This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

A Hybrid Model to Detect Malicious Executables

Mohammad M. Masud

Latifur Khan

Bhavani Thuraisingham

Department of Computer Science
The University of Texas at Dallas
Richardson, TX 75083-0688
{mehedy, lkhan, bhavani.thuraisingham } @utdallas.edu

Abstract— We present a hybrid data mining approach to detect
malicious executables. In this approach we identify important
features of the malicious and benign executables. These features
are used by a classifier to learn a classification model that can
distinguish between malicious and benign executables. We
construct a novel combination of three different kinds of
features: binary n-grams, assembly n-grams, and library function
calls. Binary features are extracted from the binary executables,
whereas assembly features are extracted from the disassembled
executables. The function call features are extracted from the
program headers. We also propose an efficient and scalable
feature extraction technique. We apply our model on a large
corpus of real benign and malicious executables. We extract the
abovementioned features from the data and train a classifier
using Support Vector Machine. This classifier achieves a very
high accuracy and low false positive rate in detecting malicious
executables. Our model is compared with other feature-based
approaches, and found to be more efficient in terms of detection
accuracy and false alarm rate.

malicious

Keywords- disassembly, extraction,

executable, n-gram analysis.

feature

1. INTRODUCTION

Malicious code is a great threat to computers and computer
society. Numerous kinds of malicious code wander in the wild.
Some of them are mobile, such as worms, and spread through
the internet crashing thousands of computers worldwide. Other
kinds of malicious code are static, like viruses, but sometimes
deadlier than its mobile counterpart. Malicious code writers
mainly exploit different kind of software vulnerabilities to
attack host machines. There has been tremendous effort
imparted by researchers to counter the attacks of malicious
code writers. Unfortunately, the more successful the
researchers become in cracking down malicious code, the more
sophisticated mal-code appear in the wild, evading all kinds of
detection mechanisms. Thus, the battle between malicious code
writers and researchers is virtually a never-ending game.

Although signature based detection techniques are being
used widely, they are not effective against “zero-day attacks”
and various “obfuscation” techniques. Signature based
technique is also hopeless against new attacks. So, there has
been a growing need for fast, automated, and efficient detection
technique that can also detect new attacks. Many automated
systems [1-8] have already been developed by different
researchers in recent years.

In this paper we describe our new model, the Hybrid
Feature Retrieval (HFR) model, which can detect malicious
executables efficiently. Our model extracts three different kinds
of features from the executables and combines them into one
feature set, which we call the hybrid feature set (HFS). These
features are used to train a classifier using Support Vector
Machine (SVM). This classifier is then used to detect malicious
executables. The features that we extract are: i) binary features,
ii) derived assembly features and iii) dynamic link library
(DLL) call features. The binary features are extracted as binary
n-grams (i.e., n consecutive bytes) from the binary executable
files. This extraction process is explained in section III (A).
Derived assembly features are extracted from disassembled
executables. A derived assembly feature is actually a sequence
of one or more assembly instructions. We extract these features
using our sophisticated assembly feature retrieval (AFR)
algorithm, explained in section IV (B). These derived assembly
features are similar to, but not exactly the same as assembly #-
gram features (explained in section III (B)). We do not directly
use the assembly n-grams features in HFS, because we observe
during our initial experiments [9] that derived assembly
features perform better than assembly n-gram features. The
process of extracting derived assembly features is not trivial,
but involves a lot of technical challenges. It is explained in
section IV. DLL call features are also extracted from the header
of the disassembled binaries, and explained elaborately in
section III (C). We show empirically that the combination of
these three features is always better than any single feature in
terms of classification accuracy. We discuss our results in
section V.

Our contributions to this research work are as follows. First,
we propose and implement our HFR model, which combines
three types of features mentioned above. Second, we apply a
novel idea to extract assembly features using binary features. A
binary feature or binary n-gram may represent an assembly
instruction, or part of one or more instructions, or even a string
data inside the code block. Thus, a binary n-gram may
represent some partial information. But we apply AFR
algorithm to retrieve the most appropriate assembly instruction
or instruction sequences corresponding to the binary n-gram.
We call it the most appropriate assembly instruction sequence
because there may be multiple possible assembly instruction
sequences corresponding to a single binary n-gram, and AFR
selects the most appropriate of them by applying some
selection criteria. If the binary n-gram represents a partial
assembly instruction or instruction sequence, then we find the

U.S. Government work not protected by U.S. Copyright

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

corresponding complete instruction sequence, and use this as a
feature. The net effect is that, we convert a binary feature to an
assembly feature. We hope that the assembly feature would
carry more complete and meaningful information than the
binary feature. Third, we propose and implement a scalable
solution to the n-gram feature extraction and selection problem
in general. Our solution not only solves the limited memory
problem but also applies efficient and powerful data structures
to ensure fast running time. Thus, it is scalable to very large set
of executables (in the order of thousands), even with limited
main memory and processor speed. Fourth, we compare our
results with a recently published work [10] that is claimed to
have achieved high accuracy using only binary n-gram feature,
and we show that our method is superior to that.

The rest of the paper is organized as follows: Section II
discusses related works, Section III presents and explains
different kinds of n-gram feature extraction methods, Section
IV describes the HFR model, Section V discusses our
experiments and analyzes results, Section VI concludes with
future research directions.

II. RELATED WORK

There has been a significant amount of research in recent
years to detect malicious executables. Researchers apply
different approaches to automate the detection process. One of
them is behavioral approach, which is mainly applied to mobile
malicious code. Behavioral approaches try to analyze
characteristics such as source and destination addresses, build
statistical models of packet flow at the network level, consider
email attachments etc. Examples of behavioral approaches are
social network analysis [1, 2], and statistical analysis [3]. A
data mining based behavioral approach for detecting email
worms as been proposed by Masud et al. [4].

Another approach is content-based, which analyzes the
content of the code. Some content based approaches try to
generate signature automatically from network packets.
Examples are EarlyBird [5], Autograph [6], and Polygraph [7].
Another kind of content-based approach extracts features from
the executables and apply machine learning to classify
malicious executables. Stolfo et al. [8] extract DLL call
information using GNU Bin-Utils [11], and character strings
using GNU strings, from the header of Windows PE
executables. Also, they use byte sequences as features. They
report accuracy of their features using different classifiers.

A similar work is done by Maloof et al. [10]. They extract
binary n-gram features from the binary executables and apply
them to different classification methods, and report accuracy.
Our model is also content based. But it is different from [10] in
that it extracts not only the binary n-grams but also assembly
instruction sequences from the disassembled executables, and
gathers DLL call information from the program headers. We
compare our model’s performance with [10], since they report
higher accuracy than [8].

III. FEATURE EXTRACTION USING N-GRAM ANALYSIS

Feature extraction wusing n-gram analysis involves
extracting all possible n-grams from the given dataset (training

set), and selecting the best n-grams among them. We extend
the notion of n-gram from bytes to assembly instructions, and
to DLL function calls. That is, an n-gram may be either a
sequence of n bytes or n assembly instructions, or n DLL
function calls, depending on whether we want to extract
features from binary or assembly program, or DLL call list.
Before extracting n-grams, we preprocess the binary
executables by converting them to hexdump files and assembly
program files, as explained below.

A. Binary n-gram feature

We apply the UNIX hexdump utility to convert the binary
files into text files (‘hexdump’ files), containing the
hexadecimal number corresponding to each byte of the binary
file. The feature extraction process consists of two phases: 1)
feature collection, and ii) feature selection, both of which are
explained in subsequent paragraphs.

1) Feature Collection
We collect n-grams from the ‘hexdump’ files. As an
example, the 4-grams corresponding to the 6 bytes sequence
“alb2c3d4e516” are “alb2c3d4”, “b2c3d4e5” and “c3d4e5£6”,
where “al””b2”,...etc are the hexadecimal representation of
each byte.

N-gram collection is done in the following way: we scan
through each file by sliding a window of n bytes. If we get a
new n-byte sequence, then we add it to a list, otherwise we
discard it. In this way, we gather all the n-grams. But there are
several implementation issues related to the feature collection
process. First, the total number of n-grams is very large. For
example, the total number of 10-grams in ‘dataset2’ (see
Section V(A)) is 200 million. It is not possible to store all of
them in computer’s main memory. Second, each newly
scanned n-gram must be checked against the list. This requires
a search through the entire list. If a linear search is performed,
it will take a long time to collect all the n-grams. The total time
for collecting all n-grams would be O (N?), where N is the total
number of n-grams, which is very large when N=200 million.

In order to solve the first problem, we use disk I/O. We
store the n-grams in the disk in sorted order to enable merging
with the n-grams in the main memory.

In order to solve the second problem, we use a data
structure called Adelson Velsky Landis (AVL) tree [12] to
store the n-grams in memory. An AVL ftree is a height-
balanced binary search tree. This tree has a property that the
absolute difference between the heights of the left sub-tree and
the right sub-tree of any node is at most one. If this property is
violated during insertion or deletion, a balancing operation is
performed and the tree regains its height-balanced property. It
is guaranteed that insertions and deletions are performed in
logarithmic time. So, in order to insert an n-gram in memory,
we now need only O (log, (N)) searches. So, the total running
time is reduced to O (Nog, (N)) from O (N?), which is a great
improvement for N as large as 200 million.

2) Feature Selection
Since the number of extracted features is very large, it is not
possible to use all of them for training because of the following
reasons. First, the memory requirement would be impractical.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

Second, training time of any classifier would be too long.
Third, a classifier would be confused with such a large number
of features, because most of the features would be noisy,
redundant or irrelevant. So, we are to choose a small, relevant
and useful feature set from the very large set. We choose
information gain as the selection criterion, because it is one of
the best criteria used in literature for selecting the best features
from.

Information gain can be defined as a measure of the
effectiveness of an attribute (i.e., feature) in classifying the
training data [13]. If we split the training data on this attribute
values, then information gain gives the measurement of the
expected reduction in entropy after the split. The more an
attribute can reduce entropy in the training data, the better the
attribute in classifying the data. Information Gain of an
attribute A on a collection of examples S is given by (1):

Gain (S, A) = Entropy (S) —

Z S | Entropy (S,)

VEValues (A) | S |
.. (D

Where Values(A) is the set of all possible values for
attribute 4, and S, is the subset of S for which attribute 4 has
value v. In our case, each attribute has only two possible values
(0, 1). If this attribute is present in an instance (i.e., executable)
then the value of this attribute for that instance is 1, otherwise it
is 0. Entropy of S is computed using the following equation (2):

P P) n(s)
Entron) == o 4 pe) 1)+ pe))+ po)
Q)

Where p(S) is the number of positive instances in S and #(S)
is the total number of negative instances in S. We denote the
best 500 features, selected using information gain criterion, as
the Binary Feature Set (BFS). We generate feature vectors
corresponding to the BFS for all the instances in the training
set. A feature vector corresponding to an instance (i.e., an
executable) is a binary vector having exactly one bit for each
feature, and a bit is ‘one’ if the corresponding feature is present
in the example and ‘zero’ otherwise. Feature vectors are used
to train classifier with SVM.

B. Assembly n-gram feature

We disassemble all the binary files using a disassembly tool
called PEDisassem [14] that is used to disassemble Windows
Portable Executable (P.E.) files. Besides generating the
assembly instructions with opcode and address information,
PEDisassem provides useful information like list of resources
(e.g. cursor) used, list of DLL functions called, list of exported
functions, and list of strings inside the code block and so on.

In order to extract assembly n-gram features, we follow a
method very similar to the binary n-gram feature extraction.
First we collect all possible n-grams, i.e., sequence of n
instructions, and select best 500 of them according to
information gain. We call this selected set of features as
Assembly Feature Set (AFS). We face the same difficulties of
limited memory and long running time as in byte n-grams, and
solve them in the same way.

As an example of assembly n-gram feature extraction,
assume that we have a sequence of 3 instructions:

“push eax; “mov eax, dword[0f34]” ; “add ecx, eax”;
and that want to extract all the 2-grams, which are:
(1) “push eax’; “mov eax, dword[0f34]”;

and (2) “mov eax, dword[0f34]”; “add ecx, eax”;

We adopt a standard representation of assembly
instructions, which has the following format:
name.paraml.param2, where name is the instruction name
(e.g., mov), paraml is the first parameter, and param?2 is the
second parameter. Again, a parameter is any one of the
followings {register, memory, constant}. So, the second
instruction in the above example: “mov eax, dword[0f34]”,
after standardization, becomes: “mov.register.memory”.

We also compute binary feature vectors for the AFS. Please
note that we do not use the AFS in our HFS. We use AFS only
for comparison purposes.

C. DLL function call feature

We extract information about DLL function calls made by a
program by parsing the disassembled file. We define the n-
gram of DLL function call as a sequence of n DLL calls that
appears in the disassembled file. For example, assume that the
disassembled file has the following sequence of instructions
(omitting all instructions except DLL calls):

« “call KERNEL32.LoadResource”, “Lu “call
USER32.TranslateMessage”; “...”; “call USER32.DispatchMessageA”

"(0 or more instructions other than DLL call)

The 2-grams would be:

(1) “KERNEL32.LoadResource, USER32. TranslateMessage”

and (2)“USER32.TranslateMessage, USER32.DispatchMessageA ™

After extracting the n-grams we select best 500 of them
using information gain. We then generate the feature vectors in
a similar way as explained earlier. We also compute binary
feature vector for the selected DLL call features.

IV. THEHYBRID FEATURE RETRIEVAL MODEL

The Hybrid Feature Retrieval (HFR) Model is illustrated in
fig. 1. It consists of different phases and components. Most of
the components have already been discussed in details. Below
is a brief description of the model.

A. Description of the Model
The Hybrid Feature Retrieval (HFR) Model consists of two
phases: the training phase and the testing phase. The training

phase is shown in Figure 1(a), and testing phase is shown in
Figure 1(b).

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

Feature-
Hex—dumf hexdump| Collection

* file o

Binaty
n-grams

Feature- | Selection

Training Data
{Binary
Executables)

Binary
Luszembly Feature Set

Program

.

Disassembl.é

Figure 1(a). The Hybrid Feature Retrieval Model, training phase.

DL call]
feature

BF=

Hybrid

Feature Set

Feature
Vector

" Computy
WVector

Corapute Test with
Test Progtam | Disasseble Assertbly | Vertor [HFS Classifier” (4sq
{Binary *| Progam ® ector Prediction
Executahle) 'y
Hexdump hexdump
file Corapte
Vector

Figure 1(b). The Hybrid Feature Retrieval Model, testing phase.

In the training phase we convert binary executables into
hexdump files and Assembly Program files using UNIX Hex-
dump utility and the disassembly tool PEDisassem,
respectively. We extract binary n-gram features using the
approach explained in section III (A). We then apply AFR
algorithm (to be explained shortly) to retrieve assembly
instruction sequences, called the derived assembly features
(DAF), that best represent the selected binary n-gram features.
We combine these features with the DLL function call features,
and denote this combined feature set as Hybrid Feature Set
(HFS). We compute the binary feature vector corresponding to
the HFS and train a classifier using SVM. In the testing phase,
we scan the test file and compute the feature vector
corresponding to the HFS. This vector is tested against the
classifier. The classifier outputs the class prediction {benign,
malicious} of the test file.

The main challenge that we face is that of finding DAF
using the binary n-gram features. The main reason for finding
DAF is that we observe that a binary feature may sometimes
represent partial information. For example: it may represent
part of one or more assembly instructions. Thus, a binary
feature is sometimes a partial feature. We would like to find
the complete feature corresponding to the partial one, which
represents one or more whole instructions. We then use this
complete feature instead of the partial feature so that we can
obtain a more useful feature set.

B. The Assembly Feature Retrieval (AFR) algorithm

The AFR algorithm is used to extract derived assembly
instruction sequences (i.e., DAF) corresponding to the binary
n-gram features. As we have explained earlier, we do not use
assembly n-gram features (AFS) in the HFS, because we
observe that AFS performs poorer compared to DAF. Now we

describe the problem with some examples and then explain
how it has been solved.

The problem is: given a binary n-gram feature, how to find
its corresponding assembly code. The code should be searched
through all the assembly programs files. The solution consists
of several steps.

First, we apply our linear address matching technique: we
use the offset address of the n-gram in the binary file to look
for instructions at the same offset at the assembly program file.
Based on the offset value, one of the three situations may
occur:

i. The offset is before program entry point, so there is no
corresponding code for the n-gram. We refer to this address as
Address Before Entry Point (ABEP).

ii. There is some data, but no code at that offset. We refer to
this address as DATA.

1i. There is some code at that offset. We refer to this
address as CODE.

Second, we select the best CODE instance among all
instances. We apply a heuristic to find the best sequence, which
we call the Most Distinguishing Instruction Sequence (MDIS)
heuristic. According to this heuristic, we choose the instruction
sequence that has the highest information gain. Due to the
shortage of space, we are unable to explain details of our
algorithm here. Please refer to [9] for a detailed explanation
with examples of the AFR algorithm, and MDIS heuristics.

V. EXPERIMENTS

We design our experiments to run on two different datasets.
Each dataset has different sizes and distributions of benign and
malicious executables. We generate all kinds of n-gram
features (e.g. binary, assembly, DLL) using the techniques
explained in section III. We also generate the HFS (see section
IV) using our model. We test the accuracy of each of the
feature sets using SVM, applying a three-fold cross validation.
We use the raw SVM output (i.e., probability distribution) to
compute the average accuracy, false positive and false negative
rate, and Receiver Operating Characteristic (ROC) graphs
(using techniques in [15]).

A. Dataset

We have two non-disjoint datasets. The first dataset
(datasetl) contains a collection of 1,435 executables, 597 of
which are benign and 838 are malicious. The second dataset
(dataset2) contains 2,452 executables, with 1,370 benign and
1,082 malicious. So, the distribution of datasetl is
benign=41.6%, malicious=58.4%, and that of dataset2 is
benign=55.9%, malicious=44.1%. We collect the benign
executables from different Windows XP, and Windows 2000
machines, and collect the malicious executables from [16],
which contains a large collection of malicious executables. We
select only the Win32 executables in both cases. We would like
to experiment with the ELF executables in future.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

B. Experimental setup

Our implementation is developed in Java with JDK 1.5. We
use the 1ibSVM library [17] for SVM. We run C-SVC with a
Polynomial kernel, gamma = 0.1, and epsilon = 1.0E-12. Most
of our experiments are run on two machines: a Sun Solaris
machine with 4GB main memory and 2GHz clock speed, and a
LINUX machine with 2GB main memory and 1.8GHz clock
speed. The disassembly and hex-dump are done only once for
all machine executables and the resulting files are stored. We
then run our experiments on the stored files.

C. Results

We first present classification accuracies, and the Area
Under the ROC Curve (AUC) of different methods in Table-I,
and Table-II respectively, for both datasets and different values
of n.

From Table-I we see that the classification accuracy of our
model is always better than other models, on both datasets. On
dataset1, the best accuracy of the hybrid model is for n=o0,
which is 97.4, and it is 1.9% higher than BFS. On average,
HFS’s accuracy is 6.5% higher than BFS. Accuracy of AFS is
always the lowest, and much lower than the other two. The
average accuracy of AFS is 10.3% lower than HFS. The reason
behind this poor performance is that Assembly features
consider only the CODE (see IV-B) part of the executables. If
any code is encrypted as data, it cannot be decrypted by our
disassembly tool, and thus the whole encrypted portion is
recognized as DATA and ignored by our feature extractor.
Thus, AFS misses a lot of information and consequently the
extracted features also have poorer performance. But BFS
considers all parts of the executable and thus able to detect
patterns from encrypted parts too. If we look at the accuracies
of dataset2, we find that the difference between the accuracies
of HFS and BFS is greater than that of datasetl. For example,
the average accuracy of HFS is 8.6% higher. AFS again
performs much poorer than the other two. It is interesting to
note that HFS has an improved performance over BFS (and
AFS) in dataset2, which has more benign examples than
malicious. This is more likely in real world; we have a lot
more benign examples than malicious ones. This implies that
our model will perform much better in a real-world scenario,
having larger number of benign executables in the dataset. One
interesting observation from table-I is that accuracy for 1-gram
BFS is very low. This is because a 1-gram is only a 1-byte long
pattern, which is not long enough to be useful.

Figure 2 shows ROC curves of datasetl for n=6 and
dataset2 for n = 4. Note that ROC curves for other values of n
have similar trends, except n = 1, where AFS performs better
than BFS. It is evident from the curves that HFS is always
dominant over the other two, and it is more dominant in
dataset2. Table-II shows the AUC for the ROC curves of each
of the features sets. A higher value of AUC indicates a higher
probability that a classifier will predict correctly. Table-II
shows that the AUC for HFS is the highest, and it improves
(relative to other two) in dataset2, supporting our hypothesis
that our model will perform better in a more likely real-world
scenario, where benign executables occur more frequently.

Table III reports the false positive and false negative rate
(in percentage) for each feature set. Here we also see that in
datasetl, the average false positive rate of HFS is 5.4%, which
is the lowest. In dataset2, this rate is even lower (3.9%). False
positive rate is a measure of false alarm rate. Thus, our model
has the lowest false alarm rate. We also observe that this rate
decreases as we increase the number of benign examples. This
is because the classifier gets more familiar with benign
executables and misclassifies fewer of them as malicious. We
believe that a large collection of training set with larger portion
of benign executables would eventually diminish false positive
rate towards zero. The false negative rate is also the lowest for
HFS as reported in Table-III.

TABLE -1
CLASSIFICATION ACCURACY (%) OF SVM ON DIFFERENT FEATURE SETS
n Dataset1 Dataset2
HFS BFS AFS HFS BFS AFS
1 934 63.0 88.4 92.1 59.4 88.6
2 96.8 94.1 88.1 96.3 92.1 87.9
4 96.3 95.6 90.9 97.4 92.8 89.4
6 97.4 95.5 87.2 96.9 93.0 86.7
8 96.9 95.1 87.7 97.2 934 85.1
10 97.0 95.7 73.7 97.3 92.8 75.8
Avg 96.30 89.83 86.00 96.15 87.52 85.58
TABLE -1I
AREA UNDER THE ROC CURVE ON DIFFERENT FEATURE SETS
Dataset1 Dataset2
" HFS BFS AFS HFS BFS AFS
1 0.9767 0.7023 0.9467 0.9666 0.7250 0.9489
2 0.9883 0.9782 0.9403 0.9919 0.9720 0.9373
4 0.9928 0.9825 0.9651 0.9948 0.9708 0.9515
6 0.9949 0.9831 0.9421 0.9951 0.9733 0.9358
8 0.9946 0.9766 0.9398 0.9956 0.9760 0.9254
10 0.9929 0.9777 0.8663 0.9967 0.9700 0.8736
Avg 0.9900 0.9334 0.9334 0.9901 09312 0.9288
TABLE -III
FALSE POSITIVE AND FALSE NEGATIVE RATES ON DIFFERENT FEATURE SETS
Dataset1 Dataset2
" HFS BFS AFS HFS BFS AFS
1 8.0/5.6 777779 124/11.1 7.5/83 65.09.8 12.8/9.6
2 5.3/1.7 6.0/5.7 22.8/4.2 34/41 5.6/10.6 15.1/8.3
4 4.9/2.9 6.4/3.0 16.4/3.8 2.512.2 7.4/6.9 12.6/8.1
6 3.5/2.0 5.7/3.7 24.5/4.5 3229 6.1/8.1 17.8/7.6
8 4.9/1.9 6.0/4.1 26.3/2.3 3.12.3 6.0/7.5 19.9/8.6
10 5.5/1.2 5.2/3.6 43.9/1.7 3.4/1.9 6.3/84 30.4/16.4
Avg 5.4/2.6 17.8/4.7 24.4/3.3 3.9/3.6 16.1/8.9 18.1/9.8

To conclude the results section, we report the accuracies of
the DLL function features. The 1-gram accuracies are: 92.8%
for datasetl and 91.9% for dataset2. The accuracies for higher
grams are less than 75% and so we do not report them. The
reason behind this is possibly that there is no distinguishing

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

call-pattern, which can identify executables as malicious or
benign.

ROC Curve for Dataset! (n=F)

1 ——————— I —

Co HFS
=08t < | BFS |1
o 1 — — AFS
ek}

Z 06¢] 7
o
& |
o D4 | _
2
|_

02t I| 7

a 0.2 0.4 0.6 0.8
False Positive Rate
ROC Curve for Dataset? (n=4)
] ypp——— '

ST —— HFS
e} e [
= 08t] BF 35|
o -, — — AFE
n k] 1
£ OB} f'l 1
o
.

o D4 I]
=
'_

0.2 1

] 0.2 0.4 06 0.s
False Positive Rate

VI. CONCLUSION

Our HFR model is a completely novel idea in malicious
code detection. It extracts useful features from disassembled
executables using the information obtained from binary
executables. It then combines the assembly features with other
features like DLL function calls and binary n-gram features.
We have addressed a number of difficult implementation issues
and provided very efficient, scalable and practical solutions.
The difficulties that we have faced during implementation are
related to memory limitations and long running times. By using
efficient data structures, algorithms and disk I/O, we are able to
implement a fast, scalable and robust system for malicious code
detection. We run our experiments on two datasets with
different class distribution, and show that a more realistic
distribution improves the performance of our model.

Our model also has a few limitations. First, it is not
effective against obfuscations as we do not apply any de-
obfuscation technique. Second, it is an offline detection
mechanism. Meaning, it cannot be directly deployed on a
network to detect malicious code in real time.

We address these issues in our future work, and vow to
solve these problems. We also propose several modifications to

our model. For example, we would like to combine our features
with run-time features of the executables. Besides, we propose
building a feature-database that would store all the features and
be updated incrementally. This would save a large amount of
training time and memory.

ACKNOWLEDGMENT

The work reported in this paper is supported by AFOSR
under contract FA9550-06-1-0045 and by the Texas Enterprise
Funds. We thank Dr. Robert Herklotz of AFOSR and Prof.
Robert Helms, Dean of the School of Engineering at the
University of Texas at Dallas for funding this research.

REFERENCES

[1] Golbeck, J., and Hendler, J. Reputation network analysis for email
filtering. In CEAS (2004).

[2] Newman, M. E. J., Forrest, S., and Balthrop, J. Email networks and the
spread of computer viruses. Physical Review E 66, 035101 (2002).

[3] Schultz, M., Eskin, E., and Zadok, E. MEF: Malicious email filter, a
UNIX mail filter that detects malicious windows executables. In
USENIX Annual Technical Conference - FREENIX Track (June 2001).

[4] Masud, M. M., Khan, L. & Thuraisingham, B. Feature based Techniques
for Auto-detection of Novel Email Worms. To appear in the eleventh
Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD), 2007.

[5] Singh, S., Estan, C., Varghese, G., and Savage, S. The EarlyBird System
for Real-time Detection of Unknown Worms. Technical report - ¢s2003-
0761, UCSD, 2003.

[6] Kim, H. A. and Karp, B., Autograph: Toward Automated, Distributed
Worm Signature Detection. in the Proceedings of the 13th Usenix
Security Symposium (Security 2004), San Diego, CA, August, 2004.

[71 J. Newsome, B. Karp, and D. Song. Polygraph: Automatically
Generating Signatures for Polymorphic Worms. In Proceedings of the
IEEE Symposium on Security and Privacy, May 2005.

[8] M. Schultz, E. Eskin, E. Zadok, S. Stolfo, Data mining methods for
detection of new malicious executables, in: Proc. IEEE Symposium on
Security and Privacy, 2001, pp. 178--184.

[91] Masud, M. M., Khan, L., and Thuraisingham, B. Detecting Malicious
Executables using Assembly Feature Retrieval. Technical report #.
UTDCS-40-06, the University of Texas at Dallas, 2006.

[10] Kolter, J. Z., and Maloof, M. A. Learning to detect malicious
executables in the wild. Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining
Seattle, WA, USA Pages: 470 — 478, 2004.

[11] Cygnus. GNU Binutils Cygwin. Online
http://sourceware.cygnus.com/cygwin

[12] GoodRich, M. T., and Tamassia, R. Data structures and algorithms in
Java. John Wiley & Sons, Inc. ISBN: 0-471-73884-0.

[13] Mitchell, T. Machine Learning. McGraw Hill, 1997.

[14] Windows P.E. Disassembler.
http://www.geocities.com/~sangcho/index.html

[15] Fawcett, T. ROC Graphs: Notes and Practical Considerations for
Researchers. Tech Report HPL-2003-4, HP Laboratories,2003.
Available: http://www.hpl.hp.com/personal/Tom
Fawcett/papers/ROC101. pdf.

[16] VX-Heavens: http://vx.netlux.org/

[17] http://www.csie.ntu.edu.tw/~cjlin/libsvim/

publication, 1999.

—

	Select a link below
	Return to Main Menu

