
might be made more effecive by utilising the categories of the proposed taxonomy
as guidelines to what to look for. When the weapon has been identified, the tax-
onomy will point to other weapons with similar characteristics and therefore also
indirectly to possible countermeasures.

The use of the taxonomy as a common ground for categorising software weapons
will also make sharing new methods of defence easier. The joining of forces against
an attacker is facilitated, because everyone involved in the defence instantly knows
the characteristics of the weapon or weapons used.

Also the definition of the terms used need to be based on a common ground,
because it will increase the mutual understanding and coordiantion of the defensive
work. And the sooner the new definitions are decided upon, the better, because the
present situation with a mismatch of different definitions leads to a significant risk
of disastrous misunderstandings. The following fictive example will function as
a scenario of how things can go wrong when not having a common ground for
the used vocabulary. For example the term trojan horse is by some defined as a
subclass of the virus and worm classes (see Section 4.6), while others define the
relationship between the three terms the other way around (see Section 4.7). Now
to the scenario:

A small company has been hit by a virus packed into a downloaded
shareware functioning as a trojan horse. The manager, regarding a
trojan horse as a subclass of a virus, tells his employee, which regards
a virus being a subclass of a trojan horse, that they have been hit by a
trojan horse and that he needs to take appropriate measures to get rid of
it. The employee deletes the file the manager has pointed out and also,
as an extra precaution, reboots the system to get rid of active processes
related to the trojan horse. He regards his actions to be sufficient,
because if it had been a virus his manager would had said so, after
all, viruses are only a subclass of trojan horses. Thus the trojan horse
cannot be parasitic.

6.3. IN THE FUTURE 63

The manager on his side thinks he has been clear enough, trojan
horses are a subclass of viruses and worms and therefore the employee
should have understood that the software weapon might have been
parasitic. Hence they both rest assure of that everything is taken care
of. To really be on the sure side the employee makes a new backup of
the whole computer system on the same tape as the old one, thinking
the old back up is not needed anymore, because he has done what
the manager told him to do. They are both up for a rather unpleasant
surprise the next morning.

If they instead had used terms defined from a common ground, such as this pro-
posed taxonomy of software weapons, they both would have known what the other
meant. The employee would have restored a (clean) backup or gotten rid of the
viral code from the infected files in another way.

A real life example of such a weapon as the one described in the scenario might
be for example Sircam. It is often referred to as a worm, but it sends itself attached
to an e-mail inserted into an ordinary file (which needs to be actively opened by the
recipient) and also infects other computers via self-standing files transferred over
network shares. It therefore would fit also the definitions of both a trojan horse and
a worm.

Using a classification done with the help of the proposed taxonomy of software
weapons, the employee would have known that the weapon was both parasitic and
non-parasitic. He would probably also had had a whole class of similar weapons
and the suitable countermeasures conneced to them to refer to.

By having a complete map of all existing software weapons and their real-
tionship through shared technical characteristics, the different defensive methods
developed may be compared and possible weak spots found. Also the development
of new countermeasuress might be made more effective and new fields of research
found. A good example from another field is the periodic table, which gives much
information on the different elements it contains, their number of electrons, their
weight and chemical properties, if they are inert, etc. It has also helped researchers
to find new elements, which in the end have resulted in several Nobel Prizes.

6.3 In the future

As stated in the title of this thesis this is a proposed taxonomy and it therefore has
been subject to rather big and frequent changes, and still is, although the frequency
is decreasing.

As mentioned in [3, 4] the taxonomy needs to be evaluated further. First of all
the different categories and their alternatives have to be tested on a wider range of
software weapons than what mostly is regarded as malware. The evaluation must
be made independently by several people categorising the same weapons, using
the same technical descriptions of the weapons. The result and their opinions then
have to be compared and possibly changes have to be made to the taxonomy.

64 CHAPTER 6. DISCUSSION

If the resulting categorisations are alike and no grave errors have been found,
the formation of a reference database can begin. There already exists such a project
for viruses in the form of the WildList [27], but that project is for natural reasons
not done in accordance with this proposed taxonomy. Therefore a new project has
to be started, including all software weapons.

At the same time the computer security research community needs to jointly
agree on definitions of the terms in the nomenclature used. Old terms might need
to be redefined and new terms invented to extend the vocabulary to include dif-
ferent forms of non-viral software weapons. To simplify the work, this proposed
taxonomy may be used as a common basis. Using the taxonomy will also guaran-
tee that all terms are comparable regarding their technical characteristics and thus
they may be arranged in a hierarchy reflecting their relationships.

Another issue needing to be dealt with is how to measure the characteristics
of a weapon when no source code is available. This has only been mentioned
briefly in the text, because it falls outside the scope of the thesis, but it still is
an obstacle on the road towards a fully workable taxonomy and thus needs to be
solved. The preferable solution is to find ways to recreate the source code in all
possible situations.

6.4 Summary

There is definitely a need for a taxonomy of software weapons. As it is today the
research might be hampered by the lack of generally accepted definitions of the
terms used. Several taxonomies containing parts dealing with software weapons
exist and a selection of them have been evaluated in this thesis. Unfortunately
none of them fulfils all the requirements of a proper taxonomy, or the needs of the
computer security field of research specified in Section 3.1.4 and Section 3.2.2.

The theories governing the formation of a taxonomy have been around for a
while. A proper taxonomy should have mutually exclusive, exhaustive, and un-
ambiguous categories. It also has to be formulated in a language suited for the
intended readers, in other words both technically correct and yet rather general.

If a taxonomy meets these requirements it might be usable, but it also has
to have a purpose. Regarding a taxonomy of software weapons there is a need
for a detailed categorisation scheme able to classify the complete set of software
weapons, both now and in the foreseeable future. The taxonomy also has to be
used together with a definition of the entities in the field in question. The definition
then works as a filter excluding all softwares not intended to be classified by the
taxonomy.

The proposed taxonomy presented in this thesis is formulated without using
any of the existing malware classification schemes as a base. Instead it is built from
scratch, based exclusively on the technical characteristics of software weapons.
In this way the taxonomy has not inherited any of the weaknesses of the current
classification schemes. Hence, it has the potential to be used as a standard both for

6.4. SUMMARY 65

categorising weapons as well as redefining the terminology in the field.
To complete the taxonomy a new definition of software weapons is formulated.

The definition is not based on the intention of a user, creator or any other subjective
and immeasurable property. Instead it is based solely on the weapon itself, by
looking at the code. Although there might be practical problems with finding the
code and reading it, these are solvable problems.

The taxonomy consists of 15 different and independent categories each having
at least two alternatives, which together form a partitioning of the category. There
have been some problems related to the definitions of some of the alternatives, but
at the moment all of them are felt to be good and adequate.

Regarding the different countermeasures used against software weapons, there
are (as in most cases) no perfect solutions. The best way is simply to keep the
overall security as high as possible and to accept the fact that there always will be
successful attacks. In that way the chance of noticing irregular behaviours in the
computer system will be high, the users and the administrators will keep a good
watch and not sit back and relax in false conviction that their system is impenet-
rable.

Finally, the taxonomy still needs to be tested further. Also the work with rede-
fining the nomenclature of the field of research would need to be started.

66 CHAPTER 6. DISCUSSION

Chapter 7

Acronyms

API Application Programming Interface. The language or messaging format used
by applications to communicate with an operating system, or other functions
and programs. [76]

CAN Candidate Number. A vulnerability or exposure under investigation by the
CVE Editorial Board for possible upgrading to a real vulnerability or expos-
ure, when it also will receive a CVE number. [16]

CARO Computer Antivirus Research Organization. Created an unofficial recom-
mendation of the naming procedure for viruses in 1991. An extension and
update was proposed by Scheidl in 1999. [48]

CC Common Criteria. A joint effort by several governmental organisations, as
a group called ‘the Common Criteria Editing Board’ [10, p. 159] to cre-
ate a standard for evaluating and grading computer security. The effort is
sponsored by the Common Criteria Project Sponsoring Organisations, which
are listed in [51, p. ii].

CERT Computer Emergency Response Team. There are several national CERTs
distributed over the world. They issue alerts and warnings regarding differ-
ent computer security threats, as well as other security related publications.
Their Coordination Center is situated at the Software Engineering Institute,
Carnegie Mellon University. [77]

CVE Common Vulnerabilities and Exposures. A meta-base containing informa-
tion of different vulnerabilities and exposures. The meta-base is supported
by MITRE (a name, not an acronym). [14, 13]

DDoS Distributed Denial of Service. An attack degrading the availability of a
computer system. The attack is executed using several remotely controlled
agents all concurrently performing a denial of service attack on a specific
target. [78, 79, 80]

67

68 CHAPTER 7. ACRONYMS

DoS Denial of Service. An attack degrading the availability of a system by flood-
ing it with a vast amount of network traffic or bad packets. [81]

EICAR European Institute for Computer Antivirus Research. However, the ac-
ronym has become self-standing and they also have expanded their working
field to general IT security, with a focus on anti-virus research. [82]

FAT File Allocation Table. A table containing the addresses of the sectors on a
harddisk occupied by the different files in a file system. The table is main-
tained by the operating system. [83]

FOI Swedish Defence Research Agency. In Swedish: ‘Totalförsvarets forskningsin-
stitut’. [84]

ICAT ICAT. No extension has been found. Maybe it is not an acronym, but a
name. [17]

IDS Intrusion Detection System. A system to monitor the activity in a network
and in that way possibly detect intrusions. There are two methods used;
rule-based monitoring and statistical-based. [76]

IIS Internet Information Services. A web-server from Microsoft. [85] It is widely
used and therefore also often attacked.

ITSEC Information Technology Security Evaluation Criteria. A European doc-
ument providing a framework for security evaluation of computer systems.
[10, p. 155]

JVM Java Virtual Machine. It is like a virtual CPU that compiled Java programs
run on. In this way the same Java code can be executed on several different
computer platforms, without having to be recompiled. [76]

NAT Network Address Translation. A NAT server offers the possibility to hide the
internal addresses of a network and thus only have one IP address visible to
the outside world. This service is also offered by for example a proxy server.
[76, 83]

NCW Network Centric Warfare. The new idea of how to revolutionise the way of
faring war. All different participants are meant to be connected in a network.
In this way the troops may be better coordinated, information sharing among
the soldiers and their superiors will be facilitated, and more can be achieved
by less participants. [86]

NIST (US) National Institute of Standards and Technology. The goal of this fed-
eral agency is to strengthen and advance the science and technology within
USA. [76, 83]

NordSec 2002 The 7th Nordic Workshop on Secure IT Systems. The workshop
was held at Karlstad University, Sweden 7–8 November 2002. [87]

69

RMI Remote Method Invocation. A protocol developed by Sun to allow Java
objects to remotely communicate with other Java objects over a network.
[76, 83]

RPC Remote Procedure Call. A protocol (middleware) that allows a computer to
execute a program on another (server) computer. [76, 83]

TFN2K Tribe Flood Network 2000. A DDoS software weapon. [60]

VBA Visual Basic (for) Applications. A programming language based on BASIC
and developed by Microsoft. It provides a graphical programming environ-
ment. [83]

VTC Virus Test Center. A laboratory specialised in reverse engineering and de-
compilation of viruses. They also perform tests of the efficiency of different
virus-scanners on the market. The laboratory is headed by professor Klaus
Brunnstein and is part of the Computer Science Department at the University
of Hamburg, Germany. [88]

70 CHAPTER 7. ACRONYMS

Bibliography

[1] Michael Best, Printing, and problems in Shakespeare’s text, September
2001.
http://web.uvic.ca/shakespeare/Library/SLTnoframes/
literature/problems.html, accessed 9 December 2002.

[2] William Shakespeare, The Arden Shakespeare Complete Works, chapter
Romeo and Juliet, pp. 1005–1038, Thomas Nelson and Sons Ltd, Walton-
on-Thames, Surrey, UK, 1998.

[3] Martin Karresand, ‘TEBIT – Teknisk Beskrivningsmodell för IT-vapen’,
Tech. Rep., Command and Control Warfare Technology, FOI - Swedish De-
fence Research Agency, August 2001.

[4] Martin Karresand, ‘A Proposed Taxonomy for IT Weapons’, in NordSec 2002
– Proceedings of the 7th Nordic Workshop on Secure IT Systems, Simone
Fisher-Hübner and Erland Jonsson, Eds., Karlstad, Sweden, November 2002,
pp. 244–260, Karlstad University Studies.

[5] Ian Whalley, Bill Arnold, David Chess, John Morar, Alla Segal, and Morton
Swimmer, An Environment for Controlled Worm Replication and Analysis
or: Internet-inna-Box, September 2000.
http://www.research.ibm.com/antivirus/SciPapers/
VB2000INW.htm, accessed 18 July 2002.

[6] Ian Whalley, Testing Times for Trojans, October 1999.
http://www.research.ibm.com/antivirus/SciPapers/
Whalley/inwVB99.html, accessed 18 July 2002.

[7] CERT (Computer Emergency Response Team), CERT Advisory CA-1995-06
Security Administrator Tool for Analyzing Networks (SATAN), April 1995.
http://www.cert.org/advisories/CA-1995-06.html, ac-
cessed 12 June 2002.

[8] Sarah Gordon, Devil’s Advocate, 1995.
http://www.commandsoftware.com/virus/satan.html, ac-
cessed 23 July 2002.

71

72 BIBLIOGRAPHY

[9] CIAC (Computer Incidents Advisory Center), Information Bulletin F-20: Se-
curity Administrator Tool for Analyzing Networks (SATAN), April 1995.
http://www.ciac.org/ciac/bulletins/f-20.shtml, ac-
cessed 12 June 2002.

[10] Dieter Gollmann, Computer Security, John Wiley & Sons, 1999, ISBN
0-471-97844-2.

[11] Carl E Landwehr, Alan R Bull, John P McDermott, and William S Choi,
‘A Taxonomy of Computer Program Security Flaws, with Examples’, ACM
Computing Surveys, vol. 26, no. 3, September 1994.
http://chacs.nrl.navy.mil/publications/CHACS/1994/
1994landwehr-acmcs.pdf, accessed 12 June 2002.
A note taken from the text published on the web: ‘As revised for publication in ACM

Computing Surveys 26, 3 (Sept., 1994). This version, prepared for electronic distribution,

reflects final revisions by the authors but does not incorporate Computing Surveys´ copy

editing. It therefore resembles, but differs in minor details, from the published version.

The figures, which have been redrawn for electronic distribution are slightly less precise,

pagination differs, and Table 1 has been adjusted to reflect this’.

[12] CVE,
http://cve.mitre.org/about/terminology.html, accessed 4
July 2002.

[13] CVE,
http://cve.mitre.org/about/index.html, accessed 24 June
2002.

[14] MITRE, The Early Years.
http://www.mitre.org/about/history.shtml, accessed 12
June 2002.

[15] Daniel L Lough, A Taxonomy of Computer Attacks with Applications to
Wireless Networks, PhD thesis, Virgina Polytechnic Institute and State
University, April 2001.
http://scholar.lib.vt.edu/theses/available/
etd-04252001-234145/unrestricted/lough.
dissertation.pdf, accessed 13 June 2002.

[16] CVE,
http://cve.mitre.org/docs/docs2000/naming_process.
html, accessed 12 June 2002.

[17] ICAT,
http://icat.nist.gov/icat.cfm, accessed 12 June 2002.

BIBLIOGRAPHY 73

[18] ICAT,
http://icat.nist.gov/icat_documentation.htm, accessed
27 September 2002.

[19] Simon Hornblower and Tony Spawforth, Eds., Who’s Who in the Classical
World, Oxford University Press, 2000, ISBN 0-19-280107-4.

[20] Encyclopedia Britannica Online,
http://www.britannica.com/eb/article?eu=
119735&tocid=48695, accessed 12 June 2002.

[21] John D Howard and Thomas A Longstaff, A Common Language for Com-
puter Security Incidents, Sandia National Laboratories, Livermore, CA, Oc-
tober 1998.
http://www.cert.org/research/taxonomy_988667.pdf, ac-
cessed 6 September 2002.

[22] Ivan V Krsul, Software Vulnerability Analysis, PhD thesis, Purdue Univer-
sity, May 1998.
http://www.acis.ufl.edu/~ivan/articles/main.pdf, ac-
cessed 13 June 2002.

[23] George Gaylord Simpson, ‘The principles of classification and a classifica-
tion of mammals’, in Bulletin of the American Museum of Natural History,
vol. 85, pp. 1–350. 1945.

[24] Ulf Lindqvist, On the Fundamentals of Analysis and Detection of Computer
Misuse, PhD thesis, Department of Computer Engineering, Chalmers
University of Technology, Göteborg, Sweden, 1999.
http://www.ce.chalmers.se/staff/ulfl/pubs/ul-phd.
pdf, accessed 11 October 2002.

[25] Jakub Kaminski and Hamish O’Dea, How to smell a RAT - remote adminis-
tration tools vs backdoor Trojans.
http://www.virusbtn.com/conference/this_year/
abstracts/remote_administration.xml, accessed 22 July
2002.
Only the abstract of the paper was available and therefore no references are made to the body

of the document.

[26] David Moore, Geoffrey M Voelker, and Stefan Savage, Inferring Internet
Denial-of-Service Activity, 2001.
http://www.caida.org/outreach/papers/2001/
BackScatter/usenixsecurity01.pdf, accessed 22 Novem-
ber 2002.

74 BIBLIOGRAPHY

[27] Joe Wells, How Scientific Naming Works.
http://www.wildlist.org/naming.htm, accessed 22 November
2002.

[28] Per Ånäs, ‘Aktören vid IT-relaterade attacker – vem, varför och hur?’,
Tech. Rep., Defence Analysis, Swedish Defence Research Agency, Decem-
ber 2001.

[29] Bernie Klinder, Computer Virus and Malware Primer for Network Adminis-
trators, September 2002.
http://www.labmice.net/AntiVirus/articles/avprimer.
htm, accessed 22 November 2002.

[30] Vesselin Vladimirov Bontchev, Methodology of Computer Anti-Virus Re-
search, PhD thesis, University of Hamburg, Germany, 1998.

[31] Marko Helenius, A System to Support the Analysis of Antivirus Products’
Virus Detection Capabilities, PhD thesis, University of Tampere, Finland,
2002.
http://acta.uta.fi/pdf/951-44-5394-8.pdf, accessed 22
July 2002.

[32] Oxford English Dictionary Online, 2nd edition, 1989.
http://dictionary.oed.com/cgi/entry/00247833, accessed
24 November 2002.

[33] Sybil P Parker, Ed., Dictionary of bioscience, McGraw-Hill, 1997, ISBN
0-07-114919-8.

[34] Ulf Lindqvist and Erland Jonsson, ‘How to Systematically Classify Com-
puter Security Intrusions’, in Proceedings of the 1997 IEEE Symposium
on Security & Privacy, Oakland, CA, 1997, pp. 154–163, IEEE Computer
Society Press.
http://www.ce.chalmers.se/staff/ulfl/pubs/sp97ul.
pdf, accessed 12 June 2002.

[35] John D Howard, An Analysis of Security Incidents on the Internet 1989-1995,
PhD thesis, Carnegie Mellon University, Pittsburg, April 1997.
http://www.cert.org/research/JHThesis/Word6/, accessed
12 June 2002.

[36] Richard Ford, Malware.
http://www.malware.org/malware.htm, accessed 17 July 2002.

[37] Morton Swimmer, Malware.
http://www.swimmer.org/morton/malware.html, accessed 18
July 2002.

BIBLIOGRAPHY 75

[38] Fred Cohen, ‘Computer viruses: Theory and experiments’, Computers &
Security, vol. 6, no. 1, pp. 22–35, February 1987.

[39] David M Chess and Steve R White, An Undetectable Computer Virus, IBM
Thomas J. Watson Research Center, Hawthorne, New York, USA, 2000.
http://www.research.ibm.com/antivirus/SciPapers/
VB2000DC.pdf, accessed 21 November 2002.

[40] David G Boney, ‘The Plague: An Army of Software Agents for Information
Warfare’, Tech. Rep., Department of Computer Science, School of Engineer-
ing and Applied Science, Washington D.C. 20052, June 1999.

[41] Lance J Hoffman, Ed., Rogue Programs: Viruses, Worms, and Trojan Horses,
Van Nostrand Reinhold, 1990.

[42] Christopher V Feudo, The Computer Virus Desk Reference, Business One
Irwin Computer, 1992.

[43] Klaus Brunnstein, From AntiVirus to AntiMalware Software and Beyond:
Another Approach to the Protection of Customers from Dysfunctional System
Behaviour, Faculty for Informatics, University of Hamburg, Germany, July
1999.
http://csrc.nist.gov/nissc/1999/proceeding/papers/
p12.pdf, accessed 22 July 2002.

[44] Jo Ticehurst, Virus naming chaos causes confusion, October 2000.
http://newsletter.vnunet.com/News/1112012, accessed 18
November 2002.

[45] Ken Dunham, Malware Taxonomy: Challenges, July 2001.
This text is the last part of three in a series published at SecurityPortal in July, 2001. The other

two are called The Great Analogy and Malware Taxonomy: Introduction. Unfortunately the

portal is nowadays offline. The article was received by e-mail from Ken Dunham, dunhamk@

rmci.net.

[46] Ian Whalley, VGrep, Advanced Security Research, McAfee Security.
http://toronto.virusbtn.com/resources/vgrep/, accessed
21 November 2002.

[47] Fridrik Skulason and Vesselin Bontchev, A New Virus Naming Convention,
1991.
http://vx.netlux.org/lib/asb01.html, accessed 18 November
2002.

[48] Gerald Scheidl, Virus Naming Convention 1999 (VNC99), beta edition, July
1999.
http://members.chello.at/erikajo/vnc99b2.txt, accessed
22 October 2002.

76 BIBLIOGRAPHY

[49] Donn B Parker, Advancing Security, 1999.
http://www.infosecuritymag.com/articles/1999/
parker2.shtml, accessed 22 November 2002.

[50] Winn Schwartau, The Basics are the Basics, September 1999.
http://www.infowar.com/chezwinn/articles092899/
TheBasicsAreTheBasics.shtml, accessed 22 November 2002.

[51] Common Criteria, Common Criteria for Information Technology Security
Evaluation, part 1, 2.1 edition, August 1999.
http://www.commoncriteria.org/docs/PDF/CCPART1V21.
PDF, accessed 3 December 2002.

[52] Philip Babcock Gove, Ed., Webster’s Third New International Dictionary,
Merriam-Webster Inc., 1993, ISBN 3-8290-5292-8.

[53] Eric Chien, CodeRed Worm, Symantec, July 2002.
http://securityresponse.symantec.com/avcenter/venc/
data/codered.worm.html, accessed 24 July 2002.

[54] Trend Micro, CODERED.A, July 2001.
http://www.trendmicro.com/vinfo/virusencyclo/
default5.asp?VName=CODERED.A&VSect=T, accessed 24 July
2002.

[55] eEye Digital Security, .ida ”Code Red” Worm, July 2001.
http://www.eeye.com/html/Research/Advisories/
AL20010717.html, accessed 13 September 2002.

[56] Digital Communication Technologies Inc, Lightfoot 32-bit Java Processor
Core, August 2001.
http://www.dctl.com/downloads/fpga_lightfoot_ds.
pdf, accessed 6 December 2002.

[57] aJile Systems Inc, Real-time Low-power JavaT M Processor aJ-80, 2000.
http://www.ajile.com/downloads/aj80.pdf, accessed 6
December 2002.

[58] Sun Microsystems, Sun Unveils Its First Java Processor microJava701
Looks to Post Industry’s Highest Caffeinemarks, October 1997.
http://www.sun.com/smi/Press/sunflash/9710/
sunflash.971015.1.html, accessed 6 December 2002.

[59] Peter Ferrie, W32.Peelf.2132, April 2002.
http://securityresponse.symantec.com/avcenter/venc/
data/w32.peelf.2132.html, accessed 6 December 2002.

BIBLIOGRAPHY 77

[60] Jason Barlow and Woody Thrower, TFN2K – An Analysis, March 2000.
http://packetstormsecurity.nl/distributed/TFN2k_
Analysis-1.3.txt, accessed 17 November 2002.

[61] David Dittrich, George Weaver, Sven Dietrich, and Neil Long, The
”mstream” distributed denial of service attack tool, May 2000.
http://staff.washington.edu/dittrich/misc/mstream.
analysis.txt, accessed 16 November 2002.

[62] David Dittrich, The ”stacheldraht” distributed denial of service attack tool,
December 1999.
http://staff.washington.edu/dittrich/misc/
stacheldraht.analysis, accessed 24 July 2002.

[63] David Dittrich, The DoS Project’s ”trinoo” distributed denial of service
attack tool, October 1999.
http://staff.washington.edu/dittrich/misc/trinoo.
analysis.txt, accessed 24 July 2002.

[64] David Dittrich, The ”Tribe Flood Network” distributed denial of service
attack tool, October 1999.
http://staff.washington.edu/dittrich/misc/tfn.
analysis.txt, accessed 16 November 2002.

[65] Eric Chien and Peter Szor, CodeRed II, Symantec, July 2002.
http://securityresponse.symantec.com/avcenter/venc/
data/codered.ii.html, accessed 18 October 2002.

[66] Trend Micro, CODERED.C, August 2001.
http://www.trendmicro.com/vinfo/virusencyclo/
default5.asp?VName=CODERED.C&VSect=T, accessed 18 Oc-
tober 2002.

[67] eEye Digital Security, CodeRedII Worm Analysis, August 2001.
http://www.eeye.com/html/Research/Advisories/
AL20010804.html, accessed 18 October 2002.

[68] Eric Chien, W32.Nimda.A@mm, Symantec, July 2002.
http://securityresponse.symantec.com/avcenter/venc/
data/w32.nimda.a@mm.html#technicaldetails, accessed 21
October 2002.

[69] K Tocheva, G Erdelyi, A Podrezov, S Rautiainen, and M Hypponen, Nimda,
F-Secure, September 2001.
http://www.europe.f-secure.com/v-descs/nimda.shtml,
accessed 21 October 2002.

78 BIBLIOGRAPHY

[70] Trend Micro, PE_NIMDA.A, October 2001.
http://www.trendmicro.com/vinfo/virusencyclo/
default5.asp?Vname=PE_NIMDA.A&VSect=T, accessed 21
October 2002.

[71] Peter Ferrie and Peter Szor, W32.Sircam.Worm@mm, Symantec, July 2002.
http://securityresponse.symantec.com/avcenter/venc/
data/w32.sircam.worm@mm.html#technicaldetails, ac-
cessed 23 October 2002.

[72] Gergely Erdelyi and Alexey Podrezov, Sircam, F-Secure, July 2001.
http://www.europe.f-secure.com/v-descs/sircam.
shtml, accessed 23 October 2002.

[73] Trend Micro, WORM_SIRCAM.A, October 2001.
http://www.trendmicro.com/vinfo/virusencyclo/
default5.asp?VName=WORM_SIRCAM.A&VSect=T, accessed
23 October 2002.

[74] Terrance A Roebuck, A Holistic Approach to Viruses and Other Malware.
http://abyss.usask.ca/~roebuck/malware.HTML, accessed
26 November 2002.

[75] Todd McGuiness, Defense In Depth, November 2001.
http://rr.sans.org/securitybasics/defense.php, ac-
cessed 27 November 2002.

[76] Tom Sheldon, McGraw-Hill Encyclopedia of Networking & Telecommunic-
ations, McGraw-Hill, Berkeley, California 94710, USA, 2001, ISBN 0-07-
212005-3.

[77] CERT/CC, Welcome, December 2002.
http://www.cert.org, accessed 9 December 2002.

[78] Tim Yardley, Distributed Attacks and the Way To Deal With Them, 1999.
http://packetstormsecurity.com/papers/contest/Tim_
Yardley.doc, accessed 9 December 2002.

[79] CERT/CC, Results of the Distributed-Systems Intruder Tools Workshop,
December 1999.
http://www.cert.org/reports/dsit_workshop-final.
html, accessed 9 December 2002.

[80] Serghei Sevcenco, Distributed Denial of Service (DDoS) attacks, Symantec,
July 2001.
http://securityresponse.symantec.com/avcenter/venc/
data/ddos.attacks.html, accessed 10 December 2002.

BIBLIOGRAPHY 79

[81] CERT R© Coordination Center, Denial of Service Attacks, June 2001.
http://www.cert.org/tech_tips/denial_of_service.
html, accessed 9 December 2002.

[82] EICAR Online, 2002.
http://www.eicar.org, accessed 9 December 2002.

[83] Thomas M Thomas, II, Thomas’ Concise Telecom & Networking Dictionary,
McGraw-Hill, Berkeley, California 94710, USA, 2000, ISBN 0-07-212253-
6.

[84] Welcome to FOI – The Swedish Defence Research Agency, September 2002.
http://www.foi.se/english/index.html, accessed 9 December
2002.

[85] Microsoft, Internet Information Services Community Center.
http://www.microsoft.com/windows2000/community/
centers/iis/default.asp, accessed 10 December 2002.

[86] David S Alberts and John J Garstka, Network Centric Warfare – Department
of Defense Report to Congress.
http://www.c3i.osd.mil/NCW/, accessed 9 December 2002.
The text that was read for this reference was the ‘Executive Summary’ found at http:

//www.c3i.osd.mil/NCW/ncw_exec_sum.pdf. However, the general URL stated

above leads to the main website, which contains the (complete?) report in several large PDF

files.

[87] Albin Zuccato, Nordsec 2002, July 2002.
http://www.cs.kau.se/nordsec2002/index.html, accessed 9
December 2002.

[88] Klaus Brunnstein, Virus Test Center, April 2002.
http://agn-www.informatik.uni-hamburg.de/vtc/, ac-
cessed 9 December 2002.

80 BIBLIOGRAPHY

Appendix A

The NordSec 2002 paper

81

82 APPENDIX A. THE NORDSEC 2002 PAPER

This page is intentionally left blank, except for this text.

A Proposed Taxonomy for IT Weapons∗

Martin Karresand
FOI

Swedish Defence Research Agency, Division of Command and Control Systems,

Department of Systems Analysis and IT Security

Box 1165, SE-581 11 Linköping, Sweden

martin.karresand@foi.se

Abstract

This report presents a proposal for a taxonomy of IT weapons, limited
to computer software. Because of this limitation the term software weapons
is used instead of IT weapons. A definition of software weapons is also
formulated. No other taxonomy with the above scope is known to exist today.
This taxonomy therefore offers a theoretical base for the unification of the
nomenclature for classification of software weapons.

The taxonomy contains 15 categories of general properties of a software
weapon. It has been adapted to international standards through a connection
to the CVE list (Common Vulnerabilities and Exposures), which is main-
tained by MITRE.

The problem of how to make unambiguous classifications of combined
software weapons is discussed and a solution is proposed. Each category of
the taxonomy is explained in a separate paragraph. Thereafter the taxonomy
is used to classify two well known software weapons.

Keywords: computer security, information warfare, IT weapon, IW, malware,
software weapon, taxonomy, virus, worm.

1 Introduction

The terminology used in the IT security area is not yet fully standardised and the
situation is getting worse [1, 2, 3] because of the continuous influx of new members
to the research community, who all have their own preferred vocabulary. Hence
there is an increasing need for a standardisation of the used terms.

On top of that the research being done so far has been concentrated on the prag-
matic, technical side of the spectrum, i.e. ways of detecting the increasing amount

∗To appear in: Nordsec 2002 – Proceedings of the 7th Nordic Workshop on Secure IT Systems,
Karlstad University, Sweden, 7–8 November 2002.

83

84 1 INTRODUCTION

of malware (malicious software) being written. The classification and grouping of
the malware has been given less attention and the area is therefore hard to take in.

To enable the development of efficient countermeasures there is a need for
an unambiguous classification of the software used to cause harm to individuals
and organisations via computer systems. Also the users of the computer systems
need to have a general understanding of the threats posed by different types of
malware. This would lead to a higher degree of awareness of possible malware
attacks and in that way higher security. One step towards this goal is to have
commonly acknowledged names for the separate types of malware. Consequently
these types must be well defined too.

Furthermore, the education of IT security personnel would benefit from a struc-
tured classification of the malware area. A common vocabulary would for example
decrease the risk of misunderstandings.

Whether a specific tool would be classified as a weapon or not is often judged
from the context of the situation where the tool is used. This is the juridical point
of view, the tool a murderer used is to be regarded as a weapon, because he or she
used it with the intent to kill. Consequently, anything can be a weapon.

The sentence ‘He used a pillow as a weapon’ gives that the pillow was a weapon
in that specific situation. But by disregarding the context and just concentrate
on the ‘as a weapon’ part of the sentence, we see that a tool must have certain
properties to be a weapon.1 These properties are in some way measurable; they
do harm (why else would they be used for fighting and attacking?). If the line
of argument is transferred to the world of computers, the result is that a certain
class of software has a specific set of properties, which are measurable, and those
properties define the software as weapons.

The advantage of this approach is the much lesser degree of ambiguity. A
weapon is a weapon because of its properties and as long as the purpose is to study
it technically, that is enough. With a deeper knowledge of the technical details of
software weapons (malware) as a group, they can be classified, properly named,
etc. This in turn leads to a more structured knowledge of the area and thus a
possibility to develop better defences, maybe even in advance. Or as Sun Tzu once
wrote in his book The Art of War [5, chapter VI]:

Whoever is first in the field and awaits the coming of the enemy,
will be fresh for the fight; whoever is second in the field and has to
hasten to battle will arrive exhausted.

1.1 Background

This is an updated version of a report [6] written in Swedish. The amendments
were mostly related to preparing the report for international publishing. Some
parts have also been rewritten because new background material has been found.

1One definition is ‘an object such as a knife, gun, bomb, etc. that is used for fighting or attacking
sb’. [4]

1.2 Purpose 85

In an attempt to somewhat lessen the emotional charge in the used vocabulary,
the term software weapon will be used throughout the text. Something malicious
can be nothing but evil, but a weapon is simply a tool that has the ability to cause
harm and that can be used in both offensive and defensive situations.

Regarding the area of malware, several definitions and classification schemes
exist for different parts of the area (see for example [7, 8, 9]). Most of them deal
with viruses and worms, and only casually mention other types of malicious soft-
ware. They all give their own way of measuring, or quantifying, maliciousness and
at the same time conclude that this cannot be done objectively.

No definition or taxonomy2 covering the complete set of software-based IT
weapons has yet been found by the author.

1.2 Purpose

The purpose of the report is to present a taxonomy of software weapons, and also
give a definition supporting the taxonomy. The taxonomy and definition are not
meant to be complete in any way, but merely suggestions for future work.

The purpose of the taxonomy is to fill the needs stated in the introduction, or at
least lay the foundation for a future fulfilment of them.

1.3 Scope

The taxonomy only handles software based (IT) weapons from a technical point of
view. Chipping3 is considered to be hardware based and is therefore not discussed.

1.4 Method

The study has been done with a broad technical base. Several different types of
material have been studied. Most of the material has been taken from the Internet
to give up to date information. It has mostly been descriptions of tools and methods
used by hackers. Also technical reports, dissertations, and taxonomies focused on
IT security and malware have been used.

2 A Taxonomy of Software Weapons

My own hypothesis of why no other taxonomy of software weapons has yet been
found can be summarised in the following points:

• The set of all software weapons is (at least in theory) infinite, because new
combinations and strains are constantly evolving. Compared to the biolo-
gical world, new mutations can be generated at light speed.

2The word originates from the two Greek words taxis, arrangement, order, and nomos, distribu-
tion.

3Malicious alterations of computer hardware.

86 2 A TAXONOMY OF SOFTWARE WEAPONS

• It is hard to draw a line between administrative tools and software weapons.
Thus it is hard to strictly define what a software weapon is.

• Often software weapons are a combination of other, atomic, software weapons.
It is therefore difficult to unambiguously classify such a combined weapon.

• There is no unanimously accepted theoretical foundation to build a taxonomy
on. For instance there are (at least) five different definitions of the term worm
[10] and seven of trojan [11].

• By using the emotionally charged word malicious together with intent, the
definitions have been crippled by the discussion whether to judge the pro-
grammer’s or the user’s intentions.

2.1 Theory

As a consequence of some of the problems mentioned above, the set of software
weapons will grow continuously. Therefore it can be regarded as always new and
unexplored. The fact that software weapons can be created from combinations
of other software weapons, without limitations, gives that a traditional taxonomy
based on relationships would not work very well. The rules for classification would
grow indefinitely complex and soon get out of hand. A better solution would be to
base the taxonomy on technical characteristics. With a proper selection of charac-
teristics, such a taxonomy would have the potential to work for more than a few
years.

It is not enough to find a working set of characteristics to get a good taxonomy,
though. It must fulfil a few more requirements to be useful. Daniel Lough has
created a list of 18 properties from 5 different taxonomies of IT security, which
he presents in his dissertation [12]. I consider the following properties taken from
two of those taxonomies [13, 14] to be the most important. The categories of the
taxonomy should:

• Be mutually exclusive and exhaustive so that the taxonomy completely cov-
ers the intended area, i.e. be a partitioning of the area

• Be unambiguous to prevent subjective interpretations

• Usable through the use of well known and consistent terminology.

To minimise the risk of subjective interpretations when classifying objects, the
alternatives in each category should be based on measurable or observable charac-
teristics [15]. In the case of software these characteristics are the instructions and
algorithms constituting the software [16]. This will guarantee that the classification
of a software weapon will be the same, regardless of who is classifying.

How the characteristics of the software weapon shall be found is a separate
problem. It can be done by either having access to the source code of the weapon,
or by re-engineering the source code from a binary version of the weapon. A third

2.2 Definition 87

way is to have some sort of automatic analysis software; a virtual environment
where the software weapon could be scientifically studied in a controlled manner.
Such an environment already exists for worms and viruses [10].

2.2 Definition

In this section a definition of software weapons is presented, together with the
reasons for developing it. To avoid influences from the definitions of malware
mentioned earlier, the new definition has been constructed with information war-
fare as a base.

2.2.1 Background.

There are several definitions of IT and cyber warfare. Of course they cover a much
larger area than just software weapons, but they do give a hint of what the important
things are. The US Department of Defense has the following definition of the
military part of information warfare [17]:

Information Warfare - Actions taken to achieve information su-
periority in support of national military strategy by affecting adversary
information and information systems while leveraging and defending
our information and systems.

Dr. John Alger, MITRE Corporation, Enterprise Security Solutions Department,
gives the following definition of information warfare in a book by Winn Schwartau
[18, p. 12]:

Information Warfare consists of those actions intended to protect,
exploit, corrupt, deny, or destroy information or information resources
in order to achieve a significant advantage, objective, or victory over
an adversary.

A similar definition is given by Ivan Goldberg [19], head of IASIW (US Institute
for the Advanced Study of Information Warfare):

Information warfare is the offensive and defensive use of inform-
ation and information systems to deny, exploit, corrupt, or destroy,
an adversary’s information, information-based processes, information
systems and computer-based networks while protecting one’s own.
Such actions are designed to achieve advantages over military or busi-
ness adversaries.

All the above definitions mentions that an advantage over an adversary should be
achieved and this should be done by influencing the adversary’s information sys-
tems. An advantage in the software context would correspond to a breach in the
security of the adversary’s computer system. The influencing part would then be

88 2 A TAXONOMY OF SOFTWARE WEAPONS

the instructions of the tool(s) used for the attack. Thus a software weapon should
have such properties.

The definitions mentioned above are all very much alike, which might indicate
that they all have the same source. If so, three renowned institutions has adopted
it, which in that case strengthens its importance. I therefore think that the defini-
tions above carry such weight that they can be used as a basis for the definition of
software weapons used in this report.

2.2.2 Preliminary Definition.

The preliminary definition of software weapons4 used at FOI5 has the following
wording (translated from Swedish):

[. . .] software for logically influencing information and/or pro-
cesses in IT systems in order to cause damage.6

This definition satisfies the conditions mentioned earlier in the text. One thing
worth mentioning is that tools without any logical influence on information or pro-
cesses are not classified as software weapons by this definition. This means that
for instance a sniffer is not a software weapon. Even a denial of service weapon
might not be regarded as a weapon depending on the interpretation of ‘logically
influencing . . . processes’. A web browser on the other hand falls into the software
weapon category, because it can be used in a dot-dot7 attack on a web server and
thus affect the attacked system logically.

Furthermore, the definition does not specify if it is the intention of the user
or the programmer, that should constitute the (logical) influence causing damage.
If it is the situation where the tool is used that decides whether the tool is a soft-
ware weapon or not, theoretically all software ever produced can be classified as
software weapons.

If instead it is the programmer’s intentions that are decisive, the definition gives
that the set of software weapons is a subset (if yet infinite) of the set of all possible
software. But in this case we have to trust the programmer to give an honest answer
(if we can figure out whom to ask) on what his or her intentions was.

A practical example of this dilemma is the software tool SATAN, which ac-
cording to the creators was intended as a help for system administrators [20, 21].
SATAN is also regarded as a useful tool for penetrating computer systems [22].
Whether SATAN should be classified as a software weapon or not when using the
FOI definition is therefore left to the reader to subjectively decide.

4The term IT weapon is used in the report FOI report.
5Swedish Defence Research Agency
6In Swedish: ‘[. . .] programvara för att logiskt påverka information och/eller processer i IT-

system för att åstadkomma skada.’
7A dot-dot attack is performed by adding two dots directly after a URL in the address field of

the web browser. If the attacked web server is not properly configured, this might give the attacker
access to a higher level in the file structure on the server and in that way non-authorised rights in the
system.

2.2 Definition 89

2.2.3 New Definition.

When a computer system is attacked, the attacker uses all options available to get
the intended result. This implies that even tools made only for administration of
the computer system can be used. In other words there is a grey area with powerful
administrative tools, which are hard to decide whether they should be classified as
software weapons or not. Hence a good definition of software weapons is hard to
make, but it might be done by using a mathematical wording and building from a
foundation of measurable characteristics.

With the help of the conclusions drawn from the definitions of information war-
fare the following suggestion for a definition of software weapons was formulated:

A software weapon is software containing instructions that are ne-
cessary and sufficient for a successful attack on a computer system.

Even if the aim was to keep the definition as mathematical as possible, the
natural language format might induce ambiguities. Therefore a few of the terms
used will be further discussed in separate paragraphs.

Since it is a definition of software weapons, manual input of instructions is
excluded.

Instructions. It is the instructions and algorithms the software is made of that
should be evaluated, not the programmer’s or the user’s intentions. The instructions
constituting a software weapon must also be of such dignity that they together
actually will allow a breakage of the security of an attacked system.

Successful. There must be at least one computer system that is vulnerable to
the tool used for an attack, for the tool to be classified as a software weapon. It
is rather obvious that a weapon must have the ability to do harm (to break the
computer security) to be called a weapon. Even if the vulnerability used by the
tool might not yet exist in any working computer system, the weapon can still be
regarded as a weapon, as long as there is a theoretically proved vulnerability that
can be exploited.

Attack. An attack implies that a computer program in some way affects the con-
fidentiality8, integrity9 or availability10 of the attacked computer system. These
three terms form the core of the continually discussed formulation of computer se-
curity. Until any of the suggested alternatives is generally accepted, the definition
of attack will adhere to the core.

The security breach can for example be achieved through taking advantage
of flaws in the attacked computer system, or by neutralising or circumventing its
security functions in any way.

8‘[P]revention of unauthorised disclosure of information.’[23, p. 5]
9‘[P]revention of unauthorised modification of information.’[23, p. 5]

10‘[P]revention of unauthorised withholding of information or resources.’[23, p. 5]

90 2 A TAXONOMY OF SOFTWARE WEAPONS

The term flaw used above is not unambiguously defined in the field of IT se-
curity. Carl E Landwehr gives the following definition [24, p. 2]:

[. . .] a security flaw is a part of a program that can cause the
system to violate its security requirements.

Another rather general, but yet functional, definition of ways of attacking computer
systems is the definition of vulnerability and exposure [25] made by the CVE11

Editorial Board.

Computer System. The term computer system embraces all kinds of (electronic)12

machines that are programmable and all software and data they contain. It can be
everything from integrated circuits to civil and military systems (including the net-
works connecting them).

2.2.4 Evaluation.

To test if the new definition has the intended extent, it is applied to a selection of
common hacker tools. First five classes of tools chosen from a list made by David
Icove [28, pp. 29–60] is used, then two tools not commonly regarded as software
weapons, a web browser and a word processor.

To get as relevant a test as possible, tools that have a high ambiguity with
respect to whether they should be regarded as software weapons or not are selected.

Denial of Service. Tools that in some way degrade the service of a computer
system exist in several versions. The instructions of such a tool is both necessary
and sufficient to successfully degrade the availability of the attacked system and it
is thus a software weapon.

Data Diddling. A tool performing unauthorised manipulation of data on the at-
tacked system can for instance be a log eraser. The definition states that this is a
software weapon, because the tool affects the integrity of the attacked system.

Port Scanning. A port scan can be compared to going round a house (in full
daylight) trying all the doors and windows to see if any of them is open [29]. Such
knowledge can then be used for intrusion.

On the other hand, merely studying the visual characteristics of an object does
not affect its confidentiality. Something clearly visible cannot be regarded as secret.

11‘[CVE is a] list of standardized names for vulnerabilities and other information security ex-
posures – CVE aims to standardize the names for all publicly known vulnerabilities and security
exposures. [. . .] The goal of CVE is to make it easier to share data across separate vulnerability
databases and security weapons.’ [26]. The list is maintained by MITRE [27].

12This term might be to restrictive. Already advanced research is done in for example the areas of
biological and quantum computers.

2.2 Definition 91

Thus, such a simple port scanner as the one described above is not sufficient enough
to affect the confidentiality of the scanned system and is therefore not a software
weapon.

However, what today commonly is known as a security scanner is more power-
ful than the tool described above. A few examples are SATAN, Nessus, and NSS.
They can for instance search for specific vulnerabilities and perform port mapping
for different applications. Such a tool contains instructions both necessary and
sufficient to affect the confidentiality of the attacked system.

Password Sniffing. By analysing the content of packets sent over a network pass-
words can be found, without interrupting the network traffic. If the sniffed pass-
words are unencrypted (or can be decrypted by the sniffer), the password sniffing
is necessary and sufficient to violate the confidentiality of the attacked system and
the sniffer is therefore a software weapon.

On the other hand, if the sniffer tool itself does merely send the encrypted
passwords to another tool for decryption, its instructions is not sufficient for a
successful attack. In other words, a sniffer is a good example of a tool that reside
in the grey area.

Traffic Analysis. Tools performing traffic analysis work in a similar way to pass-
word sniffers, but instead they use the address field of the data packet. In that way
they can be used for mapping the topology of a network. The information can be
used to identify specific servers and security functions. These can then be circum-
vented or attacked.

The situation can be compared to a reconnaissance device collecting data on the
positions of enemy troops on a battle field. Such data is most likely confidential
and might be necessary and sufficient for a successful attack on the enemy, i.e. a
traffic analysis tool is a software weapon [30, 29]

However, many traffic analysis tools are manually operated, i.e. the user gives
the parameters that control the operation. These parameters can then be viewed as
the instructions that perform the actual attack. Thus in this case the traffic analysis
tool itself cannot be regarded as being a software weapon. Instead it should be
compared to a terminal program.

From the above we can see that a traffic analyser occupies the grey area men-
tioned before. Each traffic analyser therefore has to be inspected separately to
determine whether it should be classified as a software weapon or not.

Web Browser. Using a web browser a hacker can make a dot-dot attack on
a computer system. In this case the actual instructions representing the attack
are given by the user, not the web browser. Thus the instructions constituting a
web browser are not sufficient to successfully attack a computer system and con-
sequently the browser is not a software weapon. Instead it can be regarded as a
manually operated terminal program.

92 2 A TAXONOMY OF SOFTWARE WEAPONS

Word Processor. Through the built-in macro language, a word processor can be
utilised to perform unauthorised actions on an attacked system. The instructions
used for the attack are given by the macro, the word processor only interprets them.
In other words the word processor does not in itself contain the instructions that
perform the attack. Thus a word processor is not a software weapon (but the macro
is).

Summary of Evaluation. The tools that challenged the definition the most were
the traffic analyser and the port scanner. Both tools can very well be used by a
system administrator for totally legitimate purposes. For example a traffic analyser
can be used by an administrator to continuously monitor the traffic in a network and
in that way detect anomalies signalling an intrusion. A port scanner can be used to
test the security configuration of the system and especially the firewall set-up.

It is therefore important to remember that it is the code constituting the soft-
ware that should contain instructions that are necessary and sufficient be used for
a successful attack. If a port scanner does more than just scan for open ports in a
firewall, it might very well perform actions successfully affecting the confidential-
ity of the scanned system and as a result be a software weapon, regardless of the
context.

2.3 A Draft for a Taxonomy

The categories of the taxonomy are independent and the alternatives of each cat-
egory together form a partition of the category. It is possible to use several alternat-
ives (where applicable) in a category at the same time. In this way even combined
software weapons can be unambiguously classified. This model, called character-
istics structure, is suggested by Daniel Lough [12, p. 152].

In Table 1 the 15 categories and their alternatives are presented. The alternat-
ives are then explained in separate paragraphs.

2.3.1 Type.

This category is used to distinguish an atomic software weapon from a combined
and the alternatives therefore cannot be used together.

A combined software weapon is built of more than one stand-alone (atomic
or combined) weapon. Such a weapon can utilise more than one alternative of a
category. Usage of only one alternative from each category does not necessarily
implicate an atomic weapon. In those circumstances this category indicates what
type of weapon it is.

2.3.2 Affects.

At least one of the three elements confidentiality, integrity and availability has to
be affected by a tool to make the tool a software weapon.

2.3 A Draft for a Taxonomy 93

Table 1: The taxonomic categories and their alternatives

Category Alternative 1 Alternative 2 Alternative 3

Type atomic combined
Affects confidentiality integrity availability
Duration of effect temporary permanent
Targeting manual autonomous
Attack immediate conditional
Functional area local remote
Sphere of operation host-based network-based
Used vulnerability CVE/CAN other method none
Topology single source distributed source
Target of attack single multiple
Platform dependency dependent independent
Signature of code monomorphic polymorphic
Signature of attack monomorphic polymorphic
Signature when passive visible stealth
Signature when active visible stealth

These three elements together form the core of most of the definitions of IT
security that exist today. Many of the schemes propose extensions to the core, but
few of them abandon it completely.

2.3.3 Duration of effect.

This category states for how long the software weapon is affecting the attacked
system. It is only the effect(s) the software weapon has on the system during
the weapon’s active phase that should be taken into account. If the effect of the
software weapon ceases when the active phase is over, the duration of the effect is
temporary, otherwise it is permanent.

Regarding an effect on the confidentiality of the attacked system, it can be tem-
porary. If for example a software weapon e-mails confidential data to the attacker
(or another unauthorised party), the duration of the effect is temporary. On the
other hand, if the software weapon opens a back door into the system (and leaves
it open), the effect is permanent.

2.3.4 Targeting.

The target of an attack can either be selected manual[ly] by the user, or autonom-
ous[ly] (usually randomly) by the software weapon. Typical examples of autonom-
ously targeting software weapons are worms and viruses.

94 2 A TAXONOMY OF SOFTWARE WEAPONS

2.3.5 Attack.

The attack can be done immediate[ly] or conditional[ly]. If the timing of the at-
tack is not governed by any conditions in the software, the software weapon uses
immediate attack.

2.3.6 Functional Area.

If the weapon attacks its host computer, i.e. hardware directly connected to the
processor running its instructions, it is a local weapon. If instead another physical
entity is attacked, the weapon is remote.

The placement of the weapon on the host computer can be done either with
the help of another, separate tool (including manual placement), or by the weapon
itself. If the weapon establishes itself on the host computer (i.e. breaks the host
computer’s security) it certainly is local, but can still be remote at the same time. A
weapon which is placed on the host computer manually (or by another tool) need
not be local.

2.3.7 Sphere of Operation.

A weapon affecting network traffic in some way, for instance a traffic analyser, has
a network-based operational area. A weapon affecting stationary data, for instance
a weapon used to read password files, is host-based, even if the files are read over
a network connection.

The definition of stationary data is data stored on a hard disk, in memory or on
another type of physical storage media.

2.3.8 Used Vulnerability.

The alternatives of this category are CVE/CAN13, other method and none. When
a weapon uses a vulnerability or exposure [25] stated in the CVE, the CVE/CAN
name of the vulnerability should be given14 as the alternative (if several, give all of
them).

The alternative other method should be used with great discrimination and only
if the flaw is not listed in the CVE, which then regularly must be checked to see if
it has been updated with the new method. If so, the classification of the software
weapon should be changed to the proper CVE/CAN name.

13The term CAN (Candidate Number) indicates that the vulnerability or exposure is being invest-
igated by the CVE Editorial Board for eventually receiving a CVE name [31].

14NIST (US National Institute of Standards and Technology) has initiated a meta-base called ICAT
[32] based on the CVE list. This meta-base can be used to search for CVE/CAN names when
classifying a software weapon.

The meta-base is described like this: ‘ICAT is a fine-grained searchable index of standardized
vulnerabilities that links users into publicly available vulnerability and patch information’. [33]

2.3 A Draft for a Taxonomy 95

2.3.9 Topology.

An attack can be done from one single source or several concurrent distributed
sources. In other words, the category defines the number of concurrent processes
used for the attack. The processes should be mutually coordinated and running on
separate and independent computers. If the computers are clustered or in another
way connected as to make them simulate a single entity, they should be regarded
as one.

2.3.10 Target of Attack.

This category is closely related to the category topology and has the alternatives
single and multiple. As for the category topology, it is the number of involved
entities that is important. A software weapon concurrently attacking several targets
is consequently of the type multiple.

2.3.11 Platform Dependency.

The category states whether the software weapon (the executable code) can run
on one or several platforms and the alternatives are consequently dependent and
independent.

2.3.12 Signature of Code.

If a software weapon has functions for changing the signature of its code, it is
polymorphic, otherwise it is monomorphic. The category should not be confused
with Signature when passive.

2.3.13 Signature of Attack.

A software weapon can sometimes vary the way an attack is carried out, for ex-
ample perform an attack of a specific type, but in different ways, or use different
attacks depending on the status of the attacked system. For instance a dot-dot at-
tack can be done either by using two dots, or by using the sequence %2e%2e. If
the weapon has the ability to vary the attack, the type of attack is polymorphic,
otherwise it is monomorphic.

2.3.14 Signature When Passive.

This category specifies whether the weapon is visible or uses any type of stealth
when in a passive phase15. The stealth can for example be achieved by catching
system interrupts, manipulating checksums or marking hard disk sectors as bad in
the FAT (File Allocation Table).

15A passive phase is a part of the code constituting the software weapon where no functions per-
forming an actual attack are executed.

96 3 EXAMPLES

2.3.15 Signature When Active.

A software weapon can be using instructions to provide stealth during its active
phase. The stealth can be achieved in different ways, but the purpose is to con-
ceal the effect and execution of the weapon. For example man-in-the-middle or
spoofing weapons use stealth techniques in their active phases through simulating
uninterrupted network connections.

If the weapon is not using any stealth techniques, the weapon is visible.

3 Examples

In this section, as a test, two software weapons are classified using the taxonomy.
The weapons used are the distributed denial of service (DDoS) weapon Stacheldraht
and the worm CodeRed. They were chosen for being well documented and well
known.

The test is in no way exhaustive. It is only meant to function as a demonstration
of what a classification can look like for a particular software weapon.

3.1 Stacheldraht.

The classification of the DDoS weapon Stacheldraht was made with the help of
[34, 35] and looks like this:

Type: combined

Affects: availability

Duration of effect: temporary. The agents used to get the distributed character-
istic of the weapon are installed permanently in the computers they reside on.
To get them in place other tools are used [34], so the placing of the agents is
to be considered as a separate attack not done with Stacheldraht.

The actual denial of service attack affects the attacked system until the at-
tacker decides to quit.

Targeting: manual

Attack: conditional

Functional area: remote. As stated above, the placement of the agents is not
considered an attack performed by Stacheldraht.

Sphere of operation: network based

Used vulnerability: none

Topology: distributed source

3.2 CodeRed. 97

Target of attack: multiple

Platform dependency: dependent

Signature of code: monomorphic

Signature of attack: monomorphic The weapon can use ICMP flood, SYN flood,
UDP flood, and Smurf style attacks, which are separate types of attacks.

Signature when passive: visible

Signature when active: visible, stealth The stealth is used in the communication
between the different parts of the weapon (client, handler, and agent). This
is done through using ICMP_ECHOREPLY packets and encrypted TCP [34].

3.2 CodeRed.

The classification of the worm CodeRed was made with the help of [36, 37, 38]
and looks like this:

Type: combined

Affects: integrity, availability

Duration of effect: temporary. The documentation states that nothing is written
to disk [37]. However, the weapon is also said to look for a file named
‘NOTWORM’ in the root of C:. How that file ends up there is not mentioned.

Regarding the defacing of the server it is done in memory by hooking and
redirecting incoming request to the worm code during 10 hours [36], i.e. a
temporary effect. The DoS attack is also limited in extent and therefore a
temporary effect.

Targeting: autonomous

Attack: conditional

Functional area: local, remote. The weapon (in version 1) defaces the server it
has infected and also performs a DoS attack on a specific IP address. There-
fore it is both local and remote.

Sphere of operation: host based, network based. See the previous category.

Used vulnerability: CVE-2001-0500 (idq.dll),
CVE-2001-0506 (SSI)

Topology: single source

98 4 SUMMARY

Target of attack: single, multiple. The weapon executes a DoS attack on a single
IP address. It is also divided into several (99 + 1) threads, which all concur-
rently tries to infect (attack) randomly chosen IP addresses. This makes it
both a single and multiple target attacking weapon.

Platform dependency: dependent

Signature of code: monomorphic

Signature of attack: monomorphic There are both a DoS attack and an infection
mechanism, but each type of those two attacks are always executed in the
same way.

Signature when passive: visible. The weapon is put to sleep when certain condi-
tions are met. This cannot be regarded as using any stealth technique.

Signature when active: visible

4 Summary

The report has outlined a suggestion for a taxonomy, i.e. a classification scheme
and a definition of software weapons. The definition part has been given much
weight, because a classification scheme must have a solid base to work properly.
To enable an unambiguous definition the emphasis was moved from the use of the
weapon, to the technical (measurable) characteristics of the weapon. This gave the
following formulation:

A software weapon is software containing instructions that are ne-
cessary and sufficient for a successful attack on a computer system.

The classification part is meant to be used at a rather abstract level and for that
reason the categories (and their alternatives) are chosen to be general properties
held by all software weapons. A classification of a weapon must contain at least
one alternative from each category.

By incorporating CVE names the taxonomy offers a connection to a global
standard for naming vulnerabilities and exposures in software. This means that a
meta-base of software weapons can be built, which can offer a global standardisa-
tion of the area.

The work done so far has been mainly theoretical. The next thing to do is to test
the taxonomy empirically. Each category and its alternatives must be thoroughly
tested to see if any of them needs to be changed.

Also the quality of the classification scheme needs to be tested. Software
weapons related by common sense shall also have fairly similar classifications and
unrelated weapons more or less be orthogonally classified.

REFERENCES 99

References

[1] Ford, R.: (Malware) http://www.malware.org/malware.htm, ac-
cessed 17 July 2002.

[2] Helenius, M.: Problems, advantages and disadvantages of malware testing.
In: EICAR 1999 Best Paper Proceedings. (1999) http://conference.
eicar.org/past_conferences/1999/other/Helenius.pdf,
accessed 18 July 2002.

[3] Kaminski, J., O’Dea, H.: (How to smell a RAT - remote administration tools
vs backdoor Trojans) http://www.virusbtn.com/conference/
this_year/abstracts/remote_administration.xml, ac-
cessed 22 July 2002.
Only the abstract of the paper was available and therefore no references are
made to the body of the document.

[4] Hornby, A.S.: Oxford advanced learner’s dictionary of current English. 6
edn. Oxford University Press, Oxford (2000)

[5] Tzu, S.: The Art of War. (500 B.C.) http://all.net/books/tzu/
tzu.html, accessed 12 June 2002.
Translation by Lionel Giles, 1910.

[6] Karresand, M.: Tebit – teknisk beskrivningsmodell för it-vapen. Technical
report, Command and Control Warfare Technology, FOI - Swedish Defence
Research Agency (2001)

[7] Brunnstein, K.: From AntiVirus to AntiMalware Software and Bey-
ond: Another Approach to the Protection of Customers from Dys-
functional System Behaviour, Faculty for Informatics, University of
Hamburg, Germany. (1999) http://csrc.nist.gov/nissc/1999/
proceeding/papers/p12.pdf, accessed 22 July 2002.

[8] Helenius, M.: A System to Support the Analysis of Antivirus Products’
Virus Detection Capabilities. PhD thesis, University of Tampere, Fin-
land (2002) http://acta.uta.fi/pdf/951-44-5394-8.pdf, ac-
cessed 22 July 2002.

[9] Swimmer, M.: (Malware) http://www.swimmer.org/morton/
malware.html, accessed 18 July 2002.

[10] Whalley, I., Arnold, B., Chess, D., Morar, J., Segal, A., Swimmer, M.: An
Environment for Controlled Worm Replication and Analysis or: Internet-
inna-Box. (2000) http://www.research.ibm.com/antivirus/
SciPapers/VB2000INW.htm, accessed 18 July 2002.

100 REFERENCES

[11] Whalley, I.: Testing Times for Trojans. (1999) http://www.research.
ibm.com/antivirus/SciPapers/Whalley/inwVB99.html, ac-
cessed 18 July 2002.

[12] Lough, D.L.: A Taxonomy of Computer Attacks with Applications
to Wireless Networks. PhD thesis, Virgina Polytechnic Institute and
State University (2001) http://scholar.lib.vt.edu/theses/
available/etd-04252001-234145/unrestricted/lough.
dissertation.pdf, accessed 13 June 2002.

[13] Howard, J.D.: An Analysis of Security Incidents on the Internet 1989-1995.
PhD thesis, Carnegie Mellon University, Pittsburg (1997) http://www.
cert.org/research/JHThesis/Word6/, accessed 12 June 2002.

[14] Lindqvist, U., Jonsson, E.: How to systematically classify com-
puter security intrusions. In: Proceedings of the 1997 IEEE Sym-
posium on Security & Privacy, Oakland, CA, IEEE Computer Soci-
ety Press (1997) 154–163 http://www.ce.chalmers.se/staff/
ulfl/pubs/sp97ul.pdf, accessed 12 June 2002.

[15] Krsul, I.V.: Software Vulnerability Analysis. PhD thesis, Purdue
University (1998) http://www.acis.ufl.edu/~ivan/articles/
main.pdf, accessed 13 June 2002.

[16] Bagnall, R.J., French, G.: The Malware Rating System (MRS)TM . (2001)
http://www.dodccrp.org/6thICCRTS/Cd/Tracks/Papers/
Track7/105_tr7.pdf, accessed 22 July 2002.

[17] Haeni, R.: What is Information Warfare. (1996) http://tangle.seas.
gwu.edu/~reto/infowar/what.htm, accessed 27 June 2001.

[18] Schwartau, W.: Information Warfare – Cyberterrorism: Protecting Your Per-
sonal Security in the Electronic Age. 2 edn. Thunder’s Mouth Press, New
York, NY (1996)

[19] Goldberg, I. (2001) http://www.psycom.net/iwar.1.html, ac-
cessed 26 June 2002.

[20] CERT (Computer Emergency Response Team): CERT Advisory CA-1995-
06 Security Administrator Tool for Analyzing Networks (SATAN). (1995)
http://www.cert.org/advisories/CA-1995-06.html,
accessed 12 June 2002.

[21] Gordon, S.: Devil’s Advocate. (1995) http://www.
commandsoftware.com/virus/satan.html, accessed 23 July
2002.

REFERENCES 101

[22] CIAC (Computer Incidents Advisory Center): Information Bulletin
F-20: Security Administrator Tool for Analyzing Networks (SATAN).
(1995) http://www.ciac.org/ciac/bulletins/f-20.shtml,
accessed 12 June 2002.

[23] Gollmann, D.: Computer Security. John Wiley & Sons (1999)

[24] Landwehr, C.E., Bull, A.R., McDermott, J.P., Choi, W.S.: A tax-
onomy of computer security flaws. ACM Computing Surveys 26 (1994)
http://chacs.nrl.navy.mil/publications/CHACS/1994/
1994landwehr-acmcs.pdf, accessed 12 June 2002.
A note taken from the text published on the web: ‘As revised for publication
in ACM Computing Surveys 26, 3 (Sept., 1994). This version, prepared for
electronic distribution, reflects final revisions by the authors but does not
incorporate Computing Surveys´ copy editing. It therefore resembles, but
differs in minor details, from the published version. The figures, which have
been redrawn for electronic distribution are slightly less precise, pagination
differs, and Table 1 has been adjusted to reflect this’.

[25] (CVE) http://cve.mitre.org/about/terminology.html, ac-
cessed 4 July 2002.

[26] (CVE) http://cve.mitre.org/about/index.html, accessed 24
June 2002.

[27] MITRE: (The Early Years) http://www.mitre.org/about/
history.shtml, accessed 12 June 2002.

[28] Icove, D., Seger, K., VonStorch, W.: Computer Crime: A Crimefighter’s
Handbook. O´Reilley & Associates Inc, Sebastopol, CA (1995)

[29] Anonymous: Maximum Security – A Hacker’s Guide to Protecting Your
Internet Site and Network. 2 edn. Sams Publishing (1998)

[30] Stallings, W.: Cryptography and Network Security, Principles and Practice.
2 edn. Prentice Hall (1999)

[31] (CVE) http://cve.mitre.org/docs/docs2000/naming_
process.html, accessed 12 June 2002.

[32] (ICAT) http://icat.nist.gov/icat.cfm, accessed 12 June 2002.

[33] (ICAT) http://icat.nist.gov/icat_documentation.htm, ac-
cessed 27 September 2002.

[34] Dittrich, D.: The "stacheldraht" distributed denial of service attack
tool. (1999) http://staff.washington.edu/dittrich/misc/
stacheldraht.analysis, accessed 24 July 2002.

102 REFERENCES

[35] Dittrich, D.: The DoS Project’s "trinoo" distributed denial of service attack
tool. (1999) http://staff.washington.edu/dittrich/misc/
trinoo.analysis, accessed 24 July 2002.

[36] eEye Digital Security: .ida ”Code Red” Worm. (2001) http://www.
eeye.com/html/Research/Advisories/AL20010717.html,
accessed 13 September 2002.

[37] Chien, E.: CodeRed Worm, Symantec. (2002) http://
securityresponse.symantec.com/avcenter/venc/data/
codered.worm.html, accessed 18 July 2002.

[38] Trend Micro: CODERED.A. (2001) http://www.trendmicro.
com/vinfo/virusencyclo/default5.asp?VName=CODERED.
A&VSect=T, accessed 24 July 2002.

Appendix B

Categorised Software
Weapons

103

104 APPENDIX B. CATEGORISED SOFTWARE WEAPONS

This page is intentionally left blank, except for this text.

Categorised Software Weapons

Martin Karresand

22nd December 2002

106 LIST OF TABLES

Contents

1 Introduction 107
1.1 The categorised weapons . 107

1.1.1 mstream . 107
1.1.2 Stacheldraht . 108
1.1.3 TFN . 109
1.1.4 TFN2K . 110
1.1.5 Trinoo . 111
1.1.6 CodeRed . 112
1.1.7 Code Red II . 113
1.1.8 Nimda . 114
1.1.9 Sircam . 115

List of Tables

1 The one-dimensional categorisation of mstream 116
2 The one-dimensional categorisation of Stacheldraht 117
3 The one-dimensional categorisation of TFN 118
4 The one-dimensional categorisation of TFN2K 119
5 The one-dimensional categorisation of Trinoo 120
6 The one-dimensional categorisation of CodeRed 121
7 The one-dimensional categorisation of CodeRed II 122
8 The one-dimensional categorisation of Nimda 123
9 The one-dimensional categorisation of Sircam 124

107

1 Introduction

In this appendix nine well known software weapons are categorised with the help
of the TEBIT taxonomy and presented in separate sections. The chosen weapons
are five distributed denial of service (DDoS) weapons and four worms1.

First in each section the categorisation is shown using the two-dimensional
view of the taxonomy. Some short comments are added to the categorisations
where needed. The sources of the technical descriptions used for the categorisa-
tions are stated in the introduction to each weapon.

There is also a table showing the one-dimensional view of the taxonomy, which
represents the basic data used in the calculation of the standard deviation in Sec-
tion 5.4 in the main report. Each combination of category and alternative is presen-
ted as a 1 bit binary variable si, i = 1, 2, . . . , 34. A complete categorisation forms
a column vector.

1.1 The categorised weapons

The nine categorised weapons are presented in separate sections. Both a two-
dimensional presentation, which is easier to read, and a one-dimensional view of
each weapon is given in each section. The two views of a weapon shows the same
categorisation, the only thing differing is the way the data is presented.

1.1.1 mstream

The classification of the DDoS weapon mstream was made with the help of [1].
The weapon is the most primitive of the DDoS weapons categorised here, because
the analysed code was in an early stage of development. Most likely the creator
will continue developing the weapon, to get it more potent. However, already in
this beta stage the weapon is far from harmless.

The categorisation of the DDoS weapon looks like this:

Type: combined

Violates: availability

Duration of effect: temporary

Targeting: manual

Attack: immediate

Functional area: remote

Affected data: in transfer

Used vulnerability: none

1The term is defined in the old way; self-standing, replicating.

108 1 INTRODUCTION

Topology of source: distributed

Target of attack: multiple

Platform dependency: dependent

Signature of replicated code: not replicating

Signature of attack: monomorphic The tool uses TCP ACK packets with forged,
randomly generated source addresses.

Signature when passive: visible

Signature when active: visible

The one-dimensional categorisation is presented in Table 1.

1.1.2 Stacheldraht

The classification of the DDoS weapon Stacheldraht was made with the help of
[2, 3]. The weapon is based on the source code of TFN (see Section 1.1.3) and has
features similar to Trinoo’s (see Section 1.1.5). It also uses encrypted communica-
tion between the attacker and the master program, as well as automated update of
the daemons.

The categorisation of the DDoS weapon looks like this:

Type: combined

Violates: availability

Duration of effect: temporary. The agents used to get the distributed character-
istic of the weapon are installed permanently in the computers they reside
on. To get them in place other tools are used [2], so the placing of the agents
is to be considered as a separate attack not done with Stacheldraht.

The actual denial of service attack affects the attacked system until the at-
tacker decides to quit.

Targeting: manual

Attack: conditional

Functional area: remote. As stated above, the placement of the agents is not
considered an attack performed by Stacheldraht.

Affected data: network based

Used vulnerability: none

Topology of source: distributed

1.1 The categorised weapons 109

Target of attack: multiple

Platform dependency: dependent

Signature of replicated code: not replicating

Signature of attack: monomorphic The weapon can use ICMP flood, SYN flood,
UDP flood, and Smurf style attacks, which are separate types of attacks.

Signature when passive: visible

Signature when active: visible, stealth The stealth is used in the communication
between the different parts of the weapon (client, handler, and agent). This
is done through using ICMP_ECHOREPLY packets and encrypted TCP [2].

The one-dimensional categorisation is presented in Table 2.

1.1.3 TFN

The classification of the DDoS weapon Tribe Flood Network (TFN) was made with
the help of [4]. This DDoS weapon uses ICMP packets for the communication
between the different parts and thus is hard to detect (at least from looking at the
packet flow). It was found when an installation of a Trinoo (see Section 1.1.5)
network was stumbled upon.

The categorisation of the DDoS weapon looks like this:

Type: combined

Violates: availability

Duration of effect: temporary

Targeting: manual

Attack: immediate

Functional area: remote

Affected data: in transfer

Used vulnerability: none

Topology of source: distributed

Target of attack: multiple

Platform dependency: dependent

Signature of replicated code: not replicating

110 1 INTRODUCTION

Signature of attack: monomorphic The tool can use UDP flood, ICMP flood,
SYN flood, or Smurf style attacks, but which of the types to use is set by
the user.

Signature when passive: visible

Signature when active: visible, stealth The tool uses ICMP_ECHOREPLY to provide
stealth for the communication between the client and the daemon. It also sets
the sequence number in the header of all packets to 0x0000 to imitate ping
replies [4].

The one-dimensional categorisation is presented in Table 3.

1.1.4 TFN2K

The classification of the DDoS weapon Tribe Flood Network 2000 (TFN2K) was
made with the help of [5]. By randomly chosing from three different methods of
communication and from four different attack patterns, plus having the ability to
spoof the source addresses, this weapon is making itself hard to find countermeas-
ures for. By the way, it also encrypts the communication.

The categorisation of the weapon looks like this:

Type: combined

Violates: availability

Duration of effect: temporary

Targeting: manual

Attack: immediate

Functional area: remote

Affected data: in transfer

Used vulnerability: none

Topology of source: distributed

Target of attack: multiple

Platform dependency: dependent

Signature of replicated code: not replicating

Signature of attack: polymorphic The weapon has the ability to randomly vary
the attack patterns between UDP flood, ICMP flood, SYN flood, or Smurf
style attacks on its own.

1.1 The categorised weapons 111

Signature when passive: visible

Signature when active: visible, stealth The stealth is achieved by:

• encrypting the inter-tool communication

• inserting a random number of decoy packets in the communication flow

• randomly vary the type of packets used for the communication

• randomised packet headers

• completely silent daemons, they do not acknowledge the received com-
mands

• having the daemons spawn a new child for each attack and tries to

• falsifying the child processes names on some platforms

• spoofing all packets between clients and daemons.

The one-dimensional categorisation is presented in Table 4.

1.1.5 Trinoo

The classification of the DDoS weapon Trinoo was made with the help of [3]. The
Trinoo DDoS weapon was found together with the TFN (see Section 1.1.3) weapon
when an intrusion of a system was investigated.

The categorisation of the DDoS weapon looks like this:

Type: combined

Violates: availability

Duration of effect: temporary

Targeting: manual

Attack: immediate

Functional area: remote

Affected data: in transfer

Used vulnerability: none

Topology of source: distributed

Target of attack: multiple

Platform dependency: dependent

Signature of replicated code: not replicating

Signature of attack: monomorphic The tool uses a UDP flood attack.

112 1 INTRODUCTION

Signature when passive: visible

Signature when active: visible

The one-dimensional categorisation is presented in Table 5.

1.1.6 CodeRed

The classification of the worm CodeRed was made with the help of [6, 7, 8]. This
is a famous worm, which pestered the users of the Internet in July 2001. It attacks
servers running the Internet Information Services (IIS) and defaces them. At cer-
tain occasions the worm also makes a DoS attack on a specific IP address (the old
IP address of the White House, Washington D.C.).

The categorisation of the worm looks like this:

Type: combined

Violates: integrity;non-parasitic, availability

Duration of effect: temporary. The documentation states that nothing is written
to disk [6]. However, the weapon is also said to look for a file named ‘NOT-
WORM’ in the root of C. How that file ends up there is not mentioned.

Regarding the defacing of the server it is done in memory by hooking and
redirecting incoming request to the worm code during 10 hours [8], i.e. a
temporary effect. The DoS attack is also limited in extent and therefore a
temporary effect.

Targeting: autonomous

Attack: conditional

Functional area: local, remote. The weapon (in version 1) defaces the server it
has infected and also performs a DoS attack on a specific IP address. There-
fore it is both local and remote.

Affected data: host based, network based. See the previous category.

Used vulnerability: CVE-2001-0500 (idq.dll),
CVE-2001-0506 (SSI)

Topology of source: single

Target of attack: single, multiple. The weapon executes a DoS attack on a single
IP address. It is also divided into several (99 + 1) threads, which all concur-
rently tries to infect (attack) randomly chosen IP addresses. This makes it
both a single and multiple target attacking weapon.

Platform dependency: dependent

1.1 The categorised weapons 113

Signature of replicated code: monomorphic

Signature of attack: monomorphic There are both a DoS attack and an infection
mechanism, but each type of those two attacks are always executed in the
same way.

Signature when passive: visible. The weapon is put to sleep when certain condi-
tions are met. This cannot be regarded as using any stealth technique.

Signature when active: visible

The one-dimensional categorisation is presented in Table 6.

1.1.7 Code Red II

The classification of the worm Code Red II was made with the help of [9, 10,
11]. CodeRed II utilises the same vulnerability in IIS servers as CodeRed (see
Section 1.1.6), but the payload is different. This time a backdoor is installed on the
attacked systems.

The categorisation of the worm looks like this:

Type: combined

Violates: confidentiality

Duration of effect: temporary, permanent The mechanism used to infect new vic-
tims is active for 24–48 hours. The installed backdoor is permanent.

Targeting: autonomous

Attack: immediate

Functional area: local

Affected data: stationary

Used vulnerability: CVE-2001-0500 (idq.dll), CVE-2001-0506 (SSI)

Topology of source: single

Target of attack: multiple

Platform dependency: dependent

Signature of replicated code: monomorphic

Signature of attack: monomorphic

Signature when passive: visible

Signature when active: visible

The one-dimensional categorisation is presented in Table 7.

114 1 INTRODUCTION

1.1.8 Nimda

The classification of the worm Nimda was made with the help of [12, 13, 14]. This
software weapon is really more than a worm. It spreads in four different ways;
infection of files, via e-mail, via pages offered by IIS servers, and between shared
partitions in local networks.

The categorisation of the software weapon looks like this:

Type: combined

Violates: confidentiality, integrity;parasitic, integrity;non-parasitic The weapon
both attaches a file to itself to spread (integrity;parasitic), and changes web
pages on infected IIS servers (integrity;non-parasitic).

Duration of effect: permanent

Targeting: autonomous The weapon uses randomly generated IP addresses as tar-
gets.

Attack: immediate, conditional The mass-mailing function is activated every 10th
day, which makes it conditional. The other used types of attack are immedi-
ate.

Functional area: local, remote The remote part consists of attacks on file servers
on the local network and computers running IIS on the Internet.

Affected data: stationary

Used vulnerability: CVE-2000-0884, CVE-2001-0154

Topology of source: single

Target of attack: single The mass mailing function is not to be regarded as an
attack on multiple targets. Each mail contains a separate copy of the weapon.

Platform dependency: dependent

Signature of replicated code: monomorphic

Signature of attack: monomorphic

Signature when passive: stealth

Signature when active: stealth

The one-dimensional categorisation is presented in Table 8.

1.1 The categorised weapons 115

1.1.9 Sircam

The classification of the worm Sircam was made with the help of [15, 16, 17]. This
is a trojan horse and a worm in the same packet. It has the ability to spread through
Microsoft Windows network shares, as well as e-mail itself piggy-backing on a
random document from the ‘My Documents’ folder in the infected computer.

The categorisation of the software weapon looks like this:

Type: combined

Violates: confidentiality, integrity;parasitic, integrity;non-parasitic, availability
The weapon fills the remaining space on C: if a certain condition is met.
It also merges itself with a randomly chosen file on the infected system and
sends this resulting file on to infect new victims. Another used way of in-
fecting new hosts is via network shares and in that case it copies itself to the
share without any other file, thus it is both parasitic and non-parasitic.

Duration of effect: permanent

Targeting: autonomous

Attack: immediate, conditional The e-mailing part of the attack is of the immedi-
ate type.

Functional area: local, remote Apart from infecting files locally, the weapon also
tries to infect all shares connected to the attacked computer, i.e. a remote
functional area.

Affected data: stationary

Used vulnerability: none

Topology of source: single

Target of attack: single

Platform dependency: dependent

Signature of replicated code: monomorphic

Signature of attack: monomorphic

Signature when passive: stealth

Signature when active: stealth

The one-dimensional categorisation is presented in Table 9.

116 1 INTRODUCTION

Table 1: The one-dimensional categorisation of mstream

Category Alternative 0/1

Type atomic 0
Type combined 1
Violates confidentiality 0
Violates integrity;parasitic 0
Violates integrity;non-parasitic 0
Violates availability 1
Dur. of effect temporary 1
Dur. of effect permanent 0
Targeting manual 1
Targeting autonomous 0
Attack immediate 1
Attack conditional 0
Funct. area local 0
Funct. area remote 1
Affected data stationary 0
Affected data in transfer 1
Used vuln. CVE/CAN 0
Used vuln. other vuln. 0
Used vuln. none 1
Topol. of source single 0
Topol. of source distributed 1
Target of attack single 0
Target of attack multiple 1
Platform depend. dependent 1
Platform depend. independent 0
Sign. of repl. code monomorphic 0
Sign. of repl. code polymorphic 0
Sign. of repl. code not replicating 1
Sign. of attack monomorphic 1
Sign. of attack polymorphic 0
Sign. when passive visible 1
Sign. when passive stealth 0
Sign. when active visible 1
Sign. when active stealth 0

1.1 The categorised weapons 117

Table 2: The one-dimensional categorisation of Stacheldraht

Category Alternative 0/1

Type atomic 0
Type combined 1
Violates confidentiality 0
Violates integrity;parasitic 0
Violates integrity;non-parasitic 0
Violates availability 1
Dur. of effect temporary 1
Dur. of effect permanent 0
Targeting manual 1
Targeting autonomous 0
Attack immediate 0
Attack conditional 1
Funct. area local 0
Funct. area remote 1
Affected data stationary 0
Affected data in transfer 1
Used vuln. CVE/CAN 0
Used vuln. other vuln. 0
Used vuln. none 1
Topol. of source single 0
Topol. of source distributed 1
Target of attack single 0
Target of attack multiple 1
Platform depend. dependent 1
Platform depend. independent 0
Sign. of repl. code monomorphic 0
Sign. of repl. code polymorphic 0
Sign. of repl. code not replicating 1
Sign. of attack monomorphic 1
Sign. of attack polymorphic 0
Sign. when passive visible 1
Sign. when passive stealth 0
Sign. when active visible 1
Sign. when active stealth 1

118 1 INTRODUCTION

Table 3: The one-dimensional categorisation of TFN

Category Alternative 0/1

Type atomic 0
Type combined 1
Violates confidentiality 0
Violates integrity;parasitic 0
Violates integrity;non-parasitic 0
Violates availability 1
Dur. of effect temporary 1
Dur. of effect permanent 0
Targeting manual 1
Targeting autonomous 0
Attack immediate 1
Attack conditional 0
Funct. area local 0
Funct. area remote 1
Affected data stationary 0
Affected data in transfer 1
Used vuln. CVE/CAN 0
Used vuln. other vuln. 0
Used vuln. none 1
Topol. of source single 0
Topol. of source distributed 1
Target of attack single 0
Target of attack multiple 1
Platform depend. dependent 1
Platform depend. independent 0
Sign. of repl. code monomorphic 0
Sign. of repl. code polymorphic 0
Sign. of repl. code not replicating 1
Sign. of attack monomorphic 1
Sign. of attack polymorphic 0
Sign. when passive visible 1
Sign. when passive stealth 0
Sign. when active visible 1
Sign. when active stealth 1

1.1 The categorised weapons 119

Table 4: The one-dimensional categorisation of TFN2K

Category Alternative 0/1

Type atomic 0
Type combined 1
Violates confidentiality 0
Violates integrity;parasitic 0
Violates integrity;non-parasitic 0
Violates availability 1
Dur. of effect temporary 1
Dur. of effect permanent 0
Targeting manual 1
Targeting autonomous 0
Attack immediate 1
Attack conditional 0
Funct. area local 0
Funct. area remote 1
Affected data stationary 0
Affected data in transfer 1
Used vuln. CVE/CAN 0
Used vuln. other vuln. 0
Used vuln. none 1
Topol. of source single 0
Topol. of source distributed 1
Target of attack single 0
Target of attack multiple 1
Platform depend. dependent 1
Platform depend. independent 0
Sign. of repl. code monomorphic 0
Sign. of repl. code polymorphic 0
Sign. of repl. code not replicating 1
Sign. of attack monomorphic 0
Sign. of attack polymorphic 1
Sign. when passive visible 1
Sign. when passive stealth 0
Sign. when active visible 1
Sign. when active stealth 1

120 1 INTRODUCTION

Table 5: The one-dimensional categorisation of Trinoo

Category Alternative 0/1

Type atomic 0
Type combined 1
Violates confidentiality 0
Violates integrity;parasitic 0
Violates integrity;non-parasitic 0
Violates availability 1
Dur. of effect temporary 1
Dur. of effect permanent 0
Targeting manual 1
Targeting autonomous 0
Attack immediate 1
Attack conditional 0
Funct. area local 0
Funct. area remote 1
Affected data stationary 0
Affected data in transfer 1
Used vuln. CVE/CAN 0
Used vuln. other vuln. 0
Used vuln. none 1
Topol. of source single 0
Topol. of source distributed 1
Target of attack single 0
Target of attack multiple 1
Platform depend. dependent 1
Platform depend. independent 0
Sign. of repl. code monomorphic 0
Sign. of repl. code polymorphic 0
Sign. of repl. code not replicating 1
Sign. of attack monomorphic 1
Sign. of attack polymorphic 0
Sign. when passive visible 1
Sign. when passive stealth 0
Sign. when active visible 1
Sign. when active stealth 0

1.1 The categorised weapons 121

Table 6: The one-dimensional categorisation of CodeRed

Category Alternative 0/1

Type atomic 0
Type combined 1
Violates confidentiality 0
Violates integrity;parasitic 0
Violates integrity;non-parasitic 1
Violates availability 1
Dur. of effect temporary 1
Dur. of effect permanent 0
Targeting manual 0
Targeting autonomous 1
Attack immediate 0
Attack conditional 1
Funct. area local 1
Funct. area remote 1
Affected data stationary 1
Affected data in transfer 1
Used vuln. CVE/CAN 1
Used vuln. other vuln. 0
Used vuln. none 0
Topol. of source single 1
Topol. of source distributed 0
Target of attack single 1
Target of attack multiple 1
Platform depend. dependent 1
Platform depend. independent 0
Sign. of repl. code monomorphic 1
Sign. of repl. code polymorphic 0
Sign. of repl. code not replicating 0
Sign. of attack monomorphic 1
Sign. of attack polymorphic 0
Sign. when passive visible 1
Sign. when passive stealth 0
Sign. when active visible 1
Sign. when active stealth 0

122 1 INTRODUCTION

Table 7: The one-dimensional categorisation of CodeRed II

Category Alternative 0/1

Type atomic 0
Type combined 1
Violates confidentiality 1
Violates integrity;parasitic 1
Violates integrity;non-parasitic 0
Violates availability 0
Dur. of effect temporary 1
Dur. of effect permanent 1
Targeting manual 0
Targeting autonomous 1
Attack immediate 1
Attack conditional 0
Funct. area local 1
Funct. area remote 0
Affected data stationary 1
Affected data in transfer 0
Used vuln. CVE/CAN 1
Used vuln. other vuln. 0
Used vuln. none 0
Topol. of source single 1
Topol. of source distributed 0
Target of attack single 0
Target of attack multiple 1
Platform depend. dependent 1
Platform depend. independent 0
Sign. of repl. code monomorphic 1
Sign. of repl. code polymorphic 0
Sign. of repl. code not replicating 0
Sign. of attack monomorphic 1
Sign. of attack polymorphic 0
Sign. when passive visible 1
Sign. when passive stealth 0
Sign. when active visible 1
Sign. when active stealth 0

1.1 The categorised weapons 123

Table 8: The one-dimensional categorisation of Nimda

Category Alternative 0/1

Type atomic 0
Type combined 1
Violates confidentiality 1
Violates integrity;parasitic 1
Violates integrity;non-parasitic 1
Violates availability 0
Dur. of effect temporary 0
Dur. of effect permanent 1
Targeting manual 0
Targeting autonomous 1
Attack immediate 1
Attack conditional 1
Funct. area local 1
Funct. area remote 1
Affected data stationary 1
Affected data in transfer 0
Used vuln. CVE/CAN 1
Used vuln. other vuln. 0
Used vuln. none 0
Topol. of source single 1
Topol. of source distributed 0
Target of attack single 1
Target of attack multiple 0
Platform depend. dependent 1
Platform depend. independent 0
Sign. of repl. code monomorphic 1
Sign. of repl. code polymorphic 0
Sign. of repl. code not replicating 0
Sign. of attack monomorphic 1
Sign. of attack polymorphic 0
Sign. when passive visible 0
Sign. when passive stealth 1
Sign. when active visible 0
Sign. when active stealth 1

124 1 INTRODUCTION

Table 9: The one-dimensional categorisation of Sircam

Category Alternative 0/1

Type atomic 0
Type combined 1
Violates confidentiality 1
Violates integrity;parasitic 1
Violates integrity;non-parasitic 1
Violates availability 1
Dur. of effect temporary 0
Dur. of effect permanent 1
Targeting manual 0
Targeting autonomous 1
Attack immediate 1
Attack conditional 1
Funct. area local 1
Funct. area remote 1
Affected data stationary 1
Affected data in transfer 0
Used vuln. CVE/CAN 0
Used vuln. other vuln. 0
Used vuln. none 1
Topol. of source single 1
Topol. of source distributed 0
Target of attack single 1
Target of attack multiple 0
Platform depend. dependent 1
Platform depend. independent 0
Sign. of repl. code monomorphic 1
Sign. of repl. code polymorphic 0
Sign. of repl. code not replicating 0
Sign. of attack monomorphic 1
Sign. of attack polymorphic 0
Sign. when passive visible 0
Sign. when passive stealth 1
Sign. when active visible 0
Sign. when active stealth 1

REFERENCES 125

References

[1] David Dittrich, George Weaver, Sven Dietrich, and Neil Long, The
”mstream” distributed denial of service attack tool, May 2000.
http://staff.washington.edu/dittrich/misc/mstream.
analysis.txt, accessed 16 November 2002.

[2] David Dittrich, The ”stacheldraht” distributed denial of service attack tool,
December 1999.
http://staff.washington.edu/dittrich/misc/
stacheldraht.analysis, accessed 24 July 2002.

[3] David Dittrich, The DoS Project’s ”trinoo” distributed denial of service
attack tool, October 1999.
http://staff.washington.edu/dittrich/misc/trinoo.
analysis.txt, accessed 24 July 2002.

[4] David Dittrich, The ”Tribe Flood Network” distributed denial of service
attack tool, October 1999.
http://staff.washington.edu/dittrich/misc/tfn.
analysis.txt, accessed 16 November 2002.

[5] Jason Barlow and Woody Thrower, TFN2K – An Analysis, March 2000.
http://packetstormsecurity.nl/distributed/TFN2k_
Analysis-1.3.txt, accessed 17 November 2002.

[6] Eric Chien, CodeRed Worm, Symantec, July 2002.
http://securityresponse.symantec.com/avcenter/venc/
data/codered.worm.html, accessed 24 July 2002.

[7] Trend Micro, CODERED.A, July 2001.
http://www.trendmicro.com/vinfo/virusencyclo/
default5.asp?VName=CODERED.A&VSect=T, accessed 24 July
2002.

[8] eEye Digital Security, .ida ”Code Red” Worm, July 2001.
http://www.eeye.com/html/Research/Advisories/
AL20010717.html, accessed 13 September 2002.

[9] Eric Chien and Peter Szor, CodeRed II, Symantec, July 2002.
http://securityresponse.symantec.com/avcenter/venc/
data/codered.ii.html, accessed 18 October 2002.

[10] Trend Micro, CODERED.C, August 2001.
http://www.trendmicro.com/vinfo/virusencyclo/
default5.asp?VName=CODERED.C&VSect=T, accessed 18 Oc-
tober 2002.

126 REFERENCES

[11] eEye Digital Security, CodeRedII Worm Analysis, August 2001.
http://www.eeye.com/html/Research/Advisories/
AL20010804.html, accessed 18 October 2002.

[12] Eric Chien, W32.Nimda.A@mm, Symantec, July 2002.
http://securityresponse.symantec.com/avcenter/venc/
data/w32.nimda.a@mm.html#technicaldetails, accessed 21
October 2002.

[13] Trend Micro, PE_NIMDA.A, October 2001.
http://www.trendmicro.com/vinfo/virusencyclo/
default5.asp?Vname=PE_NIMDA.A&VSect=T, accessed 21
October 2002.

[14] K Tocheva, G Erdelyi, A Podrezov, S Rautiainen, and M Hypponen, Nimda,
F-Secure, September 2001.
http://www.europe.f-secure.com/v-descs/nimda.shtml,
accessed 21 October 2002.

[15] Peter Ferrie and Peter Szor, W32.Sircam.Worm@mm, Symantec, July 2002.
http://securityresponse.symantec.com/avcenter/venc/
data/w32.sircam.worm@mm.html#technicaldetails, ac-
cessed 23 October 2002.

[16] Gergely Erdelyi and Alexey Podrezov, Sircam, F-Secure, July 2001.
http://www.europe.f-secure.com/v-descs/sircam.
shtml, accessed 23 October 2002.

[17] Trend Micro, WORM_SIRCAM.A, October 2001.
http://www.trendmicro.com/vinfo/virusencyclo/
default5.asp?VName=WORM_SIRCAM.A&VSect=T, accessed
23 October 2002.

Appendix C

Redefined Terms

127

128 APPENDIX C. REDEFINED TERMS

This page is intentionally left blank, except for this text.

Redefined Terms

Martin Karresand

22nd December 2002

130 1 INTRODUCTION

1 Introduction

The definitions of the three terms trojan horse, virus, and worm presented in this
appendix are really only proposals. The terms need to be unanimously defined by
the whole research community to be usable.

Each definition is presented as a table in a separate section, where also a short
explanation of the underlying ideas are included.

The requirement to use at least one alternative from each category is still valid.
Setting a combination of a category and alternative to 0 is not the same as using an
alternative in that category.

1.1 Trojan horse

A trojan horse is often defined as a program performing destructive, or at least
not by the user authorised functions, when at the same time posing as a legitimate
program.

Another definition with the same meaning as the one above can be formulated
as the weapon needing a user to start the execution by tricking him or her into it.
This way of defining the term is the preferred one and hence the definition shown
in Table 1. As can be seen the old definition really still fits the new one.

1.2 Virus

A virus is a program which replicates and also is parasitic. Often it is regarded as
only attacking the host computer, the computer it is residing on, but this definition
is far from being generally accepted.

The new proposed definition, which can be seen in Table 2, is meant to be
rather general. There are several categories which are marked with wildcard that
might be used to narrow the definition a bit. For example the targeting of a virus
might be set to 1, because they tend to spread uncontrollably. It is also possible to
set the Functional area; local to 1, because of the virus being regarded as always
replicating on its own host. To separate the viruses from trojan horses the Used
vulnerability; none might be set to 0. Mostly a virus have a single source topology,
at least a simple virus, and consequently that alternative might be set to 1.

1.3 Worm

The worms are often regarded as forming a sub-class of viruses, but not always.
Both a virus and a worm are defined as replicating. The things setting them apart
are that worms are defined as being self-standing (not being parasitic) and often
also as replicating over network connections.

The new, proposed definition is shown in Table 3 and as for the new definition
of virus it is rather general and hence might also be narrowed down a bit.

First of all, the Affects; integrity;non-parasitic alternative may really be needed,
because the worm installs itself on the system and thus affects the integrity of the

1.3 Worm 131

system, although not in a parasitic way. It might also be necessary to separate a
worm from a trojan horse, and therefore the Used vulnerability; none may be set to
0. Also the targeting is mostly autonomous, but not necessarily. Because a worm
by some is regarded to only replicate over network connections, the alternative
Functional area; remote might be set to 1 and Functional area; local to 0.

132 1 INTRODUCTION

Table 1: The redefined term Trojan horse

Category Alternative 0/1/wildcard

Type atomic wildcard
Type combined wildcard
Violates confidentiality wildcard
Violates integrity;parasitic wildcard
Violates integrity;non-parasitic wildcard
Violates availability wildcard
Dur. of effect temporary wildcard
Dur. of effect permanent wildcard
Targeting manual wildcard
Targeting autonomous wildcard
Attack immediate wildcard
Attack conditional wildcard
Funct. area local wildcard
Funct. area remote wildcard
Affected data stationary wildcard
Affected data in transfer wildcard
Used vuln. CVE/CAN 0
Used vuln. other vuln. 0
Used vuln. none 1
Topol. of source single wildcard
Topol. of source distributed wildcard
Target of attack single wildcard
Target of attack multiple wildcard
Platform depend. dependent wildcard
Platform depend. independent wildcard
Sign. of repl. code monomorphic wildcard
Sign. of repl. code polymorphic wildcard
Sign. of repl. code not replicating wildcard
Sign. of attack monomorphic wildcard
Sign. of attack polymorphic wildcard
Sign. when passive visible wildcard
Sign. when passive stealth wildcard
Sign. when active visible wildcard
Sign. when active stealth wildcard

1.3 Worm 133

Table 2: The redefined term virus

Category Alternative 0/1/wildcard

Type atomic wildcard
Type combined wildcard
Violates confidentiality wildcard
Violates integrity;parasitic 1
Violates integrity;non-parasitic wildcard
Violates availability wildcard
Dur. of effect temporary wildcard
Dur. of effect permanent wildcard
Targeting manual wildcard
Targeting autonomous wildcard
Attack immediate wildcard
Attack conditional wildcard
Funct. area local wildcard
Funct. area remote wildcard
Affected data stationary wildcard
Affected data in transfer wildcard
Used vuln. CVE/CAN wildcard
Used vuln. other vuln. wildcard
Used vuln. none wildcard
Topol. of source single wildcard
Topol. of source distributed wildcard
Target of attack single wildcard
Target of attack multiple wildcard
Platform depend. dependent wildcard
Platform depend. independent wildcard
Sign. of repl. code monomorphic wildcard
Sign. of repl. code polymorphic wildcard
Sign. of repl. code not replicating 0
Sign. of attack monomorphic wildcard
Sign. of attack polymorphic wildcard
Sign. when passive visible wildcard
Sign. when passive stealth wildcard
Sign. when active visible wildcard
Sign. when active stealth wildcard

134 1 INTRODUCTION

Table 3: The redefined term worm

Category Alternative 0/1/wildcard

Type atomic wildcard
Type combined wildcard
Violates confidentiality wildcard
Violates integrity;parasitic 0
Violates integrity;non-parasitic wildcard
Violates availability wildcard
Dur. of effect temporary wildcard
Dur. of effect permanent wildcard
Targeting manual wildcard
Targeting autonomous wildcard
Attack immediate wildcard
Attack conditional wildcard
Funct. area local wildcard
Funct. area remote wildcard
Affected data stationary wildcard
Affected data in transfer wildcard
Used vuln. CVE/CAN wildcard
Used vuln. other vuln. wildcard
Used vuln. none wildcard
Topol. of source single wildcard
Topol. of source distributed wildcard
Target of attack single wildcard
Target of attack multiple wildcard
Platform depend. dependent wildcard
Platform depend. independent wildcard
Sign. of repl. code monomorphic wildcard
Sign. of repl. code polymorphic wildcard
Sign. of repl. code not replicating 0
Sign. of attack monomorphic wildcard
Sign. of attack polymorphic wildcard
Sign. when passive visible wildcard
Sign. when passive stealth wildcard
Sign. when active visible wildcard
Sign. when active stealth wildcard

På svenska

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –
under en längre tid från publiceringsdatum under förutsättning att inga extra-
ordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för
ickekommersiell forskning och för undervisning. Överföring av upphovsrätten
vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ
art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i
den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se
förlagets hemsida http://www.ep.liu.se/

In English

The publishers will keep this document online on the Internet - or its possible
replacement - for a considerable time from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for your own use and to
use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional on the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be
mentioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its WWW home page: http://www.ep.liu.se/

© Martin Karresand

