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Abstract. We study computer virology from an abstract point of view.
Viruses and worms are self-replicating programs, whose constructions are
essentially based on Kleene’s second recursion theorem. We show that
we can classify viruses as solutions of fixed point equations which are
obtained from different versions of Kleene’s second recursion theorem.
This lead us to consider four classes of viruses which various polymor-
phic features. We propose to use virus distribution in order to deal with
mutations.
Topics covered. Computability theoretic aspects of programs, com-
puter virology.
Keywords. Computer viruses, polymorphism, propagation, recursion
theorem, iteration theorem.

1 Theoretical Computer Virology

An important information security breach is computer virus infections. Follow-
ing Filiol’s book [9], we do think that theoretical studies should help to design
new defenses against computer viruses. The objective of this paper is to pursue
a theoretical study of computer viruses initiated in [4]. Since viruses are essen-
tially self-replicating programs, we see that virus programming methods are an
attempt to answer to von Neumann’s question [22].

Can an automaton be constructed, i.e., assembled and built from appro-
priately “raw material”, by an other automaton? [. . . ] Can the construc-
tion of automata by automata progress from simpler types to increasingly
complicated types?

Abstract computer virology was initiated in the 80’s by the seminal works of
Cohen and Adleman [7]. The latter coined the term virus. Cohen defined viruses
with respect to Turing Machines [8]. Later [1], Adleman took a more abstract
point of view in order to have a definition independent from any particular
computational model. Then, only a few theoretical studies followed those seminal
works. Chess and White refined the mutation model of Cohen in [6]. Zuo and
Zhou formalized polymorphism from Adleman’s work [23] and they analyzed the
time complexity of viruses [24].



Recently, we tried [3, 4] to formalize inside computability the notion of viruses.
This formalization captures previous definitions that we have mentioned above.
We also characterized two kinds of viruses, blueprint and smith viruses, and we
proved constructively their existence. This work proposes to go further, introduc-
ing a notion of distribution to take into account polymorphism or metamorphism.
We define four kinds of viruses:

1. A blueprint virus is a virus, which reproduces by just duplicating its code.
2. An evolving blueprint virus is a virus, which can mutate when it duplicates by

modifying its code. Evolving blueprint viruses are generated by a disbution
engine.

3. A smith virus is a blueprint virus which can use its propagation function
directly to reproduce.

4. Lastly, we present Smith distribution. A virus generating by a Smith distri-
bution can mutate its code like evolving blueprint viruses, but also mutate
its propagation function.

We show that each category is closely linked to a corresponding form of the
recursion theorem, given a rational taxonomy of viruses. So recursion theorems
play a key role in constructions of viruses, which is worth to mention. Indeed,
and despite the works [11, 12], recursion theorems are used essentially to prove
“negative” results such as the constructions of undecidable or inseparable sets,
see [19] for a general reference, or such as Blum’s speed-up theorem [2].

Lastly, we switch to a simple programming language named WHILE+ to illus-
trate the fact that our constructions lives in the programming world. Actually,
we follow the ideas of the experimentation of the iteration theorem and of the re-
cursion theorem, which are developed in [11, 12] by Jones et al. and very recently
by Moss in [16].

2 A Virus Definition

2.1 The WHILE+ language

The domain of computation D is the set of binary trees generated from an atom
nil and a pairing mechanism 〈 , 〉. The syntax of WHILE+ is given by the following
grammar from a set of variables V:

Expressions: E → V | cons(E1, E2) | hd(E) | tl(E) |
execn(E0, E1, . . . , En) | specn(E0, E1 . . . , En) with n ≥ 1

Commands: C → V := E | C1; C2 | while(E){C} | if(E){C1}else{C2}

A WHILE+ program p is defined as follows p(V1, . . . , Vn){C; return E; }. A pro-
gram p computes a function JpK from Dn to D.

We suppose that we are given a concrete syntax of WHILE+, that is an encod-
ing of programs by binary trees of D. From now on, when the context is clear,



we do not make any distinction between a program and its concrete syntax. And
we make no distinction between programs and data.

For convenience, we have a built-in self-interpreter execn of WHILE+ programs
which satisfies :

JexecnK(p, x1, . . . xn) = JpK(x1, . . . xn)

In the above equation, the notation p means the concrete syntax of the program
p.

We also use a built-in specializer specn which satisfies:

JJspecmK(p, x1, . . . xm)K(xm+1, . . . , xn) = JpK(x1, . . . xn)

We may omit the subscpript n which indicates the number of arguments of an
interpreter or a specializer.

The use of an interpreter and of a specializer is justified by Jones who showed
in [13] that programs with these constructions can be simulated up to a linear
constant time by programs without them.

If f and g designate the same function, we write f ≈ g. A function f is
semi-computable if there is a program p such that JpK ≈ f , moreover, if f is
total, we say that f is computable.

2.2 A Computer Virus representation

We propose the following scenario in order to represent viruses. When a program
p is executed within an environment x, the evaluation of JpK(x), if it halts, is a
new environment. This process may be then repeated by replacing x by the new
computed environment. The entry x is thought of as a finite sequence 〈x1, . . . , xn〉
which represents files and accessible parameters.

Typically, a program copy which duplicates a file satisfies JcopyK(p, x) =
〈p,p, x〉. The original environment is 〈p, x〉. After the evaluation of copy, we
have the environment 〈p,p, x〉 in which p is copied.

Next consider an example of parasitic virus. Parasitic viruses insert them-
selves into existing files. When an infected host is executed, first the virus in-
fects a new host, then it gives the control back to the original host. For more
details we refer to the virus writing manual of Ludwig [15]. A parasistic virus
is a program v which works on an environment 〈p,q, x〉. The infected form
of p is B(v,p) where B is a propagation function which specifies how a virus
contaminates a file. Here, the propagation function B can be for example a
program code concatenation function. So, we have a first “generic” equation:
JvK(p, 〈q, x〉) = JB(v,p)K(〈q, x〉). Following the description of a parasitic virus,
v computes the infected form B(v,q) and then executes p. This means that the
following equation also holds: JvK(q, x) = JpK(B(v,q), x). A parasistic virus is
defined by the two above equations.

More generally, the construction of viruses lies in the resolution of fixed point
equations such as the ones above in which v and B are unknowns. The existence
of solutions of such systems is provided by Kleene’s recursion theorem. From
this observation and following [4], we propose the following virus representation:



Definition 1 (Computer Virus). Let B be a computable function. A virus
w.r.t B is a program v such that ∀p, x : JvK(p, x) = JB(v,p)K(x). Then, B is
named a propagation function for the virus v.

This definition includes the ones of Adleman and Cohen, and it handles
more propagation and duplication features than the other models [4]. However,
it is worth to notice that the existence of a virus v w.r.t a given propagation
function B is constructive. This is a key difference since it allows to build viruses
by applying fixed point constructions given by proofs of recursion theorems.

A motivation behind the choice of WHILE+ programming language is the fact
that there is no self-referential operator, like $0 in bash, which returns a copy
of the program concrete syntax. Indeed, we present below virus construction
without this feature. This shows that even if there is no self-referential operator,
there are still viruses. Now, viruses should be more efficient if such operators are
present. Of course, a seminal paper on this subject is [21].

3 Blueprint Duplication

3.1 Blueprint distribution engine

From [4], a blueprint virus for a function g is a program v which computes g
using its own code v and its environment p, x. The function g can be seen as
the virus specification function. A blueprint virus for a function g is a program
v which satisfies{

v is a virus w.r.t some propagation function
∀p, x : JvK(p, x) = g(v,p, x)

(1)

Note that a blueprint virus does not use any code of its propagation function,
unlike smith viruses that we shall see shortly. The solutions of this system are
provided by Kleene’s recursion theorem.

Theorem 2 (Kleene’s Recursion Theorem [14]). Let f be a semi-computable
function. There is a program e such that JeK(x) = f(e, x).

Definition 3 (Distribution engine). A distribution engine is a program dv

such that for every virus specification program g, JdvK(g) is a virus w.r.t a fixed
and given a propagation function B.

Theorem 4. There is a distribution engine dv such that for any program g,
JdvK(g) is a blueprint virus for JgK.

Proof. We use a construction for the recursion theorem due to Smullyan [20].
It provides a fixpoint which can be directly used as a distribution engine. We
define dv thanks to the concrete syntax of dg as follows:

dg (z,u,y,x){
r := exec(z,spec(u,z,u),y,x);
return r;
}

dv (g){
r := spec(dg,g,dg);
return r;
}



We observe that JJdvK(g)K(p, x) = JgK(JdvK(g),p, x). Moreover, JdvK(g) is clearly
a virus w.r.t to the propagation function JspecK. ut

We consider a typical example of blueprint duplication which looks like the
real life virus ILoveYou. This program arrives as an e-mail attachment. Opening
the attachment triggers the attack. The infection first scans the memory for
passwords and sends them back to the attacker, then the virus self-duplicates
sending itself at every address of the local address book.

To represent this scenario we need to deal with mailing processes. A mail
m = 〈@, y〉 is an association of an address @ and data y. Then, we consider that
the environment contains a mailbox mb = 〈m1, . . . ,mn〉 which is a sequence of
mails. To send a mail m, we add it to the mailbox, that is mb := cons(m,mb).
We suppose that an external process deals with mailing.

In the following, x denotes the local file structure, and @bk = 〈@1, . . . ,@n〉
denotes the local address book, a sequence of addresses. We finally introduce a
WHILE+ program find which searches its input for passwords and which returns
them as its evaluation. The virus behavior for the scenario of ILoveYou is given
by the following program.

g (v,mb,〈@bk, x〉) {
pass := exec(find,x);
mb := cons(cons(‘‘badguy@dom.com’’,pass),mb);
y := @bk;
while (y) {
mb := cons(cons(hd(y),v),mb);
y := tl(y);
}
return mb;
}

From the virus specification program g, we generate the blueprint virus
JdvK(g).

3.2 Distributions of evolving blueprint viruses

An evolving blueprint virus is a virus, which can mutate but the propagation
function remains the same. Here, we describe a distribution engine for which the
specification of a virus can use the code of its own distribution engine. Thus,
we can generate evolved copies of a virus. Formally, given a virus specification
function g, a distribution of evolving blueprint viruses is a program dv satisfying:{

dv is a distribution engine
∀i,p, x : JJdvK(i)K(p, x) = g(dv, i,p, x)

(2)

The existence of blueprint distributions corresponds to a stronger form of the
recursion theorem, which was first proved by Case [5].



Theorem 5 (Explicit recursion [4]). Let f be a semi-computable function.
There exists a computable function e such that ∀x, y : Je(x)K(y) = f(e, x, y)
where e computes e.

Definition 6 (Distribution engine builder). A builder of distribution engine
is a program cv such that for every virus specification program g, JcvK(g) is a
distribution engine.

Theorem 7. There is a builder of distribution engine cv such that for any pro-
gram g, JcvK(g) is a distribution of evolving blueprint viruses for some fixed
propagation function B.

Proof. We define

edg (z,t,i,y,x) {
e := spec(spec3,t,z,t);
return exec(z,e,i,y,x);
}

cv (g){
r := spec(spec3,edg,g,edg);
return r;
}

We observe that for any i, JJJcvK(g)K(i)K(p, x) = g(JcvK(g), i,p, x). Moreover,
JJcvK(g)K(i) is a virus w.r.t JspecK. ut

To illustrate Theorem 7, we come back to the scenario of the virus ILoveYou,
and we add to it mutation abilities. We introduce a WHILE+ program poly which
is a polymorphic engine. This program takes a program p and a key i, and it
rewrites p according to i, conserving the semantics of p. That is, poly satisfies
JpolyK(p, i) is one-one on i and JJpolyK(p, i)K ≈ JpK.

We build a virus which self-duplicates sending mutated forms of itself. With
the notations of the Sect. 3.1, we consider a behavior described by the following
WHILE+ program.

g (dv,i,mb,〈@bk, x〉) {
pass := exec(find,x);
mb := cons(cons(‘‘badguy@dom.com’’,pass),mb);
next key := cons(nil,i)
virus := exec(dv,next key);
mutation := exec(poly,virus,i);
y := @bk;
while (y) {
mb := cons(cons(hd(y),mutation),mb);
y := tl(y);
}
return mb;
}

We apply Theorem 7 to transform this program into a code of the correspond-
ing distribution engine. So, JJcvK(g)K(i) is a copy indexed by i of the evolving
blueprint virus specified by g.



4 Smith Reproduction

4.1 Smith Viruses

We define a smith virus as two programs v,B which is defined w.r.t a virus
specification function g according to the following system.{

v is a virus w.r.t JBK
∀p, x : JvK(p, x) = g(B,v,p, x)

The class of smith viruses is obtained by the double recursion theorem due to
Smullyan [18] as a solution to the above equations.

Theorem 8 (Double Recursion Theorem [18]). Let f1 and f2 be two semi-
computable functions. There are two programs e1 and e2 such that

Je1K(x) = f1(e1, e2, x) Je2K(x) = f2(e1, e2, x)

We extend the previous definition of engine distribution to propagation en-
gine as follows.

Definition 9 (Virus Distribution). A virus distribution is a pair (dv,dB)
of programs such that for every virus specification g, JdvK(g) is a virus w.r.t
JJdBK(g)K. As previously, dv is named a distribution engine and dB is named
a propagation engine.

Theorem 10. There is a virus distribution (dv,dB) such that for any program
g, JdvK(g), JdBK(g) is a smith virus for JgK.

Proof. We define the following programs with a double fixed point.

dg1 (z1,z2,y1,y2,y,x) {
e1 := spec(y1,z1,z2,y1,y2);
e2 := spec(y2,z1,z2,y1,y2);
return exec(z1,e1,e2,y,x);
}

dg2 (z1,z2,y1,y2,y,x) {
e1 := spec(y1,z1,z2,y1,y2);
e2 := spec(y2,z1,z2,y1,y2);
return exec(z2,e1,e2,y,x);
}

and

pispec (g,B,v,y,p) {
r := spec(g,B,v,p);
return r;
}

Then, let dv and dB be the following programs.

dv (g){
r := spec(pispec,g);
return spec(dg2,r,g,dg1,dg2);
}

dB (g){
r := spec(pispec,g);
return spec(dg1,r,g,dg1,dg2);
}



We observe that for any program g

JJdvK(g)K(p, x) = JJJdBK(g)K(JdvK(g),p)K(x) = g(JdBK(g), JdvK(g),p, x) ut

We present how to build the parasitic virus of Sect. 2. The virus specification
function g of the virus is the following.

g (B,v,p,〈q, x〉) {
infected form := exec(B,v,p);
return exec(p,infected form,x);
}

First, it infects a new host q with the virus v using the propagation procedure
B. Then, it executes the original host p. This corresponds to the behavior of a
parasitic virus. We obtain a smith virus using the builder of Theorem 10.

4.2 Smith Distributions

Smith distributions generate viruses which are able to mutate their code and
their propagation mechanism. A smith distribution (dv,dB) w.r.t the virus spec-
ification program g satisfies

{
(dv,dB) is a virus distribution
∀i,p, x : JJdvK(i)K(p, x) = g(dB,dv, i,p, x)

The class of Smith distributions is defined as the solutions of this double
recursion theorem.

Theorem 11 (Double explicit Recursion). Let f1 and f2 be two semi-
computable functions. There are two computable functions e1 and e2 such that
for all x and y

Je1(x)K(y) = f1(e1, e2, x, y) Je2(x)K(y) = f2(e1, e2, x, y)

where e1 and e2 respectively compute e1 and e2.

Definition 12 (Distribution builder). A Distribution builder is a pair of pro-
grams cv, cB such that for every virus specification program g, (JcvK(g), JcBK(g))
is a virus distribution.

Theorem 13. There is a distribution builder (cv, cB) such that for any program
g, (JcvK(g), JcBK(g)) is a smith distribution for JgK.

Proof. We define the following programs:



edg1 (z1,z2,t1,t2,i,y,x) {
e1 := spec(spec5,t1,z1,z2,t1,t2);
e2 := spec(spec5,t2,z1,z2,t1,t2);
return exec(z1,e1,e2,i,y,x);
}

edg2 (z1,z2,t1,t2,i,y,x) {
e1 := spec(spec5,t1,z1,z2,t1,t2);
e2 := spec(spec5,t2,z1,z2,t1,t2);
return exec(z2,e1,e2,i,y,x);
}

and
pispec′ (g,db,dv,i,y,p) {
r := spec(g,db,dv,i,p);
return r;
}

Let cv and cB be the following programs.

cv (g){
r := spec(pispec′,g)
return spec(spec5,edg2,r,g,edg1,edg2);
}

cB (g){
r := spec(pispec′,g)
return spec(spec5,edg1,r,g,edg1,edg2);
}

We observe that for any program g

JJJcvK(g)K(i)K(p, x) = JJJJcBK(g)K(i)K(JJcvK(g)K(i),p)K(x)
= g(JcBK(g), JcvK(g), i,p, x) ut

We enhance the virus of Sect. 4.1, adding some polymorphic abilities. Any
virus of generation i infects a new host q with a virus of next generation using
the propagation procedure of generation i. Then it gives the control back to the
original host p. This behavior is illustrated by the following program.

g (db,dv,i,p,〈q, x〉) {
B := exec(db,i);
v := exec(dv,cons(i,nil));
mutation := exec(poly,v,i);
infected form := exec(B,mutation,q);
return exec(p,infected form,x);
}

Then, we obtain the smith distribution by the builder of Theorem 13.
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