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Abstract 
 

Anti-virus systems traditionally use signatures to 
detect malicious executables, but signatures are over-
fitted features that are of little use in machine learning. 
Other more heuristic methods seek to utilize more general 
features, with some degree of success. In this paper, we 
present a data mining approach that conducts an 
exhaustive feature search on a set of computer viruses 
and strives to obviate over-fitting. We also evaluate the 
predictive power of a classifier by taking into account 
dependence relationships that exist between viruses, and 
we show that our classifier yields high detection rates and 
can be expected to perform as well in real-world 
conditions. 
 
1. Introduction 
 

Traditional anti-virus systems are signatures-based, in 
that they use case-specific features extracted from viruses 
in order to detect those same instances in the future. 
While this method yields excellent detection rates for 
existing and previously encountered viruses, it lacks the 
capacity to efficiently detect new unseen instances or 
variants [9]. As new viruses appear virtually every day, a 
detection method that is responsive, rather than proactive, 
is bound to be broken. 

Modern viruses employ advanced strategies such as 
polymorphism and metamorphism [7], through which 
parts of the virus or its very structure change in a 
sometimes random and unpredictable way each time it 
replicates. Virus writers, who have access to 
commercially available anti-virus software, can direct 
their efforts toward outwitting the scanners, by writing or 
modifying their code so that it passes undetected. This can 
be accomplished by strategically modifying the virus such 
that the characteristics that comprise the virus signature 
be changed. 

Heuristic scanners attempt to compensate for this 
lacuna by using more general features from viral code, 
such as structural or behavioral patterns [3]. However, 
this process still requires human intervention and the 
resulting models fall short of yielding both good detection 
rates for new unseen viruses and low false positive rates. 

In this paper, we are interested in applying machine 
learning methods to virus detection, and in particular to 
the problem of feature selection. We propose a method by 
which an exhaustive search is conducted on a dataset of 
viruses, yielding a large number of short generic features. 
Then we elect those that are most representative of viral 
properties. We also introduce a cross-validation scheme 
that tests our classifier using an evaluation method 
simulating real-world conditions of new virus outbreaks, 
and we offer evidence that our classifier has high 
predictive power. 
 
2. Background 
 

Current research applying data mining to virus 
detection strives to automate the search for features used 
in classification. This process has been tackled from two 
different angles: extracting optimal signatures from a 
dataset of viruses, and discovering more general features 
for use in a complex classification scheme. 

Extracting virus signatures is not a new problem. 
Kephart et al. [4] developed a popular extraction method 
for virus signatures, by infecting a large number of files 
with a given virus and then harvesting for constant 
regions of 12 to 36 bytes. Then, from the considerable 
number of signatures collected, the ones with lowest 
predicted false positive rates were selected. While this 
method make it possible to extract signatures quickly and 
without the help of an expert, the authors concede that the 
algorithm fails for viruses that are moderately 
polymorphic. 

Some detection methods utilize a variety of features, 
such as Win32 dll file calls, ASCII strings and byte 
sequences contained in the binary files. In an early 
heuristic approach [5], features such as duplicated UNIX 
system calls and files targeted by the program for writing 
purposes were used to detect malicious executables. In a 
machine learning method developed by Matthew Schultz 
et al. [6], ASCII strings and bytes sequences yielded good 
results. However, despite the byte sequences having a 
fixed length of 16, the feature space was very large, such 
that their dataset had to be split into partitions and 
different classifiers trained separately on each of them. 

Proceedings of the Sixth International Conference on Data Mining (ICDM'06)
0-7695-2701-9/06 $20.00  © 2006



Research in non signature-based heuristics has shown 
that sequences as short as 4 bytes can be used to detect 
unseen virus instances successfully [1]. However, as was 
found in [8], the list of candidate features extracted from a 
small dataset can contain tens of thousands of sequences. 

Finally, many viruses are considered to belong to 
common virus families, based on the similarities in 
structure, code or method of infection that they share [2]. 
This classification is crucial to properly evaluating the 
effectiveness of a virus detection system. The first 
occurrence of a new kind of virus is typically the most 
devastating, as virus scanners are often incapable of 
detecting it. Then a host of variants typically emerge soon 
after the initial outbreak, albeit with less damaging 
consequences. Our method uses a priori knowledge of 
virus families, and evaluates the ability of our classifier to 
detect instances of a family without having been trained 
on any other instance from that same family. 

 
3. Non-Specific Feature Search 
 

We propose an exhaustive search for n-grams, short 
sequences of n bytes, where n-grams beginning at every 
byte of the files’ machine code are recorded. The search 
process is comparable to a scanning window moving 
across the binary code and examining all sequences of a 
specified length. Our feature selection, shown in Figure 1, 
involves a selection step followed by an elimination step. 
In the fist step, we scan sequences, record their 
frequencies within each virus family, and construct lists 
of all the features that meet a given support threshold 
within each family. In the second step, we consolidate 
these lists and retain the features that meet a given support 
threshold 
among the feature lists. 
 

 

 

 

 

 

 

 

 

Figure 1: Hierarchical feature selection process. 

 
The FEATURE_SEARCH algorithm, shown below, 

sets how general the features are, and how rigorous the 
feature elimination, by adjusting the following 
parameters: 

Sequence Length: The sequence length can be 
specified. The shorter the length, the more likely the 
feature is to have general relevance in the dataset. But a 
short length will yield a larger number of features in each 
virus family. The length of the sequence is specified as a 
number of bytes. 

Intra-Family Support: In the feature selection step, 
the intra-family support threshold of features within each 
virus family can be specified. Sequences occurring at or 
above a specified frequency are retained as candidate 
features. This puts a constraint on the number of 
sequences obtained for each virus family. Because there 
are a variable number of instances in each virus family, 
the intra-family support is specified as a percentage. In 
addition, a maximum number of features per virus family 
can be specified. If the feature selection yields an amount 
of features that exceeds this limit, then the intra-family 
support is increased by one instance, and the feature list is 
rebuilt. 

Inter-Family Support: In the feature elimination step, 
the inter-family support threshold of features within the 
general corpus of viruses can be set to a desired value. 
This ensures that only those features that appear with a 
high enough inter-family support, as specified, are 
retained. This step discards unwanted features that occur 
frequently in one virus family but that are exclusive to 
that family. This parameter is specified as a number of 
virus families. 

----------------------------------------------------------------------- 
FEATURE_SEARCH (S, len, intraSup, intraLim, interSup) 
----------------------------------------------------------------------- 
Input: A non-empty set of viruses, S, classified in virus 

families. 
Input: A non-zero sequence length, len. 
Input: The intra-family support, intraSup, as a percentage. 
Input: The intra-family limit, intraLim, as a number of 

 features. 
Input: The inter-family support, interSup, as a number of 

 virus families. 
Output: A set features, F, representing common 

    characteristics of the viruses in S. 
  1:  for (each virus family Si in S) do 
  2:   for (each virus Vij in family Si) do 
  3:  record all sequences of length len found in 

Vij (without repeats) 
  4:   compute minimum incidence intraMini = intraSup x 

  number of viruses in Si 
  5:   build the list Li of Mi sequences with support of at 

  least intraMini in Si 
  6:   if (Mi > intraLim) 
  7:    increment intraMini and go to 4: 
  8:  build the set of features F of sequences with support of 
       at least interSup in S 
  9:  return F 
----------------------------------------------------------------------- 
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This method conducts the feature selection in a 
hierarchical fashion and is scalable to large datasets. 
Sequence scanning is done only once, and the first feature 
selection is conducted on small family subsets, while a 
second selection is conducted on shorter feature lists. The 
method also ensures that all retained features represent 
viral properties that are common to many types of viruses, 
as opposed to idiosyncrasies specific to one family. 
 
4. Evaluation Method 
 

The evaluation of heuristics is often biased when 
variants of known viruses or members of the same family 
are used in testing. To evaluate how well our classifier 
could classify new unseen viruses, we must use test cases 
from a family group that was neither used in feature 
extraction nor in training. For this purpose, we propose a 
cross-validation scheme that takes into account the 
correlation between viruses belonging to the same family. 

Given a set of viruses categorized into N families, we 
partition the dataset into k sets of virus families, each 
consisting of N / k families. These sets of families are 
labeled  S1 , S2 , S3 , … , Sk. 

Prior to conducting the experiments, virus families and 
benign programs were selected at random and added to 
each family set. Experiments are then carried out on the 
dataset using a k-fold cross-validation scheme in the 
following way: 

 
1. For each sets Si (i = 1 to k) scan all viruses and 
record to a separate file all byte sequences occurring 
with a frequency that meets a given threshold. 
 
2.  For ( j = 1 to k ) do: 
 
   a. Consolidate feature lists for set Strain = { Si | i≠j } 
        keeping only those meeting a given inter-family 
        support threshold 
 
   b. Train classifier on set  Strain = { Si | i≠j } 
 
   c. Validate classifier on test set  Stest = Sj 

 
This cross-validation scheme simulates an 

environment where a virus detection system is faced with 
the outbreak of a new unseen type of virus. This test 
evaluates its performance in more stringent conditions, 
and therefore offers a better measure of its predictive 
power. 

Figure 2 gives an overview of our system using a 5-
fold cross-validation scheme. Each fold uses family-
independent sets, on which feature selection can be 
performed as described in Section 3. Feature selection is 
repeated on the set of viruses in the training subsamples 
for each cross-validation fold. 

 

 
Figure 2: Feature selection, classifier training 
and evaluation using 5-fold cross-validation 

(using fold 5 as test set). 

 
Critics of traditional testing methods argue that “only 

completely new worms cause global outbreaks” [10], and 
stress that standard random selection of test sets does not 
provide a reliable assessment of the proactive abilities of 
virus scanners. Our testing methodology evaluates the 
performance of our classifier in conditions similar to a 
real world environment. By separating all virus families, 
it provides a more accurate measure of its proactive 
abilities and, in particular, its capacity to detect 
completely new instances. In the next section, we report 
the results of a number of experiments intended to 
demonstrate the advantages of our feature selection model 
and the validity of our testing methodology. 
 
5. Experimental Results 
 

Our experiments were carried out on a dataset of 3000 
examples consisting of 1512 previously labeled viruses 
and 1488 small benign executables, collected from 
desktop computers using various versions of the Windows 
operating system. The viruses were taken from the 
collection used in previous research [6] and were 
classified into 110 families, based on their filenames. 
 
5.1. Comparison Against a Benchmark Model 

 
We compared our method with a model used in 

previous research [6]. We examined each consecutive 16-
byte sequence in every virus in the training set, and 
retained those appearing with a support of at least 1%. 
However, cross-validation was done in the same way as in 
our hierarchical selection scheme, where the classifier 
was evaluated on test sets of new unseen families. 

We used 5-fold cross validation, where each fold 
consists of a viral set of 22 virus families and 297 benign 
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executables. For each fold, a separate set of features was 
generated from the training set. 

For our hierarchical model, we chose a sequence 
length of 8, which represents half that of the traditional 
method. We set the intra-family support threshold to 40% 
with an intra-family limit of 500, and the inter-family 
support threshold to 3 (out of 110 families). The 
minimum overall support of the features can be estimated 
to be the product of these two parameters. Table 1 shows 
that out final set of features is of comparable size and 
overall support as that of our benchmark test, thus 
providing a reliable comparison of the usefulness of each 
set of features for classifying new unseen viruses 

 
Table 1. Number and support of features for the 

hierarchical and traditional models 

 
Once the final feature set was obtained, we represented 
our positive and negative data in the feature space by 
using, for each feature, “1” or “0” to indicate whether or 
not the feature is present a given executable file. 
 

Table 2. Experimental results using the 
hierarchical and traditional search methods. 

 
In our experiments, we used WEKA’s implementation of 
the ID3 and J48 decision trees, Naïve Bayes and the SMO 
algorithm, with the default settings. The results, displayed 
in Table 2, indicate that a virus classifier can be made 
more accurate by using features representative of general 

viral properties, as generated by our feature search 
method. With up to 93.65% overall accuracy, our system 
outperforms sub-50% rates of traditional detection 
methods and achieves better results than some of the 
leading research in the field [6], which only performs at 
63.52% when tested under our more stringent evaluation 
method. 
 
5.2. Optimal Feature Selection Criteria 

 
In this section, we use a wrapper approach to search 

through a wide range of search parameters in an attempt 
to optimize our feature selection. We decrease the 
sequence length from 8 to 3 bytes, while limiting the 
number of candidate features per virus family to a 
maximum of 500. To achieve this, our initial intra-family 
support threshold of 40% is automatically incremented 
until a reasonably small number of features are generated, 
as we described in Section 3. We also investigate different 
inter-family thresholds, as they directly affect the 
generality and final number of features. We explore a 
range of threshold values from 3 to 6. We report the 
results of the ID3 classifier in Table 3. Experiments using 
the three other classifiers shown in Table 2 yielded 
consistent results. 

 
Table 3. Virus detection accuracy (top) and false 
positive rates (bottom), using ID3 (values are %) 
Sequence 

length 
 
Inter-
family 
support 

8 7 6 5 4 3 

3 90.31 
4.16 

93.92 
2.55 

94.69 
1.68 

96.11 
0.81 

95.85 
1.41 

99.77 
0.34 

4 84.28 
4.77 

92.71 
4.50 

93.86 
3.50 

96.44 
1.68 

94.45 
1.14 

94.58 
1.28 

5 80.47 
5.98 

92.40 
6.45 

93.54 
3.63 

93.85 
2.22 

94.73 
1.68 

92.26 
1.21 

6 64.42 
4.03 

92.28 
6.45 

94.88 
4.62 

94.61 
2.76 

94.51 
1.48 

95.12 
1.41 

 
The results show that the classifier achieves better 

overall performance with shorter sequences. At length 5, 
performance reaches a peak, as the results at lengths 3 and 
4 remain comparable. The inter-family support generally 
yields better results when low. This is especially true for 
longer sequences, where we observe a more rapid drop in 
accuracy as the support threshold decreases. This 
deterioration is likely due to the dwindling number of 
features. Table 4 shows that, at low support thresholds, 
the searches for sequences of lengths 6, 7 and 8 generate 
sets of less than 100 features, and as low as 16. In the case 
of shorter sequences, the performance remains very good, 
thanks to an abundance of features. However, we notice 
that performance is hindered when the classifier is 
working with a set smaller than 200 features. Our 

Model 
Average Number 

of Features 

Minimum Expected 

Overall Support 

Hierarchical 428 0.4 x (3 / 110)  =  1.09% 

Traditional 377 1% 

Classifier 
Overall 

Accuracy 

False 

Positive Rate 

Detection 

Accuracy 

Hierarchical Feature Search 

ID3 93.29% 4.16% 90.56% 

J48 93.65% 5.24% 92.56% 

Naïve Bayes 69.51% 0.13% 37.17% 

SMO  93.39% 5.71% 92.26% 
Traditional Feature Search 

ID3 63.52% 14.02% 47.83% 

J48 64.69% 13.18% 46.72% 

Naïve Bayes 60.69% 0.16% 18.66% 

SMO  65.04% 13.36% 47.52% 
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classifier performs generally better with a larger set of 
features, but some sets yield better accuracy than similar 
sets equal or bigger in size. The sets diagonally adjacent – 
down and to the right – to feature sets of lengths 6 to 8, 
are most often significantly smaller than the latter, and yet 
most often lead to a better performance. 

 
Table 4. Number of features, averaged over the 5 

cross-validation folds, in relation to different 
feature selection parameters 

Sequence 
length 

 
Inter-
family 
support 

8 7 6 5 4 3 

3 427 531 690.4 879 1150 1633.6 

4 108 166 247.4 365.8 531.6 956.4 

5 35.2 65.8 111 186.6 333.6 654 

6 16.6 33 59.2 111.6 223.6 479 

 
For short sequences of length 7 and 8, as the inter-

family support and the number of features decrease, the 
classifier’s performance drops to the lowest recorded 
levels, while longer features of lengths 3 to 6 generally 
maintain a performance in the mid-90’s. This 
demonstrates that these feature sets, while decreasing in 
size, contain general enough features that are capable of 
covering the majority of training and test examples. 
 
6. Conclusion and Future Work 
 

We presented a feature search method that focuses on 
selecting generic features that are applicable to different 
families of viruses. This ensured that our classifier is 
genuinely heuristic and does not rely on signatures. In 
experiments testing our method against that of leading 
research, our method achieved better performance. In 
both models the features selected and used by the 
classifier had comparable overall support within the 
dataset. This indicates that our feature search method 
produced features that were more useful in detecting new 
unseen viruses. 

We also introduced an evaluation method for virus 
classifiers that tests more convincingly its ability to detect 
new viruses. Our method does not allow classifiers to use 
examples in training that are variants of viruses present in 
the test set. This denies them an unfair advantage that 
they would not have in real world conditions. Our results 
show that our system, which uses family non-specific 
features, performs very well, while existing techniques for 
detecting previously unseen viruses perform significantly 
more poorly under our evaluation method. 

In future work we propose focusing on reducing the 
false positive rate, by using a larger number of benign 

files, or by training our classifier using a cost matrix and 
setting a higher cost to misclassifying negative examples. 
We would also like to explore retrospective testing. 
Retrospective testing is a recent evaluation methodology 
for virus detection systems [11]. This would involve using 
a set of older viruses in the training set and a set of more 
recent ones in the test set. 
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