G PU

COMPUTING GEMS
Emerald Edition

WEN-MEI W. HWU

editor-in-chief

GPU Computing Gems
Emerald Edition

Morgan Kaufmann's Applications of GPU Computing Series

Computing is quickly becoming the third pillar of scientific research, due in large part to the perfor-
mance gains achieved through graphics processing units (GPUs), which have become ubiquitous in
handhelds, laptops, desktops, and supercomputer clusters. Morgan Kaufmann’s Applications of GPU
Computing series offers training, examples, and inspiration for researchers, engineers, students, and
supercomputing professionals who want to leverage the power of GPUs incorporated into their simu-
lations or experiments. Each high-quality, peer-reviewed book is written by leading experts uniquely
qualified to provide parallel computing insights and guidance.

Each GPU Computing Gems volume offers a snapshot of the state of parallel computing across a
carefully selected subset of industry domains, giving you a window into the lead-edge research occur-
ring across the breadth of science, and the opportunity to observe others’ algorithm work that might
apply to your own projects. Find out more at http://mkp.com/gpu-computing-gems.

Recommended Parallel Computing Titles

Programming Massively Parallel Processors
A Hands-on Approach

By David B. Kirk and Wen-mei W. Hwu
ISBN: 9780123814722

GPU Computing Gems: Jade Edition
Editor-in-Chief: Wen-mei W. Hwu
ISBN: 9780123859631

Coming Summer 2011

The Art of Multiprocessor Programming
By Maurice Herlihy and Nir Shavit
ISBN: 9780123705914

GPU Computing Gems
Emerald Edition

Wen-mei W. Hwu

AMSTERDAM ¢ BOSTON e HEIDELBERG ¢ LONDON
NEW YORK e OXFORD e PARIS e SAN DIEGO
SAN FRANCISCO e SINGAPORE ¢ SYDNEY ¢ TOKYO

MK

HORGAN KAUFHANN

ELSEVIE Morgan Kaufmann Publishers is an imprint of Elsevier

Acquiring Editor: Todd Green
Assistant Editor: Robyn Day
Project Manager: Paul Gottehrer
Designer: Dennis Schaefer

Morgan Kaufmann is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

© 2011 NVIDIA Corporation and Wen-mei W. Hwu. Published by Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about the
Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center
and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other
than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods or professional practices, may become necessary. Practitioners and
researchers must always rely on their own experience and knowledge in evaluating and using any information or
methods described herein. In using such information or methods they should be mindful of their own safety and
the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability
for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or
from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
GPU computing gems / editor, Wen-mei W. Hwu.
p. cm.

Includes bibliographical references.

ISBN 978-0-12-384988-5
1. Graphics processing units—Programming. 2. Imaging systems. 3. Computer graphics. 4. Image
processing—Digital techniques. I. Hwu, Wen-mei.

T385.G6875 2011

006.6—dc22

2010047487

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For information on all MK publications visit our website at
www.mkp.com

Printed in the United States of America
1112131415 1110987 654321

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID o peo Foundation

Contents

Editors, Reviewers, and AUtROTrSuiiniiii et xi

03T 06 1167 5 (o) Xix
Wen-mei W. Hwu

SECTION 1 SCIENTIFIC SIMULATION
Robert M. Farber

CHAPTER 1 GPU-Accelerated Computation and Interactive Display of Molecular
83T 1 5
John E. Stone, David J. Hardy, Jan Saam, Kirby L. Vandivort, Klaus Schulten

CHAPTER 2 Large-Scale Chemical Informatics on GPUS...........ccevueineineiniineinennnns 19
Imran S. Haque, Vijay S. Pande

CHAPTER 3 Dynamical Quadrature Grids: Applications in Density Functional
[1 [T TP 1T 35
Nathan Luehr, Ivan Ufimtsev, Todd Martinez

CHAPTER 4 Fast Molecular Electrostatics Algorithms on GPUS..............ccvuvuennennnns 43
David J. Hardy, John E. Stone, Kirby L. Vandivort, David Gohara, Christopher Rodrigues,
Klaus Schulten

CHAPTER 5 Quantum Chemistry: Propagation of Electronic Structure on a GPU............. 59
Jacek Jakowski, Stephan Irle, Keiji Morokuma

CHAPTER 6 An Efficient CUDA Implementation of the Tree-Based Barnes Hut n-Body
Y (1111 11 75
Martin Burtscher, Keshav Pingali

CHAPTER 7 Leveraging the Untapped Computation Power of GPUs: Fast Spectral
Synthesis Using Texture Interpolation.............ccccoiiiiiiiiiiiiiiiiineenn, 93
Richard Townsend, Karthikeyan Sankaralingam, Matthew D. Sinclair

CHAPTER 8 Black Hole Simulations With CUDA............cevueiuiineiniineineineineinennns 103
Frank Herrmann, John Silberholz, Manuel Tiglio

CHAPTER 9 Treecode and Fast Multipole Method for N-Body Simulation with CUDA........ 113

Rio Yokota, Lorena A. Barba

vi Contents

CHAPTER 10

SECTION 2

Wavelet-Based Density Functional Theory Calculation on Massively

Parallel Hybrid Architecturescooiiiiiiiiiiiiiiii i naaas

Luigi Genovese, Matthieu Ospici, Brice Videau, Thierry Deutsch, Jean-Frangois Méhaut

LIFE SCIENCES

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

CHAPTER 15

SECTION 3

Bertil Schmidt

Accurate Scanning of Sequence Databases with the Smith-Waterman

(o] 11

tukasz Ligowski, Witold R. Rudnicki, Yongchao Liu, Bertil Schmidt

Massive Parallel Computing to Accelerate Genome-Matching.................

Ben Weiss, Mike Bailey

GPU-Supercomputer Acceleration of Pattern Matching

Ali Khajeh-Saeed, J. Blair Perot

GPU Accelerated RNA Folding Algorithm............ccciiiiiiiiiiiiniinnnnns

Guillaume Rizk, Dominique Lavenier, Sanjay Rajopadhye

Temporal Data Mining for NEuroSCiencecovvvvvieeccnnniiinnnnnnn.

Wu-chun Feng, Yong Cao, Debprakash Patnaik, Naren Ramakrishnan

STATISTICAL MODELING

CHAPTER 16

CHAPTER 17

CHAPTER 18

SECTION 4

Mike Giles

Parallelization Techniques for Random Number Generators

Thomas Bradley, Jacques du Toit, Robert Tong, Mike Giles, Paul Woodhams

Monte Carlo Photon Transportonthe GPUcooviiiiiiiiiiiinnntn

LaszI6 Szirmay-Kalos, Balazs Téth, Milan Magdics

High-Performance Iterated Function Systemsc.ccovvvvvviiiinnnnnn.

Christoph Schied, Johannes Hanika, Holger Dammertz, Hendrik P. A. Lensch

EMERGING DATA-INTENSIVE APPLICATIONS

CHAPTER 19

Volodymyr Kindratenko

Large-Scale Machine Learning...........ccoeoiiiiiiiiiiiiiiniiisrenanaanennas

Jerod J. Weinman, Augustus Lidaka, Shitanshu Aggarwal

Contents vii

CHAPTER 20 Multiclass Support Vector Machine...........cceeevueinennennennnns

Sergio Herrero-Lopez

CHAPTER 21 Template-Driven Agent-Based Modeling and Simulation with CUDA

Paul Richmond, Daniela Romano

CHAPTER 22 GPU-Accelerated Ant Colony Optimizationccceueunnns

Robin M. Weiss

SECTION 5 ELECTRONIC DESIGN AUTOMATION

Sunil P. Khatri

CHAPTER 23 High-Performance Gate-Level Simulation with GP-GPUs.............

Debapriya Chatterjee, Andrew DeOrio, Valeria Bertacco

CHAPTER 24 GPU-Based Parallel Computing for Fast Circuit Optimization

Yifang Liu, Jiang Hu

SECTION 6 RAY TRACING AND RENDERING

Austin Robison

CHAPTER 25 Lattice Boltzmann Lighting ModelS............ccveevueineinennennnns

Robert Geist, James Westall

CHAPTER 26 Path Regeneration for Random Walks.............c.coevieeinninnnns

Jan Novak, Vlastimil Havran, Carsten Dachsbacher

CHAPTER 27 From Sparse Mocap to Highly Detailed Facial Animation

Bernd Bickel, Manuel Lang

CHAPTER 28 A Programmable Graphics Pipeline in CUDA for Order-Independent

TraNSPaAreNCY .. .vecieeee e eaeeecaaresarnsssmassnnsarnnssrnanrnnns

Mengcheng Huang, Fang Liu, Xuehui Liu, Enhua Wu

SECTION 7 COMPUTER VISION

James Fung

CHAPTER 29 Fast Graph Cuts for Computer Visionccccvueeueiueinennnns

P.J. Narayanan, Vibhav Vineet, Timo Stich

CHAPTER 30 Visual Saliency Model on Multi-GPU...............cecevevnenennensns

Anis Rahman, Dominique Houzet, Denis Pellerin

viii Contents

CHAPTER 31 Real-Time Stereo on GPGPU Using Progressive Multiresolution Adaptive
L1 LT 473
Yong Zhao, Gabriel Taubin

CHAPTER 32 Real-Time Speed-Limit-Sign Recognition on an Embedded System
USiNg @ GPUoiiiii i e eiiia e e e 497
Pinar Muyan-Ozcelik, Viadimir Glavtchev, Jeffrey M. Ota, John D. Owens

CHAPTER 33 Haar Classifiers for Object Detection With CUDAccvvevneineinennnnn. 517
Anton Obukhov

SECTION 8 VIDEO AND IMAGE PROCESSING

Timo Stich

CHAPTER 34 Experiences on Image and Video Processing with CUDA and OpenCL 547
Alptekin Temizel, Tugba Halici, Berker Logoglu, Tugba Taskaya Temizel,
Fatih Omruuzun, Ersin Karaman

CHAPTER 35 Connected Component Labeling in CUDAc.ovevniineinieneineinennns. 569

Ondfrej Sfava, Bedrich Benes

CHAPTER 36 Image De-MoSAICINGcuueneneneniiniineinieiesieeneineeneineaneanenns 583

Joe Stam, James Fung

SECTION 9 SIGNAL AND AUDIO PROCESSING

John Roberts

CHAPTER 37 Efficient Automatic Speech Recognition onthe GPU..............ccvvvnennnnn. 601

Jike Chong, Ekaterina Gonina, Kurt Keutzer

CHAPTER 38 Parallel LDPC DeCOtINGuuvuueeeneneneineineesnseenesneeneeneaneanenns 619

Gabriel Falcao, Vitor Silva, Leonel Sousa

CHAPTER 39 Large-Scale Fast Fourier Transformo.cvevieeiieeineiineenncineeinennns 629
Yifeng Chen, Xiang Cui, Hong Mei

SECTION 10 MEDICAL IMAGING

Lawrence Tarbox

CHAPTER 40 GPU Acceleration of Iterative Digital Breast Tomosynthesis 647
Dana Schaa, Benjamin Brown, Byunghyun Jang, Perhaad Mistry, Rodrigo Dominguez,
David Kaeli, Richard Moore, Daniel B. Kopans

Contents ix

CHAPTER 41 Parallelization of Katsevich CT Image Reconstruction Algorithm
on Generic Multi-Core Processors and GPGPUccivviiiviinnnnnns 659
Abderrahim Benquassmi, Eric Fontaine, Hsien-Hsin S. Lee

CHAPTER 42 3-D Tomographic Image Reconstruction from Randomly Ordered Lines
With CUDA ...ttt i ittt e ettt e s e e e nas s e nnnarrennnareennnnnres 679

Guillem Pratx, Jing-Yu Cui, Sven Prevrhal, Craig S. Levin

CHAPTER 43 Using GPUs to Learn Effective Parameter Settings for GPU-Accelerated
Iterative CT Reconstruction Algorithms ..., 693
Wei Xu, Klaus Mueller

CHAPTER 44 using GPUs to Accelerate Advanced MRI Reconstruction with Field
Inhomogeneity Compensationccoviiiiiiiiiiiiiiiiiiiie e eaaiaaeenes 709
Yue Zhuo, Xiao-Long Wu, Justin P. Haldar, Thibault Marin, Wen-mei W. Hwu,
Zhi-Pei Liang, Bradley P. Sutton

CHAPTER 45 ¢1 Minimization in £1-SPIRIiT Compressed Sensing MRI Reconstruction....... 723
Mark Murphy, Miki Lustig

CHAPTER 46 Medical Image Processing Using GPU-Accelerated ITK Image Filters........... 737

Won-Ki Jeong, Hanspeter Pfister, Massimiliano Fatica

CHAPTER 47 Deformable Volumetric Registration Using B-Splinescccveeeeenenens 751
James Shackelford, Nagarajan Kandasamy, Gregory Sharp

CHAPTER 48 Multiscale Unbiased Diffeomorphic Atlas Construction on Multi-GPUs 771
Linh Ha, Jens Kriiger, Sarang Joshi, Claudio T. Silva

CHAPTER 49 GPU-Accelerated Brain Connectivity Reconstruction and
Visualization in Large-Scale Electron Micrographs............cccccovvviannn.t. 793
Won-Ki Jeong, Hanspeter Pfister, Johanna Beyer, Markus Hadwiger

CHAPTER 50 Fast Simulation of Radiographic Images Using a Monte Carlo X-Ray
Transport Algorithm Implemented in CUDA............ccovvviiiiiiiiiiiiieaannns 813
Andreu Badal, Aldo Badano

This page intentionally left blank

Editors, Reviewers, and Authors

Editor-In-Chief
Wen-mei W. Hwu, University of lllinois at Urbana Champaign

Managing Editor
Andrew Schuh, University of lllinois at Urbana Champaign

NVIDIA Editor
Nadeem Mohammad, NVIDIA

Area Editors
Robert M. Farber, Pacific Northwest National Laboratory (Section 1)

James Fung, NVIDIA (Section 7)

Mike Giles, Oxford University (Section 3)

Sunil P. Khatri, Texas A&M University (Section 5)

Volodymyr Kindratenko, University of Illinois at Urbana Champaign (Section 4)
John Roberts, NVIDIA (Section 9)

Austin Robison, NVIDIA (Section 6)

Bertil Schmidt, Nanyang Technical University (Section 2)

Timo Stich, NVIDIA (Section 8)

Lawrence Tarbox, Washington University in St. Louis (Section 10)

Reviewers

Francois Beaune, /*jupiter jazz*/ visual effects consultants
Jiawen Chen, Massachusetts Institute of Technology
Andrea Di Blas, University of California, Santa Cruz
Roshan Dsouza, University of Wisconsin-Milwaukee
Richard Edgar, Harvard University

Martin Eisemann, Technical University, Braunschweig
John Estabrook, University of lllinois at Urbana-Champaign
Cass Everitt, NVIDIA

Xi

Xii Editors, Reviewers, and Authors

Reza Farivar, University of Illinois at Urbana-Champaign
Vladimir Frolov, NVIDIA

Vladimir Glavtchev, BMW Technology Office

Kanupriya Gulati, Intel Corporation

Trym Vegard Haavardsholm, Norwegian Defense Research Establishment
Ken Hawick, University of Auckland, New Zealand

Jared Hoberock, NVIDIA

Tim Kaldewey, Oracle

Vinay Karkala, Advanced Micro Devices

Christian Linz, Technical University, Braunschweig
Christian Lipski, Technical University, Braunschweig
Weiguo Liu, Nanyang Technological University

Dave Luebke, NVIDIA

W. James MacLean, Google

Corey Manders, A*STAR Institute for Infocomm Research
Morgan McGuire, Williams College, Massachusetts
Derek Nowrouzezahrai, Disney Research Zurich

Ming Ouyang, University of Louisville, Kentucky

Steven Parker, NVIDIA

Kalyan Perumalla, Oak Ridge National Laboratory
Nicolas Pinto, Massachusetts Institute of Technology
Tobias Preis, Johannes Gutenberg University

Ramtin Shams, Australian National University

Craig Steffen, University of lllinois at Urbana-Champaign
Andrei Tatarinov, NVIDIA

Cristina Nader Vasconcelos, Institulo de Computacao, Universidade Federal Fluminense, Brazil
Ben Weiss, Shell and Slate Software

Ruediger Westermann, Technical University, Munich

Jan Woetzel, MeVis Medical Solutions, AG

Kesheng Wu, Berkeley Lab, University of California

Ren Wu, HP Labs

Weihang Zhu, Lamar University, Texas

Editors, Reviewers, and Authors Xiii

Authors
Shitanshu Aggarwal, Grinnell College, lowa (Chapter 19)

Mike Bailey, Oregon State University (Chapter 12)

Andreu Badal, US Food and Drug Administration (CDRH/OSEL/DIAM) (Chapter 50)
Aldo Badano, US Food and Drug Administration (CDRH/OSEL/DIAM) (Chapter 50)
Lorena A. Barba, Boston University (Chapter 9)

Bedfich Benes§, Purdue University, Indiana (Chapter 35)

Abderrahim Benquassmi, Georgia Institute of Technology (Chapter 41)

Valeria Bertacco, University of Michigan (Chapter 23)

Johanna Beyer, King Abdullah University of Science and Technology (KAUST) (Chapter 49)
Bernd Bickel, Disney Research, Zurich (Chapter 27)

Thomas Bradley, NVIDIA (Chapter 16)

Benjamin Brown, Northeastern University (Chapter 40)

Martin Burtscher, Texas State University, San Marcos (Chapter 6)

Yong Cao, Virginia Tech (Chapter 15)

Debapriya Chatterjee, University of Michigan (Chapter 23)

Yifeng Chen, Peking University (Chapter 39)

Jike Chong, University of California, Berkeley (Chapter 37)

Jing-Yu Cui, Stanford University (Chapter 42)

Xiang Cui, Peking University (Chapter 39)

Carsten Dachshacher, Karlsruhe Institute of Technology (Chapter 26)

Holger Dammertz, UIm University (Chapter 18)

Andrew DeOrio, University of Michigan (Chapter 23)

Thierry Deutsch, Laboratoire de Simulation Atomistique (Chapter 10)

Rodrigo Dominguez, Northeastern University (Chapter 40)

Jacques Du Toit, Numerical Algorithms Group (Chapter 16)

Gabriel Falcao, University of Coimbra (Chapter 38)

Massimiliano Fatica, NVIDIA (Chapter 46)

Wu-chu Feng, Virginia Tech and Wake Forest University (Chapter 15)

Eric Fontaine, Georgia Institute of Technology (Chapter 41)

James Fung, NVIDIA (Chapter 36)

Robert Geist, Clemson University (Chapter 25)

Xiv Editors, Reviewers, and Authors

Luigi Genovese, European Synchrotron Radiation Facility (Chapter 10)
Mike Giles, Oxford University (Chapter 16)

Vladimir Glavtchev, BMW Group Technology Office (Chapter 32)

David Gohara, Saint Louis University School of Medicine (Chapter 4)
Ekaterina Gonina, University of California, Berkeley (Chapter 37)

Linh Ha, University of Utah (Chapter 48)

Markus Hadwiger, King Abdullah University of Science and Technology (KAUST) (Chapter 49)
Justin P. Haldar, University of lllinois at Urbana-Champaign (Chapter 44)
Tugba Halici, Middle East Technical University (Chapter 34)

Johannes Hanika, UIm University (Chapter 18)

Imran S. Haque, Stanford University (Chapter 2)

David J. Hardy, University of lllinois at Urbana-Champaign (Chapters 1 and 4)
Vlastimil Havran, Czech Technical University in Prague (Chapter 26)
Sergio Herrero-Lopez, Massachusetts Institute of Technology (Chapter 20)
Frank Herrmann, University of Maryland, College Park (Chapter 8)
Dominique Houzet, GIPSA-lab (Chapter 30)

Jiang Hu, Texas A&M University (Chapter 24)

Mengcheng Huang, Chinese Academy of Sciences (Chapter 28)

Wen-mei W. Hwu, University of lllinois at Urbana-Champaign (Chapter 44)
Stephan Irle, Nagoya University (Chapter 5)

Jacek Jakowski, National Institute for Computational Sciences (Chapter 5)
Byunghyun Jang, Northeastern University (Chapter 40)

Won-Ki Jeong, Harvard University (Chapters 46 and 49)

Sarang Joshi, University of Utah, Salt Lake City (Chapter 48)

David Kaeli, Northeastern University (Chapter 40)

Nagarajan Kandasamy, Drexel University (Chapter 47)

Ersin Karaman, Middle East Technical University (Chapter 34)

Kurt Keutzer, University of California, Berkeley (Chapter 37)

Ali Khajeh-Saeed, University of Massachusetts, Amherst (Chapter 13)
Daniel B. Kopans, Massachusetts General Hospital (Chapter 40)

Jens Kriiger, Interactive Visualization and Data Analysis Group, Saarbricken (Chapter 48)
Manuel Lang, Disney Research, Zurich (Chapter 27)

Editors, Reviewers, and Authors XV

Dominique Lavenier, Ecole Normale Supérieure de Cachan (Chapter 14)
Hsien-Hsin S. Lee, Georgia Institute of Technology (Chapter 41)

Hendrik Lensch, Ulm University (Chapter 18)

Craig S. Levin, Stanford University (Chapter 42)

Zhi-Pei Liang, University of lllinois at Urbana-Champaign (Chapter 44)

Augustus Lidaka, Grinnell College (Chapter 19)

tukasz Ligowski, University of Warsaw (Chapter 11)

Fang Liu, Chinese Academy of Sciences (Chapter 28)

Xuehui Liu, Chinese Academy of Sciences (Chapter 28)

Yifang Liu, Texas A&M University (Chapter 24)

Yongchao Liu, Nanyang Technological University (Chapter 11)

Berker Logoglu, Middle East Technical University (Chapter 34)

Nathan Luehr, Stanford University and SLAC National Accelerator Laboratory (Chapter 3)
Miki Lustig, University of California, Berkeley (Chapter 45)

Milan Magdics, Budapest University of Technology and Economics (Chapter 17)
Thibault Marin, Illinois Institute of Technology (Chapter 44)

Todd Martinez, Stanford University and SLAC National Accelerator Laboratory (Chapter 3)
Jean-Frangois Méhaut, Universite Joseph Fourier (Chapter 10)

Hong Mei, Peking University (Chapter 39)

Perhaad Mistry, Northeastern University (Chapter 40)

Richard Moore, Massachusetts General Hospital (Chapter 40)

Keiji Morokuma, Kyoto University (Chapter 5)

Klaus Mueller, State University of New York, Stony Brook (Chapter 43)

Mark Murphy, University of California, Berkeley (Chapter 45)

Pinar Muyan-ﬁzgelik, University of California, Davis (Chapter 32)

P. J. Narayanan, International Institute of Information Technology Hyderabad (Chapter 29)
Jan Novak, Karlsruhe Institute of Technology (Chapter 26)

Anton Obukhov, NVIDIA (Chapter 33)

Fatih Omruuzun, Middle East Technical University (Chapter 34)

Matthieu Ospici, Laboratoire d’Informatique de Grenoble (Chapter 10)

Jeffery M. Ota, BMW Group Technology Office (Chapter 32)

John D. Owens, University of California, Davis (Chapter 32)

Xvi Editors, Reviewers, and Authors

Vijay S. Pande, Stanford University (Chapter 2)

Debprakash Patnaik, Virginia Tech (Chapter 15)

Denis Pellerin, GIPSA-lab (Chapter 30)

J. Blair Perot, University of Massachusetts, Amherst (Chapter 13)
Hanspeter Pfister, Harvard University (Chapters 46 and 49)
Keshay Pingali, Texas State University, San Marcos (Chapter 6)
Guillem Pratx, Stanford University (Chapter 42)

Sven Prevrhal, Philips Healthcare (Chapter 42)

Anis Rahman, GIPSA-lab (Chapter 30)

Sanjay Rajopadhye, Colorado State University (Chapter 14)
Naren Ramakrishnan, Virginia Tech (Chapter 15)

Paul Richmond, University of Sheffield (Chapter 21)

Guillaume Rizk, Institut de Recherche en Informatique et Systemes Aléatoires, Université de
Rennes (Chapter 14)

Christopher Rodrigues, University of lllinois at Urbana-Champaign (Chapter 4)
Daniela Romano, University of Sheffield (Chapter 21)

Witold R. Rudnicki, University of Warsaw (Chapter 11)

Jan Saam, University of lllinois at Urbana-Champaign (Chapter 1)

Karthikeyan Sankaralingam, University of Wisconsin-Madison (Chapter 7)
Dana Schaa, Northeastern University (Chapter 40)

Christoph Schied, Ulm University (Chapter 18)

Bertil Schmidt, Nanyang Technological University (Chapter 11)

Klaus Schulten, University of Illinois at Urbana-Champaign (Chapters 1 and 4)
James Shackleford, Drexel University (Chapter 47)

Gregory Sharp, Massachusetts General Hospital (Chapter 47)

John Silberholz, University of Maryland (Chapter 8)

Claudio Silva, University of Utah (Chapter 48)

Vitor Silva, University of Coimbra (Chapter 38)

Matthew D. Sinclair, University of Wisconsin-Madison (Chapter 7)

Leonel Sousa, Technical University of Lisbon (Chapter 38)

Joe Stam, NVIDIA (Chapter 36)

Ondrej Stava, Purdue University (Chapter 35)

Editors, Reviewers, and Authors Xvii

Timo Stich, NVIDIA (Chapter 29)

John E. Stone, University of lllinois at Urbana-Champaign (Chapters 1 and 4)

Bradley P. Sutton, University of Illinois at Urbana-Champaign (Chapter 44)

Laszl6 Szirmay-Kalos, Budapest University of Technology and Economics (Chapter 17)
Gabriel Taubin, Brown University (Chapter 31)

Alptekin Temizel, Middle East Technical University (Chapter 34)

Tugba Taskaya Temizel, Middle East Technical University (Chapter 34)

Manuel Tiglio, University of Maryland (Chapter 8)

Robert Tong, Numerical Algorithms Group(Chapter 16)

Balazs Toth, Budapest University of Technology and Economics (Chapter 17)

Richard Townsend, University of Wisconsin-Madison (Chapter 7)

Ivan Ufimtsev, Stanford University and SLAC National Accelerator Labortory (Chapter 3)
Kirby L. Vandivort, University of lllinois at Urbana-Champaign (Chapters 1 and 4)
Brice Videau, Laboratoire de Simulation Atomistique, Grenoble (Chapter 10)

Vibhav Vineet, International Institute of Information Technology, Hyderabad (Chapter 29)
Jerod J. Weinman, Grinnell College (Chapter 19)

Ben Weiss, Oregon State University (Chapter 12)

Robin M. Weiss, Macalester College (Chapter 22)

James Westall, Clemson University (Chapter 25)

Paul Woodhams, Numerical Algorithms Group (Chapter 16)

Enhua Wu, Chinese Academy of Sciences (Chapter 28)

Xiao-Long Wu, University of lllinois at Urbana-Champaign (Chapter 44)

Wei Xu, State University of New York, Stony Brook (Chapter 43)

Rio Yokota, Brown University (Chapter 9)

Yong Zhao, Brown University (Chapter 31)

Yue Zhuo, University of lllinois at Urbana-Champaign (Chapter 44)

This page intentionally left blank

Introduction

Wen-mei W. Hwu

STATE OF GPU COMPUTING

We are entering the golden age of GPU computing. Since the introduction of CUDA in 2007, more
than 100 million computers with CUDA-capable GPUs have been shipped to end users. Unlike the
previous GPGPU shader programming models, CUDA supports parallel programming in C. From my
own experience in teaching CUDA programming, C programmers can begin to write basic CUDA
programs after only attending one lecture and reading one textbook chapter. With such a low barrier of
entry, researchers all over the world have been engaged in developing new algorithms and applications
to take advantage of the extreme floating point execution throughout these GPUs.

Today, there is a large community of GPU computing practitioners. Many of them have reported a
10 to 100 times speedup of their applications with GPU computing. To put this into perspective, with
the historical 2X performance growth every 2 years, these researchers are experiencing the equivalent
of time travel of 8 to 12 years. That is, they are getting the performance today that they would have to
wait for 8 to 12 years if they went for the “free-ride” advancement of performance in microprocessors.
Interestingly, such “free ride” advancement is no longer available. Furthermore, once they develop
their application in CUDA, they will likely see continued performance growth of 2X for every two
years from this day forward.

After discussing with numerous researchers, I have reached the conclusion that many of them are
solving similar algorithm problems in their programming efforts. Although they are working on diverse
applications, they often end up developing similar algorithmic strategies. The idea of GPU Comput-
ing Gems is to provide a convenient means for application developers in diverse application areas to
benefit from each other’s experience. In this volume, we have collected 50 gem articles written by
researchers in 10 diverse areas. Each gems article reports a successful application experience in GPU
computing. These articles describe the techniques or “secret sauce” that contributed to the success.
The authors highlight the potential applicability of their techniques to other application areas. In our
editorial process, we have emphasized the accessibility of these gems to researchers in other areas.

When we issued the call for proposals for the first GPU Computing Gems, we received more than
280 submissions, an overwhelming response. After careful review, we accepted 110 proposals that
have a high likelihood of making valuable contributions to other application developers. Many high-
quality proposals were not accepted because of concerns that they may not be accessible to a large
audience. With so many accepted proposals, we were forced to divide these gems into two volumes.
This volume covers 50 gems in the application areas of scientific simulation, life sciences, statistical
modeling, emerging data-intensive applications, electronic design automation, ray tracing and render-
ing, computer vision, video and image processing, signal and audio processing, and medical imaging.

Xix

XX Introduction

Each gem is first edited by an area editor who is a GPU computing expert in that area. This is followed
by my own editing of these articles.

I would like to thank the people who have worked tirelessly on this project. Nadeem Mohammad
at NVIDIA and Andrew Schuh at UIUC have done so much heavy lifting for this project. Without
them, it would have been impossible for me to coordinate so many authors and area editors. My area
editors, whose names are in front of each section of this volume, have volunteered their valuable time
and energy to improve the quality of the gems. They worked closely with the authors to make sure that
the gems indeed meet high technical standards while remain accessible to a wide audience. I would like
to thank all the authors who have shared their innovative work with the GPU computing community.
All authors have worked hard to respond to our requests for improvements. Finally, I would like to
acknowledge Manju Hegde, who championed the creation of GPU Computing Gems and pursued me
to serve as the editor in chief. It has been a true privilege to work with all of these great people.

Online Resources

Visit http://mkp.com/gpu-computing-gems and click the ONLINE RESOURCES tab to connect
to gpucomputing.net, the vibrant official community site for GPU computing, where you can download
source code examples for most chapters and join discussions with other readers and GPU develop-
ers. You’ll also find links to additional material including chapter walk-through videos and full-color
versions of many figures from the book.

SECTION

Scientific Simulation
Area Editor’s Introduction

Robert M. Farber

1 GPU-Accelerated Computation and Interactive Display of Molecular Orbitals............. 5
2 large-Scale Chemical Informatics on GPUS ... 19
3 Dynamical Quadrature Grids: Applications in Density Functional Calculations............ 35
4 Fast Molecular Electrostatics Algorithms on GPUS ... 43
5 Quantum Chemistry: Propagation of Electronic Structureona GPU 59
6 An Efficient CUDA Implementation of the Tree-Based Barnes

Hut n-Body Algorithm ... 75
7 Leveraging the Untapped Computation Power of GPUs: Fast Spectral Synthesis

Using Texture Interpolation e 93
8 Black Hole Simulations with CUDA i i 103
9 Treecode and Fast Multipole Method for N-Body Simulation with CUDA.................. 113

10 Wavelet-Based Density Functional Theory Calculation on Massively Parallel Hybrid
AT CNI B UIES .. e 133

2 SECTION 1 Scientific Simulation

THE STATE OF GPU COMPUTING IN SCIENTIFIC SIMULATION

GPU computing is revolutionizing scientific simulation by providing one to two orders of magnitude
of increased computing performance per GPU at price points even students can afford. Exciting things
are happening with this technology in the hands of the masses, as reflected by the applications, CUDA
Gems, and the extraordinary number of papers that have appeared in the literature since CUDA was
first introduced in February 2007.

Technology that provides two or more orders of magnitude of increased computational capability
is disruptive and has the potential to fundamentally affect scientific research by removing time-to-
discovery barriers. I cannot help getting excited by the potential as simulations that previously would
have taken a year or more to complete can now be finished in days. Better scientific insight also becomes
possible because researchers can work with more data and have the ability to utilize more accurate,
albeit computationally expensive, approximations and numerical methods. We are now entering the
era where hybrid clusters and supercomputers containing large numbers of GPUs are being built and
used around the world. As a result, many researchers (and funding agencies) now have to rethink their
computational models and invest in software to create scalable, high-performance applications based on
this technology. The potential is there, and some lucky researchers may find themselves with a Galilean
first opportunity to see, study, and model using exquisitely detailed data from projects utilizing GPU
technology and these hybrid systems.

IN THIS SECTION

The chapters in this section provide gems of insight both in thought and CUDA implementation to
map challenging scientific simulation problems to GPU technology. Techniques to work with irregular
grids, dynamic surfaces, treecodes, and far-field calculations are presented. All of these CUDA gems
can be adapted and should provide food for thought in solving challenging computational problems
in many areas. Innovative solutions are discussed, including just-in-time (JIT) compilation; appropri-
ate and effective use of fast on-chip GPU memory resources across GPU technology generations; the
application of texture unit arithmetic to augment GPU computational and global memory performance;
and the creation of solutions that can scale across multiple GPUs in a distributed environment. Gen-
eral kernel optimization principles are also provided in many chapters. Some of the kernels presented
require fewer than 200 lines of CUDA code, yet still provide impressive performance.

In Chapter 1: Evaluating molecular orbitals on 3-D lattices is a common problem in molecular visu-
alization. This chapter discusses the design trade-offs in the popular VMD (visual molecular dynamics)
software system plus the appropriate and effective use of fast on-chip GPU memory resources across
various generations of GPUs. Several kernel optimization principles are provided. To account for vary-
ing problem size and GPU performance regimes, an innovative just-in-time (JIT) kernel compilation
technique is utilized.

In Chapter 2: The authors discuss the techniques they used to adapt the LIGO string similarity
algorithm to run efficiently on GPUs and avoid the memory bandwidth and conditional operations that
limit parallelism in the CPU implementation. These techniques as well as the discussion on minimizing
CPU-GPU transfer overhead and exploiting thread level parallelism should benefit readers in many
areas; not just those interested in large scale chemical informatics.

In This Section 3

In Chapter 3: This chapter discusses a GPU-accelerated dynamic quadrature grid method where
the grid points move over the course of the calculation. The merits of several parallelization schemes,
mixed precision arithmetic as an optimization technique, and problems arising from branching within
a warp are discussed.

In Chapter 4: GPU kernels are presented that calculate electrostatic potential maps on structured
grids containing a large amount of fine-grained data parallelism. Approaches to regularize the compu-
tation work are discussed along with kernel loop optimizations and implementation notes on how to
best use the GPU memory subsystem. All of this is phrased in the context of the popular VMD (visual
molecular dynamics) and APBS (Adaptive Poisson-Boltzmann Solver) software packages.

In Chapter 5: Direct molecular dynamics (MD) requires repeated calculation of the potential energy
surface obtained from electronic structure calculations. This chapter shows how this calculation can be
rethought to propagate the electronic structure without diagonalization — a time-consuming step that
is difficult to implement on GPUs. Other topics discussed include efficiently using CUBLAS and the
integration of CUDA within a FORTRAN framework.

In Chapter 6: Irregular tree-based data structures are a challenge given the GPGPU memory sub-
system likes coalesced memory accesses. This chapter describes a number of techniques — both novel
and conventional — to reduce main memory accesses on an irregular tree-based data structure. All the
methods run on the GPU.

In Chapter 7: The GRASSY spectral synthesis platform is described, which utilizes GPUs to address
the computational needs of asteroseismology. In particular, this chapter demonstrates an innovative use
of interpolation by CUDA texture memory to augment arithmetic performance and reduce memory
access overhead. The low precision of texture memory arithmetic is discussed and shown to not affect
solution accuracy. Mesh building and rasterization are also covered.

In Chapter 8: Exploring the parameter space of a complex dynamical system is an important facet
of scientific simulation. Many problems require integration of a coupled set of ordinary differential
equations (ODEs). Rather than parallelizing a single integration, the authors use CUDA to turn the
GPU into a survey engine that performs many integrations at once. With this technology, scientists can
examine more of the phase space of the problem to gain a better understanding of the dynamics of
the simulation. In the case of black holes in spirals, GPU technology might have a significant impact
in the quest for direct measurement of gravity waves. Robustness across GPUs in a distributed MPI
environment is also discussed.

In Chapter 9: As this chapter shows, constructing fast N-body algorithms is far from a formidable
task. Basic kernels are discussed that achieve substantial speedups (15x to 150x) in fewer than 200 lines
of CUDA code. These same kernels extend previous GPU gems N-body CUDA mappings to encom-
pass parallel far-field approximations that are useful for astrophysics, acoustics, molecular dynamics,
particle simulation, electromagnetics, and boundary integral formulations. Other topics include struc-
turing the data to preserve coalesced memory accesses and balancing parallelism and data reuse through
the use of tiles.

In Chapter 10: The authors discuss the GPU-specific thought and implementation details for
BigDFT, a massively parallel implementation of a full DFT (density functional theory) code for quan-
tum chemistry that runs on hybrid clusters and supercomputers containing many GPUs. From the
unconventional use of Daubechies wavelets, which are well suited for GPU-accelerated environments,
the authors progress to a discussion of scalability and integration in a distributed runtime environment.

This page intentionally left blank

CHAPTER

GPU-Accelerated Computation
and Interactive Display of
Molecular Orbitals

John E. Stone, David J. Hardy, Jan Saam, Kirby L. Vandivort, Klaus Schulten

In this chapter, we present several graphics processing unit (GPU) algorithms for evaluating molecular
orbitals on three-dimensional lattices, as is commonly used for molecular visualization. For each ker-
nel, we describe necessary design trade-offs, applicability to various problem sizes, and performance on
different generations of GPU hardware. We then demonstrate the appropriate and effective use of fast
on-chip GPU memory subsystems for access to key data structures, show several GPU kernel optimiza-
tion principles, and explore the application of advanced techniques such as dynamic kernel generation
and just-in-time (JIT) kernel compilation techniques.

1.1 INTRODUCTION, PROBLEM STATEMENT, AND CONTEXT

The GPU kernels described here form the basis for the high-performance molecular orbital display
algorithms in VMD [2], a popular molecular visualization and analysis tool. VMD (Visual Molecular
Dynamics) is a software system designed for displaying, animating, and analyzing large biomolecular
systems. More than 33,000 users have registered and downloaded the most recent VMD software, ver-
sion 1.8.7. Due to its versatility and user-extensibility, VMD is also capable of displaying other large
datasets, such as sequence data, results of quantum chemistry calculations, and volumetric data. While
VMD is designed to run on a diverse range of hardware — laptops, desktops, clusters, and supercom-
puters — it is primarily used as a scientific workstation application for interactive 3-D visualization
and analysis. For computations that run too long for interactive use, VMD can also be used in a batch
mode to render movies for later use. A motivation for using GPU acceleration in VMD is to make
slow batch-mode jobs fast enough for interactive use, thereby drastically improving the productivity
of scientific investigations. With CUDA-enabled GPUs widely available in desktop PCs, such acceler-
ation can have a broad impact on the VMD user community. To date, multiple aspects of VMD have
been accelerated with the NVIDIA Compute Unified Device Architecture (CUDA), including electro-
static potential calculation, ion placement, molecular orbital calculation and display, and imaging of
gas migration pathways in proteins.

Visualization of molecular orbitals (MOs) is a helpful step in analyzing the results of quantum chem-
istry calculations. The key challenge involved in the display of molecular orbitals is the rapid evaluation

IThis work was supported by the National Institutes of Health, under grant P41-RR05969. Portions of this chapter (©) 2009
Association for Computing Machinery, Inc. Reprinted by permission [1].

GPU Computing Gems. DOI: 10.1016/B978-0-12-384988-5.00001-2
(© 2011 NVIDIA Corporation and Wen-mei W. Hwu. Published by Elsevier Inc. All rights reserved. 5

6 CHAPTER 1 GPU-Accelerated Computation

FIGURE 1.1

An example of MO isovalue surfaces resulting from the lattice of wavefunction amplitudes computed for a
Carbon-60 molecule. Positive valued isosurfaces are shown in dark grey, and negative valued isosurfaces are
shown in light grey.

of these functions on a three-dimensional lattice; the resulting data can then be used for plotting iso-
contours or isosurfaces for visualization as shown in Fig. 1.1, and for other types of analyses. Most
existing software packages that render MOs perform calculations on the CPU and have not been
heavily optimized. Thus, they require runtimes of tens to hundreds of seconds depending on the
complexity of the molecular system and spatial resolution of the MO discretization and subsequent
surface plots.

With sufficient performance (two orders of magnitude faster than traditional CPU algorithms), a
fast real-space lattice computation enables interactive display of even very large electronic structures
and makes it possible to smoothly animate trajectories of orbital dynamics. Prior to the use of the GPU,
this could be accomplished only through extensive batch-mode precalculation and preloading of time-
varying lattice data into memory, making it impractical for everyday interactive visualization tasks.
Efficient single-GPU algorithms are capable of evaluating molecular orbital lattices up to 186 times
faster than a single CPU core (see Table 1.1), enabling MOs to be rapidly computed and animated on
the fly for the first time. A multi-GPU version of our algorithm has been benchmarked at up to 419
times the performance of a single CPU core (see Table 1.2).

1.2 CORE METHOD

Since our target application is visualization focused, we are concerned with achieving interactive ren-
dering performance while maintaining sufficient accuracy. The CUDA programming language enables
GPU hardware features — inaccessible in existing programmable shading languages — to be exploited

1.2 Core Method 7

Table 1.1 Single-GPU comparison of MO kernel performance for the carbon-60 test
case relative to CPU reference codes. The devices compared below are 2.4 GHz Intel
Core 2 Q6600 CPU (Q6600), 2.6 GHz Intel Xeon X5550 CPU (X5550), NVIDIA GeForce
8800 GTX GPU (G880), NVIDIA GeForce GTX 280 GPU (G280), NVIDIA Tesla C2050 GPU
(C2050), and NVIDIA GeForce GTX 480 GPU (G480). Timing results include all host-GPU
memory transfers and kernel launches required for evaluation of the molecular orbital for a
single combination of parameters and for a single simulation time step. These timings do
not include one-time disk 1/0 and associated sorting and preprocessing associated with the
initial loading of simulation log files.

CPU Runtime Speedup Speedup
Device Kernel Cores (sec) vs. Q6600 vs. X5550
Q6600 icc-sse-cephes 1 46.58 1.00 0.65
Q6600 icc-libc 4 37.38 1.24 0.82
Q6600 icc-sse-cephes 4 11.74 3.97 2.61
X5550 icc-sse-cephes 1 30.64 1.52 1.00
X5550 icc-sse-cephes 4 7.82 5.95 3.92
X5550 icc-sse-cephes 8 413 11.27 7.42
G8800 tiled-shared 1 0.89 52.0 34.4
G8800 const-cache 1 0.57 81.7 54.7
G280 tiled-shared 1 0.46 100 66.6
G280 const-cache 1 0.37 126 82.8
C2050 tiled-shared 1 0.46 100 66.6
C2050 L1-cache (16 kB) 1 0.33 141 92.8
C2050 const-cache 1 0.31 149 98.8
C2050 const-cache, zero-copy 1 0.30 155 102
G480 tiled-shared 1 0.37 126 82.8
G480 L1-cache (16 kB) 1 0.27 172 113
G480 const-cache 1 0.26 181 117
G480 const-cache, zero-copy 1 0.25 186 122
G480 JIT, const-cache 1 0.142 328 215
G480 JIT, const-cache, zero-copy 1 0.135 345 227

for higher performance, and it enables the use of multiple GPUs to accelerate computation further.
Another advantage of using CUDA is that the results can be used for nonvisualization purposes.

Our approach combines several performance enhancement strategies. First, we use the host CPU to
carefully organize input data and coefficients, eliminating redundancies and enforcing a sorted ordering
that benefits subsequent GPU memory traversal patterns. The evaluation of molecular orbitals on a 3-D
lattice is performed on one or more GPUs; the 3-D lattice is decomposed into 2-D planar slices, each
of which is assigned to a GPU and computed. The workload is dynamically scheduled across the pool
of GPUs to balance load on GPUs of varying capability. Depending on the specific attributes of the
problem, one of three hand-coded GPU kernels is algorithmically selected to optimize performance.

8 CHAPTER 1 GPU-Accelerated Computation

Table 1.2 Single-machine multi-GPU performance for computation of
a high-resolution (172 x 173 x 169) molecular orbital lattice for Cgg.
Speedup results are compared against the single-core SSE CPU results
presented in Table 1.1.

CPU Runtime Speedup Speedup Multi-GPU

Device Workers (sec) vs. Q6600 vs. X5550 Efficiency
Quadro 5800 1 0.381 122 80 100.0%
Tesla C1060 2 0.199 234 154 95.5%
Tesla C1060 3 0.143 325 214 88.6%
Tesla C1060 4 0.111 419 276 85.7%

The three kernels are designed to use different combinations of GPU memory systems to yield peak
memory bandwidth and arithmetic throughput depending on whether the input data can fit into constant
memory, shared memory, or L1/L2 cache (in the case of recently released NVIDIA “Fermi” GPUs).
One useful optimization involves the use of zero-copy memory access techniques based on the CUDA
mapped host memory feature to eliminate latency associated with calls to cudaMemcpy (). Another
optimization involves dynamically generating a problem-specific GPU kernel “on the fly” using just-
in-time (JIT) compilation techniques, thereby eliminating various sources of overhead that exist in the
three general precoded kernels.

1.3 ALGORITHMS, IMPLEMENTATIONS, AND EVALUATIONS

A molecular orbital (MO) represents a statistical state in which an electron can be found in a molecule,
where the MO’s spatial distribution is correlated with the associated electron’s probability density.
Visualization of MOs is an important task for understanding the chemistry of molecular systems. MOs
appeal to the chemist’s intuition, and inspection of the MOs aids in explaining chemical reactivities.
Some popular software tools with these capabilities include MacMolPlIt [3], Molden [4], Molekel [5],
and VMD [2].

The calculations required for visualizing MOs are computationally demanding, and existing quan-
tum chemistry visualization programs are only fast enough to interactively compute MOs for only small
molecules on a relatively coarse lattice. At the time of this writing, only VMD and MacMolPIt support
multicore CPUs, and only VMD uses GPUs to accelerate MO computations. A great opportunity exists
to improve upon the capabilities of existing tools in terms of interactivity, visual display quality, and
scalability to larger and more complex molecular systems.

1.3.1 Mathematical Background

In this section we provide a short introduction to MOs, basis sets, and their underlying equations.
Interested readers are directed to seek further details from computational chemistry texts and review
articles [6, 7]. Quantum chemistry packages solve the electronic Schrodinger equation HV = EW
for a given system. Molecular orbitals are the solutions produced by these packages. MOs are the

1.3 Algorithms, Implementations, and Evaluations 9

eigenfunctions W, for expression of the molecular wavefunction W, with H the Hamiltonian operator
and E the system energy. The wavefunction determines molecular properties, for instance, the one-
electron density is p(r) = |¥(r) |2. The visualization of the molecular orbitals resulting from quantum
chemistry calculations requires evaluating the wavefunction on a 3-D lattice so that isovalue surfaces
can be computed and displayed. With minor modifications, the algorithms and approaches we present
for evaluating the wavefunction can be adapted to compute other molecular properties such as charge
density, the molecular electrostatic potential, or multipole moments.
Each MO W, can be expressed as a linear combination over a set of K basis functions ®,,

K
\Ilv:zcwcq)/c, (1.1
k=1

where ¢, are coefficients contained in the quantum chemistry calculation output files, and used as input
for our algorithms. The basis functions used by the vast majority of quantum chemical calculations
are atom-centered functions that approximate the solution of the Schrodinger equation for a single
hydrogen atom with one electron, so-called atomic orbitals. For increased computational efficiency,
Gaussian type orbitals (GTOs) are used to model the basis functions, rather than the exact solutions for
the hydrogen atom:
OTOR, £) = Nejxly/ e K. (12)

The exponential factor ¢ is defined by the basis set; i, j, and k are used to modulate the functional
shape; and N¢j is a normalization factor that follows from the basis set definition. The distance from
a basis function’s center (nucleus) to a point in space is represented by the vector R = {x,y,z} of length
R=|R].

The exponential term in Eq. 1.2 determines the radial decay of the function. Composite basis func-
tions known as contracted GTOs (CGTOs) are composed of a linear combination of P individual GTO
primitives in order to accurately describe the radial behavior of atomic orbitals.

P
OLIOR (e 5D =)OI R). 4
p=1

The set of contraction coefficients {c,} and associated exponents {¢,} defining the CGTO are contained
in the quantum chemistry simulation output.

CGTOs are classified into different shells based on the sum [=i+ j + k of the exponents of the x,
v, and z factors. The shells are designated by letters s, p, d, f, and g for [=0, 1, 2, 3, 4, respectively,
where we explicitly list here the most common shell types but note that higher-numbered shells are
occasionally used. The set of indices for a shell is also referred to as the angular momenta of that
shell. We establish an alternative indexing of the angular momenta based on the shell number / and
a systematic indexing m over the possible number of sums / =i+ j+ k, where M; = (le) counts the
number of combinations and m = 0,...,M; — 1 references the set {(i,j,k) : i +j+k =1}.

The linear combination defining the MO W,, must also sum contributions from each of the N atoms
of the molecule and the L, shells of each atom n. The entire expression, now described in terms of the

10 CHAPTER 1 GPU-Accelerated Computation

data output from a QM package, for an MO wavefunction evaluated at a point r in space then becomes

K
() =) cud
k=1

N Ly—1M;—1
=220 D conm @S Rafel (2D, (1.4)
n=1 =0 m=0

where we have replaced ¢, by cynim, with the vectors R, =r —r, connecting the position r, of the
nucleus of atom n to the desired spatial coordinate r. We have dropped the subscript p from the set
of contraction coefficients {c} and exponents {¢} with the understanding that each CGTO requires an
additional summation over the primitives, as expressed in Eq. 1.3.

The normalization factor N in Eq. 1.2 can be factored into a first part n;; that depends on both
the exponent ¢ and shell type I =i+ j+k and a second part 7;x (= 1, in terms of our alternative
indexing) that depends only on the angular momentum,

2\ 3 i j! k!
Nije = (;) VB Qi Nl Nijie- (1.5)

The separation of the normalization factor in Eq. 1.5 allows us to factor the summation over the primi-
tives from the summation over the array of wavefunction coefficients. Combining Egs. 1.2-1.4 and
rearranging terms gives

N L,—1 [M;—1 Py
U@ =" D comtmttim om | x | Y cpmzrexp(—g,R) |- (1.6)
n=1 =0 \ m=0 =1

Conim Cp
We define @y, = x'y/ 7* using our alternative indexing over / and m explained in the previous section.
Both data storage and operation count can be reduced by defining c’v aim = CvalmNim and c;, = CpNel.
The number of primitives P,; depends on both the atom 7 and the shell number /. Figure 1.2 shows
the organization of the basis set and wavefunction coefficient arrays listed for a small example

molecule.

1.3.2 GPU Molecular Orbital Algorithms

Visualization of MOs requires the evaluation of the wavefunction on a 3-D lattice, which can be used to
create 3-D isovalue surface renderings, 3-D height field plots, or 2-D contour line plots within a plane.
Since wavefunction amplitudes diminish to zero beyond a few Angstroms (due to the radial decay of
exponential basis functions), the boundaries of the 3-D lattice have only a small margin beyond the
bounding box containing the molecule of interest.

The MO lattice computation is heavily data dependent, consisting of a series of nested loops that
evaluate the primitives composing CGTOs and the angular momenta for each shell, with an outer loop
over atoms. Since the number of shells can vary by atom and the number of primitives and angular
momenta can be different for each shell, the innermost loops traverse variable-length coefficient arrays

1.3 Algorithms, Implementations, and Evaluations 11

I
OOy 2 OO Iy [2)x] yl ZIlexyIXZIyZIyXIZZJ
H—J W—Jﬁ_d’

1s 1s2s 2p 3s 3p 3d Array element

CGTO

(six primitives)
I ki i

[T T AT T DA T T T DA DO

Basis set

Wavefunction

FIGURE 1.2

Structure of the basis set and the wavefunction coefficient arrays for HCI using the 6-31G* basis [8]. Each
rounded box contains the data for a single shell. Each square box in the basis set array represents a CGTO
primitive composed of a contraction coefficient c;, and exponent g,. In the wavefunction array the elements
signify linear combination coefficients ¢, for the basis functions. Despite the differing angular momenta, all
basis functions of a shell (marked by x, y, and z) use the same linear combination of primitives (see lines
relating the two arrays). For example, the 2p shell in Cl is associated with three angular momenta that all share
the exponents and contraction coefficients of the same six primitives. There can be more than one basis
function for a given shell type (brackets below array). © 2009 Association for Computing Machinery, Inc.
Reprinted by permission [1].

containing CGTO contraction coefficients and exponents, and the wavefunction coefficients. Quantum
chemistry packages often produce output files containing redundant basis set definitions for atoms of
the same species; such redundancies are eliminated during preprocessing, resulting in more compact
data and thus enabling more effective use of fast, but limited-capacity on-chip GPU memory systems
for fast access to key coefficient arrays. The memory access patterns that occur within the inner loops
of the GPU algorithms can be optimized to achieve peak performance by carefully sorting and packing
coefficient arrays as a preprocessing step. Each of the coefficient arrays is sorted on the CPU so that
array elements are accessed in a strictly consecutive pattern. The pseudo-code listing in Algorithm 1
summarizes the performance-critical portion of the MO computation described by Eq. 1.6.

The GPU MO algorithm decomposes the 3-D lattice into a set of 2-D planar slices, which are
computed independently of each other. In the case of a single-GPU calculation, a simple for loop
processes the slices one at a time until they are all completed. For a multi-GPU calculation, the set of
slices is dynamically distributed among the pool of available GPUs. Each of the GPUs requests a slice
index to compute, computes the assigned slice, and stores the result at the appropriate location in host
memory.

Each planar slice computed on a GPU is decomposed into a 2-D CUDA grid consisting of fixed-
size 8 x 8 thread blocks. As the size of the 3-D lattice increases, the number of planar slices increases,
and the number of thread blocks in each CUDA grid increases accordingly. Each thread is responsible
for computing the MO at a single lattice point. For lattice dimensions that cannot be evenly divided
by the thread block dimensions or the memory coalescing size, padding elements are added (to avoid
unnecessary branching or warp divergence). The padding elements are computed just as the interior
lattice points are, but the results are discarded at the end of the computation. Figure 1.3 illustrates the
multilevel parallel decomposition strategy and required padding elements.

12 CHAPTER 1 GPU-Accelerated Computation

Algorithm 1: Calculate MO value W, (r) at lattice point r.

I: ¥, «<=0.0
2: ifunc <= 0 {index the array of wavefunction coefficients}
3: ishell <= 0 {index the array of shell numbers}
4: for n=1to N do {loop over atoms}
5: (x,y,z) < r —r1, {r, is position of atom n}
6: R2<:xz—|—y2—|—z2
7: iprim < atom_basis[n] {index the arrays of basis set data}
8: for [= 0 to num_shells_per_atom[n] — 1 do {loop over shells}
9: €60 = 0.0
10: for p = 0 to num_prim_per_shell[ishell] — 1 do {loop over primitives}
11: ¢, <= basis_cliprim]
12: &p <= basis _zetaliprim]
13: @CGTO L CGTO +¢, B2
14: iprim <= iprim + 1
15: end for
16: for all 0 <i < shell_typelishell] do {loop over angular momenta}
17: Jjmax <= shell_typelishell] — i
18: for all 0 <j < jmax do
19: k <= jmax — j
20: ¢’ < wavefunction|ifunc)
21: W, & W, + ¢/ PCOTO i yf ok
22: ifunc < ifunc + 1
23 end for
24: end for
25: ishell < ishell + 1
26: end for
27: end for
28: return YV,

In designing an implementation of the MO algorithm for the GPU, one must take note of a few key
attributes of the algorithm. Unlike simpler forms of spatially evaluated functions that arise in molec-
ular modeling such as Coulombic potential kernels, the MO algorithm involves a comparatively large
number of floating-point operations per lattice point, and it also involves reading operands from several
different arrays. Since the MO coefficients that must be fetched depend on the atom type, basis set, and
other factors that vary due to the data-dependent nature of the algorithm, the control flow complexity
is also quite a bit higher than for many other algorithms. For example, the bounds on the loops on lines
10 and 16 of Algorithm 1 are both dependent on the shell being evaluated. The MO algorithm makes
heavy use of exponentials that are mapped to the dedicated exponential arithmetic instructions provided
by most GPUs. The cost of evaluating ¢* by calling the CUDA routines expf () or __expf (), or eval-
uating 2* via exp2f (), is much lower than on the CPU, yielding a performance benefit well beyond
what would be expected purely as a result of effectively using the massively parallel GPU hardware.

Given the high performance of the various exponential routines on the GPU, the foremost con-
sideration for achieving peak performance is attaining sufficient operand bandwidth to keep the GPU

1.3 Algorithms, Implementations, and Evaluations 13

MO 3-D lattice
decomposes into 2-D — —>» GPU 2
slices (CUDA grids) ¥ —» GPU 1
— GPU 0

Small 8 x8 thread Lattice can be
blocks afford large computed using
per-thread register multiple GPUs
count, shared
memory

A

0,0 | 0,1 | ...

Each thread EH Thread_s
computes | 0l 14 producing
one MO) results that
lattice point. are used
Padding optimizes global h 4 :J-rrggjgi?]g

A
memory performance, I v_results that are
guaranteeing coalesced < »

global memory accesses "~ Grid of thread blocks discarded

FIGURE 1.3

Molecular orbital multilevel parallel decomposition. The 3-D MO lattice is decomposed into 2-D planar slices
that are computed by the pool of available GPUs. Each GPU computes a single slice, decomposing the slice
into a grid of 8 x 8 thread blocks, with each thread computing one MO lattice point. Padding elements are
added to guarantee coalesced global memory accesses for lattice data.

arithmetic units fully occupied. The algorithms we describe achieve this through careful use of the
GPU'’s fast on-chip caches and shared memory. The MO algorithm’s inner loops read varying numbers
of coefficients from several different arrays. The overall size of each of the coefficient arrays depends
primarily on the size of the molecule and the basis set used. The host application code dispatches the
MO computation using one of several GPU kernels depending on the size of the MO coefficient arrays
and the capabilities of the attached GPU devices. Optimizations that were applied to all of the kernel
variants include precomputation of common factors and specialization and unrolling of the angular
momenta loops (lines 16 to 24 of Algorithm 1). Rather than processing the angular momenta with
loops, a switch statement is used that can process all of the supported shell types with completely
unrolled loop iterations, as exemplified in the abbreviated source code shown in Figure 1.4.

Constant Cache

When all of the MO coefficient arrays (primitives, wavefunctions, etc.) will fit within 64 kB, they
can be stored in the fast GPU constant memory. GPU constant memory is cached and provides near-
register-speed access when all threads in a warp access the same element at the same time. Since all
of the threads in a thread block must process the same basis set coefficients and CGTO primitives, the
constant cache kernel source code closely follows the pseudo-code listing in Algorithm 1.

Tiled-Shared Memory

If the MO coefficient arrays exceed 64 kB in aggregate size, the host application code dispatches a GPU
kernel that dynamically loads coefficients from global memory into shared memory as needed, acting

14 CHAPTER 1 GPU-Accelerated Computation

/% multiply with the appropriate wavefunction coefficient */
float tmpshell=0.0f;
switch (shelltype) {
case S.SHELL:
value += wave_f[ifunc++] * contracted_gto;
break;

case P_.SHELL.:
tmpshell += wave_f[ifunc++] * xdist;
tmpshell += wave_f[ifunc++] * ydist;
tmpshell += wave_f[ifunc++] * zdist;
value += tmpshell * contracted_gto;
break;

case D_SHELL:
tmpshell += wave_f[ifunc++] * xdist2;
tmpshell += wave_f[ifunc++] * xdist * ydist;
tmpshell += wave_f[ifunc++] * ydist2;
tmpshell += wave_f[ifunc++] * xdist * zdist;
tmpshell += wave_f[ifunc++] = ydist * zdist;
tmpshell += wave_f[ifunc++] * zdist2;
value += tmpshell * contracted_gto;
break;

// abridged for brevity

FIGURE 1.4
Example of completely unrolled shell-type-specific angular momenta code.

as a form of software-managed cache for arbitrarily complex problems. By carefully sizing shared
memory storage areas (tiles) for each of the coefficient arrays, one can place the code for loading
new coefficients outside of performance-critical loops, which greatly reduces overhead. Within the
innermost loops, the coefficients in a shared memory tile are read by all threads in the same thread
block, reducing global memory accesses by a factor of 64 (for 8 x 8 thread blocks). For the outer loops
(over atoms, basis set indices, the number of shells per atom, and the primitive count and shell type data
in the loop over shells) several coefficients are packed together with appropriate padding into 64-byte
memory blocks, guaranteeing coalesced global memory access and minimizing the overall number
of global memory reads. For the innermost loops, global memory reads are minimized by loading
large tiles immediately prior to the loop over basis set primitives and the loop over angular momenta,
respectively. Tiles must be sized to a multiple of the 64-byte memory coalescing size for best memory
performance, and power-of-two tile sizes greatly simplify shared memory addressing arithmetic. Tiles
must also be sized large enough to provide all of the operands consumed by the loops that follow
the tile-loading logic. Figure 1.5 illustrates the relationship between coalesced memory block sizes,
the portion of a loaded array that will be referenced during subsequent innermost loops, and global
memory padding and unreferenced data that exist to simplify shared memory addressing arithmetic and
to guarantee coalesced global memory accesses.

1.3 Algorithms, Implementations, and Evaluations 15

Array tile loaded in GPU shared memory. Tile size is a power two,

a multiple of coalescing size, and it allows simple indexing in inner loops.
Global memory array indices are merely offset to reference an MO
coefficient within a tile loaded in fast on-chip shared memory.

>

Surrounding data,

unreferenced by

next batch of loop
iterations

64-byte memory
coalescing block
boundaries

| Fulltile
padding

>
MO coefficient array in GPU global memory.

Tiles are referenced in consecutive order.

FIGURE 1.5

Schematic representation of the tiling strategy used to load subsets of large arrays from GPU global memory,
into small regions of the high-performance on-chip shared memory. © 2009 Association for Computing
Machinery, Inc. Reprinted by permission [1].

Hardware Global Memory Cache

NVIDIA recently released a new generation of GPUs based on the “Fermi” architecture that incorporate
both L1 and L2 caches for global memory. The global memory cache in Fermi-based GPUs enables a
comparatively simple kernel that uses only global memory references to run at nearly the speed of the
highly tuned constant cache kernel; it outperforms the tiled-shared memory kernel due to the reduction
in arithmetic operations encountered within the inner two loop levels of the kernel. The hardware
cache kernel can operate on any problem size, with an expected graceful degradation in performance
up until the point where the problem size exceeds the cache capacity, at which point it may begin
to perform slower than uncached global memory accesses if cache thrashing starts to occur. Even in
the situation where the problem size exceeds cache capacity, the strictly consecutive memory access
patterns employed by the kernel enable efficient broadcasting of coefficients to all of the threads in the
thread block.

Zero-Copy Host-Device 1/0

One performance optimization that can be paired with all of the other algorithms is the use of CUDA
“host-mapped memory.” Host-mapped memory allocations are areas of host memory that are made
directly accessible to the GPU through on-demand transparent initiation of PCI-express transfers
between the host and GPU. Since the PCI-e transfers incur significant latency and the PCI-e bus can
provide only a fraction of the peak bandwidth of the on-board GPU global memory, this technique is a

16 CHAPTER 1 GPU-Accelerated Computation

net win only when the host side buffers are read from or written to only once during kernel execution. In
this way, GPU kernels can directly access host memory buffers, eliminating the need for explicit host-
GPU memory transfer operations and intermediate copy operations. In the case of the MO kernels, the
output lattice resulting from the kernel computation can be directly written to the host output buffer,
enabling output memory writes to be fully overlapped with kernel execution.

Just-in-Time Kernel Generation

Since Algorithm 1 is very data dependent, we observe that most instructions for loop control and con-
ditional execution could be eliminated for a given molecule by generating a molecule-specific kernel
at runtime. A significant optimization opportunity exists based on dynamical generation of a molecule-
specific GPU kernel. The kernel is generated when a molecule is initially loaded, and may then be
reused. The generation and just-in-time (JIT) compilation of kernels at runtime has associated over-
head that must be considered when determining how much code to convert from data-dependent form
into a fixed sequence of operations. The GPU MO kernel is dynamically generated by emitting the com-
plete arithmetic sequence normally performed by looping over shells, primitives, and angular momenta
for each atom type. This on-demand kernel generation scheme eliminates the overhead associated with
loop control instructions (greatly increasing the arithmetic density of the resulting kernel) and allows
the GPU to perform much closer to its peak floating-point arithmetic rate. At present, CUDA lacks
a mechanism for runtime compilation of C-language source code, but provides a mechanism for run-
time compilation of the PTX intermediate pseudo-assembly language through a driver-level interface.
OpenCL explicitly allows dynamic kernel compilation from C-language source.

To evaluate the dynamic kernel generation technique with CUDA, we implemented a code generator
within VMD and then saved the dynamically generated kernel source code to a file. The standard batch-
mode CUDA compilers were then used to recompile VMD incorporating the generated CUDA kernel.
We have also implemented an OpenCL code generator that operates in much the same way, but the
kernel can be compiled entirely at runtime so long as the OpenCL driver supports online compilation.
One significant complication with implementing dynamic kernel generation for OpenCL is the need to
handle a diversity of target devices that often have varying preferences for the width of vector types,
work-group sizes, and other parameters that can impact the structure of the kernel. For simplicity of the
present discussion, we present the results for the dynamically generated CUDA kernel only.

The source code for these algorithms is available free of charge, and they are currently implemented
in the molecular visualization and analysis package VMD [1, 2].

1.4 FINAL EVALUATION

The performance of each of the MO algorithms was evaluated on several hardware platforms. The
test datasets were selected to be representative of the range of quantum chemistry simulation data that
researchers often work with, and to exercise the limits of our algorithms, particularly in the case of
the GPU. The benchmarks were run on a Sun Ultra 24 workstation containing a 2.4 GHz Intel Core 2
Q6600 quad core CPU running 64-bit Red Hat Enterprise Linux version 4 update 6. The CPU code was
compiled using the GNU C compiler (gcc) version 3.4.6 or Intel C/C++ Compiler (icc) version 9.0.
GPU benchmarks were performed using the NVIDIA CUDA programming toolkit version 3.0 running
on several generations of NVIDIA GPUs.

1.4 Final Evaluation 17

1.4.1 Single-GPU Performance Results for Carbon-60

All of the MO kernels presented have been implemented in either production or experimental versions
of the molecular visualization program VMD [2]. For comparison of the CPU and GPU implementa-
tions, a computationally demanding carbon-60 test case was selected. The Cgp system was simulated
with GAMESS, resulting in an output file (containing all of the wavefunction coefficients, basis set,
and atomic element data) that was then loaded into VMD. The MO was computed on a lattice with a
0.075 A spacing, with lattice sample dimensions of 172 x 173 x 169. The Cg test system contained 60
atoms, 900 wavefunction coefficients, 15 unique basis set primitives, and 360 elements in the per-shell
primitive count and shell type arrays. The performance results listed in Table 1.1 compare the runtime
for computing the MO lattice on one or more CPU cores, and on several generations of GPUs using a
variety of kernels.

The CPU “icc-libc” result presented in the table refers to a kernel that makes straightforward use
of the expf () routine from the standard C library. As is seen in the table, this results in relatively
low performance even when using multiple cores, so we implemented our own expf () routine. The
single-core and multicore CPU results labeled “icc-sse-cephes” were based on a handwritten SIMD-
vectorized SSE adaptation of the scalar expf () routine from the Cephes [9] mathematical library. The
SSE expf () routine was hand-coded using intrinsics that are compiled directly into x86 SSE machine
instructions. The resulting “icc-sse-cephes” kernel has previously been shown to outperform the CPU
algorithms implemented in the popular MacMolPIt and Molekel visualization tools, and it can be taken
to be a representative peak-performance CPU reference [1].

The single-core CPU result for the “icc-sse-cephes” kernel was selected as the basis for normalizing
performance results because it represents the best-case single-core CPU performance. Benchmarking
on a single core results in no contention for limited CPU cache or main memory bandwidth, and per-
formance can be extrapolated for an arbitrary number of cores. Most workstations used for scientific
visualization and analysis tasks now contain four or eight CPU cores, so we consider the four-core CPU
results to be representative of a typical CPU use-case today.

The CUDA “const-cache” kernel stores all MO coefficients within the 64 kB GPU constant memory.
The “const-cache” kernel can be used only for datasets that fit within fixed-size coefficient arrays within
GPU constant memory, as defined at compile time. The “const-cache” results represent the best-case
performance scenario for the GPU. The CUDA “tiled-shared” kernel loads blocks of the MO coefficient
arrays from global memory using fully coalesced reads, storing them in high-speed on-chip shared
memory where they are accessed by all threads in each thread block. The “tiled-shared” kernel supports
problems of arbitrary size. The CUDA Fermi “L1-cache (16 kB)” kernel uses global memory reads for
all MO coefficient data and takes advantage of the Fermi-specific L1/L2 cache hardware to achieve
performance exceeding the software-managed caching approach implemented by the “tiled-shared”
kernel. The CUDA results for “zero-copy” kernels demonstrate the performance advantage gained by
having the GPU directly write orbital lattice results back to host memory rather than requiring the CPU
to execute cudaMemcpy () operations subsequent to each kernel completion. The CUDA results for the
JIT kernel generation approach show that the GPU runs a runtime-generated basis-set-specific kernel
up to 1.85 times faster than the fully general loop-based kernels.

All of the benchmark test cases were small enough to reside within the GPU constant memory
after preprocessing removed duplicate basis sets, so the “tiled-shared” and “L1-cache (16kB)” test
cases were conducted by overriding the runtime dispatch heuristic, forcing execution using the desired
CUDA kernel irrespective of problem size.

18 CHAPTER 1 GPU-Accelerated Computation

1.4.2 Multi-GPU Performance Results for Carbon-60

We ran multi-GPU performance tests on an eight-core system based on 2.6 GHz Intel Xeon X5550
CPUs, containing an NVIDIA Quadro 5800 GPU, and three NVIDIA Tesla C1060 GPUs (both GPU
types provide identical CUDA performance, but the Tesla C1060 has no video output hardware).
Table 1.2 lists results for a representative high-resolution molecular orbital lattice intended to show
scaling performance for a very computationally demanding test case. The four-GPU host benchmarked
in Table 1.2 outperforms the single-core SSE results presented in Table 1.1 by up to factors of 419
(vs. Q6600 CPU) and 276 (vs. X5550 CPU). The four-GPU host outperforms the eight-core SSE
X5550 CPU result by a factor of 37, enabling interactive molecular visualizations that were previously
impossible to be achieved with a single machine.

1.5 FUTURE DIRECTIONS

The development of a range-limited version of the molecular orbital algorithm that uses a distance
cutoff to truncate the contributions of atoms that are either far away or that have very rapidly decay-
ing exponential terms can change the molecular orbital computation from a quadratic time complexity
algorithm into one with linear time complexity, enabling it to perform significantly faster for display of
very large quantum chemistry simulations. Additionally, just-in-time dynamic kernel generation tech-
niques can be applied to other data-dependent algorithms like the molecular orbital algorithm presented
here.

References

[1] J.E. Stone, J. Saam, D.J. Hardy, K.L. Vandivort, W.W. Hwu, K. Schulten, High performance computation
and interactive display of molecular orbitals on GPUs and multi-core CPUs, in: Proceedings for the 2nd
Workshop on General-Purpose Processing on Graphics Processing Units, ACM, New York, 2009, pp. 9-18.
http://doi.acm.org/10.1145/1513895.1513897.

[2] W. Humphrey, A. Dalke, K. Schulten, VMD - visual molecular dynamics, J. Mol. Graph. 14 (1996) 33-38.

[3] B.M. Bode, M.S. Gordon, MacMolPlIt: a graphical user interface for GAMESS, J. Mol. Graph. Model. 16 (3)
(1998) 133-138.

[4] G Schaftenaar, J.H. Nooordik, Molden: a pre- and post-processing program for molecular and electronic
structures, J. Comput. Aided Mol. Des. 14 (2) (2000) 123-134.

[5] S. Portmann, H.P. Liithi, Molekel: an interactive molecular graphics tool, Chimia 54 (2000) 766-770.

[6] C.J. Cramer, Essentials of Computational Chemistry, John Wiley & Sons, Ltd., Chichester, England, 2004.

[7]1 E.R. Davidson, D. Feller, Basis set selection for molecular calculations, Chem. Rev. 86 (1986) 681-696.

[8] M.M. Francl, W.J. Pietro, W.J. Hehre, J.S. Binkley, M.S. Gordon, D.J. DeFrees, et al., Self-consistent molec-
ular orbital methods. XXIII. A polarization-type basis set for second-row elements, J. Chem. Phys. 77 (1982)
3654-3665.

[9]1 S.L.Moshier, Cephes Mathematical Library Version2.8. http://www.moshier.net/#Cephes,2000.

CHAPTER

Large-Scale Chemical
Informatics on GPUSs

Imran S. Haque, Vijay S. Pande

In this chapter we present the design and optimization of GPU implementations of two popular chem-
ical similarity techniques: Gaussian shape overlay (GSO) and LINGO. GSO involves a data-parallel,
arithmetically intensive iterative numerical optimization; we use it to examine issues of thread par-
allelism, arithmetic optimization, and CPU-GPU transfer overhead minimization. LINGO is a string
similarity algorithm that, in its canonical CPU implementation, is bandwidth intensive and branch
heavy, with limited data parallelism. We present an algorithmic redesign allowing GPU implemen-
tation of such a low arithmetic-intensity kernel and discuss techniques for memory optimization that
enable large speedup. Source code for the programs described here is available online: PAPER (for
Gaussian shape overlay) can be downloaded at https://simtk.org/home/paper under the GPL,
and single-instruction, multiple LINGO (SIML) (for LINGO) at https://simtk.org/home/siml
under a BSD license.

2.1 INTRODUCTION, PROBLEM STATEMENT, AND CONTEXT

Chemical informatics uses computational methods to analyze chemical datasets for applications that
include search and classification of known chemicals, virtually screening digital libraries of chemicals
to find ones that may be active as potential drugs and predicting and optimizing the properties of
existing active compounds. A common computational kernel in cheminformatics is the evaluation of a
similarity (using various models of similarity) between a pair of chemicals. Such similarity algorithms
are important tools in both academia and industry.

A significant trend in chemical informatics is the increasing size of chemical databases. Public
databases listing known chemical matter exceed 30 million molecules in size, the largest exhaustive
libraries (listing all possible compounds under certain constraints) are near 1 billion molecules, and
virtual combinatorial libraries in use in industry can easily reach the trillions of compounds. Unfortu-
nately, similarity evaluations are often slow, at or below 1000 evaluations/sec on a CPU. Adding to the
problem,