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Abstract— We present a hybrid data mining approach to detect 
malicious executables. In this approach we identify important 
features of the malicious and benign executables. These features 
are used by a classifier to learn a classification model that can 
distinguish between malicious and benign executables. We 
construct a novel combination of three different kinds of 
features: binary n-grams, assembly n-grams, and library function 
calls. Binary features are extracted from the binary executables, 
whereas assembly features are extracted from the disassembled 
executables. The function call features are extracted from the 
program headers. We also propose an efficient and scalable 
feature extraction technique. We apply our model on a large 
corpus of real benign and malicious executables. We extract the 
abovementioned features from the data and train a classifier 
using Support Vector Machine. This classifier achieves a very 
high accuracy and low false positive rate in detecting malicious 
executables. Our model is compared with other feature-based 
approaches, and found to be more efficient in terms of detection 
accuracy and false alarm rate.  

Keywords- disassembly, feature extraction, malicious 
executable, n-gram analysis. 

I.  INTRODUCTION  
Malicious code is a great threat to computers and computer 

society. Numerous kinds of malicious code wander in the wild. 
Some of them are mobile, such as worms, and spread through 
the internet crashing thousands of computers worldwide. Other 
kinds of malicious code are static, like viruses, but sometimes 
deadlier than its mobile counterpart. Malicious code writers 
mainly exploit different kind of software vulnerabilities to 
attack host machines. There has been tremendous effort 
imparted by researchers to counter the attacks of malicious 
code writers. Unfortunately, the more successful the 
researchers become in cracking down malicious code, the more 
sophisticated mal-code appear in the wild, evading all kinds of 
detection mechanisms. Thus, the battle between malicious code 
writers and researchers is virtually a never-ending game.  

 Although signature based detection techniques are being 
used widely, they are not effective against “zero-day attacks” 
and various “obfuscation” techniques. Signature based 
technique is also hopeless against new attacks.  So, there has 
been a growing need for fast, automated, and efficient detection 
technique that can also detect new attacks. Many automated 
systems [1-8] have already been developed by different 
researchers in recent years.  

In this paper we describe our new model, the Hybrid 
Feature Retrieval (HFR) model, which can detect malicious 
executables efficiently. Our model extracts three different kinds 
of features from the executables and combines them into one 
feature set, which we call the hybrid feature set (HFS). These 
features are used to train a classifier using Support Vector 
Machine (SVM). This classifier is then used to detect malicious 
executables. The features that we extract are: i) binary features, 
ii) derived assembly features and iii) dynamic link library 
(DLL) call features. The binary features are extracted as binary 
n-grams (i.e., n consecutive bytes) from the binary executable 
files. This extraction process is explained in section III (A). 
Derived assembly features are extracted from disassembled 
executables. A derived assembly feature is actually a sequence 
of one or more assembly instructions. We extract these features 
using our sophisticated assembly feature retrieval (AFR) 
algorithm, explained in section IV (B). These derived assembly 
features are similar to, but not exactly the same as assembly n-
gram features (explained in section III (B)). We do not directly 
use the assembly n-grams features in HFS, because we observe 
during our initial experiments [9] that derived assembly 
features perform better than assembly n-gram features. The 
process of extracting derived assembly features is not trivial, 
but involves a lot of technical challenges. It is explained in 
section IV. DLL call features are also extracted from the header 
of the disassembled binaries, and explained elaborately in 
section III (C). We show empirically that the combination of 
these three features is always better than any single feature in 
terms of classification accuracy. We discuss our results in 
section V.  

Our contributions to this research work are as follows. First, 
we propose and implement our HFR model, which combines 
three types of features mentioned above. Second, we apply a 
novel idea to extract assembly features using binary features. A 
binary feature or binary n-gram may represent an assembly 
instruction, or part of one or more instructions, or even a string 
data inside the code block. Thus, a binary n-gram may 
represent some partial information. But we apply AFR 
algorithm to retrieve the most appropriate assembly instruction 
or instruction sequences corresponding to the binary n-gram.  
We call it the most appropriate assembly instruction sequence 
because there may be multiple possible assembly instruction 
sequences corresponding to a single binary n-gram, and AFR 
selects the most appropriate of them by applying some 
selection criteria. If the binary n-gram represents a partial 
assembly instruction or instruction sequence, then we find the 
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corresponding complete instruction sequence, and use this as a 
feature. The net effect is that, we convert a binary feature to an 
assembly feature. We hope that the assembly feature would 
carry more complete and meaningful information than the 
binary feature. Third, we propose and implement a scalable 
solution to the n-gram feature extraction and selection problem 
in general. Our solution not only solves the limited memory 
problem but also applies efficient and powerful data structures 
to ensure fast running time. Thus, it is scalable to very large set 
of executables (in the order of thousands), even with limited 
main memory and processor speed. Fourth, we compare our 
results with a recently published work [10] that is claimed to 
have achieved high accuracy using only binary n-gram feature, 
and we show that our method is superior to that. 

The rest of the paper is organized as follows: Section II 
discusses related works, Section III presents and explains 
different kinds of n-gram feature extraction methods, Section 
IV describes the HFR model, Section V discusses our 
experiments and analyzes results, Section VI concludes with 
future research directions.  

II. RELATED WORK 
There has been a significant amount of research in recent 

years to detect malicious executables. Researchers apply 
different approaches to automate the detection process. One of 
them is behavioral approach, which is mainly applied to mobile 
malicious code. Behavioral approaches try to analyze 
characteristics such as source and destination addresses, build 
statistical models of packet flow at the network level, consider 
email attachments etc. Examples of behavioral approaches are 
social network analysis [1, 2], and statistical analysis [3].  A 
data mining based behavioral approach for detecting email 
worms as been proposed by Masud et al. [4]. 

Another approach is content-based, which analyzes the 
content of the code. Some content based approaches try to 
generate signature automatically from network packets. 
Examples are EarlyBird [5], Autograph [6], and Polygraph [7]. 
Another kind of content-based approach extracts features from 
the executables and apply machine learning to classify 
malicious executables. Stolfo et al. [8] extract DLL call 
information using GNU Bin-Utils [11], and character strings 
using GNU strings, from the header of Windows PE 
executables. Also, they use byte sequences as features. They 
report accuracy of their features using different classifiers.  

A similar work is done by Maloof et al. [10]. They extract 
binary n-gram features from the binary executables and apply 
them to different classification methods, and report accuracy. 
Our model is also content based. But it is different from [10] in 
that it extracts not only the binary n-grams but also assembly 
instruction sequences from the disassembled executables, and 
gathers DLL call information from the program headers. We 
compare our model’s performance with [10], since they report 
higher accuracy than [8].   

III. FEATURE EXTRACTION USING N-GRAM ANALYSIS 
Feature extraction using n-gram analysis involves 

extracting all possible n-grams from the given dataset (training 

set), and selecting the best n-grams among them. We extend 
the notion of n-gram from bytes to assembly instructions, and 
to DLL function calls. That is, an n-gram may be either a 
sequence of n bytes or n assembly instructions, or n DLL 
function calls, depending on whether we want to extract 
features from binary or assembly program, or DLL call list. 
Before extracting n-grams, we preprocess the binary 
executables by converting them to hexdump files and assembly 
program files, as explained below.  

A. Binary n-gram feature 
We apply the UNIX hexdump utility to convert the binary 

files into text files (‘hexdump’ files), containing the 
hexadecimal number corresponding to each byte of the binary 
file. The feature extraction process consists of two phases: i) 
feature collection, and ii) feature selection, both of which are 
explained in subsequent paragraphs. 

1) Feature Collection 
We collect n-grams from the ‘hexdump’ files. As an 

example, the 4-grams corresponding to the 6 bytes sequence 
“a1b2c3d4e5f6” are “a1b2c3d4”, “b2c3d4e5” and “c3d4e5f6”, 
where “a1”,”b2”,…etc are the hexadecimal representation of 
each byte.  

N-gram collection is done in the following way: we scan 
through each file by sliding a window of n bytes. If we get a 
new n-byte sequence, then we add it to a list, otherwise we 
discard it.  In this way, we gather all the n-grams. But there are 
several implementation issues related to the feature collection 
process. First, the total number of n-grams is very large. For 
example, the total number of 10-grams in ‘dataset2’ (see 
Section V(A)) is 200 million. It is not possible to store all of 
them in computer’s main memory. Second, each newly 
scanned n-gram must be checked against the list. This requires 
a search through the entire list. If a linear search is performed, 
it will take a long time to collect all the n-grams. The total time 
for collecting all n-grams would be O (N2), where N is the total 
number of n-grams, which is very large when N=200 million.  

In order to solve the first problem, we use disk I/O. We 
store the n-grams in the disk in sorted order to enable merging 
with the n-grams in the main memory.  

In order to solve the second problem, we use a data 
structure called Adelson Velsky Landis (AVL) tree [12] to 
store the n-grams in memory. An AVL tree is a height-
balanced binary search tree. This tree has a property that the 
absolute difference between the heights of the left sub-tree and 
the right sub-tree of any node is at most one. If this property is 
violated during insertion or deletion, a balancing operation is 
performed and the tree regains its height-balanced property. It 
is guaranteed that insertions and deletions are performed in 
logarithmic time. So, in order to insert an n-gram in memory, 
we now need only O (log2 (N)) searches. So, the total running 
time is reduced to O (Nlog2 (N)) from O (N2), which is a great 
improvement for N as large as 200 million. 

2) Feature Selection 
Since the number of extracted features is very large, it is not 

possible to use all of them for training because of the following 
reasons.  First, the memory requirement would be impractical. 
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Second, training time of any classifier would be too long. 
Third, a classifier would be confused with such a large number 
of features, because most of the features would be noisy, 
redundant or irrelevant. So, we are to choose a small, relevant 
and useful feature set from the very large set. We choose 
information gain as the selection criterion, because it is one of 
the best criteria used in literature for selecting the best features 
from.  

Information gain can be defined as a measure of the 
effectiveness of an attribute (i.e., feature) in classifying the 
training data [13]. If we split the training data on this attribute 
values, then information gain gives the measurement of the 
expected reduction in entropy after the split. The more an 
attribute can reduce entropy in the training data, the better the 
attribute in classifying the data. Information Gain of an 
attribute A on a collection of examples S is given by (1): 
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Where Values(A) is the set of all possible values for 

attribute A, and Sv is the subset of S for which attribute A has 
value v. In our case, each attribute has only two possible values 
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Where p(S) is the number of positive instances in S and n(S) 

is the total number of negative instances in S. We denote the 
best 500 features, selected using information gain criterion, as 
the Binary Feature Set (BFS). We generate feature vectors 
corresponding to the BFS for all the instances in the training 
set. A feature vector corresponding to an instance (i.e., an 
executable) is a binary vector having exactly one bit for each 
feature, and a bit is ‘one’ if the corresponding feature is present 
in the example and ‘zero’ otherwise. Feature vectors are used 
to train classifier with SVM. 

B. Assembly n-gram feature 
We disassemble all the binary files using a disassembly tool 

called PEDisassem [14] that is used to disassemble Windows 
Portable Executable (P.E.) files. Besides generating the 
assembly instructions with opcode and address information, 
PEDisassem provides useful information like list of resources 
(e.g. cursor) used, list of DLL functions called, list of exported 
functions, and list of strings inside the code block and so on.  

In order to extract assembly n-gram features, we follow a 
method very similar to the binary n-gram feature extraction. 
First we collect all possible n-grams, i.e., sequence of n 
instructions, and select best 500 of them according to 
information gain. We call this selected set of features as 
Assembly Feature Set (AFS). We face the same difficulties of 
limited memory and long running time as in byte n-grams, and 
solve them in the same way.  

As an example of assembly n-gram feature extraction, 
assume that we have a sequence of 3 instructions: 

“push eax”; “mov eax, dword[0f34]” ; “add ecx, eax”;  

and that want to extract all the 2-grams, which are: 

(1) “push eax”; “mov eax, dword[0f34]”;  

and  (2) “mov eax, dword[0f34]”; “add ecx, eax”;  

We adopt a standard representation of assembly 
instructions, which has the following format: 
name.param1.param2, where name is the instruction name 
(e.g., mov), param1 is the first parameter, and param2 is the 
second parameter. Again, a parameter is any one of the 
followings {register, memory, constant}. So, the second 
instruction in the above example: “mov eax, dword[0f34]”, 
after standardization, becomes: “mov.register.memory”.   

We also compute binary feature vectors for the AFS. Please 
note that we do not use the AFS in our HFS. We use AFS only 
for comparison purposes. 

C. DLL function call  feature 
We extract information about DLL function calls made by a 

program by parsing the disassembled file. We define the n-
gram of DLL function call as a sequence of n DLL calls that 
appears in the disassembled file. For example, assume that the 
disassembled file has the following sequence of instructions 
(omitting all instructions except DLL calls): 

“…”+; “call KERNEL32.LoadResource”; “…”; “call 
USER32.TranslateMessage”;  “…”;   “call USER32.DispatchMessageA” 

+(0 or more instructions other than DLL call) 

The 2-grams would be:  

(1) “KERNEL32.LoadResource, USER32.TranslateMessage”  

and   (2)“USER32.TranslateMessage, USER32.DispatchMessageA ” 

After extracting the n-grams we select best 500 of them 
using information gain. We then generate the feature vectors in 
a similar way as explained earlier. We also compute binary 
feature vector for the selected DLL call features.  

IV. THE HYBRID FEATURE RETRIEVAL MODEL 
The Hybrid Feature Retrieval (HFR) Model is illustrated in 

fig. 1. It consists of different phases and components. Most of 
the components have already been discussed in details. Below 
is a brief description of the model. 

A. Description of the Model 
The Hybrid Feature Retrieval (HFR) Model consists of two 

phases: the training phase and the testing phase. The training 
phase is shown in Figure 1(a), and testing phase is shown in 
Figure 1(b). 
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Figure 1(a). The Hybrid Feature Retrieval Model, training phase. 
 
 

 
Figure 1(b). The Hybrid Feature Retrieval Model, testing phase. 
 

In the training phase we convert binary executables into 
hexdump files and Assembly Program files using UNIX Hex-
dump utility and the disassembly tool PEDisassem, 
respectively. We extract binary n-gram features using the 
approach explained in section III (A). We then apply AFR 
algorithm (to be explained shortly) to retrieve assembly 
instruction sequences, called the derived assembly features 
(DAF), that best represent the selected binary n-gram features. 
We combine these features with the DLL function call features, 
and denote this combined feature set as Hybrid Feature Set 
(HFS). We compute the binary feature vector corresponding to 
the HFS and train a classifier using SVM.  In the testing phase, 
we scan the test file and compute the feature vector 
corresponding to the HFS. This vector is tested against the 
classifier. The classifier outputs the class prediction {benign, 
malicious} of the test file.  

The main challenge that we face is that of finding DAF 
using the binary n-gram features. The main reason for finding 
DAF is that we observe that a binary feature may sometimes 
represent partial information. For example: it may represent 
part of one or more assembly instructions. Thus, a binary 
feature is sometimes a partial feature. We would like to find 
the complete feature corresponding to the partial one, which 
represents one or more whole instructions. We then use this 
complete feature instead of the partial feature so that we can 
obtain a more useful feature set. 

B. The Assembly Feature Retrieval (AFR) algorithm 
The AFR algorithm is used to extract derived assembly 

instruction sequences (i.e., DAF) corresponding to the binary 
n-gram features. As we have explained earlier, we do not use 
assembly n-gram features (AFS) in the HFS, because we 
observe that AFS performs poorer compared to DAF. Now we 

describe the problem with some examples and then explain 
how it has been solved.  

The problem is: given a binary n-gram feature, how to find 
its corresponding assembly code. The code should be searched 
through all the assembly programs files. The solution consists 
of several steps.  

First, we apply our linear address matching technique: we 
use the offset address of the n-gram in the binary file to look 
for instructions at the same offset at the assembly program file. 
Based on the offset value, one of the three situations may 
occur: 

i. The offset is before program entry point, so there is no 
corresponding code for the n-gram. We refer to this address as 
Address Before Entry Point (ABEP).  

ii. There is some data, but no code at that offset. We refer to 
this address as DATA. 

iii. There is some code at that offset. We refer to this 
address as CODE. 

Second, we select the best CODE instance among all 
instances. We apply a heuristic to find the best sequence, which 
we call the Most Distinguishing Instruction Sequence (MDIS) 
heuristic. According to this heuristic, we choose the instruction 
sequence that has the highest information gain. Due to the 
shortage of space, we are unable to explain details of our 
algorithm here. Please refer to [9] for a detailed explanation 
with examples of the AFR algorithm, and MDIS heuristics.  

V. EXPERIMENTS 
We design our experiments to run on two different datasets. 

Each dataset has different sizes and distributions of benign and 
malicious executables. We generate all kinds of n-gram 
features (e.g. binary, assembly, DLL) using the techniques 
explained in section III. We also generate the HFS (see section 
IV) using our model. We test the accuracy of each of the 
feature sets using SVM, applying a three-fold cross validation. 
We use the raw SVM output (i.e., probability distribution) to 
compute the average accuracy, false positive and false negative 
rate, and Receiver Operating Characteristic (ROC) graphs 
(using techniques in [15]). 

A. Dataset 
We have two non-disjoint datasets. The first dataset 

(dataset1) contains a collection of 1,435 executables, 597 of 
which are benign and 838 are malicious. The second dataset 
(dataset2) contains 2,452 executables, with 1,370 benign and 
1,082 malicious. So, the distribution of dataset1 is 
benign=41.6%, malicious=58.4%, and that of dataset2 is 
benign=55.9%, malicious=44.1%. We collect the benign 
executables from different Windows XP, and Windows 2000 
machines, and collect the malicious executables from [16], 
which contains a large collection of malicious executables. We 
select only the Win32 executables in both cases. We would like 
to experiment with the ELF executables in future. 
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B. Experimental setup 
Our implementation is developed in Java with JDK 1.5. We 

use the libSVM library [17] for SVM. We run C-SVC with a 
Polynomial kernel, gamma = 0.1, and epsilon = 1.0E-12. Most 
of our experiments are run on two machines: a Sun Solaris 
machine with 4GB main memory and 2GHz clock speed, and a 
LINUX machine with 2GB main memory and 1.8GHz clock 
speed. The disassembly and hex-dump are done only once for 
all machine executables and the resulting files are stored. We 
then run our experiments on the stored files. 

C. Results 
We first present classification accuracies, and the Area 

Under the ROC Curve (AUC) of different methods in Table-I, 
and Table-II respectively, for both datasets and different values 
of n.  

From Table-I we see that the classification accuracy of our 
model is always better than other models, on both datasets. On 
dataset1, the best accuracy of the hybrid model is for n=6, 
which is 97.4, and it is 1.9% higher than BFS. On average, 
HFS’s accuracy is 6.5% higher than BFS. Accuracy of AFS is 
always the lowest, and much lower than the other two. The 
average accuracy of AFS is 10.3% lower than HFS. The reason 
behind this poor performance is that Assembly features 
consider only the CODE (see IV-B) part of the executables. If 
any code is encrypted as data, it cannot be decrypted by our 
disassembly tool, and thus the whole encrypted portion is 
recognized as DATA and ignored by our feature extractor. 
Thus, AFS misses a lot of information and consequently the 
extracted features also have poorer performance. But BFS 
considers all parts of the executable and thus able to detect 
patterns from encrypted parts too. If we look at the accuracies 
of dataset2, we find that the difference between the accuracies 
of HFS and BFS is greater than that of dataset1. For example, 
the average accuracy of HFS is 8.6% higher. AFS again 
performs much poorer than the other two. It is interesting to 
note that HFS has an improved performance over BFS (and 
AFS) in dataset2, which has more benign examples than 
malicious.  This is more likely in real world; we have a lot 
more benign examples than malicious ones. This implies that 
our model will perform much better in a real-world scenario, 
having larger number of benign executables in the dataset. One 
interesting observation from table-I is that accuracy for 1-gram 
BFS is very low. This is because a 1-gram is only a 1-byte long 
pattern, which is not long enough to be useful. 

Figure 2 shows ROC curves of dataset1 for n=6 and 
dataset2 for n = 4. Note that ROC curves for other values of n 
have similar trends, except n = 1, where AFS performs better 
than BFS. It is evident from the curves that HFS is always 
dominant over the other two, and it is more dominant in 
dataset2. Table-II shows the AUC for the ROC curves of each 
of the features sets. A higher value of AUC indicates a higher 
probability that a classifier will predict correctly. Table-II 
shows that the AUC for HFS is the highest, and it improves 
(relative to other two) in dataset2, supporting our hypothesis 
that our model will perform better in a more likely real-world 
scenario, where benign executables occur more frequently. 

Table III reports the false positive and false negative rate 
(in percentage) for each feature set. Here we also see that in 
dataset1, the average false positive rate of HFS is 5.4%, which 
is the lowest. In dataset2, this rate is even lower (3.9%). False 
positive rate is a measure of false alarm rate. Thus, our model 
has the lowest false alarm rate. We also observe that this rate 
decreases as we increase the number of benign examples. This 
is because the classifier gets more familiar with benign 
executables and misclassifies fewer of them as malicious. We 
believe that a large collection of training set with larger portion 
of benign executables would eventually diminish false positive 
rate towards zero. The false negative rate is also the lowest for 
HFS as reported in Table-III. 

 
TABLE – I 

CLASSIFICATION ACCURACY (%) OF SVM ON DIFFERENT FEATURE SETS 
Dataset1 Dataset2 n 

HFS BFS AFS HFS BFS AFS 

1 93.4 63.0 88.4 92.1 59.4 88.6 
2 96.8 94.1 88.1 96.3 92.1 87.9 
4 96.3 95.6 90.9 97.4 92.8 89.4 
6 97.4 95.5 87.2 96.9 93.0 86.7 
8 96.9 95.1 87.7 97.2 93.4 85.1 

10 97.0 95.7 73.7 97.3 92.8 75.8 
Avg   96.30   89.83   86.00   96.15   87.52   85.58 

 
TABLE – II 

AREA UNDER THE ROC CURVE ON DIFFERENT FEATURE SETS 
Dataset1 Dataset2 

n 
HFS BFS AFS HFS BFS AFS 

1 0.9767 0.7023 0.9467 0.9666 0.7250 0.9489 
2 0.9883 0.9782 0.9403 0.9919 0.9720 0.9373 
4 0.9928 0.9825 0.9651 0.9948 0.9708 0.9515 
6 0.9949 0.9831 0.9421 0.9951 0.9733 0.9358 
8 0.9946 0.9766 0.9398 0.9956 0.9760 0.9254 

10 0.9929 0.9777 0.8663 0.9967 0.9700 0.8736 

Avg   0.9900   0.9334   0.9334   0.9901   0.9312  0.9288 
 

TABLE -III 
FALSE  POSITIVE AND FALSE NEGATIVE RATES ON DIFFERENT FEATURE SETS 

Dataset1 Dataset2 
n 

HFS BFS AFS HFS BFS AFS 
1 8.0/5.6 77.7/7.9 12.4/11.1 7.5/8.3 65.0/9.8 12.8/9.6 
2 5.3/1.7 6.0/5.7 22.8/4.2 3.4/4.1 5.6/10.6 15.1/8.3 
4 4.9/2.9 6.4/3.0 16.4/3.8 2.5/2.2 7.4/6.9 12.6/8.1 
6 3.5/ 2.0 5.7/3.7 24.5/4.5 3.2/2.9 6.1/8.1 17.8/7.6 
8 4.9/1.9 6.0/4.1 26.3/2.3 3.1/2.3 6.0/7.5 19.9/8.6 
10 5.5/1.2 5.2/3.6 43.9/1.7 3.4/1.9 6.3/8.4 30.4/16.4 

Avg 5.4/2.6 17.8/4.7 24.4/3.3 3.9/3.6 16.1/8.9 18.1/9.8 

 

To conclude the results section, we report the accuracies of 
the DLL function features. The 1-gram accuracies are: 92.8% 
for dataset1 and 91.9% for dataset2. The accuracies for higher 
grams are less than 75% and so we do not report them. The 
reason behind this is possibly that there is no distinguishing 
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call-pattern, which can identify executables as malicious or 
benign.  

 

VI. CONCLUSION 
Our HFR model is a completely novel idea in malicious 

code detection. It extracts useful features from disassembled 
executables using the information obtained from binary 
executables. It then combines the assembly features with other 
features like DLL function calls and binary n-gram features. 
We have addressed a number of difficult implementation issues 
and provided very efficient, scalable and practical solutions. 
The difficulties that we have faced during implementation are 
related to memory limitations and long running times. By using 
efficient data structures, algorithms and disk I/O, we are able to 
implement a fast, scalable and robust system for malicious code 
detection. We run our experiments on two datasets with 
different class distribution, and show that a more realistic 
distribution improves the performance of our model. 

Our model also has a few limitations. First, it is not 
effective against obfuscations as we do not apply any de-
obfuscation technique. Second, it is an offline detection 
mechanism. Meaning, it cannot be directly deployed on a 
network to detect malicious code in real time. 

We address these issues in our future work, and vow to 
solve these problems. We also propose several modifications to 

our model. For example, we would like to combine our features 
with run-time features of the executables. Besides, we propose 
building a feature-database that would store all the features and 
be updated incrementally. This would save a large amount of 
training time and memory.  
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